
Acta Cybernetica — online–first paper version — pages 1–32.

A Formalisation of Core Erlang,
a Concurrent Actor Language∗

Péter Bereczkyab, Dániel Horpácsiac, and Simon Thompsonade

Abstract

In order to reason about the behaviour of programs described in a pro-
gramming language, a mathematically rigorous definition of that language is
needed. In this paper, we present a machine-checked formalisation of concur-
rent Core Erlang (a subset of Erlang) based on our previous formalisations
of its sequential sublanguage. We define a modular, frame stack semantics,
show how program evaluation is carried out with it, and prove a number of
properties (e.g. determinism, confluence). Finally, we define program equiv-
alence based on bisimulations and prove that side-effect-free evaluation is a
bisimulation. This research is part of a wider project that aims to verify
refactorings to prove that particular program code transformations preserve
program behaviour.

Keywords: formal semantics, formal verification, concurrency, actor model,
program equivalence, bisimulation, Erlang, Core Erlang, Coq

1 Introduction
Our work here contributes to a wider project [17] to reason about the correctness of
refactorings for functional languages in general, and for Erlang [7] in particular. In
our terminology, refactoring is a code transformation that preserves the observable
behaviour of programs. Our understanding of the state-of-the-art refactoring tools
scene suggests that behaviour preservation (i.e. correctness) is subject to extensive
testing, but formal verification is not yet used in practice. We aim to change this,
at least in the case of Erlang, and develop higher assurance for refactorings by

∗Supported by the ÚNKP-21-3 New National Excellence Program of the Ministry for Inno-
vation and Technology from the source of the National Research, Development and Innovation
Fund. Supported by “Application Domain Specific Highly Reliable IT Solutions” financed under
the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Subprogramme)
funding scheme by the National Research, Development and Innovation Fund of Hungary.

aEötvös Loránd University, Budapest, Hungary
bE-mail: berpeti@inf.elte.hu, ORCID: 0000-0003-3183-0712
cE-mail: daniel-h@elte.hu, ORCID: 0000-0003-0261-0091
dUniversity of Kent, United Kingdom
eE-mail: S.J.Thompson@kent.ac.uk, ORCID: 0000-0002-2350-301X

DOI: 10.14232/actacyb.298977

mailto:berpeti@inf.elte.hu
https://orcid.org/0000-0003-3183-0712
mailto:daniel-h@elte.hu
https://orcid.org/0000-0003-0261-0091
mailto:S.J.Thompson@kent.ac.uk
https://orcid.org/0000-0002-2350-301X
https://doi.org/10.14232/actacyb.298977

2 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

developing formal, machine-checked theories for program semantics, equivalence
and program transformation.

Erlang is a dynamically-typed, impure, functional programming language, which
excels at concurrency. Core Erlang [6] is a standard subset of Erlang that contains
all the essential elements of Erlang, so that a semantics of Core Erlang can be
extended to a semantics for the full language in a straightforward way. In earlier
work we defined and implemented formal semantics for the sequential parts of
Erlang and Core Erlang, including a reduction semantics for a subset of Erlang
using the K framework [20], and a natural semantics for a subset of Core Erlang,
implemented in Coq [2, 3]. We have also implemented a functional big-step [28]
semantics for this subset of Core Erlang, and shown [8] that this semantics is
equivalent to the natural semantics. In turn, the semantics was validated [4] against
the reference implementation of Erlang, namely the Erlang/OTP compiler [11].

Having these semantics defined, we focused on proving the equivalence of pro-
grams. On the one hand, we are interested in using the semantics to prove partic-
ular pairs of programs equivalent, and on the other, the correctness of many local
refactoring steps can be reduced to the equivalence of simple expressions. When
developing precise, standard definitions of equivalence, we decided to bring our
results to smaller-step semantics and developed a frame stack semantics and equiv-
alence definitions [32] built on that for sequential Core Erlang [19]. The frame stack
style for semantics is beneficial for two reasons: it is well-suited to express various
standard equivalence definitions [29], and furthermore, the semantics of concurrent
expressions can be defined more easily in small-step approaches [25].

Our formalisations of (Core) Erlang are not the first ones. There are a number
of other semantics for both sequential and concurrent subsets of (Core) Erlang on
which our work has been based. The novelty of our work presented here lies in the
fact that it remains more faithful to the language specification [6] and the reference
manual [12] than the others; for instance, unlike other works, we formalised exit
signals and the signal ordering guarantee closely following the specification. We
give a more detailed comparison and an overview of the related research in Sec-
tion 6. Also worth pointing out is that our formal development is accompanied by
a machine-checked implementation [9].

We continue our formalisation efforts and in this paper we add concurrency to
our frame stack semantics for Core Erlang. In particular, we create the definition
in a modular way: the sequential and process-local parts of the semantics can be
replaced by a more complete formalised part of Core Erlang or Erlang (or indeed
another programming language) without the need to rewrite the whole semantics.
The main contributions of this paper are the following:

• A modular, frame stack semantics for a concurrent subset of Core Erlang;

• Proofs about the properties of the concurrent semantics;

• Results on Core Erlang program equivalence verification using bisimulation.

The rest of the paper is structured as follows. In Section 2 we introduce (Core)
Erlang and our previous work informally, and define the syntax of the formalised

A Formalisation of Core Erlang, a Concurrent Actor Language 3

sublanguage. In Section 3 we describe a modular, dynamic semantics of Core
Erlang, focusing on the concurrent sublanguage, then in Section 4 we show the
evaluation of simple concurrent programs and prove properties of the semantics.
Section 5 defines the concepts of program equivalence and the corresponding results,
and then we discuss related work in Section 6. Finally, Section 7 discusses future
work and concludes.

2 Background

As mentioned before, Erlang is a dynamically-typed, impure functional program-
ming language. The biggest strength of Erlang is that it really excels at concurrent
computation, based on the actor model [1]. For this reason, Erlang was initially
used in telecommunication and banking systems, but it now plays a role in high-
availability, scalable web-based systems.

2.1 The Erlang Model of Concurrency

Erlang implements and extends the actor model [1]. An Erlang system contains
lightweight processes (actors) that can spawn other processes to execute a particular
task. Each process executes in its own space, and so they do not share memory.
Processes can only communicate by asynchronous message passing. Each process
has a message queue (mailbox), where incoming messages are stored in the order
of their arrival. A process can select which messages to handle from its mailbox:
messages do not need to be handled in the order in which they are received.

Besides messages, processes can also send and receive other signals [13], such
as link, unlink and exit. These additional signals can trigger potential changes in
the state of the process immediately upon their arrival without being placed into
the mailbox. The link and unlink signals create and remove, respectively, a bi-
directional link between two processes, which represents a mutual dependency, and
affects the handling of exit signals. In general, exit signals are used to indicate
and initiate termination; they include a reason (describing why they were sent),
and a flag indicating whether they were sent through a link (we call this value the
link flag of the exit signal). If one of a pair of linked processes terminates, it will
send an exit signal to the other process via the link. Processes can terminate for
a number of reasons: having finished evaluation, receiving a particular exit signal,
or terminating abnormally (e.g. with an exception).

Processes have a flag called ’trap_exit’ which, when set, causes exit signals
to be converted into messages (except in very particular circumstances), i.e. the
process traps exits. Based on this flag, the reason of the exit signal, and whether
the exit signal was sent through a link, there are three different outcomes (see [13]
and Section 3.3): the receiver process 1) terminates, 2) drops the exit signal, or 3)
converts the exit signal to a message and adds it at the end of its mailbox.

In the next section, we present the syntax of the language under formalisation,
which is a sublanguage of Core Erlang. Note that Core Erlang is not merely a stan-

4 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

dard subset of Erlang, it is also used in the compilation process as an intermediate
step, and numerous programming languages based on the BEAM platform can be
compiled to Core Erlang [16]. Furthermore, as for concurrency, the two languages
implement essentially the same model. For more details, we refer to the Erlang
Programming book [7] and the reference manual [12].

2.2 Language Syntax
In this section we discuss and extend the formal syntax of the sequential sublan-
guage of Core Erlang as presented in our previous work [19]. For better readability,
we use a syntax definition that abstracts over the concrete syntax of the language;
however, any expressions written in this syntax can be simply transformed to Core
Erlang.

Definition 1 (Language syntax).

v ∈ Val ::= i | a | ι | [] | [v1|v2] | fun f/k(x1, . . . , xk)→ e

p ∈ Pat ::= i | a | ι | [] | [p1|p2] | x
e ∈ Exp ::= v | x | f/k | apply e(e1, . . . , ek) | case e of p then e1 else e2

| let x = e1 in e2 | [e1|e2] | letrec f/k(x1, . . . , xk)→ e0 in e1

| call e(e1, . . . , ek) | receive p1 → e1; . . . pk → ek end

We use i, k, n to range over integers, a, f over atoms, x over variables, and ι
over process identifiers. f/k denotes a function identifier, where f is the function
name, and k is its arity. The primitive values of the language are integers (denoted
by numbers), atoms (strings of characters, enclosed in single quotation marks), and
process identifiers (for simplicity, also denoted by numbers). Besides these, lists
and functions are also values, and patterns are built from variables, integers, atoms
and process identifiers, and formed into composite patterns as lists1.

Note that process identifiers are not patterns in Core Erlang, but with process
identifiers as patterns, we can distinguish them from other values of the language;
in Erlang, the is_pid function can be used instead. This distinction is needed to
maintain the proof of coincidence of sequential equivalence definitions described
in [19] (namely, the coincidence of behavioural and contextual equivalence).

For simplicity of formalisation, functions are always named to enable explicit
recursive calls, but in this paper we omit function names for readability when
there are no recursive calls in the body expression. For lists, we use the standard
notations of Erlang, that is a list [e1|[e2|[. . . |[en|[]]] . . .]] will be denoted by
[e1,e2, . . . ,en]. Note that we also include Erlang’s improper lists (such as [1|2]),
but these do not require specific care in the semantics rules.

Expressions of the sequential sublanguage are values, variables, function iden-
tifiers, binding expressions (both let and letrec), function applications (apply),
pattern matching (case) expressions2.

1Tuples are not included in this language, but would be handled similarly to parameter lists.
2This expression is a simplified version of Core Erlang’s case, restricting it to only two branches.

A Formalisation of Core Erlang, a Concurrent Actor Language 5

We extend the syntax (as in [19]) with two language elements in this work, the
first one is BIF (built-in function) call (denoted by call e(e1, . . . , ek)), the second is
the receive expression. BIFs are used to implement both sequential (e.g. addition
of integers) and concurrent features of the language.

In particular, the concurrency model introduced in the previous subsection is
implemented as follows:

• the ’!’ BIF is used to send messages;

• a receive expression is used to select a message from the process mailbox by
means of pattern matching;

• processes are created with the ’spawn’ BIF (taking a function and its pa-
rameters as arguments for the new process to evaluate);

• link, unlink and exit signals can be sent with the identically named BIFs;

• the ’process_flag’ BIF is used to set the ’trap_exit’ flag.

The syntax we presented here is implemented in Coq using the nameless variable
representation [10]. This way, we reuse existing approaches to define capture-
avoiding, parallel substitutions [30]. Nonetheless, we use named variables in this
paper for readability. Substitutions are denoted by e[x1 7→ v1, . . . , xk 7→ vk], which
results in replacing x1, . . . , xk variables simultaneously with v1, . . . , vk values in the
expression e. We omit further details about substitutions and static semantics since
they are not in the scope of this paper. For further details we refer to our previous
work [19] and to the formalisation [9]. Next, we show an example expression in the
syntax presented above:

Example 1 (A simple map function in Core Erlang). The following snippet shows
a simple sequential Core Erlang function that transforms the elements of a list by
applying the function F to each member. Since it is a rather simple definition, we
present it in concrete syntax for better readability. To evaluate the function, it
suffices to substitute the body of the letrec (denoted by ...) with an application
of ’mm’/2.

letrec ’mm’/2 =
fun(F, E) ->

case E of [H|T]
then [apply F(H) | apply ’mm’/2(F, T)]
else []

end
in ...

4

The syntax of the sequential sublanguage is minimal, but representative.

6 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

3 Dynamic Semantics
In this section we explain the dynamic semantics of the formalised Core Erlang
subset. We present a three-layered, modular semantics for the language such that
the sequential parts of the semantics can be replaced by a more complete formalised
part of Core Erlang, Erlang, or another programming language entirely.

Table 1: Layers of the semantics

Layer name Notation Description

Inter-process semantics (Section 3.4) ι:a−−→ System-level reductions

Process-local semantics (Section 3.3) a−→ Process-level reductions

Sequential semantics (Section 3.1) −→ Computational reductions

3.1 Sequential Semantics
First, we briefly present the sequential semantics [19] on which we base the concur-
rent formalisation. We highlight that the specification of Core Erlang [6] does not
define the evaluation order of subexpressions, but the compiler employs a leftmost-
innermost strategy [26]: during the standard translation of Erlang, the evaluation
order is enforced by nested let expressions in Core Erlang. Furthermore, lists in
Core Erlang are evaluated from the right3. The compiler’s evaluation strategy is
reflected in our definition.

The semantics has been formally defined as a frame stack semantics [29]. This
definition style resembles reduction semantics [14], but the reduction context is
deconstructed into a stack of evaluation frames with holes denoted by �. The
frame stack can be regarded as the continuation of the computation.

Definition 2 (Syntax of frames, frame stacks).

F ∈ Frame ::= call �(e1, . . . , ek) | call v(�, . . . , ek) | · · · | call v(v1, . . . ,�)

| apply �(e1, . . . , ek) | apply v(�, . . . , ek) | · · · | apply v(v1, . . . ,�)

| let x = � in e2 | case � of p then e2 else e3

| [e1|�] | [�|v2]
K ∈ FrameStack ::= Id | F :: K

For the stacks, we use the following notations: Id denotes the empty stack and
F :: K denotes adding frame F to the top of stack K. Next, we introduce two
metatheoretical functions for pattern matching:

3The reference implementation generates a bytecode sequence that evaluates the list tail before
evaluating the list head.

A Formalisation of Core Erlang, a Concurrent Actor Language 7

〈K, let x = e1 in e2〉 −→ 〈let x = � in e2 :: K, e1〉
〈K, [e1|e2]〉 −→ 〈[e1|�] :: K, e2〉
〈K, apply e(e1, . . . , ek)〉 −→ 〈apply �(e1, . . . , ek) :: K, e〉
〈K, call e(e1, . . . , ek)〉 −→ 〈call �(e1, . . . , ek) :: K, e〉
〈K, letrec f/k(x1, . . . , xk)→ e0 in e〉 −→
〈K, e[f/k 7→ fun f/k(x1, . . . , xk)→ e0]〉

〈K, case e1 of p then e2 else e3〉 −→ 〈case � of p then e2 else e3 :: K, e1〉

〈apply �(e1, . . . , ek) :: K, v〉 −→ 〈apply v(�, . . . , ek) :: K, e1〉
〈call �(e1, . . . , ek) :: K, v〉 −→ 〈call v(�, . . . , ek) :: K, e1〉
〈apply v(v1, . . . , vi−1,�, ei+1, . . . , ek) :: K, vi〉 −→
〈apply v(v1, . . . , vi−1, vi,�, ei+2, . . . , ek) :: K, ei+1〉 (if i < k)

〈call v(v1, . . . , vi−1,�, ei+1, . . . , ek) :: K, vi〉 −→
〈v(v1, . . . , vi−1, vi,�, ei+2, . . . , ek) :: K, ei+1〉 (if i < k)

〈[e1|�] :: K, v2〉 −→ 〈[�|v2] :: K, e1〉

〈apply �() :: K, fun f/0()→ e〉 −→ 〈K, e[f/0 7→ fun f/0()→ e]〉
〈apply (fun f/k(x1, . . . , xk)→ e)(v1, . . . ,�) :: K, vk〉 −→
〈K, e[f/k 7→ fun f/k(x1, . . . , xk)→ e, x1 7→ v1, . . . , xk 7→ vk]〉

〈call ’+’(i1,�) :: K, i2〉 −→ 〈K, i1 + i2〉
〈let x = � in e2 :: K, v〉 −→ 〈K, e2[x 7→ v]〉
〈[�|v2] :: K, v1〉 −→ 〈K, [v1|v2]〉
〈case � of p then e2 else e3 :: K, v〉 −→ 〈K, e2[match(p, v)]〉 (if is_match(p, v))

〈case � of p then e2 else e3 :: K, v〉 −→ 〈K, e3〉 (if ¬is_match(p, v))

Figure 1: Sequential semantics of Core Erlang

• is_match(p, v): determines whether the value v matches the pattern p: that
is they have been built up with the same constructs of Core Erlang up to
pattern variables.

• match(p, v): if the value v matches the pattern p, this function returns a
substitution which contains the result of the pattern matching in form of a
mapping from pattern variables to values.

8 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

We present the sequential semantics rules in Section 1. We use 〈K, e〉 −→
〈K ′, e′〉 to denote one reduction step between configurations consisting of a frame
stack and an expression to be evaluated. Recall that v, vi are used for values, i, ij
for integer values, and e, ek for (unevaluated) expressions.

The biggest advantage of this semantics definition is that there are no premises
in the reduction rules about the reduction of subexpressions since they have been
put into the frame stack. Therefore the propagation of concurrent actions to this
level is not necessary (i.e. there are no labels on the reduction rules). On the other
hand, its disadvantage is that the complex syntax of frames is needed to be defined
separately from the syntax of the language.

The reduction rules can be categorised into three groups:

• Rules that extract the first redex from language constructs, and put the re-
mainder with a hole into the frame stack.

• Rules that modify the top frame of the stack by putting the calculated value
into the hole, and obtaining the next reducible expression from the same
frame.

• Rules that remove the top element of the frame stack, which also marks that
the subexpression has been completely reduced.

The evaluation of any language element (except letrec) includes using exactly
one rule once from the first and third categories. We note that this would change
if exceptions and exception handler expressions were present in the sequential lan-
guage. The connection between exceptions and signals is that when an exception
terminates a process, it will emit an exit signal with the details of the exception.
The presence of exceptions does not affect the modularity of the definition, but it
would require consistent modifications in multiple layers.

Example 2 (Sequential evaluation of Section 1). We use −→∗ to denote the reflex-
ive, transitive closure of the relation −→. For simplicity, we denote the successor
function fun(X)→ call ’+’/2(X, 1) with f in the following example. We also use
mm to denote the function bound inside the letrec expression in Section 1.

The first step is to evaluate the head of the application mm to itself (since it
is a function). Next, the parameter function f is reduced to itself. Thereafter,
the parameter list is reduced ([0,1,2]) by deconstructing it starting from the
back, pushing the head elements of the sublists into the frame stack. Actually, the
semantics just checks in this case that all of these elements are values, and then the
list is reconstructed. These actions transform the type of the parameter list from
[e1|e2] to [v1|v2], this is the reason why they are necessary, although, there are

A Formalisation of Core Erlang, a Concurrent Actor Language 9

two seemingly identical configurations in the reduction sequence.

〈Id, letrec ’mm’/2 = mm in apply ’mm’/2(f, [0,1,2])〉 −→
〈Id, apply mm(f, [0,1,2])〉 −→
〈apply mm(�, [0,1,2]) :: Id, f〉 −→
〈apply mm(f,�) :: Id, [0,1,2]〉 −→∗

〈[2|�] :: [1|�] :: [0|�] :: apply mm(f,�) :: Id, []〉 −→∗

〈apply mm(f,�) :: Id, [0,1,2]〉

Thereafter, the function mm is applied by substituting the previous list into its
body expression. The pattern in the case expression matches the parameter list,
thus the first clause will be evaluated.

〈apply mm(f,�) :: Id, [0,1,2]〉 −→
〈Id, case [0,1,2] of

[H|T] then [apply f(H)|apply mm(f, T)] else []〉 −→
〈Id, [apply f(0)|apply mm(f, [1,2])]〉

Next, we continue the evaluation with the tail of the list (since lists are evalu-
ated backwards). Again we evaluate the application of mm and reduce the case
expression, etc. The recursion stops when the list has been consumed. The last
sublist, [] will not match the pattern of the case expression, thus the application of
mm will leave [] unchanged while being removed from the stack. These reduction
steps built up a sequence of applications inside the stack.

〈Id, [apply f(0)|apply mm(f, [1,2])]〉 −→∗

〈apply mm(f,�) :: [apply f(0)|�] :: Id, [1,2]〉 −→∗

〈apply mm(f,�) :: [apply f(1)|�] :: [apply f(0)|�] :: Id, [2]〉 −→∗

〈apply mm(f,�) :: [apply f(2)|�] :: [apply f(1)|�] ::

[apply f(0)|�] :: Id, []〉 −→∗

〈[apply f(2)|�] :: [apply f(1)|�] :: [apply f(0)|�] :: Id, []〉

Thereafter, the function applications can be evaluated for the elements of the
list. First, the top element of the frame is extracted while [] is placed back. The
application of f increases 2 to 3. Combining the top element of the frame ([�|[]])
and 3, we obtain the list value [3].

〈[apply f(2)|�] :: [apply f(1)|�] :: [apply f(0)|�] :: Id, []〉 −→
〈[�|[]] :: [apply f(1)|�] :: [apply f(0)|�] :: Id, apply f(2)〉 −→∗

〈[�|[]] :: [apply f(1)|�] :: [apply f(0)|�] :: Id, 3〉 −→
〈[apply f(1)|�] :: [apply f(0)|�] :: Id, [3]〉

10 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

For the other two elements, we omit the previous steps and just show how the
list inside the frame stack is reconstructed.

〈[apply f(1)|�] :: [apply f(0)|�] :: Id, [3]〉 −→∗

〈[apply f(0)|�] :: Id, [2,3]〉 −→∗ 〈Id, [1,2,3]〉

4

In the next section, we show how we built the concurrent semantics on top of
the frame stack relation.

3.2 Processes, Signals and Actions

In this section we formalise the notions of processes, signals and actions, on which
we build in the next two sections where we describe the concurrent semantics of
Core Erlang, first the process-local semantics and then the inter-process semantics.
In the remainder of this section we also establish some metatheoretical notation
that we use in presenting the semantics.

Definition 3 (Core Erlang processes). A process (p ∈ Process) is either dead or
alive.

• A live process is a quintuple (K, e, q, pl,flag), where K denotes a frame stack,
e is an expression, q is the mailbox (represented as a list of values). pl is the
set of linked processes (a list of process identifiers), and flag is the status of
the ’trap_exit’ flag.

• A terminated (or dead) process is a list of linked process identifiers.

As described earlier, Erlang and Core Erlang implement the actor model [1] for
asynchronous communication between processes by message passing. Besides mes-
sages, there are other signals that can be sent between the processes (we formalise
exit, link, and unlink signals beside messages) which potentially change the state
of the process upon arrival without being put into the mailbox.

Actions represent the effects that characterise concurrency: message send and
arrival in a mailbox, processing a mailbox with receive, process creation, and so on.
An action will have an effect on individual processes (in the process-local semantics)
and also between processes in the system level, inter-process semantics.

We define the following signals and actions of the semantics.

Definition 4 (Signals and Actions).

s ∈ Signal ::= msg(v) | exit(v, b) | link | unlink
a ∈ Action ::= send(ι1, ι2, s) | rec(v) | self(ι) | arr(ι1, ι2, s) | spawn(ι, e1, e2)

| τ | ⇓ | flag

A Formalisation of Core Erlang, a Concurrent Actor Language 11

Signals can be messages (parametrised by a value), exits (parametrised by a
reason value and a flag whether the exit was sent through a link), links, and unlinks
(which do not have parameters). The source and destination process identifiers are
handled by actions, thus they are not included in the signals. We explain the syntax
of actions as follows:

• Signal sending (send) and signal arrival (arr) actions carry a signal as a pa-
rameter, as well as the source and target process identifiers which are propa-
gated from the inter-process semantics.

• rec actions have as parameter the message that is to be removed from the
mailbox. There is no need to include process identifiers since these actions
denote a process-local step and the removable message is already present in
the mailbox of the process.

• self actions contain the identifier of the executing process as a parameter,
which was obtained from the inter-process semantics.

• spawn actions include the new process identifier (propagated from the inter-
process semantics), a function expression, and its actual parameters (as a
Core Erlang list). The spawned process will execute this function with the
given parameters.

• A sequential (τ) action denotes one reduction step with the sequential seman-
tics.

• Termination (⇓) actions denote either normal termination or the execution of
the single-parameter ’exit’ BIF.

• flag actions denote the execution of the ’process_flag’ BIF (which does
not necessarily change the state of the ’trap_exit’ flag).

Actions are used as the labels of the one-step evaluation relation. Next, we
define the following metatheoretical functions and notations for the next sections:

• tt denotes the metatheoretical true, while ff denotes false.

• x :: xs denotes a list with x as the first element and xs as the tail.

• [] denotes the empty list.

• [x1, . . . , xn] = x1 :: (x2 :: (. . . xn :: []) . . .).

• rem1(x, l): creates a list by removing the first occurrence of x from l.

• rem(x, l): creates a list by removing all occurrences of x from l.

• map(fn, l): constructs a list by applying the metatheoretical function fn to
the elements of l.

• l1 ++ l2: constructs a list to represent the concatenation of l1 and l2.

12 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

• convert(b): maps tt to ’true’ and ff to ’false’.

• convert(v): maps ’true’ to Some tt and ’false’ to Some ff, for other inputs,
it returns None.

3.3 Process-Local Semantics
Next, we show the process-local semantics (see Section 2, Section 3, and Section 4),
denoted by p

a−→ p′, which describes the one-step evaluation of actions by indi-
vidual processes. We primarily built this semantics by following the techniques of
Fredlund’s formalisation [15], since it has the widest coverage of language features
among previous semantics. We note that the evaluation of the parameters of BIF
calls call e(e1, . . . , ek) is handled by the sequential semantics (see Section 3.1),
while the final reductions are formalised in the process-local level of BIF calls, with
concrete BIF names, as shown in Section 3 below.

In the following, we make a brief description of the process-local reduction rules.
The process identifiers in the reduction rules are propagated from the inter-process
semantics via actions. First we detail the rule for sequential steps, and the rules
for signal arrival (Figure 2):

• Seq lifts the computational layer to the process-local level. This is the sequen-
tial (τ) reduction rule of the semantics. In this rule, the computational layer
could be replaced by any other frame stack semantics, such as a semantics
for Erlang.

• Msg describes message arrival. Whenever a message arrives, it is appended
to the mailbox of the process.

• ExitDrop describes when should an exit signal be dropped without modify-
ing the state of the process [13, Receiving Exit Signals].

• ExitTerm describes when an exit signal terminates the process [13, Receiv-
ing Exit Signals]. The process becomes a terminated process by pairing the
exit reason with the linked process identifiers. When an exit signal was sent
explicitly, and the reason was ’kill’4, it also has to be converted to ’killed’
for the links (to prevent unnecessary termination of additional processes that
are trapping exits).

• ExitConv describes when an exit signal should be converted to a message
and appended at the end of the mailbox [13, Receiving Exit Signals]. This
action can only occur when the ’trap_exit’ flag of the process is set.

• LinkArr, UnlinkArr rules describe arrival of link and unlink signals. In
the first case, a process identifier is added to the links of the process, while
in the second case, all occurrences of the process identifier are removed from
the links.

4The ’kill’ reason causes unconditional termination almost always. We explain the only
exception in Section 4.1 with Example 4.

A Formalisation of Core Erlang, a Concurrent Actor Language 13

〈K, e〉 → 〈K ′, e′〉

(K, e, q, pl, b) τ−→ (K ′, e′, q, pl, b)
(Seq)

(K, e, q, pl, b)
arr(ι1,ι2,msg(v))−−−−−−−−−−−→ (K, e, q ++ [v], pl, b) (Msg)

(ι1 6= ι2 ∧ b = ff ∧ v = ’normal’) ∨ (ι1 /∈ pl ∧ be = tt ∧ ι1 6= ι2)

(K, e, q, pl, b)
arr(ι1,ι2,exit(v,be))−−−−−−−−−−−−→ (K, e, q, pl, b)

(ExitDrop)

(v = ’kill’ ∧ be = ff ∧ v′ = ’killed’)∨
(b = ff ∧ v 6= ’normal’ ∧ v′ = v ∧ (be = tt→ ι1 ∈ pl))∨

(b = ff ∧ v = ’normal’ = v′ ∧ ι1 = ι2)

(K, e, q, pl, b)
arr(ι1,ι2,exit(v,be))−−−−−−−−−−−−→ map (λι⇒ (ι, v′)) pl

(ExitTerm)

b = tt ∧ ((be = ff ∧ v 6= ’kill’) ∨ (be = tt ∧ ι1 ∈ pl))

(K, e, q, pl, b)
arr(ι1,ι2,exit(v,be))−−−−−−−−−−−−→ (K, e, q ++ [[’EXIT’,ι1,v]], pl, b)

(ExitConv)

(K, e, q, pl, b)
arr(ι1,ι2,link)−−−−−−−−−→ (K, e, q, ι1 :: pl, b) (LinkArr)

(K, e, q, pl, b)
arr(ι1,ι2,unlink)−−−−−−−−−−→ (K, e, q, rem(ι1, pl), b) (UnlinkArr)

Figure 2: Process local semantics (part 1)

Next, we describe the formal rules of signal sending (Figure 3):

• Send describes message sending. If the BIF ’!’ is on the top of the frame
stack with the target process identifier, and the message is evaluated to a
value, a send action is emitted containing the source (which is propagated
from the inter-process semantics in the NSend rule) and target identifiers
and the message value, while the send expression itself is reduced to the
message value.

• Exit describes explicitly sending an exit signal to a process. If the two-
parameter ’exit’ BIF is on the top of the frame stack with the target process

14 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

identifier, and the reason is evaluated to a value, an exit action is emitted with
the source (which is propagated from the inter-process semantics in NSend),
target identifiers, and the exit reason value, while the expression is reduced
to ’true’. Note that when sending an explicit exit signal, the link flag of the
signal is false.

• Link, Unlink rules both reduce the evaluable expression to ’ok’. In the
first case, a link signal is emitted with the source and target identifier, and
the target is appended to the links of the process. In the second case, an
unlink signal is emitted with the source and target identifier, and the target
is removed from the links of the process.

• Dead describes the communication of a terminated process. In this rule, the
first item of the links of the dead process is removed while an exit signal is
emitted to the target with the reason that is specified in this first item. Note
that the link flag of this exit signal is true, because this exit is sent through
a link.

(call ’!’(ι2,�) :: K, v, q, pl, b)
send(ι1,ι2,msg(v))−−−−−−−−−−−−→ (K, v, q, pl, b) (Send)

(call ’exit’(ι2,�) :: K, v, q, pl, b)
send(ι1,ι2,exit(v,ff))−−−−−−−−−−−−−→ (K, ’true’, q, pl, b)

(Exit)

(call ’link’(�) :: K, ι2, q, pl, b)
send(ι1,ι2,link)−−−−−−−−−−→ (K, ’ok’, q, ι2 :: pl, b) (Link)

(call ’unlink’(�) :: K, ι2, q, pl, b)
send(ι1,ι2,unlink)−−−−−−−−−−−→ (K, ’ok’, q, rem(ι2, pl), b)

(Unlink)

(ι2, v) :: pl
send(ι1,ι2,exit(v,tt))−−−−−−−−−−−−−→ pl (Dead)

Figure 3: Process-local semantics (part 2)

Finally, we detail the rest of the process-local rules (Figure 4):

• Self receives the identifier of the process from the inter-process semantics,
and evaluates the ’self’ BIF call to this identifier.

• Spawn describes process creation. The spawned process receives its identifier
from the inter-process semantics, and this identifier will be the result of this

A Formalisation of Core Erlang, a Concurrent Actor Language 15

rule. Note that it is necessary that the first parameter of the ’spawn’ is
a function value, while the second is a correct, object-level parameter list
(which is checked in the inter-process semantics).

• Receive describes message processing. With pattern matching, the first
(oldest) message is selected from the mailbox of the process that matches any
clause of the receive expression (if more patterns are matching to the same
message, the first matching clause is selected). The evaluation continues with
the body expression of the selected clause, substituted by the result (pattern
variable - value) bindings.

• Flag describes when the process flag ’trap_exit’ changes. The result of
this rule is the original value of the flag.

• Term describes normal termination, i.e. there are no more continuations in
the frame stack, and the evaluable expression has already been reduced to a
value. The result is a dead process, which will send exit signals to its links
with the reason ’normal’.

• ExitSelf describes the call of the single-parameter ’exit’ BIF. It imme-

(call �() :: K, ’self’, q, pl, b)
self(ι)−−−−→ (K, ι, q, pl, b) (Self)

f = fun f/k(x1, . . . , xk)→ e

(call ’spawn’(f,�) :: K, vs, q, pl, b)
spawn(ι,f,vs)−−−−−−−−→ (K, ι, q, pl, b)

(Spawn)

l = match(pi, v)

is_match(pi, v)

q = [v1, . . . , vn, v, . . .]

∀j < i : ¬is_match(pj , v)

(∀m, j : 1 ≤ m ≤ k ∧ 1 ≤ j ≤ n =⇒ ¬is_match(pm, vj))

(K, receive p1 → e1; . . . ; pk → ek end, q, pl, b)
rec(v)−−−−→ (K, ei[l], rem1(v, q), pl, b)

(Receive)

convert(v) = Some v′ v′′ = convert(b)

(call ’process_flag’(’trap_exit’,�) :: K, v, q, pl, b) flag−−→ (K, v′′, q, pl, v′)
(Flag)

(Id, v, q, pl, b) ⇓−→ map (λι⇒ (ι, ’normal’)) pl (Term)

(call ’exit’() :: K, v, q, pl, b) ⇓−→ map (λι⇒ (ι, v)) pl (ExitSelf)

Figure 4: Process-local semantics (part 3)

16 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

diately terminates the process, and exit signals will be sent to the linked
processes with the parameter reason value. We note that when introducing
exceptions in the future, this version of exit signals will be capable of being
caught by exception handlers.

3.4 Inter-Process Semantics
In this section we discuss the inter-process reduction rules for the semantics. The
advantage of this formalisation is that the dynamic semantics of the system is
described by only 5 rules (by combining the rules from related work [15, 18, 23]
with the same premises but different actions), which resulted in shorter proofs.
First, we introduce the necessary concepts.

Definition 5 (Ether). An ether (denoted by ∆) is a mapping of source and target
identifier pairs to lists of signals. We use ∅ to denote the empty ether, which maps
everything to the empty list5.

We use an ether to express non-atomic signal passing (unlike a number of related
works [15, 18]); that is, the signals sent from one process do not arrive immediately,
but they are transferred via the ether. This is also described in the reference
manual [13]: “The amount of time that passes between the time a signal is sent and
the arrival of the signal at the destination is unspecified but positive”.

In addition, the ether is used to implement the signal ordering guarantee [13],
that is “if an entity sends multiple signals to the same destination entity, the order
is preserved”. If a source sends multiple signals to the same target, these signals
will be appended to the end of the list associated with the source and target in
the ether. However, if multiple processes send signals to the same destination, the
arrival order of these signals is not specified, thus they are included in separate lists
in the ether based on their source.

Definition 6 (Node). A node is a pair ((∆,Π) ∈ Node) of an ether and a process
pool. The process pool (denoted by Π) is a mapping that associates process identifiers
with processes. We denote nodes with Σ and the empty process pool with ∅.

On top of these concepts, we introduce notations and metatheoretical functions:

• ι : p ‖ Π: Appends process p associated with the identifier ι to the process
pool Π. In formalising this we used function update, so that the order of iden-
tifiers is irrelevant. Because of this, we are justified in abusing the notation
somewhat when we write the rules using pattern matching: without loss of
generality, we assume that the item of interest appears in the head position
of the collection of processes given.

• remFirst(∆, ι, ι′): Removes the first element in the ether ∆ from the list
associated with ι source and ι′ destination, and returns a pair of this removed

5In the implementation, we formalised the ether as a function which maps (source) process
identifiers to a function mapping (target) process identifiers to a list of signals.

A Formalisation of Core Erlang, a Concurrent Actor Language 17

signal and the result ether inside Some. If the associated list was empty, it
returns None.

• ∆[(ι, ι′)
+7→ s]: Creates an ether by appending the signal s to the end of the

list associated with ι source and ι′ destination in the ether ∆ (while keeping
other parts of ∆ unchanged).

• Π \ ι: Creates a process pool by removing the process associated with ι from
process pool Π. This operation was also formalised by function updates.

• ι /∈ Π: Checks whether there is no process associated with ι in Π.

• convert_list(vs): Creates a metatheoretical list of expressions based on an
object-level Core Erlang list (constructed with [_|_] and []); if successful
the result is wrapped with a Some constructor; if not, None is returned.

Next, we define the semantics in Figure 5. This one-step reduction is denoted
by Σ

ι:a−−→ Σ′ that means the node Σ is reduced to Σ′ by taking a reduction step
determined by the action a with the process identified by ι. The rules always include
a “first” process (ι : p ‖ Π), nevertheless, any process from the pool can take this
place, since any process in a ‖ chain can be the outermost one, as mentioned before.
We give a brief, informal description of the inter-process rules now:

• NSend describes signal sending. While a process with the identifier ι is
reduced by emitting a send action, the contents of this action (target, source,
and signal) are placed into the ether.

• NArrive describes how an element is (nondeterministically) removed from
the ether. Any signal can be removed from the lists in the ether, if the signal
is the first element of that list, and there is a live process with the destination
identifier in the process pool.

• NTerm describes how a process identifier is freed. When a dead process has
notified all of its links, its identifier is removed from the process pool.

• NSpawn describes the creation of a new process. The new process is as-
signed a non-used identifier, and it starts evaluating the function application
described in the spawn action of the rule (note that conversion from object-
level to meta-level lists is needed). The initial configuration of the new process
is the empty frame stack (continuation), the given function application as the
evaluable expression, empty mailbox, it has no links, and it does not trap exit
signals.

• NOther describes the reduction in case of any other action, that is, this rule
propagates these actions to the process-local level.

We note that in every rule of this semantics, exactly one process is reduced.
Furthermore, all reduction rules (except NTerm) actually propagate the action to
the process-local semantics, while modifying the ether or the process pool. We also
introduce the following notations on top of the inter-process semantics:

18 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

p
send(ι1,ι2,s)−−−−−−−−→ p′

(∆, ι1 : p ‖ Π)
ι1:send(ι1,ι2,s)−−−−−−−−−−→ (∆[(ι1, ι2)

+7→ s], ι1 : p′ ‖ Π)

(NSend)

p
arr(ι1,ι2,s)−−−−−−−→ p′ remFirst(∆, ι1, ι2) = Some (s,∆′)

(∆, ι1 : p ‖ Π)
ι1:arr(ι1,ι2,s)−−−−−−−−−→ (∆′, ι1 : p′ ‖ Π)

(NArrive)

(∆, ι : [] ‖ Π)
ι:⇓−−→ (∆,Π \ ι) (NTerm)

ι2 /∈ (ι1 : p ‖ Π)

p
spawn(ι2,v,vs)−−−−−−−−−→ p′

v = fun f/k(x1, . . . , xk)→ e

convert_list(vs) = Some [v1, . . . , vk]

(∆, ι1 : p ‖ Π)
ι1:spawn(ι2,v,vs)−−−−−−−−−−−→ (∆, ι2 : ([], apply v(v1, . . . , vk), [], [],ff) ‖ ι1 : p′ ‖ Π)

(NSpawn)

p
a−→ p′ a ∈ {self(ι),⇓, τ,flag} ∪ {rec(v) | v ∈ V alue}

(∆, ι : p ‖ Π)
ι:a−−→ (∆, ι : p′ ‖ Π)

(NOther)

Figure 5: Formal semantics of communication between processes

• Σ
l−→ ∗Σ′ denotes a special reflexive, transitive closure of the relation ι:a−−→,

which traces the actions in the list l in forms of (ι, a) pairs. We use Σ
...−→∗Σ′

when the trace is not relevant. For example, if a node Σ can be reduced to
Σ′ in the three following steps: 1) the process identified by ι sends a message
v to the process identified by ι′, 2) this message arrives to the target, 3) the
message is received by the target, we use

Σ
[(ι,send(ι,ι′,msg(v))),(ι′,arr(ι,ι′,msg(v))),(ι′,rec(v))]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∗Σ′.

• Σ −→∗ Σ denotes a reduction sequence from node Σ to node Σ′ that contains
only sequential (τ) reduction steps.

Discussion. There are other approaches (e.g. [15]) which define fewer actions
for the semantics by defining input, output, spawn, and silent actions. In these
approaches, rec(v),flag,⇓, τ could all be handled as silent actions, since they affect
the state of a single process and do not communicate. Still, we formalised the more
fine-grained version, because this allows us to group the rules of the semantics into

A Formalisation of Core Erlang, a Concurrent Actor Language 19

more categories. By coupling the aforementioned actions, the less detailed approach
can also be simulated. Moreover, we proved theorems (specifically, Theorem 9)
which would not be provable if other actions were also considered to be silent.

4 Semantics Validation

After defining a formal semantics, the next step is to validate it [5]. We use two
approaches: 1) we evaluate simple parallel programs and compare the results to
the results of the Erlang/OTP compiler, and 2) we prove properties of the seman-
tics. We are also investigating ways in which the concurrent semantics can be
executed efficiently, which is a necessary step to enable extensive validation against
the reference implementation.

1

2 3

’fst’

’fst’

’snd’

Figure 6: Actor diagram for Example 3

4.1 Example Program Evaluation

In this section we present some simple program evaluation case studies that demon-
strate how the semantics operates.

Example 3 (Signal ordering). The first example illustrates when the signal or-
dering guarantee cannot be applied. Let us consider three processes (with the
identifiers 1, 2, 3), which evaluate the following expressions.

1. let X = call ’!’(2, ’fst’) in call ’!’(3, ’snd’)

2. receive X -> call ’!’(3, X) end

3. receive X -> X end

Next, we construct a node with the empty ether from these processes, and start
evaluating it. We use Π, to denote the process pool constructed from 2 and 3. For
simplicity, we omit the list of linked processes and the trap flag, since they are not
used during this evaluation. First, we reduce process 1, since the others are all

20 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

blocked by receive expressions. This evaluation puts the two messages into the
ether.

(∅, 1 : (Id, let X = call ’!’(2, ’fst’) in call ’!’(3, ’snd’), []) ‖ Π)
...−→∗

(∅[(1, 2)
+7→ msg(’fst’)][(1, 3)

+7→ msg(’snd’)], 1 : (Id, ’snd’, []) ‖ Π)

(Init)

We denote the result process pool with Π1 without process 3. Next, we can
evaluate process 3, to which the message ’snd’ arrives. Then the receive ex-
pression removes it from the mailbox and processes it. Thus the final value upon
termination in process 3 is ’snd’.

(∅[(1, 2)
+7→ msg(’fst’)][(1, 3)

+7→ msg(’snd’)],

3 : (Id, receive X -> X end, []) ‖ Π1)
3:arr(1,3,msg(’snd’))−−−−−−−−−−−−−→

(∅[(1, 2)
+7→ msg(’fst’)], 3 : (Id, receive X -> X end, [’snd’]) ‖ Π1)

...−→∗

(∅[(1, 2)
+7→ msg(’fst’)], 3 : (Id, ’snd’, []) ‖ Π1)

Note that the last configuration we presented above could still progress, because
process 2 can receive and forward the message ’fst’.

However, this was not the only option to evaluate this simple program. Instead
of evaluating process 3 in the previous reductions, we can progress with process
2 (from the state reached in Init). We denote the process pool containing the
terminated process 1 and process 3 with Π2. First, the message ’fst’ arrives to
process 2 which removes it from the mailbox, and forwards it to process 3.

(∅[(1, 2)
+7→ msg(’fst’)][(1, 3)

+7→ msg(’snd’)],

2 : (Id, receive X -> call ’!’(3, X) end, []) ‖ Π2)
2:arr(1,2,msg(’fst’))−−−−−−−−−−−−−→

(∅[(1, 3)
+7→ msg(’snd’)],

2 : (Id, receive X -> call ’!’(3, X) end, [’fst’]) ‖ Π2)
...−→∗

(∅[(1, 3)
+7→ msg(’snd’)][(2, 3)

+7→ msg(’fst’)], 2 : (Id, ’fst’, []) ‖ Π2)

After processes 1 and 2 are terminated (we denote the pool containing these with
Π3), we evaluate process 3. At this point, either of the messages in the ether could
arrive first at process 3, which will be processed then by the receive expression,

A Formalisation of Core Erlang, a Concurrent Actor Language 21

since their source is different. We present the case when ’fst’ arrives first.

(∅[(1, 3)
+7→ msg(’snd’)][(2, 3)

+7→ msg(’fst’)],

3 : (Id, receive X -> X end, []) ‖ Π3)
3:arr(2,3,msg(’fst’))−−−−−−−−−−−−−→

(∅[(1, 3)
+7→ msg(’snd’)],

3 : (Id, receive X -> X end, [’fst’]) ‖ Π3)
3:arr(1,3,msg(’snd’))−−−−−−−−−−−−−→

(∅, 3 : (Id, receive X -> X end, [’fst’, ’snd’]) ‖ Π3)
...−→∗

(∅[(1, 2)
+7→ msg(’snd’)], 3 : (Id, ’fst’, [’snd’]) ‖ Π3)

However, with this reduction sequence, process 3 terminates with ’fst’. The
signal ordering guarantee was not applicable in this scenario, because the messages
that process 3 received are from different sources. 4
Example 4 (Exit signals). Next, we present an example about sending exit signals,
specifically we show the difference between the one- and two-parameter ’exit’
BIFs. Consider two processes:

1. let X = call ’link’(2) in call ’exit’(1, ’kill’)

2. receive X -> X end

The second process is set to trap exit signals. Once again, we start the evaluation
with the first process. In the first steps, process 1 creates the link between the two
processes:

(∅, 1 : (Id, let X = call ’link’(2) in call ’exit’(1, ’kill’), [], [],ff) ‖
2 : (Id, receive X -> X end, [], [], tt) ‖ ∅) ...−→∗

(∅[(1, 2)
+7→ link], 1 : (Id, call ’exit’(1, ’kill’), [], [2],ff) ‖

2 : (Id, receive X -> X end, [], [], tt) ‖ ∅) 2:arr(1,2,link)−−−−−−−−−→
(∅, 1 : (Id, call ’exit’(1, ’kill’), [], [2],ff) ‖

2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅)
(Link)

Next, the first process terminates itself with the two-parameter ’exit’. This
involves multiple reduction steps, because the signal needs to be put into the ether,
and then retrieved from it. Then the reason will be converted to ’killed’ because
the two-parameter ’exit’ always sets the link flag of the exit signal to ff.

(∅, 1 : (Id, call ’exit’(1, ’kill’), [], [2],ff) ‖
2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅) ...−→∗

(∅[(1, 1)
+7→ exit(’kill’,ff)], 1 : (Id, ’true’, [], [2],ff) ‖

2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅) 1:arr(1,1,exit(’kill’,ff))−−−−−−−−−−−−−−−→
(∅, 1 : [(2, ’killed’)] ‖ 2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅)

22 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

Next, we propagate the exit signal through the link, and it will be converted to
a message because of the trap flag in the execution of process 2.

(∅, 1 : [(2, ’killed’)] ‖ 2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅) ...−→∗

(∅[(1, 2)
+7→ exit(’killed’, tt)],

2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅) 2:arr(1,2,exit(’killed’,tt))−−−−−−−−−−−−−−−−−→
(∅, 2 : (Id, receive X -> X end, [[’EXIT’, 1, ’killed’]], [1], tt) ‖ ∅) ...−→∗

(∅, 2 : (Id, [’EXIT’, 1, ’killed’], [], [1], tt) ‖ ∅

However, if we use the single parameter ’exit’ BIF, the reduction would be
carried out otherwise. We start the evaluation from the analogous state to the
point Link above. It immediately terminates the process without sending signals
into the ether. This also causes the reason ’kill’ not to be converted to ’killed’.
Next, this exit signal will be sent through a link (the link flag of the signal is tt),
which enables the use of ExitConv in process 2.

(∅, 1 : (Id, call ’exit’(’kill’), [], [2],ff) ‖
2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅) ...−→∗

(∅, 1 : [(2, ’kill’)] ‖ 2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅) ...−→∗

(∅[(1, 2)
+7→ exit(’kill’, tt)],

2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅) 2:arr(1,2,exit(’kill’,tt))−−−−−−−−−−−−−−−→
(∅, 2 : (Id, receive X -> X end, [[’EXIT’, 1, ’kill’]], [1], tt) ‖ ∅) ...−→∗

(∅, 2 : (Id, [’EXIT’, 1, ’kill’], [], [1], tt) ‖ ∅

We should note that the ’kill’ reason is normally used to terminate a process
regardless of its current state. Although, in this case (when the signal is sent
through a link, i.e. its link flag is set) ’kill’ does not terminate the process in
question. 4

4.2 Properties of the Semantics
After formally evaluating simple programs, we proved some fundamental proper-
ties of the layers of the semantics, and formalised the proofs in the Coq theorem
prover [9]. In this section we highlight the most important properties, and provide
sketches of the proofs; for more insights, we refer to the formalisation. First, we
show the determinism of the sequential and process-local levels.

Theorem 1 (Sequential and process-local evaluation is deterministic). For all
frame stacks K,K ′,K ′′ and expressions e, e′, e′′, if 〈K, e〉 −→ 〈K ′, e′〉 and 〈K, e〉 −→
〈K ′′, e′′〉, then K ′ = K ′′ and e′ = e′′.

Similarly, for all processes p, p′, p′′, and actions a, if p a−→ p′ and p a−→ p′′, then
p′ = p′′.

A Formalisation of Core Erlang, a Concurrent Actor Language 23

Proof. To prove determinism (in both semantics), we carried out case distinction
based on the two reduction premises. If both use the same reduction rule, their
result is equal, otherwise a contradiction is found between the premises of the
different rules.

The determinism of these layers of the semantics is a natural property; one
process should handle an incoming action in the same way in the same inner state.
However, we found that the conditions in the reference manual [13, Receiving Exit
Signals] are ambiguous in the way that they describe how to handle exit signals.
We checked with the reference implementation what the correct conditions are, and
encoded them in the premises for reduction rules about exit signals: ExitConv,
ExitDrop, and ExitTerm.

In the previous sections, we emphasised why the concept of the ether is necessary
to ensure the signal ordering guarantee. We formally verified this property.

Theorem 2 (Signal ordering guarantee). For all nodes Σ1,Σ2,Σ3, process identi-

fiers ι, ι′, and unique signals6 s1 6= s2, if Σ1
ι:send(ι,ι′,s1)−−−−−−−−−→ Σ2 and Σ2

ι:send(ι,ι′,s2)−−−−−−−−−→
Σ3, then for all nodes Σ4 and action traces l which satisfy Σ3

l−→ ∗Σ4 and also

(ι′, arr(ι, ι′, s1)) /∈ l there is no node Σ5 at which s2 can arrive: Σ4
ι′:arr(ι,ι′,s2)−−−−−−−−→ Σ5.

Proof. We proved this theorem by induction on the length of the reduction chain
Σ3

l−→ ∗Σ4. In the base case, the first removable element in the ether is either s1
or another signal which is different from s2. In the inductive case, we suppose that
there is a reduction chain of length k which does not remove s1 from the ether.
Then there is the (k + 1)th reduction step, which also cannot remove s1 from the
ether, based on the hypotheses. Thus once again, the first removable element from
the ether is either s1 or another signal which is different from s2.

This theorem informally states the following: if two signals have been sent from
the same sender to the same target, after taking any number of reduction steps,
which do not contain the arrival of the first signal, it is not possible that the second
signal will arrive to the target.

We also proved a number of confluence properties, which are the basis of prov-
ing bisimulation-based program equivalence. Our goal is to prove that sequential
evaluation (Σ −→∗ Σ′) produces equivalent nodes. The first theorem expresses
that a sequential reduction can be carried out after another reduction step if this
step does not terminate the process. Otherwise, the sequential reduction cannot
be executed after the other action. This property holds for both process-local and
inter-process semantics.

Theorem 3 (Confluence of sequential reductions in the same process). For all
processes p1, p2, p′2, and action a, supposing that p1

τ−→ p2 and p1
a−→ p′2, then there

exists a process p3 that satisfies p2
a−→ p3 and (p′2

τ−→ p3 ∨ p′2 = p3).

6They are different from any other signal in the starting configuration.

24 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

Similarly, for all nodes Σ1,Σ2,Σ
′
2, process identifiers ι, and actions a, supposing

that Σ1
ι:τ−−→ Σ2 and Σ1

ι:a−−→ Σ′2, then there exists a node Σ3 that satisfies Σ2
ι:a−−→ Σ3

and (Σ′2
ι:τ−−→ Σ3 ∨ Σ′2 = Σ3).

Proof. The proof for both semantics relies on case distinction in the derivation of
Σ1

ι:a−−→ Σ′2. There are actually two separate cases:

• If the action a does not terminate the process (still, it potentially modifies
either the mailbox, or the list of linked processes, or the ’trap_exit’ flag),
then the sequential reduction step can be taken after this action too, since
these steps are not influenced by the mentioned attributes of the process.

• If the action a terminates the process, then p′2 and p3 denote the same termi-
nated process, since sequential steps do not modify the list of linked processes,
which is the only attribute of a live process that is kept when it terminates.

This theorem is used when two reductions for the same process need to be
chained after each other. Actually, this theorem is a stepping stone towards proving
Theorem 5.

The next theorem concerns different processes: possible reduction steps can be
carried out after each other if they are not both spawn actions.

Theorem 4 (Action ordering). For all nodes Σ1,Σ2,Σ
′
2, process identifiers ι 6= ι′,

actions a, a′, which are not both spawn actions, if Σ1
ι:a−−→ Σ2 and Σ1

ι′:a′−−−→ Σ′2 then

there exists a node Σ3, which can be reached from Σ2 with action a′: Σ2
ι′:a′−−−→ Σ3.

Proof. This theorem is proved by case separation on the two reduction premises.
There is no scheduling algorithm formalised in the semantics, thus any process can
be reduced if it is not in a stuck configuration (i.e. if it is waiting for a message
to evaluate a receive expression). We can define any order for the reductions
of different processes (except if both reductions are labelled by spawn actions),
because both of the reductions in the premise can always be carried out. The only
action a in the first reduction that could prevent making the second reduction (with
action a′) is the arrival of an exit signal that terminates the process identified by
ι′, but the premise ι 6= ι′ rules this case out.

The premise that restricts spawn actions is necessary because we cannot assure
that these spawned processes obtain the same process identifiers if their spawn order
is reversed (currently, the semantics assigns fresh process identifiers to spawned
processes based on the list of process identifiers already in use). This theorem is
also a stepping stone towards Theorem 6.

The following theorems contain any-step reduction chains. The first of these
theorem expresses that if there are τ actions and an additional action that can be
executed in a configuration, then either this additional action can be executed at
the final node after executing the chain, or it was τ -reduction inside the chain.

A Formalisation of Core Erlang, a Concurrent Actor Language 25

Theorem 5 (Chaining a reduction to the end of an sequential sequence). For
all nodes Σ1,Σ4,Σ

′
4, process identifier ι, action a, and action traces l, which only

include internal actions paired with any process identifiers, if Σ1
l−→∗Σ4 and Σ1

ι:a−−→
Σ′4, then there are two potential scenarios:

• Either there is a node Σ5 which can be reached by a reduction from Σ4: Σ4
ι:a−−→

Σ5.

• Or a = τ and there are nodes Σ2,Σ3 and action traces l1, l2, which can be used
to split the sequential reduction steps: Σ1

l1−→∗Σ2, Σ2
ι:a−−→ Σ3 and Σ3

l2−→∗Σ4,
moreover l = l1 ++ [(ι, a)] ++ l2.

Proof. We proved this theorem by induction on the reduction chain Σ1
l−→ ∗Σ4.

The base case is solved by the premise Σ1
ι:a−−→ Σ′4 (by choosing Σ5 = Σ′4), since

Σ1
l−→∗Σ4 was a 0-step reduction, thus Σ1 = Σ4. In the inductive case, we did case

distinction whether a = τ and (ι, a) is included in l. If this is not true, we can
make the reduction determined by (ι, a) from the configuration Σ4 based on the
induction hypothesis and Theorem 3. Otherwise (ι, a) = (ι, τ) is included in the
action trace l.

This theorem expresses one of the fundamental properties needed to prove that
−→∗ is a weak bisimulation, (Theorem 9 below). The next theorem is the other
fundamental property required. If there is an action that is executed at the end of
the execution of a sequential reduction chain, and it can be executed in the starting
configuration too, then from the result of the second derivation the result of the
first one can be reached by only sequential steps.

Theorem 6 (Confluence of sequential reductions). For all nodes Σ1,Σ2,Σ
′
2,Σ3,

process identifier ι, and action a, if Σ1 −→∗ Σ2, and a reduction can be done in
the starting and in the final configuration too: Σ1

ι:a−−→ Σ′2, and Σ2
ι:a−−→ Σ3, then

Σ′2 −→∗ Σ3.

Proof. The proof of this property is also carried out by induction on the reduction
chain Σ1 −→∗ Σ2. In the base case Σ1 = Σ2 and by Theorem 1, Σ′2 = Σ3, while the
proof of the inductive case is based on Theorem 4 and the induction hypothesis.

What if this potentially non-sequential action was the arrival of an exit signal?
That will potentially terminate a process, which could have taken some internal
steps. We note that with the −→∗ reduction in the conclusion we do not say that
the steps are preserved, thus the result node after the arrival of the exit signal can
take fewer internal steps by leaving the steps for the terminated process out.

5 Program Equivalence
In this section, we investigate program equivalence using bisimulation. Bisimula-
tions are relations between nodes that are preserved by the reduction steps.

26 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

Definition 7 (Bisimulation). A relation R is a bisimulation if it satisfies the fol-
lowing two properties:

• For all nodes Σ1,Σ2,Σ
′
1, process identifiers ι, and actions a, if (Σ1,Σ2) ∈ R

and Σ1
ι:a−−→ Σ′1, then there is a node Σ′2, which is reducible from Σ2 with the

action a: Σ2
ι:a−−→ Σ′2, and (Σ′1,Σ

′
2) ∈ R.

• For all nodes Σ1,Σ2,Σ
′
2, process identifiers ι, and actions a, if (Σ1,Σ2) ∈ R

and Σ2
ι:a−−→ Σ′2, then there is a node Σ′1, which is reducible from Σ1 with the

action a: Σ1
ι:a−−→ Σ′1, and (Σ′1,Σ

′
2) ∈ R.

We can show that equality satisfies the above conditions of being a bisimulation.

Theorem 7. The equality of nodes is a bisimulation.

Proof. This property is just a simple consequence of the definition of bisimulation.

We also defined a relaxed variant: weak bisimulations omit τ actions taken in
the semantics, so only communication actions should preserve the relation.

Definition 8 (Weak bisimulation). A relation R is a weak bisimulation if it satisfies
the following two properties:

• For all nodes Σ1,Σ2,Σ
′
1, process identifiers ι, and actions a 6= τ , if (Σ1,Σ2) ∈

R and Σ1
ι:a−−→ Σ′1, then there are nodes Σ1

2,Σ
2
2,Σ

′
2, which are reducible from

Σ2 in the following way: Σ2 −→∗ Σ1
2, Σ1

2
ι:a−−→ Σ2

2, and Σ2
2 −→∗ Σ′2, and

(Σ′1,Σ
′
2) ∈ R.

• For all nodes Σ1,Σ2,Σ
′
1, process identifiers ι, and actions a 6= τ , if (Σ1,Σ2) ∈

R and Σ2
ι:a−−→ Σ′2, then there are nodes Σ1

1,Σ
2
1,Σ

′
1, which are reducible from

Σ1 in the following way: Σ1 −→∗ Σ1
1, Σ1

1
ι:a−−→ Σ2

1, and Σ2
1 −→∗ Σ′1, and

(Σ′1,Σ
′
2) ∈ R.

Bisimulations satisfy the natural property of being weak bisimulations.

Theorem 8. Bisimulations are weak bisimulations.

Proof. This property is also a simple consequence of the definitions, since we can
choose 0-step reductions for Σ2 −→∗ Σ1

2 and Σ2
2 −→∗ Σ′2 in Definition 8, while the

middle step Σ1
2
ι:a−−→ Σ2

2 is obtained from Definition 7.

We consider two programs (Σ,Σ′) equivalent if there is a relation R that is a
weak bisimulation and (Σ,Σ′) ∈ R. Next, we prove that sequential evaluation is a
weak bisimulation. For this proof we used the chaining properties (Theorem 5 and
Theorem 6) of the semantics.

Theorem 9. −→∗ (between nodes) is a weak bisimulation.

A Formalisation of Core Erlang, a Concurrent Actor Language 27

Proof. To avoid ambiguity, we use Λ to denote the available nodes in the proof,
while we keep Σ for the definitions. To prove that a relation is a weak bisimulation,
two properties need to be proved:

• For the first part of Definition 8 we have Λ1 −→∗ Λ2 and Λ1
ι:a−−→ Λ′1 as

assumptions. We can chain the reduction determined by a to the end of
the sequential reduction sequence by Theorem 5 (Λ2

ι:a−−→ Λ3 for some Λ3).
Actually, the second possible conclusion (i.e. the a = τ) of this theorem can
not occur here, because of the restriction a 6= τ in Definition 8. We need to
prove that Λ2 −→∗ Σ1

2, Σ1
2
ι:a−−→ Σ2

2, Σ2
2 −→∗ Σ′2, and Λ′1 −→∗ Σ′2 for suitable

Σ nodes. We can choose Σ1
2 = Λ2, Σ2

2 = Λ3, and Σ′2 = Λ3, thus the first and
second −→∗ reductions are 0-step reductions, while the single-step reduction
is among the assumptions. The reduction Σ′1 −→∗ Σ′2 remains, which can be
proved by Theorem 6.

• To satisfy the second part of Definition 8 we have Λ1 −→∗ Λ2 and Λ2
ι:a−−→ Λ′2

as assumptions. We need to prove Λ1 −→∗ Σ1
1, Σ1

1
ι:a−−→ Σ2

1, and Σ2
1 −→∗ Σ′1,

and Σ′1 −→∗ Λ′2 for suitable nodes. We choose Σ1
1 = Λ2, Σ2

1 = Λ′2, and
Σ′1 = Λ′2, thus the first two reductions are among the assumptions, while the
third and fourth ones are 0-step reductions.

With this proof, we can state that a node is equivalent to the nodes to which
it reduces by using sequential steps only. For example, we can derive the following
property:

Example 5. For all nodes Π, ethers ∆, frame stacks K, process identifiers ι, mail-
boxes q, list of process identifiers pl, and process flags flag, the following nodes are
equivalent (where mm denotes the function expression inside letrec in Example 1,
and f denotes the successor function from Example 2).

(∆, ι : (K, letrec ’mm’/2 = mm in apply ’mm’/2(f, [0,1,2]), q, pl,flag) ‖ Π)

(∆, ι : (K, [1,2,3], q, pl,flag) ‖ Π)

Proof. We have already shown in Example 2 how the complex letrec expression
can be reduced to a list of values. Using this fact together with Theorem 9 we can
prove this equivalence (note that the sequential steps of the evaluation can be lifted
to the inter-process level with rules Seq and NOther).

There is a natural question, whether any evaluation sequence could be proved
to be a bisimulation. Unfortunately, that is not the case.

Theorem 10. For all l action traces, l−→ is not a weak bisimulation.

Proof. We can prove this theorem by providing a counterexample. Here, we just
give the idea of it: consider the process (with identifier 0) that evaluates let X =

28 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

0 in X. This process terminates in two sequential steps according to the semantics.
By the definition of the weak bisimulation, taking a reduction step determined by
any action (specifically for arr(0, 1, exit(’kill’, ’false’))), the result configura-
tions should be reducible to each other (by two sequential steps). let X = 0 in
X evaluates to a dead process with the action above, which naturally could not be
reduced to anything by sequential steps.

In this section we defined program equivalence based on bisimulations and
proved that sequential evaluation is a bisimulation. With the help of these def-
initions and theorems, we can establish the equivalence of simple programs. As
we noted at the start of the section, all of the definitions and theorems presented
here are formalised in the Coq proof assistant [9]. We plan to further investigate
bisimulations to enable reasoning about more complex programs.

6 Related Work
The results presented in this paper are extensions to our work on sequential Core
Erlang [2–4, 19]. We mainly based the concurrent semantics on the work of Fred-
lund [15], Harrison [18], and Lanese et al. [23]. The general idea of an interaction
semantics of actor languages is described in the work of Mason and Talcott [24].

The formalisation of Fredlund [15] is the most detailed regarding both the se-
quential and concurrent parts of Erlang, which also faithfully follows the documen-
tation of Erlang [12]. However, it considers signal transfer as an atomic operation
(i.e. when a signal is sent, it immediately arrives), while according to signal order-
ing guarantee [13], the order of the signals sent from an entity to the same entity
is preserved, which means that two signals that are targeting different entities can
arrive in arbitrary order. The semantics of Fredlund [15] differentiates active and
passive termination signals, while we denote these by the link flag of the exit signal.

Moreover, the work of Fredlund [15] differentiates only three actions on the
inter-process level semantics: input, output, and silent. This approach closely fol-
lows the general idea of the interaction semantics [24]. With our approach, we
can simulate input and output actions: send actions can be considered as output
actions, arr actions are the input actions, while every other action can be regarded
as silent. The advantage of our semantics is that we can distinguish more classes
of reduction sequences, moreover, we also exploit this property: the theorems dis-
cussed in Section 4.2 and Section 5 involving sequential reductions would not hold,
if other actions (e.g. flag) were considered as silent.

Lanese et al. [23] describe their results on bisimulations, and prove a number of
system equivalences (e.g. renaming, normalisation). They also use ethers to store
messages, however, their approach (deliberately) ignores the guarantee for signal
ordering [13]. Moreover, they do not formalise signals except messages, and used
only a small subset of Core Erlang. Still, we incorporated some of their ideas in the
formalisation of program equivalence, and plan to pursue this topic more in detail.

The work of Vidal et al. [21, 22, 27, 31] is also related to ours, they define
multiple semantics (reduction semantics and small-step semantics) for Core Erlang

A Formalisation of Core Erlang, a Concurrent Actor Language 29

to express reversible computation. The language they formalised has a similar
coverage to our formalisation, they also formalised concurrent semantics with an
ether and action traces, moreover, they also proved similar theorems about the
properties. However, their formalisations do not include signals except messages.

Harrison [18] presented a formalisation of a minimal subset of Core Erlang in
his paper, which has also been formalised in Isabelle. His formalisation techniques
aided us while creating a usable Coq definition of the concurrent semantics, how-
ever, his formalisation includes only a few of the language elements, and he too
treated signal transfer as an atomic operation.

An important advantage of our formalisation compared to most of the existing
ones is that it is also implemented in Coq in an open-source project. Most of the
existing works are paper-based formalisations or the machine-checked version is no
longer available to the public. Furthermore, our semantics implements the signal
ordering guarantee [13] more faithfully than the other discussed approaches.

7 Conclusion and Future Work

In this paper, we described our three-level, modular formal semantics for concurrent
Core Erlang. We discussed a number of theorems about the determinism and con-
fluence properties of the semantics, defined bisimulations to be able to reason about
program equivalence, and proved that side-effect-free evaluations of a program pro-
vide equivalent programs. Finally, we compared our approach with the results of
other authors. The formalisation has also been implemented as an open-source
project in the Coq proof assistant [9].

In the future we are planning to further extend this formalisation. Our future
goals include the following points:

• Investigating bisimulations in more depth, potentially by following a similar
path to Lanese et al [23] who defined barbed congruence, that enabled them
to develop a proof technique to effectively reason about program equivalence.

• Proving the equivalence between more complex examples of concurrent pro-
grams equivalent, as well as investigating equivalence between sequential and
concurrent algorithms.

• Extending the semantics to cover exceptions and other side effects (e.g. input-
output) based on our previous results [3].

• Implementing a formalisation of the module system within this semantics.

• In the longer term, an extensive, usable formalisation of Erlang is our ultimate
goal.

30 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

References
[1] Agha, G. and Hewitt, C. Concurrent programming using actors: exploiting

large-scale parallelism. In Bond, A.H. and Gasser, L., editors, Readings in
Distributed Artificial Intelligence, pages 398–407. Morgan Kaufmann, 1988.
DOI: 10.1016/B978-0-934613-63-7.50042-5.

[2] Bereczky, P., Horpácsi, D., and Thompson, S. A proof assistant based for-
malisation of a subset of sequential Core Erlang. In Byrski, A. and Hughes,
J., editors, Trends in Functional Programming, pages 139–158, Cham, 2020.
Springer International Publishing. DOI: 10.1007/978-3-030-57761-2_7.

[3] Bereczky, P., Horpácsi, D., and Thompson, S.J. Machine-checked natural
semantics for Core Erlang: exceptions and side effects. In Proceedings of Erlang
2020, page 1–13. ACM, 2020. DOI: 10.1145/3406085.3409008.

[4] Bereczky, P., Horpácsi, D., Kőszegi, J., Szeier, S., and Thompson, S. Val-
idating formal semantics by property-based cross-testing. In Proceedings of
the 32nd Symposium on Implementation and Application of Functional Lan-
guages (IFL ’20), pages 150–161. ACM, New York, NY, USA, 2021. DOI:
10.1145/3462172.3462200.

[5] Blazy, S. and Leroy, X. Mechanized semantics for the Clight subset of the
C language. Journal of Automated Reasoning, 43(3):263–288, 2009. DOI:
10.1007/s10817-009-9148-3.

[6] Carlsson, R., Gustavsson, B., Johansson, E., Lindgren, T., Nyström, S.-O.,
Pettersson, M., and Virding, R. Core Erlang 1.0.3 language specification. Tech-
nical report, 2004. URL: https://www.it.uu.se/research/group/hipe/
cerl/doc/core_erlang-1.0.3.pdf.

[7] Cesarini, F. and Thompson, S. Erlang programming. O’Reilly Media, Inc.,
1st edition, 2009. URL: https://www.oreilly.com/library/view/erlang-
programming/9780596803940/.

[8] Core Erlang formalization. URL: https://github.com/harp-project/Core-
Erlang-Formalization, 2022. Accessed on 20th of September, 2022.

[9] Core Erlang mini. URL: https://github.com/harp-project/Core-Erlang-
mini/releases/tag/v1.6, 2022. Accessed on 20th of September, 2022.

[10] de Bruijn, N.G. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser the-
orem. Indagationes Mathematicae (Proceedings), 75(5):381–392, 1972. DOI:
10.1016/1385-7258(72)90034-0.

[11] Erlang/OTP compiler, version 24.0. URL: https://www.erlang.org/
patches/otp-24.0. Accessed on 30th of September 2022.

https://doi.org/10.1016/B978-0-934613-63-7.50042-5
https://doi.org/10.1007/978-3-030-57761-2_7
https://doi.org/10.1145/3406085.3409008
https://doi.org/10.1145/3462172.3462200
https://doi.org/10.1007/s10817-009-9148-3
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.oreilly.com/library/view/erlang-programming/9780596803940/
https://www.oreilly.com/library/view/erlang-programming/9780596803940/
https://github.com/harp-project/Core-Erlang-Formalization
https://github.com/harp-project/Core-Erlang-Formalization
https://github.com/harp-project/Core-Erlang-mini/releases/tag/v1.6
https://github.com/harp-project/Core-Erlang-mini/releases/tag/v1.6
https://doi.org/10.1016/1385-7258(72)90034-0
https://www.erlang.org/patches/otp-24.0
https://www.erlang.org/patches/otp-24.0

A Formalisation of Core Erlang, a Concurrent Actor Language 31

[12] Erlang documentation. URL: https://www.erlang.org/docs, 2022. Accessed
on 20th of September, 2022.

[13] Erlang documentation, Processes. URL: https://www.erlang.org/doc/
reference_manual/processes.html, 2022. Accessed on 20th of September,
2022.

[14] Felleisen, M. and Friedman, D.P. Control operators, the SECD-machine, and
the λ-calculus. In Formal Description of Programming Concepts - III: Proceed-
ings of the IFIP TC 2/WG 2.2 Working Conference on Formal Description of
Programming Concepts - III, pages 193–222, 1987.

[15] Fredlund, L.-Å. A framework for reasoning about Erlang code. PhD thesis,
Mikroelektronik och informationsteknik, 2001. URL: https://urn.kb.se/
resolve?urn=urn:nbn:se:kth:diva-3210.

[16] Gumbs, K. The core of Erlang. URL: https://8thlight.com/blog/kofi-
gumbs/2017/05/02/core-erlang.html, 2017. Accessed on 17th of March,
2022.

[17] High-Assurance Refactoring Project. URL: https://github.com/harp-
project, 2023. Accessed on 27th of March 27th, 2023.

[18] Harrison, J.R. Towards an Isabelle/HOL formalisation of Core Erlang. In
Proceedings of the 16th ACM SIGPLAN International Workshop on Erlang,
Erlang 2017, page 55–63, New York, NY, USA, 2017. Association for Comput-
ing Machinery. DOI: 10.1145/3123569.3123576.

[19] Horpácsi, D., Bereczky, P., and Thompson, S. Program equivalence in an
untyped, call-by-value functional language with uncurried functions. Journal
of Logical and Algebraic Methods in Programming, 132:100857, 2023. DOI:
10.1016/j.jlamp.2023.100857.

[20] Kőszegi, J. KErl: Executable semantics for Erlang. CEUR Workshop Proceed-
ings, 2046:144–160, 2018. URL: http://ceur-ws.org/Vol-2046/koszegi.
pdf.

[21] Lanese, I., Nishida, N., Palacios, A., and Vidal, G. A theory of reversibility for
Erlang. Journal of Logical and Algebraic Methods in Programming, 100:71–97,
2018. DOI: 10.1016/j.jlamp.2018.06.004.

[22] Lanese, I., Palacios, A., and Vidal, G. Causal-consistent replay reversible
semantics for message passing concurrent programs. Fundamenta Informaticae,
178(3):229–266, 2021. DOI: 10.3233/FI-2021-2005.

[23] Lanese, I., Sangiorgi, D., and Zavattaro, G. Playing with bisimulation in
Erlang. In Boreale, M., Corradini, F., Loreti, M., and Pugliese, R., editors,
Models, Languages, and Tools for Concurrent and Distributed Programming,
pages 71–91. Springer, Cham, 2019. DOI: 10.1007/978-3-030-21485-2_6.

https://www.erlang.org/docs
https://www.erlang.org/doc/reference_manual/processes.html
https://www.erlang.org/doc/reference_manual/processes.html
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3210
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3210
https://8thlight.com/blog/kofi-gumbs/2017/05/02/core-erlang.html
https://8thlight.com/blog/kofi-gumbs/2017/05/02/core-erlang.html
https://github.com/harp-project
https://github.com/harp-project
https://doi.org/10.1145/3123569.3123576
https://doi.org/10.1016/j.jlamp.2023.100857
http://ceur-ws.org/Vol-2046/koszegi.pdf
http://ceur-ws.org/Vol-2046/koszegi.pdf
https://doi.org/10.1016/j.jlamp.2018.06.004
https://doi.org/10.3233/FI-2021-2005
https://doi.org/10.1007/978-3-030-21485-2_6

32 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

[24] Mason, I. and Talcott, C. Equivalence in functional languages with ef-
fects. Journal of Functional Programming, 1(3):287–327, 1991. DOI:
10.1017/S0956796800000125.

[25] Mosses, P.D. Formal semantics of programming languages: — An overview
—. Electronic Notes in Theoretical Computer Science, 148(1):41–73, 2006.
DOI: 10.1016/j.entcs.2005.12.012, Proceedings of the School of SegraVis
Research Training Network on Foundations of Visual Modelling Techniques
(FoVMT 2004).

[26] Neuhäußer, M. and Noll, T. Abstraction and model checking of Core Er-
lang programs in Maude. Electronic Notes in Theoretical Computer Sci-
ence, 176(4):147–163, 2007. DOI: 10.1016/j.entcs.2007.06.013, Proceed-
ings of the 6th International Workshop on Rewriting Logic and its Applications
(WRLA 2006).

[27] Nishida, N., Palacios, A., and Vidal, G. A reversible semantics for Er-
lang. In Hermenegildo, M.V. and Lopez-Garcia, P., editors, International
Symposium on Logic-Based Program Synthesis and Transformation, pages
259–274, Cham, 2017. Springer, Springer International Publishing. DOI:
10.1007/978-3-319-63139-4_15.

[28] Owens, S., Myreen, M.O., Kumar, R., and Tan, Y.K. Functional big-step
semantics. In Thiemann, P., editor, Programming Languages and Systems,
pages 589–615. Springer Berlin Heidelberg, 2016. DOI: 10.1007/978-3-662-
49498-1_23.

[29] Pitts, A.M. and Stark, I.D.B. Operational reasoning for functions with local
state. Higher order operational techniques in semantics, pages 227–273, 1998.
DOI: 10.5555/309656.309671.

[30] Schäfer, S., Tebbi, T., and Smolka, G. Autosubst: Reasoning with de Bruijn
terms and parallel substitutions. In Urban, Christian and Zhang, Xingyuan,
editors, Interactive Theorem Proving, pages 359–374, Cham, 2015. Springer
International Publishing. DOI: 10.1007/978-3-319-22102-1_24.

[31] Vidal, G. Towards symbolic execution in Erlang. In Voronkov, A. and Vir-
bitskaite, I., editors, International Andrei Ershov Memorial Conference on
Perspectives of System Informatics, pages 351–360, Berlin, Heidelberg, 2015.
Springer, Springer Berlin Heidelberg. DOI: 10.1007/978-3-662-46823-4_
28.

[32] Wand, M., Culpepper, R., Giannakopoulos, T., and Cobb, A. Contextual
equivalence for a probabilistic language with continuous random variables and
recursion. Proceedings of the ACM on Programming Languages, 2(ICFP), 2018.
DOI: 10.1145/3236782.

https://doi.org/10.1017/S0956796800000125
https://doi.org/10.1016/j.entcs.2005.12.012
https://doi.org/10.1016/j.entcs.2007.06.013
https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.5555/309656.309671
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1007/978-3-662-46823-4_28
https://doi.org/10.1007/978-3-662-46823-4_28
https://doi.org/10.1145/3236782

	Introduction
	Background
	The Erlang Model of Concurrency
	Language Syntax

	Dynamic Semantics
	Sequential Semantics
	Processes, Signals and Actions
	Process-Local Semantics
	Inter-Process Semantics

	Semantics Validation
	Example Program Evaluation
	Properties of the Semantics

	Program Equivalence
	Related Work
	Conclusion and Future Work

