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Abstract

The design task of predictive controllers for uncertain systems is com-
monly formulated on the basis of their kinematic and/or dynamic models.
These models are assumed to be expressed as initial value problems (IVPs)
for finite-dimensional sets of nonlinear ordinary differential equations (ODEs).
If constraints for the admissible state trajectories are formulated, bounds for
these trajectories need to be computed by numerical procedures to obtain
guaranteed enclosures of all possible states at each time step that contain the
solution of the exact IVP-ODEs. Uncertainties in both the initial states and
system parameters are considered in this paper by means of bounded interval
variables. For this kind of system representation, we apply an exponential
enclosure approach to determine guaranteed enclosures of all reachable states.
This approach is embedded in a novel manner into the framework of a guar-
anteed nonlinear model predictive control (NMPC) to acquire optimal and
safe control domains along a receding horizon. The NMPC problem is solved
at each time step considering several constraints which are crucial for the sys-
tem’s safety and stability, namely, bounds on the state trajectories and the
control signals. The capabilities of the combination of the exponential en-
closure technique with the set-based NMPC strategy are illustrated through
simulations using a nonlinear inverted pendulum.

Keywords: exponential enclosure, ordinary differential equations, model
predictive control, guaranteed numerical integration

1 Introduction

Guaranteed numerical integration is a fundamental tool to solve initial value prob-
lems of ordinary differential equations (IVP-ODEs) with uncertain initial conditions
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and parameters in a reliable and validated way1. Providing guaranteed solution
enclosures to these IVP-ODEs is essential for designing and verifying linear and
nonlinear feedback controllers, mainly for predictive control approaches. In the
literature, several validated approaches have been designed for systems with uncer-
tain initial conditions and uncertain parameters to compute state enclosures which
are guaranteed to contain all possible IVP-ODEs solutions (under the assumption
of correct models and correct bounds of all uncertain parameters involved). For
instance, set-valued integration methods exploiting interval Taylor series and Tay-
lor model-based techniques (e.g., the solvers Vnode-LP or COSY VI) were used
for the verification of uncertain systems [9, 15]. Moreover, Runge–Kutta schemes
(implemented in the DynIbex library) have been used to obtain tight state enclo-
sures [1, 2].

Nevertheless, it has been shown that — due to the computational complex-
ity of Runge–Kutta methods, as used in the previous work of the first author [4]
— fast convergence and high accuracy of the computed enclosures are not always
guaranteed for finitely long integration time spans, possibly leading to an excessive
duration to get the IVP-ODEs’ solutions. Similar statements also hold for other
state-of-the-art techniques exploiting interval-based methods for solving IVP-ODEs
in a guaranteed and validated way (e.g., RealPaver [8], CAPD [10]). This leads to
the observation that these solvers may become impractical for the task of control
optimization in an NMPC framework due to their high computation time. In other
words, fast convergence of this kind of solvers cannot be guaranteed over a finite
time and extremely long response times may be exhibited when searching for tight
enclosures of the solutions for the problem and hand. To tackle this issue of the
computational burden, exponential enclosure techniques for IVP-ODE problems
seem to be attractive to remarkably reduce the computing time of validated meth-
ods and to approach real-time capability [18, 19]. Compared to Taylor series or
Runge–Kutta model-based techniques, the exponential enclosure approach allows
contracting the computed state enclosures over time for asymptotically stable dy-
namics, which prevents growing diameters of the interval enclosures [16]. However,
the computed interval bounds may be wider than those determined by alternative,
more complex, solution techniques.

The primary goal of an NMPC strategy is to deploy a plant model to predict
the system behavior along a receding horizon. At each sampling point, the NMPC
technique computes the optimal control input that minimizes a cost function and
satisfies all safety constraints (e.g., bounds for the actuator outputs as well as con-
straints for internal system variables such as position, speed, and acceleration).
Among the existing works, real-time, constrained NMPC approaches with safety
and stability constraints were proposed in [3,6], where all constraints are expressed

1Due to the fact that these integration routines provide guaranteed state enclosures, they are
typically denoted as verified in the literature. Throughout this paper, however, we use the term
validated to point out that the underlying models are approximations to the actual dynamics
for which parameters are determined by means of experimental identification. Therefore, a full
verification of state bounds is not possible but rather only the computation of state enclosures
that contain the true reachable sets with a high level of confidence.



Exponential Enclosure Techniques for the Validated Model Predictive Control 841

in terms of inequalities with respect to the optimization variables. This approach
is based on the exact linearization of the nonlinear model so as to formulate the
optimization problem completely as a quadratic programming task. Such kind of
problem can be handled easily by linear solvers to obtain the optimal control vari-
ables. Nevertheless, most of the existing predictive control techniques assume that
uncertainties, related to internal parameters of the system model as well as to sen-
sor measurements with bounded accuracy, are neglected. To solve this problem,
guaranteed control strategies were developed in recent work to ensure robustness
toward all the uncertainties occurring in dynamic parameters. Despite the capa-
bility to handle constraints in a reliable manner, they need huge time to compute
the state enclosures [4, 14]. The time aspect is especially crucial, because at each
sampling instant a validated NMPC needs to compute optimal and guaranteed sys-
tem inputs along a receding horizon that minimize some interval cost function and
ensure compatibility constraints (such as the aforementioned actuator saturations
and safety constraints on the state trajectories).

Our motivation is to interface the exponential enclosure techniques published
in [18, 19] with the validated NMPC developed in [4], which is based on Runge–
Kutta schemes, to remarkably speed up the solution. The NMPC combined with
exponential state enclosures will allow to speed up the search for admissible control
sequences based on tight enclosures of the dynamic model considering bounded
uncertainties on both initial conditions and dynamic parameters. The goal of the
proposed controller is twofold: First, a branching procedure enables one to find
safe control domains that obey the state constraints and ensure the convergence
to reference intervals. Second, the optimization procedure allows the computation
of an optimal and point-valued control input that will finally be applied to the
system’s actuators.

The remainder of this paper is organized as follows. Firstly, an overview of the
exponential state enclosure technique is given in Sec. 2. Secondly, Sec. 3 introduces
the guaranteed NMPC approach based on interval arithmetic and a validated ex-
ponential state enclosure approach. Thirdly, simulation results and discussions are
reported in Sec. 4, before Sec. 5 gives conclusions and an outlook on future work.

2 An Exponential Enclosure Technique for Com-
puting Guaranteed Solution Enclosures for IVP-
ODEs

Classical numerical integration methods compute approximations of solutions of
IVP-ODEs, however, without guarantees on the accuracy of the approximation.
Thus, verified approaches have been developed that are supposed to compute guar-
anteed enclosures of the solution. Firstly, we give an overview of general validated
numerical integration methods in Sec. 2.1. Secondly, we present the concept of
exponential enclosures in Sec. 2.2. Finally, techniques for stability analysis and an
underlying stabilization of open-loop unstable plants are presented in Sec. 2.3 to
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achieve a cascaded control architecture that allows for using exponential enclosures
efficiently in the frame of NMPC.

2.1 Verified Computation of Enclosures of IVP-ODEs

Consider an uncertain dynamical system defined by the IVP-ODEs
ẋt = f(t,xt,u,p)
x0 ∈ [x0] ⊆ IRn
u ∈ [u] ⊆ IRm
p ∈ [p] ⊆ IRp,

(1)

where the state vector is denoted by xt, the vector of dynamic parameters by

p, and the control vector by u. The sets [x0] =
[
[x10] . . . [xn0]

]T
, [u] =[

[u1] . . . [um]
]T

, and [p] =
[
[p1] . . . [pp]

]T
, expressed as interval boxes, are

respectively the initial condition of the state vector, the interval-bounded input,
and the set of feasible dynamic parameters. This IVP-ODE has a unique solution
xt(t,x0,u,p) at t > 0 since f : R × Rn × Rm × Rp → Rn is continuous in t and
Lipschitz in xt (assuming that u and p are known and constant). For our purpose,
we assume additionally that f is sufficiently smooth, i.e., of class Ck.

Compared to the classical numerical integration for an IVP-ODE problem, val-
idated approaches consist of solving this problem in a complete and validated way
(i.e., each actual solution is rigorously returned and enclosed in a (sufficiently) tight
interval). These methods are commonly based on Taylor series [15] or Runge–Kutta
methods [2]. Basically, the main principle of validated integration methods is to
obtain the tight enclosure of the IVP-ODE problem.

As presented in [1], the purpose of a validated numerical algorithm is to solve
Eq. (1) so as to obtain a sequence of boxes [x0], . . . , [xK ] at the time instants
t0 = 0 < . . . < tK = T . At each guaranteed integration step, it is assumed
that input and parameter boxes ([uj ] and [pj ]) are known to compute the state
sequences. It is achieved in such a way that the inclusion function, denoted by [F],
satisfies the property

[xj+1] ⊇ [F] (tj , [xj ] , [uj ], [pj ]) , ∀j ∈ {0, . . . ,K}. (2)

Such approaches work in two stages at each integration step to compute the
guaranteed solutions. These steps are:

i) Computation of a prior enclosure of the solution [x̃j+1], such that for all t in
the time interval t ∈ [tj ; tj+1], the inclusion property

F (tj , [xj ] , [uj ], [pj ]) ∈ [x̃j+1] (3)

is satisfied. This stage enables proving the existence and the uniqueness of
the solution.
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ii) Computation of a tight enclosure of the state [xj+1] at the time instant tj+1,
such that F (tj+1, [xj ] , [uj ], [pj ]) ∈ [xj+1]. This step makes use of the solution
[x̃j+1] to bound the truncation error, i.e., the distance between the exact
solution and the numerical approximation.

Figure 1: Prior and tight enclosures computed along a single discretization interval
using a validated method.

The tight and prior enclosures calculated along one integration step between tj and
tj+1 (step size hj = tj+1 − tj > 0) are visualized exemplarily in Fig. 1.

2.2 Exponential Enclosure Technique

Guaranteed numerical integration methods aim at computing the state enclosure
sequence (tj , [xj ])j∈N, assuming that the input and parameter boxes [u] and [p],
respectively, are piecewise constant and known for each run of the validated sim-
ulation. To avoid the two-stage evaluation, resulting from a truncated series rep-
resentation of the solution to the IVP-ODE (1), the exponential enclosure tech-
nique [18, 19] is applied to approximate the solutions in a verified manner. It
has been shown that this method may improve the accuracy of the computed state
enclosures while simultaneously reducing the required computation time for asymp-
totically stable systems [18,19].

The dynamic model (1) can be reformulated by considering that the dynamic
parameters are represented by constant intervals, and the input variables are as-

sumed to be included in an augmented state vector, i.e.,
[
xTt uT (xt)

]T
, denoted
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for brevity again as xt with

ẋt = f(xt). (4)

To ensure the (local) asymptotic stability of the system model in the neighbor-
hood of a desired terminal state, we assume — as a prerequisite for the exponential
enclosure approach — that a feedback controller ufb(xt) is included in a cascaded
manner in the control law

u(xt) = ufb(xt) + uff(t) (5)

so that the NMPC effectively computes a kind of feedforward control sequence
uff(t) as shown in Fig. 2.

Reference set-point
[𝐱r]

Guaranteed NMPC

Validated Simulation:
Exponential Enclosures

IVP-ODE
[𝐮1]

IVP-ODE
[𝐮2]

IVP-ODE
[𝐮𝑁p−1]

[𝐔𝑘] = 𝐮1 ×⋯× [𝐮𝑁p−1]

Interval Optimization
Optimal box 𝐔𝑘

⋆

𝐱0

𝐩

𝐮min ; 𝐮max 𝐱min ; 𝐱max

𝑁p

𝑇c

[𝐱𝑘]

Uncertain 
Environment

Plant,
including

LMI-based
pre-stabilization

Sensors

Feedforward

control 𝐮ff

Figure 2: Overall structure of the validated NMPC.

To prevent the growth of the diameters of the intervals (tj , [xj ])j∈N for asymp-
totically stable systems with a minimum computational effort, the exact solution
x?t can be bracketed by the following exponential state enclosure

x?t ∈ [xe](t) = exp
(

[Λ]t
)

[xe](0) , [xe](0) = [x0], (6)

where Λ represents a yet unknown matrix after a translation of the state space so
that the origin x = 0 corresponds of the system’s (asymptotically stable) equilib-
rium. By choosing [Λ] = diag{[λi]}, i = 1, . . . , n, as a diagonal matrix, its elements
λi need to have negative real parts to describe contracting state enclosures.
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Using the exponential state enclosures (6) and a Picard iteration with the iter-
ation index κ, we obtain

x?t ∈ [xe](κ+1)
= exp

(
[Λ]

(κ+1)
t
)

[xe](0)

= [xe](0) +

t∫
0

f
(

exp
(

[Λ]
(κ)
s
)

[xe](0)
)

ds.
(7)

The differentiation of (7) with respect to time, belonging to the integration interval
t ∈ [0 ; T ], leads to

ẋ?[t] ∈ [Λ]
(κ+1)

exp
(

[Λ]
(κ+1)

[t]
)

[xe](0) = f
(

exp
(

[Λ]
(κ)

[t]
)

[xe](0)
)
. (8)

Assuming a converging iteration with [Λ]
(κ+1)

⊆ [Λ]
(κ)

and, thus, [λi](κ+1)
⊆ [λi](κ) ,

the iteration formula for [λi](κ+1)
can be expressed as

[λi](κ+1)
=
fi

(
exp

(
[Λ]

(κ)
[t]
)

[xe,i](0)
)

exp
(

[Λ]
(κ)

[t]
)

[xe,i](0)
, i = 1, . . . , n. (9)

The guaranteed state enclosure at the time instant T = sup([t]) (the chosen end of
the prediction window) is given by

x?t ∈ [xe](t) = exp
(

[Λ]T
)

[xe](0), (10)

where [Λ] is the final result of the iteration (9). For a suitable step size control
strategy, allowing for a reduction of overestimation in the computed solutions for
systems with non-negligible nonlinearities, the reader is referred to [11, Sec. III.C].

2.3 Design of the Subsidiary Robustly Stabilizing Feedback
Controller

To design a linear, robustly stabilizing subsidiary feedback controller

ufb(xt) = −Kxt, (11)

we assume that the state equations

ẋt = f(t,xt,u,p) (12)

can be reformulated into a quasi-linear form

ẋt = A(xt,u,p)xt + B(xt,p)u. (13)

As in the previous subsection, we assume for simplicity of the notation that
the state space has been translated so that x = 0 corresponds to the desired
equilibrium.
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Then, a robust linear state feedback controller (11) can be designed by a linear
matrix inequality approach on the basis of the Lyapunov function candidate

V (xt) = xTt Pxt (14)

with the yet unknown symmetric, positive-definite matrix P = PT � 0. For
asymptotic stability, the property

V̇ (xt) < 0 (15)

needs to hold for xt 6= 0. To ensure a minimum decay rate γ, this inequality can
be replaced by

V̇ (x) ≤ −γV (x) with γ > 0. (16)

Assuming further that the quasi-linear system model can be embedded into a
convex polytopic uncertainty representation

D =

{
[A(ξ),B(ξ)] | [A(ξ),B(ξ)] =

nv∑
v=1

ξv [Av,Bv, ] ;

nv∑
v=1

ξv = 1; ξv ≥ 0

}
, (17)

the bilinear matrix inequalities (v = 1, . . . , nv)

(Av −BvK)
T

P + P (Av −BvK) ≺ 0 , P � 0 (18)

need to be solved for the state-independent gain K to ensure asymptotic stabil-
ity according to (15). This is typically done by means of a linearizing change of
variables such as described in [21].

The more strict condition (16) is satisfied if

(Av −BvK)
T

P + P (Av −BvK) ≺ 2γP , P � 0 (19)

holds.
A drawback of this polytopic model approach is a certain degree of conservative-

ness introduced by treating all matrix entries as independent. This can be reduced
by a norm-bounded uncertainty representation similarly used in [17].

In this case, robust asymptotic stability is achieved by satisfying the matrix
inequality[

AnomP−BnomZ + PAT
nom − ZTBT

nom PNT + ZTDT
12

NP + D12Z −µI

]
+ µ

[
MMT MQT

QMT QQT

]
≺ 0

(20)

with Anom = mid([A]),Bnom = mid([b]),N = rad([A]),M = I,Q = 0, D12 =
rad([B]),P � 0,K = ZP−1, where [A] and [B] represent interval enclosures of the
respective matrices in the polytopic model (17).
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Remark. A means for further reduction of conservativeness, to be investigated in
future work in combination with the validated NMPC, is the use of parameter-
dependent Lyapunov function candidates, leading typically to larger regions of at-
traction for the equilibrium to be stabilized. In addition, it can be expected that
parameter-dependent Lyapunov functions will allow for a more efficient use of the
control effort [21]. Moreover, approaches for introducing hard saturations of the
control signal and its variations rates as described in [13] can be investigated in
future work.

Using the linear matrix inequality approach above, the following conclusions can
be drawn:

• The feedforward term uff is mandatory for states outside the polytopic do-
main (17), where the stability of the feedback controller is not proven and
this control part is, therefore, deactivated;

• The feedback controller can be activated as soon as states corresponding to
the interior of the polytope (17) are attained;

• The exponential enclosure approach can be expected to find contracting so-
lutions in the interior of this polytope, especially in combination with the
comparison lemma [12] detailed subsequently.

The comparison lemma can be exploited to compute bounds for the Lyapunov
function V (xt) according to

λmin(P)‖xt‖22 ≤ xTt Pxt ≤ λmax(P)‖xt‖22, (21)

0 ≤ xTt Pxt ≤ xT (0)Px(0), (22)

where λmin(P) and λmax(P) are the smallest and largest eigenvalues of the matrix
P = PT � 0.

The enclosure (21) can be refined to

λmin(P)‖xt‖22 ≤ xTt Pxt ≤ e−γtλmax(P)‖x(0)‖22 (23)

by exploiting the decay rate defined in (16). It immediately leads to the a-priori
state enclosures

‖x‖2 ≤

√
λmax(P)

λmin(P)
e
−
γ

2
t
‖x(0)‖2 (24)

that can always be intersected with the exponential enclosures (6) during the iter-
ative computation of the parameters [λi](κ+1)

.

Remark. Pessimism in this a-priori enclosure can be reduced by a computation of
P after an (approximate) decoupling of the quasi-linear state equations by means
of a suitable change of coordinates.
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Remark. Due to the fact that the validated NMPC approach described in further
detail in the following section performs a bisection of the control intervals, it is
always possible to initialize the exponential enclosures’ iteration formula (9) with
the result obtained for the non-bisected interval. This is an obvious result of the
enclosure property of interval analysis and helps to speed up the iteration procedure.

3 Validated Nonlinear Model Predictive Control

The purpose of this section is to review the work conducted in [4] where a new val-
idated NMPC was developed on the basis of a Runge–Kutta method for validated
integration. The approach uses interval analysis tools to compute a guaranteed
control sequence over a receding horizon, taking into account the bounded uncer-
tainties in the parameters of the dynamic system model and the measured data.
Control intervals are computed in such a way that convergence to the set-point in-
terval is ensured (i.e., xj → [xr], ∀j, which must be included in the interior of the
state box from which the polytopic uncertainty model has been constructed in the
previous section), and all the state and input constraints are satisfied (i.e., xi ∈ [xi]
and uj ∈ [uj ], ∀i, j). In summary, the proposed guaranteed NMPC encompasses
two stages [4],

• Filtering and branching: This first step provides a sequence of guaran-
teed input interval boxes at each time-step k over the prediction horizon Np,
denoted as [Uk] = [uk]×[uk+1]×. . .×[uk+Np−1]. Branching and filtering pro-
cedures allow the computation of safe input intervals along the receding time
horizon that satisfy the state constraints (i.e., ∀j, [xj ] ⊆ [xmin,j ,xmax,j ], where
xmin,j and xmax,j are the bounds for the admissible domain for each state vari-
able) and ensure convergence to the reference interval2 (i.e., [xk]→ [xr]).

From the methodological point of view, the state limits should be verified
at each validated simulation of the dynamic model using the exponential
enclosures technique. If these limits are not satisfied, the initial input interval
is further bisected and the validated simulations are relaunched. Subintervals
after the bisection are kept according to the following criteria for selection:

1. A branch leading to unsafe states is eliminated, i.e., if

[xt+Tc
] ∩ [xmin ; xmax] = ∅;

2. A branch leading to a state far from the reference interval [xr] is also
eliminated. The same holds for candidates partially having a cost greater
than the other branch(es).

2Although only temporally constant reference values are discussed subsequently, time-varying
reference trajectories [xr,k] can be handled by the same algorithm.
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• Interval optimization: The optimization algorithm computes safe inputs
over a finite time horizon by minimizing a newly formulated interval objective
function. This function aims to reduce the norm of the input intervals and
the error between the predicted and reference outputs as much as possible,
resulting in the computation of a sub-optimal input box [U]?k.

4 Application: Control of an Inverted Pendulum

4.1 Dynamic Modeling of the Inverted Pendulum

The control framework based on validated simulations presented in this paper is
applied to the stabilization of the nonlinear inverted pendulum shown in Fig. 3. The
pendulum is actuated by a DC motor whose angular speed is the input variable.

Following an Euler–Lagrange equation-based modeling procedure as described,
for example, in [7], the dynamics of the rotary nonlinear inverted pendulum can be
described by the ODEs

ẋ1 = x2,

ẋ2 =
1

∆

{
− µ3 cos(x3)

(
µ1 sin(x3) cos(x3)x2

2 + Γ2 − µg sin(x3)
)

+

µ4

(
µ3 sin(x3)x2

4 − µ1 sin(2x3)x2x4 + Γ1

)}
,

ẋ3 = x4,

ẋ4 =
1

∆

{(
µ1 sin(x3)2 + µ2

) (
µ1 cos(x3) sin(x3)x2

2 + Γ2 − µg sin(x3)
)
−

µ3 cos(x3)
(
µ3 sin(x3)x2

4 − 2µ1 cos(x3) sin(x3)x2x4 + Γ1

)}
,

(25)

where x1 and x2 are, respectively, the angular position and velocity of the rotatory
arm. Likewise, x3 and x4 are the angle and angular velocity of the pendulum arm.
All of these variables are summarized in the state vector x = [x1, x2, x3, x4] ∈ R4;
Γi = fviẋi is the viscous friction torque at the joint i. Finally, the following state-
and parameter-dependent terms are included in the system model (25)

∆ = −µ2
3 cos(x3)2 + µ1µ4 sin(x3)2 + µ2µ4,

µ1 = l2p

(mp

4
+M

)
, µ2 = l2a(mp +M) +

Jm

N2
g

+ Ja,

µ3 = lpla

(mp

2
+M

)
, µ4 = l2p

(mp

4
+M

)
+ Jp, µg =

(mp

2
+M

)
lpg,

where ma and Ja denote the horizontal arm’s mass and its inertia, respectively.
Similarly, the mass and inertia of the pendulum arm are given by mp and Jp; M is
the mass of the load attached to the pendulum arm, Jm is the DC motor inertia,
and Ng its gear ratio; la, lp, and r0 are the system’s geometric parameters, and g
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is the gravitational acceleration. A guaranteed identification of these parameters
was performed in [5] with the help of interval methods. The corresponding results
are summarized in Tab. 1.

r0

la

lp

~z1

~y1

~z0

~x0

~x2

~z2

~x3

~z3S0

S1

S2

S3

S0

S1

S2

S3

Figure 3: Left: Definition of links frame (configuration x1 = x3 = 0◦); Right:
representation of the nonlinear inverted pendulum.

Table 1: Interval bounds for the dynamic parameters of the inverted pendulum [5].

Symbol Interval Enclosure Measurement Unit

µ1 [9.63318 · 10−4 ; 1.22604 · 10−3] kg ·m2

µ2 [2.19585 · 10−3 ; 2.79471 · 10−3] kg ·m2

µ3 [7.227 · 10−4 ; 8.833 · 10−4] kg ·m2

µ4

[
1.08271 · 10−3 ; 1.37799 · 10−3

]
kg ·m2

µg [6.24299 · 10−2 ; 8.44641 · 10−2] kg ·m2 · s−2

fv1 [0.043012 ; 0.13002] Nm · s · rad−1

fv2 [0.000454 ; 0.001174] Nm · s · rad−1

4.2 Simulation Results

In [4], the NMPC was implemented for the following settings: prediction horizon
Np = 10, control sampling time Tc = 16 ms and the final time of the simulation
Tf = 0.3 s. The safety limits of all state variables are: x1 ∈ [−2π ; 2π], x2 ∈
[−52.4 rad s−1 ; 52.4 rad s−1], x3 ∈ [−2π ; 2π], x4 ∈ [−100 rad s−1 ; 100 rad s−1];
the DC motor’s torque is limited by the constraints τ ∈ [−8.05 Nm ; 8.05 Nm].
The reference interval of the desired pendulum arm is xr ∈ [π− 0.1 ; π+ 0.1]. The
tolerance parameter applied for the bisection procedure is adjusted as tol = 0.25.
Since the filtering and branching algorithm begins from the admissible input domain



Exponential Enclosure Techniques for the Validated Model Predictive Control 851

[−8.05 Nm ; 8.05 Nm], it can lead to approximately 6410 branches with Np = 10.
The interval cost function is computed only in the optimization process using the
weighting matrices Q = diag [1000, 1000, 1000, 1000] and R = 1.

Figure 4: Simulation of the open-loop model using the exponential enclosure ap-
proach. Left: Pendulum angle [x3]; Right: Pendulum arm velocity [x4].

Figure 5: Simulation of the closed-loop model using the exponential enclosure ap-
proach. Left: Pendulum angle [x3]; Right: Pendulum arm velocity [x4].

The exponential enclosure approach is now applied to the following two use
cases:

1. Simulation of the open-loop dynamics (NMPC-based feedforward controller
is switched off) and the pendulum’s free motion shall be stabilized at the
angle x3 = 0;
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2. Simulation of the influence of the subsidiary controller according to Sec. 2.3,
after the NMPC has brought the pendulum arm close to its upright position.

For the simulation, the exponential enclosure technique has been implemented
in the INTLAB library [20]. Figs. 4 and 5 display the open-loop and closed-loop
simulation results of the combination of the exponential state enclosures approach
with the control strategy. In Fig. 4, the length of the simulation time horizon is
limited to half of the prediction window used for the NMPC.

As it can be seen in Fig. 4, the enclosures of the pendulum angle and its velocity,
computed in the open-loop setting, converge to the open-loop stable equilibrium.
Moreover, Fig. 5 shows the closed-loop system behavior, for which the computed
enclosures of the pendulum angle and its velocity have a tolerable growth of pes-
simism over time. As already discussed in Sec. 2.3, future work will address the
use of parameter-dependent Lyapunov functions for the subsidiary control design
to enlarge the region of attraction of the desired equilibrium state and to limit the
control effort by an explicit consideration of input and input rate constraints [13].

5 Conclusion and Future Works

This paper focuses on combining a reliable and validated nonlinear model predictive
control (NMPC) with an exponential state enclosure technique which is advanta-
geous for the simulation of uncertain dynamic systems with provably asymptotically
stable dynamics. The efficiency and robustness of the proposed method were inves-
tigated through several numerical simulations using a nonlinear inverted pendulum.

In ongoing works, we focus on studying the following two issues: firstly, the ex-
tension of the exponential enclosure technique to ellipsoidal state domain represen-
tations, both for real- and complex-valued exponential enclosures, in combination
with the extensions of the subsidiary control law discussed in this paper. Secondly,
the application of the proposed approach on a real system. For the latter, it will
also be required to estimate non-measured system states reliably by means of non-
linear robust observers which exploit interval methods not only to estimate bounds
for the states at a specific point in time but also to reconstruct the influence of
external disturbances.
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