
Acta Cybernetica — online–first paper version — pages 1–20.

The Influence of the Nonfunctional Requirements

on the Data Model∗

Grácián Kokrehelab and Vilmos Bilickiac

Abstract

During the design and development of real-world telemedicine applica-
tions, the data model evolves significantly along the datapath. The model
itself, the storage technique, and the user interface are the most common
contributors. This relates to non-functional requirements. The size and com-
plexity of the domain model may also be significantly influenced by standards.
This phenomenon is distinct from data model erosion, which occurs when the
data model changes due to a software developer’s fault and non-properly
defined interfaces. This is occurring by design. We are unaware of any tech-
nique, including OMG’s Unified Modeling Language (UML), that focuses on
this aspect of complex systems: the change of the data model along the dat-
apath. In this article, we investigate this phenomenon and, in addition to
identifying the locations where this change may occur, we classify the mod-
ifications depending on the possible influence a specific model change may
have on the system’s overall properties. This paper presents a novel method-
ology for complex system datapath analysis and demonstrates its application
to a selection of telemedicine-related applications. This technique illustrates
the possible effect of non-functional requirements on the datapath and the
potential consequences of these modifications.

Keywords: FHIR, telemedicine, GUI, Firebase, Angular, modeling

∗This work was supported by the EU-funded Hungarian grant GINOP-2.2.1-15-2017-00073;
project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry
of Innovation and Technology of Hungary from the National Research, Development and Innova-
tion Fund, financed under the TKP2021-NVA funding scheme; project no. II-NKFIH-1528-1/2021
has been implemented with the support provided by the Ministry of Innovation and Technology
of Hungary from the National Research, Development and Innovation Fund, financed under the
II-NKFIH-1528-1 funding scheme. The research was also supported by the Ministry of Innova-
tion and Technology NRDI Office within the framework of the Artificial Intelligence National
Laboratory Program (RRF-2.3.1-21-2022-00004).

aDepartment of Software Engineering, University of Szeged, Hungary
bE-mail: kokrehel@inf.u-szeged.hu, ORCID: 0000-0002-5074-6033
cE-mail: bilickiv@inf.u-szeged.hu, ORCID: 0000-0002-7793-2661

DOI: 10.14232/actacyb.299253

mailto:kokrehel@inf.u-szeged.hu
https://orcid.org/0000-0002-5074-6033
mailto:bilickiv@inf.u-szeged.hu
https://orcid.org/0000-0002-7793-2661
https://doi.org/10.14232/actacyb.299253

2 Grácián Kokrehel and Vilmos Bilicki

1 Introduction

In the late 1950s, renting an IBM 704 digital mainframe computer cost hundreds
of dollars per minute. Recently, cloud computing as a service with on-demand pay-
per-use is a widely used Information Technology (IT) phenomenon that offers great
economies of scale. In order to make the platform as a service more accessible and
affordable, serverless computing has attracted the interest of both industry and
academia.

Another important trend is the widespread use of Internet of Things (IoT) de-
vices. The Function as a Service (FaaS) and Platform as a Service (PaaS) solutions
provide the de facto backend for IoT solutions. The integration of the IoT to the
cloud/edge node is governed in most cases by the traditional Representational state
transfer (REST) paradigm, implemented on top of the Hyper Text Transfer Proto-
col (HTTP). The data is typically serialized in JavaScript Object Notation (JSON).
On the datapath, data travels through a variety of technology stacks.

Domain model erosion is a phenomenon in which the information model of
an application becomes separated from its actual implementation. When applica-
tions shift from one technology stack to another, causing the information model
to change, or when software engineers contribute changes that are not accurately
reflected in the information model, this might occur. When the data model of an
application is expressed in JSON format, but the actual implementation of the data
model changes without corresponding modifications to the JSON representation,
domain model erosion can occur. This might result in incompatibilities between the
data model and its representation, leading to unanticipated application behavior.

Consider, for instance, a web application that employs a JSON representation
to store user information. If a software engineer adds a new field to the user data
model, such as a new email address, but does not update the JSON representation
to incorporate this information, the program may continue to work but will not
keep the new email address for users.

In addition to the data erosion, which may be viewed as a design flaw (lack
of strong, typed interfaces), the data model change along the datapath may be a
real but little understood phenomenon. A widespread system integration approach
is based on the REST architectural style, therefore there is no absolute domain
model, but rather a given representation on a given portion of the data path. If
we consider the MVVM (Model-ViewModel) architectural pattern, we can observe
that the domain model in a given location/layer may differ dramatically from other
locations. All of these alterations are possible in software systems; a comprehensive
system integration is not required to meet these issues.

Non-functional requirements may also influence this domain model. When an
application needs to grow to accommodate greater traffic, this is a classic example
of non-functional requirements resulting in data model modifications. To accom-
modate the increasing load, it may be necessary to modify the data model for
performance by adding additional indices, denormalizing the data, or sharding it
across different servers. Another illustration is when privacy and security needs
change, resulting in data model modifications. For instance, a new rule may man-

The Influence of the Nonfunctional Requirements on the Data Model 3

date that sensitive data be encrypted at rest, which may necessitate alterations to
the manner in which it is kept within the data model.

In order to conform to non-functional requirements such as standard interfaces
or system extensibility, the data format is governed by the standards of a given
domain. E.g.: In the field of telemedicine the Fast Healthcare Interoperability
Resources (FHIR) [4] standard is widely used. When implementing a system that
is intended to conform to a standard, such as FHIR, the domain model may need
to be extended or updated to comply with the standard. To describe the numerous
healthcare concepts, the domain model may need to incorporate FHIR resources,
such as patients, medications, conditions, and procedures, in the case of FHIR.
Additionally, the domain model may need to be extended to include data elements.

2 Research questions

As stated in the introduction, both functional and non-functional requirements
influence the evolution of data along the datapath. While functional requirements
determine the necessary data transformations, non-functional requirements also
play a significant role in shaping the data evolution process. This is a frequent
practice among software developers, although it has not been properly investigated.
This is a gray area from both a qualitative and quantitative sense. In addition to
defining our study, we posed research questions. The first question discusses the
potential ramifications of the modification. As observed, change occurs, but what
are its consequences? The second research topic concerns the FHIR standard’s
effects on the domain model. FHIR is one of the few practical standards, and as a
result, it is frequently used, making it an excellent candidate for study. The third
study topic focuses on the technical environment’s effects on the data model. In
our situation, we chose Google’s serverless Firebase solution, which is also a good
contender due to its popularity. Within Firebase, the impact of using Firestore as
a database is studied.

• RQ1: What are the dimensions which enable us to measure the impact of
non-functional requirements?

• RQ2: Based on the defined dimensions, what are the impacts of the FHIR
standard and using the Firebase API

3 State-of-the-art

There are numerous articles about software architecture and FaaS best practices.
Wen et al. presented the first comprehensive study on understanding the challenges
in developing serverless-based applications from the developers’ perspective. They
mine and analyze 22,731 relevant questions from Stack Overflow (a popular Q&A
website for developers), and show the increasing popularity trend and the high
difficulty level of serverless computing for developers. Through manual inspection of

4 Grácián Kokrehel and Vilmos Bilicki

619 sampled questions, they constructed a taxonomy of challenges that developers
encounter, and report a series of findings and actionable implications [1].

In a different publication, Wen et al. presents a comprehensive study on char-
acterizing mainstream commodity serverless computing platforms, including AWS
Lambda, Google Cloud Functions, Azure Functions, and Alibaba Cloud Function
Compute. Specifically, they conduct both qualitative analysis and quantitative
analysis. Based on the results of both qualitative and quantitative analysis, they
derive a series of findings and provide insightful implications for both developers
and cloud vendors [2].

Grogan et al. showed the impact of the FaaS on the software architecture. The
analysis of the data path is missing from these articles [3].

On another hand, there is a community focusing on cloud modeling e.g.: Berg-
mayr et al. investigated the diverse features currently provided by existing Cloud
Modeling Languages (CMLs). They classified and compared them according to a
common framework with the goal to support Cloud Service Customers (CSCs) in
selecting the CML which fits the needs of their application scenario and setting.
As a result, not only features of existing CMLs are pointed out for which extensive
support is already provided but also in which existing CMLs are deficient, thereby
suggesting a research agenda [4].

Software architectures allow identifying confidentiality issues early and in a
cost-efficient way. Information Flow (IF) and Access Control (AC) are established
confidentiality mechanisms, so modeling and analysis approaches should support
them. Because confidentiality issues often trace back to data usage, data-oriented
approaches are promising. However, Seifermann et al. could not identify a data-
oriented approach to handling both, IF and AC. Therefore, they present a unified
data-oriented modeling and analysis approach supporting both, IF and AC. They
demonstrated the integration into an existing architectural description language
and evaluated the resulting expressiveness and accuracy by a case study considering
22 cases [5].

The main theoretical results of Stunkel et al. are proofs of the facts that com-
prehensive systems are an admissible environment for (i) applying formal means
of consistency verification (diagrammatic predicate framework), (ii) performing al-
gebraic graph transformation (weak adhesive HLR category), and (iii) that they
generalize the underlying set of graph diagrams and triple graph grammars [6]. The
data path aspect and the evolution of the data are not studied.

From a data modeling perspective there are articles about the effect of the
different storage formats that have been studied [7] or about different binary seri-
alization formats [8]. There are also studies focusing on single system persistence
issues [9] but the impact of the standards and the technical environment has not
been studied.

Ulrich et al. presents a Metadata Repository (MDR) prototype that allows for
the linking and mapping of data elements, enabling relations to be defined semi-
automatically. The system enables the management of all registered data elements
and metadata, allowing for comfortable queries within classified data elements.
The architecture has technical advantages such as fast response times and the

The Influence of the Nonfunctional Requirements on the Data Model 5

ability to search across clinical coding systems. The MDR allows for the reuse of
data elements, simplifying cooperation among research groups. The system was
evaluated with positive results using two methods: usability testing and cross-
validation [10].

4 Typical software in telemedicine stack

A typical software stack consists of an IoT or mobile client and a FaaS backend. In
our case, Firebase is used as a FaaS service while the client side is implemented in
an Angular environment. The data model is implemented in a FHIR conformant
way.

FirebaseAngular Web app

User FHIR model Firebase model

Figure 1: Cloud software stack

4.1 FHIR

The philosophy behind FHIR is to build a base set of resources that, either by
themselves or when combined, satisfy the majority of common use cases. FHIR
resources aim to define the information contents and structure for the core infor-
mation set that is shared by most implementations. There is a built-in extension
mechanism to cover the remaining content as needed [11].

4.2 Firebase

Cloud Functions is another integration of the existing Google product into Firebase.
It is a tool for running back-end code from the cloud on an event-driven basis. The
way Cloud Functions suggests running our app is what is usually called a serverless
architecture. This type of architecture means building applications as a set of
separate functions, isolated in the cloud, and connected between each other via
APIs [12].

Usually, we will use the Realtime Database as our main storage. The main
problem is limited querying capabilities. We cannot query for more than one key
at a time and the service does not provide a way to filter our data. The format

6 Grácián Kokrehel and Vilmos Bilicki

also excludes the option to model the data. We do not host the data, all data is
hosted on Firebase and it is a major problem of using BaaS platforms as our app
backend. Unless Firebase provides a migration tool to enable easy transfer of user’s
data, it strongly limits data migration. It makes users dependent on the platform
and there is no easy way to transfer the app to another source.

5 Methodology

The CAP theorem was utilized as a starting point for defining the dimensions
of impact. We expanded it with security; defining the taxonomy where security
should be associated is not straightforward. The ”C” (Consistency) component
is the first aspect of security to consider within the context of the CAP theorem.
Access restrictions, encryption, and authentication are examples of security controls
and protocols that can be used to maintain data consistency and ensure that only
authorized users have access to critical information. Next, security considerations
can be included into the ”A” (Availability) component by designing redundant
systems and disaster recovery methods that assure the ongoing availability of vital
systems and data in the event of a security breach or other calamity. This may
involve backing up important data to secure off-site locations and deploying network
segmentation to mitigate the impact of any security compromise. Last but not
least, security can be integrated into the ”P” (Partition Tolerance) component by
providing security controls that can detect and respond to network partitions and
other disruptions that may jeopardize the system’s security. Therefore, we decided
to treat it as a distinct dimension. As a consequence, we settled on four major
dimensions or categories for measuring the impact:

• Consistency

• Availability

• Partition tolerance

• Security

We examined the source code of the selected systems in order to determine the
patterns in which a domain model change could affect a certain dimension. We
chose ten sample pilot projects from our telemedicine portfolio as the focus of
our research. From a functional standpoint, these projects adequately address the
requirements of a certain medical field of interest. The target field might be deemed
representative since, from both a modality (e.g., imaging, CT, vital signals, lifestyle,
etc.) and a health sciences perspective, it encompasses a vast array of topics (e.g.:
dermatology, Otology and rhino-laryngology, diabetes care, cohrea surgical planner,
etc).

This was the qualitative portion of our analysis, in which we identified patterns
within the source code that influence system properties along a specific dimension
(CAP + Security).

The Influence of the Nonfunctional Requirements on the Data Model 7

To examine the influence of the technology stack and FHIR (RQ2), we con-
ducted an analysis centered on the domain model. We took the source code and,
beginning with the user interface, traced all affected source code sections until they
reached the backend. This allowed us to extract the data pathways. Then, we
extracted entity-specific subpaths from these datapaths (instances of a given part
of the domain model). We integrated the data paths along the entities along the
dimension, incorporating the discovered pattern-based concerns. Thus, a summary
of the impact of technical infrastructure and FHIR on a given dimension at the
entity level was obtained.

In the case of availability, we extended this analysis to include the average
influence of the standard and the technological environment by collecting the data
(from the databases of the running applications) at the entity level and deleting
each subsequent layer until just the core information remained. The average size
of each entity was then determined for each domain model level.

In the section under ”Threats to Validity,” the statistical importance of our data
collection methods will be examined in detail. Here, we would like to emphasize
that the analyses presented represent simply the first ”sampling approach.” There is
a continuing effort to crawl and automatically analyze a subset of GitHub projects.
The patterns detected by manually analyzing the code will likely be extended, but
the current patterns will remain valid. The results on the data volume inflation
may also be slightly impacted, but we are certain that our results will accurately
reflect the magnitude of change.

6 Results

In this section, we define the dimensions and then show what the overall impact
is based on real world examples. Following that, we will analyze the size problems
and then we will present the structure of the data at a given analysis point.

6.1 Dimensions

RQ1: What are the dimensions which enable us to measure the impact of non-
functional requirements?

As indicated in the methodology section, we decided to choose CAP+ Security
as the primary dimensions. We gathered code patterns that have an effect on one
or more of these dimensions. The patterns are classified into categories, which
are then linked to dimensions. The categories were identified using a pattern-
based grouping strategy. As indicated in the methodology section, we opted to
choose CAP+ Security as the primary dimension. We gathered coding patterns
that influence at least one of these dimensions. The patterns are divided into
categories, and the categories are then linked to dimensions. As an appropriate
grouping technique, the categories were determined based on the patterns. The
following categories have been identified:

8 Grácián Kokrehel and Vilmos Bilicki

1. T(transformation): refers to situations where the domain model transforms
online. Typically, this is the result of employing the MVVM design pattern
or a comparable one. However, this may also occur on the backend, where
some aggregation is required.

2. S(security): this indicates a data leak may occur (e.g.: for a given screen there
could be an aggregated screen specific data containing sensitive information)

3. C(consistency): in this instance, consistency may be at risk (e.g.: aggregation
of data and if the trigger is not executed then the data becomes inconsistent)

4. Pe(performance): data manipulation or access with increased overhead (e.g:
deep data structures).

We can link these categories tha CAP in the following way:

• Consistency: C (Consistency), T (Transformation)

• Availability: Pe (Performance)

• Security: S (Security)

Due to Firebase, there is strong partition tolerance and availability, but in ex-
change, there are significant issues with consistency. During the analysis, we did
not encounter any partition tolerance errors that would affect the data. We devel-
oped a tool for identifying the portion of the data path affected by the given effect.
Table 1 displays the places and categories, with the names of the most significant
patterns identified in each cell.

Table 1: Dimension with patterns

T
sr/mr

(single/multi row)
c(client) s(server)

T 1 - string 2 - number 3 - date 4 - others
S 1 - gdpr

C
1 - id

reference
2 - embedded

data

3 - many
extra
data

4 - data
after
delete

Pe 1 - deep data
2 - multiple

promise
3 - handle null/und

Then, we developed a coding method to enable the efficient and compact coding
of all relevant information. The processed projects were developed using the Angu-
lar framework, therefore the code snippets below will be presented with JavaScript
or TypeScript syntax. Table 1 helps in interpreting the following code snippets.
These are the identified patterns:

The Influence of the Nonfunctional Requirements on the Data Model 9

T SM/MR C/S 1 String transformations happen including the modification
of one or more records on the client or server side. In Firebase there is no way
to order by based on the value of the object that is in the array, so it must be
outsourced to a separate field. In Firebase there is no %like% search option, so
another method can be used to achieve the same effect, which results in having to
organize the text into a string array. The complex FHIR data structure can be
simplified by merging it into one text.

function splitNameByVariations(nameString: string): Array<string> {

const allSubstrings = new Set<string>();

const start = 0;

const splittedName = nameString.split(’ ’);

for (let j = 0; j < splittedName.length; j++) {

for (let i = start + 1; i <= splittedName[j].length; i++) {

allSubstrings.add(splittedName[j].substring(start, i));

}

}

let a = 0;

while (a < splittedName.length) {

let possibleSubStrs = ’’;

for (let i = a; i < splittedName.length; i++) {

possibleSubStrs += splittedName[i];

if (i < splittedName.length - 1) {

possibleSubStrs += ’ ’;

}

}

for (let i = start + 1; i <= possibleSubStrs.length; i++) {

allSubstrings.add(possibleSubStrs.substring(start, i));

}

a++;

}

for (let i = start + 1; i <= nameString.length; i++) {

allSubstrings.add(nameString.substring(start, i));

}

return Array.from(allSubstrings.values());

}

T SM/MR S 2 Often happens that the smart device sends the data in the form
of a string or with an incomplete value (undefined/null). Firebase cannot handle
undefined data. Number transformations happen including the modification of one
or more records on the server side.

10 Grácián Kokrehel and Vilmos Bilicki

getPulse(notFhirFormatData: any) {

// for(data in [pulse, hearthrate, bp])

let pulse = notFhirFormatData.pulse;

if (pulse === undefined) {

return null;

}

pulse = pulse.trim() as unknown as number;

pulse = pulse.toFixed(2);

return this.convertToFHIRFormat(pulse);

}

T SM /MR C/S 3 Date transformations happen including the modification of
one or more records on the client or server side. Date transformation must be
performed before insertion and modification, because Firebase used a unique date
solution. timestamp = nanoseconds: 0, seconds: 0. If this transformation does
not take place and we try to use the data, the client side will fail with an error.
The localization required by the user also takes place here.

function formatPeriodLocal(start: Date, end?: Date) {

const localStartDate = DateTime.fromISO(start.toISOString(),

{ zone: ’Europe/Budapest’});

let formattedLocalDate = localStartDate.year + ’. ’ +

localStartDate.month.toString().padStart(2, ’0’) + ’. ’ +

localStartDate.day.toString().padStart(2, ’0’) + ’. ’ +

localStartDate.hour.toString().padStart(2, ’0’) + ’:’ +

localStartDate.minute.toString().padStart(2, ’0’);

if (end) {

const localEndDate = DateTime.fromISO(end.toISOString(),

{ zone: ’Europe/Budapest’});

formattedLocalDate += ’ - ’ + localEndDate.hour.toString()

.padStart(2, ’0’) + ’:’ +

localEndDate.minute.toString().padStart(2, ’0’);

}

return formattedLocalDate;

}

C 2/3/4 Due to Firebase, numerous attributes and objects must be stored
in the data; if the original data is modified, Cloud Function must be used to up-
date/delete all embedded data, otherwise the data becomes inconsistent.

The Influence of the Nonfunctional Requirements on the Data Model 11

export const onEntity1UpdateOrDelete =

functions.firestore.document(’/Entity1/{cpid}’).onUpdate/onDelete(

async (snap: any) => {

if (snap.after.exists === true) {

const entity1: any = snap.after.data();

const entity2: any = this.get(entity1.referenceToEntity2);

// update/delete the embedded data in entity2 }

});

Pe13 The deep data structure and their non-mandatory attributes place additional
burdens on the client side. So that the application does not stop, we handle all
non-mandatory data elements with the optional chain operator (?).

// reading the patient name

{{ patient?.name?.[0]?.given?.[0] }}

{{ patient?.name?.[0]?.family }}

Pe2 Occasionally, a piece of data contains many references that must all be ac-
cessed on the client side. It can have many sources of error, and it must be treated
as a transaction, if it stops during any step, it must be started again. This can be
extremely burdensome for the client side.

async function getPatient(): Promise<IPatient>

{ /* Handle error, reset on fail, process data... */ }

async function getDevice(): Promise<IDevice> { /* ... */ }

async function getParent(): Promise<IPractitioner> { /* ... */ }

addApointment(){

const [patient, device, parent] =

await Promise.all([getPatient(), getDevice(), getParent()]);

// Do something, create an appointment

}

As a summary, based on the patterns discovered in the source code files along
the datapath, we divided the effects into four groups and, within each category,
determined the exact code patterns responsible for the observed effect. Dimensions
were also tied to the categories.

12 Grácián Kokrehel and Vilmos Bilicki

6.2 Overall impact

RQ2: Based on the defined dimensions, what are the impacts of the FHIR standard
and using the Firebase API?

In order to assess the impact among the dimensions we collected the handled
entities. We analyzed the datapath for each entity in different applications and
created an abstract datapath based on the metrics. The table below contains the
result of this process.

In Table 2, all the models that have been used till now were subjected to the
evaluation points defined in Table 1. In the other columns, three main problem
sources were defined: FHIR, Firebase(CRUD) and GUI. Then the representation
of common errors at given points. Based on the above results, it can be noticed
that the FHIR model alone is not enough, but several transformations have to be
applied during development to get the proper results. If we observe carefully we
can see that the incorrect combinations are repeated column by column, so for e.g.
under Firebase Create we get the same errors, which means that the problems can
be well delimited and thus they can be solved as a group, there is no need to deal
with it specifically by model. The development of solutions to individual problems
can be defined and reused for other models as well. Explanation for Patient row:

1. String transformation must be performed on the server before insertion and
modification, because in Firebase there is no %like% search option, so another
method can be used to achieve the same effect, which results in having to
organize the text into a string array.

2. When reading data, consistency problems arise because of the embedded data.
Because of Firebase, many attributes and objects must be stored in the data,
if the original data is changed, all embed data must also be updated using
Cloud Function.

3. It is a security problem if the patient’s sensitive data (name, social institute
number, birthdate) are also displayed when the view tables are created.

4. It is an extra task to ensure that no reference to the entity remains anywhere
after deletion.

For example, in the Appointment row:

1. Date transformation must be performed before insertion and modification,
because Firebase used a unique date solution. timestamp = nanoseconds: 0,
seconds: 0

2. Because of more than three references and embed data, extra data has to be
retrieved and displayed, which burdens the performance of the GUI.

The Influence of the Nonfunctional Requirements on the Data Model 13

Table 2: Analysis of FHIR models

Model FHIR Firebase GUI
C R U D

Device C2 C3 Pe1 T4s C2 S1 T4s C4
Patient C3 Pe1 T1srs C2 S1 T1srs T1mrs C4 C4 Pe1

Practitioner C3 Pe1 T1srs C2 S1 T1srs T1mrs C4 C4 Pe1
Appointment C1 Pe1 T3s C2 T3s Pe2
Questionnaire C1 Pe1 Pe1
Questionnaire

Response
C2 Pe1 Pe1

Group Pe1 T1s C2 T1s C4 Pe2
CarePlan Pe1 C2 Pe1
Condition Pe1 C2 Pe2

Communication Pe1 C1 Pe1
Goal Pe1 C2 Pe1

Medication
Request

C2 Pe1 C2 Pe1

ServiceRequest C2 C3 Pe1 C2

6.3 Data size evolution

RQ2: Based on the defined dimensions, what are the impacts of the FHIR standard
and using the Firebase API?

The last dimension of the analysis is the data overhead caused by the elements
on the datapath. Out of the 25 deployed telemedicine solutions, we extracted data
of the selected entities. The starting point was the fully extended data stored in
the Firebase, with the help of scripts we were able to remove the firebase specific
field in order to get the simple FHIR conform data, with the help of another script
we were able to extract the core data in order to remove the FHIR overhead, now
we have what is called the basic data. Figure 2 shows the size difference of 16.67
times between the simple and the final state.

Table 3 shows the data overhead for both the clear text and compressed data.
We can conclude that FHIR adds a very significant overhead, while the Firebase
specific data fields also doubles the FHIR data volume. So it is important to remove
this overhead before sending it to the IoT client, the DAO layer has its place in
this case.

In Table 3, we compared the 3 forms of data (Simple, after FHIR conversion and
after transformations required by Firebase) in JSON file size (bytes) and zipped
(bytes) file size. We can observe is that the size of the json files without repetition
does not change as much as expected after compression. Furthermore, it can be
observed that the ratio between the columns is the same or very similar for each
row.

14 Grácián Kokrehel and Vilmos Bilicki

by
te

s

0

250

500

750

1000

1250

Simple FHIR Firebase

Size difference

Figure 2: Size difference

Table 3: Size difference(bytes)

Model Basic
Basic
zip

FHIR
FHIR

zip
Firebase

Firebase
zip

Device 94 36 980 499 1560 602
Patient 220 56 1920 700 3666 937

Practitioner 130 42 1430 628 2080 708
Appointment 84 35 992 518 1410 574
Questionnaire 72 31 985 503 1160 523
Questionnaire

Response
145 46 1653 526 2400 805

Group 47 28 700 412 799 440
CarePlan 49 31 809 426 865 459
Condition 39 23 589 375 659 398

Communication 37 22 581 369 643 388
Goal 44 26 646 388 705 411

Medication
Request

43 25 623 384 716 430

Service
Request

74 37 1180 586 1320 623

The Influence of the Nonfunctional Requirements on the Data Model 15

6.4 Details of the data expansion

In the previous section, we presented the effect of certain parts of the system, now
we will explain step by step how the models look. The comparison is based on
JSON file sizes. In this section, the different stations are introduced and explained,
based on a simple example. Listings 1, 2, and 3 can be found in the Appendix
section. The four analysis condition are as follows:

1. Simple (file size: 75 bytes) [Listing 1]

2. Effects of FHIR (file size: 536 bytes) [Listing 2]

3. Effects of Firebase (file size: 1022 bytes) [Listing 3]

6.5 Effects of Firebase

Due to the use of Firebase, the model went through extra changes in order to be
able to implement certain filtering interfaces. Description of data fields:

• data — The data must be stored according to the FHIR standard and re-
turned to the user in this form.

• email, name — In Firebase there is no way to order by based on the value
of the object that is in the array, so it must be outsourced to a separate field.

• nameText, emailText — In Firebase there is no %like% search option, so
another method can be used to achieve the same effect, which results in having
to organize the text into a string array.

7 Discussion

As indicated in the introduction, our motivation was to observe/study the life/
evolution of the domain model along the datapath as influenced by non-functional
requirements such as technology, standards, and even the use of predefined design
patterns. As we were unable to find appropriate measures in the literature, we
established both the dimension along which we wanted to assess the impact and,
within that dimension, the exact metrics that assist us understand the nature of
the change and its impact. Instead of using a theoretical approach, we began to ex-
amine the source code for patterns that could be utilized as metrics. We were able
to discover categories and groupings of patterns. We uncovered thirteen patterns,
which we presented in the findings section. We supplied a fundamental datapath
map indicating where and why these patterns could be discovered (backend vs.
frontend, which data subpath e.g. CRUD). With this method, it is possible to dis-
cover potential points that are not ”bad smells” from a software quality viewpoint,
but rather key portions of the datapath that require special attention. We believe
that this datapath-oriented perspective could provide important insight into a sys-
tem’s inherent features. Table 2 provides a summary of this map’s typical entity

16 Grácián Kokrehel and Vilmos Bilicki

level pathways. The true potential of an approach will become apparent when de-
fined patterns could be detected automatically. Our ongoing effort is now centered
on this issue. We have also demonstrated how implementing a standard or utilizing
a technology stack affects the data size of the domain model. We agree that we
cannot alter the standard itself, but we would like to provide a suggestion for future
standard’s data structure architecture. If one consults the FHIR documentation,
it is evident that modularity/extensibility, not simplicity, was the driving force be-
hind the domain model. One could argue that with 4G, 5G, and XG technologies,
the amount of data to be transmitted across the line is insignificant due to the large
bandwidth. Here, we would like to emphasize the delay caused by the transfer of
substantially more data. As end users are not patient, delay is a crucial part of the
design of actual user-facing technologies.

8 Threats to Validity

The objective of our research was to determine the domain model’s response to
non-functional needs. We adopted an analytical strategy by identifying and assess-
ing a code basis. We selected 10 telemedicine initiatives (consisting of more than
200 screens, and 300 modules) from our portfolio. Functionally, these projects sat-
isfy the needs of the medical industry. The target field is representative from both
modality (e.g., imaging, CT, vital signals, lifestyle) and health sciences vantage
points (e.g., imaging, CT, vital signals, lifestyle) (e.g.: dermatology, Otology and
rhino-laryngology, diabetes care, cohrea surgical planner, etc). We agree that fur-
ther examples from the open-source community should be included. This is likely
to increase the number of sample patterns and create a more complex depiction of
the problem, but our conclusion and fundamental patterns will remain unchanged.
Consequently, it may be anticipated as the initial result in this field. Concerning
the size-related findings, it is difficult to construct a valid database for a particular
open-source application; thus, we believe that our results are statistically significant
because our system is utilized in routine medical work.

During our research, we made the following decisions:

• The FHIR was used as an example for analyzing the impact. As one of the
most prevalent criteria, we believe this to be a suitable option.

• We chose the Angular - Firebase technology stack to investigate the impact
of technology on the domain model. In this case, we consider that the se-
lection of technological stacks does not reduce the statistical significance of
the study. In the case of web application frameworks (e.g., React, Vue, etc.),
general design patterns (e.g., MV*) may have similar effects. From a backend
perspective, Firestore has the same constraints as other serverless document
stores, therefore it was also a strong contender. We agree that it would be
interesting in the future to categorize the various persistence options and
evaluate the impact of each category separately.

The Influence of the Nonfunctional Requirements on the Data Model 17

9 Conclusions

It is evident from the literature review that there are numerous techniques to in-
vestigate complex software stacks, but there are very few articles that account for
the entire data lifecycle. By evaluating significant issues encountered in the cre-
ation of Telemedicine applications utilizing the FHIR standard, we identified key
evaluation criteria for modern systems. With our methodology, we can determine
how architectural and component-level design patterns are applied. This strategy
will demonstrate its effectiveness if it is accompanied by an automated data life
cycle analysis tool. In our ongoing effort, we have already located more than 9k
GitHub projects, and we are currently creating an NLP-based method for identify-
ing the patterns that match to the requirements. Massive standard objects present
issues when a small IoT device transmits data; in this instance, it is important
to consider a simpler model than FHIR. FHIR adds a large amount of overhead,
and the addition of Firebase-specific data fields increases the FHIR data capacity.
Before providing data to the IoT client, it is crucial to eliminate this overhead; the
DAO layer has a place in this scenario. Even if the system must be standardized,
the DAO layer makes it possible for devices to provide a minimal quantity of data
while the ultimate outcome is still standardized. In the subsequent essay, we will
describe this concept’s capabilities.

References

[1] Altexsoft. What is Firebase: Review, pros and cons, alterna-
tives. URL: https://www.altexsoft.com/blog/firebase-review-pros-

cons-alternatives/. Accessed: 2022-09-26.

[2] Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A., Solberg, A., Wimmer,
M., Kappel, G., and Leymann, F. A systematic review of cloud modeling lan-
guages. ACM Computing Surveys, 51(1):1–38, 2018. DOI: 10.1145/3150227.

[3] Grogan, J., e. a. A multivocal literature review of Function-as-a-Service (FaaS)
infrastructures and implications for software developers. In European Confer-
ence on Software Process Improvement, pages 58–75. Springer, 2020. URL:
https://link.springer.com/chapter/10.1007/978-3-030-56441-4_5.

[4] HL7. Overview — FHIR v4.0.1. URL: https://www.hl7.org/fhir/

overview.html. Accessed: 2022-03-26.

[5] Petković, D. SQL/JSON standard: Properties and deficiencies. Datenbank
Spektrum, 17(3):277–287, 2017. DOI: https://doi.org/10.1007/s13222-

017-0267-4.

[6] Seifermann, S., Heinrich, R., Werle, D., and Reussner, R. A unified model to
detect information flow and access control violations in software architectures.

https://www.altexsoft.com/blog/firebase-review-pros-cons-alternatives/
https://www.altexsoft.com/blog/firebase-review-pros-cons-alternatives/
https://doi.org/10.1145/3150227
https://link.springer.com/chapter/10.1007/978-3-030-56441-4_5
https://www.hl7.org/fhir/overview.html
https://www.hl7.org/fhir/overview.html
https://doi.org/https://doi.org/10.1007/s13222-017-0267-4
https://doi.org/https://doi.org/10.1007/s13222-017-0267-4

18 Grácián Kokrehel and Vilmos Bilicki

In Proceedings of the 18th International Conference on Security and Cryp-
tography, Volume 1, pages 26–37. SCITEPRESS — Science and Technology
Publications, 2021. DOI: 10.5220/0010515300260037.

[7] Stünkel, P., König, H., Lamo, Y., and Rutle, A. Comprehensive systems: A
formal foundation for multi-model consistency management. Formal Aspects
of Computing, 33:1067–1114, 2021. DOI: 10.1007/s00165-021-00555-2.

[8] Swami, D. and Sahoo, B. Storage size estimation for schemaless big data ap-
plications: A JSON-based overview. In Intelligent Communication and Com-
putational Technologies, Volume 19 of Lecture Notes in Networks and Systems,
pages 315–323. Springer, Singapore, 2018. DOI: 10.1007/978-981-10-5523-

2_29.

[9] Ulrich, H., Kock, A.-K., Duhm-Harbeck, P., Habermann, J. K., and Ingenerf,
J. Metadata repository for improved data sharing and reuse based on HL7
FHIR. Studies in Health Technology and Informatics, 281:160–164, 2021.
DOI: 10.3233/978-1-61499-678-1-162.

[10] Viotti, J. C. and Kinderkhedia, M. A survey of JSON-compatible binary
serialization specifications, 2022. DOI: 10.48550/arXiv.2201.02089.

[11] Wen, J., Chen, Z., Liu, Y., Lou, Y., Ma, Y., Huang, G., Jin, X., and Liu,
X. An empirical study on challenges of application development in serverless
computing. In Proceedings of the 29th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 416–428. Wiley, 2021. DOI: 10.1145/3468264.3468558.

[12] Wen, J., Liu, Y., Chen, Z., Chen, J., and Ma, Y. Characterizing commodity
serverless computing platforms. Journal of Software: Evolution and Process,
35(10), 2021. DOI: 10.1002/smr.2394.

Appendix

Listing 1: Simple.json

{

"id": "1",

"email": "jon@doe.mr",

"name": "Mr. Jon Doe"

}

Listing 2: Fhir.json

{

"id": "1",

"telecom": [

https://doi.org/10.5220/0010515300260037
https://doi.org/10.1007/s00165-021-00555-2
https://doi.org/10.1007/978-981-10-5523-2_29
https://doi.org/10.1007/978-981-10-5523-2_29
https://doi.org/10.3233/978-1-61499-678-1-162
https://doi.org/10.48550/arXiv.2201.02089
https://doi.org/10.1145/3468264.3468558
https://doi.org/10.1002/smr.2394

The Influence of the Nonfunctional Requirements on the Data Model 19

{

"system": "email",

"value": "jon@doe.mr",

"use": "home",

"rank": 1,

"period": ""

}

],

"name": [

{

"use": "official",

"text": "Mr. Jon Doe",

"family": "Doe",

"given": [

"Jon"

],

"prefix": [

"Mr."

],

"suffix": [],

"period": ""

}

]

}

Listing 3: Firebase.json

{

"id": "1",

"data": {

"id": "1",

"telecom": [{

"system": "email",

"value": "jon@doe.mr",

"use": "home",

"rank": 1,

"period": ""

}],

"name": [{

"use": "official",

"text": "Mr. Jon Doe",

"family": "Doe",

"given": ["Jon"],

"prefix": ["Mr."],

"suffix": [],

"period": ""

20 Grácián Kokrehel and Vilmos Bilicki

}]

},

"email": "jon@doe.mr",

"name": "Mr. Jon Doe",

"nameText": [

"m", "mr", "mr.", "j", "jo", "jon", "d", "do", "

doe", "mr. j",

"mr. jo", "mr. jon", "mr. jon ", "mr. jon d", "mr

. jon do", "mr. jon doe"

],

"emailText": ["j", "jo", "jon", "jon@", "jon@d",

"jon@do", "jon@doe", "jon@doe.", "jon@doe.m", "

jon@doe.mr"] }

	Introduction
	Research questions
	State-of-the-art
	Typical software in telemedicine stack
	FHIR
	Firebase

	Methodology
	Results
	Dimensions
	Overall impact
	Data size evolution
	Details of the data expansion
	Effects of Firebase

	Discussion
	Threats to Validity
	Conclusions

