
Acta Cybernetica 26 (2024) 431–454.

Using Version Control Information to

Visualize Developers’ Knowledge∗

Anett Feketeab and Zoltán Porkolábac

Abstract

It is not always clear in case of a software project who has the right amount
of knowledge concerning a certain module or file. Programmers frequently ask
questions like ”Who knows the most about this code?” or ”Who can I ask for
help when I work on this module?”. In a large, long-term software product,
knowledge is distributed in an uneven way among developers. Developer
fluctuation during the product lifetime might cause some parts of the code
to be known very well by a multitude of developers, while other parts might
sink to the ”gray zone”, where developer competence is dangerously scarce.
It is important for the project management to identify such critical points, to
avoid the complete loss of competence. Version control repositories contain
loads of useful information about the evolution of a software project. This
paper presents a novel developer-centered method implemented as a plugin
in the open-source code comprehension tool, CodeCompass. The method is
intended to detect individual, team-bound and company-bound knowledge
of large legacy projects. The competence information is computed from the
extracted version control information from Git repositories. The calculated
competence value is based on the number of commits per developer and their
significance. The method weighs all changes according to their added value
computed by a plagiarism detection software. Aggregated views for teams and
companies are available based on various heuristics. The results are visualized
as graph-based diagrams. Project managers and individual developers may
both profit from the tool, whether it concerns software evolution, human-
resource management, architecture, knowledge catch-up, or blame.

1 Introduction

In case of long-running software projects, the fluctuation of developers is inevitable.
This is true for smaller projects with only a few developers at once, such as a uni-

∗Prepared with the professional support of the Doctoral Student Scholarship Program of the
Co-operative Doctoral Program of Ministry of Innovation and Technology financed by the National
Research, Development and Innovation Fund.

aFaculty of Informatics, Eötvös Loránd University, Budapest, Hungary
bE-mail: afekete@inf.elte.hu, ORCID: 0000-0001-8466-7096
cE-mail: gsd@inf.elte.hu, ORCID: 0000-0001-6819-0224

DOI: 10.14232/actacyb.299322

mailto:afekete@inf.elte.hu
https://orcid.org/0000-0001-8466-7096
mailto:gsd@inf.elte.hu
https://orcid.org/0000-0001-6819-0224
https://doi.org/10.14232/actacyb.299322


432 Anett Fekete and Zoltán Porkoláb

versity lab project, or large, industrial projects that count tens or hundreds of de-
velopers. When fluctuation is so great, there is always risk that certain components
of the software suffer neglect. If all or even most developers that have knowledge
about a component leave the project, maintenance problems might emerge, and it
will cause much more problems to debug or develop the component than it would
be in possession of decent expertise [3].

During development, lots of questions emerge that concern other developers,
like ”Who wrote this code?”, ”Why did they decide to write this code like that?”,
”Who understands this code the best?” and so on. These questions might be hard
to answer, especially in large companies, where dozens of programmers develop a
software. Nowadays, using some type of version control system for our projects
like Git or SVN is fundamental. Repositories are able to store every piece of
information that is bound to development since the start of the project. Naturally,
the information we need is not stored explicitly but in the form of commits that
can be processed and analyzed.

In this paper, we present the competence plugin, a tool that is capable of an-
alyzing the commit history of a Git repository and tell various information about
the project files and developers as graph-based visualizations. The plugin serves
multiple different developer-related purposes with its visualizations. We would like
to facilitate code comprehension for programmers by providing them a visualiza-
tion that methodizes the obtained knowledge about project files. Observing the
already familiar part of the code and the unknown territories, the programmer can
consciously select the next comprehension target. It is also our goal to provide
useful team- and company-level information, thus we present the team view and
the affiliation views. They tell about the most competent developer on a certain file
and their affiliation. They also provide information about the teams or companies
who have the most code-related knowledge. The calculations and visualizations are
all handled on file level.

For ethical reasons, all data in this paper has been anonymized. The original
research has been done in a real industrial software development environment with
actual development teams and programmers. We replaced the email addresses,
usernames, and team or company names. We use the form Dev email x and Team
y in place of the original names.

The rest of the paper is structured as follows: Section 2 describes the various
methods and approaches for code comprehension supporting visualization, paying
particular attention to version control related software. Section 3 presents our
methodology of version control data analysis. Section 4 describes the visualization
of the version control data. Section 5 provides a report of the details of implemen-
tation. In Section 6 we present the results of our work on some well-known open
source projects. Section 7 discusses the possible threats to the method’s validity.
Finally, in Section 8 we give a heads-up about future work and conclude our paper.



Using Version Control Information to Visualize Developers’ Knowledge 433

2 Related work

There has been much research done before about code comprehension supporting
visualization possibilities [6,32,41], and using version control data for visualizations
in particular. Code comprehension supporting tools usually focus on a group of
important and coherent aspects of a software, which means they do not cover every
need of a developer that seeks deeper knowledge of the project. Visualization tools
generally stick to 2D or 3D imaging exclusively, thus they can be divided in these
two groups.

In this section, we give an overview of recent visualization tools that support
code comprehension, and then we discuss tools that use version control information
in their visualizations in detail.

2.1 Visualization for code comprehension support

Ever since large software projects started spreading, the need for reliable, trans-
parent, informative code comprehension tools and visualizations has been grow-
ing [4, 30]. There are several software to facilitate source code comprehension, in
the form of plugins (e.g. in IDEs) and standalone tools [8, 46]. These software
always have some focus points that they put the most emphasis on, usually code
metrics based on structure or content [44].

A returning approach is displaying source code metrics in the form of some type
of map view, created with complex geoinformatical methods [20]. Tools with this
approach usually represent source code as continents, states, cities, and buildings on
a map. Metrics can be diversely shown by the size, color, borders and surroundings
of the representing shapes. This technique guarantees that abstract modularity
levels are depicted correctly, and transparency is provided for the user. Code
comprehension software with map views can be divided into 2D and 3D tools.
A couple 2D software include CodeSurveyor [20], Software Cartography [26], 3D
software include CodeCity [47, 48] and CityVR [33] which is also a modern step
towards code comprehension supporting visualization with an experimental usage of
VR technology and gamification. Even more recent approaches combine traditional
visualization techniques with virtual and augmented reality [25].

Another commonly used visualization method includes using simple shapes,
such as rectangles or circles [2], and diagrammatic figures (e.g. UML diagrams,
statistic diagrams) to represent code metrics. We can also apply grouping the tools
by their dimensions; 2D software include CodeCrawler [28], ExplorViz [15], and
CommunityExplorer [35], 3D software include sv3D [31] and TraceCrawler [19]. er
erom

2.2 Usage of version control information

Version control information is used for various software research areas. Most fre-
quently, in the center of these researches is the connection between commit actions
and software quality, and the cost of maintenance. Naturally, this is used as the



434 Anett Fekete and Zoltán Porkoláb

prediction of distribution of software bugs. In [37], the authors developed a regres-
sion model that accurately predicts the likelihood of post-release defects for new
entities. Similarly, in his PhD thesis [12] the author describes the connection be-
tween code maintenance activities as it is reflected by version control information
and the deterioration of the code quality. In a related paper [13] the authors show
that a connection between version control operations and maintainability really
exists, in spite of the fact that the data is coming from different sources.

Apart from software quality, other researches target the developer’s team. The
authors of [22] utilize version control information for mining and visualizing net-
works of software developers. They detect similarities among developers based on
common file changes, and construct the network of collaborating developers. The
authors show that this approach performs well in revealing the structure of develop-
ment teams and improving the modularity in visualizations of developer networks.

Unfortunately, information retrieved from version control systems has its lim-
itations. As an example, attempts to predict code quality or developer efficiency
cannot be achieved according to a research described in [36].

A frequent problem with information mining from version control systems is that
they store only atomic information. In [23], the authors suggest a set of heuristics
for grouping change-sets files that frequently change together. The results show
that the approach is able to find sequences of changed-files.

Version control information can be used not only for extracting data from the
source code for code comprehension purposes, but it is also a frequent research
target for analyzing comments – either structured, or natural language text – in
order to get additional information about the system [42].

Version control information is used for code comprehension purposes to connect
related code modifications submitted in the same commit as described in [5].

2.3 Version control data visualization

Utilizing version control data forms a subset of code visualization techniques. While
repositories contain lots of valuable information, repository mining and data anal-
ysis is an additional challenge in visualization pursuits [49].

Alcocer et al. [2] created a circular visualization called Spark Circle to visualize
the changes in various source code metrics between commits. The visualizations
vary based on the number of different metrics calculated. A spark circle consists of
one annulus if only one metric is applied or multiple annulus sectors in case of mul-
tiple metrics. They also boost the visualization by using different filler and border
colors and different shape sizes according to the concrete metric data. Spark Circle
is a useful tool for the analysis of software evolution based on commit difference.

Not only commits, but entire Git repositories and the branches they contain
can be effectively analyzed and visualized. Elsen [11] has proposed VisGi, a ver-
sion control visualization software that is capable of displaying detailed graphs of
Git branches and version structures. The software highlights structural and code-
related differences. It also shows that time-bound visualization provides valuable
information about software and repository evolution.



Using Version Control Information to Visualize Developers’ Knowledge 435

Greene et al. [17, 18] developed a browser tool that intends to give answers to
collaborator- and repository-related questions among others, named ConceptCloud.
They put focus on identifying abstract relations between objects and attributes.
Their tag cloud visualization is mainly text-based, and capable of handling multiple
selected tags for more accurate search results. Naturally, this method provides the
user with an opportunity to find answers for code-related questions as well.

There are also attempts for the integration of version control data visualization
into the development environment. The Eclipse IDE has a plugin which calculates
the number of changes of methods during a given amount of time [45]. Another,
less recent Eclipse plugin supports data visualization from the CVS version control
system [7].

There can be correlation detected between the changes made to source code and
performance. In order to facilitate discovering changes and their causes, Alcocer
et al. [1] developed Performance Evolution Matrix which is capable of comparing
multiple versions of the same software. The tool helps the user notice the modifi-
cations that might have caused changes in performance. The visualizations mostly
aim changes in software metrics, such as additions and deletions to source code,
call graph changes, and execution time differences.

As mentioned above, besides traditional 2D visualization techniques, modern
approaches are becoming more widespread in version control visualization methods,
such as virtual reality [38].

Apart from version control repositories, data from the supporting project host-
ing systems (e.g. GitHub, GitLab) is also useful for understanding software. Kumar
et al. use Elastic search and Kibana for data visualization through mining GitHub
for further information that cannot be found in plain repositories [27].

3 Methodology

3.1 Background

Repositories, especially those of long-running projects tell lots about development
history and workflow. It creates an image of the gradual changes in the architectural
design of the software. When it comes to maintenance and debugging, the first
questions that usually emerge are ”Who can I turn to for explanation of the logic,
structure and objective behind this code? Who is the expert in it?”. Version control
systems contain all the answers to these questions in their commit history in an
implicit way that requires meticulous analysis to be brought to surface. Commits
provide all the information about who is responsible for each line of code ever
written for that repository in their blame data. This information can be easily
obtained and used in various different visual depictions. Our visualization intends
to present the developer data to facilitate source code comprehension by providing
developer statistics for the software.

In the competence computing, we consider one commit as a unit, this is why the
plugin parses a given part of the commit history commit-by-commit, which is then



436 Anett Fekete and Zoltán Porkoláb

divided into deltas that are equivalent to the files that were modified by the commit
author. The most important factor of developer competence in our calculation is the
significance of modifications which is calculated using JPlag1 [40], a code similarity
checker. The idea is that we want to measure how important is a change and
want to ignore irrelevant formal modifications. We compare the modified version
of a file to its previous version in the commit history. JPlag returns a percentage
value applying token-based comparison. When comparing different versions of a
file, JPlag breaks down the file to tokens, and checks the changes between versions.
To minor changes that do not affect the actual file content, such as adding or
removing comments, or renaming identifiers, JPlag returns a 100% match. We use
this number in our calculation as a threshold to detect relevant changes in the source
code. If the compared versions are not 100% equal, then relevant modifications were
committed to the code. This way minor changes are filtered, and the focus is put
on actual content change.

3.2 Data parsing

The competence plugin consists of a parser and a service component. The parser
performs code analysis, repository mining, and information extraction. Figure 1
shows the parser workflow.

The first and most important precondition of parsing is for the project to have
a Git repository. Without one, the parser will finish parsing without processing
any information. This is why the very first step during parsing is to find the .git
directory. Since this directory is usually placed in the root directory of the source
code, the parser looks for it in the user-provided source path. The parser can be
provided with an optional input variable, n, the number of commits to parse. If n
is not provided, the entire commit history is parsed.

Once the repository is found, we need to collect information about the modi-
fications done in the commits. We traverse through each commit on the current
branch, starting from HEAD, look through the list of modified files and calculate
actual developer competence data. For this, we need to traverse all relevant com-
mits to obtain the blame data. In order to traverse the commits, we need a revision
walker that is sorted in a backward sequence in time and in topological order. The
walker provides the next commit. Commit history processing is done as follows:

1. Let C be the commit history, and let cj be the current commit that is retrieved
from the walker (C = c1, c2, ..., cj , ..., cn). If n is provided, we check if cj meets
the conditions. If not, execution is terminated.

2. Let pcj be the direct parent of cj which is retrieved from the repository. If
pcj does not exist, we are at the beginning of the commit history (cj = cn),
and execution is terminated.

3. Let dcj ,pcj
be the difference between the two Git trees built from cj and pcj .

1GitHub repo: https://github.com/jplag/JPlag

https://github.com/jplag/JPlag


Using Version Control Information to Visualize Developers’ Knowledge 437

Figure 1: The methodology of commit history parsing. The commit history of a
Git repository is parsed commit-by-commit. We take the diff of each consecutive
pair of commits, and analyze every file that was modified in the latter one. The file
versions are compared with a software similarity checker to determine the struc-
tural significance of modifications as a percentage value. The summarized data is
persisted into the database.

4. As mentioned before, dcj ,pcj
consists of deltas, each of which contains the

modifications in one file. Let fi be an individual file that has been modified
in a commit (F = {f1, f2, ...fk}).

5. ∀fi ∈ dcj ,pcj
we compare fi with its previous version in pcj using JPlag. The

returned percentage value shall be the competence data of the author for fi.

6. Go to 4): move on to the next delta if it exists, otherwise, go to 7).

7. Go to 1), and start over with cj+1, if all the conditions are met (i.e. there are
further commits to parse), otherwise, go to 8).

8. Persist the calculated data in the database for every file and every commit
author.

Despite not being able to extract usernames, we can, however, use author email
addresses to extract affiliation, i.e. company or team names. Large companies
usually have their own domain name and give a workplace email address within
this domain to their employees (e.g. microsoft.com, ericsson.com). Based on this
convention, we can assume, that if a developer authors their commits with a certain
email address, we can conclude their affiliation.



438 Anett Fekete and Zoltán Porkoláb

The competence plugin automatically extracts well-known company names from
email addresses during parsing time. It works with a list of possible domain names
mapped up with company names prepared in advance. When the plugin is done
with competence data calculation, all email addresses are checked for company
name extraction. Private email addresses and others not in the company list can
be completed with affiliation manually.

4 Visualization

The competence plugin is implemented as a part of CodeCompass2 [39], which is
an LLVM/Clang based open-source code comprehension framework developed by
Eötvös Loránd University and Ericsson. The CodeCompass parser applies static
analysis on the given source code and the corresponding build commands that are
logged during compilation. Various information is stored about the project includ-
ing structural data, code metrics, version control information, etc. This information
is stored in the workspace database which is then accessed by the CodeCompass
webserver. The webserver provides several various textual and graphic services
through a web browser, such as detailed searching, structural and code-level visu-
alizations, and Git blame data.

CodeCompass has a pluginable framework. Plugins work independently, thus a
certain plugin can be easily skipped from the parsing process if it is not needed.
Plugins consist of a parser and a service component. The parser component takes
care of the analysis, while the service component is responsible for constructing
the visualizations based on the stored information in the database and displaying
it through the CodeCompass webserver. Currently, there are 4 different available
diagram types.

4.1 Personal view

When browsing software components or learning the source code, it is useful for the
user to keep track of which parts in the code base they have reasonable knowledge
about, and what else is there to investigate and learn. The personal view intends to
show this information. CodeCompass is capable of text-based authentication, thus
it is possible to show the user their personal information stored in the database.

The personal view diagram shows the maximum competence percentage that
belongs to the authenticated user for every file in the project. The percentage is
converted to a color code that appears in the corresponding node in the diagram.
Generated colors are on a scale from red, assigned to 0%, to green, assigned to
100%. Figure 2 shows an example of the personal view about the structure of the
competence plugin.

This view is also useful for project managers to decide who to assign a certain
task, or for other teammates to see who they can ask if a question emerges or a

2GitHub repo: https://github.com/Ericsson/CodeCompass

https://github.com/Ericsson/CodeCompass


Using Version Control Information to Visualize Developers’ Knowledge 439

F
ig

u
re

2:
T

h
e

p
er

so
n

al
v
ie

w
of

a
d

ev
el

op
er

co
n

ce
rn

in
g

th
e

so
u

rc
e

co
d

e
o
f

th
e

co
m

p
et

en
ce

p
lu

g
in

.
T

h
e

n
o
n

-w
h

it
e

n
o
d

es
re

p
re

se
n
t

fi
le

s
in

th
e

p
lu

gi
n

.
T

h
ey

ar
e

co
lo

re
d

on
a

sc
a
le

fr
o
m

re
d

to
g
re

en
,

a
cc

o
rd

in
g

to
th

e
co

m
p

et
en

ce
p

er
ce

n
ta

g
e

o
f

th
e

d
ev

el
op

er
.

T
h

e
co

n
ta

in
in

g
d

ir
ec

to
ri

es
ar

e
le

ft
w

h
it

e
as

th
ey

h
av

e
n

o
a
ss

ig
n

ed
d

a
ta

.



440 Anett Fekete and Zoltán Porkoláb

bug is found etc. However, the plugin is now only capable of showing the user their
own information.

4.2 Team view

If we are looking to see who the most competent developer is in the current state of
a file, it is likely the one who recently committed a larger significant modification
to the file in question. The investigated number of commits can be set by the user
before parsing. This way, the last n commits will be parsed, starting from the very
last one. Team view displays the most competent developer of every file, based on
the parsed information. It selects the maximum percentage stored for the file. The
diagram nodes are colored according to the color code map that was previously
calculated from the developers’ email addresses. An example of the team view is
shown in Figure 3.

4.3 Affiliation views

In case of a collaboration project or an open-source software, it is useful if we
are aware which unit is the most competent in a software module. This is why
it is advantageous to display affiliation-focused diagrams. The competence plugin
provides 2 different affiliation views:

4.3.1 Individual affiliation view

In its logic, this type of diagram is similar to team view, but it is focused on
affiliations. We calculate who the most competent developer is in a file, but instead
of coloring the node with the personal color of the developer, we color it with the
assigned color of their company or team.

4.3.2 Accumulated affiliation view

In order to learn which team is the most competent in a file, we need to consider
all data that belongs to the file in question. In this diagram, we group the records
of a file by developer affiliations, and take the average competence of every team.
A diagram node gets the color of the team with the maximum average value.

Although they derive from the same data, the affiliation views might display
different results for the same file: the first diagram focuses on the individual com-
petence rate and the corresponding affiliation, while the second one calculates the
average competence rate of the members of each team that worked on the examined
file, and shows which team has the highest competence in that file. An example of
the two views and their comparison is shown in Figure 4.

The latter 3 visualizations can be displayed without authentication.



Using Version Control Information to Visualize Developers’ Knowledge 441

F
ig

u
re

3:
T

h
e

te
am

v
ie

w
of

th
e

co
m

p
et

en
ce

p
lu

gi
n

.
L

ik
e

in
F

ig
u

re
2
,

th
e

w
h

it
e

n
o
d

es
re

p
re

se
n
t

d
ir

ec
to

ri
es

,
a
n

d
th

e
co

lo
re

d
n

o
d

es
re

p
re

se
n
t

th
e

co
n
ta

in
ed

fi
le

s.
T

h
e

fi
le

n
o
d

es
a
re

gi
ve

n
th

e
co

lo
r

o
f

th
e

m
o
st

co
m

p
et

en
t

d
ev

el
o
p

er
in

th
a
t

fi
le

.
T

h
e

co
lo

rs
ar

e
au

to
m

at
ic

al
ly

ge
n

er
at

ed
fr

om
h

as
h

in
g

em
ai

l
ad

d
re

ss
es

.



442 Anett Fekete and Zoltán Porkoláb

F
ig

u
re

4
:

C
om

p
ariso

n
o
f

th
e

in
d

iv
id

u
al

(1)
an

d
th

e
accu

m
u

lated
(2

)
a
ffi

lia
tio

n
d

ia
g
ra

m
fo

r
th

e
so

u
rce

co
d

e
of

th
e

com
p

eten
ce

p
lu

gin
.

(1)
sh

ow
s

th
e

affi
liation

of
th

e
m

ost
com

p
eten

t
d

evelo
p

er
in

a
fi

le,
w

h
ile

(2
)

sh
ow

s
th

e
m

ost
com

p
eten

t
team

in
a

fi
le

o
n

averag
e.



Using Version Control Information to Visualize Developers’ Knowledge 443

4.4 Coloring

In the personal view, node coloring is trivial, since a node is assigned a color on
the scale from red to green depending on the corresponding competence percentage
from 0% to 100% respectively. In the affiliation diagrams, each team is assigned
a random color. However, node color generation in the team view is based on the
corresponding email address. Email addresses are hashed, and the hash code is
converted to a unique color.

5 Implementation

CodeCompass provides a stable core for a pluginable framework. The backend
(parser and web server) is written in C/C++, while the frontend is written in
JavaScript, using the dojo.js library. The competence plugin is implemented as an
extension of CodeCompass as a new plugin. It relies entirely on version control
data and supports only Git. Repository mining and data analysis is implemented
using the libgit2 API library. The graph-based visualizations are generated using
GraphViz [10]. Since JPlag is capable of parsing several popular programming
languages, we consider the plugin fairly language-independent, meaning that the
competence calculation is applicable to all languages supported by JPlag.

6 Case studies

The plugin was tested on multiple long-running open-source projects: Google Test3,
libgit2 4, and LLVM-Clang5 [29]. All of these projects are continuously developed
with hundreds or even thousands of commits a month, and their developer teams
consist of large numbers of programmers from several different companies. We
also took CodeCompass itself6 into the test projects, since we thoroughly know its
history and structure, and it facilitated the evaluation of the results. The tests
were run on an average personal computer with 16 GB RAM and 3 CPU cores.

Table 1 shows the results of parsing the test projects. All of their repositories
contain hundreds, thousands, or even hundreds of thousands of commits. In order
to provide easily comparable information, we parsed the latest few hundred commits
of every project. Average execution time was calculated considering that 3 cores
were used.

We can see significant difference in execution time, the number of modified
files, and the number of committer developers between the projects. The most
spectacular difference is the execution time of LLVM which can be measured in
hours, compared to the other projects where hundreds of commits have been parsed

3GitHub repo: https://github.com/google/googletest
4GitHub repo: https://github.com/libgit2/libgit2
5GitHub repo: https://github.com/llvm/llvm-project
6The repository of CodeCompass was migrated from SVN to Git in 2016. The earlier version

control data is not accessible.

https://github.com/google/googletest
https://github.com/libgit2/libgit2
https://github.com/llvm/llvm-project


444 Anett Fekete and Zoltán Porkoláb

Table 1: Competence parser results

Project All commits
Parsed

commits
Exec.
time

Modified
files

Devs

CodeCompass 955 500 8m 31s 553 15
Google Test 3,913 500 26m 21s 151 63

libgit2 14,550 500 92m 41s 353 33
LLVM-Clang 425,138 500 15h 34m 1340 159

in less than an hour. The cause of this phenomenon is that, although other test
projects are also open-source and developed by numerous programmers, LLVM is
still an edge-case compared to them; if we take a look at the LLVM’s GitHub
statistics, we can see that over 3000 commits are pushed to master during a single
month, while other continuously developed projects are expanded by only a few
hundreds of commits at most. What’s more, the commits pushed to LLVM are
large ones, affecting many files, and they frequently reach the size of a full value pull
request7, which means parsing one commit in this project means actually parsing
several smaller commits. This also explains why the average execution time of one
commit is significantly higher in LLVM.

Aside from the visualizations, the workspace database also provides a great deal
of information about developers. Table 2 contains the answers to the developer-
related questions asked above, ”Who knows the most about the code?”. In all test
projects, less than a dozen developers can be named who are competent in larger
parts of the code. This circumstance means increased risk from the aspect of the
project’s future. If any of the highly competent programmers leave the developer
team for any reason, the software might suffer serious damage from a code and
software quality perspective among others.

Table 2: Developer data of the test projects

Project
>25
files

known

>50
files

known

Most
competent
developer

Files
known

Most
com-

petent
team

CodeCompass 6 4 user1 399 Company1
Google Test 3 3 user2 87 N/A

libgit2 4 2 user3 200 N/A
LLVM-Clang 15 2 user4 107 Company4

7Commits on LLVM are mostly actual size pull requests where lots of commits are compressed
into a patch file.



Using Version Control Information to Visualize Developers’ Knowledge 445

The ”most competent developer8” at each software, while they possess a large
amount of information and they are very important in the project, still have limited
knowledge about the code. This can be considered a normal situation, since we can-
not expect, even from a lead developer or an architect, to know everything about
every component. The programmers with the highest amount of knowledge sup-
posedly know the entire project thoroughly, and they are aware of all the important
developer decisions.

We are also able to evaluate the results from the affiliations’ aspect. If a project
is developed by multiple teams or companies – which is usually the case in open-
source projects – it might be an interesting and useful information to know which
team is the most competent in certain parts of a software. As mentioned before,
it is not easy to determine a programmer’s affiliation by their commits only, but
we can rely on their committer email addresses for some information. The compe-
tence parser is currently equipped with a list of international companies that give
distinctive workplace email addresses to their employees, e.g. Apple (apple.com),
Ericsson (ericsson.com), and Intel (intel.com). By running simple queries on the
parsed data, we can identify the most competent company or team in a software
project. In this case, ”most competent” means the highest number of develop-
ers from a team that committed modifications to the project in the investigated
time period. Of course, this value can be scaled by considering the amount and
significance of the modifications.

Although the affiliation is obvious in some cases, some companies make their
distinctive email domains accessible for non-employees as well, such as Google
(google.com) and Yahoo (yahoo.com). This makes accurate analysis more difficult,
since we cannot decide by a mere commit if the committer is an actual employee
at one of these companies or not. This is why, even though the natural assumption
is that e.g. Google is the most competent in Google Test, they are not clearly
identifiable.

Another important information concerns the aforementioned risk factor of files
that have not been modified in a long time, thus they are in danger of neglect.
The risk of completely forgetting the purpose and content of these files gets sig-
nificantly lower if their associated files are regularly maintained. However, this
requires further deep analysis of the version control history.

6.1 Validation

The results of the plugin have been verified by applying the calculations on
CodeChecker9, an open-source source code analyzer which also applies static anal-
ysis to detect errors and malfunctions in programs. We conducted an experiment
where we asked the developers of CodeChecker to evaluate their knowledge of the
various modules of the project. The development team of CodeChecker consists of
a small group of full-time developers and students and interns. The project is de-

8Personal names, email addresses and company names are anonymized due to privacy reasons.
9GitHub repo: https://github.com/Ericsson/codechecker

https://github.com/Ericsson/codechecker


446 Anett Fekete and Zoltán Porkoláb

veloped in a multi-language environment with Python, C++ and JavaScript being
the primary languages, which makes CodeChecker an excellent test project.

First, we determined the main modules of CodeChecker, then the entire commit
history of more than 4800 commits was analyzed by the our method. Afterwards,
the participating developers had to answer the question, To what extent do you
know the source code of this module: (module name)?. The participants graded
their knowledge in each module on a five-point scale, from 1 if they were unfamiliar
with the module to 5 if they had detailed knowledge of the source code of the
module. Each point on the scale corresponds to an interval of 20% understanding:
1 corresponds to 0-20% of source code knowledge, 2 to 20-40%, and so on.

After the analysis and the data collection from developers, we accumulated the
results of competence calculation to match modules instead of files, and compared
the results to the data given by developers. The experiment showed that the
tool gave correct results in 48% of cases, with an 18% average deviation from the
answers to our questions. The data indicated that the participants overestimated
their knowledge in 50% of the time, and underestimated in 1.8%. The high value
of overestimation suggests that developers on average have more knowledge of the
source code than the commit history data shows. We also concluded that applying
the results to modules instead of files could provide more useful results in everyday
usage.

The average deviation of 18% indicates that the scale of proportions should be
recalibrated to show more accurate and more detailed representation of knowledge
in a software. We also concluded that the ”unseen” knowledge which is inevitable
for contribution should also be included in the method. More information of de-
veloper knowledge can be extracted from additional input, such as contributions in
the project hosting system (e.g. GitHub, GitLab).

More details of the experiment and its results can be found in our previous
paper [14].

6.2 Evaluation

Considering earlier studies about the possible aspects of data visualization tool
evaluation [21, 24, 34, 43], we evaluated the usefulness of our tool can be evaluated
based on the following criteria system:

Relevance: Most version control visualization tools focus on the actual source
code (its architecture, evolution, change-proneness, etc.), and omits analyzing
developer-related data (see Section 2 for examples). Our tool puts focus on
collecting and visualizing information about the project-related knowledge
of developers and teams, which can be used for developer-centered support
within the development team.

Usability: The user interface of the plugin is integrated with the core frontend
of CodeCompass. The functionalities (diagrams) are available through right-
click menus on the source files, which is intuitive and easy to learn. The
diagrams are generated by the graphic tools of GraphViz, which provides



Using Version Control Information to Visualize Developers’ Knowledge 447

a versatile and clean tool set for graph-based diagrams. However, the en-
tire current frontend of CodeCompass is obsolete. User-friendliness will be
improved by a new, modern web frontend in the near future.

Functionality: The plugin is capable of providing a broad overview of the most
knowledgeable developers and teams in a software project, as well as mapping
the overall familiarity of individuals with every source file. This information
can be used by developers, team leaders, scrum masters, project owners, etc.
to improve the efficiency of task distribution, and provide better support
for less experienced team members. The extracted data leaves more space
for improvement, as the plugin could offer support for further developer-
and knowledge-related questions. For example, based on the frequency of
modifications in a source file, and the number of active developers who have
contributed to the file, the tool could calculate which files are in danger of
forgetting in case some developers leave the team.

Scalability: In Table 1 we can see that 500 commits were parsed from each test
repository. However, the tool was tested on the reopsitory of CodeChecker
which contained more than 4800 commits at the time of testing. Furthermore,
during the development of the plugin, we continuously executed testing on a
larger (10000) set of commits from the repository of LLVM repository. LLVM
receives hundreds of contributions every day which makes it an excellent test
project because the commits include several edge cases and exceptions that
had to be handled to guarantee secure operation. Thus, the plugin is capable
of handling large repositories.

Performance: Table 1 shows the runtime of the tool on the four test projects.
We can see that the larger and the more complex commits get in a project,
the more time the plugin takes to analyze them. The performance of the
plugin can be improved by using an extension or wrapper library instead of
the raw libgit2 API. The API includes many memory issues that wrappers
tackle which may improve performance and reduce runtime significantly.

Flexibility: The plugin itself can be easily switched on and off during the usage
of CodeCompass. On development level, the skeleton of diagram generation
is readily provided in case of implementing new features. However, in order
to improve or extend parsing, the algorithm needs to be understood first.
Currently, commits from one branch can be analyzed at one parse. If a user,
for example, wants to compare branches, the parser component of the plugin
must be extended for which the user has to understand the appropriate libgit2
API elements.

Integration: The plugin is integrated with CodeCompass. The user may provide
the number of commits they wish to analyze, and include the repository
with the source code. This way, the plugin can be easily integrated with
continuous integration systems. Future work includes analyzing data from
project hosting systems.



448 Anett Fekete and Zoltán Porkoláb

7 Threats to validity

Although token-based comparison of edited files guarantees high-level accuracy in
our change analysis, there can be some distorting factors. Just because a program-
mer has committed to a file some time ago in the past, does not mean that they are
still competent in the file in its current state. For example, what if the program-
mer wrote a big chunk of a file, but someone came a couple days later and entirely
refactored it? The two programmers would get similar results for this file, but
the deleted content or overlap of modifications can cause distortions in the results.
Refining the calculations from file level to smaller units, like classes or functions
may help eliminate such anomalies in the future.

Another question that might come up is also content-related: what if someone
modifies every file in a project by adding some minor change, such as license or
copyright information to the comments? This way, this person is granted to have
some percent of comprehension for every file for a while, even though they have not
contributed to the project in its function and might not know anything about the
code at all. Fortunately, software similarity checkers take care of this problem with
token-based comparison. Renaming a variable, reordering a file, or adding com-
ments do not count as significant modifications, there are no semantic differences
are detected between file versions.

A more positively distorting factor lies in the nature of programming, which is
particularly present when a programmer makes changes to the previously written
work of someone else, let that be debugging, maintenance or further development:
programmers can hardly (correctly) contribute to code without understanding at
least some of it. That means actual competence in a file is most likely higher than
our calculations say it to be.

In our calculations, we focus on exclusively the objectively measurable data,
the structural significance of modifications. However, expertise and knowledge cal-
culations include more subjective human factors, such as the capability of memory
retention of a developer. According to the work of Ebbinghaus [9], people tend
to forget detailed information quite quickly after hearing or reading said informa-
tion. The forgetting curve has been tested by making people read and remember
unrelated information like random words. Program code consists of more tightly
connected units to which the forgetting curve may not apply. Future research
includes human factors in the competence calculation.

Another threat to validity is that certain code modifications which seem like
serious modifications to a code similarity checker might not really require deep
knowledge of the code in question. Trivial refactoring patterns such as the extract
function [16] can be applied with minimal understanding of the purpose of the code.
However, we might usually assume that such tasks are assigned to a person who
can take responsibility of the target module.



Using Version Control Information to Visualize Developers’ Knowledge 449

8 Conclusion and future work

In this research, we have developed the competence plugin, a visualization tool
which uses information obtained from version control repositories to make developer-
related information accessible for the user. The plugin answers some frequently
asked questions during development, such as ”Who knows the most about this part
of the code?” and ”Who can I ask for help in this task?”. Also, the tool is essential
to better plan the use of human resources, e.g. detecting when the knowledge in
some part of the code dropped below a certain threshold, or when the knowledge is
unevenly distributed between developers. In such cases, the project management
can apply preventive actions to avoid complete loss of information about certain
parts of the code. Aggregated views can be constructed from individual develop-
ers’ knowledge information, using various heuristics. We tested the plugin as part
of the CodeCompass open-source code comprehension framework, on several long-
term open-source software projects that are continuously developed with frequent
commits in their repositories. Our study has shown that the plugin is an effective
code comprehension supporting tool that is useful for individual developers and
project teams as well.

The competence plugin will be further developed by implementing new visual-
izations focusing on other programmer-related questions and utilizing more infor-
mation from the version control system. Mapping the comprehension visualizations
to project dependency graphs could more effectively help the developer in the pro-
cess of learning about the software in a more conscious way. In the future, we
will develop the calculation to not only apply to files, but modules as well. We
plan to evolve the available visualizations with more subtle coloring, mouse hover
functionality, and some logical diversity in node shapes. We also plan to imple-
ment an interactive interface where the users can map parsed email addresses and
affiliations to their user accounts, and fill in the missing user data.

References

[1] Alcocer, J. P. S., Beck, F., and Bergel, A. Performance evolution matrix:
Visualizing performance variations along software versions. In Proceedings of
the 2019 Working Conference on Software Visualization (VISSOFT), pages
1–11. IEEE, 2019. DOI: 10.1109/VISSOFT.2019.00009.

[2] Alcocer, J. P. S., Jaimes, H. C., Costa, D., Bergel, A., and Beck, F. Enhanc-
ing commit graphs with visual runtime clues. In Proceedings of the Working
Conference on Software Visualization (VISSOFT), pages 28–32. IEEE, 2019.
DOI: 10.1109/VISSOFT.2019.00012.

[3] Bao, L., Xing, Z., Xia, X., Lo, D., and Li, S. Who will leave the company?:
A large-scale industry study of developer turnover by mining monthly work
report. In Proceedings of the 2017 IEEE/ACM 14th International Conference

https://doi.org/10.1109/VISSOFT.2019.00009
https://doi.org/10.1109/VISSOFT.2019.00012


450 Anett Fekete and Zoltán Porkoláb

on Mining Software Repositories (MSR), pages 170–181. IEEE, 2017. DOI:
10.1109/MSR.2017.58.

[4] Bassil, S. and Keller, R. K. Software visualization tools: Survey and analysis.
In Proceedings of the 9th International Workshop on Program Comprehension,
pages 7–17. IEEE, 2001. DOI: 10.1109/WPC.2001.921708.

[5] Brunner, T. and Porkoláb, Z. Advanced code comprehension using version con-
trol information. IPSI Transactions on Internet Research, 16(2):47–54, 2020.
URL: http://ipsitransactions.org/journals/papers/tir/2020jul/p7.

pdf.

[6] Chotisarn, N., Merino, L., Zheng, X., Lonapalawong, S., Zhang, T., Xu, M.,
and Chen, W. A systematic literature review of modern software visualization.
arXiv preprint arXiv:2003.00643, 2020. DOI: 10.1007/s12650-020-00647-

w.

[7] da Silva, I. A., Mangan, M. A., and Werner, C. M. CVS Watch:
A group awareness tool applied to collaborative software develop-
ment, 2004. URL: https://www.researchgate.net/profile/Marco-

Mangan/publication/266471809_CVS_Watch_a_Group_Awareness_

Tool_Applied_to_Collaborative_Software_Development/links/

55a79ec308aea2222c747c4f/CVS-Watch-a-Group-Awareness-Tool-

Applied-to-Collaborative-Software-Development.pdf.

[8] de F Carneiro, G., Magnavita, R., and Mendonça, M. Combining software
visualization paradigms to support software comprehension activities. In Pro-
ceedings of the 4th ACM Symposium on Software Visualization, pages 201–202.
ACM, 2008. DOI: 10.1145/1409720.1409755.

[9] Ebbinghaus, H. Über Das Gedachtnis. 1885. URL: https://home.uni-

leipzig.de/wundtbriefe/wwcd/opera/ebbing/memory/GdaechtI.htm.

[10] Ellson, J., Gansner, E., Koutsofios, L., North, S. C., and Woodhull, G.
Graphviz—open source graph drawing tools. In Proceedings of the Interna-
tional Symposium on Graph Drawing, pages 483–484. Springer, 2001. DOI:
10.1007/3-540-45848-4_57.

[11] Elsen, S. Visgi: Visualizing GIT branches. In Proceedings of the 2013 First
IEEE Working Conference on Software Visualization (VISSOFT), pages 1–4.
IEEE, 2013. DOI: 10.1109/VISSOFT.2013.6650522.

[12] Faragó, C. Maintainability of Source Code and its Connection to Version
Control History Metrics. PhD thesis, Department of Software Engineering,
University of Szeged, Hungary, 2016.

[13] Faragó, C., Hegedűs, P., Végh, A. Z., and Ferenc, R. Connection between
version control operations and quality change of the source code. Acta Cyber-
netica, 21(4):585–607, 2014. DOI: 10.14232/actacyb.21.4.2014.4.

https://doi.org/10.1109/MSR.2017.58
https://doi.org/10.1109/WPC.2001.921708
http://ipsitransactions.org/journals/papers/tir/2020jul/p7.pdf
http://ipsitransactions.org/journals/papers/tir/2020jul/p7.pdf
https://doi.org/10.1007/s12650-020-00647-w
https://doi.org/10.1007/s12650-020-00647-w
https://www.researchgate.net/profile/Marco-Mangan/publication/266471809_CVS_Watch_a_Group_Awareness_Tool_Applied_to_Collaborative_Software_Development/links/55a79ec308aea2222c747c4f/CVS-Watch-a-Group-Awareness-Tool-Applied-to-Collaborative-Software-Development.pdf
https://www.researchgate.net/profile/Marco-Mangan/publication/266471809_CVS_Watch_a_Group_Awareness_Tool_Applied_to_Collaborative_Software_Development/links/55a79ec308aea2222c747c4f/CVS-Watch-a-Group-Awareness-Tool-Applied-to-Collaborative-Software-Development.pdf
https://www.researchgate.net/profile/Marco-Mangan/publication/266471809_CVS_Watch_a_Group_Awareness_Tool_Applied_to_Collaborative_Software_Development/links/55a79ec308aea2222c747c4f/CVS-Watch-a-Group-Awareness-Tool-Applied-to-Collaborative-Software-Development.pdf
https://www.researchgate.net/profile/Marco-Mangan/publication/266471809_CVS_Watch_a_Group_Awareness_Tool_Applied_to_Collaborative_Software_Development/links/55a79ec308aea2222c747c4f/CVS-Watch-a-Group-Awareness-Tool-Applied-to-Collaborative-Software-Development.pdf
https://www.researchgate.net/profile/Marco-Mangan/publication/266471809_CVS_Watch_a_Group_Awareness_Tool_Applied_to_Collaborative_Software_Development/links/55a79ec308aea2222c747c4f/CVS-Watch-a-Group-Awareness-Tool-Applied-to-Collaborative-Software-Development.pdf
https://doi.org/10.1145/1409720.1409755
https://home.uni-leipzig.de/wundtbriefe/wwcd/opera/ebbing/memory/GdaechtI.htm
https://home.uni-leipzig.de/wundtbriefe/wwcd/opera/ebbing/memory/GdaechtI.htm
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1109/VISSOFT.2013.6650522
https://doi.org/10.14232/actacyb.21.4.2014.4


Using Version Control Information to Visualize Developers’ Knowledge 451

[14] Fekete, A., Cserép, M., and Porkoláb, Z. Measuring developers’ expertise based
on version control data. In Proceedings of the 2021 44th International Con-
vention on Information, Communication and Electronic Technology (MIPRO),
pages 1607–1612. IEEE, 2021. DOI: 10.23919/MIPRO52101.2021.9597103.

[15] Fittkau, F., Krause, A., and Hasselbring, W. Software landscape and applica-
tion visualization for system comprehension with ExplorViz. Information and
Software Technology, 87:259–277, 2017. DOI: 10.1016/j.infsof.2016.07.

004.

[16] Fowler, M. Refactoring. Addison-Wesley Professional, 2018. URL: https:
//martinfowler.com/books/refactoring.html.

[17] Greene, G. J., Esterhuizen, M., and Fischer, B. Visualizing and exploring soft-
ware version control repositories using interactive tag clouds over formal con-
cept lattices. Information and Software Technology, 87:223–241, 2017. DOI:
10.1016/j.infsof.2016.12.001.

[18] Greene, G. J. and Fischer, B. Interactive tag cloud visualization of software
version control repositories. In Proceedings of the IEEE 3rd Working Confer-
ence on Software Visualization (VISSOFT), pages 56–65. IEEE, 2015. DOI:
10.1109/VISSOFT.2015.7332415.

[19] Greevy, O., Lanza, M., and Wysseier, C. Visualizing feature interaction in
3-D. In Proceedings of the 3rd IEEE International Workshop on Visualizing
Software for Understanding and Analysis, pages 1–6. IEEE, 2005. DOI: 10.

1109/VISSOF.2005.1684317.

[20] Hawes, N., Marshall, S., and Anslow, C. Codesurveyor: Mapping large-scale
software to aid in code comprehension. In Proceedings of the IEEE 3rd Working
Conference on Software Visualization (VISSOFT), pages 96–105. IEEE, 2015.
DOI: 10.1109/VISSOFT.2015.7332419.

[21] Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., and Möller, T. A system-
atic review on the practice of evaluating visualization. IEEE Transactions
on Visualization and Computer Graphics, 19(12):2818–2827, 2013. DOI:
10.1109/TVCG.2013.126.

[22] Jermakovics, A., Sillitti, A., and Succi, G. Mining and visualizing developer
networks from version control systems. In Proceedings of the 4th Interna-
tional Workshop on Cooperative and Human Aspects of Software Engineering,
CHASE ’11, pages 24––31, New York, NY, USA, 2011. Association for Com-
puting Machinery. DOI: 10.1145/1984642.1984647.

[23] Kagdi, H., Yusuf, S., and Maletic, J. I. Mining sequences of changed-files from
version histories. In Proceedings of the 2006 International Workshop on Min-
ing Software Repositories, MSR ’06, page 47–53, New York, NY, USA, 2006.
Association for Computing Machinery. DOI: 10.1145/1137983.1137996.

https://doi.org/10.23919/MIPRO52101.2021.9597103
https://doi.org/10.1016/j.infsof.2016.07.004
https://doi.org/10.1016/j.infsof.2016.07.004
https://martinfowler.com/books/refactoring.html
https://martinfowler.com/books/refactoring.html
https://doi.org/10.1016/j.infsof.2016.12.001
https://doi.org/10.1109/VISSOFT.2015.7332415
https://doi.org/10.1109/VISSOF.2005.1684317
https://doi.org/10.1109/VISSOF.2005.1684317
https://doi.org/10.1109/VISSOFT.2015.7332419
https://doi.org/10.1109/TVCG.2013.126
https://doi.org/10.1145/1984642.1984647
https://doi.org/10.1145/1137983.1137996


452 Anett Fekete and Zoltán Porkoláb

[24] Kienle, H. M. and Muller, H. A. Requirements of software visualization
tools: A literature survey. In Proceedings of the 2007 4th IEEE International
Workshop on Visualizing Software for Understanding and Analysis, pages 2–9.
IEEE, 2007.

[25] Krause-Glau, A., Bader, M., and Hasselbring, W. Collaborative software vi-
sualization for program comprehension. In Proceedings of the 2022 Working
Conference on Software Visualization (VISSOFT), pages 75–86. IEEE, 2022.
DOI: 10.1109/VISSOFT55257.2022.00016.

[26] Kuhn, A., Erni, D., Loretan, P., and Nierstrasz, O. Software cartography: The-
matic software visualization with consistent layout. Journal of Software Main-
tenance and Evolution: Research and Practice, 22(3):191–210, 2010. DOI:
10.1002/smr.414.

[27] Kumar J., M., Dubey, S., Balaji, B., Rao, D., and Rao, D. Data visualization
on github repository parameters using elastic search and kibana. In Proceedings
of the 2018 2nd International Conference on Trends in Electronics and Infor-
matics (ICOEI), pages 554–558, 2018. DOI: 10.1109/ICOEI.2018.8553755.

[28] Lanza, M., Ducasse, S., Gall, H., and Pinzger, M. Codecrawler: An infor-
mation visualization tool for program comprehension. In Proceedings of the
27th International Conference on Software Engineering, pages 672–673, 2005.
DOI: 10.1145/1062455.1062602.

[29] Lattner, C. and Adve, V. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on
Code Generation and Optimization, pages 75–86. IEEE, 2004. DOI: 10.1109/

CGO.2004.1281665.

[30] Löwe, W., Ericsson, M., Lundberg, J., and Panas, T. Software comprehension-
integrating program analysis and software visualization. Software Engineering
Research and Practice, 2002. URL: http://arisa.se/files/LELP-02.pdf.

[31] Marcus, A., Feng, L., and Maletic, J. I. Comprehension of software analysis
data using 3D visualization. In Proceedings of the 11th IEEE International
Workshop on Program Comprehension, pages 105–114. IEEE, 2003. DOI:
10.1109/WPC.2003.1199194.

[32] Mattila, A.-L., Ihantola, P., Kilamo, T., Luoto, A., Nurminen, M., and
Väätäjä, H. Software visualization today: Systematic literature review. In
Proceedings of the 20th International Academic Mindtrek Conference, pages
262–271, 2016. DOI: 10.1145/2994310.2994327.

[33] Merino, L., Ghafari, M., Anslow, C., and Nierstrasz, O. CityVR: Gameful
software visualization. In Proceedings of the IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 633–637. IEEE, 2017.
DOI: 10.1109/ICSME.2017.70.

https://doi.org/10.1109/VISSOFT55257.2022.00016
https://doi.org/10.1002/smr.414
https://doi.org/10.1109/ICOEI.2018.8553755
https://doi.org/10.1145/1062455.1062602
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
http://arisa.se/files/LELP-02.pdf
https://doi.org/10.1109/WPC.2003.1199194
https://doi.org/10.1145/2994310.2994327
https://doi.org/10.1109/ICSME.2017.70


Using Version Control Information to Visualize Developers’ Knowledge 453

[34] Merino, L., Ghafari, M., Anslow, C., and Nierstrasz, O. A systematic literature
review of software visualization evaluation. Journal of Systems and Software,
144:165–180, 2018. DOI: 10.1016/j.jss.2018.06.027.

[35] Merino, L., Seliner, D., Ghafari, M., and Nierstrasz, O. Communityexplorer:
A framework for visualizing collaboration networks. In Proceedings of the 11th
edition of the International Workshop on Smalltalk Technologies, pages 1–9,
2016. DOI: 10.1145/2991041.2991043.

[36] Mierle, K., Laven, K., Roweis, S., and Wilson, G. Mining student CVS
repositories for performance indicators. In Proceedings of the 2005 Inter-
national Workshop on Mining Software Repositories, MSR ’05, page 1–5,
New York, NY, USA, 2005. Association for Computing Machinery. DOI:
10.1145/1083142.1083150.

[37] Nagappan, N., Ball, T., and Zeller, A. Mining metrics to predict component
failures. In Proceedings of the 28th International Conference on Software En-
gineering, ICSE ’06, page 452–461, New York, NY, USA, 2006. Association for
Computing Machinery. DOI: 10.1145/1134285.1134349.

[38] Oberhauser, R. VR-Git: Git repository visualization and immer-
sion in virtual reality. In Proceedings of the the Seventeenth Interna-
tional Conference on Software Engineering Advances, pages 9–14, 2022.
URL: https://www.thinkmind.org/index.php?view=article&articleid=

icsea_2022_1_20_10032.

[39] Porkoláb, Z., Brunner, T., Krupp, D., and Csordás, M. Codecompass: An open
software comprehension framework for industrial usage. In Proceedings of the
26th Conference on Program Comprehension, pages 361–369, 2018. DOI:
10.1145/3196321.3197546.

[40] Prechelt, L., Malpohl, G., Philippsen, M., et al. Finding plagiarisms among
a set of programs with JPlag. Journal of Universal Computer Science,
8(11):1016–1038, 2002. URL: https://pdfs.semanticscholar.org/6281/

93dbaa4b88101b8d7dd0a7c2eee86af5e32c.pdf.

[41] Shahin, M., Liang, P., and Babar, M. A. A systematic review of software archi-
tecture visualization techniques. Journal of Systems and Software, 94:161–185,
2014. DOI: 10.1016/j.jss.2014.03.071.

[42] Shinyama, Y., Arahori, Y., and Gondow, K. Analyzing code comments to
boost program comprehension. In Proceedings of the 2018 25th Asia-Pacific
Software Engineering Conference (APSEC), pages 325–334, 2018. DOI: 10.

1109/APSEC.2018.00047.

[43] Shneiderman, B. and Plaisant, C. Strategies for evaluating information visual-
ization tools: Multi-dimensional in-depth long-term case studies. In Proceed-
ings of the 2006 AVI workshop on Beyond time and errors: Novel evaluation
methods for information visualization, pages 1–7, 2006.

https://doi.org/10.1016/j.jss.2018.06.027
https://doi.org/10.1145/2991041.2991043
https://doi.org/10.1145/1083142.1083150
https://doi.org/10.1145/1134285.1134349
https://www.thinkmind.org/index.php?view=article&articleid=icsea_2022_1_20_10032
https://www.thinkmind.org/index.php?view=article&articleid=icsea_2022_1_20_10032
https://doi.org/10.1145/3196321.3197546
https://pdfs.semanticscholar.org/6281/93dbaa4b88101b8d7dd0a7c2eee86af5e32c.pdf
https://pdfs.semanticscholar.org/6281/93dbaa4b88101b8d7dd0a7c2eee86af5e32c.pdf
https://doi.org/10.1016/j.jss.2014.03.071
https://doi.org/10.1109/APSEC.2018.00047
https://doi.org/10.1109/APSEC.2018.00047


454 Anett Fekete and Zoltán Porkoláb

[44] Slater, J., Anslow, C., Dietrich, J., and Merino, L. CorpusVis–Visualizing
software metrics at scale. In Proceedings of the 2019 Working Conference
on Software Visualization (VISSOFT), pages 99–109. IEEE, 2019. DOI: 10.

1109/VISSOFT.2019.00020.

[45] Svitkov, S. and Bryksin, T. Visualization of methods changeability based on
VCS data. In Proceedings of the 17th International Conference on Mining Soft-
ware Repositories, pages 477–480, 2020. DOI: 10.1145/3379597.3387451.

[46] Teyseyre, A. R. and Campo, M. R. An overview of 3D software visualization.
IEEE Transactions on Visualization and Computer Graphics, 15(1):87–105,
2008. DOI: 10.1109/TVCG.2008.86.

[47] Wettel, R. and Lanza, M. Visualizing software systems as cities. In Pro-
ceedings of the 2007 4th IEEE International Workshop on Visualizing Soft-
ware for Understanding and Analysis, pages 92–99. IEEE, 2007. DOI:
10.1109/VISSOF.2007.4290706.

[48] Wettel, R. and Lanza, M. Codecity: 3D visualization of large-scale software.
In Companion of the 30th International Conference on Software Engineering,
pages 921–922, 2008. DOI: 10.1145/1370175.1370188.

[49] Williams, C. C. and Hollingsworth, J. K. Automatic mining of source code
repositories to improve bug finding techniques. IEEE Transactions on Software
Engineering, 31(6):466–480, 2005. DOI: 10.1109/TSE.2005.63.

https://doi.org/10.1109/VISSOFT.2019.00020
https://doi.org/10.1109/VISSOFT.2019.00020
https://doi.org/10.1145/3379597.3387451
https://doi.org/10.1109/TVCG.2008.86
https://doi.org/10.1109/VISSOF.2007.4290706
https://doi.org/10.1145/1370175.1370188
https://doi.org/10.1109/TSE.2005.63

	Introduction
	Related work
	Visualization for code comprehension support
	Usage of version control information
	Version control data visualization

	Methodology
	Background
	Data parsing

	Visualization
	Personal view
	Team view
	Affiliation views
	Individual affiliation view
	Accumulated affiliation view

	Coloring

	Implementation
	Case studies
	Validation
	Evaluation

	Threats to validity
	Conclusion and future work

