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Set-Valued Approach for the Online Identification of

the Open-Circuit Voltage of Lithium-Ion Batteries

Marit Lahmeab and Andreas Rauhac

Abstract

To describe the dynamic behavior of lithium-ion batteries using the ter-
minal current and the terminal voltage as input and output of the battery,
equivalent circuit models are used, which comprise series resistances, RC sub-
networks and a state of charge dependent voltage source. The parameters of
the battery model are influenced by aging effects as well as other factors such
as the state of charge and the cell temperature. Although those variations
can be estimated with the help of an augmented state vector, the typically
applied approaches do not allow for a direct identification of nonlinear depen-
dencies of circuit elements on the state of charge or other influence factors.
Therefore, a two-stage identification routine for identifying those nonlinear
dependencies using an interval observer and an interval contraction scheme
is proposed in this paper. The identification routine was successfully applied
to identify the open-circuit voltage characteristic of a lithium-ion battery.
Numerical simulations are used to evaluate the identification quality of the
identification routine.

Keywords: online identification, interval methods, lithium-ion batteries

1 Introduction

The charging/discharging dynamics of lithium-ion batteries can be approximated
by using equivalent circuit models. According to [4, 7, 15], these models consist
of a finite number of RC sub-networks as well as series resistances and a state of
charge (SOC) dependent voltage source which represents the open-circuit voltage.
In classical state estimation approaches, the parameters are identified beforehand
(cf. [4, 7, 15]). However, the parameters of battery models are subject to aging and
temperature induced variations, which is shown in [4]. The aging of battery cells
leads to a loss of the total capacity, an increasing Ohmic cell resistance and changes
in the charging/discharging efficiency as well as changes of the delay parameters of
the aforementioned RC sub-networks. Additionally, many degradation mechanisms
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of lithium-ion batteries that lead to capacity or power fading are highly dependent
on the cell temperature [3]. Many of these parameter variations can be mapped
onto the open-circuit voltage and estimated during system operation with the help
of an augmented state vector, but this approach does not allow for estimating
nonlinear functional dependencies of the circuit elements on the SOC or other
influence factors. The above-mentioned variations can alternatively be detected
offline using electrochemical impedance spectroscopy (EIS), as mentioned in [1, 12,
13]. The EIS method is to apply a sinusoidal current (sinusoidal voltage) to the
battery over a wide frequency range and to measure the terminal voltage (terminal
current). The spectroscopic features of the resulting impedance spectrum can be
assigned to the components of the corresponding equivalent circuit model. The
impedance is affected by a variety of factors such as the cell temperature, aging,
or the SOC. Accordingly, variations resulting from these influence factors can be
detected using EIS. The drawback of this method is that it takes a long time
typically in the range of hours to days because of the gradual charging/discharging
process and resting periods that might be necessary.

To address these difficulties, we propose a two-stage identification of nonlinear
dependencies in this paper with the dependency of the open-circuit voltage on the
SOC as an example. This two-stage identification is based on interval analysis,
which has already been used successfully in parameter estimation, for example in
[2]. Therefore, it is a promising method for this online identification routine. The
state variables of the dynamic system are estimated in the first stage with an interval
observer. In the second stage, the a-priori knowledge of the open-circuit voltage
characteristic is corrected using the estimated state variables. For the identification
of the nonlinear dependency of the open-circuit voltage on the SOC with underlying
aging and temperature induced variations, it is assumed that the other equivalent
circuit parameters are known and not yet affected by aging.

This paper is structured as follows. Section 2 outlines the modeling of lithium-
ion batteries based on equivalent circuit models. In Section 3, the design of the
interval observer is described which is used for the identification routine shown in
Section 4. The results of the numerical simulation for evaluating the performance
of this set-valued identification approach are presented in Section 5. The paper is
concluded with a brief summary of the proposed identification routine as well as
with an outlook on future work in Section 6.

Notation. In this paper, matrices and vectors are denoted by bold letters to
distinguish them from scalar variables. The notations M and M for an interval
matrix M denote the element-wise lower and upper bounds.

2 Equivalent Circuit Model of Lithium-Ion Bat-
teries

In this paper, an equivalent circuit model containing one series resistance and two
RC sub-networks representing processes with short (τTS) and large (τTL) time con-
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stants resulting from polarization effects and concentration losses is considered as
shown in Fig. 1 [4, 15]. Here, vOC is the open-circuit voltage. The terminal current
iT is used as the input to charge or discharge the battery and the terminal voltage
vT can be measured. The instantaneous voltage drop of the terminal voltage is
caused by the serial resistance RS. The two RC sub-networks consisting of CTS,
CTL, RTS, and RTL are used to describe the transient behavior. First, the model-
ing of lithium-ion batteries is introduced with point-valued state variables and crisp
equivalent circuit parameters. At the end of this section, the model is extended to
interval values.

+

Figure 1: Equivalent circuit model of a lithium-ion battery (modified from [15]).

The SOC σ(t) and the voltages across the RC sub-networks vTS(t) and vTL(t) are
chosen as the state variables. Hence, the state vector

x(t) =
[
σ(t) vTS(t) vTL(t)

]T
(1)

and the quasi-linear, continuous time state equations

ẋ(t) = A (σ(t)) · x(t) + b (σ(t)) · u(t) (2)

=

0 0 0

0 −1
CTS(σ(t))·RTS(σ(t))

0

0 0 −1
CTL(σ(t))·RTL(σ(t))

 · x(t) +


−1
CBat

1
CTS(σ(t))

1
CTL(σ(t))

 · u(t)

are obtained, where the system input is given as the terminal current u(t) := iT(t).
The SOC as well as vTS(t) and vTL(t) can be point-valued or interval values. The
first state equation represents the integrating behavior

σ̇(t) = − iT(t)

CBat
(3)

between the SOC σ(t) ∈ [0 ; 1] and the charging/discharging current iT(t). Here,
the SOC is a normalized value, so that σ = 0 corresponds to the completely dis-
charged battery and σ = 1 represents the fully charged battery with the nominal



858 Marit Lahme and Andreas Rauh

capacitance CBat. The other two state equations represent the first-order lag be-
havior of the RC sub-networks

v̇ι(t) =
−vι(t)

Cι(σ(t)) ·Rι(σ(t))
+

iT(t)

Cι(σ(t))
, ι ∈ {TS,TL} (4)

where the equivalent circuit parameters and the delay parameters are dependent
on the SOC according to

Rι(σ(t)) = Rιa · eRιb·σ(t) +Rιc , ι ∈ {TS,TL} , (5)

Cι(σ(t)) = Cιa · eCιb·σ(t) + Cιc , ι ∈ {TS,TL} , (6)

τι(σ(t)) = Cι(σ(t)) ·Rι(σ(t)) , ι ∈ {TS,TL} . (7)

The SOC-dependent parameters have been identified in [17] using experimental pa-
rameter identification. The identified parameters are shown in Tab. 1. By applying
Kirchhoff’s voltage law, the terminal voltage is obtained as

vT(t) = vOC(σ(t))− vTS(t)− vTL(t)− iT(t) ·RS (σ(t)) , (8)

with the Ohmic resistance

RS(σ(t)) = RSa · eRSb·σ(t) +RSc . (9)

Based on the experimental parameter identification in [17], the open-circuit voltage
is assumed to be represented by the nonlinear expression

vOC(σ(t)) = v0 · ev1·σ(t) +

3∑
i=0

vi+2 · σi(t) , (10)

which can be rewritten in the quasi-linear form

ṽOC(σ(t)) = ηOC (σ(t)) · σ(t) = vOC(σ(t))− v0 − v2 (11)

=

(
v0 ·

ev1·σ(t) − 1

σ(t)
+ v3 + v4 · σ(t) + v5 · σ2(t)

)
· σ(t) (12)

by subtracting the constant, state-independent terms from the expression for the
open-circuit voltage [15]. Using (8) and (12), the output equation can be obtained
as

y(t) = ṽT(t) = C (σ(t)) · x(t) + D (σ(t)) · iT(t) (13)

= ṽOC(t)− vTS(t)− vTL(t)− iT(t) ·RS(t) ,

and can be rewritten in the quasi-linear input-independent form

y∗(t) = y(t)−D (σ(t)) · iT(t) = C (σ(t)) · x(t) (14)

=
[
ηOC (σ(t)) −1 −1

]
· x(t) ∈ [ym] ,



Set-Valued Approach for the Online Identification of Lithium-Ion Batteries 859

with the output matrix C (σ(t)) =
[
ηOC (σ(t)) −1 −1

]
(which is a row vector in

the special case of this paper) and the feedthrough matrix D (σ(t)) = −RS(σ(t)).
In (14), y∗(t) represents the measurement that is provided to the observer. It is the
terminal voltage of the battery, adjusted in a way that it is expressed according to
the quasi-linear output equation. Furthermore, the measurement noise (assumed to
be bounded) has to be considered, so that y∗(t) is an element of the measurement
interval [ym], defined in (22). Outliers, for example measurements that are wrong,
may affect the estimation quality of the interval observer designed in Section 3
and therefore may also affect the identification quality of the open-circuit voltage
characteristic. In this paper, we assume that there are no outliers, but managing
outliers can be done in future work with applying relaxed set inversion techniques
as shown in [2] and [8].

To implement the proposed identification approach, the continuous time system
is temporally discretized with a constant step size T and approximated with the
help of the explicit Euler method. Because of the small sampling time T com-
pared to the delay parameters τTS and τTL, this method is sufficiently accurate.
The discretization errors are assumed to be included in the measurement uncer-
tainty. With xk and σk approximating the exact state values x(tk) and σ(tk) in
the discretization points, the discretized state equations are then obtained as

xk+1 = Ad (σk) · xk + bd (σk) · uk , (15)

Ad (σk) = I3×3 + T ·A (σk) , (16)

bd (σk) · uk = T · b (σk) · uk . (17)

In this paper, interval state variables are considered, so that x(t) ∈ [x(t) ; x(t)]
is a vector consisting of intervals for each component. Therefore, also the equiv-
alent circuit parameters become intervals, which leads to interval-valued matri-
ces A (σ(t)) ∈

[
A (σ(t)) ; A (σ(t))

]
, b (σ(t)) ∈

[
b (σ(t)) ; b (σ(t))

]
, C (σ(t)) ∈[

C (σ(t)) ; C (σ(t))
]

and D (σ(t)) ∈
[
D (σ(t)) ; D (σ(t))

]
. This also applies to the

discretized system.

3 Design of the Interval Observer

The proposed identification approach for nonlinear dependencies of the circuit ele-
ments on state variables is a two-stage procedure. In the first stage, state estimation
is performed with an interval observer in each time step. Therefore, the most recent
estimate for the state vector is used which consists of intervals for each component.
The estimated values are then used in the second stage to correct the a-priori
knowledge for the open-circuit voltage characteristic. The estimation of the state
variables and the open-circuit voltage is shown in Fig. 2.

A prerequisite for this identification approach is that all state variables can be
estimated. Hence, the system has to be observable or identifiable. The observer
gain matrix H is designed in such a way that the stability is ensured for the assumed
open-circuit voltage characteristic. The system matrix A (σ(t)) from equation (2)
has the following sign pattern
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Battery

Figure 2: Estimation of the open-circuit voltage and the state of charge.

A (σ(t)) =

 ≤ 0 ≥ 0 ≥ 0
≥ 0 ≤ 0 ≥ 0
≥ 0 ≥ 0 ≤ 0

 ∈ [
A ; A

]
. (18)

Based on the design of a robust interval observer shown in [7], the observer matrix
H is hereby assigned as

H =
[
h1 0 0

]T
, h1 > 0 , (19)

where h1 is a scalar.
With the bounding systems x ∈ [x ; x] for the true states and x̂ ∈ [x̂] :=

[
x̂ ; x̂

]
for their estimates, respectively, x is given as x ∈

[
x̂ ; x̂

]
and the interval observer

is obtained according to [7] and [14] as

AOx̂ + bu + Hy
m
≤ ˙̂x ≤ AOx̂ + bu + Hym , x̂ ∈ [x̂] (20)

with the observer system matrix

AO = A−HC ∈
[
AO ; AO

]
(21)

and the uncertain measurements

[ym] :=
[
y
m

; ym

]
= ym + [−∆ym ; ∆ym] . (22)

The observer is parameterized in a cooperativity preserving way [6, 9]. Coop-
erative dynamic systems have state trajectories that are monotonic with respect to
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the initial conditions. Lower and upper bounds for the states of uncertain cooper-
ative systems can be calculated by solving two independent initial value problems,
one for each bound. Hence, the computational effort to determine these lower and
upper bounds is reduced in comparison to a non-cooperative model. A system

ẋ(t) = f(x(t)), x ∈ Rn, (23)

has to fulfill the following two conditions to be cooperative. All off-diagonal ele-
ments of its Jacobian

J =
∂f(x)

∂x
(24)

have to be non-negative

Ji,j ≥ 0, i, j ∈ {1, ..., n}, i 6= j (25)

and all state variables have to be non-negative [6, 9]

x ∈ R≥0 . (26)

Due to the design of the observer gain matrix, the observer system matrix AO and
the system matrix A have the same sign pattern. Therefore, adding this interval
observer to a cooperative system preserves the property of cooperativity.
For cooperative systems, guaranteed state enclosures are found by considering AOx̂
and AOx̂ for the lower and upper bound respectively in equation (20), if all state
variables are element wise non-negative. The system in equation (2), however, does
not satisfy the conditions (25) and (26). Hence, it is not cooperative in this simplest
form [6]. Therefore, guaranteed lower and upper bounds for all state variables of
the system (2) have to be calculated according to Müller’s theorem [5], without
taking advantage of the property of cooperativity. This is done by considering the
infimum (supremum) of AOx̂ for the lower bound (upper bound) in equation (20).

Like the continuous time system (2), the observer is also discretized with a
constant step size T and with the help of the explicit Euler method. This leads to
the following equations:

x̂k+1 = AOd (σ̂k) · x̂k + bd (σ̂k) · uk + Hd · ym,k , (27)

AOd (σ̂k) = I3×3 + T ·AO (σ̂k) , (28)

bd (σ̂k) · uk = T · b (σ̂k) · uk , (29)

Hd · ym,k = T ·H · ym,k . (30)

In order to guarantee stability for the discretized observed system, the magnitudes
of all eigenvalues of the matrix AOd have to be less than one. To preserve the
derivation of lower and upper bounding systems, the system matrix in (28) needs to
be element wise non-negative. The evaluation of this discretized model is performed
in analogy to equation (17) in [16].
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4 Identification of the open-circuit voltage

With the help of interval methods, the nonlinear dependency of the open-circuit
voltage on the SOC can be identified as visualized in Fig. 3. During the charg-
ing/discharging process of the battery, the values of the open-circuit voltage and
the state of charge are estimated by the interval observer resulting in axis-aligned
interval boxes for the SOC and the open-circuit voltage. An interval box [Γ]
is defined as the Cartesian product of closed intervals. Here, [Γ] is an element
of IR2 and is defined as [Γ] = [σ(t)] × [ṽOC(t)] with σ(t) ∈ [σ(t) ; σ(t)] and
ṽOC(t) ∈

[
ṽOC(t) ; ṽOC(t)

]
. The open-circuit voltage is calculated based on the

estimated state variables and equation (14)

ṽOC(t) = y∗
m(t) + vTS(t) + vTL(t) . (31)

The intersections of those interval boxes are utilized to improve the approximation
of the true vOC(σ(t)) characteristic.

1 3,2999997749 -2
0,9 2,7549988852 -16
0,8 2,3119944785 1
0,7 1,9589726516 0,6
0,6 1,6838645425 -0,3
0,5 1,4743290747 2
0,4 1,3166768855
0,3 1,1905405059
0,2 1,042475592
0,1 0,655206964
0 -1

Figure 3: Identification of nonlinear dependencies using interval methods.

To keep the computational effort that is required for this intersection process
feasible, merging strategies are necessary. A certain number of overlapping interval
boxes are combined with the help of their convex interval hull as shown in Fig. 4.
The resulting convex hulls are intersected with each other. The convex interval hull
of two interval boxes [Γ1] and [Γ2] is denoted by

[Γhull] = [Γ1] ∪ [Γ2] . (32)

The overapproximation of two interval boxes with the convex interval hull results
in an overestimation of the magnitude

δhull =
area{[Γhull]} − (area{[Γ1]}+ area{[Γ2]}) + area{[Γ1] ∩ [Γ2]}

area{[Γ1]}+ area{[Γ2]} − area{[Γ1] ∩ [Γ2]}
· 100% ,

(33)
where the area of an interval box is equal to the product of the interval widths
of all components [10]. The overestimation for combining more than two interval
boxes with the help of the corresponding convex interval hull can be calculated by
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recursively applying equation (33), where δhull represents the exact overestimation,
when two interval boxes are combined. Otherwise, it represents the upper bound on
the overestimation. During the numerical simulation shown in this paper, the num-
ber of interval boxes that are approximated with the convex interval hull is defined
beforehand. At the end of the simulation, the overestimation δhull is calculated for
each convex interval hull.

Remark. Instead of using a preset, constant number of interval boxes that should
be merged before the intersection process, a limit on the overestimation can be
introduced. In this case, the interval boxes are recursively merged as long as the
overestimation remains below the threshold δhull ≤ δhull,max.

Figure 4: Combining interval boxes with the help of their convex interval hull.

5 Numerical Simulation

To evaluate the identification quality of the proposed identification routine, a nu-

merical simulation was performed for the initial state x0 =
[
0.9 0 0

]T
and the

system parameters shown in Table 1. The discretization step size and the observer

gain matrix are chosen as T = 10 ms and H =
[

0.2 0 0
]T

. The magnitude
of the bounded measurement noise is set to ∆ym = 2.5 mV. The measurements
are generated in a simulation using y and uniformly distributed random numbers
in the interval of [−∆ym ; ∆ym]. The input current has an amplitude of 5 A and
a period length of 1 h and is given as shown in Fig. 5. To reduce the uncertainty
and improve the estimation results, the input current consists of an alternating
sequence of sine half-waves and periods where the current is constant and equal to
zero. The number of interval boxes that are combined with the help of their convex
interval hull is chosen as 6000. This corresponds to merging the interval boxes in a
time span of one minute and leads to an overestimation of each interval hull of less
than 3.73 %. The true values are calculated based on point-valued state variables,
point-valued equivalent circuit parameters and the system parameters shown in
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Table 1: System parameters according to the experimental parameter identification
in [17].

CBat 3.100 Ah RTSa 1 Ω RTLa 0.01 Ω v0 −1 V
RTSb −30 RTLb −4 v1 −23

RSa 0.25 Ω RTSc 0.015 Ω RTLc 0.05 Ω v2 3.255 V
RSb −20 CTSa −900 F CTLa 25000 F v3 0.8342 V
RSc 0.07 Ω CTSb −2 CTLb −2 v4 −0.2905 V

CTSc 1000 F CTLc 2000 F v5 0 V

Tab. 1. The simulation is implemented in MATLAB. The single core simulation of
the interval observer and the intersection process is approximately four times faster
than real time, so that this implementation is applicable for online identification
purposes.

Figs. 6 and 7 show the estimation results for the three state variables. During
the simulation, the estimation uncertainty increases but can be reduced by the
periods of constant current, because the integrating behavior between the SOC and
the terminal current is the main contribution to the uncertainty. It can only be
reduced if the constant current is equal to zero. Otherwise, the uncertainty increases
instead of being reduced. The uncertainty of the voltage vTS decreases faster than
the uncertainty of the voltage vTL because of the smaller delay parameter τTS

compared to the delay parameter τTL. The frequency of the input current also
affects the estimation uncertainty. This is shown in Figs. 8 and 9. Here, the input
currents iT(t) = 5 A · sin

(
2π

3600 t
)

and iT(t) = 5 A · sin
(

10π
3600 t

)
are compared. With

increasing frequency, the estimation uncertainty decreases. However, the achievable
SOC range also decreases, which in turn influences the identification process.

The identification result is shown in Fig. 10. Fig. 10(a) shows the identification
result after the first sine half-wave of the input current (discharging process). It is
obvious that the increasing uncertainty leads to an increasing width of the interval
boxes. As mentioned before, the uncertainty is then reduced due to the constant
current period so that, during the following charging process (second sine half-
wave), the width of the interval boxes is further reduced (Fig. 10(b)). Here, the
identification result of the discharging process serves as the a-priori knowledge for
the characteristic to be identified. The true value of the vOC(σ(t)) characteristic
can be approximated well in the range of the SOC that can be achieved during
both discharging and charging processes.

6 Conclusions and Future Work

In this paper, a set-valued approach for the online identification of state-dependent
characteristics was presented. This identification routine consists of two stages.
At first, the state variables of the dynamic system are estimated with an interval
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Figure 5: True output value y∗(t) in comparison with the estimated lower and
upper bounds resulting from the terminal current iT(t).
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0.2

Figure 6: True value of the state variables in comparison with the estimated lower
and upper bounds.
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(a) Estimation error of σ(t).
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(b) Estimation error of vTS(t).
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(c) Estimation error of vTL(t).

Figure 7: Estimation errors of the state variables.
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(a) Low frequency input current.
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(b) High frequency input current.

Figure 8: Comparison of the estimated state variables resulting from low or high
frequency input currents.
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Figure 9: Comparison of the interval diameters of the estimated state variables
resulting from the input currents according to Fig. 8.
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(a) Discharge process (first sine half-wave). (b) Charge process (second sine half-wave).

Figure 10: Approximation of the vOC(σ(t)) characteristic.

observer, afterwards the estimated values are used to correct an a-priori knowledge
for the characteristic to be identified. The proposed identification routine was
successfully applied to the identification of the open-circuit voltage characteristic
of a lithium-ion battery.

The estimation quality has a major influence on the identification results. It
is therefore necessary to reduce the estimation uncertainty as much as possible.
As shown above, the input current strongly affects the estimation quality. So
the design of optimal experiments by tuning the input current is very important.
Furthermore, the design of the interval observer can be optimized to improve the
estimation results. For example, a cascaded observer design or a TNL observer
design as shown in [18] could be investigated.

In addition, our future work will deal with the extension of this approach to the
identification of characteristics that depend on multiple variables (e.g. the open-
circuit voltage characteristic of lithium-ion batteries that depends on the SOC and
the temperature) and with the investigation of possible combinations of set-valued
and stochastic approaches (cf. [11]).
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