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Abstract

Computer software is driving our everyday life, therefore their security is
pivotal. Unfortunately, security flaws are common in software systems, which
can result in a variety of serious repercussions, including data loss, secret
information disclosure, manipulation, or system failure. Although techniques
for detecting vulnerable code exist, the improvement of their accuracy and
effectiveness to a practically applicable level remains a challenge. Many exist-
ing methods require a substantial amount of human expert labor to develop
attributes that indicate vulnerabilities. In previous work, we have shown that
machine learning is suitable for solving the issue automatically by learning
features from a vast collection of real-world code and predicting vulnerable
code locations. Applying a BERT-based code embedding, LSTM models with
the best hyperparameters were able to identify seven different security flaws
in Python source code with high precision (average of 91%) and recall (av-
erage of 83%). Upon the encouraging first empirical results, we go beyond
this paper and discuss the challenges of applying these models in practice and
outlining a method that solves these issues. Our goal is to develop a hands-on
tool for developers that they can use to pinpoint potentially vulnerable spots
in their code.

Keywords: deep learning, vulnerability detection, source code embedding,
data mining

1 Introduction

In today’s applications, security bugs (i.e., vulnerabilities) in software are becom-
ing increasingly difficult to detect, allowing hackers and attackers to profit from
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their exploits. Tens of thousands of such flaws are discovered and fixed each year.
Manually auditing source code and discovering vulnerabilities is time-consuming at
best, if not impossible.

In our previous work [2], we have shown that machine learning is suitable for
solving the issue automatically by learning features from a vast collection of real-
world code and predicting vulnerable code locations. The dataset was gathered
from GitHub and contains Python code with a variety of vulnerabilities that is
embedded into a vector space using one of three embedding models (word2vec,
fasttext, BERT) [5, 16, 8]. Individual code tokens and their context are extracted
from the source code of the vulnerable files to provide data samples for fine-grained
analysis. Then, we trained various machine learning (ML) models to see how
effective they were at identifying vulnerable code parts.

The entire training process can be divided into two parts: first, an embedding
model is trained using its parameters, such as min-count (how frequently a token
must appear in the training corpus to be assigned a vector representation), and
second, the system is trained using its parameters, such as min-count or iterations.
After that, the code blocks can only be encoded in their vector representations.
We found that LSTM models were the most suitable, thus we used them and
trained them with different hyperparameters, such as the number of neurons or
dropout, in the second stage. Applying a BERT-based code embedding, LSTM
models performed the best, they were able to identify seven different security flaws
in Python source code with high precision (average of 91%) and recall (average of
83%).

Following a successful empirical evaluation, the results must be implemented
in practice. However, there are several difficulties in putting the above-described
method into practice and making it available as a developer tool. The training data
samples are code snippets (extracted from vulnerability fixing commits), but when
we use vulnerability identification in practice, we use the entire program as input.
To use code embedding and model prediction, we need a method for efficiently
locating code blocks within the program. Furthermore, because these code blocks
may overlap, we require a method for aggregating block-level predictions.

In this paper, we focus on overcoming these challenges and outline a potential
developer tool that developers can use. We apply a small focus area and a sliding
context window to divide the code into blocks. The focus area moves through the
code, and with each step, the model gathers surrounding information, generates a
prediction based on that context as input, and uses that prediction to determine the
vulnerability rating of the focus area. In a developer tool, the different classification
confidence levels may be represented by different colors. To summarize our contri-
butions, we provide a block-level vulnerability prediction method that is practically
applicable to Python code, in contrast to the majority of other research initiatives,
which are primarily focused on Java, C, C++, or PHP and do not provide guidance
on practical application. Furthermore, existing vulnerability prediction approaches
provide predictions at higher abstraction levels, such as methods, classes, or files,
whereas we aim for finer-grained, smaller block-level predictions.
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2 Related Work

This section describes previous works in finding vulnerabilities and also attempts
a classification, although there are many different criteria under which approaches
can be compared. The advantages and disadvantages of the previous approaches
are described.

2.1 Vulnerability Prediction Based on Software Metrics

What characteristics should be considered while determining whether or not code is
vulnerable? For a long time, the most popular features were software and developer
metrics. Code churn, developer activity, coupling, amount of dependencies, and
legacy metrics are examples [22]. Such metrics are widely employed as features
in fault prediction models [13], and they are extremely important in the field of
software quality and reliability assurance. Nagappan et al. [23], for example, use
organizational measures to predict software failures.

Although it appears that those data may be employed in vulnerability predic-
tion, there are significant issues with this. For starters, two pieces of code could
have the same characteristics but completely different behaviors, resulting in a dis-
tinct risk of being exposed. They also tend not to transfer well from one software
project to the next. The most serious complaint is that such measurements fail
to capture the semantics of the code [30], and that this method ignores the source
code, program behavior, and data flow. The method effectively applies a presump-
tion that particular meta characteristics will be linked to security issues, which is
not always accurate [15].

Many vulnerabilities can, for example, be found in extremely simple programs.
The simplest or most direct solution to an algorithmic problem frequently lacks
the safeguards and measures necessary to prevent attacks, which is precisely why
software engineers working under time constraints or with little familiarity with
security issues have difficulty. Code complexity isn’t a perfect indicator of security
problems, and there are analogous arguments and counterexamples for the other
measures as well. However, it must be accepted that software metrics can provide
at least some insight. This is demonstrated in the following studies, which em-
ploy machine learning techniques and code metrics to anticipate the occurrence of
software security problems. Shin et al. [30] estimate vulnerabilities in JavaScript
projects using nine complexity measures, with a low false positive rate but a large
false negative rate. Using linear discriminant analysis and Bayesian networks, the
authors used code complexity, code churn, and developer metrics to identify vul-
nerabilities in a later paper [29], attaining 80 percent recall and 25 percent false
positives. Chowdhury et al. [4] use complexity, coupling, and cohesion metrics to
try to anticipate software vulnerabilities using methodologies that have previously
been used for fault detection. They conduct a study on Mozilla Firefox releases
and anticipate vulnerabilities using decision trees, random forest, logistic regression,
and naive Bayes models, with precision and recall of roughly 70% and 70%, respec-
tively. Zimmerman et al. contributed to the list by looking into code churn, code
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complexity, code coverage, organizational metrics, and actual dependencies [40].
They discovered a weak but statistically significant link between the indicators

studied and utilized logistic regression to identify vulnerabilities based on them,
with an emphasis on Windows Vista’s proprietary code. The measures were able
to anticipate vulnerabilities with a median precision of 60%, but a recall of 40%,
which was disappointing. When using support vector machines to anticipate vul-
nerabilities using import statements, Neuhaus et al. [24] found an average precision
of 70% and recall of 40% when using import statements in the Mozilla project. Yu
et al. [38] include a variety of factors, including software metrics like the number
of subclasses or methods in a file, as well as crash features and code tokens with
associated tf-idf scores. As a result, their strategy incorporates a variety of perspec-
tives. They can forecast vulnerabilities at the file level and get very good results
in reducing the amount of code that needs to be reviewed by humans to detect a
vulnerability.

Other researchers have made predictions based just on commit messages. Zhou
et al. [39] use a K-fold stacking technique to examine commit messages to forecast
whether or not a commit contains vulnerabilities. In contrast, Russel et al. [26]
discovered that humans and Machine Learning systems both struggled to iden-
tify build failures or defects based just on commit messages. Our approach, the
suggested method, does not use external code measurements and instead learns
characteristics directly from the source code.

2.2 Anomaly Detection Approaches for Finding Vulnerabil-
ities

The task of characterizing normal and anticipated behavior and finding deviations
from it is known as anomaly detection. The assumption is that code that does not
follow the indicated criteria is frequently the source of a bug. To evaluate source
code and uncover normal coding patterns, data mining techniques were applied. For
instance, Li et al. [19] developed PR-Miner, a tool that can discover code patterns
in any programming language and has shown to be highly beneficial. Their method,
which is based on associating programming patterns that are used in tandem, is
independent of the language used, and the violations detected by their tool have
been confirmed as flaws in Linux, PostgreSQL, and Apache. However, a basic issue
is that faults that are themselves normal patterns are routinely neglected, resulting
in common vulnerabilities going undetected [36].

Rare programming patterns or API usages, on the other hand, may be labeled
as false positives simply because they are uncommon. Several anomaly detection
methods have a high risk of false positives [10]. Anomaly detection in code is not a
simple way for detecting security vulnerabilities, because it is difficult to tell when
a violation of typical code patterns has a security implication and when it does
not. The method utilized in this study varies from traditional anomaly detection
in that explicit labels are used to train a model on both vulnerable and secure
code, avoiding the dubious assumption that ”normal” = ”right.” It falls under the
heading of susceptible code pattern analysis.
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2.3 Vulnerable Code Pattern Analysis and Similarity
Analysis

In comparison to learning about abstract metrics or the notion of proper code, it
seems almost natural to just try to answer the question: What does vulnerable
code often look like? Vulnerable code pattern analysis and similarity analysis are
two slightly different approaches to answering that question. The name suggests
that similarity analysis achieves exactly that. The purpose is to locate the most
comparable code fragments to a susceptible code snippet, presuming that they are
at risk of sharing the vulnerability. This method works well for identical or almost
identical code clones in which the compared code fragments’ inherent structure is
quite close [18], a circumstance that occurs frequently, especially in the open-source
community.

Susceptible code pattern analysis examines vulnerable code segments using data
mining and machine-learning techniques to discover common characteristics. These
characteristics are patterns that can be used to detect vulnerabilities in new code
portions. As detailed by Ghaffarian et al. [10], most of the work in this area gathers
a huge dataset, analyzes it to extract feature vectors, and then applies machine-
learning techniques to it. Both methodologies are often used to analyze source code
without running it, which is known as a static analysis, while some academics also
use a dynamic analysis. The bottom line is that, unlike ’conventional’ static analy-
sis, the characteristics are generated automatically or semi-automatically, removing
the need for subjective human specialists. An unbiased model can be developed by
learning directly from a dataset of code what susceptible code includes.

In many cases, those approaches use a coarse granularity, classifying entire
programs [11], files [29], components [24], or functions [37], making pinpointing
the specific position of a vulnerability hard. Some researchers, such as Li et al. [18]
and Russell et al. [26], employ a finer representation of the code. Furthermore, the
approaches differ in several ways, including the language used, the data source, the
dataset size, the labeling process, the granularity level of the analysis (whole files
down to code tokens), the machine learning model used, the types of vulnerabilities
examined, and whether the model can be used in cross-project predictions or only
on the project it was created for. To begin, some fundamental approaches utilizing
various machine learning techniques will be discussed.

Following that, deep learning-based techniques are investigated in further depth.
Morrison et al. [22] look at security flaws in Windows 7 and Windows 8. 8 using
a variety of machine learning approaches such as logistic regression, naive Bayes,
and others With very unsatisfactory results, support vector machines, and random
forest classifiers. As a result, the precision and recall levels were quite poor. Pang
et al. [25] extract labels from an internet database in a fairly basic manner. To
classify the entire Java code, utilize a combination of feature selection and n-gram
analysis. susceptible or not vulnerable classes. They use a simple n-gram model in
combination with feature selection methods to integrate related features and limit
the number of irrelevant features taken into account on a relatively small dataset
of four Java android applications. After that, they use support vector machines
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as their learning algorithm, with 92 percent accuracy, 96 percent precision, and 87
percent recall inside the same project, and 65 percent in cross-project prediction
(training on one project and trying to classify vulnerable files in another one).

Shar et al. [28] use machine learning to detect XSS and SQLI vulnerabilities in
PHP code and reduce false positives. They manually select specific code attributes
before training a multi-layer perceptron to augment static analysis tools. They
discovered fewer vulnerabilities than a static analysis tool, but with reduced false
positive rates, resulting in a satisfactory outcome. They adopt a hybrid technique
with dynamic analysis in their later work [28], which significantly improves their
earlier results, as tested on six large PHP projects. They also try unsupervised
predictors, which are less accurate but still a fascinating study topic.

Raw source code is analyzed as text by Hovsepyan et al. [15]. They used an
Android email client built in Java as an example, focusing on evaluating the source
code as if it were a natural language and processing files as a whole. They convert
files into feature vectors made up of Java tokens with their respective counts in the
file after filtering out comments. These feature vectors are classed as susceptible or
clean in a binary approach. Finally, a support vector machine classifier is trained to
determine whether a file is vulnerable. This classifier has an accuracy of 87 percent,
with 85 percent precision and 88 percent recall. Their success demonstrates that
evaluating source code as natural text and gaining insight without sophisticated
models of code representation is possible. Unfortunately, the application on a single
software repository limits their work. For a comparable job, they later utilized
decision trees, k-nearest-neighbor, naive Bayes, random forest, and support vector
machines [27].

2.3.1 Deep Learning for Vulnerability Prediction

Several papers have successfully used deep learning models to automatically learn
features for fault prediction [35]. The following works show how this approach
can be applied to vulnerability detection. Russell et al. [26] employ recurrent
and convolutional neural networks to scrape a large codebase of C projects from
GitHub, the Debian Linux distribution, and synthetic examples from the SATE
IV Juliet test suite, resulting in a database of over 12 million functions. They
produce the binary labels ’vulnerable’ and ’not vulnerable’ for the routines using
three separate static tools, as well as a randomly initialized one-hot embedding for
lexing. Convolutional and recurrent neural networks are used for feature extraction
at the core of their research, followed by a random forest classifier. The best results
came from convolutional neural networks, which allowed for fine-tuning of precision
and recall against each other.

Russel et al. are not only among the first researchers to use deep representation
learning directly on source code from a large codebase, but they are also able to
use a convolutional feature activation map to highlight suspicious parts of the code,
rather than simply classifying a whole function as vulnerable, with their work. The
work of Liu et al. [20] is based on the notion that violations that are consistently
remedied are genuine positives, whereas violations that are disregarded are likely
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to be either not important or false positives. They look into changes in 730 Java
projects, use the static bug detection tool Findbugs to find changes that are fixing
a violation reported by that tool, then follow the violations across versions to see
if they are addressed or ignored. They can use this information to determine
which tool-reported infractions are consistently disregarded over several revisions
and which are addressed almost immediately. They collect the code patterns that
correlate to infractions using an abstract syntax tree as a representation.

Liu et al employ an unsupervised learning approach to extract features of code,
focusing primarily on patches to learn fix patterns, rather than building a binary
classifier on ’vulnerable’ or ’not vulnerable.’ As a result, their method may be
characterized as a type of similarity analysis. The discovered coding patterns are
encoded into a vector space using an embedding layer, the discriminating features
are learned using a convolutional neural network, and violations with learned fea-
tures are clustered using an X-means clustering technique. They discovered that,
while security-related breaches are uncommon, they are common in 30 percent
of the projects. Furthermore, the research shows that only a small percentage of
breaches are corrected. Liu et al. discovered that for 90% of fixed breaches, a chunk
of merely 10 lines of code or fewer is adequate to capture the relevant context. The
CNN produces patterns that are nearly identical to the tool’s violation description
and are used to build fixed patterns. One of the top five suggested fix patterns can
fix roughly one-third of a test set of violations. Liu et al. also chose 10 open-source
Java projects to offer proposals to based on the modifications proposed by their
program, with 67 of the 116 suggestions being accepted right away. Of course, their
technology can only suggest patches that match previously discovered fix patterns.

2.3.2 Long-short Term Memory Networks

Although Gupta et al. [12] and Dam et al. [6] have demonstrated that extended
short-term memory networks are well suited to modeling source code and correcting
faults in C code, the latter was likely the first to do so. to learn features automat-
ically for anticipating security vulnerabilities [7]. They Extract the code from a
publicly available dataset including 18 Java applications. utilizing Java Abstract
Syntax Tree to replace all methods in the source file Some tokens are available in
generic versions. They then employ LSTM to train syntactic and semantic skills.

A random forest classifier and semantic characteristics. They got over 91 percent
precision for within-project vulnerability prediction, and after training a model on
one project, it got over 80 percent precision and recall in at least four of the other
17 projects. VulDeePecker [18] is a deep learning-based vulnerability detection
method. The authors propose the first dataset of vulnerabilities targeted for deep
learning algorithms, which is derived from the National Vulnerability Database and
the Software Assurance Reference Dataset maintained by the NIST and come from
popular C and C++ open-source products.

Li et al. want to design a tool that doesn’t rely on humans to determine features
but still has a low rate of false positives and false negatives. They divided files
into code gadgets, which are semantically related lines of code that are grouped,
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focusing on critical areas of library and function API calls in a very sophisticated
manner. Only two sorts of vulnerabilities are evaluated: buffer errors and resource
management problems. On different subsets of their data, Li et colleagues chose
bidirectional long short-term memory networks, attaining a precision of roughly 87
percent, with better results if the network is trained on manually selected function
calls. Harer et al. [14] used LSTM networks to detect and resolve C vulnerabilities
in the synthetic SATE IV code base. They were able to use a sequence-to-sequence
strategy to develop solutions for discovered vulnerabilities, albeit measuring and
comparing their success is difficult. Similarly, Gupta et al. [12] employ RNNs in
a sequence-to-sequence configuration to remedy flawed C code, while not focusing
on security vulnerabilities, fixing 27 percent of their applications completely and
19 percent partially.

3 Approach

Our approach to vulnerability detection is to analyze code tokens and their sur-
rounding tokens to determine the context in which they exist. Using embedding
layer models, the code is embedded into semantically meaningful numerical vec-
tors. After that, an LSTM network is used to recognize vulnerable code features
and categorize code as vulnerable or not vulnerable. The overview of the approach
is shown in Figure 1.

Figure 1: Overview of the approach

3.1 Data Source

In prior research, the researchers found that applying their model to code from the
same project that it was trained on yielded better results in detecting vulnerabil-
ities [25]. Cross-project prediction resulted in a significant reduction in precision
and recall. In the works of Russel et al. [26] and Li et al. [18], the best results
were obtained when dealing with a synthetic data set rather than code from real
applications. Nonetheless, because such a vulnerability detection tool appears to
be the most desirable and final result, our strategy attempts to leverage a huge
dataset of real-life source code to train a model that can be applied to any code,
not just one project.

For numerous reasons, the entire dataset was compiled from publicly available
GitHub projects: First, because GitHub is the world’s largest repository of source
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code, the amount of meaningful data accessible is unlikely to be insufficient for this
application. Second, unlike synthetic code bases, nearly all GitHub projects contain
’natural’ source code in the sense that they are real-world projects. Third, the data
is open, making it easier to re-examine and reproduce the work, which is difficult in
studies that focus on proprietary code, for example. Because GitHub is primarily a
version control system, it is centered on commits, and as Zhou et al. [39] explains,
it is possible to detect vulnerabilities by looking at commits. Patches are commits
that remedy a defect or vulnerability and consist of two versions, one buggy and
one updated and correct. Vulnerable code patterns can be discovered by evaluating
the differences between the old and new versions.

3.2 The Data Collection Process

Commits that fixed numerous vulnerabilities were gathered. Each vulnerability
needed its dataset after the data had been collected and filtered. Table 1 sum-
marizes the fundamental data of the dataset, such as the number of repositories
and commits that comprise it, the number of modified files that contain known
vulnerabilities, the number of lines of code, the number of distinct functions they
contain, and the total number of characters.The following sections will demonstrate
the suitability of this dataset by using it to train the model.

Table 1: Vulnerability Dataset

Vulnerability Repo. Commits Files Functions LOC Chars
SQL Injection 457 582 721 7452 102558 5960074
XSS 52 89 102 983 18916 1236587
Command injection 125 225 354 3561 48031 2740339
XSRF 112 189 384 6418 76198 3368206
Remote code execution 71 88 186 4198 40591 1955087
Path disclosure 175 204 332 4596 62303 2814413

3.2.1 Python Vulnerabilities

Injection attacks - An injection attack is based on user input that causes un-
expected or harmful behavior when processed or executed. A user can sometimes
access or change data without permission by exploiting an injection vulnerability,
which usually allows the user to have the interpreter (such as the server or the
operating system) execute arbitrary commands. Injection attacks can be avoided
by vetting all user input and employing so-called ”sanitization” techniques that
convert harmful to harmless inputs, such as filtering out special characters.

SQL injection - The OWASP foundation lists SQL injections as one of the top
security flaws, ranking them among the most prevalent and dangerous flaws affect-
ing web applications. The Common Weakness Enumeration defines SQL injection
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as ”when a SQL command is provided to a downstream component, the software
generates all or a portion of it using externally influenced input from an upstream
component, but fails to neutralize or does so in a way that may cause it to change
the intended SQL command.” When user-controllable input contains SQL syntax
that has not been removed, it can be misinterpreted and executed as a SQL state-
ment. This can be used to alter searches, such as accessing files that should not
be accessible or adding new statements that can alter or destroy databases. If its
sanitization is not thorough, any form of a database-driven website could end up
being the subject of such an exploit.

Command injection - According to the Common Weakness Enumeration, the
software constructs all or a portion of a command using externally affected input
from an upstream component, but it fails to neutralize or does so incorrectly specific
aspects that could change the intended command when it is sent to a downstream
component. This is another instance of untrusted data being executed, but instead
of being directed at a SQL database, it is directed at a command run by the system
being attacked, such as the server shell. An attacker could then read, modify, or
delete files that they shouldn’t have access to.

Remote code execution - The primary distinction between command injec-
tion and remote code execution is that command injection executes an OS system
command, whereas remote code execution executes actual programming code on
the target machine. It is also sometimes used to define a hacking goal rather than
a vulnerability, in the sense that an attacker can execute arbitrary commands on a
system by exploiting a vulnerability.

Various types of session hijacking - The main goal of session hijacking is to
allow an attacker to enter a client’s connection with a server, typically by obtaining
or guessing a valid session token and then posing as a trusted client.To connect
to a client using a maliciously set session ID by a third party, a user must be
tricked into clicking a link that contains the session ID as a parameter. Because
the malicious third party now has access to the session token, the active session can
be accessed. An attacker could even gain access to a logged-in account. By using
cross-site scripting to obtain a session token, the attacker can hijack the shared
session between the client and server.

Man-in-the-middle attacks are also included in session hijacking. An attacker
pretends to be the connection partner on both sides of a conversation between two
systems, possibly a client and a server. Because they are effectively acting as a
proxy, the attacker can view and occasionally change the content of the communi-
cation. By utilizing appropriate encryption and certifications, man-in-the-middle
attacks are avoided. The term ”replay attack” refers to an attack in which the
attacker, posing as the original originator of the transmission, records a legitimate
portion of communication between two parties (such as a client and a server) and
sends it again later. The attacker can access features and data that were only
intended to be accessible to the original sender if suitable protective measures are
not in place (primarily secret one-time session IDs).

Cross-site scripting - Cross-site scripting, also known as XSS, is one of the
most serious flaws in web applications. It frequently appears on OWASP’s top ten
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list of vulnerabilities. Unsanitized data is also central to the cross-site scripting
problem. This time, a user adds custom code to a website or URL before passing
it on to other users, who will see the code as part of the page and run it in their
browser. The CWE defines cross-site scripting as follows: The program either
does not neutralize user-controllable input at all or neutralizes it incorrectly before
including it in output that is used to create a web page that is served to other
users.

A guest book that accepts arbitrary input is a simple example of stored cross-site
scripting. A visitor may post plain text or Javascript, which is saved on the website
permanently and distributed to other users, who will receive and run the Javascript
code. Of course, changes can be made, such as using different input methods and
producing executable code in languages such as Flash. Another example is an email
that contains a link to another website, but the URL contains malicious Javascript
that, when clicked, executes the malicious code. To prevent XSS attacks, user-
generated content should be sanitized with tools such as HTML escape and others.

Cross-Site request forgery - The CWE defines cross-site request forgery as
follows: The web application does not, or is unable to, thoroughly verify whether
the request was submitted by a well-formed, legitimate, consistent user. This is
further explained below: If a web server is designed to accept requests from clients
without any means of verifying that they were made voluntarily, an attacker may be
able to trick a client into sending an unintended request to the website that would
be treated as a legitimate request. This can expose data or result in accidental code
execution and can be accomplished via a URL, image load, XMLHttpRequest, or
other means.

Directory traversal/path disclosure -When a user changes the input in
such a way that paths of a file system that were not intended to be accessed
are exposed, this is known as a path traversal or directory traversal vulnerability.
According to the CWE, the software does not properly neutralize special elements in
the pathname that could cause it to resolve to a location outside of the restricted
directory. The software generates a pathname from external input to identify a
file or directory that is located beneath a restricted parent directory. A common
example of this vulnerability is a website that displays a file whose path is specified
in a URL parameter. The attacker can explore the file system and possibly show
files that weren’t intended to be accessible by altering this parameter to contain
some ”../../..”.

3.2.2 Scraping GitHub

The first step is to build a dataset, or more precisely, to find a large number of
commits that address a security issue. Because the goal is to cover a wide range of
vulnerabilities, each vulnerability type requires multiple examples. Commits are the
main topic of interest in our work because the process of patching a flaw indicates
the presence of the flaw in the first place and provides the basis for labeling the
data afterward. The GitHub search API can only handle certain types of requests,
and the number of results for each request is limited to 1000. Filters cannot be
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implemented in the search API, unlike the regular search available to users, so
filtering for only the programming language is not possible. As a result, after
obtaining the results and selecting the few relevant and useful ones from among
them, this filtering must be done manually. As a result, the approach taken here is
to write a script that searches the Github API for contributions containing various
security-related search phrases, then filters out everything that isn’t relevant, such
as code written in a different programming language or configuration files. The
script is included in the repository and authenticates with an API token.

Initially, a lengthy list of security-related terms was used. These terms are based
on prior research citezhou2017automated, the CVE database, and the OWASP
foundation’s list of security risks. To collect the data, a script was written that
connected to the GitHub API via the requests library. The keyword list must be
supplied at the beginning of the script. This first set of keywords will be combined
with a second set of keywords related to improvements, repairs, or modifications in
order to consider every possible combination of the first and second set elements.
Because the second set of terms denotes a problem or a solution, the combinations
should be useful (but not sufficient) in distinguishing genuine security improvements
from numerous other mentions of vulnerabilities, such as examples in showcase
projects for educational purposes.

However, it quickly became clear that only a few of those keyword combinations
were truly relevant to the task at hand. Some, like ’vuln’, ’XXE’,’malicious’, or
’CVE’, were overly broad and yielded a wide range of results; others, like ’dos’
(as an abbreviation for denial of service), yielded completely unrelated results due
to overlap of meanings (in this case, ’dos’ referring to an old Windows operating
system, and, even more frequently, the very common Portuguese As a result, the
available options were significantly reduced. After combining every keyword from
the revised first set with every keyword from the second set, a search request is
sent to Github for each of the combinations. It should be noted that this only
means that the names (and thus URLs) of commits and repositories are gathered;
no actual source code or even a diff file is downloaded at this time. After combining
every keyword from the revised first set with every keyword from the second set,
a search request for each combination is submitted to Github. It should be noted
that this only collects the names (and thus URLs) of commits and repositories: no
actual source code or even a diff file has been retrieved.

3.2.3 Filtering the Results

The second priority was to find projects that display security flaws, exhibit exploits,
or serve as tools for attacking or preventing exploits. While those works frequently
include useful examples of vulnerabilities, they rarely include commits that repair
them, but rather commits that introduce them into the codebase on purpose. Fur-
thermore, they run counter to the work’s methodological assumptions, as the goal
is to learn about vulnerable code as it appears in real-world projects where devel-
opers make legitimate mistakes. As a result, an attempt is made to screen such
projects out.
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With the -b parameter, the script could include a list of keywords to indicate
projects that should be avoided. The repository names were searched for the fol-
lowing keywords: ”offensive”, ”pentest”, ”vulnerab”, ”security”, ”hack”, ”exploit”,
”ctf”, ”capture the flag”, ”attack”. The README files for the remaining projects
are then downloaded from Github. The next step is to obtain the diff files. In the
GNU diff model and similar representations used by GitHub, a diff is a text file that
represents the changes made in a commit. It contains some metadata (such as the
filename and change line number), the modified lines, and three lines of code before
and after. A ’+’ at the beginning of a line denotes a new and fixed line, whereas
a ’-’ denotes a line that was eliminated in favor of the repair [20]. A commit on
Github might include modifications to multiple files at once.

A single HTTP request can be used to download the diff for a commit URL. This
is a far easier way than cloning the entire repository and selecting individual files
from a certain point in the project’s history, which appears to be impossible at this
time due to the size of the dataset and computational and temporal constraints.
The preceding phase produces a large number of code diffs that can be used to
recreate important lines of code in the state before and after the modification. The
diff from GitHub includes the modified lines as well as three lines before the first
change and three lines after the last change for each changed file, so there isn’t
much context for the change. However, the vast number of changes that can be
mined with this method may more than compensate for the comparatively limited
context offered for each change. The time it took to run all of those queries was
over 80 hours.

To build the dataset, we obtained only the diff files and recreated the ’before
version’ and ’after version’ of the required code snippet, each with the modified lines
and three lines above and below them. The goal was to classify the first version as
vulnerable and the second version as ’not vulnerable’, which yielded some pleasing
results. The classifier that had learned from the training set was able to accurately
classify the validation set samples and determine whether they belonged in the
’previous/vulnerable’ or ’after/fixed’ categories. When the model was applied to
a new file containing source code, it went through several parts of it and tried to
identify them, and the problem became evident.

That endeavor resulted in an astonishing number of false positives. The reason
behind this is that the dataset had the same number of (actual) positives and
negatives, whereas in reality, Figure 2: In between numerous lines of ’clean’ code,
retrieving the snippet in the state before and after the commit from a git diff,
the old vulnerable version in red, the new vulnerable version in green The dataset
does not accurately reflect the class unbalanced nature of the data to which the
classifier should be applied. Of course, this was clear from the start, but owing
to the aforementioned time and processing resource constraints, it appeared that
collecting the diffs was simply the best technique that could be done at all. This
was not accurate, and a better solution may be found.



336 Amirreza Bagheri and Péter Hegedűs

Figure 2: Vulnerable and Not Vulnerable parts selection

3.2.4 Downloading the Dataset

We noticed that downloading the source code in a reasonable amount of time was
possible if all of the filterings were done beforehand in a clever way to keep the
number of downloaded repositories to a bare minimum. First, the commit is ex-
amined to see if it contains keywords related to the vulnerability. The diff file is
then examined to see if any files with the code language of choice are affected. If
this is not the case, the commit can be ignored because only commits that change
specific language source code files are taken into account. The commit is then
compared to the previously downloaded commits. By definition, many open-source
repositories are forks or clones of one another, or they contain the commit history
of other projects. Duplicates are excluded. The distinction is then thoroughly ex-
amined.Each change in the commit has an effect on a specific file. The filename
is reviewed for each modification to see if it contains terms that indicate it is a
showcase project - a file called ”SQL exploit” is more likely to be part of a project
exhibiting vulnerabilities than a patch that fixes an inadvertent vulnerability.

The body of the diff file is then processed. If HTML tags or the keywords’sage’
are used, the diff is no longer considered. Although HTML code is sometimes
embedded in some files, the vulnerabilities in those files are almost never in the
same code. Sage is an open-source mathematics system, and some commits include
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parameters and variables that are useful to it but not relevant to this project.
Finally, the change is checked to see if any lines of code have been removed or
replaced. If there are only minor changes, the algorithm will struggle to determine
which lines are vulnerable. Finally, after much deliberation, it is determined which
commits are truly worth downloading.

Pydriller [32], a tool for downloading repositories containing intriguing commits
and traversing their commitments to identify all the matches with the commits that
remain in the collection of interesting ones, is only now being used. Some checks are
performed anew for each commit. The commit is skipped if the prior file is empty.
The commit is also avoided if the previous file is longer than 30.000 characters.
Similar to the file name, the commit message is reviewed for suspicious terms.
Finally, the source code for the dataset is downloaded and saved.

3.2.5 Flaws in the Data

When we dug deeper into the data, we discovered that the process of collecting
vulnerability samples based on commit messages is far from perfect. There were
still some (albeit minor) commits that contained exploit implementations rather
than fixes, such as setups for capturing the flag, attack demonstrations, or cyber
security tools like Burp Suite. Some commit messages, for example, read ’fix remote
code execution,’ and this vulnerability is repaired somewhere, but the same commit
also contains, for example, eight other files with minor and significant changes that
may or may not be related to the issue indicated in the commit message. It’s
difficult to tell whether modifications are related to the commit message’s stated
goal without human supervision or predetermined knowledge.

The answers for several keywords were just unspecific. There were many results
for the phrase brute force in which a brute force strategy was utilized to solve a
problem rather than a defense against a brute force attack. As a result, the findings
were not particularly useful. A similar issue arose with the phrase tampering, which
was used seldom and for a variety of reasons (including DNS tampering, but also
game data manipulation for cheating purposes). The term ”keyword hijacking”
was frequently used in a figurative sense, for example, to describe a person or
application that inserted undesirable but authorized material, or to describe data
fields or entries that were used by the developers for other purposes as intended.
Many fixes and changes relating to developers traversing their file structures, not
an attacker attempting to do so, were found using the phrase directory traversal.

Changes were occasionally overly convoluted and spanned numerous files, in-
cluding those that were not written in Python. The more complex the modifica-
tions and the more lines changed, the more difficult it is to model and learn from
the sample. Another issue is that many vulnerabilities are defined by the lack of
specific defense mechanisms, such as XSRF tokens or nonces/counters that prevent
replay attacks. Fixing those vulnerabilities sometimes does not alter or remove a
susceptible section of code, resulting in insights into what vulnerable code looks
like, but instead adds a few extra lines. In other circumstances, those lines can
be positioned in a variety of ways, with a variety of ways to provide the needed
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functionality. Learning to notice the lack of something vague that is required is
far more difficult than learning to recognize a very explicit erroneous piece of code
that is there.

Commits using replay attacks typically had both of the aforementioned issues:
They’re dispersed throughout a lot of files, and they usually add new lines rather
than alter an existing, broken code segment. As a result, this kind of vulnerability
had to be ruled out. There were just a few results for man-in-the-middle attacks
that were trying to harden an application against them rather than performing
them. And the defense systems were so specialized that they yielded little usable
information. The majority of the unauthorized commits were likewise not related
to fixing susceptible code segments, but instead invoked methods or handled errors
that were not particularly tied to a vulnerability.

There were simply too many applications outside the realm of security and
vulnerabilities that were only concerned with pretty formatting of outputs rather
than preventing vulnerabilities exploiting format strings, and there were simply
too many applications outside the realm of security and vulnerabilities that were
only concerned with pretty formatting of outputs rather than preventing vulnera-
bilities exploiting format strings. Other types of vulnerabilities, such as cross-site
scripting, command injection, cross-site request forgery, path disclosure, remote
code execution, open redirect vulnerabilities, SQL injection, and so on, did provide
excellent learning opportunities.

3.2.6 Filtering the Data

Individual samples were subjected to specific constraints to improve the dataset’s
quality. Only files with a length of fewer than 10,000 characters were considered.
This offers some advantages: Long portions of comments, docstrings, and manually
specified variables are common features of very long files. Furthermore, they act
as a form of ’long tail’ in terms of computing costs, requiring a significant amount
of time to analyze for very small advantages. Finally, certain manual examinations
revealed that they do not appear to contain the best quality code. Commits that
removed or changed a file in more than 10 different locations were removed from
the sample to improve the dataset’s quality even more. Such bulk modifications are
likely to affect several different concerns at once, rather than just one. Of course,
such steps lowered the number of samples. In the case of SQL injections, for
example, the dataset was reduced from 842 repositories and 903 commits affecting
2354 files totaling 212913 lines of code to 457 repositories, 582 commits, 721 files,
and 102558 lines of code. The quality of the data did not suffer as a result of the
reduction, as a test of the final model with the non-trimmed dataset yielded no
better results.

A severe flaw in the code was introduced at this time, which was only discov-
ered and repaired late in the process. After identifying which lines of code in the
diff file were susceptible, they were removed from the source code and labeled as
such. The rest of the file was then divided into even blocks of the same length as
the vulnerable code snippets on average, and tagged as ’not vulnerable’. Notice
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how the splitting occurs initially, followed by the separation of vulnerable and non-
vulnerable individuals. The issue with this method was that it regarded susceptible
code areas differently than non-vulnerable code areas. The procedure of construct-
ing a code block differed: vulnerable blocks were extracted directly from the source
code, whereas clean blocks were constructed using the block-splitting algorithm.
As a result, the vulnerable blocks developed some specific characteristics that the
trained classifier could easily recognize.

Some of the susceptible areas were probably very long (with entire functions
removed, for example) Since the majority were relatively brief (one or two lines
modified), resulting in an average of medium length, thus the clean code was divided
into medium-length blocks, which doubled as a proxy for their vulnerability status.
When the classifier was applied to a new source code file cut into even blocks and
should determine which were vulnerable, the outcome was excessively high precision
and recall numbers, as well as poor performance.

3.3 Labeling

The data is tagged using information from the commit context, similar to Li et
al. [18]. The bits of code that were altered or deleted in such a commit can be
labeled as vulnerable, and the version after the fix, as well as all the data around
the affected component, can be labeled as not susceptible. Of course, there are
times when a repair fails to cure an issue, when many vulnerabilities exist at the
same time, or when a new vulnerability is introduced. This strategy ignores all of
it because the key goal is simple automation without the requirement for human
expert oversight. Furthermore, everything marked as ’not-vulnerable’ should be
regarded as ’at least not demonstrated to be vulnerable’.

3.4 Representation of the Source Code

Simple techniques like a bag of words representations have previously shown unsat-
isfactory results and are unable to capture the semantic context of code by design.
They may be promptly rejected. Others, such as Russell et al. [26] and Hovsepyan
et al. [15], claim that an AST representation is required to mine patterns from code,
while others, such as Liu et al. [20], argue that this is not the case. Furthermore,
Dam et al. [7] claim that, in addition to human-engineered features and software
metrics, ASTs may be unable to capture the semantics buried deep within source
code. Code is sequential data akin to natural text, and long short-term memory
networks are created specifically for modeling such data, with excellent results.

Given all of this, our technique is built to work directly on source code as text.
Because code snippets are used as samples, the method could be compared to an
n-gram technique, however, the snippets are far longer than those used in n-grams.
To account for the code’s locality aspect [34], the context surrounding each code
token will be emphasized for learning features.
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3.4.1 Choosing Granularity

As Morrison et al. [22] explain, binary-level predictions and analysis on the level of
whole files provide little insight because developers often already know which files
are vulnerable to security issues, and developers prefer, if possible, a much finer
approach at the level of lines or instructions. Dam et al. [7] start their paper with
some persuasive examples, suggesting that there are files with comparable metrics,
structure, and even almost identical tokens, one of which may be clean and the
other vulnerable, despite the same metrics. A technique that ’zooms in’ to study
small bits of code individually may be more promising than a top-down approach
that looks at entire files. Our method employs a fine-grained approach, examining
each character in the code as well as its context. Only in this way can the specific
position of the vulnerability be pinpointed.

3.4.2 Preprocessing the Source Code

Tokens at the source-code level in languages like Python include identifiers, key-
words, separators, operators, literals, and comments. While some researchers [25]
omit separators and operators, others [37] remove a large number of tokens and keep
only API nodes or function calls. Comments are removed from this work because
they do not affect the program’s behavior. Even if they have some predictive value
for vulnerability status, this is not the type of data that should be learned by the
model, which is designed to discover vulnerable code. Otherwise, the source code
remains unchanged. Hovsepyan et al [15] take a similar strategy. Generic names
are not used to substitute variables or literals; everything is taken exactly as it is
represented. Because neural networks work with numerical vectors of uniform size,
it’s vital to represent code tokens as vectors that keep the semantic and syntactic
information from the code. Furthermore, the vector’s variables must be chosen in
such a way that the vectors are manageable in size.

Li et al. [18] apply carefully constructed code gadgets, Hovsepyan et al. [15]
use a simple bag-of-words strategy, Russell et al. [26] train a randomly initialized
one-hot-embedding, and Liu et al. [20] use word2vec. A naive one-hot encoding is
one possibility, but it is utterly oblivious to the semantic meaning of tokens. An
embedding layer, on the other hand, uses vectors with high cosine similarity to
represent semantically comparable code elements. A code snippet is turned into a
list of representations of its tokens in our method. Language keywords, identifiers
such as function names and variables, integers, operators, and even whitespaces,
brackets, and indentations are examples of these. Every one of the tokens must be
embedded, or represented by a numeric vector.

As a result, a complete portion of the code is converted into a vector of vectors
of numbers. All the embedding layers have previously been used successfully for
similar projects [20]. Aside from the conceptual advantages over a one-hot encoding,
it also requires significantly smaller vector sizes, making it computationally less
expensive. It was picked as the best embedding method for our strategy. Because
no pre-trained language model for Python code is currently available, embedding
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layers must be trained first. A corpus of high-quality Python code is obtained for
this purpose, once again from GitHub. The embedding layer model is trained on
this corpus to prepare it for the task of encoding Python code tokens as vectors.

The vulnerable and non-vulnerable components had to be treated the same the
entire way up to the labeling stage to properly analyze the data. The data was
divided into equal chunks, which were then tagged as vulnerable if they overlapped
with one of the vulnerable code segments, otherwise as clean. The technique of
breaking down source code into blocks has been given in a simplified manner thus
far. Initially, the comments are filtered out of the code, similar to the work of
Hovsepyan et al. [15] and many others, because they are unlikely to alter the vul-
nerability of a file. A small focus window iterates over the entire source code in
n-steps. To avoid tokens being split in half, the focus window always starts and
stops at a character that represents the end of a token in Python, such as a colon,
bracket, or whitespace. The surrounding context of roughly length m, starting and
stopping at the border of code tokens, is determined for this focus window, with
m > n. The context will largely lie behind the focus window if it is at the beginning
of the file, and if it is in the middle, the surrounding context will span a snippet
that spans equally before and after the focus window.

As a result, there are a lot of overlapping blocks. It is labeled as vulnerable if
the entire block contains partially vulnerable code, otherwise, it is labeled as clean.
This ensures that code snippets that contain a vulnerability are identified. The
parameters n and m will be optimized, and their ideal values will be found through
experimentation. According to Liu et al. [20], a portion of merely 10 lines of code
is usually enough to capture the important context for a vulnerability. The next
step is to convert those code blocks, which are simply lists of Python characters,
into numerical vector lists.

3.5 Embedding Layers

A suitable embedding layer model trained on Python source code is required to
encapsulate the code tokens in a numerical vector. A substantial training base of
code, ideally made up of clean, working Python code, is necessary to train this
model. This research follows the heuristic that popular code projects are of high
quality, similar to Bhoopchand et al. [3] and Allamanis et al. [1]. It is worth noting
that those repositories are likely to include minimal security flaws and defects in
general. We propose our recommended embedding layers in our previous paper
and test them with different hyperparameters to see the effectiveness of each of
them [2].

3.6 Selecting the Machine Learning Model

Many machine learning models and methodologies have been applied to vulnera-
bility detection, with inconsistent results, including SVMs, decision trees, random
forest, and naive Bayes models. However, not all of those models are equipped
with the needed features. Our technique aims to construct a model that can learn
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vulnerability aspects from code token sequences. Source code is sequential data by
definition, as the effect of each line is highly dependent on the effects of the in-
structions around it. This will result in many false positives when trying to detect
a vulnerability. Rather, the idea is to discover that a token is ’bad’ when used in
a specific way, with tokens that have come before it.

Deep learning-based models, particularly RNNs, are particularly well-suited to
representing code locality while also being able to capture far more context than
ngrams [6]. Deep neural networks, particularly recurrent neural networks and long
short-term memory networks, have numerous advantages. To recap, such networks
may describe sequential data by using an internal state as a ”memory” to keep
track of prior inputs and contextualize data. RNNs, on the other hand, suffer
from vanishing or exploding gradients, making it difficult to train them on longer
sequences since the distance between the occurrence of a piece of information and
the point at which it becomes relevant exceeds the RNN’s capabilities. LSTM, on
the other hand, were created to cope with problems like this since they can learn
how long information should be preserved. They have been effectively employed in
modeling code and are designed for the type of task required in Our method. As a
result, an LSTM is used as the model in this study. We decided to utilize Bi-LSTM
for the final version of the tool, but because we started with LSTM, we will explain
it first.

3.7 Preparing the Data for Classification

The information gathered is still in the form of code snippets that are vulnerable and
not vulnerable.The snippets are translated into a list of tokens, and each token is
replaced with its vector representation based on the chosen embedding layer model.
Each vector has a binary label, with ’0’ indicating vulnerable and ’1’ indicating
not vulnerable or unknown status. The data is divided into three sets: training,
validation, and testing. 70% of the data is chosen at random as a training set, 15%
is chosen as a test set for validation, and 15% is kept aside for a final evaluation
after the experiments. Dam et al. [7] utilized the same ratios, Russell et al. [26]
split their dataset into 80 percent training, 10% validation, and 10% final test set,
and Li et al. [18] used an 80-20 split between train and test set.

It is worth noting that the validation set is not used to learn parameters; instead,
it is used to assess the model’s performance after it has learned its parameters on
the training set. This evaluation is taken into account while adjusting the model’s
hyperparameters, and all findings are finally presented using the final test set,
which the model has never seen before. To obtain an equal length of vectors for
each sample, the lists of vectors are shortened and padded.
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3.8 Training the LSTM

3.8.1 Architecture of the Model

A sequential model is built using the Keras package. The most crucial aspect comes
first: the LSTM layer. The goal of this layer is to discover features that are linked
to a code snippet’s vulnerability state. There is no need for a separate dropout
layer because the LSTM layer is susceptible to numerous hyperparameters, includ-
ing dropout and recurrent dropout. The classes should be weighed appropriately
because the data is inherently class imbalanced (there are far more clean code
blocks in the training data than vulnerable ones). This ensures that, even though
there are many more instances of clean code, the examples of vulnerable code are
handled appropriately in training. The class weights are determined automatically
using the scikit-learn library’s class weight function. The activation layer, a dense
output layer with a single neuron, follows the LSTM layer. Because the purpose
is to produce a forecast between 0 and 1 for the two classes of non-vulnerable
and vulnerable code, the activation function utilized here is a sigmoid activation
function.

3.8.2 Selecting Hyperparameters for the LSTM

Many choices must be taken when it comes to the LSTM hyperparameters. The
hyperparameters are adjusted and tested empirically to identify the ideal configu-
rations after calculating some plausible beginning values based on other research
and common sense. Technically, the metric and loss functions are hyperparameters
Figure 3. Because our approach prefers a fair balance of false positives and false
negatives and the classes are already weighed, the F1 metric appears to be par-
ticularly well suited to evaluate overall performance. As a result, the F1 score is
chosen as the LSTM model’s optimization criterion. In the scripts, the F1 metric
and its accompanying loss function are custom defined. The number of neurons
is, of course, a key hyperparameter that defines the model. It has an impact on
learning ability. More neurons let the model learn a more complex structure, but
training the model takes longer. The dimensionality of the output space is likewise
determined by the number of neurons.

The batch size specifies how many samples are displayed to the network before
the weights are changed again. As a result, when making a prediction later, the
model should not be trained with a batch size smaller than the number of samples
used at the time. To compare the outcomes, a range of various batch sizes are used.
A batch size of one single sample or a batch size of the entire training set is the most
extreme value. Batch sizes of 32, 64, and 128 samples are commonly employed in the
middle of the two. LSTM, like many other models, can be overfitted with training
data, lowering their predictive effectiveness. Dropout is a regularization strategy in
which input and recurrent connections to LSTM units are occasionally randomly
omitted from the next step of the training, preventing the network from updating
its weights. This decreases the risk of the network overfitting by depending too
heavily on a few inputs.
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There are two types of dropout in LSTM: the standard dropout describes the
proportion of units that are dropped from the inputs; the cheval dropout describes
the fraction of units that are dropped from the inputs. The recurrent dropout
is the percentage of units that leave the recurrent condition. A normal dropout
rate is between 10% and 50%. Experimentation will establish the ideal dropout.
Finally, the number of epochs, or the number of times the learning algorithm will
run through the entire training data set, must be changed. In the literature, epochs
are commonly referred to as 10, 100, 500, or even 1000. Several optimizers from
the adam family will be tried to discover which produces the best results. A model
with optimal configurations can be calculated when all of those hyperparameters
have been modified.

Figure 3: Creating models with different hyperparameters

3.8.3 Selecting the Optimizer

The objective for the F1 score was chosen as a criterion for the model’s performance
because our strategy is to attain high precision and recall at the same time. To
determine how ’wrong’ the forecasts are at a given point, a loss function based on
the F1 score will be employed. The optimizer must update the model parameters
until the global minimum is found to minimize the loss function. Simply remove
the gradient of the loss concerning the weights multiplied by a modest amount
called the ’learning rate’ from the weights to be improved. With each iteration of
the optimization, the gradient is calculated for a distinct sub-sample of the data
and is thus subject to statistical fluctuation, which is why this approach is called
Gradient Descent” (SGD). However, if the loss function is not convex or there are
ill-conditioned regions, SGD can become stuck in a local minimum. This can be
changed by lowering the learning rate. A slow learning rate, on the other hand,
suggests that the network will not learn rapidly enough. What factors should be
considered when determining the learning rate?

Fortunately, the learning rate does not have to be set in stone and may be dy-
namically adjusted. The adam optimizer dynamically selects a learning rate. It was
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first published in 2014 [17], and it is built primarily for deep neural networks, where
it produces excellent results quickly and is frequently used as a go-to optimization
approach for a variety of issues. It considers prior updates as well as the first and
second moments of the gradient, which are defined as the expected value of that
variable to the power of one or two, respectively - the mean and centered variance
of the gradient. It combines the advantages of the Adaptive Gradient Algorithm
(adagrad) [9] and Root Mean Square Propagation (RMSprop) [33], according to
the authors. Adagrad adjusts the learning rate for different characteristics and
performs exceptionally well on sparse datasets with a large number of missing sam-
ples. Its disadvantage is that it has a very slow learning rate. RMSprop, a variant of
adagrad, adjusts learning rates based on recent gradient magnitudes for the weight
and works well on both online and non-stationary issues.

When calculating momentum, it only considers gradients in a fixed window.
Other optimizers, such as adadelta, nadam, adamax, NAG, and others, will not
be discussed in length here. Since the chosen loss function, the F1 score is not
convex, SGD will probably not converge towards the optimal solution. According
to IBM, the adam family of optimizers (which includes RMSprop, adagrad, and
others) should converge under certain conditions. Li et al. [18], Russell et al. [26],
and Dam et al. [7] employ adamax, Russell et al. [26] use the conventional adam
optimizer, and Dam et al. [7] utilize RMSprop, however, the applicability depends
heavily on the dataset’s peculiarities. The Adam optimizer is utilized as a starting
point for our technique, and it may be empirically compared to other optimizers to
see which provides the best results in practice.

3.9 Evaluation

True positives, true negatives, false positives, and false negatives are frequently the
basis for evaluation when it comes to prediction and categorization. They have
been referenced before, but they will be adequately clarified here. Positive and
negative refer to the prediction, so a prediction of ’vulnerable’ would be positive,
and a prediction of ’not vulnerable’ would be negative in this work. True and false
refer to whether the forecast matches the actual value or an external evaluation.
As a result, a false positive is a piece of clean code that the classifier incorrectly
labels as vulnerable, a true positive is a vulnerability that was correctly identified,
a false negative is an actual vulnerability that was not classified as such, and a true
negative is a piece of code that was classified as ’not vulnerable’ and is free from
vulnerabilities. Precision and recall are two metrics that are directly derived from
those four numbers.

The rate of genuine positives within all positives is the precision. It assesses
how accurate the model is in terms of how many of the predicted positives are
true positives, or, to put it another way, how much trust can be placed in the
positive categorization and how many false alarms are generated. The recall, also
known as sensitivity, is a metric that compares the percentage of correctly detected
positives to the total number of positives. It could be interpreted as a measure
of how diligently the classifier looks for all positives - or how much is missed.
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When the data set is class imbalanced, meaning there are many more positives
than negatives or vice versa, accuracy does not provide much insight. When it
comes to vulnerability detection, the majority of code fragments will be clean,
and vulnerabilities will be uncommon. For example, Morrison et al. [22] discovered
that only 0.003 percent of their Windows code was vulnerable, while Shin et al. [31]
found that 3% of their Firefox files were vulnerable. When genuine positives are few
and true negatives are common, a classifier can attain high accuracy ratings even
though it misses the majority of the positives because the many true negatives make
the total result appear to be extremely accurate. As a result, the accuracy alone
is insufficient for this application. The F1 score is a balanced score that considers
precision and memory. The F1 score is better suitable for class-imbalanced data
sets since it is less easily influenced by a large number of true negatives.

In an ideal, perfect world, the model would have a near-zero percent rate of false
positives and false negatives, implying that precision and recall, as well as accuracy
and F1 score, are all close to one. The accuracy, precision, recall, and F1 score will
be used to evaluate the model in this study, although many previous studies on
similar themes only use the first three of those four variables. Precision and recall
values of 70% are feasible for prediction models, according to some studies [31], [22],
however, current techniques have shown some more astonishing outcomes. Precision
and recall of more than 65% seem like a good target for this project.

4 Study Results

A significant amount of contributions that addressed vulnerabilities were gathered.
Each vulnerability needed its dataset after the data had been collected and filtered.
The table below provides a summary of their basic information, including the num-
ber of repositories and commits that make up the dataset, the number of modified
files that contain security holes, the number of lines of code, the number of distinct
functions they contain, and the total number of characters. By using it to train the
model, the next parts will show that this dataset is appropriate. Since some config-
urations must be used as a starting point, even though their hyperparameters are
not optimum, they can be used to show how alternative hyperparameters lead to
better or worse results. The ideal combination of all parameters can be found after
going through each hyperparameter and describing how it impacts performance.

The baseline model analyzes the dataset for SQL injections using a focus region
step size n of 5 and a context length m of 200. It has 30 neurons and is trained
using the Adam optimizer for 10 epochs with a dropout and recurrent dropout
of 20% and a batch size of 200. Even though training a model for more epochs
would almost surely produce superior results, this was not possible due to the need
to test numerous combinations, which would have taken more than an hour. As a
result, only the resultant ”best” model is trained for more epochs. The classification
performance of the resulting LSTM model’s F1 score, which offers a balanced score
that considers precision and recall, is used to compare results. It should be noted
that the same model can be trained on the same data two times, one right after
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the other, and the resulting scores for precision, accuracy, recall, etc. can deviate
by roughly 1-3% due to the nondeterministic character of the entire process. As a
result, all of the results in the following tables are only estimates and could vary
somewhat.

4.1 Hyperparameters of the Embedding Layers

Are our models useful as an embedding, and how do their hyperparameters affect
the overall outcomes? The tests that follow look into this. The training corpus
has 69,517,343 (almost 70 million) unique tokens that were extracted from multiple
Python projects. In various configurations, the hyperparameters vector length, min
count, and training iterations are tested. The results of retaining strings as-is versus
replacing them with generic string tokens are also compared. Since the baseline
model is employed, all hyperparameters are, unless otherwise provided, selected
using this default setup. In general, the method entails training an embedding layer
model, using it to embed the data, and then training an LSTM model on it. Since
the embedding layer itself cannot be evaluated by any kind of number, the quality
of the embedding is assessed using the performance of the LSTM model. Its ability
to be applied in the situation for which it was designed determines how effective it
is. A poor embedding will produce a poor LSTM model that is unable to interpret
the data that is given to it. However, a functional LSTM model demonstrates that
the embedding layers were appropriate.

4.1.1 Vector Dimensionality

The code tokens are transformed into numerical vectors of a specific length or
dimensionality when utilizing embedding layers. The more distinct ”axes” there
are for relating words to one another, the longer those vectors are, and the better
the models can capture more intricate connections. It is doubtful that a vector
with a size of under 100 can represent Python’s semantics well understood, judging
by comparisons to jobs involving natural language, where 200-point vector sizes
are usual. The minimal count of a token to occur in the vector is used to compare
different vector lengths. The models’ training iterations are set at 100 and their
vocabulary to 1000.

4.1.2 String Replacement

As some other researchers have done, strings found in the Python training file can
either be replaced with a generic ”string” token or left alone. It is difficult to
predict which option will perform better in advance. Replacing them could lessen
the level of detail in the model while maintaining them could focus too much on the
particular content of string tokens. The embedding vectors are set to have a length
of 200 to compare the two methods. The comparison is made between a min count
of 10, 100, and 5000 with training iterations between 1 and 300. The Average F1
score for the embedding layers encoding that retains strings is indicated in Table 2
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by the value before the slash (/), while the score for the model that substitutes a
generic string token for strings is indicated by the value after the slash (/). These
outcomes demonstrate that the variant without string substitution consistently
produces better outcomes.

Table 2: F1 score for different min-count and iteration number w and w/o string

Minimum count 1 Iter. 10 Iter. 100 Iter. 300 Iter.
10 64% / 58% 78% / 72% 82% / 72% 84% / 74%
100 58% / 49% 75% / 66% 73% / 69% 82% / 74%
5000 50% / 49% 67% / 64% 75% / 73% 76% / 73%

4.1.3 Minimum Count

The minimum count specifies the minimum number of times a token must appear
in the training corpus before a vector representation is given to it. Less frequently
occurring tokens will not be encoded and will instead be skipped over later when
entire lists of tokens are transformed into lists of vectors. This largely serves to
ignore illegitimate identifiers such as uncommon variable names, strings, and other
identifiers. To train the embedding layer model, strings are left unchanged for 100
iterations with a 200-vector training set. It could have appeared logical to believe
that disregarding unusual tokens would enhance performance, but this was not the
case. When tokens are seldom disregarded, the model performs better, Figure 4.

Figure 4: Iterations and minimum count in the different models
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4.1.4 Iterations

The quantity of repetitions in training is determined by the number of iterations.
It is reasonable to anticipate that there will be no additional advantage from ad-
ditional training after a certain number of iterations. Using the same parameters
as before—a corpus of original strings, a dimensionality of 200, and a min count
of 10—the model is trained. Up until 50 or 100 iterations, it seems that more
iterations improve the model’s performance. There is no need to increase the iter-
ations to 300 because doing so decreases rather than improves model performance
and necessitates a significant increase in training time. It should be noted that the
overall trend for greater performance is a smaller min count.

The LSTM model, which uses different embedding layers, performs noticeably
differently depending on the hyperparameters, as shown by the tables above, with a
difference between the best and worst parameters in the LSTM’s F1 score of almost
25 percentage points. Therefore, careful evaluation of the hyperparameter values
was not a waste of effort, as the final model’s ability to learn features is influenced by
the quality of the embedding. The final model will require a min count of merely 10
for tokens to be included, encode code tokens in 200-dimensional numerical vectors,
not alter any strings, and be trained for 100 iterations, Figure 4.

4.2 Parameters in Creating the Dataset

The collection is made up of samples, each of which is a brief section of code
built around a single token. Different step sizes n can be selected while shifting
the focus point through the source code. Higher total samples and more sample
overlap result from a smaller step size. The second argument, the complete length
of a code sample m, determines the size of the context window surrounding the
token in focus. Characters are used to measure both. The default settings are
applied to all hyperparameters of the LSTM model, and the previously established
ideal model is employed. Consistently lower outcomes follow bigger n. This is most
likely because there will not be much overlap between the focus points’ surrounding
context, and the moving window that contains the code snippets if the gaps between
them are wide.

A single token will appear multiple times if the emphasis shifts in very short
steps because the code snippets have a lot of overlap. For example, a token can
appear at the end of one snippet, in the middle of the next, and at the beginning
of the one after that. This implies that there are samples that demonstrate the
pertinent code with more information before and after it for each vulnerability,
Making it somewhat simpler for the model to figure out which component is the
real source of the vulnerability With a longer whole length m of the code snippet
constituting one sample, the model performs better. Again, a bigger m results in
more overlap. The drawback of this is that the prediction may become less accurate,
as a significant portion of text around a token may be identified as vulnerable
because it is located within a snippet of length m. However, a bigger m also has the
benefit that more token context may be taken into account, which is precisely why
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the LSTM was initially chosen. The samples, which were already rather numerous
and relatively huge in size, continued to grow for a whole length of more than
200, outpacing the machines’ computing power. Moving forward, the settings for
building the training set were fixed to a step length of n=5 and a full context
window length of m=200.

4.3 Hyperparameters and Performance of the LSTM model

It is necessary to choose appropriate hyperparameters for the LSTM model to
respond to the study question, ”How effective is our technique in finding vulner-
abilities as measured with accuracy, precision, and recall?” All additional LSTM
hyperparameters are evaluated using the baseline model with the following values:
n=5, m=200, 30 neurons, 10 epochs, dropout 20%, and Adam optimizer. The
code examples are embedded using the embedding layer models with the optimal
configuration predetermined.

4.3.1 Number of Neurons

The model can represent more complicated structures with a larger number of neu-
rons, but training takes longer. In general, a model performs better with more
neurons, with diminishing results beyond 50 to 70 neurons. When all other factors
are held constant, the training time nearly doubles from 1 neuron to 100 neurons,
then again from 100 neurons to 250 neurons. The machines the models are trained
on reached their limits after more epochs and bigger datasets, sometimes termi-
nating the operation. The optimal arrangement is therefore determined to be 100
neurons, Figure 5.

4.3.2 Batch Size

The following outcomes (Figure 5) were achieved using the baseline model with
standard batch sizes (32, 64, and 128) as well as some very small and very large
batch sizes: The size of the batch does not appear to have a significant impact on
the model’s overall performance. Only very large batch sizes of above 1000 result
in performance degradation. On the other hand, the batch size had a big impact
on how long it took to train the model. While training with a batch size of 5000
took 45 seconds each epoch, a batch size of 200 took 130 seconds, a batch size of 64
required 270 seconds, and the smallest practicable batch size required roughly 370
seconds. The model had to be trained for more than twenty minutes with a batch
size of 10, hence the training was stopped. Conclusion: It can be said that for batch
sizes less than 64, no improvement in accuracy and recall would warrant spending
the additional time required for training with such little chunks of samples. From
now on, a batch size of 128 will be regarded as ideal.
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Figure 5: Hyperparameters for the LSTM model

4.3.3 Optimizer

In addition to the common Adam optimizer, the Keras model also provides similar
optimizers like RMSprop and Adagrad, as well as NAdam and Adamax. To assess
each person’s performance, they are all put to the test. Due to their suitability
for online issues, Adam, NAdam, and RMSprop appear to perform slightly better
than Adagrad and Adamax. The SGD’s performance is significantly worse. It
takes around three hours to train each of the top three optimizers, therefore they
are compared once more with 50 epochs. Adam has been selected as the preferred
standard optimizer since it was a very close call. All things being equal, this
optimizer is more likely to be employed in other studies, making comparisons easier.

4.3.4 Dropout

The terms dropout and repeat dropout are combined. The baseline model is trained
once more but for 30 epochs this time. A fluctuation of about 2 percent points can
still be accounted for by a few remaining variances in the outcome. The model
functions well up to a 25% dropout. Performance gradually declines as there is
a greater random loss of neurons. Therefore, setting the default dropout at 20%
seems like a sensible decision, minimizing overfitting while yet allowing for adequate
model performance, Figure 6.

4.3.5 Number of Training Epochs

Up to a certain point, training the model for additional epochs improves perfor-
mance (Figure 6). 100 neurons were used in the model’s training. Keep in mind
that the performance on the validation set is used to calculate the accuracy, preci-
sion, recall, and F1 score. Additionally, the model has a 20% dropout, which should
help avoid overfitting. Naturally, using more epochs lengthens the time required
to train the entire model. Lengthier training sessions result in noticeable benefits.
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However, beyond 100 epochs, there is not much to be gained, hence 100 epochs are
selected for the model.

Figure 6: Hyperparameters for the LSTM model

4.3.6 Optimal Configuration

Given the dataset, limitations on processing capacity, and storage space, the rec-
ommended hyperparameter settings are:

• 100 neurons

• Training for 100 epochs

• About 20% of dropouts and repeat dropouts

• Batch size 128

• Utilizing the Adam Optimizer

These hyperparameters enable the model to be trained on all vulnerabilities for
the best outcomes.

4.4 Performance for Subsets of Vulnerabilities

To respond to our study question, what categories of vulnerabilities are detectable,
we looked at each vulnerability group separately. Several of the initial considera-
tions for vulnerabilities have to be eliminated. There were relatively few results for
the keywords cross-origin, buffer overflow, function injection, clickjack, eval injec-
tion, cache overflow, smurf, and denial of service, and no dataset of any size could
be produced. Numerous commits that were unrelated to security vulnerabilities
were produced by the keywords brute force, tampering, directory traversal, hijack-
ing, replay attack, man-in-the-middle, format string, unauthorized, and sanitize.
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A manual review of a few randomly chosen samples revealed that the majority of
those commits dealt with other problems unrelated to thwarting an exploit.

Table 3: LSTM+word2vec results for each vulnerability categories

Vulnerability Accuracy Precision Recall F1
SQL Injection 92.5% 86.2% 86.0% 86.1%
XSS 91.2% 87.9% 80.8% 84.2%
Command injection 90.3% 88.0% 82.3% 84.0%
XSRF 90.1% 87.6% 84.4% 85.9%
Remote code execution 90.0% 86.0% 85.1% 85.8%
Path disclosure 89.3% 89.0% 86.4% 86.1%
Average 91.0% 88.2% 86.1% 85.6%

Therefore, it was unable to produce a high-quality dataset for those vulnera-
bilities. Seven vulnerabilities are left for which a dataset might be produced. The
LSTM model is trained on the training sets using the determined ideal hyperparam-
eters, with the optimizers set to minimize the F1 scores. Finally, the performance
of the model is assessed, this time using the final test dataset that the models have
never ”seen”. The findings are shown in Tables 3, 4 and 5. It seems that while
the optimizer is attempting to reduce the F1 score, it is more straightforward to
do so by increasing precision while the recall is a little lower. Figure 7 displays
the exact meanings of the colors. In the sections that follow, one example for each
vulnerability is also provided.

Table 4: LSTM+fastText results for each vulnerability categories

Vunlnerability Accuracy Precision Recall F1
SQL Injection 91.2% 82.2% 88.0% 85.1%
XSS 92.8% 83.8% 80.8% 82.2%
Command injection 91.2% 89.0% 87.3% 88.1%
XSRF 92.3% 82.7% 81.3% 81.9%
Remote code execution 90.2% 86.0% 82.8% 83.7%
Path disclosure 89.8% 82.0% 81.1% 81.5%
Average 91.8% 86.4% 85.1% 84.0%

4.4.1 SQL Injection

With 96041 samples for training and 20581 samples for testing, the data for the
SQL injection vulnerability was divided into a training set and a test set. 10.9% or
so of those code fragments have some susceptible code in them.
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Table 5: LSTM+BERT results for each vulnerability categories

Vunlnerability Accuracy Precision Recall F1
SQL Injection 92.5% 82.2% 78.0% 80.1%
XSS 93.8% 91.9% 80.8% 86.0%
Command injection 95.8% 94.0% 87.2% 90.5%
XSRF 92.2% 92.9% 85.4% 89.0%
Remote code execution 91.1% 96.0% 82.6% 88.8%
Path disclosure 91.3% 92.0% 84.4% 88.1%
Average 93.8% 91.4% 83.2% 87.1%

Figure 7: Color codes and confidence levels

With the aforementioned hyperparameters, the LSTM model trained for 100
iterations on the training set, yielding accuracy, precision, recall, and F1 scores of
92.5%, 82.2%, and 78.0%, 83.5% respectively within the test set. Figure 8 shows a
tiny example of a SQL injection repair on GitHub. The SQL query stored in the
variable SQL str, which is formed by directly concatenating other variables into a
string, is executed by the instruction cursor.execute in the exposed code snippet.
Figure 9 shows the detection of this vulnerability with help of our model.

4.4.2 Cross-site Scripting

A rate of 8.9% vulnerable samples was obtained after splitting and processing the
data for cross-site scripting, producing 17010 training samples and 3645 test sam-
ples. Following training on the training set, the model performed on the test set
with accuracy, precision, recall, and F1 score of 97.7%, 91.9%,80.8%, and 86.0%.
For an illustration of how the model finds an XSS vulnerability, see Figure 10. The
variable self.content is used to create dynamically generated HTML code for a
comment area. This code needs to be escaped to prevent script injection. Figure 11
shows the detection on the source code.



Towards a Block-Level ML-Based Python Vulnerability Detection Tool 355

Figure 8: Commit for vulnerability (SQL injection)

Figure 9: Detection of vulnerability (SQL injection)
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Figure 10: Commit for vulnerability (Cross-site scripting)

Figure 11: Detection of vulnerability (Cross-site scripting)
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4.4.3 Command Injection

The accuracy, precision, recall, and F1 score of the command injection model’s
performance on the test set were 97.8%, 94.0%, 87.2%, and 90.5%, respectively.
With a rate of 4.6% samples containing a vulnerability, 51763 training samples,
and 11073 test samples were generated from the dataset. One illustration can be
found in Figure 12. Here is an example of some code that uses subprocess.call

to run the Java compiler when given a command with the detection part in Fig-
ure 13. Extra items can be handled as additional arguments to the shell because
the command is passed to it as a string and with the option ”shell=True,” which
enables the injection of other commands.

Figure 12: Commit for vulnerability (Command injection)

4.4.4 Cross-site Request Forgery

68434 training samples and 14665 test samples were used to process the data, and
5.9% of the samples contained susceptible code. The model performed quite well on
the test data set for XSRF, achieving an accuracy of 97.2%, a precision of 92.9%, a
recall of 85.4%, and an F1 score of 89.0%. Figure 14 shows an example of an XSRF
vulnerability and Figure 15 shows the detection done by our approach. In this
instance, an XSRF attack prevention check for proper XSRF cookies was merely
absent.

4.4.5 Remote Code Execution

There were 9797 test samples and 45723 training samples in the data for remote
code. 5.3% or so of the samples were vulnerable, the remainder were uncontami-
nated. The model was performed on the final test set with an accuracy of 98.1%, a
precision of 96.0%, a recall of 82.6%, and an F1 score of 88.8% after being trained
on the training set. Similar to the previous vulnerabilities, a specific illustration
is provided here. Figure 16 illustrates a situation in which a command created by
concatenating strings is executed using a call to os.system.

It is preferable to give the command as a sequence rather since just the first
element of the sequence will be considered as a program to run. Figure 17 shows
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Figure 13: Detection of vulnerability (Command injection)

the detection of this vulnerability with help of our model.

4.4.6 Path Disclosure

With 11802 test samples and 55072 training samples, this vulnerability had a rate of
7.13% vulnerable samples. The model’s performance on the test set was 97.3% accu-
rate, 92.0% precise, 84.4% recall, and 88.0% overall F1 score. An example is shown
in Figure 18 and the detection example in Figure 19. Using the commonprefix

function to determine whether the requested path is located inside the web root
directory prevented a path disclosure in the example.

4.4.7 Open Redirect

There were 38189 training samples and 8184 test samples after the data had been
processed. 6.4% of the samples have a vulnerability in them. An accuracy of 96.8%,
a precision of 91.0%, a recall of 83.9%, and an F1 score of 87.3% were attained for
this last vulnerability.

Figure 20 shows a common and simple case in which the session’s next URL is
requested without being sanitized, allowing untrusted URL strings to contain redi-
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Figure 14: Commit for vulnerability (Cross-site request forgery)

Figure 15: Detection of vulnerability (Cross-site request forgery)

rect parameters that route users to pages other than the ones they were supposed
to see and detection sample in Figure 21.
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Figure 16: Commit for vulnerability (Remote code execution)

Figure 17: Detection of vulnerability (Remote code execution)
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Figure 18: Commit for vulnerability (Path disclosure)

4.5 Application on Source Code

Our approach expands the work in the area of vulnerable code pattern analysis. A
large dataset of source code written in Python is collected from Github, filtered,
preprocessed, and labeled based on the information from commits. Several different
types of vulnerabilities are taken into consideration, and source code from many
different projects is collected. The resulting dataset of natural code containing
vulnerabilities is made available for further research. Samples are generated by
dividing the code into overlapping snippets that capture the immediate context
of some tokens. The samples are embedded in numerical vectors using different
embedding layers.

A long short-term memory network is trained to extract features and then
applied to classify code that was not used in training, highlighting the exact lo-
cations within the code that are potentially vulnerable. We combine all of the
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Figure 19: Detection of vulnerability (Path disclosure)

Figure 20: Commit for vulnerability (Open redirect)

trained models into a single, straightforward text editor, called VulDetective, and
test them using a variety of features, including which embedding layer and which
vulnerabilities they are vulnerable to. Additionally, the tool displays the content
color coded, Figure 22, including gray for comments, green for not vulnerable, and
red for vulnerable. We aim to keep it as straightforward as we can because the
tool’s goal is better detection; as a result, we spend a lot of time training various
models and experimenting with various embedding layers and hyperparameters.
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Figure 21: Detection of vulnerability (Open redirect)

The application we have created differs in some respects from all other previous
work. Unlike the approaches of Li et al. [18], Pang et al. [25], Hovsepyan et al. [15],
and Dam et al. [7], it uses a broad code base rather than a select number of
projects. The predictions are not only applicable within the same file or project,
but can be generalized to any other source code. In contrast to these four works,
a fine granularity is also chosen. The aforementioned works all classify entire files
or, as in the case of Li et al. [18], consider only API and function calls. Our
approach is more in line with the work of Russell et al. [26] and Ma et al. [21] in
that vulnerabilities are detected at specific locations in the code rather than just
at the file level, which is likely to be more useful to developers; different tokens
can even be color-coded depending on the confidence level of the classification.
Similar to the research of Hovsepyan et al. [15] and in contrast to the work of Ma
et al. [21], Yamaguchi et al. [37], and Liu et al. [20], this work does not convert the
source code into a structure such as an abstract syntax tree but assumes that it is
plain text. It follows the natural hypothesis and aims to use as few assumptions
as possible, leaving the extraction of features from the source code entirely to the
trained model.

The labels for the dataset are not generated using a static analysis tool, as is
the case in the work of Russel et al. [26], Dam et al. [7], and Hovsepyan et al. [15].
The basic idea of our approach is independence from manually designed features,
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Figure 22: Overview of the VulDetective application

which is the major limitation of previous static analysis tools. The goal is not to
model an existing static tool, but to learn features without initial assumptions.
Therefore, it is based on a similar assumption as Liu et al. [20], namely that code
that has been patched or patched was most likely vulnerable before the fix. The
flag is based solely on the Github commits, which (at least in theory) allows the
discovery of vulnerability patterns that have not yet been manually included in
static analysis tools. The dataset used as a basis for training consists of natural code
from real software projects, rather than synthetic databases designed to provide
clear examples of vulnerabilities.

This makes the whole task more difficult, as real code is much messier and less
clean than synthetic code. In this respect, our method differs from the approaches
of Russell et al. [26] and Li et al. [18]. However, this also makes our approach
independent of specific projects with their characteristics and therefore robust to
some degree to the threats to validity that would arise from a narrower approach.
The machine learning model used is an LSTM and Bi-LSTM, as also used by
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Li et al. [18] and Dam et al. [7]. Compared to the latter, the architecture and
preprocessing of the data in our approach are much simpler. Many other approaches
use either different deep learning models (CNNs and RNNs in the case of the work
by Russell et al. [26]) or completely different machine learning approaches (support
vector machines in the case of the work by Pang et al. [25]).

To conclude the list of contributions: The focus is on code written in Python,
unlike most other research projects that are primarily concerned with Java, C,
C++, or PHP. No other approach has been found that uses even remotely similar
techniques and works with Python. Of course, the proposed approach could be
applied to other languages as well. The various embedding layer models that have
been trained for Python are another contribution to this work.

4.6 Result Comparison with Other Works

To give a framework for the assessment of this study, Table 6 and 7 includes com-
parisons with related research in the field. Each approach has inherent variances,
hence it is difficult to directly compare them. Approaches are compared under the
following aspects:

• Language: what language is subject of the classification efforts

• Data: does the data stem from real-life projects or synthetic databases

• Labels: how are the labels for the training data originally generated

• Granularity: is the code evaluated on a rough granularity (whole classes or
files) or a fine granularity (lines or tokens)

• Method: what class of neural network or machine learning approach is used
(CNN, RNN, LSTM)

5 Conclusion

This paper presents a vulnerability detection method based on deep learning on
source code. Its purpose is to relieve human vulnerability detection experts of the
time-consuming and subjective effort of manually defining vulnerability detection
criteria. Via LSTM models, this research demonstrates the feasibility of learning
vulnerability attributes straight from source code using machine learning. It can
detect seven different types of errors in Python source code. We were able to
identify specific sections of code that are likely to be vulnerable, as well as provide
confidence levels for our predictions. We get an accuracy of 93.8%, a recall of 83.2%,
a precision of 91.4%, and an F1 score of 87.1% on average. We also demonstrate how
the trained model can be applied in practice, therefore opening up the possibility of
building a hands-on developer tool for detecting vulnerable code blocks in arbitrary
Python programs. Moreover, the presented method is language agnostic, it can be
adapted to other languages as well. Higher measurements in precision, recall, and
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Table 6: Comparisons with related researches

Name Lang. Data Labels Scope Gran. Method
Russel et al. [26] C/C++ real

and
synth.

static tool general token
level

CNN
RNN

Pang et al. [25] Java real pre existing 4 apps whole
classes

SVM

VuRLE [21] Java real manually general edits
(fine)

10-fold
CV

VulDeePecker [18] C/C++ real
and
synth.

patches and
manual

general API
func-
tion
calls

BLSTM

Dam et al. [7] Java real static tool 18 apps whole
file

LSTM

Hovsepyan et al. [15] Java real static tool 1 project whole
file

grid
search

Bagheri et al. Python real patches general token
level

LSTM

Table 7: Comparisons with related researches

Name Accuracy Precision Recall F1
Russel et al. - - - 57%
Pang et al. 63% 67% 63% 65%
VuRLE - 65% 66% 65%
VulDeePecker - - - 85%-95%
Dam et al. 81% 82% 76% 80%
Hovsepyan et al. 87% 85% 88% 85%
Bagheri et al. 93% 91% 83% 87%
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F1 are a lot simpler to accomplish if the methodology centers around forecasts
inside a solitary task, as Hovsepyan et al. [15] and Dam et al. [7] do when they
train a classifier to predict vulnerabilities inside the same application. Preparing
a classifier that is relevant for general recognition of vulnerabilities is a lot harder
- yet additionally prompts a substantially more valuable final product. Note that
similar two methodologies, as well as the one taken by Pang et al. [25], are likewise
simply attempting to predict regardless of whether an entire record is defenseless
without having the option to bring up the specific area of the vulnerability. Since
it expects to foster an overall vulnerability identifier that can be utilized at the
fine granularity of code tokens, it has a significantly more confounded undertaking
to satisfy. With basically a similar methodology, Russel et al. [26] accomplished
56% on regular code from Github, yet 84% on the Satisfy test suite because of its
spotless and predictable structure and design. our methodology seemingly performs
all around given that it works absolutely on normal real-life source code.
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[2] Amirreza, B. and Hegedűs, P. A Comparison of Different Source Code Repre-
sentation Methods for Vulnerability Prediction in Python. In Proceedings of the
14th International Conference on the Quality of Information and Communica-
tions Technology (QUATIC 2021), 2021. DOI: 10.48550/arXiv.2108.02044.
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