
Acta Cybernetica — online–first paper version — pages 1–27.

Overlaying Control Flow Graphs on

P4 Syntax Trees with Gremlin∗

Dániel Lukácsab and Máté Tejfelac

Abstract

Our overall research aim is to statically derive execution cost and other
metrics from program code written in the P4 programming language. For this
purpose, we extract a detailed control flow graph (CFG) from the code, that
can be turned into a full, formal model of execution, to extract properties –
such as execution cost – from the model. While CFG extraction and analysis
is well researched area, details are dependent on code representation and
therefore application of textbook algorithms (often defined over unstructured
code listings) to real programming languages is often non-trivial. Our aim
is to present an algorithm for CFG extraction over P4 abstract syntax trees
(AST). During the extraction we create direct links between nodes of the
CFG and the P4 AST: this way we can access all information in the P4 AST
during CFG traversal. We are utilizing Gremlin, a graph query language to
take advantage of graph databases, but also for compactness and to formally
prove algorithm correctness.

Keywords: control flow graph, static analysis, P4, Gremlin, graph database,
proof of correctness

1 Introduction

Our long-term research goal – that also motivates this current work – is to develop
an adaptable, scalable, and efficient static cost analysis tool for programs written
in the P4 programming language [7]. P4 is a new domain-specific programming
language running on programmable network switches. P4 programs describe net-
work communication protocols: more specifically, a P4 programs tells the switch
how process (transform, forward, or drop) an incoming network packet. Static cost

∗Supported by the ÚNKP-21-4 New National Excellence Program of the Ministry for Innova-
tion and Technology from the source of the National Research, Development and Innovation Fund.
This research is in part supported by the project no. FK 21 138949, provided by the National
Research, Development and Innovation Fund of Hungary.

aFaculty of Informatics, Eötvös Loránd University, Budapest, Hungary
bE-mail: dlukacs@caesar.elte.hu, ORCID: 0000-0001-9738-1134
cE-mail: matej@inf.elte.hu, ORCID: 0000-0001-8982-1398

DOI: 10.14232/actacyb.298770

mailto:dlukacs@caesar.elte.hu
https://orcid.org/0000-0001-9738-1134
mailto:matej@inf.elte.hu
https://orcid.org/0000-0001-8982-1398
https://doi.org/10.14232/actacyb.298770


2 Dániel Lukács and Máté Tejfel

analysis tools – that can estimate performance, energy needs, and other metrics of
a P4 program automatically and without actually executing the program code –
have several industrial use cases. Unfortunately, cost analysis is NP-hard (it solves
the halting problem). While algorithms exist, they do not scale well for large, in-
dustrial size P4 programs: the time it takes to compute the solution exceeds the
bounds of what is considerable usable in the industry.

As we attempted to realise a cost analysis tool for P4, we found that control flow
analysis has a central role in all our efforts. Control flow analysis [1, Chapter 8.4.3.]
concerns discovering the order of execution of the program statements in compile-
time (i.e. based on the source code, or its equivalent representation, the syntax
tree). Due to branching structures, there are usually multiple possible selections of
executable statements, so the appropriate representation of the results is a graph,
called control flow graph (CFG). We refer to paths in the CFG as execution paths.

Cost analysis requires a representation where implementation-dependent in-
formation (abstractions of the implementation, for example, cost formulas) can
be easily inserted. CFGs turned out to be such representations. In our earlier
works [10, 9], we discussed an approach based on enumerating all possible execu-
tion paths in the CFG of a P4 program to produce the average (or minimum or
maximum) cost for that program. Our preliminary measurements have also shown
that CFG path enumeration scales up for CFGs having as much as one hundred-
thousand execution paths.

CFGs can also be considered Kripke-structures or transition systems [5, Chap-
ter 2.1.], with the program counter being the only visible variable in the state, while
the actual program state stays implicit in the start state and its subsequent trans-
formations by the program instructions. A clear consequence of this is that CFGs –
as traditionally understood – are not full program representations, but graphs that
connect program points to program points, mostly with no formal references to the
actual data that is being processed during execution. For example, it may happen
that during execution, we update a variable in a way such that one branch of a
conditional is never executed. Taking the cost of this branch into account in the
average cost then possibly leads to a significant overestimation of the true program
cost.

For this reason, in our latest work [11], we decided to try a new approach instead
of CFG path enumeration and relied on probabilistic model checking to cost analyse
P4 code. Here, we translate P4 code into model checkable representation, and –
together with the specification of cost requirements – we delegate this to a model
checker tool. Yet, even in this approach, we rely on CFGs in order to generate the
model checkable representation. And here as well, we need more information about
the program points than what textbook definition CFGs store.

Thus, our first aim in this paper is to develop a variant of CFG representations
that is also capable of meaningfully representing program data and instructions
over this data. To achieve this, we will define control flow analysis over the abstract
syntax tree (AST) [1, Chapter 2.5.1.] of P4 programs. The AST is a hierarchical
representation of the program sources, describing how various program structures
and expressions are nested into each other. As AST is a full program representation,



Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 3

we can exploit the fact that the AST already has every information about data and
instructions, and to make this information available during control flow analysis,
we just have to establish the links between the corresponding nodes in the AST and
the CFG. As a result, when we traverse the CFG, any further information about
the current program point is just one link away, in the form of an AST subtree.

As it can be seen, interconnected graph representations will be central to our
efforts. To make sure we use graphs in the most efficient way possible, we host
these graphs (AST and CFG) in a graph database (GDB). A GDB is a database
that stores data in graph data structure and provides a query language with graph
semantics. Compared to relational databases (storing data in tables), GDBs elim-
inate the need for expensive join-operations, making them more efficient (both in
terms of computation and usage) for storing and traversing heavily interconnected
data. An extensive meta-analysis on the concept can be found in Angles et al. [3].

Then, our second aim is to address the problem of implementing a CFG al-
gorithm in the form of a Gremlin query. By doing so, we can leverage built-in
optimisations in Gremlin-compatible GDBs, such as parallelisation and bulking
(see Rodriguez [14]). As Gremlin is a domain-specific language with somewhat
unusual syntax and semantics, we found this task challenging enough to deem it
necessary to discuss it in depth. We also hope that this discussion will be helpful
for all future Gremlin programmers aiming to implement non-trivial algorithms in
Gremlin.

Contributions In this work, we present an approach to intraprocedural CFG
extraction from ASTs (formalised as a Gremlin query), and prove its correctness.
At the same time, we explore the expressive power of Gremlin for specifying fairly
complex static analysis procedures. We define both ASTs and CFGs in Section 3.1,
in a way that can handle most of the P4 language control flow, and makes extend-
ing the AST for the rest is a straightforward process. Then, in Section 3.2, we
describe the extraction algorithm in pseudocode. In Section 4.1 we formalised the
semantics of a subset of Gremlin. Section 4.2 contains the extraction algorithm in
Gremlin. We use the formal description to prove the correctness of the algorithm
in Section 4.3. Finally, we conclude the paper with a few words about limitations
and future work.

2 Related work

Recently, Dumitrescu et al. [8] introduced Bf4, a program verification tool for P4
programs, that also builds heavily on the CFG representation of P4. They rely on
a preceding instrumentation step, and extend the CFG with “bug nodes” (nodes,
guarded with a condition that can only be satisfied if there is a bug), and then
perform program slicing (using SSA and various dependency analyses) to compute
reachability of the bug nodes using an SMT solver. They do not discuss their
internal CFG representation, but they do tell that they realised the tool as a P4C
backend, and the size of the implementation is around 25000 lines of C++ code (not



4 Dániel Lukács and Máté Tejfel

counting the P4C infrastructure). We suspect GDB-integrated deep CFGs could
complement the Bf4 implementation in order to reach all necessary the information
more easily than what visitors over the P4C intermediate program representation
can currently provide.

The work of Amighi et al. [2] shares some goals with ours. They extract CFGs
from Java bytecode, which is a more difficult problem since it involves handling
stack (implicit the bytecode) and exception flow as well. First, they translate byte-
code to an intermediate representation that makes the stack explicit. Then, for
each instruction they declaratively define the transition relation between program
points. The final CFG is simply the union of the transitions resulting from evalu-
ating the relation over program points and instructions of a given bytecode. Like
us, they also prove the correctness of the extraction. In their proof, they estab-
lish the existence of a simulation relation between states induced by the bytecode
instructions and states induced by the extracted CFG.

An important application of CFGs is that it is the representation on which
data flow analysis (DFA) [1, Chapter 9.2.] operates. The results of DFA can be
represented e.g. in the form of a definition-use graph, establishing links between
the definitions of variable names and the usages of these names. In turn, it should
be possible to store such a definition-use graph in our GDB, interlinked to AST and
CFG, in order to enable even more applications. For example, Birnfeld et al. [6]
combine CFG and definition-use graphs to discover potential faults in P4 code, to
detect e.g. that there are execution paths where the P4 program processes invalid
packets.

In our work, we extract CFGs from a structured AST, not from unstructured
code (with features such as gotos, no nesting, etc.). This is also the approach
of Söderberg et al. [15], who – analysing Java – recognise that by superimposing
the CFG on the AST, “high-level abstractions are not compiled away during the
translation to intermediate code”. The authors utilise elegant reference attribute
grammars for control flow and data flow analysis. In this approach control-related
AST nodes get a reference attribute (e.g. successor) that points to another AST
node where control is supposed to flow from the previous node. Another interesting
feature of this work is that it is easily extensible to handle new language elements
in novel versions of Java, by incrementally adding new grammar rules.

Another inspiring example for this concept is the RefactorErl framework, that
also superimposes control flow (and many other static analysis results) on the
AST [16] for the Erlang programming language.

3 Problem and solution idea

3.1 Basic definitions

In this section, we define what we mean by ASTs and control flow graphs in the fol-
lowing sections. In the correctness proof in Section 4.3, these definitions constitute
the precondition and postcondition.



Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 5

An illustration of these concepts is depicted by Figure 1. One the left, there
is a simplified excerpt from basic routing-bmv2.p4, a P4 program describing an
L2/L3 routing protocol, used in the testing of the P4 reference compiler, P4C [13].
This code describes a control declaration named ingress. It declares a few match-
action tables (their external definition is linked at compile-time), and then it spec-
ifies the actual control flow determining the (sometimes conditional) invocation of
these tables. In the middle is the corresponding AST with d, b, c, s labelled nodes
denoting control declaration, block, conditional, and statement nodes respectively.
(We do not analyse control flow inside expressions.) On the right is the corre-
sponding CFG with matching node names. The thin lines are the association edges
between AST nodes and CFG nodes.

control ingress(inout headers hdr,
[...]) {

table bd {[...]}
table ipv4_fib {[...]}
table ipv4_fib_lpm {[...]}
table nexthop {[...]}
table port_mapping {[...]}
[...]
apply {

if (hdr.ipv4.isValid()) {
port_mapping.apply();
bd.apply();
if ([...]) {

ipv4_fib_lpm.apply();
} else {}
nexthop.apply();

} else {}
}

}

d

b1

c1

b2

s1 s2 c2 s4

b3

s3 b4

b'1

c'1

b'2 b'3s'1 s'2 c'2

s'3 b'4

s'4

Figure 1: Source code, AST, and CFG of a control declaration

In the rest of this section, we define these concepts based on labelled graphs
and related notations. GDBs support sophisticated attribute-based labelling, but
for ease of understanding we use a simpler scheme in this paper.

Definition 1. A labelled graph is a (V,E, l) tuple of a V node set, an E edge set,
and an l : (V ∪ E)→ L labelling function (where L is an arbitrary set of labels).

Notations. In case a distinction must be made between multiple graphs, we write
e.g. (Vg, Eg, lg) to denote the components of a particular graph g. We use un-
derlined lowercase letters to denote a node with a specific label: for example x
denotes a node n ∈ V for which l(n) = x (a node with label x). We use indexes to
distinguish between multiple nodes: for example, x1 and x2 denotes n1, n2 nodes

for which l(n1) = l(n2) = x. We write n1
x−→ n2 to denote an edge (n1, n2) ∈ E for

which l((n1, n2)) = x. In the case graph g is a tree, rootg denotes the root of tree g,
and childreng(n, x) denotes those child nodes of node n in g whose incoming edge
has label x.



6 Dániel Lukács and Máté Tejfel

Notations. In the AST, we use labels d, b, c, and s to denote control declarations,
blocks, conditionals, and statements, respectively (so e.g. d ∈ V denotes any n ∈ V
node that is a control declaration). Syntactical edges between the AST nodes are
appropriately labelled with labels to distinguish from other edges introduced into G,
e.g. assoc (see later). These edge labels are body (between a control declaration
node and the top-level block forming its body), nest (between a block and its
nested blocks), statement (between a block and its statements), true, and false

(between a conditional node and its branches).

Definition 2. A (V,E, l) graph is an abstract syntax tree (AST), if it is a tree,
and ∀n ∈ V : l(n) ∈ {d, b, c, s}, and

1. If (n1
body−−−→ n2) ∈ E, then l(n1) = d, and l(n2) = b

2. If (n1
nest−−−→ n2) ∈ E, then l(n1) = b, and l(n2) = b

3. If (n1
statement−−−−−−→ n2) ∈ E, then l(n1) = b, and l(n2) = s,

4. If (n1
true−−−→ n2) ∈ E, then l(n1) = c, and l(n2) = b

5. If (n1
false−−−→ n2) ∈ E, then l(n1) = c, and l(n2) = b

6. If s ∈ V , then children(s) = ∅

7. If d ∈ V , then ∃! b ∈ V : (d
body−−−→ b) ∈ E,

8. If c ∈ V , then ∃! b1, b2 ∈ V : ((c
true−−−→ b1) ∈ E ∧ (c

false−−−→ b2) ∈ E),

The definition asserts that all P4 control declaration has an AST made of blocks
(containing 0,1 or more ASTs), conditionals (containing exactly two ASTs, one per
branch), and statements (primitives, along with empty blocks).

In addition, we assume (without explicitly featuring) that all AST nodes have
a unique identifier incremented in depth-first order. Such identifier attributes (la-
bels) can be inserted in the graph straightforwardly (preferably directly after graph
construction). The recursive top-down traversal of ASTs guarantees termination
and allows us to use a common idea in correctness proofs of functional programs.
By inductively assuming that the previous elements were correctly processed, and
applying a proven correct procedure to the current element, we only have to as-
sure that the previous and the current elements are aggregated in an appropriate
manner.

In later sections, we will define our algorithm over ASTs of P4 control declara-
tions. For this reason, we restrict our discussion here to these, and omit discussing
goto-like flows in the P4 packet parser declarations. In P4, packet parsers are de-
fined in the form of state machines. Their control flow analysis is straightforward,
so omit this for simplicity. P4 has no construct for user-defined loops except for
match-action tables (lookup tables that match packet headers to actions). The im-
plementation of these table algorithms is not part of the language, only the node of



Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 7

the table application appears in the syntax tree (and similarly, table applications
will be featured as single nodes in the control flow graph). For languages with
loops, extending the definition is straightforward, albeit cumbersome. P4 also has
one-way and multi-way conditionals, but those are processed similarly to two-way
conditionals, and so we also omit them for simplicity.

Now, we prepare for defining deep CFGs. The main problem we have to solve
as we translate an AST to a CFG is that ASTs give no explicit clue about the
order of execution of its elements, while CFGs aims to describe precisely that. It is
well-known [4], that by transforming CFGs to static single-assigment form, blocks
can be treated as functions, and directed flows as calls between these functions: the
result is a functional program, where the continuation (i.e. the rest of program)
at each program point explicitly appears as a function. While we aim for a more
direct definition, this gives us a clue that a recursive approach can be successful.
Specifically, we will define CFGs as compositions of sub-CFGs, with each sub-CFG
relating to a subtree of the control declaration AST.

Definition 3. Let G = (V,E) contain syntax subtree t and subgraph c. We say
that c is the sub-CFG corresponding to t, with source n ∈ Vc and return points
R ⊆ Vc given the following conditions are satisfied in G:

1. If roott = {s}, then (n
assoc−−−→ s) ∈ E, R = {n}

2. If roott = {b} and childrent(b) = ∅, then (n
assoc−−−→ b) ∈ E, R = {n}

3. If roott = {b} and childrent(b) = {t1, . . . , tk} and ci is the sub-CFG with
source ni, return points Ri corresponding to the subtree rooted in ti (∀i =
1, . . . , k), then

(n
assoc−−−→ b) ∈ E,

(n
flow−−−→ n1) ∈ Ec,

(r
flow−−−→ ni) ∈ Ec (∀i = 2 . . . k, ∀r ∈ Ri−1),

R = Rk

4. If roott = {c} and childrent(c) = {t1, t2}, then

(n
assoc−−−→ c) ∈ E,

ci is the sub-CFG corresponding to ti with source ni,

return points Ri (∀i = 1, 2),

(n
flow−−−→ ni) ∈ Ec (∀i = 1, 2),

R = R1 ∪R2



8 Dániel Lukács and Máté Tejfel

According to the definition, the sub-CFG of statements and empty blocks is a
single node, relating to the syntax node of the statement or empty block itself. The
sub-CFG of non-empty blocks is composed of a CFG node relating to the syntax
node of the block, and the sub-CFGs of its children. We set up flow from the block
to the first child CFG, and also between the siblings. The sub-CFG of a conditional
is composed of a CFG node relating to the syntax node of the conditional, and of
the sub-CFGs of the children. Here, we omitted true and false labels on the flows,
but these can be easily identified by querying the incoming edge (labelled with true

or false) of the associated node in the AST.
We may note that control declaration nodes (d-labelled nodes) are missing from

the sub-CFG definition. This is because the CFG corresponding to such a node is
a top-level CFG, that we call deep CFG. This node does not require much analysis
compared to its descendants, it simply identifies the entry and exit nodes of the
CFG.

Definition 4. Let G = (V,E) contain control declaration AST u and subgraph g.
We say that g is the deep CFG corresponding to u, with entry e ∈ Vg and exit
f ⊆ Vg given the following condition is satisfied in G:
If rootu = d, child(d) = {t} and g is the sub-CFG corresponding to the tree rooted
in t, with source n and return points R, then

(d
entry−−−→ e) ∈ E, (d

exit−−→ f) ∈ E, (e
flow−−−→ n) ∈ Eg, (r

flow−−−→ f) ∈ Eg (∀r ∈ R)

Edges labelled with entry and exit are similar to assoc, linking the AST
declaration node to the CFG entry and exit points. Control will flow from the
entry node to the first block (the source of the sub-CFG corresponding to the
declaration body). From the return points of this first block, control flows into the
exit node. Flows inside the CFG are determined by Definition 3.

3.2 CFG extraction

First, we present the idea of our CFG extraction algorithm by translating the CFG
definition into an informal, imperative description. Later on we formalise this as a
Gremlin traversal. We split the operation in two.

Algorithm 1 iterates over the control declaration nodes in the AST, creates
one entry and one exit CFG node (e and f) for each in graph G, and then calls
Algorithm 2 on b (the top-level block of the declaration). An edge will be sent from
e to b by that other procedure (as b’s CFG is the subsequent continuation of e).
Finally, we send an edge from R (the return nodes returned by that procedure) to
f (as the exit is the final continuation).

Algorithm 2 creates a CFG for the AST of some b, either a block or a conditional.
The algorithm expects a set of predecessor CFG nodes: while ProcNode is initially
called with (a set of) just a single predecessor, later it is called again recursively
with the R set of return points. The resulting CFG is the subsequent continuation
of whatever is in R, and so right after we create its starting point n, we link the
contents of R to n. In case b is a block or a statement, we recursively apply the



Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 9

procedure to the children. R is initially set to n, since the continuation after node
b is the CFG of the first child. After the child CFG was produced, we assign the
return points of that CFG to R as this needs to be linked to the next continuation
(that is either a sibling, or a sibling of an ancestor). Note that in case b is an empty
block or a statement, it has no children and {n} is the returned return point (this
is the node that will be followed by the sibling of an ancestor).

In case b is a conditional, n has to be linked to the two possible subsequent
continuations, and we collect into R the return points of both branch CFGs, as
anything that follows will be the subsequent continuation of both branches. Algo-
rithm 2 always terminates because it is progressing from child to child, and for any
of its calls, the longer the call’s stack trace, the shorter the distance between b and
the AST leaves.

Procedure CFG(G):
Input: G is graph, includes AST
Result: CFG of each control declaration is added to G

begin
forall v ∈ VG do

if v is control declaration then
e := new CFG entry node
f := new CFG exit node
VG := VG ∪ {e, f}
b := childG(v, body)
R := ProcNode(G, b, {e})
forall r ∈ R do

EG := EG ∪ {r
flow−−−→ f}

end

end

end
return

end
Algorithm 1: Control declarations

4 Formalising CFG extraction in Gremlin

4.1 Semantics of Gremlin

To formally prove our CFG extraction operation in Section 4.2, we have to have
a formal semantics for the Gremlin Traversal Machine (GTM). In the white pa-
per [14], the authors give a mathematical description of the GTM, but one of
their goals is to keep it general and enable adapters to implement many possible
– including parallel – evaluation strategies. In this section, we intend to reiterate
this description with two important modifications: we formalise it as an axiomatic



10 Dániel Lukács and Máté Tejfel

Procedure ProcNode(G,b,P):
Input: G is graph, includes AST and CFG
Input: b is block, statement or conditional in the AST
Input: P is set of predecessor CFG nodes
Output: Return points of CFG of b
Result: CFG of b is added to G

begin
n := new CFG node
VG := VG ∪ {n}
forall p ∈ P do

EG := EG ∪ {p
flow−−−→ n}

end
if b is block ∨ b is statement then

R := {n}
forall c ∈ childrenG(b, {nest, statement}) do

R := ProcNode(G, c, R)
end
return R

else
if b is conditional then

R := ∅
forall c ∈ childrenG(b, {true, false}) do

R := R ∪ ProcNode(G, c, {n})
end
return R

end

end

end
Algorithm 2: Blocks, conditionals

semantics so that we can use it in proofs (see Section 4.3), and we restrict the
traverser set (see later) to be an ordered set (or list). This restriction ensures that
sibling nodes are processed sequentially, and in a fixed order. In our experience,
the default evaluation strategy in the native Gremlin Java graph implementation
(called TinkerGraph) satisfies this restriction.

The GTM executes a program called graph traversal, which is effectively a
sequence of instructions (with some higher-order instructions also accepting graph
traversal programs as parameters). While “traversal” is a notion employed in the
Gremlin-literature to denote programs, it may cause some confusion that it is also
used colloquially to denote the execution of such programs. Therefore, in the formal
treatment we use the notion of traversal to denote the program text, and use other
phrases (semantics, state, etc.) to characterise execution. We now proceed first to
define the state of the GTM. The global memory state of the GTM consists of the



Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 11

graph contents and other auxiliary storages. There are stores in the memory that
can store both graph objects (e.g. nodes, edges) and other objects (e.g. collections
of graph objects).

Definition 5. The global memory of the GTM state is a Γ = (V,E,H,K) tuple,
where (V, E) is the graph itself, H is an object heap for processing non-graph
objects during the traversal, and K is a global key-value store (often, referred to as
side-effect store).

Besides the global memory, graph traversals have a current local state called
traverser. A GTM state stores multiple traversers at the same time. Informally, we
can imagine each traversers as a worker (in Gremlin materials often depicted as the
green little monster) that jumps from node to node (as per the instructions of the
traversal program), and collects data about the nodes into various data structures.
In addition, the worker can “clone” itself when the traversal program branches: the
clone starts with the same data as the original, but they will move around following
the instructions of a different program branch.

Definition 6. A traverser is a (p, k, s) triple, where p is a pointer to a graph
element or an object in H, k is a local key-value store, and s is the sack, a local
store for sum-like operations (aggregation).

The white paper [14] lists some other components of traversers as well, but we
will not use those in this work.

Finally, a traversal is effectively a program, whose instructions (called steps and
denoted by σ) transform a Γ global memory (e.g. by changing the graph) and list of
(p, k, s) traversers (e.g. by moving the individual traversers forward in the graph).

Definition 7. A traversal is a program defined by the following simple grammar:

Ψ ::= ε | σ ; Ψ

σ ::= σ1 | σn(Ψ, . . . ,Ψ)

A traversal Ψ may be empty (ε), or it may consist of a step σ, sequentially
followed by the rest of the traversal. Steps are 2Γ × 2T −→ 2Γ × 2T functions, and
come in two variants: higher-order steps (σn(Ψ, . . . ,Ψ)) are parameterised by a
number of different subtraversals and transform the GTM state by executing these
subtraversals in the current GTM state, while first-order and zeroth-order steps
(σ1) take only ordinary parameters to transform the state. In these terms, we can
think of ; as forward function composition.

Notations. In the grammar of Definition 7, σ, σ1, σn and Ψ are non-terminals.
Later in the text, we use them to denote concrete traversals and steps. In particular,
we will use σ to denote steps in the Gremlin language, e.g. σflatMap will denote the
flatMap step of Gremlin.



12 Dániel Lukács and Máté Tejfel

Gremlin defines over 30 type of steps, and we have no place here – nor do we
find it indispensable – to include a formal definition for each of them. After defining
machine state and semantics, we will include in Table 1 short informal descriptions
for the ones we used in our CFG extraction traversal (e.g. σoutE, σinV, σflatMap,
σsideEffect), and hope that our readers can reconstruct a formal definition in case
needed.

Definition 8. The state of the GTM is a triple (Γ, T, Ψ), where Γ is the state of
the global memory, T is a traverser list (storing the current local state of multiple
traversals), and Ψ is a traversal.

Below, we formalise the evaluation of Gremlin traversals as an axiomatic seman-
tics similar to Hoare-logic. A thorough introduction on defining language semantics
with inferential systems and proving it using inferential trees can be found in Niel-
son & Nielson [12, Chapter 6.2].

Note that we intend Rules (4), (5), and (6) as templates that highlight and help
in formalizing the three main categories of concrete steps.

{Γ;∅} Ψ {Γ;∅}
(1)

{Γ;T} ε {Γ;T}
(2)

{Γ;T} σ {Γ1;T1} {Γ1;T1} Ψ {Γ2;T2}
{Γ;T} σ ; Ψ {Γ2;T2}

(3)

σ1(Γ; t1) 7→ (Γ1; R1) · · · σ1(Γn−1; tn) 7→ (Γn; Rn)

{Γ; t1, . . . , tn} σ1 {Γn; R1 ∪ . . . ∪Rn}
(4)

{Γ; t1} Ψ′ {Γ1;R1} · · · {Γn−1; tn} Ψ′′ {Γn;Rn}
{Γ; t1, . . . , tn} σn(Ψ) {Γn; R1 ∪ . . . ∪Rn}

(5)

{Γ;T} Ψ′1 {Γ1;R1} · · · {Γn−1;T} Ψ′′n {Γn;Rn}
{Γ; T} σn(Ψ1, . . . ,Ψn) {Γi; Ri}

i = min
j=1...n

Rj 6=∅∨j=n

j (6)

Axioms (1) and (2) correspond to termination in case the traversal mapped to
an empty traverser list or in case all steps were executed in the traversal.

Rule (3) corresponds to the classic sequencing rule: the first step and the rest
of the traversal is executed in the program state resulting from the first step. What
may not be evident at first glance, is that this step prescribes a breadth-first
traversal: step σ is applied to all traversers in T (possibly modifying the global
state) before the following steps are applied to any of them.

Rule (4) is a template rule for describing how first-order steps are evaluated.
This rule also emphasizes our restriction that traversers are processed in some fixed
order.

Note that some steps may map to any number of traversers (including zero).
Rule (5) is a template rule for higher-order traversals: it goes through the traversers



Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 13

in some fixed order, and applies the subtraversal one-by-one to each traverser (pos-
sibly modifying the global state in the mean time). Additionally, we allow instances
of this rule to apply some modifications to the Ψ traversal (denoting the resulting
traversal as Ψ′) so a large variation of traversals (such as conditional traversals)
can be expressed.

Finally, Rule (6) formalises special higher-order traversals knowns as branching.
This rule executes its subtraversals in a way such that if Ψ1 terminates with an
empty traverser list, then Ψ2 is executed, and so and so on either until one of
the traversers terminates with a non-empty traverser list, or until Ψn is executed.
While failed traversers may modify the state, only the traverser list of the first
successful traverser will be returned. For generality, we also allow instances of this
rule to modify their Ψi subtraversals. Note that higher-order traversals enable us
to define depth-first traversals as well, since subtraversal has to be completely
executed to complete the step.

In Table 1, we informally describe individual Gremlin steps we use in this paper.
For space reasons, we omit formally defining the semantics of each step, and just
highlight some of them to familiarise our readers with the notation. Based on the
white paper [14], the online Gremlin documentation, and our algorithm description
in our algorithm description in Section 4.2, we believe it is not too difficult to
reconstruct the semantics of the steps.

4.2 CFG extraction in Gremlin

It is common for graph procedures (and as such, static analysis procedures as
well) to have a short, intuitive textual specification, that – when implemented
in executable code – blows up into an entangled web of nested loops, custom data
structures, and reliance on language built-in dispatch mechanisms for distinguishing
involved objects.

To avoid the gap between presentation and implementation, we formalised CFG
extraction as a Gremlin (v3.4.4) traversal. The traversal in Figure 2 – consisting
of around 60 steps – can be typed into any Gremlin language variant (e.g. Gremlin
Java) with minimal amount of language-specific modifications (for example defining
a function expression for σclear, using function expressions to enable lazy recursive
calls of subtraversals, using type hints, etc.). In fact, we automatically generated
the formulas in this paper directly from our implementation code, and then manu-
ally simplified the aforementioned elements. (Regarding recursion, see limitations
in Section 5.) Our Gremlin Java implementation – that was extended to handle
a slightly more elaborate graph schema that distinguishes between AST overlays
and CFG overlays –, is slightly below 110 lines of code with each line having one or
two steps. Beyond those mentioned, the requirement of navigating the labels and
properties in the more complex graph schema was solely responsible for having to
add in additional steps.

We show in Section 4.3 that this compact representation combined with Grem-
lin’s simple semantics is very effective for formally deriving its correctness proof
by hand. The alternative – proving a less abstract, less compact executable rep-



14 Dániel Lukács and Máté Tejfel

Table 1: Informal description of selected Gremlin steps

Step Description
σoutE “Moves the traverser forward”, i.e. it replaces the

nodes in the traverser list with their outgoing edges.
σinV “Moves the traverser forward”, i.e. it replaces the

edges in the traverser list with the nodes they enters
σflatMap(Ψ) Applies Ψ to all t ∈ T (see Definition 8) as described

by Rule (5).
σsideEffect(Ψ) Abbreviated as σsEffect(Ψ). Also a Rule (5) step; it

may modify the global state Γ, but it discards the
traverser list produced by Ψ and returns the original
T .

σcoalesce(Ψ1, . . . ,Ψn) A Rule 6 step, that returns the traversers from the
first of traversals Ψ1, . . .Ψn which is successful (has
non-empty result).

σaggregatex Adds the current traverser list into a collection as-
signed in K to name x.

σcapx
Loads the content stored in x into the traverser list.

σunfold Replaces collections in the traverser list with the el-
ements of the collections.

σsEffect(clear) Empties a collection. Useful for discarding the tra-
versers stored earlier in x, before adding a new el-
ement. clear is a custom Java function expression
that empties the collection.

σsackin Applied to (p, k, s) will put p inside store s. This
step enables additional sum-like operations, that we
will not use.

σsackout Applied to (p, k, s) will replace p with the content of
store s.

σ@x Given that some σ step produces a (p, k, s) traverser,
σ@x will assign p to name x in local store k.

σtail1 Removes all elements of the traverser list except for
the last one.

resentation (such as direct Java code) with the same level of formality – would
have likely required machine assistance, and in that case it likely would have been
impossible to fit the complete proof of such a representation into this paper.

We now describe how this traversal implements the previously described CFG
extraction procedure. The procedure is a traversal consisting of five subtraversals
depicted in Figure 2. Ψcontrol and Ψicontrol are corresponding to Algorithm 1 in
Section 3.2. Ψcontrol selects nodes in the AST that correspond to a P4 control
declaration d, and then executes Ψicontrol (the internal part of Ψcontrol we separated
for readability). Here, we make use of Rule 5 semantics to make sure that steps in



Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 15

Ψicontrol affect just one control declaration subtree at a time. Ψicontrol clears global
register r, stores the entry CFG node of d into r, invokes subtraversal Ψnode over the
body block of d, and finally sends a flow-edge from the contents of r (supposedly
filled by Ψnode) to the exit CFG node of d. The second and third side-effects
are simply there because we do not need the results from those subtraversals, and
instead we want to continue from the same place they started. The side-effect with
Ψnode simply performs the invocation of the subtraversal. σflatMap(σcapr

; σunfold)
is an idiom that makes the content of r the current traversal. σflatMap here is an
implementation detail: σcap loses the traverser data, but σflatMap reattaches it to
the new traversers.

Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 15

control =

(
VControlDeclaration

; sEffect(icontrol)

)

icontrol =




sEffect(clearr)

; sEffect




outEentry

; inV

; aggregater




; sEffect




outEbody

; inV

; sEffect(node)




; outEexit

; inV@exit

; flatMap

(
capr

; unfold

)

; addE label = flow,

to = exit




node =




@synB

; addVblock@newB

; sEffect




addE label = assoc

from = synB

to = newB

; flatMap

(
capr

; unfold

)

; addE label = flow

to = newB




; coalesce




cond
block(

sEffect(clearr)
; aggregater

)







cond =




sackin

; selectsynB

; haslabel=Conditional

; outE{true,false}

; order{in=asc,by=id}

; inV

; flatMap




sEffect

(
sackout

; aggregater

)

; flatMap(node)




; sEffect(clearr)

; aggregater




block =




sEffect(clearr)

; aggregater

; selectsynB

; outE{nest,statement}

; order{in=asc,by=id}

; inV

; flatMap




flatMap(node)

; fold

; sEffect(clearr)

; sEffect

(
unfold

; aggregater

)




; tail1

; unfold




Figure 2: CFG extraction in Gremlin

the local synB name to the AST node in its traverser (there is always just one) and
creates a new CFG node corresponding to the AST node (again with a name). It
links the two with an assoc-edge, and sends flow-edges from the traversers stored
in r. This is the CFG entry node when Ψnode is called initially, and later in the
recursion r stores those CFG nodes that directly precede newB (see later). Finally,
Ψnode calls σcoalesce (see Rule 6): first, Ψcond is called, if terminates early (newB is
not a conditional), then Ψblock is called, and if that also terminates early (newB is
an empty block), then we simply store newB in register r. This means that newB will
be the direct predecessor of a CFG node created later (or of the CFG exit). The
returned node will be that of σcoalesce (newB in case both subtraversals terminate
early).

Ψcond first stores its traverser (a CFG node) into a path-local store, and makes
synB the current traverser. In case this node is not a conditional, Ψcond terminates

Figure 2: CFG extraction in Gremlin

Ψnode, Ψcond, and Ψblock are corresponding to Algorithm 2 in Section 3.2. Here,
synB and newB are just arbitrary variables (names of local store keys). Ψnode assigns
the local synB name to the AST node in its traverser (there is always just one) and
creates a new CFG node corresponding to the AST node (again with a name). It
links the two with an assoc-edge, and sends flow-edges from the traversers stored
in r. This is the CFG entry node when Ψnode is called initially, and later in the
recursion r stores those CFG nodes that directly precede newB (see later). Finally,



16 Dániel Lukács and Máté Tejfel

Ψnode calls σcoalesce (see Rule 6): first, Ψcond is called, if terminates early (newB is
not a conditional), then Ψblock is called, and if that also terminates early (newB is
an empty block), then we simply store newB in register r. This means that newB will
be the direct predecessor of a CFG node created later (or of the CFG exit). The
returned node will be that of σcoalesce (newB in case both subtraversals terminate
early).

Ψcond first stores its traverser (a CFG node) into a path-local store, and makes
synB the current traverser. In case this node is not a conditional, Ψcond terminates
early, otherwise it processes its branches. Ordering the branches ensures that we
can retrace later which CFG flows correspond to the true and false branches (as
a lengthier alternative we could store the labels and use them to label the flow
appropriately). For each branch, we copy the CFG node (of the conditional) from
the local store to the global r and recursively invoke Ψnode: this means that Ψnode

will create a CFG of the branch, and send a flow from the conditional to the source-
node of the branch CFG. Finally, Ψcond stores into r the traversers returned from
applying Ψnode to the branches, and also returns these.

Finally, Ψblock iterates over all the children (specifically statements and nested
blocks) of the syntactic blocks and sets up the flows between them. It first stores
the current CFG node into r, as this will be the predecessor node for the CFG of the
first child. In case there are no children (the current block is an empty block), the
subtraversal terminates early. Children are traversed in ascending order and per
Rule 5 σflatMap ensures that each child is fully processed before we start processing
the next. After Ψnode was invoked for a child, we store all returned traversers into
r as these will be the preceding CFG nodes for the next child. The only traversers
we want to return are the traversers returned from the processing of the last child
(these will be the predecessors of the continuation CFG). For this reason, each child
is mapped to a collection of all its return nodes (using σfold): the traversers after
σflatMap will be collections of CFG nodes (not just nodes). Then, σtail1 will keep
only the last collection, which is then unfolded so that we return the CFG nodes
instead of a collection. Note that these are also stored in r.

4.3 Proving the algorithm

...
{Γ0; c1} icontrol {Γ1; �} . . .

...

{Γr=[en]
n−1 ; bn} node {∆r=R

n ; �}

...

{∆r=R
n ; cn} outEexit ; . . . {Γn; �}

{Γn−1; cn} icontrol {Γn; �}
{Γ0; ∅} VControlDeclaration ; sEffect(icontrol) {Γn; �}

Figure 3: Structure of the proof tree

In this section, we describe the idea of proving the correctness of our CFG
extraction algorithm in Section 4.2. Using our formalisation of Gremlin semantics in
Section 4.1, we can formally prove that each traversals in the algorithm will result in



Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 17

a state, that can be shown to guarantee correctness inductively. Despite operating
with non-linear data structures, such as graphs, the recursive top-down traversal
of ASTs guarantees termination and allows us to use structured correctness proofs.
We include a complete, semi-formal proof tree in Appendix A, together with an
informal description.

The claim of correctness is that in any Γ0 initial state – containing the correct
AST of each control declaration ci –, the algorithm ultimately produces a Γn state,
that contains also the correct CFG of each ci control declaration.

Figure 3 formally depicts the beginning of the proof, including an inductive
(n− 1) −→ n step. To prove the claim, we construct a proof tree, which consist of
explicitly (formally) writing out the preconditions and postconditions (effects) of
each steps of the algorithm, as dictated by the formal Gremlin semantics.

In the root of the proof tree, we insert the claim itself: starting from Γ0 and
an empty traverser list, the algorithm should lead to Γn and an arbitrary traverser
list (denoted using the wildcard or placeholder symbol �). As per Rule 5, during
this step the ci syntax nodes of each P4 control declarations are stacked into the
traverser list, and Ψicontrol is applied to each of them one by one. Since this step is
using induction, the proof tree depicts only the processing of the last declaration
(cn). The inductive assumption is that the former n − 1 applications of traversal
Ψicontrol result in a Γn−1 state that is already correct, apart from missing the CFG
of the nth declaration. For the last Ψicontrol to be correct, we need to prove that

Ψnode is correct, starting from Γ
r=[en]
n−1 (i.e. the state we get from Γn−1 by storing

CFG entry en in registry r as per the first steps of Ψicontrol). Given that Ψnode

results in some state ∆r=R
n−1 (where R is a variable, denoting – in case Ψnode is

correct – the set of return points), we also need to prove that in this state, the
last steps of Ψicontrol (i.e. the steps that link return points to the exit node) result
in the the expected Γn. In turn, both propositions can be proved by building the
proof tree further. Due to its technical nature, we do not include complete proof
tree here, but for our readers interested in the details, we include it – together with
an informal description – in Appendix A.

5 Conclusion

Summary In this work, we defined deep CFGs, and presented a CFG extraction
algorithm that superimposes CFGs over ASTs inside a Gremlin graph database:
this way all information of the AST is at hand during CFG traversals, and can
be readily accessed through a uniform graph interface. We already rely on deep
CFGs for code generation in our latest paper on P4 cost analysis [11]. There, we
used the CFG to transform P4 code to a custom, low-level instruction language
which is then passed to a sophisticated probabilistic model checker tool. In the
implementation of that transformation, we simply traverse the CFG, and at each
node, we follow the association links in the graph to collect further information
needed to create instructions from the node. Our other goal in the current paper
was to explore how the expressive power of Gremlin can be used for specifying and



18 Dániel Lukács and Máté Tejfel

proving fairly complex static analysis procedures. For this reason, we formalised
our algorithm as an executable Gremlin query, and used the formal semantics of
Gremlin to formally prove the correctness of our CFG extraction algorithm.

Limitations We highlight two limitations of this CFG extraction algorithm.
First, our Gremlin formalisation relies on (shallow) recursion to realise depth-first
traversal. Recursive queries are made possible only by host language features such
as lambdas, and these are not serialisable. This means that in a client-server en-
vironment this query has to be stored on the server-side as a stored procedure.
Second, complex Gremlin traversals are – at least in our experience – not easy
maintain. For example, the graph query in Figure 2 has to keep track of program
state as it stores return points in the global register r. If a developer intends to
extend the algorithm for handling further P4 language elements, they have to un-
derstand how this register is used in the algorithm, in order to make sure not to
cause unintended side effects. For production environments, a simpler – although
less efficient – approach is to iterate over the AST in multiple stages, e.g. first dis-
covering the R return points of each node n, and in a second iteration link R to the
continuation of n. This way the developer can either store global state in the host
language (arguably more suitable for handling global state) or eliminate it entirely
by storing intermediate information in the graph. Even without considering state
and side effects, a sequence of simple, small queries is usually much easier to read,
test, and debug.

Future work We started to utilise the deep CFG concept in this paper in the
code generation phase of our model checking-based cost analysis [11]. One missing
element for this is intraprocedural control flow (i.e. translating function calls),
which we currently handle with an ad-hoc solution. One advantage of the CFG
being superimposed on the AST is that this element can be added in as a separate
analysis on the AST, and we can reach this information in every traversal. We
would also like to explore more of the possibilities this opens up, including graphs
resulting from data flow analysis (see Section 2) as well.

References

[1] Aho, A.V., Lam, M.S., Sethi, R., and Ullman, J.D. Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley, 2006.

[2] Amighi, A., de C. Gomes, P., Gurov, D., and Huisman, M. Sound control-
flow graph extraction for Java programs with exceptions. In Eleftherakis, G.,
Hinchey, M., and Holcombe, M., editors, Software Engineering and Formal
Methods, pages 33–47, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
DOI: 10.1007/978-3-642-33826-7_3.

[3] Angles, R. and Gutierrez, C. Survey of graph database models. ACM Com-
puting Surveys, 40(1), 2008. DOI: 10.1145/1322432.1322433.

https://doi.org/10.1007/978-3-642-33826-7_3
https://doi.org/10.1145/1322432.1322433


Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 19

[4] Appel, A.W. SSA is functional programming. SIGPLAN Not., 33(4):17–20,
1998. DOI: 10.1145/278283.278285.

[5] Baier, C. and Katoen, J.-P. Principles of Model Checking (Representation and
Mind Series). ISBN: 978-0-262-02649-9. The MIT Press, 2008.

[6] Birnfeld, K., da Silva, D.C., Cordeiro, W., and de França, B.B.N. P4 switch
code data flow analysis: Towards stronger verification of forwarding plane soft-
ware. In Proceedings of the IEEE/IFIP Network Operations and Management
Symposium, page 1–8. IEEE Press, 2020. DOI: 10.1109/NOMS47738.2020.

9110307.

[7] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J.,
Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. P4:
Programming Protocol-independent Packet Processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, 2014. DOI: 10.1145/2656877.2656890.

[8] Dumitrescu, D., Stoenescu, R., Negreanu, L., and Raiciu, C. Bf4: Towards
bug-free P4 programs. In Proceedings of SIGCOMM’20, page 571–585, New
York, NY, USA, 2020. Association for Computing Machinery. DOI: 10.1145/

3387514.3405888.

[9] Lukács, D., Pongrácz, G., and Tejfel, M. Are graph databases fast enough for
static P4 code analysis? In Proceedings of the 11th International Conference
on Applied Informatics, pages 213–223. CEUR Workshop Proceedings, 2020.
URL: http://ceur-ws.org/Vol-2650/#paper22.

[10] Lukács, D., Pongrácz, G., and Tejfel, M. Control flow based cost analysis
for P4. Open Computer Science, 11:70–79, 2020. DOI: 10.1515/comp-2020-

0131.

[11] Lukács, D., Pongrácz, G., and Tejfel, M. Model checking-based per-
formance prediction for P4. Electronics, 11(14), 2022. DOI: 10.3390/

electronics11142117.

[12] Nielson, H.R. and Nielson, F. Semantics with Applications: A Formal Intro-
duction. John Wiley & Sons, Inc., USA, 1992.

[13] P4 Language Consortium. basic routing-bmv2.p4, a small test case for the of-
ficial P4 reference compiler, P4C, 2018. URL: https://github.com/p4lang/
p4c/blob/master/testdata/p4_16_samples/basic_routing-bmv2.p4.

[14] Rodriguez, M.A. The gremlin graph traversal machine and language (invited
talk). Proceedings of the 15th Symposium on Database Programming Lan-
guages, 2015. DOI: 10.1145/2815072.2815073.

[15] Söderberg, E., Ekman, T., Hedin, G., and Magnusson, E. Extensible intrapro-
cedural flow analysis at the abstract syntax tree level. Sci. Comput. Program.,
78(10):1809–1827, 2013. DOI: 10.1016/j.scico.2012.02.002.

https://doi.org/10.1145/278283.278285
https://doi.org/10.1109/NOMS47738.2020.9110307
https://doi.org/10.1109/NOMS47738.2020.9110307
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/3387514.3405888
https://doi.org/10.1145/3387514.3405888
http://ceur-ws.org/Vol-2650/#paper22
https://doi.org/10.1515/comp-2020-0131
https://doi.org/10.1515/comp-2020-0131
https://doi.org/10.3390/electronics11142117
https://doi.org/10.3390/electronics11142117
https://github.com/p4lang/p4c/blob/master/testdata/p4_16_samples/basic_routing-bmv2.p4
https://github.com/p4lang/p4c/blob/master/testdata/p4_16_samples/basic_routing-bmv2.p4
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1016/j.scico.2012.02.002


20 Dániel Lukács and Máté Tejfel

[16] Tóth, M. and Bozó, I. Building dependency graph for slicing Erlang programs.
Periodica Polytechnica Electrical Engineering, 55(3-4):133–138, 2011. DOI:
10.3311/pp.ee.2011-3-4.06.

Appendix A Proof of correctness

In this section, we give a semi-formal proof for the correctness of our CFG ex-
traction algorithm in Section 4.2. Using our formalisation of Gremlin semantics in
Section 4.1, we formally prove that each traversals in the algorithm will result in
a state, that can be shown to guarantee correctness inductively. Despite operating
with non-linear data structures, such as graphs, the recursive top-down traversal
of ASTs guarantees termination and allows us to use structured correctness proofs.
We depict these formal proofs as proof trees in Figures 4, 5, 6, and 7. We describe
the contents of these proof trees, and give the informal induction steps in the course
of this section.

In the proof trees, we heavily rely on the notation introduced in the previous
sections (especially the semantics of Gremlin). In addition to that, we utilize a small
number of additional notations: these are related to the semantics of individual
Gremlin steps, or to the proof tree syntax.

Notations. Earlier, we used Γ and its subscripted variants to denote the state of
global memory: in the proof, we also use ∆ and ∆̃ to denote intermediate memory
states. In the proofs, we rarely write out the state explicitly, rather we treat it
as a set of statements which are true for the state. For example, we write Γ r=R

to highlight the assumption that in Γ, the value of register r is R. synB, newB,
exit are referring to the local store keys assigned in CFG algorithm. In order to
not to waste variable names, we use the “wildcard” variable � as a placeholder,
to denote intermediate values (usually traverser lists) that are not important (not
used elsewhere). Since it is a wildcard symbol, two occurrences of � may contain
different values.

In the proof tree leafs, Xmeans that an axiom has been reached (the tree branch
has been proved); numbers between parentheses (e.g. (1), (2), (3)) mean that the
proof is continued in another proof tree (with the number in its root); dots (. . .)
mean some steps were omitted (we elaborate these in the explanations). Note that
in some cases we compressed multiple steps into one movement, specifically where
effects of the individual steps were simple (e.g. in case of σoutE ; σinV).

As noted before, σcoalesce (Rule 6) is a higher-order step (it is parameterised with
sub-traversals), that returns the traversers from the first successful sub-traversal.
We use the ∨−→ shorthand to denote its semantics: given Ψ,Ψ′ traversals, the propo-

sition ({∆0;T0}Ψ{∆n;Tn})∨−→({∆0;T0}Ψ′{∆n;Tn}) is solved for (∆0, T0, ∆n, Tn)
either by solving the left-hand side operand of ∨−→, or in case this would result in
Tn = ∅, then by solving the right-hand side operand.

https://doi.org/10.3311/pp.ee.2011-3-4.06


Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 21

In the rest of this section, we go through each of the traversals defined in Section
4.2, state its correctness and prove that claim. In each of the proofs, we refer to the
corresponding formal proof tree, include a descriptive commentary to explain and
clarify the proof tree contents, and then finish the proof with an informal argument
about satisfaction of the requirements posed by the proof tree. Our first claim
concerns Ψcontrol and Ψicontrol. The precondition and postcondition posed by this
claim refers to our definition of ASTs and control flow graphs in Section 3.1.

Claim 1. Given that Γ0 contains a correct AST, together with previously prepared
entry and exit nodes (ei and fi) for each control declarations ci in the tree, Γn

contains for each of ci in the tree the CFG of the control declaration, rooted in the
entry node ei and all its return points linked to the exit node fi.

Proof. Figure 4 formally depicts the inductive ((n − 1) −→ n) step of this proof.
The rest of this paragraph is commentary for that diagram. In short, we process
each control declaration one after the other, and for each, we run Ψnode and link
its returned return points to the exit node. In detail, the syntax nodes of each
P4 control declarations are stacked into the traverser list, and Ψicontrol is applied
to each of them one by one (as per Rule 5). Each application is expected to fill
Γ0 with the CFGs of each declaration ci, ultimately reaching Γn containing all the
CFGs. The final contents of the traverser list is irrelevant (we denote it with the
“wildcard” variable � that can match anything). Since this is the inductive step,
the proof tree depicts only the processing of the last declaration (cn). To process
the last declaration, we store the corresponding CFG entry (en) into the global
variable r (used later in n), and move the traverser to the first syntax block (bn)
of the declaration. We expect side effect traversal Ψnode to solve the rest of the
problem, resulting in global state ∆n, in which global variable r is set to the set
of those CFG nodes (R) that are the return points of the CFG built by Ψnode.
After that we move the traverser from cn to the corresponding exit node fn, save
it to path-local name exit, replace the traverser list with R (path-local names are
preserved) and send links from R to fn, and the processing ends.

From this, we can see that the inductive step has two requirements. The first
requirement is that Ψnode produces the correct CFG of the nth declaration apart
from missing the links between the return points and the exit node. The other
requirement (base case) is that the former n − 1 applications of traversal Ψicontrol

result in a Γn−1 state that is already correct, apart from missing the CFG of the
nth declaration.

We give the rest of this proof informally. The first requirement (namely that
node produces ∆r=R

n from Γn−1 by creating the CFG of cn rooted at entry en with
R containing the return nodes of this CFG in R) is satisfied by Claim 2. To see that
the inductive hypothesis (Γn−1 has the correct CFGs for c1, . . . , cn−1) is satisfied,
recognize that c1 is applied in state Γ0, and state Γ0 already has the 0 correct CFGs
for ∅. (For a non-degenerate case, we can build a very similar proof tree for c1,
and see that Γ1 has the correct CFG for {c1}.)

Then, it follows that Γn = ∆
∀r1...rk∈R: ((r1→fn)∈E,...,(rk→fn)∈E)
n , s.t. ri are



22 Dániel Lukács and Máté Tejfel

...
{Γ

0 ;
c
1 }

icon
trol

{Γ
1 ;
�
}

...

(1)

{Γ
r
=

[e
n

]
n
−

1
;
b
n }

n
o
d
e
{∆

r
=
R

n
;
�
}

X

{∆
∀
r
1
...r

k ∈
R

:
((r

1 →
f
n

)∈
E
,...,(r

k →
f
n

)∈
E

)
n

;
�
}

ε
{Γ

n
;
�
}

{∆
n
;
R
×
{
e
x
i
t

=
f
n }}

ad
d
E

la
be

l
=

f
l
o
w

to
=

e
x
i
t

{Γ
n
;
�
}

{
∆

r
=
R

n
;

(c
n
,
e
x
i
t

=
f
n
)}

fl
atM

ap
(...)

;
...{Γ

n
;
�
}

{∆
r
=
R

n
;
c
n }

ou
tE

e
x
i
t
;
...

{Γ
n
;
�
}

{Γ
n
−

1 ;
c
n }

icon
trol

{Γ
n
;
�
}

{
Γ

0 ;
∅
}

V
C
o
n
t
r
o
l
D
e
c
l
a
r
a
t
i
o
n
;

sE
ff

ect(icon
trol)

{
Γ
n
;
�
}

F
ig

u
re

4
:

P
ro

o
f

o
f

C
la

im
1

(2)

{
∆

1 ;(x
,{
s
y
n
B

=
b})}

con
d
{
∆̃

r
=
R

;
R
}

∨−→

(3)

{
∆

1 ;(x
,{
s
y
n
B

=
b})}

b
lo

ck
{
∆̃

r
=
R

;
R
}

∨−→

X

{
∆

r
=

[x
]

1
;x}

ε
{∆̃

r
=
R

;
R
}

{∆
1 ;

(x
,{
s
y
n
B

=
b}

)}
coalesce(...)

{
∆̃

r
=
R

;
R
}

∆
1

=
∆



x
∈

V
,

∀
u
∈

U
:

(
u

f
l
o
w

−−−→
x
)
∈

E
,

(
b

a
s
s
o
c

−−−−→
x
)
∈

E


{∆

r
=
U
,x∈

V
;

(x
,{
s
y
n
B

=
b,n

e
w
B

=
x}

)}
sE

ff
ect(...)

;
...
{∆̃

r
=
R

;
R
}

{∆
r
=
U

;
b}

n
o
d
e
{
∆̃

r
=
R

;
R
}

(1
)

F
ig

u
re

5
:

P
ro

o
f

o
f

C
la

im
2



Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 23

return nodes, and fn is exit node, and so Γn is the correct graph for c1, . . . , cn.

We now continue with stating the correctness of traversal Ψnode. While we
needed this claim in the proof of Claim 1, we will also use this in proving Claim 3
and 4. For this reason, we state it in a more general form than what is used in
Claim 1. We make use of a heuristic, namely the recognition that Ψnode is always
called with one traverser. (On the other hand, r may contain multiple nodes:
Ψblock loads its results into r and may call Ψnode, and Ψnode can call Ψcond which
is guaranteed to have multiple results.)

The returned traversers of Ψnode are used in Ψblock to return the return points
of its last child. The contents of R are used by Ψblock to correctly process the right
sibling of b (we also use it in Ψicontrol to link the exit nodes).

Notice as well that while, at first glance, the proof of Ψnode requires using mutual
induction with the proofs of Ψcond and Ψblock (because of mutually recursive calls),
this can be easily eliminated. To linearise the induction, we just have to inline
traversals Ψcond and Ψblock in traversal Ψnode. (Indeed, we only introduced these
traversals to increase readability.)

Claim 2. Given that U contains the predecessor nodes, then Ψnode produces ∆̃r=R

from ∆ a correct CFG, rooted at some node x of a given syntax block b, links the
predecessor nodes to x, and returns the return nodes of this CFG in R, and returns
these as traversers as well.

Proof. Figure 5 formally depicts the inductive ((n − 1) −→ n) step of this proof.
The rest of this paragraph is commentary for that diagram. Here, we expect that
by calling Ψnode in some state ∆r=U (that is, a global state where global variable
r is set to a set of nodes U) with a traverser pointing to a syntax block b, Ψnode

produces the expected ∆̃ state, with global variable r storing the expected R. We
assign the path-local name synB to b, create a new CFG node x in the graph, and
move the traverser to x in order to assign it to the path-local name newB. Then, in
a σsEffect, we link all the predecessors in U to our new x, and set up the association
between x and b as well, resulting in global state ∆1. (Notice that both block
and cond resets r, and node never directly calls itself, so since its contents are not
used anymore, we can omit it from ∆1.) Then, we call the σcoalesce step in state
∆1. As per the description of the ∨−→ symbol in Rule 6, we call Ψcond which either

correctly creates the rest of this CFG (if b is a conditional), or terminates without
side-effects, in which case we call Ψblock. Again, Ψblock either correctly creates the
rest of this CFG (if b is a non-empty block), or terminates without side-effects, in
which case we expect b to be an empty block, and so our new x is the appropriate
return point. In this last case, we modify ∆1 by storing x in r, it also stays in the
traverser list, and the traversal ends.

From this, we can see that the inductive step has three requirements. The first
two requirement is that both Ψcond and Ψblock continues the correct processing
of b according to its type, and they result in the expected state ∆̃r=R. The third
requirement (posed by Ψcond and Ψblock) is the satisfaction of the base step, i.e. that



24 Dániel Lukács and Máté Tejfel

the last element of the chain is processed correctly. In more precise term, given
b is an empty block such that it is the syntactic child of a previously processed
syntactic node, and U contains the return points of the CFG resulting from this,
then Ψnode ends in the expected state.

We give the rest of this proof informally. The first requirement (namely that in
case b is a conditional, cond produces ∆̃ by including in ∆1 the nodes and edges of
the branches and sets their return nodes as return nodes in R, and returns these as
traversers as well) is satisfied by Claim 3. Then, the claim is true, since {x ∈ V,∀u ∈
U : u

flow−−−→ x ∈ E, b assoc−−−→ x ∈ E} ⊂ ∆1. The second requirement (namely that in
case b is a non-empty block, block produces ∆̃ by including all remaining nodes and
edges of the nested statements and blocks in ∆1, and sets the last nest as the return
node in R, and returns these as traversers as well) is satisfied by Claim 4. Then,

the claim is true, since {x ∈ V,∀u ∈ U : (u
flow−−−→ x) ∈ E, (b assoc−−−→ x) ∈ E} ⊂ ∆1.

The third requirement (base case) is satisfied, because in every step we get closer
to the bottom of the AST (containing only empty blocks or statements), and since
in case b is not a conditional – as Ψcond terminated before doing any side effect –
, and b is an empty block – as Ψblock terminated before doing any side effect – ,

then ∆̃ = ∆r=[x], x∈V, ∀u∈U :(u
flow−−−→x)∈E, (b

assoc−−−→x)∈E , and the returned traverser is
x. That is, one CFG node x is created, it is linked from each u ∈ U , and associated
with syntax node b, and finally, R = [x] contains the correct return node since the
only node x should be the return node.

With that, we now proceed to state the correctness of Ψcond and Ψblock, starting
with the former one. As mentioned, these proofs seemingly have mutual depen-
dence with the proof of Ψnode, but we can easily reduce mutual induction to linear
induction by inlining traversals Ψcond and Ψblock into traversal Ψnode.

Claim 3. In case b is a conditional, then cond produces ∆̃r=R by including in ∆
the nodes and edges of the branches, sets their return nodes as return nodes in R,
and returns these as traversers as well. Otherwise terminates without side-effects.

Proof. Figure 6 formally depicts the inductive ((n − 1) −→ n) step of this proof.
The rest of this paragraph is commentary for that diagram. We expect that in
some state ∆, with one traverser standing on a CFG x (created earlier by Ψnode

for syntactical node b), Ψcond produces the expected state ∆̃r=R. We treat the
termination requirement in the informal part of the proof. First, we store in x
in the path-local store, also known as sack (ς(·)) and set the current traverser
to b. (We have to use a path-local store, as the processing of the branches may
modify the global stores (e.g. r), and in that case we would lose our reference to
x after the processing the branch.) We continue the processing in case label(b) =
Conditional (otherwise the algorithm terminates). In this case, it is always true
(by our definition of the AST) that b has two branches: one true-branch starting
in syntactical node y, and one false-branch starting in syntactical node n. We
move a traverser to each of these nodes (the sack is preserved). In the σflatMap

step, we process the two branches (first the branch of y, then the branch of n) by



Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 25

traversal Ψnode (storing x in r, as Ψnode will have to link x to the produced CFG as
predecessor), with the expectation that ∆1 contains the CFG produced for y, and
∆2 contains the CFGs both for y and n, and that Ψnode returns y’s CFG return
points in Ty and n’s CFG return points in Tn. (The processing order of the two
branches does not matter as long as it is consistent across all applications of the
traversal.) After that, we store the return points of both of Ty and Tn in r, and we
also return this return points as traversers.

From this, we can see that the inductive step has two very similar requirements
regarding the correct processing of y and n by Ψnode. It is worth noting the analysis
of the two branches never interferes with each other: r is reseted and node will
traverse different subtrees of the tree. A possible third requirement of a base case
(it is possible that the called Ψnode may call Ψcond again, but ultimately Ψnode will
stop when statements or empty blocks are encountered) was already discussed in
the proof of Ψnode.

We give the rest of this proof informally. The first requirement (namely that
node produces ∆1 from ∆ by creating the CFG of the true branch y, linking it to
the (conditional) CFG node x, and returns in traverser list Ty all the return nodes
of the CFG, is satisfied by Claim 2. Similarly, the second requirement (namely that
node produces ∆2 from ∆1 by creating the CFG of the false branch y, linking it to
the (conditional) CFG node x, and returns in traverser list Tn all the return nodes
of the CFG is also satisfied by Claim 2.

Then it follows, that ∆2 contains CFGs of the branches rooted at x, and R =
Ty ∪ Tn contains the return nodes of the branches, and returns these as traversers
as well.

Regarding the termination requirement of the claim, in case b is not a condi-
tional, the has filter fails and the traversal terminates without side-effects.

Finally, we state the correctness of Ψblock. This is a case where we use induction
in two axes: Ψblock as part of a chain initiated from Ψnode, and at the same time,
use induction in proving that a sequence of sibling nodes are processed correctly.

Claim 4. In case b is a non-empty block, assume that block produces ∆̃r=R by
including all remaining nodes and edges of the nested statements and blocks in ∆,
and sets the last nest as the return node in R, and returns these as traversers as
well. Otherwise terminates without side-effects.

Proof. Figure 7 formally depicts the inductive ((n − 1) −→ n) step of this proof.
The rest of this paragraph is commentary for that diagram. We expect that in
some state ∆, with one traverser standing on a CFG x (created earlier by Ψnode

for syntactical node b), Ψblock produces the expected state ∆̃r=R. We treat the
termination requirement in the informal part of the proof.

First, we store in x in the global store r (we expect this to be modified as
children of b are processed and use its contents to create links between the children),
and set the traverser list to S, denoting the blocks and statements nested in b (in
case there is non, the traversal terminates). Through ordering S we ensure that
σflatMap processes these nested nodes from left-to-right (guaranteed by definition of



26 Dániel Lukács and Máté Tejfel

(1
)

{
∆

r
=

[x
];y}

n
o
d

e
{∆

1 ;
T
y }

{
∆

;(y
,ς(x

))}
sE

ff
ect(...)

;
...
{
∆

1 ;
T
y }

(1
)

{∆
r
=

[x
]

1
;n}

n
o
d

e
{
∆

2 ;
T
n }

{∆
1 ;(n

,ς(x
))}

sE
ff

ect(...)
;
...
{∆

2 ;
T
n }

...

X

{∆
r
=
T
y ∪

T
n

2
;T

y
∪
T
n }

ε
{∆̃

r
=
R

;
R
}

...

{∆
;(y

,ς(x
)),(n

,ς(x
))}

fl
a
tM

a
p

(...)
;
...
{∆̃

;
R
}



la
be

l(
b
)

=
C
o
n
d
i
t
i
o
n
a
l
,

y
is

t
r
u
e

b
r
a
n
c
h
,

n
is

fa
ls

e
b
r
a
n
c
h

{∆
;(b,{

s
y
n
B

=
b},ς(x

))}
h

a
s
la
be

l=
C
o
n
d
i
t
i
o
n
a
l
;
...
{∆̃

;
R
}

{∆
;(x

,{
s
y
n
B

=
b})}

co
n

d
{
∆̃

r
=
R

;
R
}

(2
)

F
ig

u
re

6
:

P
ro

o
f

o
f

C
la

im
3

...

{∆
0 ;s

1 }
n

o
d

e
;
...
{∆

r
=
R

1
1

;
F

1 }
...

(1
)

{
∆

r
=
R

m
−

1

m
−

1
;s

m
}

n
o
d

e
{
∆
′m

;
T
m
}

X

{
∆
′
r
=
T
m

m
;
{
T
m
}}

ε
{
∆

r
=
R

m
m

;
F
m
}

...

{∆
m
−

1 ;s
m
}

n
o
d

e
;
...
{
∆

r
=
R

m
m

;
F
m
}

...

X
{∆

r
=
R

m
m

;T
m
}
ε
{∆̃

r
=
R

;
R
}

{
∆

m
;F

1 ∪
...∪

F
m
}

tail(1)
;

u
n

fold
{∆̃

;
R
}

{∆
0 ;S}

fl
a
tM

a
p

(...)
;
...
{
∆̃

;
R
}



∆
0

=
∆

r
=

[x
]

S
6=

∅

S
is

o
r
d
e
r
e
d

b
y

i
d

{∆
r
=

[x
];b}

o
u

tE
{
n
e
s
t
,s
t
a
t
e
m
e
n
t}

;
...
{∆̃

;
R
}

{∆
;(x

,{
s
y
n
B

=
b})}

b
lo

ck
{∆̃

r
=
R

;
R
}

(3
)

F
ig

u
re

7
:

P
ro

o
f

o
f

C
la

im
4



Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 27

the AST). σflatMap starts out in state ∆0 when it starts processing the first nested
node, and finishes in state ∆m after processing the last nested node.

We will check that the σflatMap step processes S correctly by induction, and
so we only included the proof tree corresponding to the last child (sm). Here, we
expect that given all previous siblings have their CFGs in global state ∆m−1 with
r storing the return points (Rm−1) of the closest previous sibling’s CFG, and
Ψnode produces ∆′m containing (and properly linking) all the CFGs of the chil-
dren, and returns the return points (Tm) of the last child of b as the traverser list.
Then this nested traversal stores Tm into r and at the same folds Tm into a single
collection-element Fm = {Tm} that is returned in the traverser list. After σflatMap

processed everyone, we are in state ∆m with r storing the return points of the last
child of b, and the traverser list containing all the collection-elements return from
processing the children. Now, keep only the last traverser (a collection), and un-
fold this collection again into the individual traversers (still pointing to the return
points of the last child’s CFG), and return these.

From this, we can see that the inductive step has two requirements. The first
– about ∆′m – is that Ψnode creates a correct node CFG for any child of b, links
this CFGs node from the return points of the previous child’s CFGs, and returns
the return points of the currently processed child’s CFG as the traverser list, while
also storing it in r. The other requirement (base case) is that the former n − 1
applications of traversal Ψnode result in a ∆m−1 state contains the correct CFGs
of all the previous children.

We give the rest of this proof informally. The first requirement (namely that

node produces ∆′m from ∆
r=Rm−1

m−1 by creating the CFG of sm, linking it to the nodes
in R, and returns in traverser list Tm all the return nodes of the CFG) is satisfied by

Claim 2. The next requirement is that the inductive hypothesis (∆
r=Rm−1

m−1 contains
the chain of CFGs produced from the first m − 1 blocks of b, and Rm−1 contains
the return points of the last CFG in this chain) is satisfied. Again, we may consider
the degenerate case (∆0, with R = [x] satisfies the hypothesis) or alternatively, we
can build a very similar proof tree for s1, and from the first requirement it follows
that ∆1 has the correct CFG for {s1}, with r storing its T1 return points, and F1

in the traverser list is T1 folded.
Then, the claim follows, since ∆̃r=R = ∆r=Rm

m = ∆′
r=Tm

m , with R = Rm = Tm
also being returned.

Regarding the termination requirement of the claim, in case b is an empty block,
outE maps to ∅ and the traversal terminates without side-effects.


	Introduction
	Related work
	Problem and solution idea
	Basic definitions
	CFG extraction

	Formalising CFG extraction in Gremlin
	Semantics of Gremlin
	CFG extraction in Gremlin
	Proving the algorithm

	Conclusion
	Proof of correctness

