Acta Cybernetica — online—first paper version — pages 1-25.

Identifying Client-Server Behaviours in
Legacy Erlang Systems*

Zséfia Erdei® Melinda T6th® and Istvan Bozé™

Abstract

In Erlang, behaviours are special forms of design patterns. There are
many benefits to using behaviours. For example, behaviours can help abstract
away the most common parts when solving similar problems. Design pattern
recognition may help understand the source code of the software. It can
provide structured information about the purpose of specific parts and the
design decisions behind the implementation. For object-oriented languages,
several tools exist that use different approaches and methods to identify design
patterns. We present a method for identifying source code fragments in legacy
Erlang systems amenable to transforming into client-server Erlang design
patterns. In our analysis, we identify the base set of server candidates using
concurrent process analysis and narrow down the result using further static
analysis knowledge using the RefactorErl framework.

Keywords: Erlang, design patterns, client-server behaviour, concurrent be-
haviours, static analysis

1 Introduction

Design patterns are developed best practices that provide general, reusable solu-
tions to common problems. There are several benefits to using design patterns.
Their use promotes transparent and easy-to-maintain code, reduces the possibility
of errors, and speeds up the development process. Design patterns are not specific
to any programming language, they are general solutions that can be implemented
in many programming languages. However, most design patterns are designed for

*Supported by EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Ve-
hicle Control Technologies — The Project is supported by the Hungarian Government and co-
financed by the European Social Fund. Application Domain Specific Highly Reliable IT Solutions
project has been implemented with the support provided from the National Research, Devel-
opment and Innovation Fund of Hungary, financed under the Thematic Excellence Programme
TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme.

“Eo6tvos Lordand University, Budapest, Hungary

bE-mail: zsanart@inf.elte.hu, ORCID: 0000-0002-5089-4984

¢E-mail: toth.m@inf.elte.hu, ORCID: 0000-0001-6300-7945

4E-mail: bozo_i@inf.elte.hu, ORCID: 0000-0001-5145-9688

DOI: 10.14232/actacyb.299529

mailto:zsanart@inf.elte.hu
https://orcid.org/0000-0002-5089-4984
mailto:toth\protect _m@inf.elte.hu
https://orcid.org/0000-0001-6300-7945
mailto:bozo\protect _i@inf.elte.hu
https://orcid.org/0000-0001-5145-9688
https://doi.org/10.14232/actacyb.299529

2 Zsofia Erdei, Melinda Téth, and Istvan Bozo

object-oriented environments. In object-oriented programming, a program design
pattern typically depicts the relationships between objects, and documents the in-
heritance, association, and aggregation relationships in design.

Design patterns can be broadly divided into three categories [5]. Structural pat-
terns are used to define relationships between classes, creation patterns are used to
represent the instantiation process, and behavioural patterns are used to describe
communication and interaction between objects. Recognising design patterns can-
not only help to understand the source code of software but also provide information
about the purpose of specific parts of the system and the design decisions behind
the implementation. Manually searching for design patterns in larger software is an
extremely cumbersome and time-consuming task. For this reason, a large number
of methodologies, approaches and tools have been proposed for detecting design
patterns and accordingly transforming the source code [21, 9, 22].

In the case of distributed software, supporting the understanding and transfor-
mation of source code with software tools is an even more critical task. Erlang [6]
is a programming language specifically designed to build fault-tolerant, distributed
systems that can contain a large number of concurrent processes. In software writ-
ten in Erlang, many processes can have similar structures and behaviours. The
formalization of these patterns is called behaviour. Using behaviours makes it
easier to read, understand and maintain legacy codes. Improvised programming
structures, while possibly more efficient, are always more difficult to understand.
In the Erlang/OTP libraries, there are several common concurrent design patterns
implemented. The programmer only needs to implement a callback module to
define the specific behaviour. Using behaviours also enables/makes it possible to
use verification tools and techniques developed for Erlang [4]. A simple example
of the pre-implemented design patterns included in the Erlang/OTP is the imple-
mentation of a client-server behaviour, the so-called gen_server behaviour. The
client-server model consists of a central server process and an arbitrary number
of clients. Its most common application is resource management, where multiple
clients share a common resource. The server is then responsible for managing this
resource.

Identifying design patterns manually is not efficient. Therefore, various ap-
proaches have been developed to automatise this process. Static analysis-based
methods are widely used in this domain. The goal of our work is to identify source
code fragments in legacy Erlang systems that are amenable to transforming into
concurrent Erlang behaviours. This paper presents our first result in order to
achieve this, namely to analyse and to identify the client-server behaviour candi-
dates. We base our work on the static source code analysis and transformation tool
RefactorErl.

RefactorErl [19] is a static analyser and transformer tool for Erlang. The tool
uses static code analysis techniques and provides a wide range of features, like data-
flow analysis, dynamic function call detection, side-effect analysis, a user-level query
language to gather semantic information or structural complexity metrics about
Erlang programs, dependency examination among functions or modules, function
call graph with information about dynamic calls, etc.

Identifying Client-Server Behaviours in Legacy Erlang Systems 3

We propose a two-staged behaviour recognition analysis. At first, we use the
communication graph of RefactorErl [20] to find process candidates based on the
communication pattern. In the second stage, we filter those elements by a prede-
fined rule set to check the internal structure of the process.

The paper is structured as follows. In Section 2 we discuss related works,
where we present multiple methods designed to recognise design patterns in object-
oriented programming languages. In Section 3 we first introduce Erlang, its advan-
tages and some of the features of the language that can be used to develop highly
scalable soft real-time systems. We describe the characteristics of server processes
and present the basic architecture of the client-server behaviour. In Section 4 with
the use of an example, we present the structure and operation of an Erlang server
process and how it has similar properties to the gen_server behaviour included
in the Erlang/OTP library. We also show a few examples of Erlang processes
that have similar characteristics to server processes but could not be implemented
with gen_server behaviour. In Section 5 we introduce the RefactorErl tool, and
in Section 6 we present a method to identify the client-server behaviour in Erlang
programs based on static analysis. Finally, Section 7 presents the first results of
the prototype implementation and Section 8 summarises our results.

2 Related work

Different approaches can be used to identify design patterns, both in terms of the
method of identification (searching for the components of samples or recognising
the full structure of a design pattern) and the type of analysis (static or dynamic
analysis). Methods based on static analysis are based on the analysis of the source
code, while dynamic analysis collects information while the software is running.
Information obtained only from the static or dynamic analysis is seldom sufficient
to effectively recognize most design patterns, so many methods work with a hybrid
solution. Recognition methods can be broadly classified into several categories:
those that rely on database queries, those that use metrics, those that utilize graph
or matrix representations, those that are based on the Unified Modeling Language
(UML), and those that combine multiple of these techniques [1].

The paper [10] proposes a solution using metrics and a machine learning algo-
rithm for recognising micro-architectures similar to design patterns in the architec-
ture. This can be used to better understand the design problems solved by software
developers when designing the program architecture. Fingerprints are sets of metric
values characterising classes playing a given role. These fingerprints are based on a
set of external attributes that help categorise classes and can be used to reduce the
search space of micro-architectures similar to design motifs. The fingerprints were
created based on a rule-learner algorithm that inferred rules characterising design
motifs’ roles with the metric values of the classes playing these roles. The identifi-
cation process described in the paper consisted of two steps: identifying candidate
classes for design patterns by eliminating classes that did not match the expected
fingerprint and identifying candidate classes for the remaining roles starting from

4 Zsofia Erdei, Melinda Téth, and Istvan Bozo

key-role candidates and using structural matching.

A method based on both static and dynamic analysis was presented in [12] for
automatic design pattern recognition in Java. They use static analysis to compute
the potential program parts playing a certain role in a design pattern and dynamic
analysis to further examine those candidates. The static analysis reads the source
code and constructs an attributed AST, then computes the pattern relation on the
AST nodes and provides a result as a set of candidates consisting of tuples of AST
nodes. The dynamic analysis takes this set as an input and monitors the execution
of the nodes. Depending on the node’s unique role, dynamic test actions are exe-
cuted on the object sets of the candidates. In the paper, different approaches for
detecting the Observer, Composite, Mediator, Chain of Responsibility and Visitor
Patterns are discussed.

Another hybrid method for recognising design patterns is presented in [2]. They
developed the software prototype JADEPT (JAva DEsign Pattern deTector) for
design pattern recognition based on a predefined set of rules describing properties
that may be either structural or behavioural and may define relationships between
classes or families of classes. Weights have been associated with rules indicating
how much a rule is able to describe a specific property of a given design pattern.
JADEPT collects structural and behavioural information through dynamic analysis
of Java software by exploiting JPDA (Java Platform Debugger Architecture) and
stores the extracted information in a database. A rule is implemented by one or
more queries and the existence of a design pattern can be verified through the
validation of its associated rules.

Li and Thompson’s paper [15] presents a technique for detecting and eliminating
similar code in Erlang programs. The technique involves analysing the abstract
syntax trees (ASTs) of the source code, computing a similarity measure between
the ASTs, and then merging the similar code into a single function.

The authors argue that similar code is a common problem in Erlang programs,
and that it can lead to maintenance and readability issues. They propose a solution
that involves using a combination of structural and lexical analysis to identify
similar code, and then using a technique called “code merging” to eliminate the
duplication.

Duplicated code detection and design pattern recognition are two related but
distinct techniques used in software development. Duplicate code is code that is
identical or very similar to other code in the system mostly caused by copy-pasting
and reusing already existing code. While two code snippets that implement the
same design pattern can be very different even in the AST, in the case of duplicated
code we usually expect them to closely match. While the examination of AST alone
is not sufficient to detect design patterns, the recognition of certain similarities
could help to filter out results.

The structure of parallel computations in a program can be defined conveniently,
and at a high level of abstraction, using parallel design patterns. Algorithmic skele-
tons [7] implement common patterns of parallelism, allowing the programmer to
instantiate parallel skeletons with application-specific code fragments. PaRTE [18]
integrates capabilities of the RefactorErl and Wrangler [16] refactoring/program

Identifying Client-Server Behaviours in Legacy Erlang Systems 5

analysis tools into a parallelisation framework that can be used to identify parallel
patterns and determine the best implementations of those patterns.

Some well-known patterns are pipe (parallel pipeline) and task farm (applies
a given function to a sequence of independent inputs in parallel), the map-reduce
and the divide-and-conquer patterns. Skel [17] is a library of algorithmic skeletons
for Erlang, providing a small number of useful, classical skeletons. Since both pipe
and farm can be defined to operate on lists of inputs, the analysis described in
the paper focuses on identifying certain operations on lists, and also on identifying
those data structures that can be transformed to lists.

The tool developed by our research group targets three constructs: list compre-
hensions, library calls and recursive functions. List comprehensions are categorised
based on the output expression as a possible farm or pipe candidate. Calls to
functions that exhibit a map-like or pipeline-like behaviour over a sequence of data
and certain map-like and pipeline-like recursive functions can also be transformed
into farms or pipes. These patterns can be identified based on the syntax of the
code but not all code fragments that match a pattern can be safely executed in
parallel. In order to guarantee that the transformations preserve the semantics of
the program further semantic analysis is required.

The transformation process itself comprises two distinct phases, an initial pro-
gram shaping phase and the actual transformation into instances of skeletons. The
role of program shaping is to prepare the source code for the introduction of parallel
skeletons since it is necessary to shape the code into an appropriate canonical form
before the transformations can be applied.

The use of PaRTE is demonstrated on a simple worked example, showing how
the tool can be used to transform a sequentially implemented image merge to a
parallel version and automatically obtain significant and scalable speedups over
the original version.

3 Modelling client-server behaviour in Erlang

Our research focuses on legacy Erlang systems. In this section, we start with
introducing Erlang. Then we specify the properties of a general server process
structure implemented in Erlang, and extend these properties to express the client-
server behaviour.

3.1 Erlang

Erlang [6] is a general-purpose, dynamically typed, concurrent functional program-
ming language, which enables developers to write highly scalable, soft real-time
systems. Erlang was originally designed for developing telecommunication soft-
ware, since then, it is also widely used in the world of banking, chat services, and
database management systems. Due to its robustness and fault tolerance, it is
suitable for the development of large-scale distributed systems.

6 Zsofia Erdei, Melinda Téth, and Istvan Bozé

One of the main advantages of using Erlang instead of other functional lan-
guages is Erlang’s ability to handle concurrency and distributed programming. In
Erlang, the unit of concurrency is the process. A process is a lightweight task
that runs concurrently and is independent of the other processes. Processes do not
share memory, the only way for processes to interact with each other is through
message passing, where the message can be any Erlang term. Message passing is
asynchronous, so the process can continue processing once a message is sent. Each
process has its own input queue for messages it receives. New messages received are
put at the end of the queue. Received messages can be processed selectively, it is
not necessary to handle messages in the order of arrival. When a process executes
a receive, the first message in the queue is matched against the first pattern in
the receive. If it does not match, the next branch of the receive is matched. It is
repeated until the first match is found. If none of the patterns matches, the next
message from the message queue is examined. Once a match is found, the mes-
sage is removed from the queue and the actions corresponding to the pattern are
executed. If none of the messages match, the process is blocked until a matching
message arrives.

Every process in Erlang is identified by a unique process identifier (PID). The
Erlang BIF' (Built-In Function) spawn is used to create a new process:

spawn(Module, Ezported_Function, List_of-Arguments).

This function creates a new process executing the function Ezported_Function of
the module Module with the given list of arguments.

Processes can be registered with a given name using the built-in function call
register(Name, Pid). After registration, the process can be addressed, either with
its PID or with its registered name. The process can be unregistered with the built-
in function unregister(Name). The registered process is automatically unregistered
when the process terminates.

3.2 Server processes

When implementing client-server behaviour, clients and servers are represented as
Erlang processes. Processes — including server processes — have common charac-
teristics and follow similar patterns. As a result of this, they share a similar code
base. Regardless of their function, processes must first be spawned and possibly
initialised. A process can be addressed by using its PID, but a server process is also
usually registered. After that, we have to initialise the state of the process. The
state is specific to the function of our process. This step handles all initialisation
of data required for the main loop function to work well. Once the process has
been initialised, it is ready to communicate with other processes. The main loop
is a tail-recursive function that handles the events, it usually has a receive block
and is used to process messages and send replies. A special message can be used
to terminate the process when needed. In the case of a normal termination when
necessary a cleanup procedure is completed.

Figures 1 and 2 show a general server process skeleton — a general, reusable
structure for implementing a process in a concurrent or distributed system. It

Identifying Client-Server Behaviours in Legacy Erlang Systems 7

Initialise

Receive-evaluate loop

Terminate

Figure 1: A process skeleton

start (Args) ->
register(server, spawn_link(7MODULE, init, [Args])).

stop() -> server ! stop.

init (Args)->
InitState = initialise_state(Args),
loop(InitState).

loop(State)—>
receive
stop -> terminate(State);
{handle, Msg} ->
NewState = handle_req(Msg, State),
loop(NewState)
end.

Figure 2: A server process skeleton source

typically includes the basic components and structure that are common to many
types of processes, such as initialisation, message handling, and termination. A
general process skeleton typically includes the following components:

8 Zsofia Erdei, Melinda Téth, and Istvan Bozé

e Initialisation: This is the first step in the process, where the process is set
up and initialised. This may include allocating resources, setting up data
structures, and starting any other necessary sub-processes.

e Message handling: This is the core component of the process, where the
process waits for and handles incoming messages. This may include perform-
ing calculations, updating data structures, and sending messages to other
processes.

e Termination: This is the final step in the process, where the process is
cleaned up and resources are deallocated. This may include stopping sub-
processes and closing any open files or connections.

While the general process skeleton fits server processes of the client-server be-
haviour very well, the communication pattern of this behaviour is unique (see Fig-
ure 3). In the next section, we describe the main characteristics of the client-server
process architecture and its implementation in Erlang.

3.3 Client-server behaviour

The client-server model describes a way of distributing tasks and services within a
network. It is characterised by a central server and an arbitrary number of clients.
The client-server model is often used for resource management operations, where
several different clients share a resource. Clients implemented as Erlang processes
use these resources by sending the server requests.

Figure 3 shows the typical process architecture and communication of a client-
server model. Most often there are multiple instances of the client and a single
server. The server process receives requests, handles them, and can respond with
an acknowledgement and a return value if the request was successful, or with an
error if the request did not succeed. Interaction between them takes place through
message sending and receiving. If a client using the service or resource handled by
the server expects a reply to the request, the call to the server has to be synchronous.
If the client does not need a reply, the call to the server can be asynchronous.

The gen_server behaviour module provides the server of a client-server rela-
tion. A generic server process (gen_server) implemented with this behaviour has a
standard set of interface functions and includes functionality for tracing and error
reporting. The process can be divided into a generic part (a behaviour module) and
a specific part (a callback module). The behaviour module contains all the generic
functionality reused from one implementation to another. The specific parts of the
process implemented by the user are located in the callback module exporting a
predefined set of functions.

4 Motivating example

In Figure 4 an example server implementation is shown. In Figure 5 an equivalent
server implementation is presented using the generic server library of Erlang/OTP.

Identifying Client-Server Behaviours in Legacy Erlang Systems 9

Clients Server

Figure 3: The client-server process architecture

The goal of our work is to identify codes similar to the code fragment shown in
Figure 4 as a candidate and later transform them into an application of a client-
server design pattern, as presented in the example in Figure 5.

In Figure 4 a simple job server is demonstrated that waits for {job, Regqld,
{M, F, A}} messages where the third element of the tuple represent a function by
the name of the implementing module, the name of the function and the list of
arguments of the function call to be evaluated. The server spawns a new worker
process to evaluate the function. The worker sends the calculated result to the
server as a message tagged with the result atom. The server adds the result to its
state when a result message arrives. Once a reply message arrives from a client, the
server searches the result in its state and sends the value to the client. If the result
is not ready yet, the server sends a pending answer. The stop message terminates
the server.

As the simple server implementation example shows, the server module pro-
vides interface functions for starting (start/0) and stopping (stop/0) the server
process. The start function spawns and registers the process with the name jobsrv.
The server implements the function init/0 to initialise the server process with a
state and the iterating function (loop/1) that receives messages and performs the
requested tasks. Creating a process that calls the init/1 function can be generic.
The arguments passed to the call and the implementation of the function that ini-
tialises the main loop are specific to the task. The function loop(State) stores the
connected clients in the server state variable (State) and handles incoming messages

10 Zsofia Erdei, Melinda Téth, and Istvan Bozé

-module (server) .
—export([start/0, stop/0]).

start() -> register(jobsrv, spawn(fun init/0)).

stop() —>
jobsrv ! stop.

init () ->
loop (#{}) .

loop(State) ->
receive
stop ->
io:format("Server stopped in state: “p”n", State);
{job, Reqld, {M, F, A}} —>
spawn(fun() ->
jobsrv ! {result, Reqld, apply(M, F, A)}
end),
loop(State);
{reply, ReqId, To} ->
case State of
#{Reqld:=Data} -> To ! {final, ReqId, Data};
_ —> To ! {pending, ReqId}
end,
loop(State);
{result, ReqId, Result} ->
loop(State#{ReqId => Result})
end.

Figure 4: Non gen-server implementation

in the receive block. All incoming messages are matched against the patterns in
the receive and the corresponding branch is executed. Storing the loop data in be-
tween calls is the same from one process to another, but the loop data itself will be
different depending on the function of the process. Sending requests to the server
process will also be generic, but the types and contents of the messages and how
they are handled will differ depending on the task. While each response is specific,
the method of sending it back to the client process is handled in a generic way.
When a stop message is received, the process calls the terminate function, which
is responsible for a clean termination. While sending a stop messageis generic, the
steps to clean up the state prior to termination will be specific.

The previously described generic parts of the server could be separated and
reused for many different applications, and only the specific parts of the code would

Identifying Client-Server Behaviours in Legacy Erlang Systems 11

have to be reimplemented. The Erlang/OTP module solves this with the gen_server
library that formalizes the general server behaviour of a client-server model. The
gen_server module contains the generic part of server implementation and the user
only has to implement a callback module to define the specific behaviour.

-module(gserver) .
-export([start/0, stop/0, init/1,

handle_call/3, handle_cast/2, handle_info/2]).
-behaviour(gen_server).

start() ->
gen_server:start({local, jobsrv}, gserver, [], [1).

stop() ->
gen_server:cast({local, jobsrv}, stop).

init(_) ->

{ok, #{}}.

handle_cast({job, ReqId, {M, F, A}}, State) —>
spawn(fun() ->
jobsrv ! {result, Reqld, apply(M, F, A)}
end),
{noreply, State};
handle_cast(stop, State) ->
io:format("Server stopped in state: “p”n", State),
{noreply, stop, Statel}.

handle_info({result, Reqld, Result}, State) ->
{noreply, State#{ReqIld => Result}}.

handle_call({reply, ReqId}, _, State) ->
case State of
#{ReqId:=Data} -> {reply, {final, ReqId, Data}, Statel};
_ —> {reply, {pending, ReqId}, State}
end.

Figure 5: Gen-server implementation

With the gen_server behaviour (Figure 5), instead of using the spawn and
spawn_link BIFs, the gen_server:start/4 and gen_server:start_link/4 functions are
used. In the example shown here, the server can be started by calling the
gserver:start() function call, which then calls the gen_server:start_link/4 function.
This function spawns and links to the created server process. The first argument
of the function specifies the name in the form of a tuple, in this case, {local,jobsrv}.

12 Zsofia Erdei, Melinda Téth, and Istvan Bozo

The server is then locally registered as jobsrv'. The second argument is the name of
the callback module, which is the module where the callback functions are located.
The third argument is a list of arguments that are passed to the init/1 callback
function when the process is started. Usually, lists are used to pass multiple argu-
ments. These arguments can be used to initialise the process’s state or to configure
its behavior. Here, init does not need any data and ignores the argument. The
fourth argument is a list of options, for example, it enables the user to set memory
management flags as well as tracing and debugging flags. Most behaviour imple-
mentations, like in the example, just pass the empty list as an argument.

The gen_server start functions will spawn a new process that calls the init/1
callback function from the callback module, with the arguments supplied. The task
of the init function in the gserver module (Figure 5) is same as it was in the server
module (Figure 4): to initialise the state of the server. Synchronous communication
can be initialised by calling the gen_server:call/2 function that sends a message to
the server, while gen_server:cast/2 calls are responsible for asynchronous commu-
nication. When a client sends a message to the server process by calling these
functions, the handle_call/3 or handle_cast/2 callback function is called. The han-
dle_call/3 function is used to handle synchronous requests, where the client expects
areply. The handle_cast/2 function is used to handle asynchronous requests, where
the client does not expect a reply. Stopping the server can be handled synchronously
or asynchronously by calling gen_server:call/2 or gen_server:cast/2. Messages that
are not sent to the server through gen_server:call/2 or gen_server:cast/2 function
calls can be handled in the handle_info/2 function definitions.

In our example, job messages and the stopping are asynchronous request, reply
messages are synchronous, and the result messages sent from the worker processes
are handled by the handle_info definition.

4.1 Other server-like processes

In Erlang, a process can be identified with its evaluating function. The process is
created when we spawn the function and the process is alive until the evaluation of
its function is finished. Long-living processes usually evaluate recursive functions.
Thus when we are identifying server processes we need to identify recursive function
definitions. However, we do not want to consider all recursive definitions which were
spawned in the program as server processes. In this subsection, we will introduce
a few counterexamples.

4.1.1 Taskfarm

Let us consider the code skeleton on Figure 6 that implements a parallel taskfarm
in Erlang: where we want to evaluate a function on the elements of a list. We
start a dispatcher, a collector process and some worker processes to evaluate the
function depending on the number of available resources. The dispatcher and the

1The first argument can be omitted, so the server might not be registered. In this case, the
process id of the newly created process could be used to refer to the server.

Identifying Client-Server Behaviours in Legacy Erlang Systems 13

collector are registered processes. The dispatcher waits for free messages from the
workers and sends an element of the list back. The collector waits for results from
the workers and stores those in its state. It also notifies about the collected data
on request. Workers are notifying the dispatcher if they are free to work and send
the result of the computation to the collector process.

run(F, L) —->
register(disp, spawn(fun() -> dispatcher(L) end)),
register(coll, spawn(fun() -> collector([]) end)),
N = erlang:system_info(logical_processors_available),
[spawn(fun() -> worker(F) end) || _ <- lists:seq(l, N)J.
dispatcher([HIT]) ->
receive
{free, Worker} -> Worker ! {data, H}, dispatcher(T)

end;
dispatcher([]) ->
receive
stop —> terminate
end.

collector(Acc) ->
receive
{result, Result} -> collector([Result | Accl);
{give_me, From} -> From ! Acc, collector(Acc)
end.

worker (F) ->
disp ! {free, self()},
receive
{data, Data} -> coll ! {result, F(Data)}, worker (F)
end.

Figure 6: Parallel taskfarm implementation

The most important characteristic of a server process is a containing receive
expression to handle messages from client processes and answering to them. If we
consider only this condition, we might say that all the processes in this example
could be server processes. However, we do not want to consider worker processes as
server processes in client-server behaviour. We might have the expectation that a
server process is unique in the system, it has some special role. Thus when we create
multiple instances of an actor we do not want to consider those as servers. We can
delete some processes from our server candidate list based on the context of the
initialisation. The worker processes are spawned in a list comprehension, therefore
we can assume that multiple occurrences exist, and thus we will not consider them.

14 Zsofia Erdei, Melinda Téth, and Istvan Bozo

The dispatcher process could be considered as a server where the clients are the
worker processes. Later we might prioritise our candidate list and put functions
like dispatcher at the end if we want our servers to do more work.

4.1.2 Timeout looping

Server processes have to be tail-recursive. However, we do not want to consider
all of them. The code snippet on Figure 7 shows a process definition which waits
for cancelling messages and terminates. Otherwise, it waits for 7T seconds and
recursively calls itself if there is no more event to handle. We do not want to
consider the recursion in the after branch of the receive expression as a proper
server behaviour. It would not fit the client-server behaviour, thus we cannot
transform it.

loop(S = #state{server=Server, to_go=[T|Next]}) ->
receive
{Server, Ref, cancel} -> Server ! {Ref, ok}
after T*1000 ->
if Next =:= [] -> Server ! {done, S#state.name};
Next =/= [] -> loop(S#state{to_go=Next})
end
end.

Figure 7: An event handler [14]

4.1.3 Multiple recursive calls

Figure 8 contains a parallel implementation of the Fibonacci number calculation
based on a caching optimisation to store the already calculated values. The cache
process has no termination branch, it is an infinite recursive definition. However,
we might consider it a server process. On the other hand, the process evaluating
the fib function could not be considered a server process. It has multiple recursive
calls in its body, thus it would not be possible to transform it into a gen_server
behaviour-based process.

5 RefactorErl

The RefactorErl tool uses a directed, rooted graph, with typed nodes and edges as
an internal representation to store the source code. The graph is called Semantic
Program Graph (SPG) [13]. The SPG stores lexical, syntactic and semantic in-
formation about the source code, calculated by various static semantic analysers.
Every module, function, and expression is a node with a unique identifier and a
set of properties. Figure 9 shows a small part of a generated SPG. Besides the

Identifying Client-Server Behaviours in Legacy Erlang Systems 15

£fib(0) -> 1;
fib(1) -> 1
fib(N) when is_integer(N), N > 1 ->
cache ! {fib, N, self(Q)},
receive
{value, N, FibN} -> FibN;
no_value ->
Fibl = fib(N-1),
Fib2 = fib(N-2),
Fib = Fib1+Fib2,
cache ! {store, N, Fib},
Fib
end.

start_cache() ->
register(cache, spawn(fun() -> cache(#{}) end)).

cache(State) ->
receive
{fib, N, From} ->
case State of
#{N := Fib} -> From ! {value, N, Fib}, cache(State);
_ —> From ! no_value, cache(State)
end;
{store, N, Fib} -> cache(State#{N=>Fib})
end.

Figure 8: Fibonacci calculation

syntactic (black) nodes and edges, various semantic (coloured) and lexical (blue)
information are presented there.

Based on the initial static analyser framework provided by RefactorErl, various
complex static analysers have been implemented. For example, the tool provides
control flow, control dependence, data-flow, data-dependence analysis, dynamic
function reference analysis, concurrent message flow analysis, etc [19].

RefactorEr]l supports the analysis of concurrent programs as well. It is able
to identify the spawned processes and the communication between them based on
data-flow analysis and expression value calculation. RefactorErl builds a commu-
nication graph as a result of the analysis [20]. The nodes of the graph represent
the processes in the system. The edges represent various forms of communication
between the processes, for example, process creation, process name registration,
message passing, ETS table creation and reading from or writing into an ETS
table.

ETS (Erlang Term Storage) [8] tables are a built-in feature of the Erlang/OTP

16 Zsofia Erdei, Melinda Téth, and Istvan Bozé

flex/2 flex/3 \flex/1

stop 55 - 53 clause | 1L stop 62
< scope/Xunctx/1
fundef —

visWﬂ }m&Na
\
|
— .)
(

58 > 59

) >

= ——
N
Wsubm\
| . erl |
i
(oo [0]
- P [elex/6
(cgec[8)

/
/

/
/

I‘\
elex/1 \QB

Figure 9: Part of a Semantic Program Graph

system that allows for fast and efficient storage and retrieval of data among mul-
tiple processes. They are similar to hash tables or key-value stores, but they are
implemented in the Erlang virtual machine and are designed to work well with
the Erlang concurrency model. Since one process can put some data into the ta-
ble that others can read, thus it can be considered as a special form of process
communication.

The root of the communication graph is a ‘super process’ (SP) node which
represents the runtime environment. It represents the fact that the communicating
functions can be called from the currently running process, for example from the
Erlang shell.

Figure 10 shows an example communication graph [20]. These graphs can be
useful when we want to find client/server communication in the code as the first
step in our analysis. This helps us to find potential candidates and narrow the
scope of the analysis. Figure 11 contains an even more detailed communication
graph with hidden communication through ETS tables [20].

6 Identifying server processes
In this section, we present our approach to detecting one of the Erlang design pat-

terns, the generic server process. The proposed method is built on the capabilities
of the RefactorErl tool introduced in the last section. The method can be divided

Identifying Client-Server Behaviours in Legacy Erlang Systems 17

Spawn

______________________ client:input/1

[~
____________ ~

AN . {send, {do, Mod, Fun, Tab}‘ BN

spawn_link

~

N
~. N
a4

-| server:init/0 | job_sever |
F 4

| SP [——|server:start/0

server:stop/0

Figure 10: Communication graph [20]

~ create

L \’br_egd, {result, ’$1°}}

spawn

client:start/1 |, {send, quit} . {result, Result}

7 B ,{send’ {job, Job}} . ’CIient:input/] e
! < {sel s 'l:-'i»bH
// -~

/ [{{S1,$2°),
// [{’/=",781", result}]},
/ [$8°1}]
/
/

spawn_link
server:stop/0 {send, stbp)

register

Figure 11: Communication graph with hidden data sharing [20]

into two major steps. We use initial filtering based on the communication graph
to reduce the search space and eliminate processes not matching the client-server
behaviour. To identify possible candidates, we use data-flow analysis to examine
relations between processes. After the initial filtering, we use the Semantic Pro-
gram Graph to identify functions that match the structure of the generic server
design pattern. To do this we have developed a set of rules that the previously
determined candidates must comply with.

18 Zsofia Erdei, Melinda Téth, and Istvan Bozé

6.1 Detecting candidates

For the first part of the method, the communication graph is used to find the
possible candidate processes. First, we are looking for processes that start and
possibly register a process. This can be achieved by examining the communication
graph and filtering nodes that are connected with an edge that signifies process
creation. The process nodes of the communication graph and the data associated
with them are stored in the “processes” ETS table.

We can use the match_object(Table, Pattern) function from the ets module to
find edges that represent process creation, from this we can determine our set of
candidate functions.

After the initial filtering of the candidates, we use a set of rules to identify
the ones that match the patterns we are looking for. Since the communication
graph does not provide enough information for this we use the SPG built by the
RefactorErl tool. The information we need to check if a candidate satisfies the rules
can be gathered efficiently from the SPG using the query language RefactorErl
provides.

6.2 Filtering the initial candidates

To effectively recognize server processes, we need to examine their structure. The
Figure 1 shows an example skeleton for a general server process [6]. After the
process has been spawned and possibly registered, it initialises the process loop
data. The loop data is often the result of arguments passed to the spawn function.
The receive-evaluate function receives messages and handles them, updates the
state, and passes it back as an argument to a tail-recursive call. If one of the
messages it handles is a stop message, the receiving process will clean up after
itself and terminate.

Based on this general behaviour we determined a set of rules that candidates
must comply with to be considered to be equivalent to the gen_server behaviour.
These criteria mostly apply to the structure of the processes and can be checked
based on the syntactic and semantic information contained in the SPG.

We consider to server processes those functions that satisfy the following criteria:

e the spawned function must be tail-recursive;
e it must contain a receive block;

e one of the branches of the function must be non-recursive to ensure the process
can terminate;

e the receive block might contain a reply (synchronous), or no reply (asyn-
chronous) branch;

e the recursive call cannot be in an after block;

e the spawned process is registered; and

Identifying Client-Server Behaviours in Legacy Erlang Systems 19

e the process is unique.

The first rule comes from a common behaviour of processes, which is typical
not only for server processes but also for many other types. Since processes can
handle thousands of messages per second over sustained periods of time, using
tail-recursion, where the very last thing the function does is to call itself, we can
ensure that it executes in constant memory space without increasing the recursive
call stack every time a message is handled. To determine whether the candidate
complies with this rule, we have to examine the spawned function. It either has
to be a tail-recursive function, or the last expression has to be a function call such
that the called function itself complies with this rule. Using the SPG and following
the function calls we must ultimately check if the last function on the chain is a
tail-recursive function. If it is not, we can rule it out from our set of candidates.

If we have established that our function is tail-recursive, the second rule can also
be checked in the same step. For this, we only need to examine whether the last
expression of the path we followed is a receive block or not. This rule differs from
the first one in that it is not a strict rule. We can implement a process complying
with the generic server pattern such that it does not have receive block, but it
would be incredibly uncommon in practice.

Often one of the messages handled by the server process is a ‘stop‘ message
that when received the process will clean up after itself and terminate. For this
behaviour, the spawned function must have a non-recursive branch in the receive
block. This is also not a strict rule, but using this, we can rank the results according
to how well they match the general behaviour. Usually, the function of a server is
to receive requests, handle them, and respond with some appropriate message. In
order to do this, the receive block must contain replies. Similar to the second rule
a process complying with the gen_server behaviour can be implemented without
this rule being met, but it would not be general use of a server. This rule can be
checked by examining the receive block found during the checking of the first rule.

When a process is spawned, it can be registered with a name. After registration,
the process can be addressed with its registered name or if registration was omitted
with its PID. Not every process needs to be registered, as we have shown previ-
ously in the task farm example 4.1.1 where only the dispatcher and collector were
registered processes but the workers were not. In contrast to this server processes
are almost always registered, so checking if a given process is registered can help
us filter the candidates.

Server processes have a special role in the system, they communicate with mul-
tiple clients receiving, processing and handling multiple requests. Some server-like
processes exist that comply with most of our structural requirements but still cannot
(or should not) be considered server processes. A good example of such processes
is the worker processes of the task farm. When we create multiple instances of
an actor we do not want to consider those as servers. For this reason, it is worth
examining if there are multiple instances spawned from a given candidate process.

A process being tail-recursive in itself is not enough for it to be a valid server
process. There can be a special case where the tail-recursive call of the spawned

20 Zsofia Erdei, Melinda Téth, and Istvan Bozé

function is in an after block. We have to filter out such cases because they would
not fit the client-server behaviour. An example of such a process is shown in Section
4.1.2.

It can be the case that a process has multiple recursive calls in its body. Since
types of processes would be not transformable to a gen_server behaviour-based
process, so they cannot be considered server processes despite being structurally
similar. Such an example can be found in Section 4.1.3 where a parallel implemen-
tation of the Fibonacci number calculation is shown. These types of processes have
to be also filtered out from our results.

To refine the set of candidates, it might also be worth examining if the re-
ceive block has branches for certain special messages that a server usually han-
dles, for example an ‘EXIT’ or ‘DOWN’ messages sent to the server process when
linked /monitored processes exit?.

7 Evaluation

Our method for identifying source code fragments in legacy Erlang systems that can
be transformed into client-server Erlang behaviors is based on the static source code
analysis and transformation tool RefactorErl. We present examples of server-like
processes we found in some analysed projects that could have been implemented
using the gen_server behavior.

We analysed example source codes and solutions® to the exercises to the books
Erlang Programming [6], Programming Erlang: Software for a Concurrent World [3]
and Learn You Some Erlang for Great Good [11]. We found snippets that match
the pattern of the client-server behaviour.

The first server-like process we identified is the basic server implementation ex-
ample from the book Learn You Some Erlang for Great Good. The kitty_server is
a simple Erlang application that demonstrates the use of the client-server pattern
and message-passing between processes. The example is a simulation of a server
that manages a collection of ‘kitty’ objects, which are represented as Erlang pro-
cesses. Clients can interact with the kitty_server process by sending messages to
it, such as requesting to create a new kitty, or asking for the status of a particular
kitty. The kitty_server process then communicates with the appropriate process to
fulfill the request, and sends a response back to the client. The prototype algorithm
identifies the loop function shown in Figure 12 as a server-like process as it satisfies
all the established criteria.

From the example codes provided to Erlang Programming the prototype al-
gorithm found multiple server-like processes. In Chapter 4 of [6] there are two
small examples (Figure 13) demonstrating message passing between processes (the
loop function is the same in both). While it might be unnecessary because of the
simplicity of the example, it would be possible to convert both to a gen_server

2 https://learnyousomeerlang.com/errors-and-processes
3 https://github.com/francescoc/erlangprogramming, https://github.com/Stratus3D/
programming_erlang_exercises, https://learnyousomeerlang.com/

https://learnyousomeerlang.com/errors-and-processes
https://github.com/francescoc/erlangprogramming
https://github.com/Stratus3D/programming_erlang_exercises
https://github.com/Stratus3D/programming_erlang_exercises
https://learnyousomeerlang.com/

Identifying Client-Server Behaviours in Legacy Erlang Systems 21

loop(Cats) ->

receive
{Pid, Ref, {order, Name, Color, Description}} ->
if Cats =:= [] —>
Pid ! {Ref, make_cat(Name, Color, Description)},
loop(Cats);

Cats =/= [1 -> J got to empty the stock
Pid ! {Ref, hd(Cats)},
loop(tl(Cats))
end;
{return, Cat = #cat{}} —>
loop([Cat|Cats]);
{Pid, Ref, terminate} ->
Pid ! {Ref, ok},
terminate(Cats) ;
Unknown ->
4% do some logging here too
io:format ("Unknown message: “p™n", [Unknown]),

loop(Cats)
end.
Figure 12: Main loop function of the kitty server [11]
implementation?. In the modules provided to Chapter 5 the algorithm identified

several examples where a process could be implemented with the gen_server be-
haviour. For example in the module frequency a server process is responsible for
managing radio frequencies on behalf of its clients, the mobile phones connected to
the network. The phone requests a frequency whenever a call needs to be connected,
and releases it once the call has terminated. This is an example that demonstrates
the client-server design pattern and the loop/I function fits the criteria perfectly.

Although in the analysed simpler examples we successfully found the possible
server-like processes with the help of the implemented prototype algorithm, not
all rule-checks have yet been fully implemented, so we also received a few false
positives. Such an example was the loop/I function shown in Figure 14 (Exercise
3 from Chapter 12 of [3]). The example code implements a process ring, where a
number of Erlang processes are connected in a ring-like structure, with each process
communicating with one neighbor in the ring. The process with ID 1 then sends a
message to the process with ID 2, which in turn sends the message to the process
with ID 3, and so on, until the message has been passed around the entire ring.
At first this process seems like a server based on its structure and communication
but it does not comply with the rule of uniqueness. Such candidates have to be
eliminated in the future.

4In the future, we might implement a prioritisation to present the results in the order of
relevance. Simple candidates might be listed at the end of the candidate list.

22 Zsofia Erdei, Melinda Téth, and Istvan Bozo

loop() ->
receive
{From, Msg} ->
From ! {self(), Msg},
loop();
stop —->
true
end.

Figure 13: Loop function from the simple example in Chapter 4 of [6]

loop(NextPid) ->

receive
stop ->
NextPid ! stop,
ok;
Value ->
NextPid ! Value,
loop(NextPid)
end.

Figure 14: Loop function from a process ring in Chapter 12 of [3]

In Exercises 5 and 6 from Chapter 13 of [6] (Figure 15) the prototype algorithm
identified the spawned handle_crashes/1 function as a server-like process. The
example code implements a supervisor process which is responsible for starting,
stopping, and monitoring the other processes. The worker processes are respon-
sible for performing specific tasks, and the supervisor process is responsible for
monitoring and managing the worker processes. When a worker process crashes
or exits, the supervisor process is notified and restarts the worker process. This
could be potentially implemented with the gen_server behaviour, but there exists
a separate behaviour for exactly this type of process, the supervisor behaviour. In
this case, it would be preferable to use the latter behaviour. However, we would
like to note here that the supervisor behaviour is implemented as a server using a
gen_server behaviour. Thus our result is correct.

We examined the edge cases presented in Section 4.1. The prototype imple-
mentation had a false positive hit, the worker function (Figure 6). This is a known
limitation, since the uniqueness check is not yet implemented.

8 Conclusions

Design patterns provide solutions to recurring issues in software development. For
object-oriented languages, various tools exist that use different approaches and

Identifying Client-Server Behaviours in Legacy Erlang Systems 23

handle_crashes(WorkerData) ->
receive
{get_workers, Pid} ->
Pid ! {self(), workers, WorkerDatal},

handle_crashes (WorkerData) ;
{'DOWN', Ref, process, Pid, Why} ->

/i Recursively call this function to handle later crashes
handle_crashes(NewWorkerData)
end.

Figure 15: Function handle_crashes from the example in Chapter 13 of [6]

methods to identify these patterns. In Erlang, behaviours are the formalised ver-
sions of these design patterns. In this paper, we proposed a method for identifying
a specific design pattern, the client-server behavior, in legacy Erlang systems.

In this paper, we proposed a method based on static analysis of Erlang programs
to identify processes complying with the client-server behaviour. The method is
based on the analyses provided by the RefactorErl tool and can be divided into two
major steps. Initial filtering based on the communication graph is used to reduce
the search space and eliminate processes not matching the server behaviour. After
the initial filtering, the Semantic Program Graph, an intermediate representation
of the source code built by the RefactorErl tool is used to identify functions that
match the structure of the generic client-server design pattern. To achieve this,
we have developed a set of rules that the previously determined candidates must
comply with.

We implemented the prototype algorithm and tested it on small open-source
examples. Using this prototype implementation, we identified basic server processes
that could be turned to equivalent gen_server process. We also examined a few edge
cases where the described rules might fail. In the future, we would like to analyse
further open-source projects and refine the rules based on the findings.

References

[1] Al-Obeidallah, M., Petridis, M., and Kapetanakis, S. A survey on de-
sign pattern detection approaches. International Journal of Software Engi-
neering, 7:41-59, 2016. URL: https://www.cscjournals.org/manuscript/
Journals/IJSE/Volume7/Issue3/IJSE-163.pdf.

https://www.cscjournals.org/manuscript/Journals/IJSE/Volume7/Issue3/IJSE-163.pdf
https://www.cscjournals.org/manuscript/Journals/IJSE/Volume7/Issue3/IJSE-163.pdf

24

[2]

Zsofia Erdei, Melinda Téth, and Istvan Bozo

Arcelli Fontana, F., Perin, F., Raibulet, C., and Ravani, S. Design pattern
detection in Java systems: A dynamic analysis based approach. Commu-
nications in Computer and Information Science, 69:163-179, 2010. DOI:
10.1007/978-3-642-14819-4_12.

Armstrong, J. Programming Erlang: Software for a Concurrent World. Prag-
matic Bookshelf, 2007. DOI: 10.1017/S0956796809007163.

Arts, T., Benac Earle, C., and Derrick, J. Development of a verified Erlang
program for resource locking. International Journal on Software Tools for
Technology Transfer, 5(2):205-220, 2004. DOIL: 10.1007/s10009-003-0114~
9.

Brown, K. Design reverse-engineering and automated design-pattern detection
in smalltalk. Technical report, North Carolina State University at Raleigh,
USA, 1996. URL: https://repository.lib.ncsu.edu/items/ec9a80d5-
c9c6-47c5-afd5-03£21a36bb63.

Cesarini, F. and Thompson, S. Erlang Programming: A Concurrent Approach
to Software Development. O’Reilly Media, Inc., 2009. URL: https://wuw.
oreilly.com/library/view/erlang-programming/9780596803940/.

Cole, M. Algorithmic Skeletons: Structured Management of Parallel Compu-
tation. MIT Press, Cambridge, MA, USA, 1991. URL: https://dl.acm.org/
doi/10.5555/128874.

Ericsson AB. Erlang Reference Manual: ets module. URL: https://www.
erlang.org/doc/man/ets.html.

Gaitani, M., Zafeiris, V., Diamantidis, N., and Giakoumakis, E. Automated
refactoring to the Null Object design pattern. Information and Software Tech-
nology, 59:33-52, 2015. DOI: 10.1016/j.infsof.2014.10.010.

Guéhéneuc, Y.-G., Sahraoui, H., and Zaidi, F. Fingerprinting design patterns.
In 11th Working Conference on Reverse Engineering, pages 172—-181. IEEE,
2004. DOI: 10.1109/WCRE.2004.21.

Hebert, F. Learn You Some Erlang for Great Good! A Beginner’s Guide. No
Starch Press, USA, 2013. URL: https://learnyousomeerlang.com/.

Heuzeroth, D., Holl, T., Hogstrom, G., and Lowe, W. Automatic design pat-
tern detection. In 11th IEEE International Workshop on Program Compre-
hension, pages 94— 103, 2003. DOI: 10.1109/WPC.2003.1199193.

Horvéth, Z., Lovei, L., Kozsik, T., Kitlei, R., Nagyné Vig, A., Nagy, T., Té6th,
M., and Kirdly, R. Modeling semantic knowledge in Erlang for refactoring.
In Knowledge Engineering: Principles and Techniques, Proceedings of the In-
ternational Conference on Knowledge Engineering, Principles and Techniques,
Volume 54 Special Issue of Studia Universitatis Babes-Bolyai, Series Informat-
ica, pages 7-16, Cluj-Napoca, Romania, 2009.

https://doi.org/10.1007/978-3-642-14819-4_12
https://doi.org/10.1017/S0956796809007163
https://doi.org/10.1007/s10009-003-0114-9
https://doi.org/10.1007/s10009-003-0114-9
https://repository.lib.ncsu.edu/items/ec9a80d5-c9c6-47c5-afd5-03f21a36bb63
https://repository.lib.ncsu.edu/items/ec9a80d5-c9c6-47c5-afd5-03f21a36bb63
https://www.oreilly.com/library/view/erlang-programming/9780596803940/
https://www.oreilly.com/library/view/erlang-programming/9780596803940/
https://dl.acm.org/doi/10.5555/128874
https://dl.acm.org/doi/10.5555/128874
https://www.erlang.org/doc/man/ets.html
https://www.erlang.org/doc/man/ets.html
https://doi.org/10.1016/j.infsof.2014.10.010
https://doi.org/10.1109/WCRE.2004.21
https://learnyousomeerlang.com/
https://doi.org/10.1109/WPC.2003.1199193

Identifying Client-Server Behaviours in Legacy Erlang Systems 25

[14]

[15]

[16]

[19]

Learn you some Erlang. An event module. URL: https:
//learnyousomeerlang.com/designing-a-concurrent-application#an-
event-module.

Li, H. and Thompson, S. Similar code detection and elimination for Erlang
programs. In International Symposium on Practical Aspects of Declarative
Languages: Practical Aspects of Declarative Languages, Volume 5937 of Lecture
Notes in Computer Science, pages 104—118. Springer Berlin Heidelberg, 2010.
DOI: 10.1007/978-3-642-11503-5_10.

Li, H., Thompson, S., Orosz, G., and Téth, M. Refactoring with Wrangler,
updated: Data and process refactorings, and integration with Eclipse. In
Proceedings of the 7th ACM SIGPLAN Workshop on ERLANG, ERLANG 08,
page 61-72, New York, NY, USA, 2008. Association for Computing Machinery.
DOI: 10.1145/1411273.1411283.

skel: A streaming process-based skeleton library for Erlang, 2012. URL:
https://github.com/ParaPhrase/skel.

Téth, M., Bozo, 1., and Kozsik, T. Pattern candidate discovery and paral-
lelization techniques. In Proceedings of the 29th Symposium on the Imple-
mentation and Application of Functional Programming Languages, IFL 2017,
New York, NY, USA, 2017. Association for Computing Machinery. DOI:
10.1145/3205368.3205369.

Téth, M. and Bozé, 1. Static analysis of complex software systems implemented
in Erlang. In Central European Functional Programming School, Volume 7241
of Lecture Notes in Computer Science, pages 451-514. Springer Berlin Heidel-
berg, 2012. DOI: 10.1007/978-3-642-32096-5_9.

To6th, M. and Bozo, 1. Detecting and visualising process relationships in Erlang.
Procedia Computer Science, 29:1525-1534, 2014. DOI: 10.1016/j.procs.
2014.05.138.

Yu, D., Zhang, P., Yang, J., Chen, Z., Liu, C., and Chen, J. Efficiently detect-
ing structural design pattern instances based on ordered sequences. Journal of
Systems and Software, 142:35-56, 2018. DOI: https://doi.org/10.1016/j.
jss.2018.04.015.

Zafeiris, V., Poulias, S., Diamantidis, N., and Giakoumakis, E. Automated
refactoring of super-class method invocations to the Template Method design
pattern. Information and Software Technology, 82:19-35, 2017. DOI: 10.
1016/j.infsof .2016.09.008.

https://learnyousomeerlang.com/designing-a-concurrent-application#an-event-module
https://learnyousomeerlang.com/designing-a-concurrent-application#an-event-module
https://learnyousomeerlang.com/designing-a-concurrent-application#an-event-module
https://doi.org/10.1007/978-3-642-11503-5_10
https://doi.org/10.1145/1411273.1411283
https://github.com/ParaPhrase/skel
https://doi.org/10.1145/3205368.3205369
https://doi.org/10.1007/978-3-642-32096-5_9
https://doi.org/10.1016/j.procs.2014.05.138
https://doi.org/10.1016/j.procs.2014.05.138
https://doi.org/https://doi.org/10.1016/j.jss.2018.04.015
https://doi.org/https://doi.org/10.1016/j.jss.2018.04.015
https://doi.org/10.1016/j.infsof.2016.09.008
https://doi.org/10.1016/j.infsof.2016.09.008

	Introduction
	Related work
	Modelling client-server behaviour in Erlang
	Erlang
	Server processes
	Client-server behaviour

	Motivating example
	Other server-like processes
	Taskfarm
	Timeout looping
	Multiple recursive calls

	RefactorErl
	Identifying server processes
	Detecting candidates
	Filtering the initial candidates

	Evaluation
	Conclusions

