
Acta Cybernetica 26 (2024) 817–838.

A New Interval Arithmetic To Generate the

Complementary of Contractors

Pierre Filiolab, Theotime Bollengierac, Luc Jaulinad,
and Jean-Christophe Le Lannae

Abstract

Contractor algebra is used to characterize a set defined as a composition
of sets defined by inequalities. It mainly uses interval methods combined with
constraint propagation. This algebra includes the classical operations we have
for sets such as the intersection, the union and the inversion. Now, it does
not include the complement operator. The reason for this is probably related
to the interval arithmetic itself. In this paper, we show that if we change the
arithmetic used for intervals adding a single flag, similar to not a number, we
are able to include easily the complement in the algebra of contractors.

Keywords: intervals, contractors, complement, Not a Number

1 Introduction

Interval analysis [11] is a numerical tool used to solve nonlinear problems such
as non convex optimization [7] or solving nonlinear equations [13]. In control or
robotics, it is often needed to compute inner and outer approximations for sets [9]
[16].

The algorithms we use to characterize a set X are pavers that classify areas of
the search space using contractors [4]. A contractor C for the set X ⊂ Rn is an
operator IRn 7→ IRn which satisfies

C([x]) ⊂ [x] (contractance)
[x] ⊂ [y] ⇒ C([x]) ⊂ C([y]) (monotonicity)
C([x]) ∩ X = [x] ∩ X (consistency)

, (1)

where IRn is the set of axis-aligned boxes of Rn. The paver bisects boxes and uses
C to eliminate parts of the search space that are outside X.In this paper, sets X of
Rn will be represented in mathbb font and intervals [x] or boxes [x] within brackets.

aENSTA Bretagne, Brest, France
bE-mail: pierre.filiol@netc.fr, ORCID: 0009-0009-6162-9578
cE-mail: theotime.bollengier@ensta-bretagne.org, ORCID: 0009-0006-7315-2736
dE-mail: lucjaulin@gmail.com, ORCID: 0000-0002-0938-0615
eE-mail: jean-christophe.le lann@ensta-bretagne.fr, ORCID: 0000-0003-2555-1805

DOI: 10.14232/actacyb.300840

mailto:pierre.filiol@netc.fr
https://orcid.org/0009-0009-6162-9578
mailto:theotime.bollengier@ensta-bretagne.org
https://orcid.org/0009-0006-7315-2736
mailto:lucjaulin@gmail.com
https://orcid.org/0000-0002-0938-0615
mailto:jean-christophe.le\protect _lann@ensta-bretagne.fr
https://orcid.org/0000-0003-2555-1805
https://doi.org/10.14232/actacyb.300840

818 Pierre Filiol, et al.

If C1 and C2 are two contractors, we define the following operations on contractors:

(C1 ∩ C2)([x]) = C1([x]) ∩ C2([x]), (2)

(C1 ∪ C2)([x]) = C1([x]) ⊔ C2([x]), (3)

where [a] ⊔ [b] is the smallest box which contains both [a] and [b].
We also use the contractors to eliminate parts that are inside the solution set,

but we observe some problems in existing solvers as soon as the domains of the
functions involved in the problem are restricted. We now illustrate thus on a simple
example.

Consider the set

X = {(x1, x2) |x2 +
√
x1 + x2 ∈ [1, 2]}. (4)

and let us try to compute an inner and outer approximations of X using an existing
solver. For instance, if we use Codac [15] with the following script:

from codac import *

from vibes import *

X0=IntervalVector ([[-10 ,10] ,[-10 ,10]])

f = Function(x1,x2 ,x2+sqrt(x1+x2))

S=SepFwdBwd(f,sqr(Interval (1,2)))

vibes.beginDrawing ()

SIVIA(X0,S ,0.01)

We get the paving illustrated by Figure 1 where the blue boxes are proved to be
outside X and the magenta boxes are supposed to be inside. We observe that this
is not the case. Indeed some boxes are wrongly classified as inside whereas they are
outside. This phenomenon occurs for all existing solvers which are able to provide
an inner approximation. The reasons for this is that contractor-based methods
obtain an inner approximation by considering a contractor for the complementary
of X as

{(x1, x2) |x2 +
√
x1 + x2 /∈ [1, 2]}, (5)

whereas it should be

X = {(x1, x2) |x2 +
√
x1 + x2 /∈ [1, 2] or x1 + x2 < 0}. (6)

In the figure, some magenta zones are wrongly classified as inside because in
these zones,

√
x1 + x2 is not defined. The goal of this paper is to provide a rigorous

way to build contractors associated with the complementary of a set in the case
where functions involved in the constraint are not defined everywhere.

The paper is organized as follows. Section 2 explains the approach that will
motivate a new arithmetic. Section 3 presents an extension of the arithmetic on
real numbers, named total real arithmetic, and shows the role of a flag named ι
in the case where partial functions are involved. Section 4 introduces the notion
of the total interval arithmetic. Section 4 provides the notion of total contractors
and extends the classical forward-backward contractor to total intervals. Section 6
concludes the paper.

A New Interval Arithmetic To Generate the Complementary of Contractors 819

Figure 1: Left: Paving obtained by classical methods to approximate X; Right: A
zoom on the red box

2 Approach

Contractor algebra as defined in [4] does not allow any non-monotonic operation.
It means that if a contractor C is defined by an expression E of other contractors
Ci then we always have

∀i, Ci ⊂ C
′

i ⇒ E (C1, C2, . . .) ⊂ E
(
C

′

1, C
′

2, . . .
)
. (7)

As a consequence the complementary C of a contractor C or the restriction C1 \ C2
of two contractors C1, C2 (which both correspond to non-monotonic operations) is
not defined.

To be more precise, contractor algebra allows us to construct a contractor for
expressions of sets defined by union, intersection and inversion of other sets. Take
for instance the set

X = X1 ∪ f−1(X2 ∩ X3). (8)

We can represent its expression by the tree of Figure 2 or equivalently by the
following expressions

X = X1 ∪ B
B = f−1(A)
A = X2 ∩ X3

. (9)

The intermediate sets A and B correspond to nodes of the tree. In practice, the
leaves Xi of the tree are set reverse (or equivalently inequality constraints) of the
form

Xi = φ−1
i ([yi]) = {xi |φi(xi) ∈ [yi]} , (10)

where φi is a function defined by an algorithm and [yi] is a box of Rn. A contractor
for Xi is usually built by a forward-backward procedure as for instanceHC4-revised

[1]. The contractor associated with the constraint φ(x) ∈ [y] is denoted by C↕φ−1([y]).

820 Pierre Filiol, et al.

Figure 2: Contractor tree for X1 ∪ f−1(X2 ∩ X3)

Once the contractor for X is built from the tree, a paver [9] is called to provide
an outer approximation for X. More precisely, the paver generates boxes [x] of Rn

that have to be contracted by the available contractors. The resulting procedure
for contracting the set X defined by (8) is given by Algorithm 1.

Algorithm 1 Contractor for X = X1 ∪ f−1(X2 ∩ X3)

Input: [x]

1: [x1] = CX1
([x])

2: [b] = [x]
3: [a] = f([b])
4: [x2] = CX2([a])
5: [x3] = CX3

([a])
6: [a] = [x2] ∩ [x3]

7: [b] = C↕f−1([a])([b])

8: [x] = [x1] ⊔ [b]
9: return [x]

This procedure is approximately what is performed by Ibex [3] even if Ibex
does not admit a set expression as an input.

To express the complement X we need to use the De Morgan’s laws which states
that:

• the complement of the union of two sets is the same as the intersection of
their complements

• the complement of the intersection of two sets is the same as the union of
their complements

A New Interval Arithmetic To Generate the Complementary of Contractors 821

We get
X = X1 ∩

(
f−1(X2 ∪ X3) ∪ domf

)
. (11)

Note that we had to introduce the domain of f , denoted by domf , to take into
account the fact that f may be a partial function (i.e., not defined everywhere).

If we define the set-valued function f̊−1 : P(Rm) 7→ P(Rn) as

f̊−1(Y) = f−1(Y) ∪ domf , (12)

then we have
X = X1 ∩

(̊
f−1(X2 ∪ X3)

)
. (13)

The decomposition for X is defined by

X = X1 ∩ B
B = f̊−1(A)
A = X2 ∪ X3

(14)

which corresponds to the tree of Figure 3.

Figure 3: Contractor tree for the complementary of X1 ∪ f−1(X2 ∩ X3)

Since the sets Xi were defined by φi(xi) ∈ [yi], the complement is by

Xi = φ̊−1
i ([yi]). (15)

To implement, the complementary of a contractor using the De Morgan’s low,
the only brick we need is the forward-backward contractor for the set

f̊−1([y]) = f−1([y]) ∪ domf . (16)

Now, the set f̊−1([y]) is not a set reverse as defined by (10) and thus we cannot
apply a forward-backward contractor without an extension which will be proposed
in this paper.

822 Pierre Filiol, et al.

3 Total extension

3.1 Definitions

In mathematics, a function f : X 7→ Y which is defined for all x ∈ X is said to be
total. Equivalently, a function f : X 7→ Y is total if

∀x ∈ X,∃y ∈ Y such that f(x) = y. (17)

A function f which is not defined for all x is said to be partial. Given a partial
function f , the total extension is obtained by adding an element to Y , say ι which
collects all x /∈ domf. To be more precise, we give the following definition.

Definition. The total extension of the partial function f : X 7→ Y is f̊ = X∪{ι} 7→
Y ∪ {ι} with

f̊(x) =

{
f(x) if x ∈ domf
ι otherwise.

(18)

Note that since ι /∈ domf , we have f̊(ι) = ι.

3.2 Illustration

Consider the partial function f as given in Figure 4. We have

f−1(Y) = {β, γ, ε}
f−1(Y) = {α}
domf = {α, β, γ, ε}

. (19)

Now, since f({γ, δ}) ⊂ Y, some would classify δ inside f−1(Y) which is wrong.
This is would be true if f were total.

Figure 4: A partial function f

Introducing the indeterminate NaN (Not a number), denoted by ι, in the sets
allows us to get rid of the problem involved by the partiality of f .

A New Interval Arithmetic To Generate the Complementary of Contractors 823

Given a set A, we define the extended total set as Å = A∪{ι}. Thus, f̊ : Å 7→ B̊
is the total extension of f : A 7→ B as illustrated by Figure 5. Following Definition
1, extended functions can be used to set as follows:

f̊(X) =
{

f(X) if X ⊂ domf
f(X) ∪ {ι} otherwise

, (20)

where X ⊂ Å. Note that, in the figure, whereas f({γ, δ}) = {3} ⊂ Y, we have

f̊({γ, δ}) = {3, ι} ̸⊂ Y.

Figure 5: Introduction of Not a Number ι

3.3 Properties

For total functions, we have some properties that will be useful in our algorithms.

Proposition. If f̊ is a total extension of f , we have

f̊−1(Y) = f̊−1(Y) (i)

f̊(X) ⊂ Y⇒ X ⊂ f̊−1(Y) (ii)

f̊ ◦ f̊−1(Y) = Y (iii)

. (21)

Proof. Let us prove (ii) only. We have:

f̊(X) ⊂ Y ⇔ f̊(X) ∩ Y = ∅
⇔ f̊−1 ◦ f̊(X)︸ ︷︷ ︸

⊃X

∩ f̊−1(Y)︸ ︷︷ ︸
=f̊−1(Y)

= ∅

⇒ X ∩ f̊−1(Y) = ∅
⇔ X ⊂ f̊−1(Y).

(22)

824 Pierre Filiol, et al.

Proposition. If f̊ , g̊ are total extensions of f , g then the total extension of f ◦ g
is f̊ ◦ g̊.

Proof. If h = f ◦ g, we have

f̊ ◦ g̊(x) =
{

f ◦ g(x) if x ∈ domg and g(x) ∈ domf
ι otherwise.

(23)

Now, since
domh = domf ◦ g = domg ∩ g−1(domf) (24)

we get

f̊ ◦ g̊(x) =
{

h(x) if x ∈ domh
ι if x /∈ domh

(25)

which corresponds to h̊(x).

Example. To illustrate the proposition, take

f(x) =
√
1− x

g(x) =
√
x− 1

. (26)

Note that
domf = (−∞, 1]
domg = [1,∞)

. (27)

We have

h(x) = f ◦ g(x) =
√
1−
√
x− 1. (28)

Since
domh = domg ∩ g−1(domf)

= [1,∞) ∩ g−1((−∞, 1])
= [1,∞) ∩ [0, 2] = [1, 2]

(29)

we get

h̊(x) =

{ √
1−
√
x− 1 if x ∈ [1, 2]

ι otherwise
. (30)

3.4 Total real arithmetic

We define the total extension of the classical arithmetic on real numbers. Consider
the extended total set of reals:

R̊ = R ∪ {ι}. (31)

Adding such a special value for real numbers is now classical since it has been
introduced by the IEEE 754 floating-point standard in 1985. Operations on real
numbers can be extended to R̊ as follows:

f(x) = ι if x /∈ dom(f)
f(ι) = ι
ι ⋄ x = ι

, (32)

A New Interval Arithmetic To Generate the Complementary of Contractors 825

where f is any partial function and x ∈ R and any binary operator ⋄.
Note that we do not define comparisons, which means that if we have the relation

a ≤ b then both a and b belong to R (or equivalently neither a nor b can be equal
to ι).

Proposition. Consider a partial function f : Rn 7→ Rm given by an expression
f(x1, . . . , xn) including elementary functions (sin,

√
, log,. . .) and elementary op-

erators (+,−, ∗, /, . . .). An expression for f̊ can be obtained by the total real arith-
metic.

Proof. The proof is a direct consequence of the fact that the total extension is
preserved by composition.

An element of the Cartesian product R̊n = R̊× · · · × R̊ is called a total vector.

3.5 Link with the complex number i

The set of complex numbers C extends the set of real numbers by adding a number
i such that i2 = −1. The extension preserves some properties such that the fact C
is a group with respect to the addition. Due to this, i has an opposite: −i. Indeed,
i+ (−i) = 0.

Take now the set R̊ and let us check if ι has an opposite. We solve ι + x = 0
and we get no solution for x. This means that R̊ is not anymore a group and
many properties we had for R are lost. As a consequence, symbolic resolution and
group-based simplifications are not allowed in R̊.

Moreover, adding i to build C involves the addition of many numbers of the
form a+ ib. In R̊, we just add a single number: ι.

There exists a tiny link between R̊ and C in the construction since we add one
number. But the link stops here. Whereas complex numbers can be used to build
a huge numbers of theorems and theories, the total numbers will be used as a tool
to build the complementary of contractors.

4 Total intervals

In this section, we introduce the notion of intervals for R̊, called total intervals.

4.1 Intervals in unions of lattices

On a lattice (A,≤A) , we can define the notion of intervals, interval hull and con-
tractors. This has been used for several types of lattices such as real numbers,
integers, trajectories, graphs, etc. To be able to use interval methods, the lattice
structure is required. We show here that it is not strictly necessary by considering
union of lattices.

826 Pierre Filiol, et al.

Definition. Consider two lattices (A,≤A) and (B,≤B) that are disjoint. Denote by
IA and IB, the set of all intervals of A and B. We can define intervals of C = A∪B
as subsets C which have the form

[c] = [a] ∪ [b], (33)

where [a] ∈ IA and [b] ∈ IB.

Indeed, the set (C,≤C) can be equipped with an order relation:

x ≤C y ⇔
{

x ∈ A, y ∈ A, x ≤A y
or x ∈ B, y ∈ B, x ≤B y

. (34)

Now, C is not a lattice, i.e., if x ∈ A, y ∈ B we cannot define x∧ y and x∨ y. This
is due to the fact that we cannot provide a common lower or upper bounds for x, y.

Example. Consider the case where A = R the set of real numbers and B =
{a, b, c, . . . , z} the set of letters. Both can be equipped with an order relation and
both are lattices. Examples of intervals for the set C = A ∪ B are

[c1] = [2, 5]
[c2] = {e, f, g, h}
[c3] = [2, 5] ∪ {e, f, g, h}
[c4] = [4, 9] ∪ {g, h, i}
[c5] = ∅
[c6] = A ∪ B

. (35)

It is easy to check that the intervals of C is closed under intersection. It is thus
a Moore family [2, 10]. As a consequence, contractor methods can be used.

4.2 Total intervals

Consider the singleton {ι} which is equipped with the trivial order relation: ι ≤ ι.

The set of all intervals of {ι} is {∅, {ι}}. The set R̊ can be equipped with a partial
order relation ≤R̊ derived from R:

ι ≤R̊ ι
a ∈ R, b ∈ R then a ≤R̊ b iff a ≤R b

. (36)

Total intervals are denoted by [̊x].

Examples of intervals of R̊ are:

[̊a] = [1,∞)

[̊b] = [−1, 0] ∪ {ι}
[̊c] = {ι}
[d̊] = ∅,

(37)

as illustrated by Figure 10.

A New Interval Arithmetic To Generate the Complementary of Contractors 827

Figure 6: Total intervals are intervals of R̊ = R ∪ {ι}

The set of total intervals is denoted by IR̊. We define the hull of a subset of X̊
of R̊ as the smallest total interval [̊x] which encloses X̊. We will write [̊x] = X̊. For
instance

{1, 2, 3} = [1, 3]
{1, 2, 3, ι} = [1, 3] ∪ {ι}
{ι} = {ι}

. (38)

4.3 Total interval arithmetic

Consider a partial function f : R 7→ R. We define its total interval extension as
follows

[f̊] = {f̊ (̊x), x̊ ∈ [̊x]}. (39)

For instance
√

[−1, 4] = [0, 2] ∪ {ι}.
In the same manner, if ⋄ ∈ {+,−, ·, /}, we define

[̊a] ⋄ [̊b] = {̊a ⋄ b̊, å ∈ [̊a], b̊ ∈ [̊b]}. (40)

4.4 Total interval vector

The set of interval vectors R̊n is a lattice [5]. We can thus define intervals of R̊n.

The set of interval vectors has the form IR̊n = IR̊ × · · · × IR̊. We define the hull
of a subset of X̊ of R̊n as the smallest [̊x] which encloses X̊. We will write [̊x] = X̊.
For instance,

([1, 2]× {ι}) ∪ ([3, 4]× [5, 6]) = [1, 4]× ([5, 6] ∪ {ι}). (41)

5 Total contractors

This section extends the notion of contractor to total intervals. We first consider the
case of elementary contractors built from elementary functions. Then, we consider
the case of contractors defined from elementary operators.

828 Pierre Filiol, et al.

5.1 Total directed contractor for a binary constraint

Consider a constraint of the form y = f(x), where f : R 7→ R: is a partial function

with domain domf . We can extend the constraint to R̊ by the following decompo-
sition

ẙ = f (̊x)

x̊ ∈ R̊
ẙ ∈ R̊

⇔

 ẙ = f (̊x), x̊ ∈ domf, ẙ ∈ R
or x̊ ∈ R \ domf , ẙ = ι
or x̊ = ι, ẙ = ι

. (42)

This means that ι = f(x) is considered as true only if and only if x = ι or if
x /∈ domf . We define the forward directional contractor as

−→
Cf ([̊x]) = {ẙ | ∃x̊ ∈ [̊x], ẙ = f (̊x)} (43)

and the backward directional contractor

←−
Cf ([̊x], [̊y]) = {x̊ ∈ [̊x] | ∃ẙ ∈ [̊y], ẙ = f (̊x)}. (44)

Proposition. The forward directional contractor associated with f is

−→
Cf ([̊x]) = f([̊x] ∩ R),∪ ([̊x] ∩ {ι}) ∪ ι([̊x] ∩ (R \ domf)), (45)

where ι is the constant function ι, i.e,

ι(A) =
{

ι if A ̸= ∅
∅ if A = ∅ . (46)

Proof. Since

x̊ ∈ domf ⇒ ẙ = f (̊x)
x̊ = ι ⇒ ẙ = ι

x̊ ∈ R \ domf ⇒ ẙ = ι
(47)

we have

f([̊x]) = f([̊x] ∩ dom f)︸ ︷︷ ︸
f([̊x]∩R)

∪ ι([̊x] ∩ {ι})︸ ︷︷ ︸
=[̊x]∩{ι}

∪ ι([̊x] ∩ (R \ domf)). (48)

Thus
−→
Cf ([̊x]) = {ẙ | ∃x̊ ∈ [̊x], ẙ = f (̊x)}

= f([̊x] ∩ R) ∪ ([̊x] ∩ {ι})
∪ ι([̊x] ∩ (R \ dom f))

. (49)

As a consequence, Algorithm 2 implements
−→
Cf ([̊x]):

A New Interval Arithmetic To Generate the Complementary of Contractors 829

Algorithm 2 Forward directional contractor
−→
Cf

Input: f, [̊x]

1: [̊y] = f([̊x] ∩ R)
2: [̊y] = [̊y] ∪ ([̊x] ∩ {ι})
3: if [̊x] ̸⊂ dom f then
4: [̊y] = [̊y] ∪ {ι}
5: end if
6: return [̊y]

Proposition. The backward directional contractor associated with f is

←−
Cf ([̊x], [̊y]) = [̊x] ∩

(
f−1([̊y] ∩ R) ∪ I([̊y])

)
, (50)

where

I([̊y]) =
{
{ι} ∪ (R \ dom f) if ι ∈ [̊y]

∅ otherwise
. (51)

Proof. We have
ẙ ∈ R ⇔ x̊ ∈ f−1({ẙ})
ẙ = ι ⇔ (̊x = ι) ∨ (̊x ∈ R \ dom f)

⇔ x̊ ∈ {ι} ∪ (R \ dom f)
. (52)

This leads to Algorithm 3 which implements
←−
Cf ([̊x], [̊y]):

Algorithm 3 Backward directional contractor
←−
Cf

Input: f−1, [̊x], [̊y]

1: [̊r] = ∅
2: if [̊y] = ∅ then
3: return [̊r]
4: end if
5: [̊r] = f−1([̊y] ∩ R)
6: if ι ∈ [̊y] then
7: [̊r] = [̊r] ∪ (R \ dom f) ∪ {ι}
8: end if
9: return [̊r] ∩ [̊x]

Example. Total contractor for the square root. Consider the constraint

y =
√
x, (53)

where all variables belong to R̊. The values (9, 3), (−4, ι), (ι, ι) for (x, y) are consis-
tent with the constraint (53) whereas (9, 2), (−4, 2), (9, ι), (ι, 2) are inconsistent.

830 Pierre Filiol, et al.

For instance, assume that we have x ∈ [̊x] = [−2, 9], y ∈ [̊y] = [−1, 2] ∪ {ι}. We
obtain −→

C√·([̊x]) =
√
[−2, 9] = [0, 3] ∪ {ι}

−→
C√·([̊x]) ∩ [̊y] = ([0, 3] ∪ {ι}) ∩ ([−1, 2] ∪ {ι})

= [0, 2] ∪ {ι}
←−
C√·([̊x], [̊y]) = [−2, 4]

. (54)

It means that x ∈ [−2, 4] and y ∈ [0, 2] ∪ {ι}.
Assume now that x ∈ [̊x] = [4, 9], y ∈ [̊y] = [3, 15] ∪ {ι}. We obtain

−→
C√·([̊x]) =

√
[4, 9] = [2, 3]

−→
C√·([̊x]) ∩ [̊y] = [2, 3] ∩ ([3, 15] ∪ {ι}) = {3}
←−
C√·([̊x], [̊y]) = {9}

. (55)

It means that x = 9 and y = 3.

5.2 Total directed contractor for a ternary constraint

Consider the ternary constraint of z = x + y. The case of constraints involving
−, ·, / can be defined from + and binary constraints already treated in the previous
section. The following reasoning can also be done for these operators.

We can extend the constraint z = x+ y to R̊ by the following decomposition
z̊ = x̊+ ẙ

x̊ ∈ R̊
ẙ ∈ R̊
z̊ ∈ R̊

⇔
{

z̊ = x̊+ ẙ, x̊ ∈ R, ẙ ∈ R, z̊ ∈ R
or (̊x = ι ∨ ẙ = ι) ∧ z̊ = ι

. (56)

Note that in R̊, we do not have

z̊ = x̊+ ẙ ⇔ x̊ = z̊ − ẙ. (57)

Indeed, take x̊ = 1, ẙ = ι, z̊ = ι. We have z̊ = x̊ + ẙ whereas x̊ ̸= z̊ − ẙ. As a
consequence, the values (2, 3, 5), (2, ι, ι), (ι, ι, ι) for (x, y, z) are consistent with the
constraint whereas (2, 3, 6), (2, ι, 4), (2, 3, ι) are inconsistent.

We define the forward directed contractor

−→
C+([̊x], [̊y]) = {z̊ | ∃x̊ ∈ [̊x],∃ẙ ∈ [̊y], z̊ = x̊+ ẙ} (58)

and the backward directed contractor

←−
C+([̊x], [̊y], [̊z]) = {(̊x, ẙ) ∈ [̊x]× [̊y] | ∃z̊ ∈ [̊z], z̊ = x̊+ ẙ}. (59)

We get Algorithms 4 and 5 for
−→
C+ and

←−
C+.

A New Interval Arithmetic To Generate the Complementary of Contractors 831

Algorithm 4 Forward directed contractor
−→
C+

Input: [̊x], [̊y]

1: [̊z] = ([̊x] ∩ R) + ([̊y] ∩ R)
2: [̊z] = [̊z] ∪ ([̊x] ∩ {ι}) ∪ ([̊y] ∩ {ι})
3: return [̊z]

Step 1 computes to the interval containing of all feasible z ∈ R.
Step 2 adds ι when ι ∈ [̊x] or when ι ∈ [̊y].

Algorithm 5 Backward directed contractor
←−
C+

Input: [̊x], [̊y], [̊z]

1: if ι /∈ [̊z] then
2: [̊x] = [̊x] ∩ ([̊z]− [̊y])
3: [̊y] = [̊y] ∩ ([̊z]− [̊x])
4: end if
5: return [̊x], [̊y]

The implementation for
←−
C+ is simplified by the fact that it is called after

−→
C+.

Remark. The contractor
←−
C+ is often minimal, but not always. Indeed, there exist

some rare counterexamples. Consider for instance the case

x ∈ [1, 2]
y ∈ [3, 4] ∪ {ι}
z ∈ [6, 9] ∪ {ι}

. (60)

If we call
−→
C+, we get

x ∈ [1, 2]
y ∈ [3, 4] ∪ {ι}
z ∈ [6, 6] ∪ {ι}

. (61)

The backward contractor
←−
C+ (see Algorithm 5) yields no contraction for x and y

whereas it should conclude the following contraction for y :

y ∈ [4, 4] ∪ {ι}.

An optimal backward contractor could be obtained by Algorithm 6:

832 Pierre Filiol, et al.

Algorithm 6 An optimal backward contractor

Input: [̊x], [̊y], [̊z]

1: [̊rx] = ∅, [̊ry] = ∅
2: [x] = [̊x] ∩ R; [y] = [̊y] ∩ R; [z] = [̊z] ∩ R;
3: if [x] ̸= ∅ and [y] ̸= ∅ and [z] ̸= ∅ then
4: [̊rx] = [x] ∩ ([z]− [y]);[̊ry] = [y] ∩ ([z]− [x])
5: end if
6: [y] = [̊y] ∩ {ι}; [z] = [̊z] ∩ {ι};
7: if [x] ̸= ∅ and [y] ̸= ∅ and [z] ̸= ∅ then
8: [̊ry] = [̊ry] ∪ {ι}
9: end if

10: [y] = [̊y] ∩ R; [x] = [̊x] ∩ {ι}; [z] = [̊z] ∩ {ι};
11: if [x] ̸= ∅ and [y] ̸= ∅ and [z] ̸= ∅ then
12: [̊rx] = [̊rx] ∪ {ι}
13: end if
14: [x] = [̊x] ∩ {ι}; [y] = [̊y] ∩ {ι}; [z] = [̊z] ∩ {ι};
15: if [x] ̸= ∅ and [y] ̸= ∅ and [z] ̸= ∅ then
16: [̊rx] = [̊rx] ∪ {ι}; [̊ry] = [̊ry] ∪ {ι}
17: end if
18: return [̊rx], [̊ry]

Now, this algorithm improves the efficiency of a propagation only for rare situa-
tions. This is why we will preferred the use of the backward contractor of Algorithm
5, even if not fully minimal.

5.3 Total forward-backward contractor

We show how the forward-backward contractor works on two test-cases.

Test-case 1. Consider the set

S = {(x, y) | y +
√
x+ y ∈ [1, 2]}. (62)

We built the AST (Abstract Syntax Tree) associated with S as shown in Figure
7(a). We also build the AST for S as in Figure 7(b). Note that the two trees are

identical except the images that are complementary in R̊, i.e.,

[1, 2] ∪ ((−∞, 1] ∪ [2,∞) ∪ {ι}) = R̊. (63)

A forward-backward contractor yields Algorithm 7. Note that below the set Z
is not the set of integers (as often used in math books), but an interval of R.

A New Interval Arithmetic To Generate the Complementary of Contractors 833

Figure 7: AST for the constraint y +
√
x+ y ∈ [1, 2] (left) and its complementary

(right)

Algorithm 7 Contractor for the constraint y +
√
x+ y ∈ Z

Input: [̊x], [̊y],Z

1: [̊b] =
−→
C+([̊x], [̊y])

2: [̊a] =
−→
C√ ([̊b])

3: [̊z] =
−→
C+([̊a], [̊y])

4: [̊z] = [̊z] ∩ Z
5: [̊a], [̊y] =

←−
C+([̊z], [̊a], [̊y])

6: [̊b] =
←−
C√ ([̊b], [̊a])

7: [̊x], [̊y] =
←−
C+([̊b], [̊x], [̊y])

8: return [̊x], [̊y]

To have a contractor for S we call Algorithm 7 with Z = [1, 2]. To get a
contractor for S, we call the algorithm with Z = (−∞, 1] ∪ [2,∞) ∪ {ι}. Using
a paver with these two contractors, we are able to generate the approximation
illustrated by Figure 8. The frame box is [−10, 10]× [−10, 10].

An implementation is given in [6].

Test-case 2. Consider the discrete-time state space system, inspired from Henon
map, of the form x(k + 1) = f(x(k)) with

f(x) =

(
bx1

1 + ax2
1 +

√
x2
2 + c

)
, (64)

where a = −1.4, b = 0.3 and c = 0.075. The behavior of this system may not lead
to a well defined state x(k) if the initial state vector x(0) is not chosen properly.

834 Pierre Filiol, et al.

Figure 8: Paving obtained using the contractor for S and its complementary

We want to compute the set S of all initial vectors x(0) which lead to a state vector
of R2 when k = 5. We define

f0(x) = x
fk+1(x) = fk ◦ f(x) . (65)

We have

S = {x ∈ R2 | f5(x) ∈ R2}. (66)

The forward backward contractor (see Algorithm 8) associated to the constraint
f(x) ∈ Y is based on the AST of Figure 9.

A New Interval Arithmetic To Generate the Complementary of Contractors 835

Figure 9: AST for the constraint f(x) ∈ Y

Algorithm 8 Contractor for a constraint f(x) ∈ Y for Test-case 2

Input: [̊x1], [̊x2],Y
1: [̊a] = −1.4; [̊b] = 0.3; [̊c] = −0.075
2: [̊v1] =

−−→
Csqr([̊x1])

3: [̊v2] =
−→
C×([̊a], [̊v1])

4: [̊v3] = 1 + [̊v2]

5: [̊v4] =
−−→
Csqr([̊x2])

6: [̊v5] =
−→
C+([̊v4], [̊c])

7: [̊v6] =
−→
C√ ([̊v5])

8: [̊y1] =
−→
C×([̊x1], [̊b])

9: [̊y2] =
−→
C+([̊v3], [̊v6])

10: [̊y1]× [̊y2] = ([̊y1]× [̊y2]) ∩ Y
11: [̊v3], [̊v6] =

←−
C+([̊y2], [̊v3], [̊v6]) (see Step 9)

12: [̊x1], [̊b] =
←−
C×([̊y1], [̊x1], [̊b]) (see Step 8)

13: [̊v5] =
←−
C√ ([̊v5], [̊v6]) (see Step 7)

14: [̊v4], [̊c] =
←−
C+([̊v5], [̊v4], [̊c]) (see Step 6)

15: [̊x2] =
←−−
Csqr([̊v4], [̊x2]) (see Step 5)

16: [̊v2] = ([̊v3]− 1) ∩ [̊v2] (see Step 4)

17: [̊a], [̊v1] =
←−
C×([̊v2], [̊a], [̊v1]) (see Step 3)

18: [̊x1] =
←−−
Csqr([̊x1], [̊v1]) (see Step 2)

19: return [̊x1], [̊x2]

836 Pierre Filiol, et al.

To have a contractor for S we call Algorithm 8 with Y = R2. To get a contractor
for S, we call the algorithm with Y = (R×{ι})∪ ({ι}×R)∪ ({ι}×{ι}) which is the
complementary of R2 in (R ∪ {ι})2 Using a paver with these two complementary
contractors, we are able to generate the approximation illustrated by Figure 10.
The frame box is [−5, 5]× [−5, 5].

Figure 10: Paving representing the solution set for Test-case 2

6 Conclusion

In this paper, we have proposed to extend the interval arithmetic developed by
Moore [12] in order to facilitate the implementation of complementary of contrac-
tors. For this purpose, we proposed to add a flag ι to each interval to form total
intervals. The associated arithmetic has been derived. In our our new interval
arithmetic, we have

√
[−1, 1] = [0, 1] ∪ {ι} instead of

√
[−1, 1] = [0, 1]. This is due

to the fact that
√
·, which is a partial function, has been made total. The ι number

is not seen anymore as an exception, but as a possible value.

A New Interval Arithmetic To Generate the Complementary of Contractors 837

The flag ι has similarities with some decorations already used in the context
of interval computation [14], [8]. The main advantage of our extension is to allow
the interval propagation when some partial functions are involved in the definition
of the constraints. We have presented a generalization of the forward-backward
propagation to total intervals. The efficiency has been illustrated on two test-cases.

References

[1] Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J. F. Revis-
ing hull and box consistency. In Proceedings of the International Confer-
ence on Logic Programming, pages 230–244, Las Cruces, NM, 1999. DOI:
10.7551/mitpress/4304.003.0024.

[2] Blyth, T. Lattices and Ordered Algebraic Structures. Springer, 2005. DOI:
10.1007/b139095.

[3] Chabert, G. Ibex 2.0. Ecole des mines de Nantes, 2013. URL: http://www.
emn.fr/z-info/ibex/.

[4] Chabert, G. and Jaulin, L. Contractor programming. Artificial Intelligence,
173:1079–1100, 2009. DOI: 10.1016/j.artint.2009.03.002.

[5] Davey, B. A. and Priestley, H. A. Introduction to Lattices and Order. Cam-
bridge University Press, 2002. DOI: 10.1017/CBO9780511809088.

[6] Filiol, P., Bollengier, T., Jaulin, L., and Lann, J. L. Codes associated with
the paper entitled: A new interval arithmetic to generate the complementary
of contractors, 2022. URL: https://www.ensta-bretagne.fr/jaulin/iota.
html.

[7] Hansen, E. R. Global Optimization using Interval Analysis. Marcel Dekker,
New York, NY, 1992. ISBN: 9780824786960.

[8] IEEE Microprocessor Standards Commitee. IEEE 1788-2015 standard for
interval arithmetic, 2015. URL: https://standards.ieee.org/ieee/1788/
4431/.

[9] Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. Applied Interval Analy-
sis, with Examples in Parameter and State Estimation, Robust Control and
Robotics. Springer-Verlag, London, 2001. DOI: 10.1007/978-1-4471-0249-

6.

[10] Moore, E. Introduction to a form of general analysis, Volume 2 of Colloquium
publications / American Mathematical Society. Yale University Press, 1910.
URL: https://books.google.hu/books?id=ezvvAAAAMAAJ.

[11] Moore, R. Methods and Applications of Interval Analysis. Society for Industrial
and Applied Mathematics, 1979. DOI: 10.1137/1.9781611970906.

https://doi.org/10.7551/mitpress/4304.003.0024
https://doi.org/10.1007/b139095
http://www.emn.fr/z-info/ibex/
http://www.emn.fr/z-info/ibex/
https://doi.org/10.1016/j.artint.2009.03.002
https://doi.org/10.1017/CBO9780511809088
https://www.ensta-bretagne.fr/jaulin/iota.html
https://www.ensta-bretagne.fr/jaulin/iota.html
https://isbnsearch.org/isbn/9780824786960
https://standards.ieee.org/ieee/1788/4431/
https://standards.ieee.org/ieee/1788/4431/
https://doi.org/10.1007/978-1-4471-0249-6
https://doi.org/10.1007/978-1-4471-0249-6
https://books.google.hu/books?id=ezvvAAAAMAAJ
https://doi.org/10.1137/1.9781611970906

838 Pierre Filiol, et al.

[12] Moore, R., Kearfott, R., and Cloud, M. Introduction to Interval Analy-
sis. SIAM, Philadelphia, PA, 2009. URL: https://epubs.siam.org/doi/
10.1137/1.9780898717716.

[13] Neumaier, A. Interval Methods for Systems of Equations. Cambridge Univer-
sity Press, Cambridge, UK, 1990. DOI: 10.1017/CBO9780511526473.

[14] Revol, N. Introduction to the IEEE 1788-2015 standard for interval arithmetic.
In Proceedings of the 10th International Workshop on Numerical Software Ver-
ification, 2017. DOI: 10.1007/978-3-319-63501-9_2.

[15] Rohou, S. Codac (Catalog Of Domains And Contractors). Robex, Lab-STICC,
ENSTA-Bretagne, 2021. URL: http://codac.io/.

[16] Rohou, S., Jaulin, L., Mihaylova, L., Bars, F. L., and Veres, S. Reliable Robot
Localization. Wiley, 2019. DOI: 10.1002/9781119680970.

https://epubs.siam.org/doi/10.1137/1.9780898717716
https://epubs.siam.org/doi/10.1137/1.9780898717716
https://doi.org/10.1017/CBO9780511526473
https://doi.org/10.1007/978-3-319-63501-9_2
http://codac.io/
https://doi.org/10.1002/9781119680970

	Introduction
	Approach
	Total extension
	Definitions
	Illustration
	Properties
	Total real arithmetic
	Link with the complex number i

	Total intervals
	Intervals in unions of lattices
	Total intervals
	Total interval arithmetic
	Total interval vector

	Total contractors
	Total directed contractor for a binary constraint
	Total directed contractor for a ternary constraint
	Total forward-backward contractor

	Conclusion

