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Quadratic Displacement Maps for
Heightmap Rendering*
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Abstract

We present a higher-order representation of heightfields by constructing
unbounding revolved parabolas about every texel of the height texture. These
surfaces of revolution do not intersect the interior of the volume defined by
the heightfield. We present a simple generation algorithm and show that
these maps can be rendered by computing intersections between lines and
parabolas in the plane. We compare its quality and performance with cone
step mapping.

Keywords: computer graphics, parallax mapping, cone step mapping,
quadric tracing

1 Introduction and Related Work

Heightmaps are two-dimensional textures that store elevation values at each sample
position. These textures are mapped onto simplified base geometries, and the base
shapes are transformed by displacing their points by the corresponding elevations
along a direction. This direction is usually the unit normal of an interpolated
tangent frame over the surface. Geometrically, the heightfield describes a variable
radius offset of the coarse geometry, as shown in Figure 1.

There are two main approaches to the implementation of the above transfor-
mation [8]. A geometric one takes the vertices of the simplified base shape and
translates them according to the heightmap. This mesh-based heightmap requires
a sufficiently dense base geometry to accommodate the heightmap resolution. It
also necessitates carefully crafted level-of-detail (LOD) variations of the base shape
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Figure 1: Heightfield (center, in blue) applied on top of a coarse geometry (left)
yields a continuous, higher detail surface (right).

so that GPU performance is not wasted by rendering micro-triangles at a distance.
Moreover, the transitions between the LODs should also be seamless.

The screen-space or per-fragment approach does not alter the raw geometry;
instead, it casts a ray through each pixel of the base shape and alters the shading
parameters according to a ray trace against the heightfield. Here, the displaced
geometry is not stored explicitly; it only exists procedurally during ray traversal.

Initial screen-space techniques relied on the linear search along the ray to iden-
tify the ray-heightfield intersection [8]. Dummer proposed a conservative empty
space skipping technique called cone step mapping to accelerate this process [4]
with a different heightmap representation. Unbounding cones replaced the eleva-
tion values. These are the widest cones that are disjoint from the heightfield, have
their apex on the heightfield surface, and their axes of symmetry are the tangent-
space normals. Usually, these cones are stored with two scalars: the height of the
apex and the tangent of the half-cone angle. Other numerical representations have
been proposed as well that improve various numerical properties [5].

The current state-of-the-art in rendering performance is the relaxed cone map
technique of Policarpo and Oliveira [7]. They extended Dummer’s cone step map-
ping by replacing strictly conservative cones with relaxed cones that do not allow
for more than one outside-inside transition between the ray and the heightmap.
This approach guides the tracing inside the volume of the heightfield, so it requires
a robust root refinement process, e.g., binary search, to find the surface point of
the intersection.

Our paper proposes a generalization of cone maps by assigning a surface of
revolution based on a parabola to each heightmap sample. This approach is a
generalization of quadric maps [2]. The resulting surfaces are conservatively un-
bounding in the same sense as Dummer’s, and we refer to them as unbounding
revolved parabolas. Figure 2 illustrates several parabola cross-sections.

Section 2 introduces our proposed representation and specifies our cone-parabola
hybrid model mathematically. We present a construction algorithm in Section 3 and
a new tracing method for our data structure in Section 3.2. We propose generation
and render time optimizations in Section 4. Section 5 contains our empirical results.
We compared our proposed method with cone step mapping. Section 6 concludes
this paper.



Quadratic Displacement Maps for Heightmap Rendering 531

IRelative height

Figure 2: Distance-maximum height histogram for a given texel. The orange points
are the height differences divided by the distance. The blue, red, and green lines
form a convex boundary, and each line corresponds to a bounding parabola.

2 Quadratic displacement maps

The previously mentioned cone step mapping algorithms excel at rendering height-
maps in real-time; their most significant slowdown results from areas with high
tangent slopes in the heightfield. Generally, the generated cones at these texels
have a narrow opening angle, limiting the volume that can be skipped during ray-
marching, therefore, increasing the number of iterations required. While more steps
taken per ray does not necessarily mean worse performance, the cost of multiple
texture read queries on the GPU cause a significant amount of idle processing time,
making the algorithm less effective.

We aim to reduce the number of iterations by generalizing the cones to con-
servative parabolic surfaces, thereby increasing the unbounding volume size where
possible. Quadratic surfaces have a non-constant tangent that allows them not to
be defined only by the closely surrounding height values.

However, surfaces defined by implicit quadratic equations may not be sufficient,
as they cannot generally provide the necessary improvement in step size extension;
hence we complicate the surface to consist of two parts. First, we define a cone with
similar characteristics to Dummer’s cones, although limiting the height of the cone
to a predefined value which we specify as a ratio between the height of the texel
and the maximal heightmap value. Then, we connect a revolution of the parabola
to the edge of the cone to create a continuous surface, allowing the parabola to be
defined by an independent parameter from the cone.

Our representation of the described surface consists of three parameters denoted
by a, b, ¢ € R. The first two values represent the coordiantes of a point on the plane
relative to the position of the texel, defining a line segment as one side of the cone.
The two-dimensional description is sufficient here due to the radial symmetry of
the surface. The third value, ¢, specifies a parabola starting from (a,b) defined by
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Figure 3: Generated quadratic surfaces with 0.5 (left) and 0.2 (right) height ratio
for sample heightfields. The conic part on the left picture is colored yellow, and
the quadratic parts are red on both sides.

the implicit equation
y=—(x—c)?+b+(c—a)? (a>0,b>0).

Examples of such surfaces are shown in Figure 3. This representation requires
storing three floating point values in addition to the height value for rendering.
Thus, we equip the texture with four channels in our implementation.

3 Proposed algorithms

Our method traverses the empty space between higher heightmap elevations differ-
ently than similar techniques. We propose an algorithm for constructing unbound-
ing parabolas and an efficient way to render heightmaps.

3.1 Generation of quadratic maps

Similarly to cone tracing, our ray tracing technique requires the revolved parabo-
las to be defined for every texel of the heightfield. For large textures, satisfying
this condition demands time-efficient, parallelized construction of the unbounding
surfaces with a small storage footprint.

First, for each (u,v) texel of the heightmap, we generate a radial function my,,
that returns the maximal relative height at a given distance from (u, v). An example
of this function is shown in Figure 4. Let this function be defined for each d € N
integer pixel distance by

My (d) = max {h(z,y) — h(u,v)} (z,y) € Dp.
d<||(zy) = (uw) || ,<d+1

After this transformation, we only need m,,, to find the optimal a, b parameters
for a texel by advancing along the maximal height function, and in each step, we
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Figure 4: Generated radial function m,,, (red line) for a heightfield around the axis
of the current texel (blue line). The value of the function at a given distance from
(u,v) is the maximum height of the texels with the same distance.

choose a « i and b + max{i - g,muv(i)}, where ¢ € D,,,, . We keep progressing
until ¢ - % exceeds the value of the height ratio parameter or ¢ reaches the maximal
distance. These steps can be pictured as searching for a cone which is a revolution
of the line segment to (a,b) and does not intersect the heightfield but has the
smallest slope possible. The result yields a finite-sized cone defined by the (a,b)
point relative to the texel, as visualized in Figure 5.

With given values of a and b, we connect a revolved parabola to the top of the
cone. Since these parabolas can be defined sufficiently in many ways, we choose a
single equation to reduce the number of required parameters to one. This repre-
sentation allows us to store all data for a parabola efficiently in four channels of a
single texture. Let the implicit equation of the parabola be

y=—(z—c)?+b+(c—a)? (1)

where ¢ € R remains to be determined. The global maximum of this curve is at c.
Increasing this value guarantees that every point on the parabola between a and ¢
will rise; satisfying our initial condition of avoiding intersection with the heightfield
is trivial. This also means that the optimal value of ¢ can be found by fitting a
parabola to each point of m,, and finding their global maximum. Thus, we solve
the quadratic equations

Muo(j) == —¢;))* +b+(¢c;—a)®>  je(a+la+2,...)N Dy,

for ¢; and let ¢ = maxc;.

After determining the a, b, and ¢ parameters for each (u,v) texel, we include
h(u,v) and store the four floating point values in a texture to accelerate ray tracing.
The complexity of the algorithm for a texture of size N x N is ©(N*) because the
generation of m,, requires checking all texels. However, since these calculations
are independent, they can be parallelized.
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Figure 5: The two parts of generation of parabolas. First, we find values a and b,
which define a cone (orange). Then, we calculate a parabola from (a, b) above the
heightfield, defining an additional ¢ parameter (green).

3.2 Rendering

During rendering, we cast rays from the geometry surface toward the heightfield,
and our goal is to find their intersection using the quadratic maps described above.
The raymarching algorithm is identical to the cone step mapping apart from the
ray-geometry intersection calculations.

Let us define a ray starting from pgy and direction v by p(t) = po + tv, where
t > 0. In each step of raymarching, we load the four values (a, b, ¢, and h) from
the texel below p(¢;) (t; being the current ray parameter), and find ¢ where p(t)
intersects the quadratic surface. We can simplify the problem into two dimensions
due to the symmetry of the revolved geometries while obtaining the same results.
Additionally, we only have to account for one parabola because the travel direction
of the ray is known within the plane.

The entire curve is stitched together from two curve segments. The line segment
and the parabolic curve share a single (a, b) point in the two-dimensional represen-
tation. When looking for an intersection with the ray, we separate these two parts
and look at the line first.

Let us define s(a) = a(a,b), where an s(«) point of the line is on the segment
only if @ € [0, 1]. Then, let the intersection of the two lines p(t) and s(«) be (z,y),

we have v = Z. If o < 1, we have ¢ =||p(t;) — (z,y)||-

a

If @ > 1, then substituting po + tv into Equation (1), we get
Po, +1vy = —(Po, + vy — ) +b+(c—a)? (2)

a quadratic equation of t. If there is no real solution, then we terminate with
no intersection; otherwise, let ¢1,%2 be two, not necessarily different, roots, thus
t = min{t¢,t2}. The correctness of choosing the smaller value is because v, < 0
and p(t;) > —c®> + b+ (c — a)? holds by definition. For the latter inequality, it is
important that it only holds if the previous o > 1 is also true, although solving
(2) would be unnecessary. Algorithm 1 formalizes this method, and Figure 6 shows
two examples.
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Algorithm 1 Tracing of quadratic map

Input: p, ray origin, v ray direction, a;;, b;;, ¢;;, hi; parabola parameters stored
in a texture
Output: ¢ distance along the ray

P+ Py;s<+ 0
while s < steps At > € A p above heightfield do
(i,7) + texel coordinates of p
(x,y) < intersection point of the ray and the line to (a;;, b;;)

aZ

if <1 then > Intersected the line
t|p—(z,9)

else > Check intersection with parabola
A+ V2

B—vy—2-¢;-vy
C < py — hij — by —af; +2-aij ¢
t + solveQuadratic(A, B,C)

end if
p<p+t-v > Step along the ray
s+—s+1 > Increase step count
end while
return ¢

4 Further optimizations

The introduced algorithms above perform similarly to the classic cone step mapping
method in both runtime and error metrics. Naturally, there is always room for
improvement, and we have made some optimizations that we deemed necessary.

4.1 Convex bounds

We have proposed an algorithm for constructing conservative parabolas for a texel
on a heightfield in Section 3. The generation consists of two steps: first, we calculate
the values of the radial function m,,,, and while this is the more costly of the two
parts in terms of performance, it requires further research. Second, we compute
the a, b, c parameters of the parabola by iterating through every possible value of
this function.

Since this iteration is linear in texture size, it can be more efficient to reduce
the number of values using the same method with less repetition. The mentioned
reduction is made by computing the upper convex bound of the m,, values, ex-
cluding a significant number of possible parameters from the search. Upper convex
bounds can be constructed in linear time according to [1].
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Figure 6: Ray tracing using quadratic maps. The first three pictures (a-c) show
three tracing steps by reading the stored parabola in the current texel and calcu-
lating its intersection with the ray, resulting in the position of the next iteration.
In picture (d), the ray misses the parabola, thus taking an arbitrarily large step.

()

This optimization, though not changing the overall complexity of the solution,
allows to more efficiently separate the two phases of generation and reduces the
required number of memory access queries. Additionally, the construction of the
convex bound can be further accelerated and even performed directly from the
heightfield, thus skipping the costly m,, generation.

Note that with these changes, we will not always have the same parameters as
a result, as demonstrated in Figure 7; however, it is guaranteed to preserve the
conservative property of the parabolas.

4.2 Numerical stability

Time efficiency and numerical precision are critical during rendering to have the
best results in the shortest possible time. It is known that finding the roots time-
efficiently with minimal numerical error is a difficult task. Since we solve a quadratic
equation in every iteration, we have to ensure that we do so in a numerically stable
way.



Quadratic Displacement Maps for Heightmap Rendering 537

Parabola from
convex bound

Parabola
from

m

uv

(a) Example for parabola (green) generated  (b) Difference between a parabola gener-
using upper convex bound (orange) of the  ated from the radial m.. function (purple)
heightfield. and from convex bound (green).

Figure 7: Parabola generated from convex bound

Blinn [3] has published a method to solve a general quadratic equation using
homogeneous coordinates. Though robust and has a low error rate, it relies on
several condition elevations, which can be time-consuming for real-time render-
ing. However, we can restrict the coefficients by considering how the values are
computed.

Using the notations of Algorithm 1, it is guaranteed that A > 0 and B < 0,
since v, > 0,vy, < 0 and ¢,y > 0 by definition. These inequalities allow writing
a single conditional operator to yield the sufficient root of the equation, that is,
checking if the root is real or not. The optimized quadratic equation solver is in
Algorithm 2.

Algorithm 2 Numerically stable quadratic equation solver for parabolic maps

Input: A >0,B <0,C € R coefficients
Output: smaller real root of 422+ Bx+C =0

B+ L

M1 :C

My =-B++VB%2—- AC
M,y

Xr = M,

if x € R then
return x

end if

return oo

5 Testing and results

The proposed method aims to reduce the number of steps taken along the rays
during real-time heightfield rendering, thus lowering the GPU processing time of a
single image. In this section, we compare the algorithms to Dummer’s cone step
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mapping by distance taken per iteration and runtime of frame rendering. While
the current state-of-the-art method is the relaxed cone stepping, it fundamentally
differs from our proposed conservative technique. Quadric steps do not require
refinement, as we are not entering the surface during rendering. Thus, the preferred
choice of comparison is the cone step mapping.

These algorithms were implemented and tested in the Falcor framework by
NVIDIA [6] with 1920 x 1080 screen resolution on a GeForce GTX 1060M GPU.
The listed results are the average values of renders on 9 different 1024 x 1024 sized
heightmaps from Figure 8.

Figure 8: Heightmap samples used for testing the algorithms. Every texture has
the same resolution of 1024 x 1024 pixels.

The height ratio parameter of the constructed quadratic surfaces is 0.2 in the
following sections since this value seems to provide the best performance across our
testing.

5.1 Step size and error

Both methods were analyzed by their performance compared to the same ground-
truth image, a result of 200 iterations of linear search corrected with 20 steps of
refinement. The absolute error for a ray is measured as the difference from this
value. The rendered images are viewed from the same 8 camera positions that differ
in incidence angle.
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As shown in Figure 9, by increasing the number of maximal iterations, the total
absolute error decreases for both algorithms as it is expected. In tests where the
camera angle was below 45°, taking quadric steps usually gave significantly longer
advancements along the ray because of the broad upper sections of the parabolas.
Viewing the scene from higher than 45°, we lose some of this improvement; hence,
the rays quickly reach the bottom part of the cones, which are similar in the two
methods. Above 48 iterations, both algorithms seem to halt by reaching the height-
field surface or leaving the geometry, so the difference between their errors becomes
insignificant.

0.08+ ——cone
——quadric
0.07¢
0.06 1
0.05¢
0.04+
0.03¢
ﬁ 4 6 8 1I2 2I4 4‘8

Figure 9: Average error in the distance taken on the ray (vertical axis) by iteration
count (horizontal axis). Quadric stepping has generally lower error than cone step
mapping, more significantly for fewer steps.

Figure 10 compares the average number of steps taken. Both algorithms follow
a decreasing tendency by increasing the angle of the camera. Below 45° degrees,
quadric mapping generally requires fewer iterations to converge. However, above
45° degrees, the method slows down as it approaches the surface.

5.2 Render time

We compared the two methods by average rendering speed for various heightfields
from several camera angles and iteration numbers. Due to the composite nature
of our representation and the fact that we have to resolve intersections with two
different geometries, a single step of parabola tracing is computationally more ex-
pensive than that of cone step mapping. However, faster convergence properties
allow for taking fewer steps, making our method more performant.

Our test results indicate that we can achieve better performance for view angles
below 45° on all textures and maximal iterations. Although less noticeable, the
overall mean rendering time for all angles is also reduced according to Table 1.
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Figure 10: Average number of iterations before terminating of cone step mapping
and quadric stepping (vertical axis). Up until 45°, quadric stepping performs better
in general. The horizontal axis shows the angle in degrees.

Table 1: Average difference of render times between a single cone step and quadric
steps in milliseconds. Negative values (highlighted) mean faster rendering for a
quadric step. For angles below 45°, the sum of the values is —0.667, while for all
values, it is —0.32, which means a faster average render time of a single image.

Cone minus Quadric render time (ms)

4 iters 6 iters 8 iters 12 iters 24 iters 48 iters 200 iters
29 | -0.023 -0.100 -0.047 -0.107 -0.093 -0.123 -0.260
15.3 0.010 0.000 -0.020 -0.010 -0.017 -0.023 -0.043
27.8 0.027 0.017 -0.003 0.020 0.013 0.007 -0.007
40.2 0.023 0.017 0.013 0.027 0.023 0.013 0.000
52.7 0.020 0.013 0.010 0.023 0.020 0.010 0.010
65.1 0.013 0.010 0.010 0.017 0.020 0.010 0.000
77.6 0.010 0.007 0.010 0.017 0.010 0.000 0.000
90.0 0.010 0.010 0.013 0.027 0.027 0.010 0.010
Total: 0.090 -0.027 -0.013 0.013 0.003 -0.097 -0.290

Angle
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There is less than 1% difference in the average runtime ratio between the two
methods, where cone step mapping performed better as in Figure 11.

1.05
—
1.00
—4
0.95 | S
—38
—12
0.90 | —on
—— 48
0.85 | —200
Mean
0.80 r

2.9 15.3 27.8 40.2 52.7 65.1 77.6 90.0

Figure 11: The average render speed of quadric steps compared to the cone step-
ping. The ratio (vertical axis) is below 1 for smaller angles (faster by 5—20%), and
above 30°, it becomes 1 — 5% slower. The lines represent different measures with
varying numbers of maximum iterations.

6 Conclusion

We proposed a method for efficient real-time ray tracing of heightfields, utilizing
revolved parabolas stored in a four-channeled texture. We introduced algorithms for
generating these parabolas and rendering the surface with additional optimizations.

The algorithms were compared to the cone step mapping technique in extended
testing by convergence speed and frame render time. The tests showed that our
method performed better in both metrics when the camera view angle was low
and produced similar results otherwise. The slowdown can be originated from the
arithmetic costs of a single ray-parabola intersection computation that we plan to
optimize in the future.

The main improvement of our method showed in faster convergence of rays,
which is achieved by taking longer steps in most of the iterations. This indicates
that it can be efficient for rendering heightfields with more expensive queries such
as procedural textures. We plan to explore these possibilities in the future.

Currently, the generation algorithm of the parabola maps demands high memory
and computing capacity, which requires further optimization. We are currently
experimenting with alternative methods for construction that could radically reduce
the resources needed.
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