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Abstract

Patient flow simulation and analysis is one of the oldest IT -based methods
used to optimize patient care processes and hospital management. During the
pandemic, interest in this domain suddenly increased due to the various con-
straints and recommendations to reduce the likelihood of further infections
in the hospital. Suddenly, metrics such as the number of patients waiting in
the same area, the maximum time a patient could stay in a single room, and
the minimum distance between patients became important issues to moni-
tor and optimize. Using data and modelling concepts from various hospitals,
our team developed a simulation tool that used bpmn models to define an
emergency department. We then modified a single day’s usual patient flow
with various real-world inspired edge cases to evaluate how the simulated flow
would change and which stations would become bottlenecks, where the qual-
ity of patient care would deteriorate and rooms would become overcrowded.
To execute the models, we developed our own tool based on the open-source
Camunda modeling tool and the Business Process Model Notation (BPMN)
file format. To execute the generated models, we use our own Python-based
execution environment based on the SpiffWorkflow library, which permits ex-
tensive logging and extensive customization of the attributes analysed. In
addition, the modelling toolkit of Camunda was narrowed down and com-
piled so that it could be easily used by researchers who are not programmers.
In the paper, we present both the modeling process and the scenario de-
sign process, as well as the results obtained through the runs, including the
maximum waiting times during the model runs and the maximum number of
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patients waiting at once, which allowed us to validate the effectiveness of the
framework.

Keywords: healthcare, telemedicine, patient flow, simulation, covid, model-
ing

1 Introduction

As can be read in the NEJM Catalyst short article [18], patient flow technically de-
fines the total time frame that patients spend in and move through the healthcare
system from arrival to discharge. In general, we want this time to be as minimal as
possible, apart from the time required for the actual examination, diagnosis, and
care processes, without compromising patient and provider quality and satisfaction.
Improving the flow is essential as it can reduce the workload of medical staff and
patient waiting times, but otherwise overcrowding can occur, patient health can
deteriorate, while readmission and mortality rates can increase [18, 9]. Improving
patient flow was also an area of research in the 1990s. The World Health Orga-
nization (WHO) published a study using patient flow analysis (PFA), which helps
researchers examine staff utilization, key patient flow characteristics, resource and
financial needs, and emerging problems [20]. Another approach has been variability
analysis, which involves dividing variables into groups and then determining how
to measure them (e.g., severity of illness can be described as the deviation from a
perfectly healthy state). The next step is to reduce or even eliminate any variabil-
ity that is artificial, as it usually arises from dysfunctional processes. This should
already lead to an improvement in patient flow. Further progress can be expected
if natural variability is also measured and optimally managed [17]. Our approach
was to create a patient flow simulation framework that could account for different
variables to calculate and measure potential patient flow. To do this, we collected
information on commonly used patient flow measures and the variables that may
affect patient numbers in the Emergency Department (ED).

In the State of Art section of this study, we provide a summary of numerous
research papers that investigate techniques for quantifying the efficacy of ED. Then,
in the Motivation section, we review the modeling methodologies and requirements
that have arisen throughout the COVID-19 pandemic, summarize the parameters
and elements that have been investigated, and highlight those that are pertinent to
our simulation. This is followed by the Methodology section, which describes the
operation of the ED we aim to represent as well as the modeling and simulation tools
produced. In the Simulation section, we first list the scenarios that we planned and
then present and analyze their running results, in each case based on the longest
waiting times, the greatest number of patients waiting simultaneously, the trends in
patient numbers at each station, the average waiting time per triage level, and the
relative duration of each waiting time per triage level. The results of the research
are reviewed in the Discussion section. Finally, we present an outlook on future
goals for the framework in the Conclusion section.
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2 State of Art

According to the literature, different patient flow patterns occur under different
circumstances. Kang and Park [12] studied the hourly visit pattern and found a
bimodal distribution: the peak flow was from 10:00 to 11:00 and from 20:00 to
21:00. The lowest number of visits was between 02:00 and 08:00. In one Hungarian
hospital, patient volumes increase from 8:00 and peak around 12:00. Late night
hours are the least visited times, but the workload for staff is fairly constant [26].
When daily visit patterns were the focus, Hitzek et. al. [9] found that the peak
in patient numbers occurred on weekends (starting on Fridays, with the highest
numbers on Saturdays), holidays, and school vacations. The authors suggest that
the explanation may be that people tend to engage in risky activities at these times.
Varga et al. [26] also examined the difference between patient numbers on weekdays
and weekends: They found similar trends, except that weekend nights were slightly
more demanding.

There are also seasonal patterns of visits: Hitzek et. al [9] found the highest
numbers of patients in spring and the lowest in fall. In contrast, Won, Hwang, Roh,
and Chung [27] found the highest number of asthma patients in the fall, especially
in September and October, and the lowest from June to August. They also found
that more patients visit the ED in spring from year to year.

Linked to seasonality, but with more focus on the actual temperature Otsuki,
Murakami, Fujino, Matsumura and Eguchi [19] found that during cold winters less
non-urgent patients visited the ED, suggesting that people are less active in the
cold weather. In contrast the warmer summer weather raised the patient numbers.

Heat waves can also impact visits to ED. Schramm et. al [22] published a study
of the likely impact of a June 25-30, 2021 heat wave, affecting 10 regions of the U.S.
that contain 4% of the population but accounted for 15% of heat-related ED visits.
From May to June, there were 3,504 heat-related cases at the ED, 79% of which
occurred during the heat wave. The peak was on June 28, when 1,038 patients
arrived. In comparison, 2 years earlier on the same day, 9 patients had heat-related
problems at the ED.

The usual measures of patient flow are bed occupancy rate (it is also suggested
to consider the number of outgoing and incoming patients) [13, 8], transfer time
(i.e., the time to prepare the bed for a new patient), and patient transfer (how
many patients had to be transferred, how much time and phone calls were required
to transfer, etc.). Other ED related measures may include: the time a patient
spends in the department from admission to discharge, the actual time it takes to
discharge a patient and/or refer them to another department, how many patients
were treated in a given time interval, the wait time to see a physician or receive
treatment, the number of ambulances transferred to another ED, etc. [8].

For example, Varga et. al. [26] measured how much time elapsed before medical
care was initiated between different triage levels. The results showed 3.6 ± 5.8
minutes at the first triage level, 7.0 ± 11.8 and 23.2 ± 26.1 minutes at the second
and third triage levels, and 37.8 ± 38.3 and 44.2 ± 43.5 minutes at the fourth and
fifth triage levels.
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Patient flow analysis has also been used as the basis for many research projects
using genetic algorithms and in some cases, machine learning, to solve or optimize
scheduling issues at various parts of the hospital process.

Yousefi et al. [28] conducted an evaluation of 38 simulation-based optimization
experiments for the ED, published between 2007 and 2019. They have given a bib-
liographic foundation on the topics discussed, compiled data on the methodologies
and tools used, and identified significant trends in the area of simulation-based op-
timization. They have stated that future research should concentrate on improving
the effectiveness of multi-objective optimization problems by reducing their time
and labor requirements.

In their study, Yang-Kuei Lin and Yin-Yi Chou [16] examined the difficulty of
allocating a set of surgical procedures to many multipurpose operating rooms. They
have suggested a redesigned mathematical model and four simple heuristics that
ensure the efficient discovery of viable solutions to the examined issue. In addition,
they provided four local search processes that may greatly enhance a given solution
and used a hybrid genetic algorithm (HGA) that combines initial solutions, local
search procedures, and an elite search technique to the examined issue.

El-Bouri et al. [7] conducted a literature study on the use of Artificial Intelli-
gence (AI) to hospital patient scheduling. They addressed the many AI strategies
described in the literature, such as rule-based systems, decision trees, artificial neu-
ral networks, and evolutionary algorithms. In addition, they have examined the
many sorts of patient scheduling challenges that have been investigated, including
surgery scheduling, appointment scheduling, and emergency department schedul-
ing.

Seunghoon Lee and Young Hoon Lee [14] have suggested using reinforcement
learning (RL) to schedule emergency department (ED) patients. They have de-
veloped a mathematical model and a Markov decision process (MDP). Then, they
developed an RL algorithm based on deep Q-networks (DQN) to identify the ideal
scheduling strategy for patients. In the provided cases, they have shown that deep
RL outperforms dispatching rules in terms of reducing the weighted waiting time
of patients and the penalty score for emergency patients.

Haya Salaha and Sharan Srinivas [21] investigated the usage of a hybrid artificial
intelligence system to solve the issue of hospital patient scheduling. To enhance
patient scheduling, they have presented a mix of genetic algorithms and an Artificial
Neural Network (ANN). They have shown that their hybrid approach can find
superior schedules than either Generic Algorithm (GA) or ANN alone, and it has
been applied to actual hospital data.

3 Motivation

Research, optimization, and various IT solutions played an important role during
the COVID-19 pandemic. While various impacts and metrics of the pandemic
itself are still being researched and evaluated by various research teams, another
very active area is focused on preparing existing systems to work better and more
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efficiently in the event of another pandemic.
One need that most research teams agree on is the need for modeling and simula-

tion tools. Currie et. al [4] in their work emphasized the importance of simulations
to reduce the impact and severity of the epidemic COVID. They identified the
following decision areas as appropriate for optimizing their effectiveness through
simulations: the selection of quarantine and isolation strategies, the development
of social distancing rules, the construction of lockdown release scenarios, the ap-
propriate method for test distribution and transport, the identification of the most
critical demographic groups for vaccine distribution, and the appropriate expansion
and allocation of hospital resources.

Similar comments were made by Dieckmann et al. [5], whose work focused on
the resources needed for effective simulation and how they can be used. In their
view, simulations should focus on three main areas: educating workers about the
epidemic, optimising the process of care at the system level, and assessing the needs
and mental health workload of health care workers.

Improving hospital systems and patient flow to provide faster patient treatment,
efficient resource allocation, and the development of techniques to avoid future
infections lies at the junction of the two fields of study. Tavakoli et al.[24] recently
published their results on a simulation methodology similar to ours. Although the
model and triage levels are much simpler than they should be to prove accurate
in simulations of Hungarian hospitals, the metrics and principles established can
serve as a model for similar simulations. Terning et al.[25] had similar elements
in mind, and although the simulation from their published work is still relatively
rudimentary, the formulas and conditions used to evaluate their results provide a
very good basis for initial validation of a similar simulation.

One of these key parameters, perhaps the easiest to follow in simulations, is
to avoid overcrowding, i.e., to avoid the kind of patient flow where many patients
are waiting in an area at the same time. Dinh et al. [6] specifically focused on
this importance in their work, attempting to establish principles and rules to avoid
unnecessary hospitalizations during an epidemic and to reduce the length of stay
in the hospital. In their brief review, Janbabai et al. [10] focused on protecting
hospital staff in addition to patients, focusing on preoperative, intraoperative, and
postoperative processes within the patient flow. Of course, other approaches have
been explored in addition to simulation-based patient flow study and analysis. For
example, Arnaud et al, [2] have attempted to use machine learning based on patient
flow metrics to determine how to optimise the number of hospital beds and expedite
the triage process, to name a few examples.

In the development of various healthcare applications for hospitals and research
teams, our team has used the work of Prof. Jose L. Jimenez & Dr. Zhe Peng
[11] who, based on various peer-reviewed research, developed an easy-to-use tool
to measure the likelihood of COVID infection in different environments based on
the size and type of the area in question, as well as the number, behaviour, and
condition of the people in it. Based on these results, and taking into account the
fact that patients and staff wear masks in the hospital and hospitals use various
distancing measures and restrictions, including a strong emphasis on ventilation,
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our team calculated that the probability of infection for a number of 10 to 20
patients in the area was only 4.39 % after one hour, and even after six hours it
only increased to 5.96 %. This means that one of the most important aspects of
optimising patient flow for COVID prevention is to keep the number of patients in
a given range around or below 10 while trying to speed up the flow itself to avoid
congestion.

4 Methodology

4.1 Introduction of the ED

During the early phases of our research, we used the ED model of Leva and Sulis
[15], as it proved to be the model most similar to the Hungarian ones based on
comparisons between this model and our team’s experience and knowledge of the
structure and functioning of the ED. Differences include minor changes in terms of
which station is served by which staff member, and the introduction of an additional
fifth triage level as mandated in the Hungarian system. The model includes 7
different lanes and a sub-process for handling the complex visit process if required
by the patient’s condition. The first lane is the registration process, where patients
are admitted to the hospital and treated according to the severity of their condition
upon arrival. They are then admitted to the triage lane where they await initial
assessment. For less urgent cases, they may voluntarily leave the process at this
stage if they wait too long.

After leaving triage, the triage nurse may decide to refer the patient to an
internal clinic; otherwise, the visit process takes place, where the nurse or physician
takes a history, takes blood, performs a radiology referral, and then decides the
patient’s fate based on the results. The outcome of the process may be referral to
an internal clinic, admission to the emergency department, referral to an outside
facility, discharge, or in a small percentage of cases, death of the patient.

4.2 Modeling and Simulation Tools

To create the hospital simulation, we chose the open-source Camunda Modeler [1],
which allows us to create arbitrary processes in a parameterizable, editable, and
executable format. The output of Camunda modelling is the BPMN (Business
Process Model and Notation) file [3], a text file based on the XML standard that is
displayed by Camunda-compatible tools and execution environments with a visual
representation.

However, Camunda and BPMN modelling do not always prove suitable. In
our various healthcare projects, the issue of clarity and complexity of modelling
has often arisen in similar cases, especially when some clinicians and researchers
wanted to model and describe processes in a way that was transparent to them,
but the Camunda elements were considered too broad and complex. Our goal,
therefore, was not only to accurately model the model we created, but also to make
it understandable to researchers outside of IT and be able to create similarly simple
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processes, leaving the more complex parts to scripts and programmers running in
the background.

While developing the simulation, we considered using the official Camunda sim-
ulation tools and Visual Paradigm, among others. However, we ultimately decided
to create our own simulation environment using open source tools to ensure that
the simulation settings, configurations, and types of metrics collected were cus-
tomizable for us.

Our custom simulation is based on the Python library SpiffWorkflow [23], which
can process and run bpmn models created with Camunda, among many other
inputs. Scalability and robustness were key elements of the hospital workload
modelling operating environment. The principle is based on the idea that each
patient is a parallel running SpiffWorkflow thread sharing common resources for
which we implemented waiting, handover and reservation using semaphores. The
measurement and logging of wait and turnaround times in the system is differential,
with each thread regularly logging its timestamps as it arrives at and departs from
the stations. Our approach was initially based on the naive assumption that the
bottleneck is the availability of staff in the ED, and that if the required physician,
nurse, or nursing staff is available to perform the task, then the space and equipment
are available as well.

Figure 1 illustrates the components of the framework and their precise relation-
ships. The model defining the ED is provided in two bpmn files: Visit.bpmn for
the visit subprocess and EDAsIs.bpmn for the ED architecture, which references
Visit in the correct place. The framework’s starting point is runner.py, which spec-
ifies how many patients must be allowed into the system for the simulation, what
stop condition must be satisfied to terminate the simulation, and also manages the
extraction of the various metrics at the conclusion of the simulation (the latter
activity is expected to be handled by a separate module in a future version). The
runner.py parses the contents of the bpmn files and utilizes them to generate run-
ner threads for each patient that will execute the steps specified in the bpmn files.
The simulations employ playbook.py to execute the simulation of each step and
simulation.py to indicate when a shared resource (e.g., doctor, nurse) is required,
lock it using semaphore, or set a triage level-based queue if there are no available
instances of that resource.

4.3 Modeling

The following section presents the model and elements of the Camunda workflow
based on the combination of the Leva and Sulis paper with elements from the Hun-
garian hospital system. Table 1 shows the content of the first two lanes, registration
and triage, the first stations that are the same for every patient in the hospital. The
elements of the simulation script are handled either as events, where patients must
acquire a shared resource and then perform some processing before proceeding, or
as end states, which, when reached, terminate the patient’s simulation thread. The
required resource in the simulation is a member of the ED staff: Generic Nurse
(GN), Hospital Employee (HE), Specialized Nurse (SN), Doctor (DR) and Generic
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Figure 1: Flowchart of the simulation framework

Operator (GO).
Note that due to the deterministic nature of the simulation, these stations and

steps model how a patient is admitted to the hospital and then treated, with the
environment assigning almost the entire pathway to the patient at the beginning of
the simulation with all the important attributes. Our research team had two main
reasons for this: On the one hand, the methodology gives researchers who might
use our tools in the future the ability to analyze and debug the expected runtime
of the simulation without having to wait for the entire simulation to run. On the
other hand, it also gives us the ability to manually enter patients into tables in
order of arrival with their severity, and even to examine specific cases in minute
detail using the tools. The modeling of these pathways raised a serious research
question at the beginning, as the international literature and the original source
of this model indicated that the necessary personnel for these pathways are the
general nurses, and in order to keep the simulation accurate, we decided to stick
with this version. However, in Hungarian hospitals it is much more common to
have at least one physician present during these phases. In our further research,
collecting more specific information from Hungarian hospitals, including those we
have conducted research with, we want to test different modifications of this trace
and see how they might change some of the results and trends we have obtained
during our previous research. The next major step is the Visit, which is modeled as
a separate subprocess. The elements of the Visit model can be seen in Table 2. The
main difference from the main lanes is the need for specialized nurses and doctors,
and the many optional pathways depending on whether blood tests or radiological
examinations are required.

After the Visit subprocess, the only step left in the simulation is the processing
of the outcome, which is usually performed by a specialised nurse (SN). There are
five possible outcomes defined both in the paper containing the basic version of this
model and in the papers analysing Hungarian hospitals: Death, Hospitalisation on
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Table 1: Major events of the main ED flow

Name ID Description Type Req
Patient
Registration

register patient Admitting the pa-
tient to the hospital

event HE

Evaluate
Urgency

evaluate urgency The urgency, as a
binary information
is determined for
the patient. Urgent
cases are immedi-
ately forwarded to
pre-visit

event GN

Abandon abandon The patient decides
to leave the hospital
before pre-visit

end state -

Pre-visit pre visit Quick measurements
and examination by
a nurse to determine
the triage level and
severity of the case.

event GN

Assign ESI assign esi Emergency severity
index is assigned to
the patient, who is
either transferred to
internal clinic or sent
to the full visit pro-
cess

event GN

Manage
outcome

manage outcome Management of re-
sults and outcomes
resulting from the
visit process.

event SN

Ward, Discharge, Transfer to External Facility, or Transfer to Internal Clinique.

We also achieved the desired simplification in modelling. Since the model was
not overly complex, we used only four elements that were visually and practically
comprehensible: the start point, the end point, the event, and the decision point.
These were simply augmented during design with information about which event
gave the patient which additional attributes, and the decision points were then
used to select exactly what criteria the patient should use to choose the direction
of travel in the simulation. The entire modelling process thus consisted of a total
of four elements, plus a few lines of pseudocode description for the events, which is
not only simple, but also compatible and interoperable with many other modelling
tools. The timer event was considered as a fifth element type, but it was ultimately
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Table 2: Elements of the Visit subprocess

Name ID Description Type Req
Collect His-
tory

collect history The nurse collects
and organizes the
healthcare history of
the patients via di-
rect interview with
the patient and/or
database queries

event SN

Hypothesize
Diagnosis

hyp diag The doctor evalu-
ates the results so
far, examines the pa-
tient and either es-
tablishes a diagno-
sis or may require
further tests (blood
tests and X-rays) be-
fore doing so.

event DR

Take Blood
Sample

take blood Taking a blood sam-
ple as prescribed by
the doctor.

event SN

Laboratory laboratory The blood sample is
transferred to labo-
ratory examinations.
If there is any in-
formation available
quickly, it is sent
back to the doctor.

event DR

Transfer to
radiology

trans rad The patient is trans-
ferred to radiology
and prepared for the
X-ray recordings.

event GO

Radiology radiology Usage of diagnostic
imaging procedures,
such as ultrasound,
CT, MR.

event SN

Establish
diagnosis

estab diag Based on the results
and the information,
diagnosis is estab-
lished

event DR

Define ther-
apy

def therap If possible, therapy
is defined by the doc-
tor

event DR
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ruled out due to the system’s standardized time management. All wait periods
are supplied to the framework as arguments or thresholds with defined values.
SpiffWorkflow’s scripting and customisation options are restricted in this domain,
and the timer event would be conducted in real time regardless of the simulation’s
time format.

5 Simulation

Our goal was to study how an emergency department ideally operates and how
unexpected events can occur, using this operating environment and the modelled
emergency department with the number of patients arriving, the severity of their
cases, the probabilities and rates for each branch from real data. Or in the case of
an epidemic, how to optimise turnaround and wait times (since similar studies in
many cases have only looked at similar models in terms of staff time or budget):
Is it clearly a good idea to increase staff and the number of rooms and equipment
needed to perform each activity?

5.1 Scenarios

To be able to create different situations and scenarios to analyze how small changes
in patient flow, staffing, or processing time of the different stages affect the simu-
lation throughput and metrics, we first created a baseline scenario based on real
data from the ED of Somogyi Kaposi Mór Practicing Hospital [26] to estimate the
rates of patient arrival and distribution between the five triage levels (i.e., the ur-
gency of each case) to model. According to their data from 2015 statistics, the ED
sees approximately 90 patients per day. In terms of triage levels, 0.67% of patients
had triage level 1, 1.24% had triage level 2, 23.35% had triage level 3, 40.17% had
triage level 4, and 34.54% had triage level 5. Triage levels 1 and 2 require immedi-
ate treatment, level 3 can tolerate waiting times up to 30 minutes, level 4 up to 60
minutes while level 5 even up to 2 hours.

As for the fate of the incoming patients after treatment: 20.9% were hospitalised,
2.7% voluntarily discharged, 1.5% were referred for triage, 0.4% were transferred
to another inpatient facility, 0.4% died and 73.5% were discharged to their home.

The baseline scenario was based on the work of Leva and Sulis and was run
with 3 doctors, 2 generic nurses, 3 specialist nurses, 2 clinical staff and 4 generic
operators, with a 20% chance of a new patient arriving every minute - this resulted
in the most even distribution, the element of the simulation to handle increasing
or decreasing patient arrival density at given times is currently being tested and
will be included in a next pilot phase. The turnaround times at each station,
which depend on the triage level, follow the one-to-one model of Leva and Sulis,
considering triage level 3 as the dividing line between urgent and less urgent cases.
For all other scenarios, these original distributions and proportions were shifted
through a type of exacerbated bias. In some cases, we increased the severity of
incoming patient cases, in others we reduced the number of emergency department
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staff, and in still other scenarios, to approximate the impact of COVID, we used
estimations of the need for and duration of decontamination to increase wait and
turnaround times at each station in the simulation. The type and number of staff in
the emergency department was based on the paper by Leva and Sulis. The various
scenarios, their specific configurations and expected results are listed below.

• SC0: This is the basis of comparison made by merging of the Somogyi Hos-
pital and the Italian sample. Patients are rarely admitted for urgent triage
1 or 2. The time spent at each station follows the original pattern drawn
from the papers. Specification: 3 doctors, 3 generic nurses, 2 specialized
nurses, 2 clinical staff, 4 generic operators; regular processing times; triage
distribution: l1-0.00673, l2-0.01241, l3-0.23359, l4-0.40175, l5-0.34549; 20%
patient arrival chance. Expectation: Patients with lower triage levels have
to wait longer at common stations (registration, triage), where congestion
and waiting times increase, but the time spent in the system remains within
acceptable limits.

• SC1: Scenario inspired by red letter holidays. The staff in the Emergency
Department has been significantly reduced, the density of incoming patients
is lower, but the incoming patients are almost without exception more urgent,
with a triage level higher than 3. Specification: 1 doctor, 1 generic nurse, 1
specialized nurse, 1 clinical staff, 2 generic operators; regular processing times;
triage distribution: l1-0.0873, l2-0.1241, l3-0.23359, l4-0.00417, l5-0.00345;
20% patient arrival chance. Expectation: Even for triage level 3 patients,
waiting and turnaround times will increase, while for triage level 1 and 2
cases, times will not be dramatically reduced.

• SC2: Summer heat, heatwave inspired scenarios. Patient arrival density
is doubled compared to SC0, with a significantly higher probability of ar-
riving triage level 1 and 2 patients. Specification: 3 doctors, 2 generic
nurses, 3 specialized nurses, 2 clinical staff, 4 generic operators; regular pro-
cessing times; triage distribution: l1-0.1873, l2-0.2241, l3-0.43359, l4-0.00417,
l5-0.00345; 20% patient arrival chance but checked at every half minute in-
stead of every minute. Expectation: Significant congestion at higher triage
levels, with waiting times of several hours for patients at lower triage levels.

• SC3: An epidemic-inspired scenario. With only urgent patients coming to
the hospital (less urgent cases are not even admitted), the number of staff
in the Emergency Department has been increased, but also the minimum
waiting and turnaround times due to disinfection procedures. Specification:
6 doctors, 4 generic nurses, 6 specialized nurses, 8 clinical staff, 4 generic
operators; processing times are increased with a few minutes to simulate
disinfection; triage distribution: l1-0.1873, l2-0.2241, l3-0.13359, l4-0.00417,
l5-0.00345 ; 20% patient arrival chance. Expectation: Barely any patients
from lower triage levels, but significantly increased times for higher levels.
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• SC4: A benchmarking scenario, using the staff number of SC3 to handle the
patient load of SC2 Specification: 6 doctors, 4 generic nurses, 6 specialized
nurses, 8 clinical staff, 4 generic operators; regular processing times; triage
distribution: l1-0.1873, l2-0.2241, l3-0.43359, l4-0.00417, l5-0.00345; 20% pa-
tient arrival chance but checked at every half minute instead of every minute.
Expectation: Critical waiting and turnaround times decreased, the churn
and trends of the flow will be similar to the ones of SC0

5.2 Results

Each scenario was run with a load of 90 patients (the daily average based on
Somogyi Hospital data) and was intended to fill a 7-8 hour shift in the emergency
department.

5.2.1 Scenario0

At SC0 we immediately noticed some interesting differences compared to our first
hypothesis. As seen in Figure 2, the Diagnosis Establishment phase had the longest
combined times (i.e., waiting and execution combined), while other elements of the
first two lanes, such as registration and urgency evaluation, were relatively short.

Figure 2: Longest combined times in SC0

Similarly, the maximum number of patients either waited or were studied at the
same stage of their simulation. As shown in Figure 3, the longest queues were in
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Radiology, Diagnosis Establishment, and Manage Outcomes after the visit.
A more detailed trend chart showcasing the top 3 stations based on maximum

number of waiting patients and variability can be seen in Figure 4, which shows
how the number of patients at the stations with the strongest bottleneck effect in
the given scenario has changed over time in the simulation.

Figure 3: Maximum number of waiting patients in SC0

As for the comparison between the various triage levels, these values can be
seen on Figures 5 and 6.

Based on the distributions and probabilities of the Hungarian hospital, not a
single triage level 1 patient was admitted to ED during the simulated day. Triage
stage 2, of course, had the shortest average time, while others had significantly
longer times, with a bottleneck in the outcome management phase after the visit
process.
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Figure 4: Patient number trends in SC0

Figure 5: Average times spent in the simulation per triage level in SC0
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Figure 6: Distribution of times spent at the various stations per triage level in SC0
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5.2.2 Scenario1

As with Scenario 1, reducing emergency department staffing and increasing the
proportion of urgent patients has led to some interesting results in waiting and
turnaround times. As can be clearly seen in Figure 7, the difference from the
SC0 results is that the maximum aggregate waiting and turnaround times at each
station are almost minimal.

Figure 7: Longest combined times in SC1

The durations hold despite the fact that, as shown in Figure 8, the number
of patients waiting at the same time has almost halved compared to the outliers
in SC0 due to lower arrival times (with the outliers being the Pre-Visit, Manage
Outcome, and Diagnosis Establishment).

Examining the top 3 trends in Figure 9 supports our hypothesis that lower
arrival density reduced the number of patients waiting at a site, even at higher
triage levels. Here, the peaks occurs when most patients need a clinician (in the
simulated case, when preparing or performing radiology examination and during
the outcome management), as only one of the clinicians in each role (except the
generic operator) is on call during SC1. However, even at the peak, the weighted
trend reaches a lower maximum compared to SC0.

The averaged times per triage stage in Figure 10 also confirm one of the key
expectations of the simulation. While triage stages 1 and 2 are proportionally faster
than the other stages, they are not exceptionally fast-for example, the average
duration of Triage Level 5 is not significantly higher than Triage Level 1 (the high
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Figure 8: Maximum number of waiting patients in SC1

Figure 9: Patient number trends in SC1

values for Triage Levels 3 and 4 may be due to the longer path they follow in the
simulation in addition to the arrival time).

They are treated earlier than other patients, they have to wait much less at
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Figure 10: Average times spent in the simulation per triage level in SC1

many bottleneck stations, as can be seen in Figure 11, but their waiting times are
not much shorter than those of other patients, and due to congestion and resource
constraints, it is not even fully guaranteed that, for example, a level 1 patient will
be treated faster than a level 2 patient, because some critical processes cannot be
interrupted.

Figure 11: Distribution of times spent at the various stations per triage level in
SC1
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5.2.3 Scenario2

Scenario 2 represented the next level of workload complexity in patient flow. The
goal was to see if the occurrence of higher triage levels and the reduction in hospital
staffing would have better highlighted and made visible certain bottlenecks in the
model, what the effect would be if more urgent triage levels were more likely than
average, and if, despite being fully staffed, the mass of patients arrived in the ED
much faster, about twice as fast as normal. And the effect proved to be very
interesting. As can be seen immediately in Figure 12, wait times for the stations
identified as bottlenecks in the previous scenarios shrink to nearly insignificant
amounts compared to registration, where some patients would have to wait up to
an almost unrealistic four hours to even be admitted.

Figure 12: Longest combined times in SC2

This shift is also reflected in the maximum number of patients waiting at the
same time, as shown in Figure 13. Diagnosis Establishment, Manage Outcome, and
Pre-Visit stations in the simulation can still be considered as outliers, but due to
crowding at patient admission, they are significantly exceeded by register patient
and evaluate urgency.

The exact cause and trajectory of overcrowding are also clearly evident in the
weighted trends shown in Figure 14. The number of patients waiting at the same
time was slightly higher at the beginning than in the previous scenarios, but around
the middle of the simulation there was a huge increase in overcrowding that affected
subsequent phases.
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Figure 13: Maximum number of waiting patients in SC2

Figure 14: Patient number trends in SC2

However, Figures 15 and 16 also show that prioritisation of triage levels was
adhered to despite system congestion. The average turnaround time for patients in
triage levels 1 and 2 was remarkably fast in the simulation, spending a relatively
large amount of time primarily at the Register and Define Therapy stations, while
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patients in less urgent cases were in the simulation for up to three to four hours,
with a significant amount of waiting time spent at the registration desk.

Figure 15: Average times spent in the simulation per triage level in SC2

Figure 16: Distribution of times spent at the various stations per triage level in
SC2
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5.2.4 Scenario3

Scenario 3 was the most critical simulation and the most important for our further
research, as we attempted to create a patient flow whose points and biases reflected
the characteristics of an actual epidemic compared to the base case. In this case,
the emergency department was visited only by urgent patients, typically with a
triage level of 3 or higher, and the flow was slowed by the fact that although the
number of staff was increased, the passage through the phases was much slower
because of mandatory decontamination. Figure 17 shows the primary consequence:
average wait and turnaround times per station are significantly longer than for the
original cases (especially considering that the majority of cases here required urgent
care).

Figure 17: Longest combined times in SC3

The number of patients waiting at the same time has also increased significantly,
as can be seen in Figure 18. In addition to the bottlenecks defined so far, the one
that stands out is the Hypthosize, the step in the visit process where the patient
is first seen by a physician in our model rather than by various nurses and generic
operators.

This increase can also be seen in the top 3 trends in Figure 19, which are not
only much higher than the results in the previous scenarios, but the peak is not as
much of an outlier point as in previous scenarios, but an extended phase that takes
up a significant portion of the simulation runtime. In other words, the congestion
problem started much earlier, and as the later phases slowed, the number of patients



660 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

Figure 18: Maximum number of waiting patients in SC3

in the backlog did not start to decline as much as in the earlier cases, even though
there should have been more staff available and the patients would have warranted
a faster process due to the high triage levels.

Figure 19: Patient number trends in SC3
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Figures 20 and 21 also confirm that, as expected, almost exclusively patients
with a triage level of 3 or more were admitted to the emergency department. On
average, levels 1 and 2 were completed within an hour. As for the time distribution,
it is interesting to note that it is quite similar for the three triage levels, with a
significant proportion being spent in Register Patient, Define Therapy and Establish
Diagnosis.

Figure 20: Average times spent in the simulation per triage level in SC3

Figure 21: Distribution of times spent at the various stations per triage level in
SC3
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5.2.5 Scenario4

Based on Scenario3, then, it looked strongly as if simply increasing staffing would
not lead to proportionally faster patient flow in the emergency department model.
However, in our analyses, we felt that this should not be a generalisation. Therefore,
for the fourth scenario, we essentially combined two earlier scenarios by combin-
ing the most extreme and in some respects worst Scenario2 with the significantly
increased staffing of Scenario3. Figure 22 already shows that the average waiting
and turnaround times are much more similar to the baseline Scenario0 than to the
original Scenario2.

Figure 22: Longest combined times in SC4

As can be seen in Figure 23, the metric of most patients waiting in one place at
one time have also changed: Although most stations still have 4-6 patients waiting
at the same time, the number is much more balanced because bottleneck stations
no longer have as many patients stopped at the same time as they did originally.

This smoothing and apparent reweighting is also reflected in the top 3 trends
in Figure 24. The trend almost follows a pattern, with patient peaks at each phase
pccuring in a nearly synchronous manner, rather than showing larger and more
severe outliers as the simulation nears its end.

Looking at the metrics in Figures 25 and 26, it is noticeable that this time we
had no patients in triage level 5, i.e., the least severe patient category, which makes
the improved results in the previous figures even more obvious. Triage levels 1 and
2 took almost half as much time as the least severe patients. In addition, the first
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Figure 23: Maximum number of waiting patients in SC4

Figure 24: Patient number trends in SC4

two triage levels are similar in their time distribution, compared to levels 3 and
4, where several factors contributed to a longer duration relative to each other.
Thus, while in Scenario3 the increase in staffing did not appear to reduce phase
wait and turnaround times as much proportionately due to longer durations, here
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the increase proved to be significantly effective.

Figure 25: Average times spent in the simulation per triage level in SC4

Figure 26: Distribution of times spent at the various stations per triage level in
SC4
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5.3 Discussion

In reviewing the simulation results, we found the following. First, the expectations
for each scenario were either met or deviations occurred that can be interpreted
based on the simulation run. Thus, despite the fact that the modelling toolbox itself
has been simplified in line with our original objective, the model functions with
the same accuracy. For example, with input from Hungarian and Italian hospital
sources, the results of Scenario0 meet all specifications, from patient waiting times
through triage level prioritisation to the maximum number of patients waiting at
any one location. For the additional scenarios, the biases also yielded the expected
results, so we can say that the reduced modelling toolkit, supported by scripts
based on the SpiffWorkflow library, met our expectations and can be used
for further simulations.

The second most important observation from the results is that an increase
in the number of staff in the emergency department does not necessarily
mean an automatic acceleration of patient flow (and at this point, the sim-
ulation has not even been extended to include elements such as the limited space
available for equipment and testing). However, there are some points where
increased staffing does provide a boost, such as in patient registration
and emergency assessment , where increased staffing not only prevents these
stations from becoming bottlenecks, but also helps prevent overcrowding in later
stages of patient flow.

Examination of the trend plots for each scenario also shows that overcrowding
does not start immediately, with the exception of SC3, where overcrowding was
much more continuous due to the time gained from decontamination, with the
peak typically occurring in the middle of the Emergency Department simulation,
typically at points where throughput was already more critical. So, if the goal
is to allocate resources more efficiently, it is certainly worthwhile to
increase staffing during these periods and decrease it thereafter .

Finally, in all scenarios, it has been shown that the most problematic phases in
the patient flow are determining therapy and waiting for the visit to be evaluated.
If the goal is to comply with COVID recommendations and reduce potential in-
fection rates, these are the stages of patient flow where it is worth either reducing
the time spent in the waiting room or, if this is not possible, providing pa-
tients with more separate, well-ventilated waiting rooms where they can
wait for results without risking an extended stay that could reduce the
effectiveness of infection prevention .

Moreover, unlike many commercial solutions such as Visual Paradigm1, Simcad
Pro Health Simulation Software2, or Simul83, our solution is a significant improve-

1Visual Paradigm — How to Create BPMN Diagram? URL: https://www.visual-paradigm.
com/tutorials/how-to-create-bpmn-diagram/. [Accessed 24-Jan-2023]

2Simcad Simulation Software — Patient Flow Simulation: Predictive Modeling and Analytics,
URL: https://www.createasoft.com/patient-flow-simulation. [Accessed 24-Jan-2023]

3Simul8 — Improve patient flow and enhance service quality. URL: https://www.simul8.com/
applications/healthcare/improving-emergency-department-processes-with-simulation.
[Accessed 24-Jan-2023]

https://www.visual-paradigm.com/tutorials/how-to-create-bpmn-diagram/
https://www.visual-paradigm.com/tutorials/how-to-create-bpmn-diagram/
https://www.createasoft.com/patient-flow-simulation
https://www.simul8.com/applications/healthcare/improving-emergency-department-processes-with-simulation
https://www.simul8.com/applications/healthcare/improving-emergency-department-processes-with-simulation
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ment in that it provides both free modeling and model execution, the source code of
the modules used can be modified freely, as can the simulation’s exact elements and
output. In addition, the simplified modelling toolset and the BPMN file format do
not restrict the usage of the created model, so if a research team has access to alter-
native simulation systems, the generated model may be utilized as-is or with minor
modification. And its usage in its current form, maybe with minor enhancements,
enables it to be utilized in conjunction with other simulation and assessment tools
or by other processes. For instance, the data may be automatically merged with the
hospital’s measurements, which can then be run through Jimenez and Peng’s tool
[11] to create an accurate picture of the possibility of COVID spreading in a par-
ticular department or institution. Since the output is customizable, it may be used
to study a broad variety of optimisation tasks, answering the demand mentioned
by Yousefi et al [28]. The output and Python-based framework will presumably be
of great value for reinforcement learning.

6 Conclusions

Our research is therefore currently at a stage where we have a modelling toolkit that
can be readily used by researchers in other fields, as well as a simulation environ-
ment built from open-source components that can capture metrics and observations
according to our needs, and which has already been able to provide valuable obser-
vations in its current form. There are, of course, a number of active directions in
which we would like to develop this simulation solution further. The first and most
obvious would of course be to obtain real Hungarian hospital data, with particular
emphasis on data collected during the pandemic, to refine and improve the simu-
lation, which is subject to ethical approval, and the application process is already
underway. In addition, we plan to extend the simulation in its current form to
include additional agents, such as constraints on equipment and rooms and more
complex manipulation of patient arrival density using distribution and probability
methods published in literature. We hope that the tools, method, and model re-
sulting from our research will advance to the point where they become a valuable
source of information for healthcare professionals to reduce the impact of cases such
as COVID and improve hospital efficiency and patient care.
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