
Acta Cybernetica — online–first paper version — pages 1–35.

Uncovering Hidden Dependencies:

Constructing Intelligible Path Witnesses using

Dataflow Analyses∗

Kristóf Umannab, Gábor Horváthac, and Zoltán Porkolábad

Abstract

The lack of sound, concise and comprehensive error reports emitted by a
static analysis tool can cause increased fixing cost, bottleneck at the avail-
ability of experts and even may undermine the trust in static analysis as a
method. This paper presents novel techniques to improve the quality of bug
reports for static analysis tools that employ symbolic execution. With the
combination of data and control dependency analysis, we can identify the
relevance of particular code snippets that were previously missing from the
report. We demonstrated the benefits of our approach by implementing an
improved bug report generator algorithm for the Clang Static Analyzer. Af-
ter being tested by the open source community our solution became enabled
by default in the tool.

Keywords: static analysis, symbolic execution, control dependency analysis,
reaching definitions analysis, Clang Static Analyzer, report generation, code
comprehension

1 Introduction

Maintenance costs take a larger part of the price of the software systems. Most of
these expenses are spent fixing bugs. The earlier a bug is detected, the lower the cost
of the fix [12]; therefore, various efforts are applied to speed up the development–
bug detection–bug fixing cycle. The classical test-based approach – although still
important – is insufficient on its own. Writing meaningful tests requires high code
coverage and takes substantial development workload and time. Another approach,

∗This work is supported by the European Union, co-financed by the European Social Fund
(EFOP-3.6.3-VEKOP-16-2017-00002).

aDepartment of Programming Languages and Compilers, Faculty of Informatics, Eötvös
Loránd University, Budapest, Hungary

bE-mail: szelethus@caesar.elte.hu, ORCID: 0000-0002-6679-5614
cE-mail: xazax@caesar.elte.hu, ORCID: 0000-0002-0834-0996
dE-mail: gsd@caesar.elte.hu, ORCID: 0000-0001-6819-0224

DOI: 10.14232/actacyb.299805

mailto:szelethus@caesar.elte.hu
https://orcid.org/0000-0002-6679-5614
mailto:xazax@caesar.elte.hu
https://orcid.org/0000-0002-0834-0996
mailto:gsd@caesar.elte.hu
https://orcid.org/0000-0001-6819-0224
https://doi.org/10.14232/actacyb.299805


2 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

the dynamic analysis method using tools like Valgrind [38], or Google Address san-
itizer [47] which work runtime, evaluates the correctness only those parts of the
system which have been executed. Although such dynamic analysis methods are
precise and could catch real errors with a very low rate of false reports, they re-
quire carefully selected input data, and can also easily miss certain corner cases.
Dynamic analysis trades coverage for precision, and reaching even a close to full
coverage is usually infeasible.

Contrary to testing and dynamic analysis methods, static analysis techniques
do not require the concrete execution of the program, and are often based only
on the program’s source code, and do not require any input data. It is a popular
method for finding bugs and code smells [10, 50, 42, 17]. They do not depend on the
selection of input data while they can (at least theoretically) provide full coverage
of the code. Compiler warnings are almost exclusively based on various static
analysis methods. Many of the applied techniques are fast enough to be integrated
into the Continuous Integration (CI) loop, therefore, they have a positive impact on
speeding up the development–bug detection–bug fixing cycle. Another advantage
of the static analysis method is that it is in many cases applicable for parts of the
code. This is useful when we have no full control over the system, e.g. we use third
party libraries, not all source is available, or we just have no resources to check the
whole system.

Most static analysis methods apply heuristics, which means that often they
may underestimate or overestimate the program behavior [3]; in other words, static
analysis trades precision for coverage. In practice, this means static analysis tools
sometimes do not report existing issues which is called a false negative, and some-
times they report correct code erroneously as a problem, which is called as false
positive. There is a continuous struggle to improve tools and methods, but there is
a theoretical limitation: paraphrasing Rice’s theorem [44] from ’53: all non-trivial
properties of a program are undecidable at compile time. Therefore, at the end all
reports need to be reviewed by a professional who has to decide manually whether
the report stands, and if so, fix it. This, however, creates a serious bottleneck in
the otherwise automated process as humans who are experts both in the problem
domain and in the implementation techniques are usually the most expensive and
the least available resources. It has the uttermost importance to maximize the
effectiveness of the step where humans involved [28]. Considering the mentioned
theoretical limitations, the best possible way to do it is to improve the communi-
cation between the automated analysis tool and the human actor: i.e., to teach the
analysis tool to provide sound, concise and comprehensive reports.

While more complex static analyses can detect even deep-rooted programming
errors, the construction of intelligible bug reports also gets much more difficult. In
this paper, we present the report generation challenges faced by a technique called
symbolic execution. Symbolic execution explores a high number of execution paths
within the program and can constrain the values of runtime variables, allowing it
to gain a considerable understanding of the program’s runtime behavior. However,
after finding a bug, it usually struggles to relate back to the source code and many
time is unable to consider the proper context broader than the actual path of



Uncovering Hidden Dependencies 3

execution leading to the bug.

We discuss possible new techniques to allow a symbolic execution tool to better
understand of code contexts outside a given path of execution. We also demonstrate
one of these techniques implemented as an extension to the open-source analyzer
tool Clang Static Analyzer. As one of the more mature and popular static analyzer
tools that implement symbolic execution for C, C++ and Objective C languages, it
is considered stable and reliable to be used on large code-bases for both academic
and industrial purposes. Our report generation improvement was tested by the
open source community and accepted to merge into the tool since version 10.0.0.
As this improvement has been enabled in the releases since1, we feel there is a real
world benefits to our results. We documented our research, implementation, and
some of the evalution processes leading up to this paper in [54].

This paper is structured as follows. In Section 2 we overview the technical
background related to symbolic execution and its implementation in the Clang
Static Analyzer tool. In Section 3, we discuss our expectations for an intelligible bug
report, and present techniques to generate them and their shortcomings. Section 4
details our proposals and implementations. We evaluate our solution implemented
for the Clang Static Analyzer in Section 5. Related work is surveyed in Section 7.
Future areas of research and implementation are discussed in Section 8. Finally,
we conclude our paper in Section 9.

2 Technical background

An often celebrated advantage of static analysis is its greater code coverage com-
pared to most dynamic analyses. However, this does not come without a cost;
arguing about runtime values is often difficult or impossible with only static infor-
mation. More complex analyses also tend to be expensive in terms of computing
resources, and are often several times slower than compilation and consume more
memory.

Various techniques approach these challenges from different angles – abstract
syntax tree analysis (AST analysis) [16] and control flow analysis trade under-
standing of runtime behavior for faster analysis speed. Dataflow analyses [43] are
able to argue about the flow of information within the bounds of a given function,
and most variants strike a middle ground in terms of space and time complexity
and the effectiveness of the analysis. Symbolic execution [30] takes a rather radical
approach, by essentially interpreting the source code, and analyze a large number
of execution paths in the program. This leads to a combinatorial explosion ac-
cording to the number of possible program states, which makes the analysis rather
expensive, but provides more information about runtime behavior.

This section discusses symbolic execution and its implementation in the Clang
Static Analyzer [15].

1As of the writing of this paper, the latest Clang release is 12.0.0.



4 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

2.1 Symbolic execution

Concrete execution, what we would consider the “normal” execution of the program
or the simulation of such, is done by a specific input set to exercise a single path of
execution. In contrast, most forms of symbolic execution need no input values and
explore multiple paths of execution, covering entire classes of inputs [33]. These in-
put values, and runtime variables of the program are assigned symbolic rather than
concrete values. An analysis engine models the program behavior with a store,
which is a mapping of variables to symbolic values, and a constraint solver, which
contains constraints on symbolic values [7, 59]. The store is updated when a mem-
ory location is written, and the constraint solver is updated after each evaluation
of a conditioned branch.

The Clang Static Analyzer [15, 14, 20, 60] is an open-source tool that implements
symbolic execution on the C family of languages. Over the course of a decade,
it grew to be regarded as a stable and reliable tool for academic and industrial
purposes. It enjoys a variety of advantages of being built directly into the Clang
compiler, such as a thoroughly tested and up-to-date abstract syntax tree (AST )
and control flow graph (CFG, pictured in Figure 1a). Clang [34] is a compiler
frontend for LLVM, the umbrella project that offers a wide selection of algorithms
that are useful for optimization. For the remainder of the paper, we refer to the
Clang Static Analyzer under the term analyzer.

Symbolic execution in Clang starts after the conclusion of syntactic and semantic
analysis, and the construction of the AST and the CFG. The analyzer then creates a
call graph for the input file’s translation unit. The call graph’s nodes are functions,
and directed edges describe function invocations from one function to another. If
possible, symbolic execution starts from functions with no ingoing edges in the call
graph, otherwise in some other function. From this initial function, called the top-
level function, the analyzer will explore paths of execution using the CFG. For the
code snippet in Figure 1a, f will be the top-level function, and a possible path of
execution would be B5 B4 B3 B2 B0. The CFG describes one specific function
at a time yet both B4 and B2 contain function calls. This obstacle is resolved by
the analyzer “jumping” from the invocation site to the entry blocks of the callee
function’s CFG. We call this process inlining. Should we denote the symbol Bifoo
as the ith block of foo’s CFG, the path of execution mentioned above is as follows:

B5f B4f B3g B2g B1g B4f B3f B2f B3g B2g B1g B2f B0f

2.2 The ExplodedGraph

During analysis, the analyzer builds a data structure to keep track of the program
state (most notably the store and the constraint manager) at each point of symbolic
execution. This data structure is called the ExplodedGraph, which is pictured in
Figure 2. The ExplodedGraph is a different data structure to the CFG because
it contains far more information (assumptions on values, memory regions) [52]. It



Uncovering Hidden Dependencies 5

is not even isomorphic with it; a path of execution on which the body of a loop
is visited four times, each visit would be represented with a linear path, instead
of a directed loop. Also, while a CFG is built for each function, only a single
ExplodedGraph is built for the entire analysis. With that said, it is possible to
map each ExplodedNode (a node of the ExplodedGraph) to a specific CFGBlock
(or simply block, a node of the CFG), or CFGEdge (a directed edge of the CFG).

Mind that the analyzer does not view the path of execution from a “human”
perspective. It processes these nodes from the ExplodedGraph unaware of contex-
tual information in the source code, or even nodes on other paths of execution. For
instance, the path in red in Figure 2 does not include any information about user’s
intent to assign x a non-null object, and will not be considered.

3 Report generation

A frequently researched problem of static analysis is to discover as many real bugs
as possible while keeping their false positive rate within a margin of error [41,
28]. However, making the generated reports intelligible and easily digestible is
rarely discussed. However, many researches [28, 29, 36, 45] point to the fact, that
understanding the error report and converting it to an executable action by the
developer is crucial for the acceptance and the effective use of static analysis tools.

In this section, we define a non-comprehensive set of guidelines on an ideal bug
report, and overview how the analyzers approach this issue, and struggle relating
to the limitations of the ExplodedGraph.

Bug report generation is done after the entire analysis is concluded by the
inspecting nodes of the ExplodedGraph. To avoid confusion, we define the following
terms:

• An (explored) path of execution is a directed path in the ExplodedGraph
starting from the root terminating in one of its leaves.

• A bug path is the shortest path of execution, which terminates in an error
node. Error nodes in the ExplodedGraph are the program points where a
bug was discovered (the red path seen in Figure 2).

• A bug report is a user-readable set of messages and notes that explains the
control flow leading to the bug, and the values of related variables (see Figure
1b-1c).

3.1 Goals

The bug path is a collection of all events on a given path of execution and is not
a user-readable set of events. Some nodes describe relatively low-level actions, like
an lvalue-to-rvalue cast, the cleanup of local variables, or other events that may
not be relevant to the actual bug. Hence, we define the ideal bug report to be:



6 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

• Minimal, so that it is void of events that are irrelevant to the comprehension
of the bug report,

• Complete, so that it highlights every relevant event.

In a sense, an ideal bug report tells how to reproduce the bug. Unfortunately,
these goals are rather vague and leave room for subjectivity. For instance, control
flow through a constexpr-conditioned branch is obvious from the compiler’s per-
spective but may or may not be obvious to a reader. To keep our study free of
personal preference, we precisely define the vaguest word of these goals: relevance.

Definition. We say that statement a is relevant to statement b, if for a given (b,
{set of variables}) pair, a is a control dependency of b, or contains an expression
that is a data dependency of any of the variables in the pair’s set. We call a
(statement, {set of variables}) pair a slicing criterion.

3.2 Report generation techniques prior to our research

To construct a bug report, the analyzer, starting from the error node, inspects
the bug path’s nodes individually all the way to the root of the ExplodedGraph,
looking for noteworthy events to the slicing criterion (error location, {bug causing
variables}). Two techniques are employed for each of the goals mentioned above.
Bug path visitors add user-readable messages and notes to the final bug report, and
interestingness propagation helps to discard of a portion of these.

3.2.1 Bug path visitors

Contrary to their name, bug path visitors function as callbacks. As the analyzer
visits a new node in the bug path, it notifies each visitor to inspect it. If a visitor
finds a noteworthy event, they may construct a diagnostic message. For instance,
ConditionBRVisitor is responsible for constructing a message for each evaluated
condition. When a condition is seen by this visitor in an ExplodedNode, for in-
stance, if (coinflip()), the message “Assuming the condition is true” may be
constructed.

Visitors greatly expand the number of variables and values to consider for ex-
plaining. Data dependence is a great example; if variable x caused a bug, we could
register FindLastStoreBRVisitor to find x’s last write preceding the error node
(e.g., “Value assigned to ’x’ ”). Visitors can themselves create new visitors, if war-
ranted. Suppose that that last write is in the form of an assignment (x = y;),
FindLastStoreBRVisitor would register a new instance of itself to explain y.

3.2.2 Interestingness propagation

By design, visitors cannot always be aware of whether the constructed message is
relevant to the bug report. In anticipation, the analyzer marks some entities (such
as the denominator for a division-by-zero bugs) interesting. Just as visitors may
themselves create new visitors during bug report construction, they may also mark



Uncovering Hidden Dependencies 7

new entities interesting, or propage interestingness from one entitity to another. In
a later stage, after all diagnostics have been constructed, messages in function calls
not describing any interesting entity are pruned.

At last, these two techniques are combined in what we call expression tracking.
A common desire for bug report generation is to explain all events relating to
a variable: why it holds a specific value, control flow around the usages of said
variable, and other properties. This is achieved by registering a set of visitors
relating to that variable, and mark it interesting. We call this process the tracking
of said variable.

3.3 Deficiencies

Even when describing multiple iterations of a loop, bug paths contain no directed
cycles. They are a sequence of program states, leading to a node where the program
state is erroneous. This linearity and the lack of information on code not explored
by the analyzer on that bug path can make it challenging to understand the intent
of the programmer.

Figure 1a shows a code snippet where the global variable flag controls whether
x will be initialized, and whether x will be dereferenced. Function g sets flag

to some unknown value, and the lack of parameter passing makes this a non-
trivial realization from a user’s perspective. Figure 1b shows a report from the
analyzer displayed by CodeChecker [21] before our research: the analyzer failed
to understand that x’s value, and its dereference depends on flag and is worth
explaining. As a result, it pruned diagnostic messages relating to function calls to
g. In a later section, we will discuss our results to improve this bug report as shown
in Figure 1c.

For each example in Figure 3, the analyzer can discover a null dereference bug
on line 21, but will also fail to find all relevant statements to it during bug report
construction. These examples correspond to four classes of problems2, which we
discuss in further detail as follows:

3.3.1 Figure 3a: Control dependency is not recognized

Analysis starts at line 14, noting variable x to be a null pointer, and the global
variable flag to be 1. Then, the function call to g() will appropriately set flag’s
value to unknown. On line 20, the analyzer will explore a path of execution on
which flag’s new value is 0, and one where it is not. On the former, a dereference
of x is found on line 21, which is known to be null. The analyzer will cut a bug
path out of the ExplodedGraph which terminates in this erronous program state,
and configure its bug report generation facilities to start tracking x.

During bug report generation, the analyzer can find the relevant statement to x

regarding data dependencies, which is its initialization on line 14. It will, however,
fail to recognize a relevant statement to the bug – namely, had flag not been 0 on
line 20, the bug would not have occurred. We will define it more precisely in later

2Figure 1a combines the classes of problems displayed in Figure 3a and Figure 3b



8 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

1 int flag;

2 bool coin();

3

4 void g() {

5 flag = coin();

6 }

7

8 int f() {

9 int *x = 0;

10 flag = 1;

11 g();

12 if (flag)

13 x = new int;

14 g();

15 if (flag)

16 *x = 5;

17 }

[B5 (ENTRY)]

[B4]
int *x = 0;
flag = 1;

g();
if (flag)

[B3]
x = new int;

[B2]
g();

if (flag)

[B1]
*x = 5

[B0 (EXIT)]

(a) A code snippet and function f’s control flow graph.

(b) Before
(c) After

Figure 1: A code snippet and analysis results demonstrating how the analyzer
struggles to realize that x’s value and derefence depends on flag, and as a result,
will not construct diagnostic messages to explain relevant events to it.



Uncovering Hidden Dependencies 9

flag = 1
x = nullptr

(after the call to foo )
flag ∈ (−∞,∞)

x = nullptr

flag ∈ (−∞, 0) ∪ (0,∞)
x = nullptr

flag ∈ (−∞, 0) ∪ (0,∞)
x = (heap allocated object)

*x = undefined

(after the call to foo )
flag ∈ (−∞,∞)

x = (heap allocated object)
*x = undefined

flag ∈ (−∞, 0) ∪ (0,∞)
x = (heap allocated object)

dereference of x!
*x = 5

flag = 0
x = (heap allocated object)

*x = undefined

flag = 0
x = nullptr

(after the call to foo )
flag ∈ (−∞,∞)

x = nullptr

flag ∈ (−∞, 0) ∪ (0,∞)
x = nullptr

dereference of x!

flag = 0
x = nullptr

Figure 2: A simplified ExplodedGraph after analyzing Figure 1a.

section, but this property makes line 20 a control dependency of line 21. Control
dependency is defined on the CFG, not the bug path, hence the analyzer being
oblivious to it at this phase. Note that flag’s value was set to 1 a few lines earlier,
and should g()’s definition be unavailable or obscured, it would not obvious why
flag’s value is assumed to be 0 on line 20.

3.3.2 Figure 3b: Reaching definition is not in the bug path

The analysis, and the eventual costruction of the bug path is done similarly to
Figure 3a. The analyzer can again find x’s initialization as important, but as
line 18 is not on the bug path, the analyzer fails to recognize that the user likely
intended to set x’s value properly. This assignment and x’s initialization are so-
called reaching definitions to x on line 21 – loosely, there exists a path in the CFG
from them to line 21 without any interleaving assignments to x. flag’s value on
line 17 is no longer a control dependency to the CFG block in which the bug is
found, yet it is clear that should flag’s value be non-zero on line 17, the bug would
not have occurred. Reaching definitions is also a property of the CFG, so line
18 is not recognized as important, leading the analyzer to believe that its control
dependency, line 17, which is on the bug path is not worth explaining in further
detail either.

3.3.3 Figure 3c: Reaching definition is in a different, but inlined stack
frame

This example presents another layer of difficulty to Figure 3b – the statement on
which x could have obtained a non-null value is not only outside the bug path, but
is in another function call. In the previous cases, control dependency and reaching



10 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

1 int flag;
2 bool coin();
3
4 void g() {
5 flag = coin();
6 }
7
8
9
10
11
12
13 int f() {
14 int ∗x = 0;
15 flag = 1;
16 g();
17
18
19
20 if (!flag)
21 ∗x = 5;
22 }

(a)

1 int flag;
2 bool coin();
3
4 void g() {
5 flag = coin();
6 }
7
8
9
10
11
12
13 int f() {
14 int ∗x = 0;
15 flag = 1;
16 g();
17 if (flag)
18 x = new int;
19
20
21 ∗x = 5;
22 }

(b)

1 int flag;
2 bool coin();
3
4 void g() {
5 flag = coin();
6 }
7
8 void h(int ∗∗x) {
9 if (flag)
10 ∗x = new int;
11 }
12
13 int f() {
14 int ∗x = 0;
15 flag = 1;
16 g();
17
18 h(&x);
19 g();
20 if (flag)
21 ∗x = 5;
22 }

(c)

1 int flag;
2 bool coin();
3
4 void g() {
5 flag = coin();
6 }
7
8 void h(int ∗∗x) {
9
10 ∗x = new int;
11 }
12
13 int f() {
14 int ∗x = 0;
15 flag = 1;
16 g();
17 if (flag)
18 h(&x);
19 g();
20 if (flag)
21 ∗x = 5;
22 }

(d)

Figure 3: Code snippets that highlight deficiencies in the analyzer’s understanding
of bugs when generating reports.



Uncovering Hidden Dependencies 11

definitions could have been recognized within f itself; here, an interprocedural
technique is required, whereas a CFG is constructed for only a single function at
a time. While we can say that the assignment to x in h is a reaching definition
to x on line 21, this information needs to be carried from one CFG to another.
Although symbolic execution is interprocedural, control dependency analysis and
reaching definitions analysis (and many similar lightweight techniques) are not.

3.3.4 Figure 3d: Reaching definition is in a different and not inlined
stack frame

A relevant statement, line 10, is not only outside the bug path, but the containing
function g was not inlined either (the analyzer has not entered this function on
the path where the bug is discovered). Inlining functions can demand non-trivial
modeling, such as lifetime extension, moves, and the evaluation of arguments. This
makes bridging the gap in between CFGs all the more difficult. Generally speaking,
the “further” the analyzer has to stray from the bug path, the more challenging
bug report construction becomes.

4 Proposed solution

Program slicing is a field of study about creating a program slice, which is a subset
of the program’s statements, relevant to a point of interest, usually defined by a
(statement, {set of variables}) pair, called a slicing criterion. Relevance in this
context is defined by whether a statement could influence the value of one of the
variables in the slicing criterion. Program slicing combines data and control de-
pendency analysis in a fix-point algorithm to slice irrelevant statements away from
the program, converging to a minimal, but complete slice.

The original program slicing algorithm [57] was intraprocedural, and aimed at
monolithic, single-procedure programs [40]. Interprocedural variants are explored
in numerous studies [26, 11, 56], but they demand the existence of a data structure
that describes data and control dependencies across function calls, most commonly
a system dependence graph, which at the time of writing was absent from Clang,
and its implementation would be a challenging task with the current Clang’s AST
and CFG design.

As feasible implementations of slicing algorithms are confined to the bounds of
a single function, and most bug paths span multiple functions in the source code,
adjustments would be required to make program slicing a valuable part of Clang’s
bug report generation facilities. A great candidate to bridge this gap might be bug
reporter visitors, as they can reason about data dependencies with rather great
precision across function calls. However, they would be partially redundant with
the data dependency analysis built into program slicing. For these reasons, we
approached slicing in terms of its core components, not in its entirety.

In Section 3.3, we have shown four classes of problems the analyzer could not
tackle prior to our research. We propose two techniques as a potential solution, as



12 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

well as how they can be incorporated into the existing bug report generation infras-
tructure: control dependency analysis and reaching definitions analysis. While we
are cautious about unforeseen challenges, we feel confident that these would solve
three of the four cases, and pave the way to approach the fourth. As a demon-
stration, we implemented control dependency analysis and observed measurable
improvements for the first case.

4.1 Control Dependence Analysis

On most occasions, control dependence center around conditional statements (e.g.,
if, for, switch), where the value of the condition dictates which part of the
code (e.g., branches of if statements) will be executed next. For instance, cases
of a switch-case statement are control dependent on the expression in the switch
statement.

We defined relevance in part such that slice a := (stmta, varsa) is relevant to
slice b := (stmtb, varsb), if stmta is a control dependency of stmtb. The following
exercise demonstrates why this is reasonable: Suppose that we constructed b after
discovering a null pointer dereference error (for instance, (line16, {x}) for Figure
1a), and have already marked stmtb as interesting. We argue that regarding its
control dependency, stmta, as relevant enables the analyzer to better understand
the context of this bug; had control not flown from stmta to stmtb, the bug would
not have occurred.

In this section, we overview our proposal and implementation of adding control
dependency analysis to bug report construction.

4.1.1 Defining Control Dependence

We define control dependence on the CFG with the help of dominance and postdom-
inance. We say that block A dominates block B (A domB), if every path from the
entry block to B must go through A. We say A strictly dominates B (A sdomB),
if A dominates B and A 6= B. We say B postdominates A (B pdomA), if every
path from A to the exit block must go through B, and similarly, B strictly post-
dominates A (B spdomA) if B postdominates A and B 6= A [1]. An example can
be seen regarding dominance in Figure 4.

We say that block B is control dependent on block A (B cdA) if there exists
an edge from A to C such that B postdominates C, and if B is not equal to
C, B doesn’t postdominate A. In looser terms, this expresses that B is control
dependent on A if B doesn’t postdominate A, but post dominates all blocks “in
between them”. As an example, in Figure 1a, B1 is control dependent on B2, but
B0 is not control dependent on B2, as B0 post dominates B2. We extend control
dependency to statements as follows: If block B is control dependent on block A, we
also say that all statements in B are control dependent on the condition expression
in A, if such exists.

Control dependencies can be calculated with post dominance frontier sets [19].
The post dominance frontier set of block A (PDF (A)) is the set of B nodes from



Uncovering Hidden Dependencies 13

[B5 (ENTRY)]

[B4]

[B3]

[B2]

[B1]

[B0 (EXIT)]

Figure 4: A simple control flow graph. The entry block (strictly) dominates every
(other) block, and the exit block (strictly) postdominates every (other) block. B4
dominates B3, but B3 does not dominate B2, since the path B5 → B4 → B2
excludes B3. B2 postdominates B4, but B3 does not postdominate B4.

the inverse CFG3 such that A dominates a predecessor of B but does not strictly
dominate B:

PDF (A) := {B|(∃P ∈ Pred(B))∧
∧ (ApdomP ∧ ¬A spdomB)}

Calculating PDF sets quickly yields control dependence:

A cdB ⇔ B ∈ PDF (A)

We implemented dominance frontier sets with the algorithm described in [48].
For a CFG with E edges and N CFGBlocks, calculating PDF sets has a worst-

case complexity of O(E + N2), but is often linear in practice [19].

4.1.2 Integration of control dependence

As bug path visitors continously expand the code contexts (values, variables) to
explain, we chose to weave our control dependency calculator into a new visitor.
A new instance of our visitor is registered for each new tracked expression value.
As a new node in the bug path is visited, the visitor checks whether the statement
described in the node is a control dependency of the location where the tracking
started. If so, it will instruct the analyzer to track the condition of that statement.
Essentially, each visitor instance holds a (statement where tracking starts, {tracked
variable}) slicing criterion.

Figure 3a demonstrates a code snippet where the analyzer can detect a null
pointer dereference of x, but fails to realize that had the value of flag may have
been a guard of this error. With our improvement, the bug report generation
would work as follows: The analyzer would start tracking x, registering several

3An inverse of a CFG is constructed by reversing all of its edges in the graph.



14 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

visitors, including our own. As it ascends the bug path and finds the ExplodedNode
describing the evaluation of !flag on line 20, our visitor checks whether line 20 is
a control dependency of where it started tracking from (line 21). As a result, it will
instruct the analyzer to track flag. FindLastStoreBRVisitor would find flag’s
last store on line 5, and a diagnostic message will be constructed to describe it.
Since flag is tracked, it is also an interesting variable and the analyzer will prevent
the pruning of messages inside g().

While this information was indeed found on the bug path, inspection of its
nodes alone did not reveal the relevance in between flag and x, and led to the
analyzer discarding information about g() to keep the bug report minimal. Control
dependence analysis unearthed and preserved the importance of this function call.

In application, we employ a number of heuristics to limit the impact of our
solution to only display diagnostics when they provide a meaningful addition to the
bug report. When displaying a bug report to the user, the source code is decorated
with diagnostic messages and notes, and often relevant information about condition
values is readily available in the same function as the condition itself. We found that
additional notes in the same function did not add much value the user experience,
and on occasion needlessly polluted the report. We chose to display new diagnostic
messages only when information relating to a condition was found in a function call
that would otherwise be disregarded.

4.2 Data Dependence Analysis

Data dependency analysis on the bug path (done by FindLastStoreBRVisitor)
benefits from all the information the analyzer gathered during symbolic execution.
Common obstacles in this realm might already be resolved: the analyzer’s memory
model keeps track of pointers and their pointees, and if possible, function calls are
inlined and evaluated. The linearity of the bug path makes this kind of analysis
also relatively efficient. Data dependence analysis on the CFG, which is done with
a dataflow algorithm, is not in such a privileged position. However, as we have
demonstrated before, analyses on the CFG could yield information on code outside
of what the bug path that can be valuable.

In this section, we discuss a dataflow algorithm called reaching definitions.
When inquiring about which parts of the program was meant to affect the value of
a bug causing variable, reaching definitions is an elegant solution to find relevant
statements.

4.2.1 Dataflow analyses

As the name suggests, control flow analyses describe the flow of control within a pro-
gram by inspecting the structure of the CFG; dataflow analyses complements this
by analyzing how information (e.g., values of variables, state of mutexes, whether a
value will be read from in a later basic block) flows, changes, and is accessed from
one node to another by inspecting the contents of the CFG. Many notable dataflow
analyses are defined by calculating an initial set of properties for each basic block,



Uncovering Hidden Dependencies 15

and propagating these properties along the edges of the CFG, so that properties
“flow” from one block to another. Propagations may be described with dataflow
equations; these are then repeatedly solved until these property sets change no
more, reaching a fixpoint. Common initial property sets include GEN and KILL.
Though might be defined somewhat differently from algorithm to algorithm, they
are usually similar to the following: for basic block B, GEN [B] is the set of variables
read in B, and KILL[B] is the set of variables written in B.

As an example, live variable analysis [18] calculates the set of live variables in a
given basic block. A variable is live if its value may be read in subsequent blocks.
Formally, a variable x is live in block i, if block j uses the value of x, and there
exists a path from i to j without any interleaving assignments to x. LIV Ein[B] is
the set of variables live at the beginning of block B, and LIV Eout[B] is the set of
variables live at the end of B. 4 In Figure 1a, x is live in blocks B4, B3 and B2, but
not in B1 and B0. It is indeed possible to express liveness with dataflow equations:

LIV Ein[B] = GEN [B] ∪ (LIV Eout[B] \KILL[B])

LIV Eout[B] =
⋃

S∈succ[B]

LIV Ein[S]

This definition overapproximates the actual set of live variables. Suppose in
Figure 1a g() is known to always set flag’s value to false. Although x would
be a dead variable throughout the entire function, liveness analysis, and dataflow
analyses in general are incapable of telling whether a path of execution in the CFG
is feasible.

C/C++ presents several challenges to overcome in calculating GEN/KILL sets.
Due to the aliasing problem presented by pointers, it can be difficult or impossible
to tell which variables are read or written through aliasing. Another significant
obstacle is posed by function calls, as dataflow analyses are defined to reason about
a single CFG at a time. These limiting factors force the analysis to over- or under-
estimate its results even further. Clang in particular faces a number of additional
problems; its AST, to which the CFG links back to, was designed for diagnostics
construction, not for such an analysis [53]. While lacking an intermediate represen-
tation higher than LLVM IR but lower then Clang AST makes it rather difficult to
implement in Clang for the purpose of finding programming errors, there are a few,
such as Clang’s thread safety analysis [27] and lifetime analysis [49, 24, 25, 32].

4.2.2 Reaching definitions analysis

We call the write of variable x a definition of x. Any statement that may write
x (e.g. through aliasing) is also regarded as a definition of x. When describing
analyses concerning definitions, we define GEN [B] sets such that they contain

4As basic blocks are sequences of operations executed sequentially, they might not be granular
enough, as the same variable may be written multiple times in a given block. In such a case,
valuable liveness information is lost inside the block. This problem can be solved by splitting up
basic block to only contain a single statement.



16 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

the set of definitions present in basic block B (,,B writes x”), and KILL[B] sets
such that they contain every other definitions in the CFG that generate the same
variables as B (,,B overwrites the value x may have gotten in other blocks”).

The ingoing reaching definitions [18] set of B (REACHin[B]) is the set of defini-
tions reaching B. The outgoing reaching definitions set of B (REACHout[B]) is the
incoming set minus the definitions killed by B, as well as the definitions generated
by B. We can define reaching definitions with the following dataflow equations:

REACHin[B] =
⋃

P∈pred[B]

REACHout[P ]

REACHout[B] = GEN [B] ∪ (REACHin[B] \KILL[B])

If the set of definitions to x at block B (a subset of REACHin[B]) contains no
elements, that means x is first defined in B, or not yet defined. If the set contains a
single element, that means we can precisely tell which statement defines x’s value
in B. If it has two or more elements, then x’s value might be different if different
execution paths are chosen to reach B. In Figure 1a, if we denote definitions by a
(variable, line number) pair, B1’s reaching definitions set would be the following:

REACHin[B1] = {(flag, 15), (x, 9), (x, 13)}

4.2.3 Integration of reaching definitions

The reaching definition set of B1 is very telling: it highlights that the definition of
x in B3 reaches the block where x was a cause of a bug, which could be a hint that
the developer intention to prevent the bug from occuring. Although the analyzer
did not visit B3 on this path of execution and is absent from the bug path, one
can tell that a control dependency of B3, namely the evaluation of the condition
in B4, is. This realization could trigger the analyzer to start tracking flag on line
12. This would force the creation of diagnostic messages for the last store to flag,
which is in a function called on line 11.

With reaching definitions, we would be able to find a point of interest to the bug
but outside the bug path, and could instruct the analyzer to explain control flow
around these points better. This would theoretically solve the class of problems
demonstrated in Figure 3b. Reaching definitions analysis overapproximates the set
of statements that are considered definitions, meaning that the analyzer should
keep track of whether a definition was found as a result of overapproximation.
With that said, the analyzer might be able to fill the gaps of information dataflow
algorithms usually struggle with; suppose a pointer is written right before a division-
by-zero error is discovered. Reaching definitions might be forced to conservatively
assume that said pointer points to the denominator; however, it could ask the
analyzer whether this aliasing is possible, and might be able to disregard the pointer
assignment.

The class of problems displayed in Figure 3c is more difficult to detect accurately.
Reaching definitions is confined to the bounds of f’s CFG, and will not detect x’s



Uncovering Hidden Dependencies 17

potential write on line 10. One aspect that makes this case approachable is the fact
that the function call to h is present on the bug path, and the analyzer will resolve
that the parameter of h will alias with x in f. This won’t make reaching definitions
interprocedural but would grant a limited toolset to reason across a limited set of
functions present on the bug path. Nonetheless, we would need to enhance our
reaching definitions algorithm with some pointer aliasing capabilities.

For the last class of problems demonstrated in Figure 3d, we lose the ability
to ask the analyzer to resolve parameter passing. While reaching definitions would
find that x might be written on line 18, it will be a result of overapproximation, so
the analyzer might not trust is enough to explain control flow around it. To reason
about h, we are forced the reimplement some of the analyzers inlining technology to
make reaching definitions to understand more than one function on its own. Should
such a technology exist, we would need to survey how deep of a function call chain
should we investigate to look for points of interest. This highlights how much more
difficult it is to discover relevant information from the program the further we stray
from the bug path.

The concept behind the interaction of reaching definitions with control depen-
dency analysis displays the many of the characteristics of static backward program
slicing.

5 Results

We evaluated our work from two perspectives. First, we gathered data on open
source projects by running the Clang Static Analyzer on their source code before
and after our improvements. We inspected almost all reports individually and tried
to subjectively argue for or against whether the reports’ readability improved. We
also tried to find certain objective metrics to measure the impact of our work.

Second, we sent out surveys to participants with varying degree of expertice
in C/C++ and static analysis to learn whether other developers would find our
improvements beneficial.

5.1 Measurements on open source projects

We tested our solution on, as seen in Table 1, the following open-source C and
C++ projects: Bitcoin [51], CppCheck [37], Gravity [8], gRPC [23], LLVM and
Clang [35], OpenSSL [39], Protobuf [22], Rtags [6], S2N [2], TinyVM [31], Xerces [4]
and XGBoost [58]. Combined, these projects cover a wide variety of coding tech-
niques, codebase sizes, and different versions of the languages’ standards.

In Table 1 we show how many reports did our contribution affect. Out of the 12
open source projects, reports remained unchanged in 7. Out of 1096 bug reports,
2.4% received additional notes. We intentionally fine tuned our solution to limit its
impact, and have observed that preserved information from previously disregarded
function calls always meaningfully added to the intelligility of the analyzed path of
execution.



18 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

Table 1: Evaluation of control dependency tracking in terms of how many reports
received additional notes. The last row shows findings every other project other
than the first five remained unchanged.

Total reports Changed % of changed

CppCheck 44 7 15.9 %
Gravity 16 1 6.3 %
gRPC 229 15 6.6 %
LLVM + Clang 249 2 0.8 %
Xerces 106 1 0.9 %
Others combined 451 0 0 %

In the case for Xerces, Gravity, some of the CppCheck reports, we were especially
pleased on how the extra information on conditions provided further high-level
information. We found that conditions closer to the bug point are more likely to
be directly data dependent on the bug causing variable. Upon learning more about
the condition, we also learned of more high-level properties on the bug causing
variable.

In the case for LLVM, gRPC, and the other half of the CppCheck reports, when
the pivotal point (like assigning null to a pointer) was very close to the bug point,
the extra information did not add much to the already decent report. Even in these
cases however, the rest of the report (altough not important to understand why the
bug occured) were easier to understand.

In the context of how memory and runtime intensive static analysis is, the costs
of bug report construction are usually assumed to be negligable. We expect our
contribution in particular to very little impact even in the context of bug report
construction, as all of the control flow analyses are calculated at a prior step in the
compilation process, and we simply reuse it.

5.2 Survey

We sent out surveys 11 people to measure whether a developer not taking part in
our research would find our improvements beneficial. Out of them, 9 participated
All of them were male, their avarage age was 30 at the time of the survey, ranging
from 24 to 56. Participation was free and voluntary.

While all of our participants were software developers, 3 of them mainly wrote
code in Python, 2 of them were teaching C++ at our university but wrote little
C/C++ code outside the classroom. The remaining 4 were full-time C++ devel-
opers.

All of the participants were familiar with static analysis, with 4 of them being
active contributors to Clang itself (but to our research). The remaining 5 worked
on visualizer tools for static analyzers, but not the analyzers themselves.

We selected 11 bug reports from those that we collected on analyzing open
source projects. After our contribution, all of these reports contained additional



Uncovering Hidden Dependencies 19

information than prior to it. We will call these versions of the same bug report the
“after” and the “before” versions.

All surveys contained all of the bug reports, but each report was only presented
in either “before” or “after” state. Each survey way unique in terms of which reports
were shown in which state, but all survey contained roughly the same number of
“before” and “after” reports.

In total, we received 99 bug report evaluations. On the following question:
“Sometimes, I was unsure how the analyzer analyzed this path of execution, and
wished for more explanation.”, answers could be given on a range from 1 to 5, with 1
strongly disagreeing and 5 strongly agreeing. As seen in Figure 5, on avarage, before
our contribution users answered with 2.901/5, but this desire was somewhat lower
after our contribution, a 2.804/5, while users rated “Some notes were annoying and
made it more difficult to understand the bug.” with the same score before and
after our improvement.

Figure 5: Responses to the question “Sometimes, I was unsure how the analyzer
analyzed this path of execution, and wished for more explanation.”. 1 strongly
disagrees, 5 strongly agrees. The columns in grey display the score on bug reports
prior to, and the columns in green display the score after our improvement.

5.3 Threats to validity

As for the evaluations on open source projects, our selection lacks meaningful
amount of modern C++ code, specifically, C++14 or newer.

As for our survey, while in terms of expertise in C/C++, our participants varied
in range, they were are rather knowledgable about the Clang Static Analyzer, with
7 of the 9 having made at least one contribution to it. Our survey could have
benefitted from a greater range on familiarity with static analyzers. All of the



20 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

participants that responded to our survey were male, a fact that could also use
some diversifying.

Most importantly, our sample size of 9 participants and 11 bug reports is small.
It is our view that a participant should have at least an intermediate C/C++
knowledge, and at least some familiarity with the concept of static analysis in real
world applications, and it proved difficult to find people who met these criteria.

6 Notable examples

In this section, we highlight a few bug reports where control dependency tracking
made a poor bug report significantly more readable.

While evaluating a large number of reports during static analysis, it is a good
idea to read from the bottom up, as the root cause of the bug, for instance the
last assignment to a variable before it participates in a division by zero error, may
be close to the error point. This means essential part of the bug report might be
shorter than the full report. Starting from the bottom allows the user to disregard
the first few of the report as non-consequential.

In the following examples, we advise to read the reports from the top down,
unless stated otherwise.

6.1 Example 1

This example is from the project CppCheck, in the file lib/symboldatabase.cpp.
In Figure 6, the bug report is shown which was generated without our improvement.
At one point, variable tok2 is assumed to be null, which eventually leads to a null
dereference bug. To decide whether this report is a true positive, and if so, how to
fix it, a good question to ask is “Are there any interleaving condition points that
should’ve prevented the flow of control from reaching a derefence of tok2 while its
null?”.

This is rather challenging in this bug report: at one point, the local variable
new scope is defined, and is already known to be null in the next condition (if the
analyzer would have assumed its value on the condition point, it would have placed
a note there, implying that the analyzer learned of its value earlier). Is this because
findScope unconditionally returns a null pointer, and its effect is only observable
on its parameters? If not, why are there no explanations?

In Figure 7, we show the relevant part of the bug report, but after our improve-
ments. A pair of new notes appeared on the function call to findScope, and leads
to its definition. It forwards us to a call to a non-cost member function with the
same name. There, we learn that this function can indeed return non-null values,
but the analyzer managed to find a path of execution where this function returns
null.

Our improvement recognized that new scope is a control dependency to the bug
point, and information about it should be presented.



Uncovering Hidden Dependencies 21

BEFORE:

...
<numerous lines of code>

...

...
<numerous lines of code>

...

Figure 6: Bug report before our improvement from CppCheck



22 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

AFTER:

...

...

Figure 7: New notes after our improvement in the report from CppCheck



Uncovering Hidden Dependencies 23

6.2 Example 2

This example is from the project Xerces in the file TraverseSchema.cpp. Reading
the report in Figure 8 from the bottom up shows that the first parameter on
reportSchemaError is dereferenced as a null pointer. Moving up, we can see that
the null pointer originated from the caller function’s local variable, content. We
entered this code block because simpleTypeRequired is true, which was set because
a chain of conditions, among them the fact that baseTypeInfo is non-null, lead
to that assignment. Earlier, we can see that the execution was not halted by an
exception, in part because baseValidator is null (shown by the flow of control,
which is visualized by the arrows). content’s last store is present in the full the
bug report, but we omitted it on this figure.

It is clear why simpleTypeRequired is known to be true at the condition point,
but as to why were both baseTypeInfo and baseValidator known to be non-null
and null respectively, is not explained by the report. Their definition gives a clue,
it is related to typeInfo, but how does the analyzer know the values returned by
those getter functions so precisely?

In Figure 9, which displays parts of the bug report after our improvement, we
are greeted by new notes explaining what happens inside processBaseTypeInfo.
Inside the function, we see two variables with the same types that baseTypeInfo

and baseValidator had being initialized to null. Later, baseComplexTypeInfo’s
value changes, and is assumed to be non-null, while baseDTValidator’s value re-
mains unchanged. The last two statements of the function uses setter functions on
typeInfo with these variables.

Upon reviewing the definition of baseTypeInfo and baseValidator, we can see
that the getter functions they are initialized with pair with these setter functions,
explaining how the analyzer knew their precise value.

Our improvement saw that simpleTypeRequired is a control dependency to
the bug-causing function call, and started tracking it. Its last store was control de-
pendent (in part) by baseTypeInfo, which initiated its tracking. baseValidator

is tracked as it played a part in preventing the program from throwing an excep-
tion, but this could have been omitted, as the value of baseTypeInfo would have
prevented that anyways.

6.3 Example 3

This example is from LLVM, in the file clang/lib/CodeGen/CGObjCGNU.cpp. In
Figure 11, we see a bug report before our solution. Reading from the bottom
up, we see that OID is dereferenced as a nullpointer. In a branch inside a range-
based for loop, we see the only statement that could have written this variable
before its definition. II seems to play an important role in the retrieved range,
which is initialized based on the parameter of the function, Name. Following the
flow on control up, we see that isWeak is known to be false. Notably, we see
GetClassVar being initialized by a call to SymbolForClassRef, which takes both
Name and isWeak as parameter.



24 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

BEFORE:

...

...

...

Figure 8: Bug report before our improvement from Xerces



Uncovering Hidden Dependencies 25

AFTER:

...

...

...

Figure 9: New notes after our improvement in the report from Xerces.



26 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

To decide whether this bug report is a true positive or not, we must, in part,
show that Name can hold values that allows the flow of control to reach the range-
based for loop, but never reach the assignment to OID inside it. Since the return
value of SymbolForClassRef seems to influence whether the function returns early,
the intention could have been that problematic values of Name should result in this
early exit. It is also unclear why isWeak is known to be false, the intention of the
programmer could have been to prevent the flow on control reaching the error point
with its value as well.

In Figure 11, we see the relevant parts of the bug report after our improvement.
A pair of notes around the call to SymbolForClassRef link to the function’s defini-
tion. There, we learn where isWeak’s value was assumed, and we get a better picture
of the return value that was later provided for the initialization of ClassSymbol.
Also, the correlevance of Name, isWeak and the early return is proven, so an expert
on this domain can likely judge the validity of the report.

7 Related work

In 2008, the authors of paper [5] reported that while the static analysis methods are
frequent research areas in the academy, there are no many usage examples in the
industry. Current trends show a growing industrial interest of the static analysis
tools [9, 61].

Industry leader software companies show the most positive approach towards
static analysis and its application in every day development. Google, Apple, Mi-
crosoft, Facebook, and others also participate in the development of such tools.
Paper [45] reports about the lessons learned while developing static analysis tools
at Google. The authors list the most frequent problems resulting in the developers
not using static analysis tools or ignoring their warnings. These are the lack of
tool integration into the developer’s workflow; the fact that many warnings are not
actionable; the high number of false positives; situations where the bug is theoreti-
cally possible but in practice it does not manifest; the possibly high cost of the fix;
and that the users do not understand the warnings.

The authors emphasize the importance of actionable messages: the warnings
should include a suggestion to the (possible) fix, which in the best case could be
applied mechanically. However, the authors state that many serious issues cannot
be detected correctly or automatically fixed. In that case of the latter, the fix
depends on the correct understanding of the report. They also claim that the
developer’s happiness is a crucial factor for the successful introduction of static
analysis on an organizational level. Non-understandable reports cause frustration
among engineers and work against trust in static analysis tools.

The authors in [28] investigate why the use of static analysis tools is not as
widespread as it would be possible. Unlike earlier studies, they focused on the
developer’s perception on using the tools, including the interaction with the user
interface. The research was conducted via 40-60 minutes long semi-structured in-
terviews with 20 developers with experience ranging from 3 to 25 years. Among



Uncovering Hidden Dependencies 27

BEFORE:

...

Figure 10: Bug report before our improvement from LLVM.

these 20 developers, 14 people expressed negative impact on the way in which the
warnings are presented. Apart from the possibility of overwhelming false positive
warnings they mentioned that the reports are non-intuitive.



28 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

AFTER:

...

Figure 11: New notes after our improvement in the report from LLVM.

As the result of their research, they conclude that the developers are not able
to understand what the tool is telling her, and it is a definite barrier to use static
analysis tools. Nineteen of our 20 participants, felt that many static analysis tools
do not present their results in a way that gives enough information for them to
assess what the problem is, why it is a problem and what they should be doing
differently.

We discussed that in the general case, the more complex a static analysis system
is, the harder it is to construct intelligible reports for them. The authors in [46]
discuss a static analysis technique with the usage of the preprocessor – a historically
difficult concept to write good diagnostics around.



Uncovering Hidden Dependencies 29

A similar methodology was conducted in the research published in paper [55].
The authors surveyed 40+ developers and interviewed 11 industrial experts to un-
derstand the possibilities of better prioritization of static analysis tool reports.
Among other interesting results, they found that ... warnings hard to integrate in
case they do not have teammates having enough expertise for fixing them. However,
those warnings can be easily understood if the tools provide exhaustive descriptions.

8 Future work

We feel cautiously optimistic about our proposal regarding reaching definitions
analysis, though we are yet to implement it and gather real world-results. This links
back to the problems posed by Clang’s infrastructure: its AST was constructed to
make the construction of user-readable diagnostics easy, not so much for dataflow
analysis. We made considerable progress in implementing a reaching definition
analysis but paused to reflect on whether changes to the current repertoire inter-
mediate representations are in order. Creating a new IR is a large undertaking, so
we are researching the best course of action to take on this front.

The analyzer is aware that it is limited in terms of the information it can harness.
For instance, calling functions with unavailable definitions often force a clear of its
constraints on a subset of variables. Similar events are often large contributors
to the appearance of false positive reports. After the analysis is concluded, the
analyzer will inspect each bug find whether they are likely false positives, and
regularly suppresses a portion of them. The more the analyzer understands what
parts of the program are relevant to a bug, the more precisely it can suppress such
reports; we are currently researching how to integrate our results and proposals
into this library.

Reaching definitions analysis could be a valuable component for new checkers to
find even more intricate bugs by complementing symbolic execution with dataflow
information.

The authors in [13] discuss combining the Clang Static Analyzer with the dy-
namic symblic analyzer KLEE to refine the analysis. They highlight that traces
provided by Clang are not that useful, and that Clang struggles to find non-trivial
true positive. Maybe if the communication in between these tools improves (with
the help of Clang itself better understanding the intetion of the programmer), re-
search in this area could show new results as well.

9 Conclusion

Static analysis and symbolic execution specifically is a powerful technique to find
deeply rooted programming errors. As an interprocedural path sensitive analysis,
it gains a sophisticated understanding of how values would behave in a runtime
environment without actually executing the program. However, it often struggles
to turn these discoveries to easily comprehensible bug reports, demanding even



30 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

more of the most expensive resource and least available in a software development
project: human experts.

In this paper, we demonstrated that the root cause of poor bug reports to
otherwise valuable discoveries are caused by the fact symbolic execution can only
reason about a single path of execution at a time. After the analysis is concluded,
tools such as the Clang Static Analyzer inspect the sequence of program states
leading to the error, and construct a set of diagnostic messages and notes to explain
the flow control and change of values. However, these program states are oblivious
to what could have happened on alternative paths of execution, as well as control
dependence.

We propose two techniques to complement bug report generation. Control de-
pendency analysis can tell that a condition point may have played a large part in the
bug’s occurrence. Reaching definitions analysis finds parts of the code could have
changed the value of a bug causing variable had control flown there. We project the
interaction of these techniques to replicate a program slicing-like behavior, signifi-
cantly increasing an analyzer tools’ understanding of the causes behind a bug. Our
improved bug report generation facilities, which has been a part of the Clang Static
Analyzer stable releases since version 10.0.0., demonstrates how the discovery of
such information allows a tool to construct more comprehensive bug reports.

Acknowledgment

We would like to extend our heartfelt gratitude towards Artem Dergachev, who ac-
tively participated in every part of this research, including planning, implemeneting,
measuring and evaluating.

References

[1] Aho, A.V., Sethi, R., and Ullman, J.D. Compilers principles, techniques, and
tools. Addison-Wesley, Reading, MA, 1986.

[2] Amazon Web Services. S2n, 2022. URL: https://github.com/awslabs/s2n/.

[3] Anders, M. and Michael, I.S. Static program analysis, 2012. URL: https:
//users-cs.au.dk/amoeller/spa/spa.pdf.

[4] Apache Software Foundation. Apache Xerces, 2022. URL: https://xerces.
apache.org/.

[5] Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J.D., and Penix, J.
Using static analysis to find bugs. IEEE Software, 25(5):22–29, 2008. DOI:
10.1109/ms.2008.130.

[6] Bakken, A. Rtags, 2022. URL: http://www.rtags.net.

https://github.com/awslabs/s2n/
https://users-cs.au.dk/amoeller/spa/spa.pdf
https://users-cs.au.dk/amoeller/spa/spa.pdf
https://xerces.apache.org/
https://xerces.apache.org/
https://doi.org/10.1109/ms.2008.130
http://www.rtags.net


Uncovering Hidden Dependencies 31

[7] Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., and Finocchi, I. A
survey of symbolic execution techniques. ACM Computing Surveys, 51(3):1–
39, 2018. DOI: 10.1145/3182657.

[8] Bambini, M. Gravity, 2022. URL: https://github.com/marcobambini/

gravity.

[9] Beller, M., Bholanath, R., McIntosh, S., and Zaidman, A. Analyzing the
state of static analysis: A large-scale evaluation in open source software. In
Proceedings of the IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 2016. DOI: 10.1109/saner.2016.105.

[10] Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros,
C., Kamsky, A., McPeak, S., and Engler, D. A few billion lines of code later:
Using static analysis to find bugs in the real world. Communications of the
ACM, 53(2):66–75, 2010. DOI: 10.1145/1646353.1646374.

[11] Binkley, D. and Harman, M. A large-scale empirical study of forward and
backward static slice size and context sensitivity. In Proceedings of the In-
ternational Conference on Software Maintenance, pages 44–53. IEEE, 2003.
DOI: 10.1109/ICSM.2003.1235405.

[12] Boehm, B. and Basili, V.R. Software defect reduction top 10 list. Computer,
34(1):135–137, 2001. DOI: 10.1109/2.962984.

[13] Busse, F., Gharat, P., Cadar, C., and Donaldson, A.F. Combining static
analysis error traces with dynamic symbolic execution (experience paper). In
Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 568–579. ACM, 2022. DOI: 10.1145/3533767.

3534384.

[14] Checker Developer Manual. Clang Static Analyzer: Checker Developer Man-
ual, 2019. URL: https://clang-analyzer.llvm.org/checker_dev_manual.
html (last accessed: 24-04-2023).

[15] Clang Static Analyzer, 2019. URL: https://clang-analyzer.llvm.org/.

[16] Clang-Tidy, 2019. URL: https://clang.llvm.org/extra/clang-tidy/ (last
accessed: 24-04-2023).

[17] CodeSecure. CodeSonar, 2019. URL: https://codesecure.com/our-

products/codesonar/ (last accessed: 15-02-2024).

[18] Cooper, K. and Torczon, L. Engineering a compiler. Elsevier, 2011. ISBN:
9780120884780.

[19] Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., and Zadeck, F.K.
Efficiently computing static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Languages and Systems,
13(4):451–490, 1991. DOI: 10.1145/115372.115320.

https://doi.org/10.1145/3182657
https://github.com/marcobambini/gravity
https://github.com/marcobambini/gravity
https://doi.org/10.1109/saner.2016.105
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1109/ICSM.2003.1235405
https://doi.org/10.1109/2.962984
https://doi.org/10.1145/3533767.3534384
https://doi.org/10.1145/3533767.3534384
https://clang-analyzer.llvm.org/checker_dev_manual.html
https://clang-analyzer.llvm.org/checker_dev_manual.html
https://clang-analyzer.llvm.org/
https://clang.llvm.org/extra/clang-tidy/
https://codesecure.com/our-products/codesonar/
https://codesecure.com/our-products/codesonar/
https://doi.org/10.1145/115372.115320


32 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

[20] Dergachev, A. Clang Static Analyzer: A checker developer’s guide, 2016. URL:
https://github.com/haoNoQ/clang-analyzer-guide (last accessed: 24-04-
2023).

[21] Ericsson. CodeChecker, 2022. URL: https://github.com/Ericsson/

codechecker.

[22] Google. Protobuf, 2022. URL: https://github.com/protocolbuffers/

protobuf.

[23] gRPC Authors. grpc, 2022. URL: https://grpc.io/.

[24] Horváth, G. and Gehre, M. Implementing the C++ Core Guidelines’ lifetime
safety profile in Clang. European LLVM Developers Meeting, Brussels, 2019.
URL: https://llvm.org/devmtg/2019-04/talks.html#Talk_18.

[25] Horváth, G. and Pataki, N. Categorization of C++ classes for static lifetime
analysis. In Proceedings of the 9th Balkan Conference on Informatics, pages
1–7. ACM, 2019. DOI: 10.1145/3351556.3351559.

[26] Horwitz, S., Reps, T., and Binkley, D. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, 12(1):26–
60, 1990. DOI: 10.1145/77606.77608.

[27] Hutchins, D., Ballman, A., and Sutherland, D. C/C++ thread safety analysis.
In Proceedings of the IEEE 14th International Working Conference on Source
Code Analysis and Manipulation. IEEE, 2014. DOI: 10.1109/scam.2014.34.

[28] Johnson, B., Song, Y., Murphy-Hill, E., and Bowdidge, R. Why don’t software
developers use static analysis tools to find bugs? In Proceedings of the 35th
International Conference on Software Engineering, pages 672–681. IEEE, 2013.
DOI: 10.1109/ICSE.2013.6606613.

[29] Khoo, Y.P., Foster, J.S., Hicks, M., and Sazawal, V. Path projection for
user-centered static analysis tools. In Proceedings of the 8th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
PASTE ’08, pages 57—-63, New York, NY, USA, 2008. Association for Com-
puting Machinery. DOI: 10.1145/1512475.1512488.

[30] King, J.C. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, 1976. DOI: 10.1145/360248.360252.

[31] Kogut, J. TinyVM, 2022. URL: https://github.com/jakogut/tinyvm.

[32] Kovács, R., Horváth, G., and Porkoláb, Z. Detecting C++ lifetime errors
with symbolic execution. In Proceedings of the 9th Balkan Conference on
Informatics, pages 1–6, 2019. DOI: 10.1145/3351556.3351585.

https://github.com/haoNoQ/clang-analyzer-guide
https://github.com/Ericsson/codechecker
https://github.com/Ericsson/codechecker
https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf
https://grpc.io/
https://llvm.org/devmtg/2019-04/talks.html#Talk_18
https://doi.org/10.1145/3351556.3351559
https://doi.org/10.1145/77606.77608
https://doi.org/10.1109/scam.2014.34
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/1512475.1512488
https://doi.org/10.1145/360248.360252
https://github.com/jakogut/tinyvm
https://doi.org/10.1145/3351556.3351585


Uncovering Hidden Dependencies 33

[33] Kremenek, T. Finding software bugs with the Clang Static Analyzer.
Apple Inc., 2008. URL: https://llvm.org/devmtg/2008-08/Kremenek_

StaticAnalyzer.pdf.

[34] Lattner, C. LLVM and Clang: Next generation compiler technology, 2008.
Lecture at BSD Conference. URL: https://llvm.org/pubs/2008-05-17-

BSDCan-LLVMIntro.html.

[35] Lattner, C. and Adve, V. LLVM: A compilation framework for lifelong pro-
gram analysis & transformation. In Proceedings of the International Sym-
posium on Code Generation and Optimization: Feedback-Directed and Run-
time Optimization, pages 75–86. IEEE Computer Society, 2004. DOI:
10.1109/CGO.2004.1281665.

[36] Layman, L., Williams, L., and Amant, R.S. Toward reducing fault fix time:
Understanding developer behavior for the design of automated fault detection
tools. In Proceedings of the First International Symposium on Empirical Soft-
ware Engineering and Measurement, pages 176–185. IEEE Computer Society,
2007. DOI: 10.1109/ESEM.2007.82.

[37] Marjamäki, D. CppCheck: A tool for static C/C++ code analysis, 2013. URL:
http://cppcheck.sourceforge.net/.

[38] Nethercote, N. and Seward, J. Valgrind: A framework for heavyweight dy-
namic binary instrumentation. ACM SIGPLAN Notices, 42(6):89–100, 2007.
DOI: 10.1145/1273442.1250746.

[39] OpenSSL Software Foundation. OpenSSL, 2022. URL: https://openssl.

org/.

[40] Ottenstein, K.J. and Ottenstein, L.M. The program dependence graph
in a software development environment. In Proceedings of the first ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Soft-
ware Development Environments, pages 177–184. ACM Press, 1984. DOI:
10.1145/800020.808263.

[41] Park, J., Lim, I., and Ryu, S. Battles with false positives in static analysis of
Javascript web applications in the wild. In Proceedings of the IEEE/ACM 38th
International Conference on Software Engineering Companion, pages 61–70.
IEEE, 2016. URL: https://ieeexplore.ieee.org/document/7883289.

[42] Perforce. Klocwork, 2024. URL: https://www.perforce.com/products/

klocwork (last accessed: 15-02-2024).

[43] Reps, T., Horwitz, S., and Sagiv, M. Precise interprocedural dataflow analysis
via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 49–61. ACM,
1995. DOI: 10.1145/199448.199462.

https://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf
https://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf
https://llvm.org/pubs/2008-05-17-BSDCan-LLVMIntro.html
https://llvm.org/pubs/2008-05-17-BSDCan-LLVMIntro.html
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/ESEM.2007.82
http://cppcheck.sourceforge.net/
https://doi.org/10.1145/1273442.1250746
https://openssl.org/
https://openssl.org/
https://doi.org/10.1145/800020.808263
https://ieeexplore.ieee.org/document/7883289
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://doi.org/10.1145/199448.199462


34 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

[44] Rice, H.G. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74:358–366, 1953. DOI:
10.2307/1990888.

[45] Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., and Jaspan, C.
Lessons from building static analysis tools at Google. Communications of the
ACM, 61(4):58–66, 2018. DOI: 10.1145/3188720.

[46] Schubert, P.D., Gazzillo, P., Patterson, Z., Braha, J., Schiebel, F., Hermann,
B., Wei, S., and Bodden, E. Static data-flow analysis for software product lines
in C. Automated Software Engineering, 29(1), 2022. DOI: 10.1007/s10515-

022-00333-1.

[47] Serebryany, K., Bruening, D., Potapenko, A., and Vyukov, D. AddressSan-
itizer: A fast address sanity checker. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference, USENIX ATC’12, Berkeley, CA,
USA, 2012. USENIX Association. URL: http://dl.acm.org/citation.cfm?
id=2342821.2342849.

[48] Sreedhar, V.C. and Gao, G.R. A linear time algorithm for placing ϕ-nodes. In
Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 62–73. ACM Press, 1995. DOI: 10.1145/

199448.199464.

[49] Sutter, H. Lifetime safety: Preventing common dangling. Technical report,
Microsoft Corporation, 2018. URL: https://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2019/p1179r1.pdf.

[50] Synopsys. Coverity, 2019. URL: https://scan.coverity.com/ (last accessed:
24-04-2023).

[51] The Bitcoin Core. Bitcoin Core, 2022. URL: https://bitcoincore.org/.

[52] Umann, K. The penultimate challange: Constructing bug reports in the
Clang Static Analyzer. LLVM Developers’ Meeting, San Jose, CA, 2019. URL:
https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech17.

[53] Umann, K. Enhancing bug reports in the Clang Static Analyzer, 2019. URL:
https://szelethus.github.io/gsoc2019/ (last accessed: 24-04-2023).

[54] Umann, K. A survey of dataflow analyses in Clang, 2020. URL: https://
lists.llvm.org/pipermail/cfe-dev/2020-October/066937.html (last ac-
cessed: 24-04-2023).

[55] Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Zaidman, A., and Gall,
H.C. Context is king: The developer perspective on the usage of static analysis
tools. In Proceedings of the IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering, pages 38–49. IEEE, 2018. DOI: 10.

1109/SANER.2018.8330195.

https://doi.org/10.2307/1990888
https://doi.org/10.1145/3188720
https://doi.org/10.1007/s10515-022-00333-1
https://doi.org/10.1007/s10515-022-00333-1
http://dl.acm.org/citation.cfm?id=2342821.2342849
http://dl.acm.org/citation.cfm?id=2342821.2342849
https://doi.org/10.1145/199448.199464
https://doi.org/10.1145/199448.199464
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://scan.coverity.com/
https://bitcoincore.org/
https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech17
https://szelethus.github.io/gsoc2019/
https://lists.llvm.org/pipermail/cfe-dev/2020-October/066937.html
https://lists.llvm.org/pipermail/cfe-dev/2020-October/066937.html
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1109/SANER.2018.8330195


Uncovering Hidden Dependencies 35

[56] Vidács, L., Beszédes, Á., and Gyimóthy, T. Combining preprocessor slicing
with C/C++ language slicing. Science of Computer Programming, 74(7):399–
413, 2009. DOI: 10.1016/j.scico.2009.02.003.

[57] Weiser, M. Program slicing. IEEE Transactions on Software Engineering,
SE-10(4):352–357, 1984. DOI: 10.1109/tse.1984.5010248.

[58] XGBoost Contributors. XGBoost, 2022. URL: https://xgboost.ai/.

[59] Xu, Z., Kremenek, T., and Zhang, J. A memory model for static analysis of
C programs. In Proceedings of the 4th International Conference on Leveraging
Applications of Formal Methods, Verification, and Validation — Volume Part
I, ISoLA’10, pages 535–548, Berlin, Heidelberg, 2010. Springer-Verlag. URL:
http://dl.acm.org/citation.cfm?id=1939281.1939332.

[60] Zaks, A. and Rose, J. Building a checker in 24 hours, 2012. URL: https:
//www.youtube.com/watch?v=kdxlsP5QVPw.

[61] Zampetti, F., Scalabrino, S., Oliveto, R., Canfora, G., and Di Penta, M. How
open source projects use static code analysis tools in continuous integration
pipelines. In Proceedings of the IEEE/ACM 14th International Conference on
Mining Software Repositories. IEEE, 2017. DOI: 10.1109/msr.2017.2.

https://doi.org/10.1016/j.scico.2009.02.003
https://doi.org/10.1109/tse.1984.5010248
https://xgboost.ai/
http://dl.acm.org/citation.cfm?id=1939281.1939332
https://www.youtube.com/watch?v=kdxlsP5QVPw
https://www.youtube.com/watch?v=kdxlsP5QVPw
https://doi.org/10.1109/msr.2017.2

	Introduction
	Technical background
	Symbolic execution
	The ExplodedGraph

	Report generation
	Goals
	Report generation techniques prior to our research
	Bug path visitors
	Interestingness propagation

	Deficiencies
	Figure 3a: Control dependency is not recognized
	Figure 3b: Reaching definition is not in the bug path
	Figure 3c: Reaching definition is in a different, but inlined stack frame
	Figure 3d: Reaching definition is in a different and not inlined stack frame


	Proposed solution
	Control Dependence Analysis
	Defining Control Dependence
	Integration of control dependence

	Data Dependence Analysis
	Dataflow analyses
	Reaching definitions analysis
	Integration of reaching definitions


	Results
	Measurements on open source projects
	Survey
	Threats to validity

	Notable examples
	Example 1
	Example 2
	Example 3

	Related work
	Future work
	Conclusion

