
Acta Cybernetica — online–first paper version — pages 1–17.

Integer Programming Based Optimization of Power

Consumption for Data Center Networks

Gergely Kovásznaia and Mohammed Nsaifb

Abstract

With the quickly developing data centers in smart cities, reducing energy
consumption and improving network performance, as well as economic ben-
efits, are essential research topics. In particular, Data Center Networks do
not always run at full capacity, which leads to significant energy consumption.
This paper experiments with a range of optimization tools to find the optimal
solutions for the Integer Linear Programming (ILP) model of network power
consumption. The study reports on experiments under three communication
patterns (near, long, and random), measuring runtime and memory consump-
tion in order to evaluate the performance of different ILP solvers. While the
results show that, for near traffic pattern, most of the tools rapidly converge
to the optimal solution, CP-SAT provides the most stable performance and
outperforms the other solvers for the long traffic pattern. On the other hand,
for random traffic pattern, Gurobi can be considered to be the best choice,
since it is able to solve all the benchmark instances under the time limit and
finds solutions faster by 1 or 2 orders of magnitude than the other solvers do.

Keywords: integer programming, optimization, power consumption, Data
Center Network, solvers

1 Introduction

Data Centers Networks (DCNs) are becoming increasingly significant in daily rou-
tine because of the fast growth of modern information technologies such as the Inter-
net of Things, Big Data, Cloud Computing, and Mobile Sensing Networks [17, 16].
DCNs aim for high reliability and stability with several redundant links and enough
capacity. The network devices usually work at full capacity 24 hours a day, consum-
ing much energy. However, network equipment is underutilized most of the time,
causing extremely low network energy efficiency. As a result, this problem attracts
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many researchers to figure out techniques that save energy while maintaining net-
work performance. For the current DCNs, there are two techniques to save power
consumption: device sleep [1, 7] and adaptive link rate [19]. The device sleeping
technique is based on turning on/off the switches and links that are under a utility
value in a dynamic manner. Whereas the adaptive link rate technique is based on
assigning the fair bandwidth value for each flow passing through the links to control
the ports’ clock rate (operating frequency), leading to lower power consumption.

Because switches are considered to be one of the major devices in DCNs, this
paper focuses on devices’ sleep techniques to save power. This technique appeared
in 2010; Heller et al. [7] introduced three types of optimizers to save power con-
sumption: formal model, greedy bin-packing, and topology-aware heuristic. The
topology-aware heuristic shows good results in saving up to 50%. It is based on
elastic topology, which increases/decreases the size of the topology according to the
size of the traffic.

Our current paper builds upon our last contribution in [14], which proposed an
Integer Linear Programming (ILP) model for traffic and energy-aware routing in
Software-Defined Networking (SDN) based on link utility information, and could
decide many pathways simultaneously. Additionally, it proposed a link utility-based
heuristic algorithm called FPLF, which had the ability to save energy up to 10%
when the traffic load is high (e.g., during rush hour) and 63.3% when the load is
low (e.g., at night). Our current paper aims to explore and examine other ILP
solving tools that can solve convex and non-convex optimization problems, which
we can use in real-time action to find an optimal solution for a large number of
injected flows, instead of FPLF-heuristic solutions.

The rest of the paper is arranged as follows. In Section 2, we review recent
papers and studies that use an ILP formulation to optimize power consumption.
The power optimization problem for DCNs is explained in Section 3. Our ILP model
is described in Section 3.1. Our experiments, benchmarks, ILP solving tools, our
portfolio solver, and the experimental results are detailed in Section 4. Finally, we
summarize all our key contributions and outline some future directions in Section 5.

2 Related Work

This section outlines the robustness and limitations of recent Integer Linear Pro-
gramming (ILP) approaches that address the power consumption decrease challenge
for network routing algorithms.

The authors in [7] developed three methods to calculate a minimum-power net-
work subset; one of them uses a formal model. The objective function consists
of two binary variables for each switch and link. The constraints represent Multi-
Commodity Network Flow, Power Minimization, and Flow Split. At the same time,
the model’s input parameters include the traffic matrix, the switch power model,
and the topology. The model outputs a subset of the original topology and per-flow
route information. While the study focuses on the number of nodes that the model
can manage in the topology, network performance is not taken into consideration.
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In contrast, our current model calculates the minimum number of links that satisfy
the traffic matrix, based on the utilization matrix.

The authors in [18] proposed a 0-1 ILP model to minimize the power of idle
line cards and integrated chassis by switching them to sleep, under link utilization
and packet delay constraints. Meanwhile, the study proposes two heuristic algo-
rithms for the same purpose and reports on experiments executed in two scenarios:
synthetic topology and real-life topology named CERNET. In the same context,
another study in [2] proposes an ILP model with a multi-objective function to mini-
mize the sum of the energy consumption of switches and links. The study limits the
links’ maximum and minimum utility to manage the trade-off between the power
consumption and the network performance. Nevertheless, neither study presents
any experimental result with the ILP model, and the algorithms were experimented
outside of any DCN.

[11] proposed a data center scheduling algorithm called FLOWP, besides an
ILP formula, with the aim of optimizing power consumption and Quality of Service
(QoS). The formula considers a minimum threshold for the efficiency of links and
switches. The results show that QoS is improved compared to the approach in [7].
However, similar to [18], the study does not show any experimental result with the
ILP model. Experiments are conducted on a heuristic algorithm only.

Our contribution in [14] presents an ILP model that has the ability to man-
age multiple paths to save power consumption and to balance the load at over-
loaded times. The study experiments with the model using the optimization tool
LINGO [10]. The results show that LINGO could not find the optimal solution in
a reasonable time for high number of flows sent simultaneously. Our current study
shows that more powerful optimization tools can find solutions in a reasonable time.

Finally, we mentioned that various ILP formulations have been proposed to
address the traffic-aware energy consumption challenges. Nevertheless, in many of
them, the results of optimal solutions do not scale to a large number of links, nodes,
line cards, switches, or flows [14]. Some of these ILP formulations are designed for
appointed DCN topologies, i.e., fat-tree and bicubic. On the other hand, some of
them are independent of topology structures. All those facts encouraged the authors
to explore a wide range of state-of-the-art optimization tools and to compare their
experimental results in the current study.

3 Problem Statement and Proposed Solutions

Although the ILP model in [14] can calculate optimal multi-path ways and can
manage the current status of the network, the model was solved by using the
optimization toolkit LINGO, which was costly when the network size and number
of flows were large. It took more than 160 minutes to accommodate only 120 bursts
of flows in the topology (a fat-tree topology with k = 4) at one time. This fact
motivated the authors to propose a heuristic routing algorithm called Fill Preferred
Link First (FPLF) to find feasible solutions.

Figure 1 shows part of the results from [14]. Based on the results, the left figure
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shows that LINGO cannot find a solution in reasonable time when sending more
than 100 simultaneous flows, and the runtime dramatically increases. On the other
hand, the right figure shows how the number of active links increases proportionally
to the flows. Therefore, the authors of the current study think that it might be
possible to find more powerful optimization tools that can find the optimal solution
for a higher number of flows in reasonable time.
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Figure 1: Correlation between the number of flows and the runtime of LINGO,
and between the number of flows and the number of active links, respectively.

Our contributions in the current paper are summarized as follows:

• Developing neO-DCN, our network optimizer tool for DCNs.

• Generating more realistic benchmarks to experiment with the proposed ILP
model for three different traffic patterns.

• Evaluating the performance of several solvers with the ILP model on three
different benchmarks.

3.1 DCN Models and Constraints

The DCN is modeled as an undirected graph G = (S,E), where S = {s1, s2, . . . , sn}
is a set of switches and E ⊆ {eij | si, sj ∈ S} is a set of links. The traffic is
represented as a set of flows F, where each flow f = (f.S, f.D, λf ) ∈ F consists of
a source f.S ∈ S, a destination f.D ∈ S and a bit rate λf ∈ N.

The power consumption of a DCN is based on the SDN network equipment
S and E. Therefore, the Network Power Consumption (NPC) model is directly
related to the number of active switches and the number of links. The computation
formula for NPC is shown in (1).

NPC = Pswitch

∑
si∈S

Bi + Plink

∑
eij∈E

Lij . (1)
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Bi and Lij denote the state of a corresponding switch and link, respectively,
where the value 1 represents the active state, and 0 the passive state. The base
power consumption of switches and links are denoted by Pswitch and Plink.

Links and traffic correlation constraint: This constraint considers the cor-
relation between the traffic volume and the links. Therefore, the constraint defines
the relationship between the traffic volume Tij and the link state Lij to increase
the utility of the link as much as possible.

Links and flows correlation constraint: This constraint represents the cor-
relation between links and flows, such that a link should be active if and only if a
flow passes through it.

Utility constraint: This constraint computes the utility of all the topology’s
links, and limits the link utility to less than or equal to the link’s bandwidth BWij .

Path conservation constraint: This constraint installs the path from the source
f.S to the destination f.D for each flow f .

Flow conservation constraint: This constraint guarantees for any flow f that
the incoming and outgoing flows of the intermediate switches between the source
f.S and the destination f.D should be equal, in order to avoid packet loss.

Network loop avoidance constraint: Since this model computes an acyclic
graph in this context of routing, it is impossible to start at a switch s and to follow
a directed path that returns to s. Thus, this constraint helps to avoid looping
between switches.

3.2 ILP Formulation

This section describes how the DCN optimization model specified in Section 3.1
can be formulated as an ILP model, which computes the minimum number of links
for a given traffic utilization, under the following conditions:

• The optimization model’s parameters refer to a snapshot of the network state.
This means that the model considers the case of the network state in a specific
unit of time.

• The model starts with a standard multi-commodity flow problem. The con-
straints include flow conservation, link capacity, demand satisfaction, and the
total number of active links.

• Splitting a single flow into packets across multiple links in the topology could
save energy by increasing overall link utilization. However, due to varied path
delays, reordered packets at the destination can degrade the performance. As
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a result, we incorporate restrictions into our formulation based on the entire
flow.

In this ILP model, all the variables are Boolean, i.e., they are restricted to the
range {0, 1}. We will use the following Boolean variables:

• Lij denotes if the link eij is active;

• FR(f, i, j) denotes if the flow f passes through the link eij .

Additional integer constants are used in the model:

• BWij represents the bandwidth of the link eij ;

• Tij represents the input traffic volume over the link eij .

The model in [14] employed only the second operand from (1), to minimize the
number of the links as shown in (2).

min

 n∑
i=1

n∑
j=1

Lij

 . (2)

The above objective function works against the following constrains:

Links and traffic correlation constraint:

Tij

BWij
≤ Lij , ∀eij ∈ E, (3)

expressing that the traffic volume must not exceed the bandwidth of a link.

Links and flows correlation constraint:

FR (f, i, j) ≤ Lij , ∀f ∈ F, ∀eij ∈ E, (4)

meaning that flows should pass only through active links.

Utility constraint:∑
f∈F

(
FR (f, i, j) + FR (f, j, i)

)
· λf ≤ BWij − Tij , ∀eij ∈ E, (5)

where a flow’s packet rate is counted according to the undirected nature of the
network graph.

Path conservation constraint:

n∑
i=1

FR (f, f.S, i) = 1,

n∑
i=1

FR (f, i, f.D) = 1, ∀f ∈ F. (6)
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Flow conservation constraint:

n∑
i=1

i ̸=f.S

FR (f, i, j) =

n∑
i=1

i ̸=f.D

FR (f, j, i) , ∀ f ∈ F, j ∈ S. (7)

Network loop avoidance constraint:

FR (f, i, j) + FR (f, j, i) ≤ 1, ∀f ∈ F, i, j ∈ S. (8)

4 Implementation and Experiments

4.1 Benchmarks

The communication patterns affect performance and power consumption [9]. Based
on the fact that the traffic in a data center swings between peak traffic (e.g., at
daytime) and low traffic (e.g., at nighttime) [3], the traffic matrix for a DCN follows
the sine wave in (9).

Traffic Rate =
1

2
·max rate · (1 + sin(t)) (9)

This paper explores three types of the sine-wave traffic matrix: near, long, and
mixed (i.e., random). The benchmarks build upon what we described in Section 3.2.
Each benchmark is a snapshot of the DCN at the time interval ti , 1 ≤ i ≤ n. This
means that each benchmark captures the state of the traffic matrix at a specific
time.

Near traffic pattern: The traffic is restricted between the servers that reside in
the same PODs (Point of Delivery) of the topology, i.e., the servers that are
connected through the edge layer switches only. The benchmarks aggregate
the flows to a minimum number of links inside the same POD.

Long traffic pattern: The traffic is restricted between the servers that reside in
different PODs of the topology, i.e., the servers that are connected through
the edge, aggregation, and core layer switches. The model saves less power
due to balancing the load between switches and using multiple paths to keep
the QoS at an acceptable level, depending on the utility of links at that time.

Random traffic matrix: The traffic matrix for this pattern is a mixture of the
above patterns, in order to explore how many links we can save with a random
sine-wave pattern.

4.2 ILP Solving Tools

LINGO provides a collection of built-in solutions to handle a wide range of opti-
mization problems. Unlike many modeling products, all of the LINGO solvers are
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directly connected to the modeling environment. Instead of using slower intermedi-
ary files, this seamless connection enables LINGO to transmit the issue to the right
solver immediately in memory. This direct connection also reduces the compatibil-
ity issues between the solver and the modeling language components. LINGO is
supported by LINDO Systems Inc. [10]. It is free and available for students and
interested researchers.

Google’s OR-Tools [15] is an open-source toolkit for solving optimization
problems in general. Via the Python package ortools, one can access several
optimization tools, including the following ones. Gurobi [6] provides one of the
most powerful commercial solvers for a wide range of optimization problems, in-
cluding ILP problems, and it is free to use for academics and students. CP-SAT1

is a constraint programming solver that uses SAT methods, and it is part of the
OR-Tools package. SCIP [4] is one of the fastest non-commercial solvers for
Mixed Integer Programming (MIP) and, also, an open-source framework for con-
straint integer programming. CBC [5] (Coin-or Branch and Cut) is an open-source
MIP solver. We will run Gurobi, CP-SAT, SCIP, and CBC from Python code
inside our portfolio solver neO-DCN, as detailed in Section 4.3.

4.3 neO-DCN Portfolio Solver for DCN Optimization

The proposed ILP model has been implemented in our tool neO-DCN, which is
a variant of our open-source tool neO [8] that we adapted to our DCN model.
neO-DCN is publicly available at https://github.com/kovasz/neO-DCN.

neO-DCN is a portfolio solver, meaning that it can execute different ILP
solvers, which were mentioned in Section 4.2, in parallel. The parallel execution is
implemented by instantiating ProcessPool from the pathos.multiprocessing [12]
Python module, which can run jobs with a non-blocking and unordered map.

The OR-Tools package provides two solver interfaces that we can use for ILP
solving: (1) the MPSolver interface for MIP solvers such as Gurobi, SCIP and
CBC, and (2) the CPSolver interface for Google’s Constraint Programming solver
CP-SAT. Both interfaces allow adding ILP constraints in the form

solver.Add(w1 * x1 + . . . + wn * xn <= c)

where each wi and c is an integer, and xi a Boolean variable. Note that although
the interface allows to use relational operators other than ≤, neO-DCN translates
all constraints to “AtMost” constraints for normalization purposes.

For neO-DCN, we introduced a JSON input format to read data about the
configuration of the network as well as the current configuration of flows. The
benchmark files that we used in our experiments apply this input format and can
be found in the repository of neO-DCN.

1https://developers.google.com/optimization/cp/cp_solver

https://github.com/kovasz/neO-DCN
https://developers.google.com/optimization/cp/cp_solver
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4.4 Experimental Results

In our experiments, we are dealing with the real-world DCN topology same DCN
topology as in [14]. Figure 2 shows the topology containing 20 switches and 16
hosts, and numerous links between those nodes. The bandwidth of each link is
uniformly set to 1 Gbps.

The ILP solvers that we mentioned in Section 4.2 were run on the benchmark
instances with a wall clock time limit of 1200 seconds. LINGO was run as a
Windows desktop application, while the other ILP solvers as part of neO-DCN
on Linux. During the experiments, we measured the runtime of the solvers and,
also, monitored the memory consumption of solvers by using the memory profiler
mprof. While applying mprof to neO-DCN was successful, we were not able to
apply it to LINGO. This is why we will not provide memory consumption data
for LINGO in the subsequent sections.

Figure 2: DCN topology (fat tree) for experiments.

4.4.1 Near Traffic Pattern

All mentioned solvers converge to the optimal solution for this traffic pattern very
fast. They reduce the topology in Figure 2 to a minimum-tree DCN topology
in Figure 3 by setting all unneeded links to off-state. Figure 3 shows the four
scenarios of the near sine-wave pattern. In the first scenario, we burst roughly
1 Gbps distributed over 20 flows from servers A,B to C,D, i.e, unidirectional
traffic. The optimizer aggregates all flows in six links. On the other hand, in the
second scenario, the number of flows are increased to 30 and the traffic to 1.3 Gbps.
The topology changes because the model balances the traffic over the links, and
the number of links becomes 8 instead of 6. In the third scenario, part of the
traffic is bidirectional, while we keep the traffic volume at 1.3 Gbps. We burst the
same number of flows, 30, distributed as follows: (1) 10 flows from servers A to C,
(2) 10 flows from B to D, and (3) 10 flows in a reverse direction, from server C
to A. The optimizers output the minimum number 10 of the 12 links for the sake
of aggregating as many flows as possible in one path. In the fourth scenario, we
keep all the characteristics of the third scenario, except that we increase the traffic
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volume to roughly 2 Gbps by sending new traffic from server D to B. As a result,
the minimum number of active links becomes 40.
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Figure 3: Four near-traffic scenarios, where directed links indicate flow direction.
Undirected links represent bidirectional flows.

Table 1 shows some of the results reported by the ILP solvers, including the
optimum value (e.g., minimum number of active links). In the table, the runtime
of each solver is given in seconds. The results show that the benchmark instances
in all scenarios can be solved in reasonable time by any of the solvers. However,
Gurobi and CP-SAT outperform the other solvers by almost 1 order of magnitude
on this benchmark.

Table 1: Runtimes (s) of ILP solvers for near traffic pattern

Scenario Flows Opt. LINGO Gurobi CP-SAT SCIP CBC

1 20 6 2.11 0.44 0.42 0.63 0.53
2 30 8 4.21 0.53 0.53 0.73 3.03
3 30 10 3.21 0.53 0.52 0.93 0.62
4 40 14 5.01 0.73 0.72 1.33 3.43

4.4.2 Long Traffic Pattern

In this benchmark, we separate the servers from different PODs into two groups:
sender and receiver. Besides that, we set the number of flows to a constant value of
24. Then, we gradually increase the traffic volume roughly from 1 Gbps to 5 Gpbs,
which were captured in 14 benchmark instances, and we burst them into the DCN.
The idea behind this benchmark is to demonstrate how the subset of active links
changes according to the traffic demand when the number of flows is constant.
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Table 2 shows the traffic volume in Gbps for each benchmark instances, and the
corresponding optimum values (e.g., minimum number of active links).

While 6 active links are sufficient to use for the initial time interval (representing
low traffic), one needs to activate all the 48 links in the topology for the last
time interval (representing high traffic). In the table, one can definitely see higher
runtimes than those in the near-traffic experiment. LINGO, SCIP, and CBC
even timed out (TO) for some of the benchmark instances, due to the higher level
of difficulty of solving, caused by a high load of traffic.

Table 2: Runtimes (s) of ILP solvers for long traffic pattern

Time
Interval Traffic Opt. LINGO Gurobi CP-SAT SCIP CBC

1 0.91 6 2.81 0.53 0.42 0.62 0.63
2 0.92 12 2.74 0.43 0.43 0.62 0.63
3 1.5 18 2.93 0.53 1.93 0.62 1.73
4 2.15 26 2.96 0.53 28.88 1.32 3.13
5 2.3 28 2.97 0.53 22.57 25.28 19.56
6 2.4 30 2.85 0.53 17.45 54.63 5.53
7 2.7 32 2.73 0.53 12.25 14.76 11.35
8 3 36 27.73 1.74 16.76 146.02 101.21
9 3.4 36 10.83 2.44 11.35 29.31 80.16
10 3.6 40 597.18 141.96 17.69 122.61 406.6
11 3.9 40 566.44 162.26 13.05 951.43 TO
12 4.2 44 TO 425.5 36.6 291.98 TO
13 4.5 44 TO 144.51 28.28 TO TO
14 4.8 48 TO 575.49 45.01 TO TO

The solvers’ runtimes are visualized in Figure 4. Notice that the vertical axis,
that represents the runtimes in seconds, is log-scaled. Up to the 7th time interval,
when the traffic volume is 2.7 Gbps, all the solvers can find the optimum in a short
time and, in particular, Gurobi and LINGO seem to provide a stable performance.
For a higher volume of traffic, however, all the solvers loose efficiency very rapidly,
except for CP-SAT, which keeps a surprisingly stable performance all the way to
the very last time interval.

Figure 5 visualizes the memory consumption of the different ILP solvers. Recall
that we could not apply memory profiling to LINGO. As the chart shows, all
the solvers consume a moderate amount of memory for each benchmark instance.
Most importantly, for CP-SAT, which was proved to be the fastest solver on this
benchmark, memory consumption seems to be constant-like.

4.4.3 Random Traffic Matrix

In the benchmark with random traffic matrix, we inject different burst sizes and
random flows into the DCN. The generated benchmark instances consist of 5, 10,
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20, . . . , 200 flows, respectively, where each flow f is given by a random source host
f.S, a random destination hosts f.D and a random packet rate λf .

Table 3 gives several details for each benchmark instance. The number of flows
gradually increases from 5 to 200. Note that benchmark instances up to 110 flows
are satisfiable (SAT), while the ones above that are unsatisfiable (UNSAT), meaning
that there does not exist any solution for them. For the SAT instances, the table
shows the optimum values (e.g., minimum number of active links).

Table 3: Runtimes (s) of ILP solvers for random traffic

Flows Traffic Result Opt. LINGO Gurobi CP-SAT SCIP CBC

5 0.08 SAT 15 0.79 0.24 0.24 0.22 0.24
10 0.21 SAT 19 1.34 0.23 0.33 0.32 0.44
20 0.49 SAT 24 2.22 0.33 0.63 0.53 0.74
30 0.61 SAT 28 3.22 0.53 1.23 0.83 0.83
40 0.92 SAT 28 4.37 0.63 1.63 1.13 1.14
50 1.06 SAT 29 16.89 1.13 3.13 25.68 11.75
60 1.35 SAT 29 12.38 1.54 5.54 7.74 158.31
70 1.35 SAT 31 49 4.54 22.47 185.03 206.83
80 1.67 SAT 30 45.53 3.85 62.25 97.99 158.70
90 1.86 SAT 33 452.84 32.2 83.36 TO TO
100 2.42 SAT 32 219.28 6.85 45.02 1160.16 329.72
110 2.25 SAT 33 275.24 34.92 TO TO 481.98
120 2.71 UNSAT TO 1.93 TO 7.44 42.51
130 8 UNSAT TO 2.14 TO 8.25 41.3
140 7.71 UNSAT TO 2.24 TO 10.25 69.56
150 7.84 UNSAT TO 2.34 TO 9.15 78.88
160 8 UNSAT TO 2.64 TO 7.44 63.04
170 8 UNSAT TO 2.83 TO 10.55 116.14
180 7.81 UNSAT TO 3.04 TO 9.35 136.88
190 7.99 UNSAT TO 3.14 TO 16.16 87.49
200 8 UNSAT TO 4.65 TO 13.66 115.13

Table 3 and Figure 6 show the solvers’ runtimes for each benchmark instance.
Notice that the vertical axis of the chart is log-scaled.

Only Gurobi is able to solve all the benchmark instances under the time limit.
LINGO and CP-SAT times out on all the UNSAT instances, while all the other
solvers are able to recognize the UNSAT case in quite a reasonable timeframe.
CBC and SCIP time out on 1 and 2 SAT instances, respectively, which consist of
a high number of flows.

Regarding runtime, Gurobi outperforms all the other solvers by 1 or 2 orders of
magnitude, especially when comparing to LINGO that was used as an underlying
solver in [14].
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Figure 6: Runtimes of ILP solvers for random traffic.

The memory consumption we have recorded is shown in Figure 7. Gurobi,
as the fastest solvers for the current benchmark, consumes a moderate amount of
memory.

5 Conclusion and Future work

With the aim of optimizing the power consumption of a real DCN topology called
the fat tree, we proposed an ILP model in our previous paper [14] and reported
on experiments with the optimization toolkit LINGO. For our current paper, we
have implemented the same model for other ILP solvers. We report on comparative
experiments with them on a wide range of traffic benchmarks for three different
communication patterns: (1) the near traffic pattern results show that Gurobi and
CP-SAT outperform the other solvers regarding runtime for most traffic instances;
(2) the long traffic pattern results show that above a traffic volume of 2.7 Gbps
all the solvers dramatically loose efficiency, except for CP-SAT, which keeps a
good performance and roughly constant memory consumption; (3) the random
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Figure 7: Memory consumption of ILP solvers for random traffic.

traffic results show that, for most of the traffic instances, Gurobi outperforms the
other solvers regarding both runtime and memory. We can conclude that, for most
of the benchmark instances, most of the solvers outperform LINGO regarding
runtime. Consequently, it was definitely worth experimenting with those solvers,
with Gurobi and CP-SAT in particular, as part of our new contribution.

As future work, it would be worth investigating how much ILP solvers scale
for certain generalizations of the DCN model, such as using heterogeneous power
consumption values for switches and links. In an ongoing work, we are upgrading
the ILP model to save as much power as possible by adding more parameters, such
as flow type [13]. Additionally, we are planning to experiment with pseudo-Boolean
solvers as well.
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SDN: Software-based methods and optimization models. Journal of Network
and Computer Applications, 137:127–143, 2019. DOI: 10.1016/j.jnca.2019.

04.001.

[4] Bestuzheva, Ksenia et al. The SCIP Optimization Suite 8.0. ZIB-Report 21-
41, Zuse Institute Berlin, 2021. URL: http://nbn-resolving.de/urn:nbn:
de:0297-zib-85309.

[5] Forrest, John et al. coin-or/cbc: Release releases/2.10.7, 2022. DOI: 10.

5281/zenodo.5904374.

[6] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. URL:
https://www.gurobi.com/documentation/9.5/refman/, 2022.

[7] Heller, Brandon, Seetharaman, Srinivasan, Mahadevan, Priya, Yiakoumis,
Yiannis, Sharma, Puneet, Banerjee, Sujata, and McKeown, Nick. Elastic-
tree: Saving energy in data center networks. In NSDI’10: Proceedings of the
7th USENIX conference on Networked systems design and implementation,
Volume 10, pages 249–264, 2010.

[8] Kovásznai, G., Gajdár, K., and Kovács, L. Portfolio SAT and SMT solving
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