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On a Class of Unary Operators in

Continuous-Valued Logic∗

József Dombiab and Tamás Jónásc

Abstract

The unary operators play an important role in continuous-valued logic
and in artificial intelligence as well. Based on our previous results concerning
these operators, we prove here that (a) the Pliant negation operator (also
known as the Dombi form of negation); (b) the substantiating, weakening,
modal and linguistic hedge operators; (c) the sharpness operator; and (d) the
preference operator can all be written in a common form, which is called the
kappa function. The kappa function is an operator class-dependent, universal
operator. Here, a sufficient condition for the identity of two kappa functions
is presented. Also, we provide the condition for which the conjunctive and
disjunctive forms of the kappa function coincide. Next, we demonstrate that
the inverse of a kappa function is a kappa function as well. Then, we show that
for certain conditions, a set of kappa functions is closed under the composition
and conjunctive (or disjunctive) operations. Also, we briefly describe two
special cases of the kappa function: the product and the Dombi operator
case; and we point out that its extended versions can be applied in various
areas.

Keywords: unary operators, modifier operators, sharpness operator, kappa
function, generalized preference operator

1 Introduction

In continuous-valued logic, the unary operators like the negation operator (see,
e.g., the papers of Esteva et al. [19] and Cintula et al. [5]), the substantiating
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and weakening operators (see, e.g.,  Lukasiewicz [26, 27, 28], Mattila [30, 29]), the
necessity and possibility operators (see, e.g., Banerjee and Dubois [2], Cattaneo et
al. [3], Vidal [33] and Jain et al. [23]), and the linguistic hedge operators (see, e.g.,
De Cock and Kerre [6], Huynh, Ho and Nakamori [22], Yan et al. [34], Rubin [31]
and Esteva et al. [20]) are of high importance. This is due to the fact that these
operators can be used to modify the logical value of a statement or transform the
membership function of a fuzzy set to a new membership function. Also, if in a
preference relation, one of the arguments has a fixed value, then the preference
relation may be treated as a unary operator (see, e.g., Dombi and Baczyński [13]).

In this study, we will introduce a generator-function dependent operator, called
the kappa function, and present its main properties. Here, we will present the nec-
essary and sufficient conditions for the identity of two kappa functions that have
the same parameter values, but are induced by generator functions that may differ.
Also, we will demonstrate that the conjunctive and disjunctive forms of the kappa
function coincide if fc(x)fd(x) = 1 holds for any x ∈ [0, 1], where fc and fd are
generator functions of the conjunctive and disjunctive forms, respectively. Then,
we will show that the inverse of a kappa function is a kappa function as well, and
demonstrate that composition of kappa functions results in a kappa function. We
will prove that for certain conditions, a set of kappa functions is closed under con-
junctive or disjunctive operations. Next, we will briefly describe two special cases of
the kappa function: the product operator case and the Dombi operator case. Also,
we will highlight that the transformed or extended versions of the kappa function
induced by the generator function of Dombi operators can be applied in various ar-
eas of science. Here, we will demonstrate that (a) the Pliant negation operator (also
known as the Dombi form of negation); (b) the substantiating, weakening, modal
and linguistic hedge operators; (c) the sharpness operator; and (d) the preference
operator are special cases of the kappa function. Therefore, the kappa function
may be viewed as a general unary modifier operator.

This paper is structured as follows. In Section 2, the basic notions and notations,
which will be used later on, are described. In Section 3, we will introduce the
kappa function and present its main properties. In Section 4, we will provide a
brief overview of our previous results on unary operators and demonstrate that
these operators are special ceases of the kappa function. Lastly, our conclusions are
summarized in Section 5.

2 Notions and notations

Here, we will briefly review the basic notions and notations, which we will use later
on.

In continuous-valued logic, the concepts of strict triangular norm (strict t-norm)
and strict triangular conorm (strict t-conorm) play an important role. The following
definitions of strict t-norms and strict t-conorms is based on the application of
Aczél’s results on the associative functional equation [1] (also see [24]).
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Definition. A function c : [0, 1]2 → [0, 1] is a strict t-norm if and only if c is con-
tinuous, and there exists a continuous and strictly decreasing function fc : [0, 1]→
[0,∞] with the properties fc(1) = 0 and fc(0) =∞ such that for any x, y ∈ [0, 1],

c(x, y) = f−1c (fc(x) + fc(y)) .

Definition. A function d : [0, 1]2 → [0, 1] is a strict t-conorm if and only if d is con-
tinuous, and there exists a continuous and strictly increasing function fd : [0, 1]→
[0,∞] with the properties fd(0) = 0 and fd(1) =∞ such that for any x, y ∈ [0, 1],

d(x, y) = f−1d (fd(x) + fd(y)) .

The function fc (fd, respectively) is called an additive generator of the strict
t-norm c (strict t-conorm d, respectively), which is uniquely determined up to a
positive constant multiplier of fc (fd, respectively).
Note that the strict t-norm and strict t-conorm are special cases of the general
t-norm and t-conorm classes, respectively. In our study:

(a) We do not use the pseudo-inverse and ordinal sum to construct a general
t-norm and t-conorm;

(b) We do not use the commutativity axiom of the t-norm and t-conorm because
it is always valid for the strict t-norm;

(c) We do not use the boundary condition of the t-norm and t-conorm, just the
compatibility condition with binary logic.

Remark. In this article, we will refer to strict t-norms and t-conorms as conjuc-
tive and disjunctive operators denoted by c and d, respectively. From now on,
the mapping f : [0, 1] → [0,∞] will always be a continuous, strictly decreasing
(increasing, respectively) generator function of a conjunctive (disjunctive, respec-
tively) operator. If f is strictly decreasing, then we will interpret f(0) = ∞ and
f−1(∞) = 0. Similarly, if f is strictly increasing, then we will interpret f(1) = ∞
and f−1(∞) = 1. Also, we will make use of the extended arithmetic operations
1
0 =∞ and 1

∞ = 0.

Here, we will use the following definition of a strong negation (see, e.g., Defini-
tion 1.2 in [21], or Definition 11.3 in [24]).

Definition. We say that η : [0, 1] → [0, 1] is a strong negation if and only if η
satisfies the following requirements:

(a) η is continuous (Continuity)
(b) η(0) = 1, η(1) = 0 (Boundary conditions)
(c) η(x) < η(y) for x > y (Monotonicity)
(d) η(η(x)) = x for any x ∈ [0, 1] (Involution).

Remark. It should be added that the requirements (a) and (b) in Definition 2 can
be omitted (see Theorem 3.1 in the book of Klir and Yuan [25]).
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We will use the concept of Pliant negation (also known as the Dombi form of
negation), which is defined as follows (see [8, 11]).

Definition. Let f : [0, 1] → [0,∞] be a generator function of a conjunctive or
disjunctive operator and let ν ∈ (0, 1). The mapping ην : [0, 1]→ [0, 1] is said to be
a Pliant negation operator with the parameter ν if ην is given by

ην(x) = f−1
(
f2(ν)

f(x)

)
. (1)

Remark. The Pliant negation given in Definition 2 is a strong negation in the sense
of Definition 2 (see [8]). Since for any ν ∈ (0, 1), ην(ν) = ν, the Pliant negation ην
is characterized by its fixed point, which is its parameter value ν.

Definition. We will say that the strong negation η1 : [0, 1]→ [0, 1] is stricter than
the strong negation η2 : [0, 1]→ [0, 1] if and only if for any x ∈ (0, 1), η1(x) < η2(x).

Proposition. Let ν1, ν2 ∈ (0, 1) and let the generator functions of the Pliant nega-
tion operators ην1 and ην2 be identical up to a positive multiplicative constant. Then,
ην1 is stricter than ην2 if and only if ν1 < ν2.

Proof. Let ην1 be induced by a generator function f and let ην2 be induced by the
generator function g = af , where a ∈ R, a > 0 is a constant. This means that
g(x) = af(x) for any x ∈ [0, 1] and g−1(x) = f−1

(
1
ax
)

for any x ∈ [0,∞]. Hence,
using Eq. (1), we have

ην1(x) = f−1
(
f2(ν1)

f(x)

)
(2)

and

ην2(x) =g−1
(
g2(ν2)

g(x)

)
= f−1

(
1

a

a2f2(ν2)

af(x)

)
=f−1

(
f2(ν2)

f(x)

) (3)

for any x ∈ [0, 1]. Noting the strict monotonicity of f , the rest of the proof is
straightforward.

It should be mentioned that a representation theorem for the strong negation
given in Definition 2 was first presented by [32].

Here, we will utilize the Pliant system that is defined as follows (see [8, 10, 11]).

Definition. Let c : [0, 1]2 → [0, 1] be a conjunctive operator with a generator func-
tion fc : [0, 1] → [0,∞] and let d : [0, 1]2 → [0, 1] be a disjunctive operator with a
generator function fd : [0, 1]→ [0,∞]. The triplet (c, d, ην) is called a Pliant system
if

fc(x)fd(x) = 1 (4)

holds for any x ∈ [0, 1] and ην is a Pliant negation operator induced by fc or fd.
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Remark. If Eq. (4) holds for any x ∈ [0, 1], then the Pliant negations induced by
fc and fd coincide (see Theorem 8 in [8]). That is, in a Pliant logical system, the
conjunction, disjunction and negation operators are all determined by one generator
function (which is uniquely determined up to a multiplicative constant). Also, if
Eq. (4) holds, then c, d and ην form a De Morgan system (see Theorem 9 in [8]).

3 The kappa function

Here, we introduce the kappa function and present its main properties. Later, we
will show that there are important unary operators in continuous-valued logic that
can be viewed as special cases of the kappa function.

Definition. Let f be a generator function of a conjunctive or disjunctive operator.

We say that the mapping κ
(λ)
ν,ν0,f

: [0, 1]→ [0, 1], which is given by

κ
(λ)
ν,ν0,f

(x) = f−1

(
f(ν0)

(
f(x)

f(ν)

)λ)
, (5)

where ν, ν0 ∈ (0, 1) and λ ∈ R, is a kappa function induced by f .

We shall call the function f in Eq. (5) a generator function of the kappa function

κ
(λ)
ν,ν0,f

.

Remark. In this paper, we will use the notation κ
(λ)
ν,ν0,f

for the kappa function, which
has the parameters ν, ν0, λ and is induced by a generator function f . However, if
we consider the kappa function as being a unary operator in a logical system and
all the operators in this system (conjunction, disjunction, negation) are induced by
a common generator f , then f could be omitted from the notations as for example
in the case of the negation operator.

Now, we will provide a sufficient condition for the equality of two kappa func-
tions, which have the same parameter values, but are induced by generator functions
that may differ.

Proposition. Let f and g be generator functions of conjunctive or disjunctive

operators. Let the kappa functions κ
(λ)
ν,ν0,f

and κ
(λ)
ν,ν0,g be induced by f and g, respec-

tively, where ν, ν0 ∈ (0, 1) and λ ∈ R \ {0}. For any x ∈ [0, 1], if

f(x) = βgα(x), (6)

then
κ
(λ)
ν,ν0,f

(x) = κ(λ)ν,ν0,g(x), (7)

where α 6= 0 and β > 0.

Proof. Let us assume that Eq. (6) holds for any x ∈ [0, 1]. From this equation, we
have

f−1(z) = g−1

((
z

β

) 1
α

)



6 József Dombi and Tamás Jónás

for any z ∈ [0,∞]. Therefore, using Definition 3, for any x ∈ [0, 1], we can write

κ
(λ)
ν,ν0,f

(x) =f−1

(
f(ν0)

(
f(x)

f(ν)

)λ)

=g−1


βgα(ν0)

(
βgα(x)
βgα(ν)

)λ
β


1
α


=g−1

(
g(ν0)

(
g(x)

g(ν)

)λ)
= κ(λ)ν,ν0,g(x),

which means that the kappa functions generated by function f and g are identical
for any x ∈ [0, 1].

It should be emphasized that the kappa function is generator function-dependent.
That is, the kappa functions induced by generator functions of conjunctive and dis-
junctive logical operators may differ. The following proposition demonstrates that
the kappa functions induced by generator functions of conjunctive and disjunctive
operators of a Pliant logical system coincide.

Proposition. Let ν, ν0 ∈ (0, 1) and λ ∈ R. Let fc be a generator function of a
conjunctive operator c and let fd be a generator function of a disjunctive operator

d. Furthermore, let the kappa functions κ
(λ)
ν,ν0,fc

and κ
(λ)
ν,ν0,fd

be induced by fc and
fd, respectively. If

fc(x)fd(x) = 1

holds for any x ∈ [0, 1] (i.e., c and d are conjunctive and disjunctive operators of a
Pliant system, respectively), then

κ
(λ)
ν,ν0,fc

(x) = κ
(λ)
ν,ν0,fd

(x)

holds for any x ∈ [0, 1].

Proof. Since fc(x)fd(x) = 1 can be written as fc(x) = (fd(x))
−1

for any x ∈ [0, 1],
this proposition immediately follows from Proposition 3.

3.1 Properties of the kappa function

Here, we will summarize the main properties of the kappa function κ
(λ)
ν,ν0,f

, which
is induced by the generator function f , where ν, ν0 ∈ (0, 1), λ ∈ R.

3.1.1 Basic properties of the kappa function

(a) κ
(λ)
ν,ν0,f

(x) is a continuous on (0, 1).

(b) κ
(λ)
ν,ν0,f

(ν) = ν0.
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(c) If λ < 0, then κ
(λ)
ν,ν0,f

is strictly decreasing.

(d) If λ = 0, then κ
(λ)
ν,ν0,f

(x) = ν0 for any x ∈ [0, 1].

(e) If λ > 0, then κ
(λ)
ν,ν0,f

is strictly increasing.

(f) If λ > 0, then

lim
x→0

κ
(λ)
ν,ν0,f

(x) = 0 and lim
x→1

κ
(λ)
ν,ν0,f

(x) = 1.

(g) If λ < 0, then

lim
x→0

κ
(λ)
ν,ν0,f

(x) = 1 and lim
x→1

κ
(λ)
ν,ν0,f

(x) = 0.

(h) If λ > 0, then

a) ν < x if and only if κ
(λ)
ν,ν0,f

(x) > ν0

b) x < ν if and only if κ
(λ)
ν,ν0,f

(x) < ν0.

(i) If λ < 0, then

a) x < ν if and only if κ
(λ)
ν,ν0,f

(x) > ν0

b) ν < x if and only if κ
(λ)
ν,ν0,f

(x) < ν0.

(j) If ν = ν0 and λ = 1, then κ
(λ)
ν,ν0,f

(x) = x.

(k)

lim
λ→+∞

κ
(λ)
ν,ν0,f

(x) =


0, if x < ν

ν0 if x = ν

1, if x > ν

(l)

lim
λ→−∞

κ
(λ)
ν,ν0,f

(x) =


1, if x < ν

ν0 if x = ν

0, if x > ν

Figure 1 shows example plots of kappa functions with various parameter values for
the generator function f(x) = 1−x

x , where x ∈ [0, 1].

3.1.2 Involutivity of the kappa function

Here, we will show that the inverse of a kappa function is a kappa function as well
and give sufficient conditions for the involutivity of the kappa function.

Proposition. The inverse of the kappa function κ
(λ)
ν,ν0,f

: [0, 1]→ [0, 1] induced by a

generator function f is the kappa function κ
(1/λ)
ν0,ν,f

: [0, 1]→ [0, 1], where ν, ν0 ∈ (0, 1)
and λ 6= 0.
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Figure 1: Example plots of κ
(λ)
ν,ν0,f

with various parameter values, f(x) = 1−x
x .

Proof. If λ 6= 0, then κ
(λ)
ν,ν0,f

is a bijective function, and so its inverse function

exists. Let h : [0, 1]→ [0, 1] be the inverse function of κ
(λ)
ν,ν0,f

. Noting the definition
for a kappa function, function h needs to satisfy the equation

f−1

(
f(ν0)

(
f((h(x)))

f(ν)

)λ)
= x

for any x ∈ [0, 1]. From this equation, we get

h(x) = f−1

(
f(ν)

(
f(x)

f(ν0)

) 1
λ

)
for any x ∈ [0, 1]; which means that

h(x) = κ
(1/λ)
ν0,ν,f

(x).

The following proposition provides sufficient conditions for the involutivity of
the kappa function, i.e., for the property that

κ
(λ)
ν,ν0,f

(
κ
(λ)
ν,ν0,f

(x)
)

= x (8)
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holds for any x ∈ [0, 1].

Proposition. Let ν, ν0 ∈ (0, 1) and λ 6= 0. If

(a) λ = −1
or

(b) λ = 1 and ν = ν0 (i.e., κ
(λ)
ν,ν0,f

(x) = x, x ∈ [0, 1])

then the kappa function κ
(λ)
ν,ν0,f

: [0, 1]→ [0, 1] induced by a generator function f is
involutive.

Proof. Noting Proposition 3.1.2, Eq. (8) is equivalent to

κ
(λ)
ν,ν0,f

(x) = κ
(1/λ)
ν0,ν,f

(x), (9)

where x ∈ [0, 1].

(a) If λ = −1, then we have

κ
(λ)
ν,ν0,f

(x) =f−1
(
f(ν0)

f(ν)

f(x)

)
=f−1

(
f(ν)

f(ν0)

f(x)

)
= κ

(1/λ)
ν0,ν,f

(x)

for any x ∈ [0, 1].

(b) If λ = 1 and ν = ν0, then κ
(λ)
ν,ν0,f

(x) = x, and so Eq. (8) trivially holds for
any x ∈ [0, 1].

3.1.3 Composition of kappa functions

Here, will demonstrate that the composition of kappa functions, which are both
induced by a generator function f , results in a kappa function induced by f as well.
This means that for a given generator function, which is uniquely determined ac-
cording to Proposition 3, the set of kappa functions is closed under the composition
operation.

Proposition. If κ
(λ1)
ν1,ν01 ,f

and κ
(λ1)
ν2,ν02 ,f

are two kappa functions, both induced by a

generator function f , with the parameters ν01 , ν02 , ν1, ν2 ∈ (0, 1), λ1, λ2 ∈ R and
λ1, λ2 6= 0, then

κ
(λ1)
ν1,ν01 ,f

◦ κ(λ2)
ν2,ν02 ,f

= κ
(λ)
ν,ν0,f

,

where κ
(λ)
ν,ν0,f

is a kappa function with the parameters

λ = λ1λ2

ν = f−1
(
f

1
λ2 (ν1)f(ν2)

)
(10)

ν0 = f−1
(
f(ν01)fλ1(ν02)

)
. (11)
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Proof. After direct calculation, we get

κ
(λ1)
ν1,ν01 ,f

(
κ
(λ2)
ν2,ν02 ,f

(x)
)

= f−1
(
f(ν01)fλ1(ν02)

fλ1λ2(x)

fλ1(ν1)fλ1λ2(ν2)

)
for any x ∈ [0, 1]. The right hand side of this equation can be written in the form

f−1
(
f(ν01)fλ1(ν02)

fλ1λ2(x)

fλ1(ν1)fλ1λ2(ν2)

)
= f−1

(
f(ν0)

(
f(x)

f(ν)

)λ)
,

where
λ = λ1λ2

fλ1λ2(ν) = fλ1(ν1)fλ1λ2(ν2) (12)

f(ν0) = f(ν01)fλ1(ν02). (13)

Next, from Eq. (12) and Eq. (13), we get Eq. (10) and Eq. (11).

3.2 Logical operations over kappa functions

In the following, we will show that if in a set of kappa functions every element is
induced by a generator function of a conjunctive (respectively disjunctive) operator
and the parameters ν0 and λ of the kappa functions have fixed values, then this set
is closed under the corresponding conjunctive (respectively disjunctive) operation.

Proposition. Let c be a conjunctive operator with a generator function fc, let d be
a disjunctive operator with a generator function fd, let λ > 0 and let ν0, ν1, ν2, . . . , νn
∈ (0, 1).

(a) If the kappa functions κ
(λ)
ν1,ν0,fc

, κ
(λ)
ν2,ν0,fc

, . . . , κ
(λ)
νn,ν0,fc

are all induced by a gen-
erator function fc, then

c
(
κ
(λ)
ν1,ν0,fc

(x), κ
(λ)
ν2,ν0,fc

(x), . . . , κ
(λ)
νn,ν0,fc

(x)
)

= κ
(λ)
ν,ν0,fc

(x)

for any x ∈ [0, 1], where ν = dλ(ν1, ν2, . . . , νn) and dλ is the disjunctive
operator induced by the generator function 1

fλc (x)
.

(b) If the kappa functions κ
(λ)
ν1,ν0,fd

, κ
(λ)
ν2,ν0,fd

, . . . , κ
(λ)
νn,ν0,fd

are all induced by a gen-
erator function fd, then

d
(
κ
(λ)
ν1,ν0,fd

(x), κ
(λ)
ν2,ν0,fd

(x), . . . , κ
(λ)
νn,ν0,fd

(x)
)

= κ
(λ)
ν,ν0,fd

(x)

for any x ∈ [0, 1], where ν = cλ(ν1, ν2, . . . , νn) and cλ is the conjunctive
operator induced by the generator function 1

fλd (x)
.
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Proof. Here, we will just prove (a), the proof of (b) being similar to that of (a).

Let the kappa functions κ
(λ)
ν1,ν0,fc

, κ
(λ)
ν2,ν0,fc

, . . . , κ
(λ)
νn,ν0,fc

all be induced by a gen-
erator function fc. Noting Definition 2 and the definition for a kappa function, we
can write

c
(
κ
(λ)
ν1,ν0,fc

(x), κ
(λ)
ν2,ν0,fc

(x), . . . , κ
(λ)
νn,ν0,fc

(x)
)

= f−1c

(
n∑
i=1

fc

(
κ
(λ)
νi,ν0,fc

(x)
))

=

= f−1c

(
n∑
i=1

fc

(
f−1c

(
fc(ν0)

(
fc(x)

fc(νi)

)λ)))
=

= f−1c

(
fc(ν0)fλc (x)

n∑
i=1

1

fλc (νi)

)
= f−1c

(
fc(ν0)

(
fc(x)

fc(ν)

)λ)
= κ

(λ)
ν,ν0,fc

(x)

for any x ∈ [0, 1], where

1

fλc (ν)
=

n∑
i=1

1

fλc (νi)
. (14)

Let the function gλ be given by

gλ(x) =
1

fλc (x)

for any x ∈ [0, 1]. Then, since fc is a generator function of a conjunctive operator
and λ > 0, gλ is a generator function of a disjunctive operator in [0, 1]. Next, Eq.
(14) can be written as

gλ(ν) =

n∑
i=1

gλ(νi),

from which we have

ν = g−1λ

(
n∑
i=1

gλ(νi)

)
. (15)

Based on Definition 2, the right hand side of Eq. (15) is a disjunctive operator dλ
with the generator function gλ(x) = 1

fλc (x)
, where x ∈ [0, 1].

3.3 The kappa functions induced by product and Dombi op-
erators

As we saw before, the kappa function is a generator function-dependent unary
operator. Here, we will describe two special cases of the kappa function. First,
we sill show the case where a generator function is that of the product (product)
conjunctive and disjunctive operators. Then, we will describe the case where the
kappa function is induced by a generator function of the Dombi operators.
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3.3.1 The kappa function in the product operator case

Let fc and fd be generator functions of the product conjunctive and disjunctive
operators, respectively. That is, functions fc, fd : (0, 1)→ (0,∞) can be given by

fc(x) = − ln(x) and fd(x) = − ln(1− x).

Let ν, ν0 ∈ (0, 1). After direct calculation, we get that the kappa functions κ
(λ)
ν,ν0,fc

and κ
(λ)
ν,ν0,fd

induced by fc and fd, respectively, are

κ
(λ)
ν,ν0,fc

(x) = ν
( ln(x)

ln(ν) )
λ

0 and κ
(λ)
ν,ν0,fd

(x) = 1− (1− ν0)(
ln(1−x)
ln(1−ν) )

λ

,

respectively, where x ∈ (0, 1).

3.3.2 The kappa function in the Dombi operator case

The generator function of the Dombi conjunction and disjunction operators is the
function fα : [0, 1]→ [0,∞] that is given by

fα(x) =

(
1− x
x

)α
,

where α 6= 0. If α > 0, then fα is a generator function of a conjunctive operator;
and if α < 0, then fα is a generator function of a disjunctive operator (see, e.g.

[7]). Now, let ν, ν0 ∈ (0, 1), α 6= 0. Then, the kappa function κ
(λ)
ν,ν0,fα

induced by
fα is

κ
(λ)
ν,ν0,fα

(x) =
1

1 +

((
1−ν0
ν0

)α( ( 1−x
x )

α

( 1−ν
ν )

α

)λ) 1
α

=

=
1

1 + 1−ν0
ν0

(
ν

1−ν
1−x
x

)λ ,
where x ∈ [0, 1]. Here, we can see that κ

(λ)
ν,ν0 is independent of the parameter α.

That is, the kappa functions induced by generator functions of conjunctive and
disjunctive Dombi operators coincide.

Remark. Notice that for any α 6= 0, one of the functions fα and f−α is a generator
function of a conjunctive operator and the other one is a generator function of
a disjunctive operator. Since fα(x)f−α(x) = 1 holds for any x ∈ [0, 1], based on
Proposition 3, we also get that the kappa functions induced by fα and f−α coincide
for any x ∈ [0, 1].

It should be noted that the Dombi form of kappa function extended to the in-
terval (a, b), and its transformed versions can be utilized in various areas of science.
A few examples are as follows. The kappa function can be used to approximate the
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cumulative distribution function of the standard normal probability distribution
(see [14]). The so-called kappa regression, which is based on the kappa function,
may be viewed as an alternative to logistic regression (see [15]). A special case
of the kappa function can be used as a probability weighting function in prospect
theory (see [16]).

4 The kappa function and the unary operators

Now, we will show that certain types of unary operators in continuous-valued logic
can be viewed as special cases of the kappa function. The results in this section
will all be stated for a generator function of a conjunctive operator. We should
add that choosing a generator function of a disjunctive operator leads to equivalent
conclusions.

4.1 Pliant negation

Let ν, ν0 ∈ (0, 1), λ ∈ R and let f be a generator function of a conjunctive operator.
Then, noting Definition 2 and Definition 3, the Pliant negation ην and the kappa

function κ
(λ)
ν,ν0,f

, both induced by f , are given by

ην(x) = f−1
(
f2(ν)

f(x)

)
and κ

(λ)
ν,ν0,f

(x) = f−1

(
f(ν0)

(
f(x)

f(ν)

)λ)
,

where x ∈ [0, 1]. From these expressions, we readily get that if λ = −1 and ν0 = ν,

then κ
(λ)
ν,ν0,f

is identical with the Pliant negation operator ην . This means that the
Pliant negation may be treated as a special case of the kappa function.

4.2 Modalities and linguistic hedges

Here, we will show that certain modal operators and linguistic hedges are special
cases of the kappa function. In [17] (also see [12]), we interpreted the concept of a
dual pair of modal operators in continuous-valued logic based on the criteria for an
algebraic version of dual necessity and possibility operators on De Morgan lattices
given in [3] (also, see [4]).

Let ν, ν0 ∈ (0, 1), λ ∈ R and let f be a generator function of a conjunc-
tive operator. Previously we proved (see Theorem 5 in [18]) that the functions
τν,ν0 : [0, 1]→ [0, 1] and τν,ν0 : [0, 1]→ [0, 1], which are given by

τν,ν0(x) = f−1
(
f(ν0)

f(x)

f(ν)

)
and τν,ν0(x) = f−1

(
f(ν)

f(x)

f(ν0)

)
for any x ∈ [0, 1] are a dual pair of modal operators in the above sense. In [18], we
also demonstrated that the function τν,ν0 (respectively τν,ν0) may also be viewed
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as a linguistic hedge. Noting these results and the definition for a kappa function,
we get that if λ = 1, then

κ
(λ)
ν,ν0,f

(x) = τν,ν0(x) and κ
(λ)
ν0,ν,f

(x) = τν,ν0(x)

for any x ∈ [0, 1]. That is, the above-mentioned modal and linguistic hedge opera-
tors are special cases of the kappa function.

4.3 Modifier operators induced by connectives

Following the approach presented by Mattila [30], we interpret the substantiating
modifier operator and the weakening modifier operator as follows.

Definition. We say that τ : [0, 1] → [0, 1] is a substantiating modifier operator if
and only if

τ(x) < x

and τ is a weakening modifier operator if and only if

τ(x) > x

for any x ∈ (0, 1), and τ(0) = 0, τ(1) = 1.

Let ν, ν0 ∈ (0, 1), λ ∈ R and let f be a generator function of a conjunctive
operator c. In [18] (also see [9]), we showed that by repeating the arguments of the
conjunctive operator c n-times, and then extending n to a real-valued number, we
get the function τν,ν0 : [0, 1]→ [0, 1], which is given by

τν,ν0(x) = f−1
(
f(ν0)

f(x)

f(ν)

)
. (16)

In [18], we also demonstrated that if ν > ν0 (ν < ν0, respectively), then τν,ν0 is
a substantiating (weakening, respectively) modifier operator. Taking into account
the definition for a kappa function, we immediately get that the modifier operator

τν,ν0 is none other than the kappa function κ
(λ)
ν,ν0,f

with λ = 1.
Notice that the substantiating and weakening operators and the modal and

linguistic hedge operators in Section 4.2 all have the form of the function τν,ν0
given in Eq. (16). Hence, all these operators may be viewed as kappa functions
with the parameter value λ = 1.

4.4 The sharpness operator derived from the multiplicative
aggregative operator

In [9], Dombi introduced an operator called the sharpness operator by repeating
the arguments of the aggregative operator aν : [0, 1]n → [0, 1], which is given by

aν(x1, x2, . . . , xn) = f−1

(
f(ν)

n∏
i=1

f(xi)

f(ν)

)
,
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where f is a generator function of a conjunctive operator and ν ∈ (0, 1) (see [11]).
Namely, by repeating the arguments of aν n-times, and then extending n to a real-

valued number, we get the sharpness operator χ
(λ)
ν : [0, 1] → [0, 1], which is given

by

χ(λ)
ν (x) = f−1

(
f(ν)

(
f(x)

f(ν)

)λ)
, (17)

where ν ∈ (0, 1) and λ > 0.

Using basic considerations and direct calculations, it can be shown that the

sharpness operator χ
(λ)
ν has the following properties (λ > 0):

(a) χ
(λ)
ν (0) = 0

(b) χ
(λ)
ν (1) = 1

(c) χ
(λ)
ν (ν) = ν

(d) If 0 < λ < 1, then χ
(λ)
ν (x) ≥ x for any x ∈ (0, ν], and χ

(λ)
ν (x) ≤ x for any

x ∈ [ν, 1)

(e) if λ = 1, then χ
(λ)
ν (x) = x for any x ∈ [0, 1]

(f) If 1 < λ, then χ
(λ)
ν (x) ≤ x for any x ∈ (0, ν], and χ

(λ)
ν (x) ≥ x for any x ∈ [ν, 1)

(g) If a generator function f of χ
(λ)
ν is differentiable, ν ∈ (0, 1) and f(ν) = 1,

then

dχ
(λ)
ν (x)

dx

∣∣∣
x=ν

= λ.

Notice that property (g) means that by changing the value of parameter λ, we

can modify the sharpness of the operator χ
(λ)
ν . Also, parameter ν determines the

point where χ
(λ)
ν intersects the diagonal line. Figure 2 shows example plots of the

sharpness operator χ
(λ)
ν for the generator function f(x) = 1−x

x , where x ∈ [0, 1].

This figure also shows the tangent line of χ
(λ)
ν at ν, i.e., tν(x) = λx+ ν(1− λ).

Noting the definition for a kappa function, we get that if λ > 0 and ν = ν0,

then κ
(λ)
ν,ν0,f

κ
(λ)
ν,ν0,f

(x) = χ(λ)
ν (x)

for any x ∈ [0, 1]. That is, in this case the kappa function κ
(λ)
ν,ν0,f

is identical to the

sharpness operator χ
(λ)
ν .
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Figure 2: Example plots of the sharpness operator for f(x) = 1−x
x .

4.5 The preference implication and the preference operator

Let ν ∈ (0, 1) and let f be a generator function of a conjunctive operator. The
preference implication operator pν : [0, 1]2 → [0, 1], which was introduced by Dombi
and Baczyński in [13], is given by

pν(x, y) =

{
1, if (x, y) ∈ {(0, 0), (1, 1)}
f−1

(
f(ν) f(y)f(x)

)
, otherwise,

(18)

where x, y ∈ [0, 1]. It can be shown that pν(x, y) ≥ ν if and only if y ≥ x (see
Proposition 5 in [13]). Therefore, pν(x, y) may be viewed as a threshold-based
implication for the continuous logical values x and y. This means that if the
continuous logical value of the implication is greater that ν, then the implication
is true. Also, pν(x, y) can be interpreted as the continuous logical value of the
preference x ≤ y.

Now, let ν, ν0 ∈ (0, 1), let ν have a fixed value and let the operator
pν0(ν; ·) : [0, 1]→ [0, 1] be given by

pν0(ν;x) = f−1
(
f(ν0)

f(x)

f(ν)

)
. (19)

Using Eq. (19), it can be shown that the following proposition is valid.
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Proposition. Let ν ∈ (0, 1) have a fixed value. For any x ∈ [0, 1],

pν0(ν;x) ≥ ν0 if and only if x ≥ ν,

where ν0 ∈ (0, 1).

This means that pν0(ν;x) represents a threshold-based measure of the preference
x ≥ ν, where ν ∈ (0, 1) has a fixed value.

Notice that if λ = 1, then

κ
(λ)
ν,ν0,f

(x) = pν0(ν;x)

for any x ∈ [0, 1]. That is, in this case, the kappa function κ
(λ)
ν,ν0,f

coincides with
the preference operator pν0(ν; ·) given in Eq. (19).

Remark. It is worth noting that following this line of thinking, we can extend the
preference operator in Eq. (18) such that it also has a parameter λ:

p(λ)ν (x, y) =

1, if (x, y) ∈ {(0, 0), (1, 1)}

f−1
(
f(ν)

(
f(y)
f(x)

)λ)
, otherwise,

where x, y ∈ [0, 1] and λ > 0. Here, the value of parameter λ determines the slope
of the preference operator.

5 Conclusions and future research plans

In the previous sections, we demonstrated that (a) the Pliant negation operator
ην given in Eq. (1); (b) the substantiating, weakening, modal and linguistic hedge

operators τν,ν0 given in Eq. (16); (c) the sharpness operator χ
(λ)
ν given in Eq. (17);

and (d) the preference operator pν0(ν; ·) given in Eq. (19) are special cases of the
kappa function

κ
(λ)
ν,ν0,f

(x) = f−1

(
f(ν0)

(
f(x)

f(ν)

)λ)
,

where ν, ν0 ∈ (0, 1), λ ∈ R and f is a generator function of a conjunctive or
disjunctive operator. This means that the kappa function may be treated as a
general unary modifier operator. Table 1 summarizes these results.

Remark. The unary operators listed in Table 1 are special cases of the kappa func-
tion. Therefore, by considering Proposition 3, we also have that the conjunctive
and disjunctive forms of each of these unary operators coincide if fc(x)fd(x) = 1
holds for any x ∈ [0, 1], where fc and fd are generator functions of the conjunctive
and disjunctive forms, respectively.
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Table 1: Unary operators and the kappa function (ν, ν0 ∈ (0, 1) and λ ∈ R)

Parameters of κ
(λ)
ν,ν0,f

Formula of κ
(λ)
ν,ν0,f

The operator given by κ
(λ)
ν,ν0,f

λ = −1, ν = ν0 f−1
(
f2(ν)
f(x)

)
negation (ην)

λ = 1 f−1
(
f(ν0) f(x)f(ν)

) substantiating, weakening,
modal and linguistic hedge
operators (τν,ν0);
measure of the preference
x ≥ ν (pν0(ν; ·))

λ > 0, ν = ν0 f−1
(
f(ν)

(
f(x)
f(ν)

)λ)
sharpness operator (χ

(λ)
ν )

Example. In Section 3.3.2 we showed that the kappa function induced by the
generator of Dombi operators (i.e. by f(x) =

(
1−x
x

)α
, α 6= 0) is

κ(λ)ν,ν0(x) =
1

1 + 1−ν0
ν0

(
ν

1−ν
1−x
x

)λ , x ∈ [0, 1].

In this case, the unary operators in Table 1 have the following forms:

ην(x) =
1

1 +
(
1−ν
ν

)2 x
1−x

, τν,ν0(x) = pν0(ν;x) =
1

1 + 1−ν0
ν0

ν
1−ν

1−x
x

χ(λ)
ν (x) =

1

1 + 1−ν
ν

(
ν

1−ν
1−x
x

)λ , x ∈ [0, 1].

5.1 Future research plans

In our future research, we intend to study how the kappa function can be utilized as
an activation function in artificial neural networks. We also would like to develop
a kappa function-based decision supporting method.
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[13] Dombi, J. and Baczyński, M. General characterization of implication’s
distributivity properties: The preference implication. IEEE Transactions
on Fuzzy Systems, 28(11):2982–2995, 2019. DOI: 10.1109\/TFUZZ.2019.

2946517.

[14] Dombi, J. and Jónás, T. Approximations to the normal probability distri-
bution function using operators of continuous-valued logic. Acta Cybernetica,
23(3):829–852, 2018. DOI: 10.14232/actacyb.23.3.2018.7.

https://doi.org/10.1016/j.ins.2011.05.008
https://doi.org/10.1017/CBO9780511621192
https://doi.org/10.1016/j.fss.2009.09.003
https://doi.org/10.1016/j.ins.2003.09.002
https://doi.org/10.1016/j.ins.2003.09.002
https://doi.org/10.1109/TFUZZ.2007.905910
https://doi.org/10.1109/TFUZZ.2007.905910
https://doi.org/10.1016/j.ins.2010.11.038
https://doi.org/10.1109/FUZZ-IEEE.2012.6251349
https://doi.org/10.1109/FUZZ-IEEE.2012.6251349
https://doi.org/10.1007/978-3-642-23229-9_2
https://doi.org/10.1007/978-3-642-23229-9_2
https://doi.org/10.1016/j.ins.2013.04.010
https://doi.org/10.1007/978-3-030-19494-9_30
https://doi.org/10.1109\/TFUZZ.2019.2946517
https://doi.org/10.1109\/TFUZZ.2019.2946517
https://doi.org/10.14232/actacyb.23.3.2018.7
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