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Robust Control and Actuator Fault Detection

Based on an Iterative LMI Approach:

Application on a Quadrotor

Oussama Benzinaneab and Andreas Rauhac

Abstract

Linear Matrix Inequalities (LMIs) have recently gained momentum due to
the increasing performance of computing hardware. Many current research
activities rely on the advantages of this growth in order to design controllers
with provable stability and performance guarantees. To guarantee robustness
despite actuator faults, model uncertainty, nonlinearities, and measurement
noise, a novel iterative LMI approach is presented to design an observer-based
state feedback controller allowing for simultaneous optimization of the con-
trol and observer gains. A comparison with a combination of an Extended
Kalman Filter (EKF) and a Linear-Quadratic Regulator (LQR) has been
conducted, inherently providing guaranteed stability for the closed loop only
when the separation principle holds, which is not the case in this study. Both
approaches are applied on a quadrotor, where reliable detection and compen-
sation of the faults in the presence of measurement noise is demonstrated.

Keywords: robust control, linear matrix inequalities, interval methods, ex-
tended Kalman Filter, linear-quadratic regulator

1 Introduction

Stability, robustness, and fault tolerance are the most challenging purposes that the
researchers have tackled by developing different control and estimation techniques.
One of the domains of application is aeronautics, where flight control systems play
a major role in ensuring the safety of drones when tracking desired trajectories.
During the flight, quadrotors face many issues that originate from the inside (such
as a suddenly broken rotor or a failed transmission of measurements from GPS) or
from the surrounding environment (e.g., lateral wind). Unavoidably, detection and
compensation of faults should take place to reduce the effects of such issues.
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In the literature, see [1], [7], [2] and [16], many researchers have exploited bene-
fits of fault-tolerant methods. Particularly, some attention has been paid to the use
of the LMI approach for detecting and compensating actuator faults. For instance,
in the paper [12], the authors have investigated the LMI approach to reconfigure
the controller parameters for a discrete-time switched system in the presence of
actuator faults, unstructured uncertainties, and time delay.

Since systems in the real world are nonlinear, the use of a linear control system,
tuned for a single operating point, might not ensure stability and performance.
Hence, reformulating the modeled nonlinear system into a quasi-linear form, and
based on this, into a polytopic representation with bounded parameter uncertainty
allows for exploiting LMI approaches during the design of the control system. In
[11], the authors have presented a joint optimization of the combination of control
laws and filters taking into consideration bounded uncertainty and noise. In [10],
the authors have developed a strategy for desensitization of the closed-loop be-
havior towards stochastic noise in continuous-time scenarios. Then, exploiting the
ideas published in the paper [4], the present paper constitutes a contribution to the
design of a discrete-time observer-based state feedback controller in the presence
of both bounded parameter uncertainty and stochastic noise in order to guarantee
robust performance despite actuator faults, model uncertainty, nonlinearities, and
measurement noise. The proposed design procedure allows for optimizing controller
and observer gains simultaneously. It consists of the following two phases: (i) place-
ment of poles into a desired area within the complex z -plane and (ii) desensitization
of the closed loop to stochastic noise.

From the literature, a huge amount of research has been conducted to exploit the
Extended Kalman Filter (EKF) to accurately estimate state variables. Moreover,
they are often combined with linear-quadratic regulators (LQR) c.f. [8] and [15].
Hence, for the purpose of comparison, the actuator faults are not only estimated
in this paper but also using the EKF. To compensate the actuator faults and for
stabilizing the system states, a combination with the LQR is further investigated.

This paper is organized as follows. In Section 2, a mathematical model is formu-
lated by employing a first principle approach based on the Newton-Euler equations
for the description of the dynamic characteristics of a quadrotor. Section 3 describes
the design of the controller and observer based on a polytopic representation. The
fourth section introduces the synthesis of the controller and observer gains. The
fifth section presents the adapted EKF-LQR method. In Section 6, results are pre-
sented with comments before conclusions and an outlook of future work are given
in Section 7.

2 Modeling of the Quadrotor

In the literature, research has been conducted to build quadrotor models that take
into consideration some parts of the knowledge that humans have acquired about
the aerodynamic phenomena, see e.g. [6]. Such models allow designing a corre-
sponding controller using one or a mixture of the control methods that exist in the
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literature.

According to [13], we consider the quadrotor in the earth-fixed inertial coor-
dinate frame (e1I, e2I, e3I) and body-fixed frame (e1B, e2B, e3B) whose origin is at
the center of gravity of the quadrotor as shown in Figure 1. The position of the
quadrotor is described by its coordinate vector pT = (x , y , z ). For the rotation
from the earth’s inertial frame to the body frame, the ZYX convention for roll,
pitch, and yaw angles (φ, θ, ψ) is chosen. Indeed, there are several existing conven-
tions to describe the transformation based on the successive rotation about these
three axes, see e.g. [5].

Figure 1: Earth- and body-fixed frame of the quadrotor as introduced in [13].

By applying Newton’s law for the rotational and translational motions, the
kinematic and dynamic expressions are derived while making the hypothesis that
the quadrotor is a rigid body. Considering some assumptions such as neglecting
the ground effects and ignoring gyroscopic moments, a set of nonlinear ordinary
differential equations is obtained.

After rewriting the previously derived equations into a corresponding state-
space form ẋ = f(x,u), the model can be decomposed into two parts, as addressed
in [13], thus describing the attitude dynamics and the velocity dynamics. However,
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in this paper, only the first part is treated according to

φ̇ = φ̇

φ̈ = θ̇ψ̇
Iy−Iz
Ix
− JR

Ix
θ̇ωd + l

Ix
τφ

θ̇ = θ̇

θ̈ = φ̇ψ̇ Iz−Ix
Iy

+ JR

Iy
φ̇ωd + l

Iy
τθ

ψ̇ = ψ̇

ψ̈ = φ̇θ̇
Ix−Iy
Iz

+ l
Iz
τψ ,

(1)

with the state vector x = [φ, φ̇, θ, θ̇, ψ, ψ̇]T ∈ Rn and the input vector u = [τφ, τθ, τψ]T

∈ Rm , representing respectively the roll, pitch, and yaw torque, all depending on
the rotor speeds; ωd is a fictitious disturbance that depends on the speeds of the
four rotors, and JR is the rotor inertia, while Ix , Iy , Iz are the diagonal entries of
the quadrotor’s inertia matrix.

Using an optimized factorization, where β1, β2, and β3 ∈ R are free optimization
variables, the quasi-linear model

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6


︸ ︷︷ ︸
ẋ(t)

=


0 1 0 0 0 0
0 0 0 β1I1x6 0 (1− β1)I1x4
0 0 0 1 0 0
0 β2I2x6 0 0 0 (1− β2)I2x2
0 0 0 0 0 1
0 (1− β3)I3x4 0 β3I3x2 0 0


︸ ︷︷ ︸

Ac(x(t))

·


x1
x2
x3
x4
x5
x6


︸ ︷︷ ︸
x(t)

+



0 0 0
l
Ix

0 0

0 0 0
0 l

Iy
0

0 0 0
0 0 l

Iz


︸ ︷︷ ︸

Bc(x(t))

·

u1

u2

u3


︸ ︷︷ ︸
u(t)

+



0
−JR

Ix
x4

0
JR

Iy
x2

0
0


︸ ︷︷ ︸
Gc(x(t))

·ωd

(2)

has been obtained, where x1 ∈ [φ, φ], x3 ∈ [θ, θ], x5 ∈ [ψ,ψ], x2 ∈ [φ̇, φ̇], x4 ∈ [θ̇, θ̇],

and x6 ∈ [ψ̇, ψ̇] are assumed to be bounded by a-priori known intervals. Moreover,
u1,u2,u3 are respectively the control signals τφ, τθ, τψ. The parameters I1, I2, and
I3 depend on the inertia matrix entries; Ac is the system matrix, Bc is the state-
independent input matrix, and Gc is the disturbance input matrix, coupling the
process noise with the system dynamics.

The exploitation of the optimization variables introduced above allows the com-
putation of an adequate system matrix of the quasi-linear realization in each iter-
ation of the control and observer design in the following section to maximize the
provable domain of attraction of the operating point (the equilibrium). For fur-
ther information, where a similar approach was also used for stability analysis, the
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reader is referred to [9]. The obtained model in Eq. (2) represents the exact non-
linear dynamics and is used in the simulation as shown in Figure 2 as well as in the
controller and observer design phase.

3 Controller and Observer Design

In the obtained model, the appearance of nonlinearities in the system matrix leads
to the fact that the separation principle of control and observer design is no longer
valid as explained in the paper [10], which means that the controller and observer
can influence each other’s stability and, therefore, they must be designed simulta-
neously.

Consider the discrete-time quasi-linear state-space representation{
xk+1 = A(xk )xk + B(xk )(uk + dk ) + Gpωk

yk = Cxk ,
(3)

where yk ∈ Rp , ωk , and dk ∈ Rm are respectively the output vector, process noise
vector, and actuator fault vector. The faults could manifest themselves in different
manners like a blocking, saturation, or efficiency loss of the physical actuators.
Finally, C is the output matrix.

3.1 Design for Model-Based Actuator Fault Compensation

To be able to detect actuator faults, an augmented system model

[
xk+1

dk+1

]
︸ ︷︷ ︸

zk+1

=

[
A(xk ) B(xk )
0(m,n) I(m,m)

]
︸ ︷︷ ︸

Ae(xk )

·
[
xk

dk

]
︸ ︷︷ ︸

zk

+

[
B(xk )
0(m,m)

]
︸ ︷︷ ︸

Be(xk )

·uk +

[
Gp

0(m,1)

]
︸ ︷︷ ︸

Ge

·ωk

yk =
[
C 0(p,m)

]︸ ︷︷ ︸
Cc

·
[
xk

dk

]
︸ ︷︷ ︸

zk

(4)

is formulated by appending a discrete-time integrator disturbance model dk+1 = dk

for each of the independent faults to the original state vector.
On this basis, a linear time-invariant full-state observer is designed with the

discrete-time state-space representation[
x̂k+1

d̂k+1

]
︸ ︷︷ ︸

ẑk+1

=

[
Ã B̃

0(m,n) I(m,m)

]
︸ ︷︷ ︸

Ãe

·
[
x̂k

d̂k

]
︸ ︷︷ ︸

ẑk

+

[
B̃

0(m,m)

]
︸ ︷︷ ︸

B̃e

·uk +

[
Hi

Hf

]
︸ ︷︷ ︸
He

·Ce · (zk − ẑk ), (5)

where He ∈ R(n+m)×p is the constant observer gain; Ã and B̃ are, respectively,
the nominal dynamics and input matrices that are chosen in this current paper as
the matrices of A(xk ) and B(xk ) evaluated for the chosen operating point which
corresponds to the hovering state.
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The estimated states ẑk are fed back by the control law

uk = −
[
K I(m,m)

]︸ ︷︷ ︸
Ke

·ẑk , (6)

where the multiplication by Ke ∈ Rm×(m+n) includes the actual state feedback by
means of the gain K and the compensation of the actuator faults.

The architecture of the closed loop is illustrated in Figure 2. For simulation
purposes, it has been implemented in Simulink with ode1 as a solver with a small
fixed integration step size.

Figure 2: Structure of the linear observer-based state feedback controller

In Figure 2, the block A/D represents the digital-to-analog converter in a first-
order-hold mode, and the D/A block is the corresponding analog-to-digital con-
verter.

Considering the error ek = zk − ẑk , an augmented closed-loop system represen-
tation has been obtained according to

[
zk+1

ek+1

]
︸ ︷︷ ︸
wk+1

=


A(xk )−B(xk )K B(xk ) B(xk )K 0(n,m)

0(m,n) ξ · I(m,m) 0(m,n) 0(m,m)

A31 (B̃−B(xk )) A33

0(m,n) I(m,m) −HfC I(m,m)


︸ ︷︷ ︸

A(xk )

·
[
zk
ek

]
︸ ︷︷ ︸
wk

+

[
Ge

Ge

]
︸ ︷︷ ︸
G(xk )

·ωk ,

(7)

with A31 = A(xk )− Ã− (B(xk )− B̃)K and A33 = Ã−HiC+ (B(xk )− B̃(xk ))K.
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Remark. To avoid a pure integrator of the actuator fault dk , a multiplication of
the identity matrix by a number 0 < ξ < 1 is performed during the synthesis
stage so that the corresponding mode becomes stabilizable. This parameter choice
corresponds to

ξ =

{
1 : used for modeling and simulation,
< 1 : used during synthesis.

(8)

Note that this modification only influences the convergence of the following itera-
tive LMI-based control design but leaves the eigenvalues of the closed-loop system
model, represented conservatively in a polytopic form, unchanged.

3.2 Simplification of the Augmented System Model for a
Control Without Actuator Fault Detection

For the purpose of comparison with the synthesis in which the actuator fault de-
tection is not taken into consideration, the fault dk is not estimated and hence not
included in the vector zk but instead appended to the disturbance vector ωk . This
modification leads to the augmented model[

xk+1

ek+1

]
︸ ︷︷ ︸
wk+1

=

(
A(xk )−B(xk )K B(xk )K

A(xk )− Ã− (B(xk )− B̃)K Ã−HiC + (B(xk )− B̃)K

)
︸ ︷︷ ︸

A(xk )

.

[
xk

ek

]
︸ ︷︷ ︸
wk

+

(
B(xk ) Gp

B(xk ) Gp

)
︸ ︷︷ ︸

G(xk )

.

[
dk

ωk

]
︸ ︷︷ ︸
ωp

,

(9)

which replaces the use of Eq. (7), when required in the following synthesis.
For the same reason, and also during simulation, the fault dk is then also

removed from ẑk . Therefore, the state observer that replaces Eq. (5), turns into

x̂k+1 = Ã · x̂k + B̃ · uk + HiC · (xk − x̂k ), (10)

with the simplified control law

uk = −K · x̂k (11)

that replaces Eq. (6).

3.3 Polytopic Uncertainty Representation of the Augmented
Closed-Loop System

For control and observer design, the state variables are assumed to be constrained.
By chosen limits, the entries of the system matrix and the disturbance input matrix
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are also bounded, so that a polytopic domain can be determined to enclose the ma-
trices A(xk ) and G(xk ) which belong to the convex combination of nv independent
extremal vertex matrices Av and Gv according to

[A(xk ),G(xk )] ∈
{

[A(ζ),G(ζ)] =

nv∑
v=1

ζv · [Av ,Gv ];

nv∑
v=1

ζv = 1; ζv ≥ 0

}
. (12)

Here, ζv are the scheduling variables.
During this formulation, identical dependencies in the matrix entries should be

identified to reduce the conservativeness of the polytopic model as far as possible.

4 Optimization of the Control and Observer Gains

In the paper [4], the authors have developed an iterative LMI tool that is briefly
explained in the following sub-sections. It serves as the basis for the optimization
of the gains of the fault-tolerant control structure developed in this paper.

4.1 Eigenvalue Domain Assignment

To realize certain closed-loop characteristics (such as the settling time or maximum
overshoot) in combination with robustness against the uncertainty represented by
the previous polytopic model, an eigenvalue domain assignment is performed for
all extremal system matrices introduced in Eq. (12) with the help of a common
Lyapunov function candidate.

Figure 3: Desired stability domain in the interior of the unit circle of the complex
z -plane.

The parameterized sub-region inside the unit circle of the z -plane with radius
r and midpoint α, as illustrated in Figure 3, can be expressed according to [4] by
the LMI condition [

L (Av − αI)
(Av − αI)T r2P

]
� 0, v = 1, ...,nv . (13)
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Here, the positive-definite matrix P = PT is a free decision variable and param-
eterizes a common Lyapunov function for all realizations of the polytopic model.
Its inverse, is expressed in terms of P−1 � 2P̂−1 − P̂−1PP̂−1 =: L. This approxi-
mation has been obtained by a linearization approach using a first-order Neumann
series, cf. [3].

In the absence of stochastic noise, a successful solution of Eq. (13) ensures
asymptotic stability of the observer-based closed-loop control structure. This solu-
tion can be obtained by means of the first algorithm in [4], in which the matrix P is
updated in each iteration step l . Ending with admissible values for rend (typically
a predefined value) and α, leading to stability domains in the interior of the unit
circle, a preliminary controller and observer design is obtained.

4.2 Desensitization Towards Noise

In the presence of stochastic noise, the solution of Sec. 4.1 is improved in the sense
of desensitization towards noise. For that purpose, the discrete-time version of the
Itô differential operator has been used to expand the Lyapunov conditions and to
express the size of the domain around the equilibrium for which stability cannot
be proven due to noise excitation. After some mathematical reformulation, an
iteration rule for the optimization task has been derived in [4] that uses a cost
function subject to LMI constraints in the form

min J =

nv∑
v=1

trace{N}
det(−M̂v )

, (14)

with

P � 0, (15)

N � 0, (16)[
L Gv
GTv N

]
� 0, v = 1, ...,nv , (17)

[
L (Av − αI)

(Av − αI)T r2P

]
� 0, v = 1, ...,nv , (18)

and M̂v = ÂT
v P̂Âv−P̂, where the optimization variables β1, β2, and β3 introduced

in Eq. (2) are included as further decision variables. The free matrix variable N
is automatically determined by means of an LMI solver so that N � GTv PGv holds
for all v = 1, ...,nv .

In all expressions in this subsection, the symbol (̂.) means the updated variable
from the previous iteration.

Note that a successful minimization of the cost function in Eq. (14) leads to
a reduction of sensitivity of the closed-loop system against noise, as it has been
originally derived in [10], [11], and [4].
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4.3 Summary of the Design Procedure

The procedure to find suitable controller and observer gains and to optimize their
numerical values according to the desensitization criteria described in the previous
subsection is summarized in the following Nassi-Shneiderman diagram.

Construction of the nonlinear system model Eq. (1)

Derive the quasi-linear model according to Eq. (2)

Discretization using the explicit Euler method

Build the polytopic domain of Eq. (12) for the aug-
mented closed-loop model in Eq. (7)

Initialization with r = 2 and the step size ∆r = 0.2
and P̂−10 = I, Here: use a fixed value α = 0

while r > rend

Decrease r := r −∆r

Generate Eqs. (2), (7)

Compute the gains K, Hi and Hf , and the matrix
P by solving the LMI in Eq. (13)

Checking the feasibility

Feasible Infeasible

Update P̂ and store the
matrices

Re-increase r := r + ∆r
and reduce ∆r by half

Initialization with the most recent successfully com-
puted matrices obtained from the previous part of the
algorithm

Keep rend and α = 0 fixed and initialize M̂v = I

while trace(Nl) − trace(Nl−1)> 10−7

Generate Eqs. (2), (7)

Optimize the cost function in Eq. (14) subject to
Eqs. (15), (16), (17), (18)

Update P̂−1 and M̂v if an admissible solution has
been found, and store the matrices

Use the final controller and observer gains in the closed-
loop structure shown in Figure 2

Remark. In this work, the construction of the polytopic representation as seen
in the diagram above is made only by a choice of intervals for the state variables.
Uncertainty of the system parameters (e.g. the inertia) can be included analogously,
leading to an increase in the number of vertices.
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5 Alternative Control Parametrization: Extended
Kalman Filter-Based Linear Quadratic Regula-
tor Design

In order to analyze the efficiency of the iterative LMI-based method, an LQR ap-
proach is implemented additionally that uses states and actuator fault estimates ob-
tained from an EKF as a stochastic filter approach applicable to nonlinear systems.
Such an approach does not prove stability in contrast to the iterative LMI-based
approach.

5.1 The Extended Kalman Filter

An extension of Eq. (3) with additive Gaussian system and measurement noise wk

and vk is given as xk+1 = A(xk )xk + B(xk )(uk + dk ) + Gpωk + Wwk

yk = Cxk + vk

dk+1 = dk + Egk ,
(19)

with their expected mean values and covariance matrices µw,k = 0, Cw, µv,k = 0
and Cv. Here, W is the additive disturbance input matrix.

To be able to detect actuator faults, an augmented system model

[
xk+1

dk+1

]
︸ ︷︷ ︸

zk+1

=

[
A(xk ) B(xk )
0(m,n) I(m,m)

]
︸ ︷︷ ︸

Ae(xk )

·
[
xk

dk

]
︸ ︷︷ ︸

zk

+

[
B(xk )
0(m,m)

]
︸ ︷︷ ︸

Be(xk )

·uk

+

[
Gp W 0(n,m)

0(m,1) 0(m,n) E

]
︸ ︷︷ ︸

Gd

·

ωk

wk

gk



yk =
[
C 0(p,m)

]︸ ︷︷ ︸
Ce

·
[
xk

dk

]
︸ ︷︷ ︸

zk

(20)

is formulated by appending discrete-time integrator disturbance models to the orig-
inal state vector, where E is the input matrix of the additive actuator faults and gk

is a noise term representing their dynamics by an additive Gaussian noise process;
Cg is its covariance matrix.

The EKF approach consists of two parts. In the prediction part, the prior mean
and covariance are computed according to[

µp
x,k

µp
d,k

]
︸ ︷︷ ︸
µp
z,k

=

[
A(µe

x,k−1) 0(n,m)

0(m,n) I(m,m)

]
·
[
µe
x,k−1
µe
d,k−1

]
︸ ︷︷ ︸
µe
z,k−1

+

[
B(µe

x,k−1)

0(m,m)

]
· (uk + µe

d,k−1), (21)
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and

Cp
z,k =

[
Ã B̃

0(m,n) I(m,m)

]
︸ ︷︷ ︸

Ãe

·Ce
z,k−1 ·

[
Ã B̃

0(m,n) I(m,m)

]T
︸ ︷︷ ︸

ÃT
e

+Gd ·

 Cω 0(1,n) 0(1,m)

0(n,1) Cw 0(n,m)

0(m,1) 0(m,n) Cg

 ·GT
d .

(22)

In the equation above, Ã and B̃ are, respectively, the nominal dynamics and
input matrices that are chosen in this current paper as the matrices of A(xk ) and
B(xk ) evaluated for the chosen operating point which corresponds to the hovering
state. Here, Cω is the variance of the process noise that reflects the influence of
the rotor speed-dependent nonlinearity in the system model. The superscripts (.)p

and (.)e, respectively, denote the computed prior and posterior values with respect
to the current measurement.

The second part is the update of the predicted mean and covariance in the
innovation stage which starts with the computations of the Kalman gain

Lk = Cp
z,k ·C

T
e · (Ce · Cp

z,k ·C
T
e + Cv)−1. (23)

Then, estimates for the states and actuator faults are obtained with the following
equation

µe
z,k = µp

z,k + Lk · (Cxk −Ceµ
p
z,k ), (24)

besides its corresponding covariance

Ce
z,k = (I(n+m,n+m) − LkCe) · Cp

z,k , (25)

which are both fed back to the prediction part to be used for the next step.

5.2 The Linear Quadratic Regulator

For the control implementation, the mean value of the state estimates obtained in
Eq. (24) is fed back by using the control law

uk = −
[
K I(m,m)

]︸ ︷︷ ︸
Ke

·µe
z,k , (26)

where the controller gain

K = (B̃TSB̃ + R)−1 · (B̃TSÃ) (27)

depends on the matrix S obtained by solving the algebraic Riccati equation

ÃTSÃ− S− (ÃTSB̃) · (B̃TSB̃ + R)−1 · (B̃TSÃ) + Q = 0(n,n). (28)
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The positive-definite symmetric matrices R and Q are the weighting matrices
chosen by a trial-and-error approach for the cost function

J (uk ) =

∞∑
k=1

(xT
k Qxk + uT

k Ruk ) (29)

to be minimized.

6 Simulation Results

This section presents the simulation results of the quadrotor model as shown in
Figure 2 with the nominal matrices corresponding to the hovering state. The
sample time for discretization is set to 1 ms. The initial states are set to π/4 rad
for each angle. As a control goal, the desired hovering state [φd, θd, ψd]T = [0, 0, 0]T

shall be reached.
For the LMI-based approach, the eigenvalue locations are determined by the

predefined sub-circle that is chosen with α as the origin of the z -plane and rend =
0.999. For the LQR, the weighting matrices are chosen as R = diag([2, 2, 2]) and
Q = diag([50, 10, 50, 10, 50, 10]).

The values of the parameters that were used are listed in Table 1.

Table 1: Values of the parameters of the quadrotor model.

Parameter Values
l [m] 0.2
JR [kg·m2] 3.36·10−5

Ix=Iy [kg·m2] 4.85·10−3

Iz [kg·m2] 8.81·10−3

m [kg] 0.5

6.1 Simulation Without Output Noise and Without Detec-
tion of Actuator Faults

In the first stage, the simulation was made without taking into consideration any
disturbances ωk = 0. Moreover, also the detection of the actuator faults was
deactivated. After 3 seconds, an actuator fault occurs, which leads to a deviation
in the yaw torque τψ of −12 Nm and in the pitch torque τφ with −9 Nm.

Figure 4 shows a convergence to the steady hovering state after the initial de-
viation within the first 3 s. At t = 3 s, the occurrence of the actuator fault causes
a deviation with an oscillatory behavior of the roll and pitch angles before ending
in a non-desired attitude and orientation. The same figure shows the temporal
evolution of the roll, pitch, and yaw torques. After the time of 3 s, they show a
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strong oscillation before converging to zero, however, without bringing the system
to the desired goal.
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Figure 4: Regulation of the quadrotor’s attitude without actuator fault detection

6.2 Simulation With Output Noise and With Compensation
of Actuator Faults

To evaluate the robustness against the disturbances, a Gaussian distributed random
process noise was taken into consideration with the standard deviation matrix Ge

in Eq. (4), together with a Gaussian distributed measurement noise with a mean
of 0 and a standard deviation of π

1200 rad. The same actuator fault magnitude as
in Sec. 6.1 is applied in the current section.

The bounds chosen for the angular velocity states specified in rad/s are θ̇ ∈
[−8π, 8π], φ̇ ∈ [−8π, 8π], ψ̇ ∈ [−8π, 8π].

Figure 5 shows a convergence in a short time for the Euler angles even with
the stochastic noise in response to the initial states. The deviations of the angular
velocities caused by the actuator fault remain within the predefined bounds as seen
in Figure 6. The associated control signals are shown in the same Figure.

6.3 Simulation with LQR based on an EKF

With the same noise used for the simulation of the iterative LMI-based method,
and choosing Cω = 5, Cg = diag([10, 10, 10]), Cv = diag([4, 4, 4]), and Cw =
diag([2, 2, 2, 2, 2, 2]) besides initializing the filter with Cd,0 = diag([10, 10, 10]) and
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Figure 5: Regulation of the quadrotor’s attitude in the presence of Gaussian output
noise and actuator faults.

0 1 2 3 4 5 6 7 8 9 10
-30

-20

-10

0

10

20

30

Figure 6: Response of the quadrotor’s angular velocities in the presence of Gaussian
output noise and actuator faults

Cx,0 = diag([80, 50, 80, 50, 80, 50]), a simulation of the attitude response and the
corresponding control signals is obtained.

Figure 7 depicts the convergence of the Euler angles in a smooth way in response
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to the initial states. After the actuator fault at 3s, the state variables converge
within 2s but with a larger amplitude deviation than obtained for the robust LMI
solution. The same Figure shows the corresponding control signals.
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Figure 7: Regulation of the quadrotor’s attitude in the presence of Gaussian output
noise and actuator faults with EKF-based LQR method

In summary, the response of the LMI-based method takes a shorter time to con-
verge compared with the EKF-based LQR. Additionally, dealing with the actuator
fault was better. Due to the fact that the filter gain needs to be recomputed in
the update step of the EKF-based LQR, in contrast to time-invariant gains in the
LMI-based method, the novel approach helps to significantly reduce the computa-
tional effort despite its inherent proof of stability over the operating domain chosen
for the parameterization of the polytopic uncertainty model.

7 Conclusions and Outlook on Future Work

The computation of controller and observer gains taking into consideration actuator
faults, process noise, and nonlinearities has been possible thanks to the developed
iterative LMI approach. In addition to the guaranteed stability, satisfactory time
domain behavior has been achieved by a choice of the location of the eigenvalues
within the z -plane. The resulting time-domain performance outperformed the one
obtained with the EKF-based LQR method which in addition does not inherit a
proof of stability for nonlinear models and includes much more parameters to tune.
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Although the computation for the iterative LMI-based approach is made offline,
attention should be paid to the computational effort. It may turn into an issue if the
order of the closed loop and the number of uncertain parameters become larger. To
overcome such an obstacle, the following paths can be investigated in future work:
On the one hand, the pure polytopic uncertainty model can be replaced by a norm-
bounded one. On the other hand, to reduce the conservativeness of the realizations,
Chebyshev points can be determined for determining tighter enclosures of nonlinear
dependencies. Fundamental work in this direction is published in [14]. Finally,
research on using a flatness-based approach for the computation of a feedforward
control together with a feedback linearization of the nonlinear plant with nominal
parameters is promising to reduce the width of the polytopic domain that needs to
be stabilized by a robust feedback controller.
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