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Corner-Based Implicit Patches

Agoston Sipos®

Abstract

Free-form multi-sided surfaces are often defined by side interpolants (also
called ribbons), requiring that the surface has to connect to them with a
prescribed degree of smoothness. I-patches represent a family of implicit
surfaces defined by an arbitrary number of ribbons. While in the case of
parametric surfaces describing ribbons is a well-discussed problem, defining
implicit ribbons is a different task.

In this paper, we introduce a new representation, corner I-patches, where
implicit corner interpolants are blended together. Corner interpolants are
usually simpler, lower-degree surfaces than ribbons. The shape of the patch
depends on a handful of scalar parameters; constraining them ensures con-
tinuity between adjacent patches. Corner I-patches have several favorable
properties that can be exploited for design, volume rendering, or cell-based
approximation of complex shapes.

Keywords: implicit surfaces, multi-sided patches, volumetric data

1 Introduction

Computer Aided Geometric Design focuses on the mathematical representation
of complex surface geometries. There is a wide variety of side interpolating multi-
sided free-form surfaces in the literature, including both parametric [4, 11, 7, 17, 18]
and implicit [1, 6, 16] patches. They are popular in curvenet-based design, as a
patchwork of smoothly connected complex N-sided patches can be automatically
created from simple ribbon surfaces.

The common concept behind these patches is that ribbons are introduced for
each side, then blending functions, that satisfy prescribed continuity constraints at
the boundaries, mix those together. In the case of parametric multi-sided patches,
ribbons in most cases are tensor-product surfaces. The blend functions are usually
(not always) defined on a polygonal domain and the surface points are calculated
as a weighted sum of the well-parametrized points of the ribbons.
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In the case of implicit surfaces, ribbons and blending functions are represented
by implicit functions, defined on the whole 3D space. This, however, requires careful
construction. An implicit surface, including the ribbons themselves, might interpo-
late the desired patch boundary, and have a very uneven shape inside the relevant
space region at the same time. Sometimes it can have disconnected branches or self-
intersections. However, many operations are computationally less expensive when
using implicit surfaces, including ray tracing, intersections, point classification, or
joining trimmed patches.

For this reason, the polynomial degree of ribbons and blend functions is pre-
ferred to be as low as possible. This poses limitations when used in design, as very
detailed surfaces cannot be represented with a single patch. Locally defined surface
elements are therefore important.

This paper explores the capabilities of a corner-based implicit surfacing scheme,
where the patch is constructed by blending corner interpolants.

2 Previous work

The precursor of research on ribbon-based implicit surfaces is Liming’s work on
interpolating curves [10] and the functional splines [9]. Formally, in the surface
equation, the product of the surfaces to be interpolated is used, which, in the
case of implicit surfaces, means taking their union. Thus, the information we had
while they were separate surfaces is lost. The improved version of the functional
spline, the symmetric functional spline [6] collects the interpolated surfaces into
two categories in its equation, but similarly can take the union of a higher number
of them.

In the case of I-patches [16] the surface equation has an arbitrary number of
sides appearing separately in the equation. This helps ensure that the surface is
consistently oriented and the appropriate sides of the ribbons are joined together.
For details, see Section 3. I-patches were applied for polyhedral design [14] and
approximating triangular meshes [13] while ensuring geometric continuity.

A different way to approach the problem of interpolating implicit surfaces is to
directly solve equations to get a minimal degree surface adhering to point, normal,
curve, and normal fence constraints [2]. Doing this on the whole space may lead to
high-degree, poor-quality surfaces. A scheme similar to the current work, A-patches
[1], prevents this by constraining each surface inside a tetrahedron.

Another aspect of current work relates to the extraction of isosurfaces from dis-
crete data on a regular grid. Generating a mesh is usually performed by derivative
methods of Marching Cubes [12]. Direct rendering generally goes through inter-
polation methods, smooth surfaces can be acquired by tricubic interpolation [8].
There is also a list of enhanced approaches like using a modified (BCC or FCC)
grid structure [15] or storing gradient values and approximating the isosurface by
Taylor polynomials [3].

The potential representation of isosurfaces extracted on a grid by patches was
investigated in [5]. First, a boundary curve network with Hermite interpolation is
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created, then the surface is represented using multi-sided parametric patches.

3 Preliminaries

Implicit surfaces are constant isosurfaces of real-valued functions defined on the 3D
space. Usually the zero-isosurface is used: for a function f : R®> — R the surface
is {(z,y,2) € R® | f(x,y,2) = 0}. In the following, capital letters in the formulae
will mean implicit functions (R® — R), but the function arguments (x,y, z) will be
omitted for readability.

Ribbon-based implicit surfaces are usually described in the following way. For
each side, there is a given surface R;, that the surface should smoothly connect
to, with a given order of continuity. Then, there is a fixed equation of the patch,
combining the R;-s and other defining surfaces.

In the case of I-patches, which are the basis of the current research, the equation
is

n n n
S wiki [[BF | +wo [[ B =0, (1)
i=1 j=1 j=1
J#i
where
e 1 is the number of sides

e R; are the ribbons, one for each side, to which the patch connects

e B; are the bounding surfaces, whose intersection curves with the correspond-
ing R; define the boundaries of the patch

e 0 # w; € R are scalar parameters and 2 < k € N is an integer parameter
determining the degree of continuity

The patch connects with G*~! continuity to the ribbons along the bounding
surfaces, as shown in [16]. It has also been proven that the I-patch represents a
consistent distance function with inside and outside, in case of well-chosen signs of
wj-s [14]. See Figures la and 1c for an example.

In the following, we will use k¥ = 2 to keep the polynomial degree as low as
possible, and in this paper, we discuss patches with G' continuity.

4 Corner I-patch

4.1 Basic equation

A corner I-patch is composed of corner interpolants S; 2, S2 3, ..., Sp,1 and bounding
surfaces By, Bs, ..., By, (neither of them coincides with another one), such that S; ;41
denotes the corner interpolant between the ith and the (¢ + 1)th boundaries.
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(a) Input (ribbons and (b) Input (corners and (c) Approximate shape of re-
bounding surfaces) for an bounding surfaces) for a sulting patches
I-patch corner I-patch

Figure 1: I-patch and corner I-patch

Then, the equation of the corner I-patch is

n n n n n
2 § : 2 2
Wi i41 - Si,i—i—l . H Bj + w;j - H Bj +w H Bl = O, (2)
i=1 j=1 i=1 j=1 i=1
J#L A+ i

where the w; ;41 scalars can be merged into S; 1, as multiplying with a nonzero
number does not change the implicit isosurface, only its distance metric. See an
example of corner interpolants and bounding surfaces in Figure 1b.

Some important properties of this representation are:

e In each corner, the patch connects with G' continuity to the corner inter-
polants. (This means that the gradient vectors of the surface have the same
direction as the gradients of the interpolants there.)

e Along the ith boundary, the shape of the surface does not depend on w and
wj for j #14.

The w; ;41 coefficients will be called corner coefficients, w;-s are the side coeffi-
cients and w is the central coefficient.

4.2 Comparison to (side-based) I-patches

A disadvantage of I-patches is that their gradient is a zero vector in the corner
points. This may lead to poor surface quality and generally should be avoided.
However, the gradient of the corner I-patch can easily be proven to be the gradient
of the corner interpolant times a nonzero number.
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The corner I-patch along the ith boundary connects smoothly to the implicit
surface

Si—1i- Biy + Siip1 - Bi +wi - B

i—1

Bi2+1 =0. (3)

This itself is a 2-sided I-patch. Corner I-patches are thus similar (but not
equivalent) to I-patches defined by ribbons that are themselves I-patches. (Such
surfaces were described in [14].) This is because the I-patch defined by the ribbons
in Equation 3 would be

n n

Do\ S BB+ BiB,) [ BY |+
i=1 J=1
ittt
(4)
+Z w; B} H—ll_[B2 +wHB2
i=1
J#l

which is not equivalent to Equation 2. Indeed, the factor (BZ B2 | + B?B2 ,)
causes the I-patch’s gradient to be zero at the corner points. Accordingly, corner
I-patches have a lower degree of 2n, as opposed to the 2n + 2 for this kind of
I-patches.

4.3 Setting coefficients

The w; and w parameters can be set in a process similar to I-patches [16] forcing
the patch to interpolate one point on each boundary and one point in the interior
of the patch. As the shape of the surface on the ith boundary depends only on
w;, each of those can be set separately, and finally, w can be set to interpolate an
interior point. L.e.:

 Sic1i(pi) - B (pi) + Siiv1(pi) - B, (i)
Bz‘zq(pi) ) Bi2+1(pi)

3
3
3

.

—
~.
Il
—

oS

J?fl J¢z+1
n
H BE(PO)
i=1

where p; is a point on the ith side, pg is a point in the interior to interpolate. The
parameters can be computed in this order, i.e. first all w;, then w.
See examples later, in Figure 4.
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4.4 Limitations

When connecting neighboring patches with geometric continuity, we need them to
coincide at their common boundary in both a positional and a differential sense.
As the corner I-patch along B; connects to the surface defined by Equation 3, the
patch on the other side of B; also has to connect to it. This, however, only happens
if B;_1 and B, are identical to the corresponding bounding surfaces for the other
patch.

This is not easily fulfilled when creating a general topology patchwork, but it
is straightforward if the space is subdivided by planes, creating finite volume cells.
Any such cell structure could theoretically work with corner I-patches, however,
the most practical and useful is a regular grid of cubes.

5 Corner I-patch with multiple loops

5.1 Motivation and equation

In some cases, an isosurface must be represented by several disjoint surface ele-
ments. In Marching Cubes [12] for example, 7 of the 15 basic configurations result
in a surface represented by more than one polygon. These surface elements could be
represented separately, but in an implicit representation, it is advantageous to have
the same implicit function on a well-defined 3D volume, otherwise, the piecewise
implicit function would likely have discontinuities.

Fortunately, corner I-patches are capable of achieving this with a little modifi-
cation. Consider m separate boundary loops where the [th of those is n;-sided and
for each of them the previously defined corner interpolants S 5, 5% 5, ...,.S}, | and
the bounding surfaces B!, B, ..., Bf”. Then the new equation is

m  ng m Nk
Z Z Wi i,i+1 ° Szl',iJrl : H H (B;C)z +
k=1 =1

=1 1i=1 Jj=
kALY (G#INj#i+1) (7)
m  ny m Nk m.o ny
k\2 2 __
2.2 (w11 11 @97 [+ 11B)* =0
=1 =1 k=1 j=1 l=1:=1
k#ALVj#£i

The meaning of this is that for each corner interpolant, the bounding surfaces
not multiplied to it are the two ones beside it, corresponding to the next and
previous boundaries of the patch. A simple multiloop surface can be seen in Figure
2a, with two loops each composed of three corners.

5.2 Coinciding bounding surfaces

In a multiloop setting, especially if working in a grid of cubes, some bounding
surfaces will likely coincide. Consider, for example, the configuration in Figure 2b
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(a) Two 3-sided loops (b) A 3- and a 4-sided loop

Figure 2: Multiloop patches

(a configuration of Marching Cubes), where one of the boundings for the 3-sided
loop coincides with one of those of the 4-sided loop. The problem with that is
that when two bounding surfaces coincide, they will be in all the members of the
weighted sum and thus can be factored out from the equation.

With regard to I-patches, a modified equation for this problematic case has been
proposed in [14], however, it takes advantage of the 1-to-1 relation between ribbons
and bounding surfaces which is not applicable to corner patches.

In this paper, the following solution is proposed. When computing the product
of the bounding surfaces not neighboring the respective corner, omit those as well
which coincide with one of the neighboring ones.

The formalized equation is:

m  n

m Nk
l k\2
E E Wit - Sy H H (By)" |+
=1 i=1 k=1 j=1
B}“zBé,B;ﬁ’ng_l

m n

[T @b? |+l TTm =0
j=1 1=11i=1
B;&‘ng

m  ng m
—i—ZZ wz,i'kl:[l

=1 i=1

What this means is that each corner is multiplied with the product of all bound-
ing surfaces (regardless of which loop they are in) unless they coincide with one
of its neighbors. Side components for a given side are the product of all bounding
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surfaces, other than those coinciding with the bounding surface representing that
side. This formulation keeps the properties highlighted about the original equa-
tion (G! continuity to corner interpolants, and sides being only affected by the
corresponding coefficient).

A practical implementation for evaluating this is to store all bounding surfaces
in an array, and only store indices for them in the loops. When computing the
products, we only have to check for the non-equality of the indices.

6 Use in cell structures

When used in regular cell structures, the S; ; and B; surfaces are all planes. Thus,
the patch itself is a polynomial surface, with a degree of twice the number of sides
(see Equation 2).

In Figures 3 and 4 corner patches are defined inside the unit cube. Figure 3a
is a 3-sided surface near a corner of the cube. Figure 3b is a 6-sided patch that
intersects all faces of the cube.

In Figure 4, three patches with the same corners but different coefficients can
be seen. They are set using the algorithm presented in Section 4.3, i.e. on each
side and in the interior one point is fixed and respective coefficients are calculated
from them. Between Figures 4a and 4b, two side points; between Figure 4a and 4c,
the interior point is changed. The numerical data for these patches can be found
in Table 1.

The possible topological configurations are similar to those of Marching Cubes
[12]. The multiloop scheme also works for topologically disjoint isosurfaces (Figure
3c).

(a) A 3-sided patch (b) A 6-sided patch (¢) A patch consisting of
two disjoint components

Figure 3: Corner I-patches inside the unit cube
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(a) Base patch (b) Changing boundaries (c) Changing the interior

Figure 4: Corner I-patches with the same corner interpolants and different coeffi-
cients

Table 1: Points and coefficients for the patches in Figure 4. All patches are in the
[0;1]% cube. Differences from Patch #1 are bold.

Corner points
[0,05,1] | [0,0.8,00 | [1,0.50] | [1,0,0.5] | [0.5,0,1]
Patch #1
Side points
[0,0.6,0.5] | [0.5,0.6,0], | [1,0.35,0.35] | [0.65,0,0.65] | [0.35,0.35,1]
Side coefficients
0.6 0.6 —2.34 ‘ 2.34 —2.34
Interior point: | [0.5,0.5,0.5] Central coefficient: —7.77
Patch #2
Side points
[0,0.6,0.5] | [0.5,0.8,0] | [1,0.35,0.35] | [0.55,0,0.55] | [0.35,0.35, 1]
Side coefficients
0.6 2.2 -234 | 0.45 —2.34
Interior point: | [0.5,0.5,0.5] Central coefficient: —-8.94
Patch #3
Side points
[0,0.6,0.5] | [0.5,0.6,0], | [1,0.35,0.35] | [0.65,0,0.65] | [0.35,0.35,1]
Side coefficients
0.6 0.6 234 | 234 —2.34
Interior point: | [0.5,0.2,0.5] Central coefficient: 55.83
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7 Discussion

7.1 Methodology

The examples were generated in the following way. The input was a voxel array
of floating point isovalues. Then, for each cell, based on the eight isovalues in
the corner, polyline loops were generated from the estimated edge intersections.
Ambiguities (when on a face all four edges have an intersection) were resolved by
minimizing the sum of distances between the two pairs. This resulted in one or
more loops of closed polylines.

Then, in each of the isovertices, a plane was introduced, with its normal pointing
towards the positive cell corner. From those, and the cube’s faces, corner I-patches
were generated. Coefficients for the corner components were set to 1, and side
coefficients were calculated with the triangle rule or the tetragon rule (see Appendix
A). The central coefficient was set to 0.

Rendering was done using raycasting, neighboring patches have an alternating
texture color. Phong shading is used, and normal vectors are calculated from the
exact gradients of the surface.

7.2 Single cell examples

The flexibility of the corner I-patch representation can be shown in Figure 5 where
patches are generated from the corner sign settings corresponding to the 14 non-

Figure 5: The 14 non-empty basic configurations of Marching Cubes represented
with corner I-patches (in the same order as in [12])
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empty basic configurations of Marching Cubes. The patches were created using the
formulation in Equation 8, as in cases where there were two boundary curves on
the same side of the cube, boundary surfaces coincided.

7.3 Multi-cell examples

In these examples, a sparse (9x9x9) voxel array was created and the patches were
automatically generated from it. In the first example (Figure 6) two sphere-like
objects can be seen which are close to each other. Notice that the brown surfaces
at their closest points are represented with the same corner I-patch. In the second
example (Figure 7) a voxel value was modified, extending the volume of the bigger
object. In Figure 8 a hole was put into the object by modifying isovalues in a line.

7.4 Examples with exact vertices and gradients

Here, the scheme was modified so that when introducing the corner planes, an exact
implicit function is used for both exactly calculating the isovertex and using an
exact gradient. This can be useful in cases where evaluating the original functions
would be very costly but approximating them with piecewise polynomial surfaces
could bring a reduction in both storage and computation costs.

In Figures 9 and 10 an ellipsoid can be seen with a lower and a higher resolution
cell structure. It can be observed that although the boundary curves approximate

Figure 6: Disjoint surfaces generated from voxel data
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the original surface well, the interior of some surfaces is less smooth. Optimization
of the coefficients is therefore an important area of future research.

Figure 7: Enlarging the object by modifying a voxel value

Figure 8: Putting a hole inside the object by modifying voxel values
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Figure 9: Ellipsoid with lower resolution

Figure 10: Ellipsoid with higher resolution

8 Conclusion

We have presented corner I-patches, a class of implicit surfaces with several ad-
vantages over existing representations. Patches can be defined by combining only
planes, in contrast to the relatively more complicated ribbons needed to define I-
patches. They can be used to create complex piecewise surfaces. Unlike I-patches,
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corner I-patches have no singularities in the corners. Several scalar coeflicients can
be used to optimize a target function on the patch for approximation or surface
fairing purposes.

The figures in the paper have been produced by raytracing, however, an effective
implementation (possibly a GPU one) can be an important goal. Finding good
target functions for optimizing the coefficients is a possible area of improvement.
Detecting poor-quality patches and automatically adjusting the surface coefficients
would also enhance the scheme.
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triangle (Figure 11a) and we take its centroid as the point to interpolate. Otherwise,
we have a tetragon (Figure 11b), by intersecting each corner plane with the opposite
corner’s cube edge. We then take the centroid of this polygon.

\

(a) Triangle rule (b) Tetragon rule

Figure 11: Rules for computing interpolated points. Blue points and lines represent
corner points and planes.

The side coefficient can then easily be calculated by evaluating Equation 5 for
each w;, as the other side coefficients do not affect the current boundary.
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