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Extracting Line Parameters of Woven Wire Mesh

in Images under Directional Illumination∗

László Körmöcziab and László G. Nyúlac

Abstract

Localizing the wires of a mesh in an image is important in various image
processing applications. This task can be difficult if the wires cannot be de-
tected with simple line detectors, e.g. if corrugated wires of a woven mesh
appear as dark and bright segments under directional illumination. Template
matching is insufficient if the appearance of the wires varies throughout the
image, depending on the viewing angle, and neural networks require com-
putationally expensive training on a well-prepared dataset. We propose an
efficient way to extract the line parameters (position and orientation) of the
wires of a regular mesh from an image by finding meaningful local minima of
a cost function, followed by RANSAC-controlled robust outlier filtering.

Keywords: image processing, wire detection, cage mesh detection, line pa-
rameter extraction

1 Introduction

Detecting wire mesh in an image and extracting the line parameters (i.e. the lo-
cation and orientation of the wires’ projection in the image) is an important task
in various image processing applications. Localising the wires can help in 2D-3D
camera pose estimation, or for inpainting. This is useful when the relative pose
of the camera and the wire mesh (e.g. an animal cage) can change and has to be
known throughout a series of images or a video stream. In such applications, if a
wire mesh (e.g. the front mesh of the cage) is visible in the image, it can be used
for reliable, unsupervised camera pose estimation if a subject (e.g. rodent) is to be
localized in a coordinate system in which the mesh is fixed.

A mesh made of straight wires can easily be detected with line detectors, e.g.
using Canny edge detector [1] followed by Hough transform [2]. Detection of thick
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lines can be achieved by either downscaling the image or by using thick line de-
tectors [8, 3]. However, these methods fail when the wires are not seen as lines in
the image, like the wires of a welded corrugated mesh that appear as wavy lines
with alternating darker and brighter segments due to directional reflection of their
material.

Different parts of a mesh of corrugated wires are seen from different angles,
as in the examples in Fig. 1, thus have different shape throughout the image, so
template matching cannot be used.

Figure 1: Examples of corrugated wires seen from different angles.

Quasi-periodic wire meshes can be detected in the frequency domain [5]. There
are methods that use machine learning and neural networks to detect and seg-
ment meshes [10], but training neural networks requires a lot of carefully prepared
training data (e.g. precisely segmented samples) and is computationally expensive.

Wire mesh detection can be easily achieved if there is camera motion between
frames [9] or the focusing distance of the lens can be varied [12], but having a
fixed-focus camera in a fixed position requires a different approach.

If the wire mesh fills a large part of the image, we can find “bands” that can be
macroscopically recognised by an average intensity, although having a large local
variation. The regularity of the mesh (i.e. the distance between wires is constant
and the mesh is a rectangular grid) can be utilized without the need to rectify the
image. In this work, we extend the procedure described in [7] and show quantitative
results on test images.

Detection and localisation of a wire mesh is needed in several image processing
applications. In medical experiments, rodents are often used as models for human
diseases. For behavior analysis, the animals are placed in a cage and observed with
cameras outside the cage [6]. Localisation in the image is possible but the subject’s
location is of interest in the cage coordinate system. Reliable pose estimation of
the camera with respect to the cage is needed and can be achieved using the front
wire mesh of the cage.

2 Line parameter extraction for wires

In order to find the line parameters of the wires’ projection in the image, we cal-
culate a cost function in a 2-dimensional parameter space, then find strong local
minima (negative spikes) of the cost function as candidates for detected lines, and
finally apply a robust filtering on the candidates.
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2.1 Preprocessing

The algorithm can find projections of wires in a grayscale image that fit in a rect-
angle (“band”) of arbitrary position and orientation. If the source image suffers
from lens distortion (e.g. barrel or pincushion distortion), an undistortion step has
to be performed. Perspective effect does not have to be compensated, since straight
lines remain straight after perspective projection.

The image should be normalized so that the pixel values are in the [0, 1] range.

2.2 Cost function calculation

First, an average intensity value I is to be defined that macroscopically represents
the wires in the image, along with a band width w that covers a wire. We compute
the absolute difference of pixel intensity and I for each pixel of the image I as:

J(x, y) = |I(x, y)− I|

Then the image space of J is transformed into a (ρ, θ) parameter space with a
cost function, where ρ denotes the distance of a line from the image center and θ
denotes the rotation of the line. The calculation is performed separately for finding
the projection of vertical and horizontal wires, and θ represents the deviation from
the vertical or horizontal direction, respectively.

The cost function C is calculated for (ρ, θ) pairs, ρ ranging from ρmin to ρmax

with step size ρstep and θ ranging from θmin to θmax with step size θstep. The C(ρ, θ)
value of C at given ρ and θ is calculated as the sum of the intensity of the pixels of
J that are covered by a w wide band around a line that is at ρ distance from the
image center, rotated with θ (denoted as Bw,ρ,θ), divided by the area of the image
covered by the band (|Bw,ρ,θ|):

C(ρ, θ) =

∑
(x,y)∈Bw,ρ,θ

J(x, y)

|Bw,ρ,θ|

In this approach, the possible values of the cost function lie within the [0, 1]
range, 0 represents a band that has I intensity in each pixel. Furthermore, we do
not consider bands that cover less than half of the area of a vertical band (for the
vertical case) or a horizontal band (for the horizontal case). The function value of
such points of the parameter space are set to 1.

2.3 Finding candidates for lines

Good candidates are negative peaks of C. A negative peak can be defined as being
a local minimum in its (large enough) neighbourhood and deeper than a threshold
compared to its neighbouring baseline.

As C is calculated in a given finite range with a finite step size for both param-
eters, this ordered set of calculated values can be treated as an image, with axes ρ
and θ, and the pixel intensities are values of C at given ρ and θ values.
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We declare the neighbourhood in which the local minimum search is performed
as a rectangle Ndρ,dθ with axes along the parameter space dimensions. For
Ndρ,dθ(ρ, θ), the maximal distance between the (ρ, θ) point and any point in
Ndρ,dθ(ρ, θ) is dρ and dθ along the two dimensions:

Ndρ,dθ(ρ, θ) = { (ρ′, θ′) | |ρ′ − ρ| ≤ dρ ∧ |θ′ − θ| ≤ dθ }

To fulfill the aforementioned two criteria (i.e. having local minimum and suffi-
ciently small value compared to a baseline), we choose (ρ, θ) pairs by two conditions.
We select those in a set L that have local minima in Ndρ,dθ neighbourhood:

L = { (ρ, θ) | C(ρ, θ) = min
(ρ′,θ′)∈Ndρ,dθ(ρ,θ)

C(ρ′, θ′) }

We independently perform a bottom-hat (black-hat or black top-hat) transform
on C treated as an image (as described above) with a rectangle as structuring ele-
ment defined by Ndρ,dθ, followed by thresholding. Bottom-hat transform performs
closing on an image, then subtracts the original image from the closed image, thus
extracts the baseline and transforms negative peaks into positive [11]. For simplic-
ity, denote the structuring element by N and the image representation of C values
by C. Let C ′ be the result of the bottom-hat transform:

C ′ = (C • N )− C = ((C ⊕N )	N )− C

(where • denotes closing, ⊕ is dilation and 	 is erosion).
Thresholding (with a ct threshold) applied to the result of the bottom-hat trans-

form selects (ρ, θ) pairs in a set V that are part of a valley:

V = { (ρ, θ) | C ′(ρ, θ) > ct }

Points of the parameter space that fulfill both criteria are selected as candidates
in a set P:

P = L ∩ V

2.4 Robust filtering

As there is only a perspective projection present in the image after correcting for
optical distortion, and a regular mesh consists of two (usually perpendicular) sets
of parallel wires that are to be detected independently, the lines for the image of
the parallel wires are either parallel or intersect at a vanishing point V (u, v). For
lines that intersect at V (u, v), the following is true for every line, if ρ denotes the
distance of a line from the image center and θ denotes the rotation of the line:

ρ = u cos θ + v sin θ

If a vanishing point exists for a set of lines, solving a linear system for two (ρ, θ)
value pairs referring to two of these lines gives an explicit result, except in the case
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when |θ1− θ2| = 180◦ (where θ1 and θ2 belong to the first and second selected line,
respectively) and the equation system has infinite solutions. In this configuration,
the two lines coincide and the vanishing point can be any point on that line.

If the lines in the image are parallel, there is no solution for the equation system,
as there is no vanishing point and the (ρ, θ) pairs representing these lines lie on a
line in the parameter space.

Although the above function is highly non-linear, for many practical applica-
tions, when the vanishing point is outside the image, the (ρ, θ) points representing
the visible lines in the image fit on a line with a small tolerance. Line fitting also
works for those configurations when the equation system does not have one exact
solution.

We use RANSAC [4] to fit a line on the candidates. RANSAC is widely used in
numerous applications for fast and robust selection of inliers, because it can reliably
filter out outliers and is robust for low inlier ratio. We assume that outliers do not
fit another line (e.g. no other strongly visible grid-like structure is present in the
image).

Algorithm 1 Line parameter extraction for wires

Input: I average intensity of the wires in the image
w band width
I grayscale image
H,W height and width of the image
θmin, θmax, θstep as minimal, maximal rotation angle and rotation step size
ρmin, ρmax, ρstep as minimal and maximal signed distance from image center and
distance step size

Output: ρ, θ line parameters of the wires in the image
for x ∈ [0,W ], y ∈ [0, H] do

J(x, y) = |I(x, y)− I|
end for
for θ ∈ [θmin, θmax] with θstep step size do

for ρ ∈ [ρmin, ρmax] with ρstep step size do
Let Bw,ρ,θ be a w pixel wide band that is at ρ distance from the image

center and rotated with θ

C(ρ, θ) =

∑
(x,y)∈Bw,ρ,θ

J(x,y)

|Bw,ρ,θ|
end for

end for
Search for candidates with Ndρ,dθ neighbourhood:
L = { (ρ, θ) | C(ρ, θ) = min

(ρ′,θ′)∈Ndρ,dθ(ρ,θ)
C(ρ′, θ′) }

V = { (ρ, θ) | C ′(ρ, θ) > ct }, where C ′ = (C • N )− C = ((C ⊕N )	N )− C
P = L ∩ V
Line fitting and outlier filtering with RANSAC
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3 Experimental results

In the experiments described in [6] we are working with images of 60×60×60 cm
rodent home cages acquired with consumer grade IP cameras having 1/2.7” class
sensors and wide angle lens with 3.6 mm focal length. The resolution of the images
is 1920×1080 px and the cage almost fills the whole image. Each cage is observed
by two cameras in a non-standard vertical stereo configuration, facing the front of
the cage. The angle between the cameras’ optical axis and the axis perpendicu-
lar to the front wire mesh is around 20-30◦. The cages are placed on a movable
platform so that the relative pose of the cameras and the cage can change. The
cameras are mounted on rotatable heads, thus the stereo configuration can also
change. The cameras have 83◦ vertical and 44◦ horizontal angle of view and a
strong barrel distortion can be observed in the images. We calibrated our cameras
and undistorted the images so that barrel distortion is eliminated. Fig. 2 shows
that only a perspective effect remains.

Figure 2: Sample original (left) and undistorted (right) image showing the rodent
home cage

The home cages have a skeleton of square steel tubes and a mesh of corrugated
wires is welded to the inner side of the tubes.

We ran the proposed algorithm on 25 images, 13 taken in daylight conditions
with artificial directional illumination and 12 at night, with the cameras set to
night vision mode and inbuilt infrared LEDs illuminated the scene. The expected
width w was set to 9 px and we observed the effect of varying I in the range from
0 to 1.0 with 0.05 step size. The resolution of the parameter space was 1 px for ρ
and 0.2◦ for θ, ρ swept through the image in both dimensions and θ was limited
between -15◦ and 15◦. dρ was set to 40 px and dθ was set to 8◦ for Ndρ,dθ used in
Section 2.3. Tolerance in RANSAC filtering for a candidate to fit on a line was set
to 2◦ and 10 px.

Filtered candidates (predicted positives) were compared against ground truth
values that were computed from manually assigned lines for each wire in the image.
A predicted positive is considered true positive if θ error is no more than 1◦ and ρ
error is no more than 5 px.

Precision, recall and F1 score (average± standard deviation) are shown in Ta-
bles 1 and 2, for vertical and horizontal lines, respectively. Although the test images
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originate from 4 cameras, we aggregated the results because the conditions were
similar for each camera. With I < 0.6 there were no correctly detected wires in
most images, so we excluded these results from the table.

We can see from the results that the algorithm is robust for a large variation
of I, and it can detect almost all wires of the mesh if I is set correctly. The total
number of vertical lines to be detected was 24, and the number of horizontal lines to
be detected was 12 or 14 in most cases. Results for the horizontal wires are better,
as some of the vertical wires near the side of the cage were not detected correctly
due to the background and the side meshes. False positives generally come from
the skeleton of the cages.

Table 1: Precision, recall and F1 score for finding vertical lines.

daylight night
precision recall F1 score precision recall F1 score

I (avg± std) (avg± std) (avg± std) (avg± std) (avg± std) (avg± std)
0.60 0.32± 0.03 0.48± 0.06 0.38± 0.04 0.25± 0.05 0.42± 0.07 0.31± 0.06
0.65 0.51± 0.04 0.66± 0.06 0.58± 0.04 0.35± 0.06 0.48± 0.08 0.41± 0.07
0.70 0.67± 0.06 0.76± 0.03 0.71± 0.03 0.48± 0.06 0.56± 0.05 0.51± 0.06
0.75 0.76± 0.05 0.81± 0.04 0.78± 0.04 0.61± 0.05 0.69± 0.05 0.65± 0.05
0.80 0.80± 0.04 0.82± 0.03 0.81± 0.03 0.65± 0.09 0.72± 0.06 0.69± 0.08
0.85 0.85± 0.04 0.84± 0.01 0.84± 0.03 0.68± 0.06 0.76± 0.05 0.72± 0.06
0.90 0.83± 0.03 0.82± 0.01 0.83± 0.01 0.69± 0.06 0.77± 0.05 0.73± 0.06
0.95 0.82± 0.04 0.82± 0.01 0.82± 0.02 0.70± 0.07 0.78± 0.05 0.74± 0.06
1.00 0.82± 0.05 0.81± 0.02 0.81± 0.03 0.70± 0.06 0.78± 0.04 0.74± 0.05

Table 2: Precision, recall and F1 score for finding horizontal lines.

daylight night
precision recall F1 score precision recall F1 score

I (avg± std) (avg± std) (avg± std) (avg± std) (avg± std) (avg± std)
0.60 0.46± 0.06 0.70± 0.03 0.55± 0.04 0.38± 0.05 0.83± 0.12 0.52± 0.07
0.65 0.53± 0.03 0.71± 0.01 0.61± 0.03 0.47± 0.03 0.87± 0.09 0.61± 0.04
0.70 0.62± 0.08 0.81± 0.06 0.71± 0.07 0.62± 0.07 0.89± 0.09 0.73± 0.06
0.75 0.77± 0.09 0.89± 0.04 0.83± 0.07 0.84± 0.09 0.94± 0.05 0.88± 0.05
0.80 0.84± 0.12 0.90± 0.04 0.87± 0.08 0.92± 0.11 0.92± 0.06 0.91± 0.06
0.85 0.88± 0.07 0.90± 0.03 0.89± 0.03 0.94± 0.07 0.92± 0.06 0.93± 0.03
0.90 0.90± 0.03 0.90± 0.03 0.90± 0.02 0.96± 0.07 0.91± 0.06 0.93± 0.01
0.95 0.93± 0.00 0.90± 0.03 0.92± 0.02 0.97± 0.04 0.90± 0.06 0.94± 0.02
1.00 0.93± 0.00 0.90± 0.03 0.92± 0.02 0.97± 0.04 0.89± 0.05 0.93± 0.01
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An example visualization can be seen in Figs. 3 and 4. Fig. 3 shows the values
of the cost function over the selected (ρ, θ) range for horizontal lines of a test image,
with I = 0.95. Brighter color means higher value, 0 is black and 1 is white. Negative
peaks can be observed as dark spots. After filtering the candidates, inliers that fit
on a line are marked with green, while outliers are marked with blue. Fig. 4 shows
found lines painted over an example image, horizontal lines are red, vertical lines
are green.

We use the proposed method as part of a video processing pipeline, and in-
tersection points of the lines are used for 2D-3D relative pose estimation (i.e. the
transformation between the camera coordinate system and the cage coordinate
system). For that application, not all wires are required to be detected, but the
accuracy of the line parameters is crucial.

Figure 3: Example visualization of C cost function for horizontal wires. Horizontal
axis is ρ and vertical axis is θ. Brighter color means higher function value. Top:
Negative peaks can be seen as dark spots. Bottom: All candidates as described in
Section 2.3, filtered as in Section 2.4. Inliers are marked with green, outliers are
marked with blue.

Figure 4: Found lines painted over the original image, vertical lines in green and
horizontal lines in red.
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The parameter w has to be determined for a given experimental setup. The
proposed method is not sensitive to this parameter and can tolerate deviations that
occur in most cases. A problem can arise when there is a large angle between the
image plane and the plane of the mesh, resulting in significantly different distances
between the camera and the two edges of the mesh. As a result, the thickness of
the wires in the image varies within a wide range. In such situations, a band with a
given width can cover more than one wire in some parts of the image while covering
only a small part of a single wire in other areas.

As described in Section 1, other methods cannot be used reliably and easily on
our image set. Line detectors cannot be applied, as the wires do not appear as
lines in the image. For Hough transform, precise binarization of the image would
be needed with a carefully set threshold. However, on our images, especially in
night conditions, a strict threshold results in almost all wires except at the center
of the image not being detected at all. Conversely, by using a more permissive
threshold, the wires of the side and back of the cage, along with other objects,
make detection of the front wires impossible. An example visualization for a night
image is presented in Fig. 5. Pre-trained models of neural network-based methods
are trained on wire mesh samples that differ from the ones present in our images,
and cannot detect the mesh. Training would require a huge number of manually
segmented samples.

Figure 5: Illustration of problems with binarizing for Hough transform shown on
a night image. Left: wires except the central ones disappear with a restrictive
threshold. Right: wires of the side and back of the cage, along with other objects,
make the detection of the front wires impossible with a more permissive threshold.

4 Conclusion

We presented an efficient method for extracting line parameters of the projection
of wires of a woven mesh in an image by transforming the image space into a 2D
parameter space and finding and robustly filtering local minima of the resulting
cost function. Experimental results show that the algorithm is able to accurately
detect wires and filter out false detections in general experimental setups where the
vanishing point is outside the image.

Although the presented method works robustly for the desired application, sev-
eral improvement possibilities could be investigated. An optimizer could be utilized
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to find local minima so that the computational cost could be reduced if the cost
function is not calculated for the entire parameter space. We plan to examine the
effect of running the method on gradient images instead of the original images, so
that I would not have to be defined. We also plan to incorporate a solver for the
linear equation system described in Section 2.4 to make the algorithm usable for
meshes that are seen from a low angle.
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