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RISC-V Based Hardware Acceleration of Interval
Contractor Primitives in the Context of

Mobile Robotics
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Abstract

Localization tasks, generally modeled as Constraint Satisfaction Problem
(CSP), are recurring problems in mobile robotics. Known approaches rely on
software libraries which all have their advantages but also their limitations,
among which non-optimal computing performances. This paper proposes a
different approach which consists in extending the RISC-V ISA to provide
hardware support for interval primitives.

Keywords: intervals, contractor programming, RISC-V, IEEE-1788, mobile
robotics, FPGA

1 Introduction

A lot of recurring mobile robotics tasks, such as robust-control or localization, can
be modeled as a Constraint Satisfaction Problem (CSP) and solved by characteriz-
ing the corresponding solution set S. A common way to achieve this is to compute
an inner and outer approximation of S, which is usually done with the help of
contractor algebra and a paving algorithm such as SIVIA [21]. The paver classifies
the search space by recursively calling a contractor to discard parts outside of the
target set. In [7, 15, 20] this formalism is illustrated in real-world robotics examples.

A contractor C for the set X C R" is an operator IR" — IR" which satisfies:

C([x]) C [x] (contractance), (1)
X € [y] = C((x) < C(ly]) (monotonicity), 2)
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C([x]) N X = [x] N X (consistency), (3)

where IR" is the set of axis-aligned boxes of R".

Let C; and C5 be two contractors. The union and intersection operators are
defined as follows:

(C1 N C2)([x]) = C1([x]) N C2([x]), (4)
(C1 U Co)([x]) = Cr([x]) L C2([x]), (5)

where [a] U [b] is the smallest box which contains both [a] and [b].

The members of the robotics community usually rely on the use of existing soft-
ware libraries to implement the contractors required to evaluate solution sets. The
available libraries implement the TEEE-1788 standard on interval analysis [18] to
various extents and define the most common interval primitives (operators, contrac-
tors, ...) for reuse. This paper advocates in favor of a novel approach which adds
support for interval primitives directly in RISC-V hardware. We believe that this
method can be beneficial to solve some of the portability issues occurring in soft-
ware approaches, especially for embedded targets. Another advantage is the ability
to compute with intervals using a tailored speed/precision compromise which is
impossible on general-purpose hardware.

This paper is organized as follows. Section 2 presents a typical mobile robotics
localization problem which is used as a reference throughout the article. Then
Section 3 discusses the benefits of a hardware approach for intervals. Section 4
compares common hardware acceleration techniques while Section 5 presents the
methodology used to create the proof of concept for hardware support of intervals.
Section 6 sums up the obtained results and presents future works.

In the rest of the paper, sets X of R™ will be represented in mathbb font and
intervals [z] or boxes [x] within brackets.

2 State of the art and previous work

Let us consider the following localization problem which will be used for the discus-
sions in this paper. The goal is to solve the CSP which is related to the localization
of a robot (green triangle) using 3 landmarks (red circles) with known positions
(Figure 1). The robot uses its internal sensors to compute the distances d; toward
landmark ¢ with ¢ € {1,2,3}. The coordinate of each landmark is defined by a;
with ¢ € {1,2,3}. Those values are represented by intervals due to measurement
uncertainties. The goal is to estimate the position (z,,y;).

The state vector of the robot is defined as:

X= (xrayr)T (6)
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Figure 1: Localization of a robot using 3 landmarks

and its respective domain as:
[x] = [0, 00] x [0, o0]. (7)

A couple of coordinates (.., y.) is a potential solution if it satisfies the following
constraints (ring equations):

a) (zr — xal)Z + (yr - ya1)2 € d12> (8)
b) (zr — xaz)Q + (yr — ya2)2 € d227 (9)
c) (zr — xas)z + (yr — ya3)2 € d32- (10)

Each constraint gives a corresponding solution sets:

Sy {x € [0,00 | (@ — 2a,)? + (Yr — ¥a,)? € di 2}, (11)
So: {x €[0,00]” | (#r — Tay) + (Ur — Ya)? € d2*}, (12)
Ss: {x €[0,00]* | (#r — Tay) + (Ur — Yas)? € ds”}. (13)

And the solution set for the localization problem becomes:

S=5,N8NS;. (14)

The goal is now to find 3 contractors C1, Cs, C3 which respectively characterize
sets S1,S2,S3 and to perform the intersection of contractors to find S.
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Cy can be computed with a forward-backward procedure [25] such as HC4-
revised by using the set S; AST (Figure 2). Note that throughout the article
forward and backward contractors on operator/function * are respectively defined

as C and a . The resulting contractors can be found in Algorithm 1 and 2.

L+ ]
SN
|54 ] jsar ]

Figure 2: Abstract syntax tree corresponding to S;

Algorithm 1 Algorithm for C,

Funct C—)’l([xr]v [yr]’ [anv [ya1]7 [dl])
: [DistX] = C_([xr], [%q,])
DistY] = C_([yr], [Ya,
{DistX]Sqr] :(%E[Djti])
. [DistY Sqr] = chi([pzsm)
[DistSqr] = sqr([dl])
return [DistX Sqr], [DistY Sqr], [DistSqr]

ll

A v

The following libraries are among the most commonly used in robotics:

e Goualard et al’s Gaol [14]. A C++ low-level interval library which is focused
on providing most of the common reverse operators for backward propagation.

e Chabert et al’s Ibex [4] (IMT Atlantique). A library written in C++ targeting
system solving and global optimization problems using interval arithmetic.

e Nehmeier et al’s libieep1788 [24]. A C++ template library focused on rigorous
implementation of the IEEE-1788 standard.
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Algorithm 2 Algorithm for 81
Funct &([DistXSqr], [DistY Sqr], [DistSqr])

1: [DistX Sqr],[DistY Sqr| = a([DistSqT], [DistX Sqr], [DistY Sqr])
2: [a] = E([DistXSqr] [DistX])

3 [b] = Z([DzstYSqr] [DistY])

4 [2,] = O_([DistX], [w], [7a,))

5 [y,] = ﬁ([DzstY s War])

6: return [z,], [y,

e INRIA’s MPFT [29]. A C library implementing interval arithmetic in arbitrary
precision by using MPFR reliable floating-points.

The contractor C7 can be created by implementing Algorithms 1 and 2 using the
simple contractor primitives available for example in the aforementioned software
libraries.

3 Motivations for a hardware approach

The minimal requirement to perform interval computations in an embedded robotic
system is the availability of an hardware floating-point unit (FPU) . The industrial
standard for that purpose is the IEEE-754 [19] which enables a theoretical porta-
bility of the user code to any compliant hardware. However, no guarantee is made
about consistency and the final result will not be bit-consistent across multiple
{hardware, compiler} pairs. This subject has been extensively researched in con-
tributions such as [9, 13].

This lack of consistency is especially problematic for interval computations
which require frequent switches between IEEE-754 rounding modes to perform
accurate interval bounds evaluation (respectively round to —oo and round to +oo
for lower and upper bounds).

Another obstacle lies in the implementation of the interval libraries themselves.
Most of them are built using third-party maths libraries which perform fast and
accurate floating-point evaluation at the expense of portability. It is frequent for
them to inline assembly instructions directly in the C code for optimization but as
a consequence the whole library becomes architecture-locked.

For all the reasons detailed above, we believe that relying on a standard floating-
point architecture is not a valid approach. This paper presents a dedicated hard-
ware architecture to accelerate the most common interval primitives along with
a dedicated compiler. The {hardware, compiler} pair thus tackles the problem
of embedded intervals and presents a proof of concept for a hardware accelerator
targeted at the most commonly used interval primitives.
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3.1 Tailored performances for interval computation

A lot of robotics applications require to repetitively call a contractor to make use
of a short-lived sensor input. This is typically the case of the localization example
introduced in Section 2 where the distances d; are used to estimate the robot
location. Ideally the contraction fixed-point must be reached before obtaining new
inputs which implies to find a compromise between execution speed and result
precision. These factors are known to be inversely proportional in the context of
floating-point operators [11].

Popular architectures like X86 or ARM use hardware FPUs which are opti-
mized for the IEEE-754 [19] single- and double- precision floating-points. While
these formats are good “one size fits all” trade-offs for most of general-purpose
computations, they can become a limiting factor in some niche applications such
as interval arithmetic. The main reason is that they impose predefined ranges and
precisions for floating-point numbers while real-world problems can have varied
requirements.

Another drawback is the overall hardware complexity induced by general-pur-
pose FPUs which are required to support all the rounding modes defined in the
IEEE-754 standard. An FPU tailored for interval arithmetic, on the other hand,
would only require two rounding modes for bound computations (round to —oo and
~+00), thus leading to a lower hardware complexity and power consumption.

3.2 Guaranteed computation at hardware level

Interval arithmetic is especially suited to solve hard non-linear problems in a reliable
and efficient way. The IEEE-1788 standard [18] specifies the behavior of interval
operators using various flavors which are all organized as depicted in Table 1. From
now on, we consider only the set-based flavor which is the most commonly used in
robotics.

The mathematical layer describes how interval operations work. It also intro-
duces the notion of decorated intervals comprising a bare interval and a decoration.
The latter are meant to implement the standard way of dealing with non-nominal
cases during computation. The available decorators for the set-based flavor are
presented on Figure 1 and their inclusion relationships are as follows:

com C dac C def C trv D ill. (15)

In a previous article [10] we had shed light on a recurring contractor arithmetic
bug which occurs when a function evaluates an interval that is not or partially in its
domain of definition. The solution proposed was to mark the incriminated interval
with a ¢ flag, perform the forward propagation normally and execute a modified
backward propagation which takes the flag into account. A solution in the spirit
of IEEE-1788 would be to create a decorator “out-of-domain” (ood) to handle this
non-nominal case but doing this without breaking the existing logic depicted in
Formula 15 is hard.
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Table 1: The set-based flavor decorators (extracted from [18])

Value | Short description Property | Definition

com COmMINon Peonl fr@) | @ is a bounded, nonempty subset of Dom(f); f is
continuous at each point of x; and the computed
interval f(x) is bounded.

dac defined & continuous Paac( fox) | @ is a nonempty subset of Dom(f), and the re-
striction of [ to @ is continuous;

def defined paet( fo@®) | @ is a nonempty subset of Dom( f);

trv trivial peeol fo®) | always true (so gives no information);

i1l ill-formed pinl fox) | Not an Interval; formally Dom(f) = 03,

The ¢ flag information could be added to the standard and could be directly
used by the hardware implementation.An example of an interval encoding using the
¢ flag is depicted in Figure 7. This approach comes with a lot of freedom since few
things are currently defined in the standard regarding the bit-level representation
of intervals (decorated intervals, empty set, NaN handling,...).

4 Evaluation of hardware acceleration strategies
for interval arithmetic

4.1 Affordable hardware prototyping with FPGA

The application specific integrated circuit (ASIC) technology is nowadays the indus-
trial standard to produce high-end chips. This design process allows to reach the
highest performances at the price of tremendous costs in development and man-
ufacturing facilities. The resulting chips are made affordable for customers only
through mass-replication which lowers the per-unit cost. As a consequence, this
technique is not suitable for hobbyists or small research teams who operate with
tight budgets and produce only a few prototypes to evaluate the performances of
a specific design.

A solution for this audience lies in the field programmable gate array (FPGA)
technology which comes at much affordable prices. While ASICs operate directly at
transistor level, FPGAs expose an array of interconnected logic cells which contain
the digital building blocks for more advanced logic (Figure 3). The desired behavior
of the user logic is described through hardware description languages (HDL) such
as VHDL or VERILOG which are also widely used in ASIC field. With the help
of dedicated software, called synthesizers, the user can modify the connections
between cells to match the HDL code. This process can be repeated any number
of times and allows incremental development whereas ASICs chips are etched once
and forever. Table 2 briefly compares both technologies.

From now on, any hardware design mentioned in this paper refers to the pro-
duction of HDL code for synthesis on an FPGA chip.
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Figure 3: FPGA reconfigurable network and content of a logic cell [6]

Table 2: Comparison of FPGA and ASIC

FPGA ASIC

Design flow

Reconfigurable circuit
(suitable for prototyping)

Permanent circuitery
(no room for error)

Design input HDL HDL
Ent ¢ Low High
niry cos (from 100 $ to 10k dollars) | (typically millions of dollars)
Typical use Prototyping of a few units Mass-production
Energy .
. Higher than ASIC Lower than FPGA
consumption
Frequencies Lower than ASIC Higher than FPGA

Analog designs

Not supported.

Supported
( eg transceivers ...).

4.2

Full hardware equation mapping strategy

FPGA are very efficient at implementing highly specialized circuits for niche appli-
cations that no manufacturer would mass produce for cost reasons. There are no
theoretical issues in translating a set of equations into a dedicated circuit, this ap-
proach is very FPGA compliant and has been done very often in literature [8, 12, 16].

While the equations from a contractor such as C; are no different and could be
implemented in hardware with great performances, this solution will not be the
preferred one as the main focus is made on re-usability, ease of prototyping and
costs.

Mapping equations from contractors into efficient hardware confronts the de-
signer with difficult FPGA problems such as optimizing the timing and pipelining of
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a big combinatorial circuit. The slightest modification of the input contractor (like
adding an angular measurement for the landmarks) would require to re-engineer
the circuit from scratch and face those difficulties again. In these conditions, it is
difficult to imagine that an interval user would be skilled enough both in HDL and
in hardware development to be really autonomous with this solution. Moreover,
it is frequent to see evolutions in input contractors during the development of a
robotic application.

Another drawback of this method is related to high hardware resource con-
sumption. A circuit with no logic folding would require one instantiation for each
contractor primitive in the target contractor. For example, Algorithm 1 (forward
contraction from C1) performs 3 square contractions which require duplicated logic.
The amount of available hardware resources on a typical FPGA is limited, especially
on the low-end and affordable ones. The use of this technique should be reserved
to either simple contractors (for which the need of an hardware implementation is
dubious) or for production-oriented synthesis on high-end boards.

4.3 Coprocessor strategy

This solution is an alternative to exposing the hardware directly as it was done
in previous technique. The user communicates with a hardware device using a
software abstraction. In general-purpose computing, this paradigm is often imple-
mented using a coprocessor which performs the computation jobs requested by the
main Central Processing Unit (CPU). For example, this is the computation model
adopted in modern Graphic Processor Units (GPUs) where graphic pipeline op-
erations are transferred to a PCI device with the help of APIs such as CUDA or
OPENCIL.

This technique suits interval computation and a FPGA could be used as a co-
processor to expose data parallelism (SIVIA boxes for example) in a GPU fashion.
While this system is theoretically the best compromise between re-usability and
performances (logic folding and hardware parallelism), it will not be studied fur-
ther in this paper as it implies too much complexity for a first approach to hardware
intervals. Several problems must be solved to achieve this goal which are beyond
building an efficient interval core. The designer must indeed organize the commu-
nication between several core instances (for parallelism), optimize host to device
communications and produce an efficient compiler.

4.4 Instruction set extension of a general purpose cpu

The two previous subsections have raised the importance of logic folding to lower
the hardware complexity and resources utilization. This new strategy aims at
adding interval operators directly in the main CPU. An Instruction Set Archi-
tecture (ISA) defines the supported assembly instructions and their behaviour in
an implementation-agnostic way to guarantee binary compatibility between sev-
eral chip manufacturers. Popular ISAs come with compiler support for high-level
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languages such as C thus allowing the development of general-purpose software
libraries (libc,...).

This paper aims at extending an existing ISA to support a cleverly chosen set of
hardware interval primitives. The main benefit is to produce more efficient libraries
that make use of hardware interval instructions instead of the general-purpose ones
(Figure 4). This operation requires both the modification of the CPU (circuit) and
the compiler (to use the new instructions).

In practice, there is no official mechanisms to alter mainstream CPUs from
brand such as INTEL, AMD or ARM to inject new hardware instructions. First
and foremost, their architecture design is extremely complex (gate-level design)
and the manufacturing process requires industrial tools which are far beyond the
budget of hobbyists. Additionally, the corresponding ISAs are distributed under
proprietary licenses which prevent any legal modifications. Finally, as older ISAs
such as X86 have very limited available opcode space remaining, manufacturers are
reluctant to add new instructions to the standard unless there is a major consensus.

Custom compiler

Supported instructions o Contractor library

with support of

Compilation Binary hardware intervals

Intervals

Contractor library

(source code) Standard compiler

Compilation

______ Contractor library

Supported instructions
Binary with only

generic instructions

Figure 4: ISA and software stack modification

5 Design of a RISC-V interval custom extension

5.1 The RISC-V standard

The RISC-V standard brings some solutions to the aforementioned problems. Con-
trary to X86/ARM, it is an open and free ISA [31] whose specification started in
2014 as a purely academic project carried out by the university of Berkeley. As a
consequence, anyone is free to implement a core which follows RISC-V standards
without paying royalties to any third-party. The main philosophy behind RISC-V
is to promote a simple processor model featuring a load-store micro-architecture
typical of Reduced Instruction Set Computer (RISC) in opposition to the Complex
Instruction Set Computer (CISC) adopted by X86 processors. The performances
and overall simplicity of RISC-V design has gained traction in the last years for
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low-power /embedded applications in various fields such as neural-networks [22],
cryptography [5] or in our case robotics [32].

RISC-V Instruction Set Architecture

Compressed M Integer multiplication
¢ and division
Dynamically A Atormiic operations
User ISA translated ]

languages

Spe<:|flcat|on Transactional T ] Floating point - single (F),
memofy F D Q double (D), quad (Q) precision

Base integer

Packed SIMD P Vv Vector operations
User-level N
inferrupts L Decimal floating point

B Bit mamipulation

Machine level
Privileged ISA I:I Frozen

Specification
p Supervisor level Hypervisor D Draft

D Reserved

Figure 5: The standard extensions [28]

The standard provides no hints about processor implementation but enforces
several design characteristics about the ISA:

e The ISA is designed with modularity in mind. Any RISC-V implementation is
composed of a mandatory base ISA (named I) and a number of ISA extensions
(identified by a letter). The aim is to allow the user to build a custom
processor perfectly tailored for a specific need. All the extensions currently
specified in the standard are displayed in Figure 5. A RISC-V core can be
described using a naming convention which consists in RV + the register
width (in bits) and the supported extensions. For example, a RV32IMFD is
a 32 bits core implementing extensions I (base), M (integer multiplication),
F (single-precision floating point support) and D (double-precision floating
point support).

e The ISA specifies the required registers for each extension as well as their
width. For example, base extension (I) comes with 32 registers of width 32
or 64 (depending on the chosen implementation).

e The ISA can be extended with custom extensions to add application-specific
operators.

Another strength of the standard lies in its very rich software ecosystem. The
user can access a fully-fledged GCC compiler with a dedicated RISC-V toolchain
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which takes into account which extensions are actually available in the core to
produce optimized binaries.

5.2 Objectives and virtual prototyping

The paper will use the RISC-V standard as a way to demonstrate the feasibility of
adding hardware support for intervals and tackle real-world robotic problems. A
complete strategy would be as follows:

e Due to the overall simplicity of the standard, it is possible to synthesize an
HDL description of a RISC-V core on a middle range FPGA. A lot of core
designs can be found in various configurations either in the literature such as
[26, 23] or bought from Intellectual property (IP) vendors such as Sifive.com.
This allows to build a baseline effortlessly and evaluate the performances on
the localization problem given in section 2 with only the standard instructions.
The target core configuration is set to RV32IMAFD for the reasons exposed
in Section 5.3.

e After the initial performance measurement, we take advantage of RISC-V
extensibility to add support for a new extension geared toward interval com-
putation named zinterval. Two major tasks must be done to achieve this
goal. The first one is to implement the xinterval instructions in hardware
(using an HDL) and to integrate them in the base design synthesized on
FPGA (Section 5.3). The second one consists in adding support for instruc-
tions in the compiler. To this end, we rely on the available RISC-V GCC
which has also been designed with extensibility in mind and allows to define
new instructions easily (Section 5.4).

e Evaluate the performances on the localization problem given in Section 2 with
the new instructions/compiler and compare with previous results.

The hardware design of a RISC-V extension is a complex topic which demands
an extensive knowledge of the underlying micro-architecture and raises various op-
timization trade-offs. This has been done in literature in works such as [3, 28] and
[2]. As a first step we wanted to prove that intervals could be added to RISC-V
ISA in an efficient way without worrying too much about hardware implementa-
tion. This goal can be achieved through Virtual Prototyping (VP) which allows
functional evaluation. This approach is often used in system design [1, 17, 27]
to decrease development times and help in the upcoming Register Transfer Level
(RTL) verification step. The development of hardware primitives in an HDL and
its integration is a RISC-V core is left as future work and will be the main topic of
a next article.

The VP used in this study is organized as depicted in Figure 6. The host
computer runs a simulation program where a robot tries to estimate its location
using 3 landmarks with fixed coordinates (box (3) on Figure 6). At each simulation
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step, the distance measurements between the robot and each landmark are sent
in the memory of a simulated RISC-V core (box (I) on Figure 6). The processor
simulator is another program written in C++ which aims at achieving functional
emulation of a binary code execution up to the assembly level. It implements the
required RISC-V standard extensions and winterval instructions and is able to
execute a binary code compiled with the custom GCC presented in Section 5.4.
Practically, the simulated core runs an implementation of Algorithms 1 and 2 from
section 2 implemented with zinterval instructions instead of traditional floating-
point.

5.3 Design principle of the xinterval custom extension

The simulated core (I) from Figure 6 is defined by RISC-V standard as a
RV32IMFED. It implements the following standard extensions and registers:

Table 3: Extensions used in the simulated core

Letter Name Number of instructions
I Base Integer 40
M Integer Multiplication 8
F Single-precision floating-point 26
D Double-precision floating-point 26

Table 4: Registers used in the simulated core

Names Characteristics Number
To-T31 32-bit integer register 32
fo-fs1 | 32-bit floating-point register 32

The simulated core relies on standard extensions F and D which bring dedicated
registers and instructions (Tables 2 and 3) to enable floating-point support respec-
tively in single (32-bit) and double (64-bit) precisions. An interesting feature of the
RISC-V standard is the ability to handle 64-bit floating-point numbers on a 32-bit
processor (identified by RV32xxx) by working on pairs of 32-bit floating-point regis-
ters. The main idea behind zinterval integration is to fit the interval representation
into one of the aforementioned register, to take advantage of the standard F/D in-
structions to handle load/store operations and to develop the missing HDL logic
to perform interval computations. Section 3.1 recalled that a hardware approach
allowed to tailor the performances according to the needs of a specific application.
For intervals, this translates into the ability to configure the floating-point format
used to encode the bounds of an interval instead of forcing a sub-optimal IEEE-754
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Figure 6: The RISC-V evaluation testbench
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format. A direct consequence is the impact on performances in matter of latency,
resource utilization and frequency of the resulting hardware design which allows to
address a wide range of applications and targets.

In the particular context of RISC-V integration, the interval representation
needs to fit a 64-bit double register. We made the choice to use the interval rep-
resentation depicted in Figure 7. Here, a bound is encoded using 31 bits with a
7 bits exponent field (while 8 are used in IEEE-754 single precision). Practically,
this reduces the range of representable numbers (which still remain acceptable for
typical robotics applications) but leaves room for two additional 1-bit flags in the
64-bit data. The empty flag marks an empty set and the ¢ flag is applied to intervals
which are subject to the phenomenon illustrated in Section 3.2. If an application
requires greater speed at the expense of precision, it would be possible to further
reduce the number of bits used for the bounds, even if this means leaving unused
offsets in the register.

RISC-V float register RISC-V float register
< >« »

63 62 31 30 0

O upper bound (31 bits) L lower bound (31 bits)

exponent | mantissa

exponent | mantissa
(7 bits) (23 bits)

(7 bits) (23 bits)

signfs
(1 bit) A
sign],
(1 bit)

Figure 7: The 64-bit interval representation used in zinterval

The custom xinterval extension contains instructions to perform the forward
and backward contractions of recurring interval primitives. The RISC-V standard
introduces limitations that force instructions to adopt one of the encoding shown
in Figure 8. Most of the time, we use the R-Type which stands for ”register
instruction” and encodes a destination register (rq) and two source registers (rq
and r9). Fields opcode, functs, and funct; are used to discriminate between two
R-Type instructions and send them to the right portion of the logic circuit in the
processor. For interval primitives with two inputs (addition, ...) the associated
backward contractor must have 3 inputs (see Table 5) which forces to use the R4-
Type which is a sub-case of R-Type where the funct; is partly replaced by a third
source register r3. To ease the explanations, instruction formats used in this section
will be named using RISC-V GCC terminology (Section 5.4/Table 5).

The general design philosophy used in zinterval will now be reviewed through
2 examples:

The addition is a case of a two inputs arithmetic operator for which zinterval
instructions are summed up in Table 6. The forward contractor performs a simple
addition using the input interval operands saved in registers r41,r52 and stores the
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Table 5: An extract of GCC terminology for instruction fields

Mnemonic Meaning

D Fp destination register

S Fp source register 1

T Fp source register 2

R Fp source register 3

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

| funct7 [ rs2 [ rsl [ funct3 | rd [ opcode | R-type
| imm[11:0] [ rsl1 [ funct3 | rd | opcode | I-type
| imm[11:5] ‘ rs2 [ rs1 [ funct3 | imm[4:0] [ opcode | S-type
[imm[12] | imm[10:5] | rs2 [ rsl [ funct3 [imm[4:1] [ imm[11] | opcode | B-type
| imm[31:12] | rd | opcode | U-type
[ imm[20] | imm[10:1] [ imm[11] | imm[19:12] | rd | opcode | J-type

Figure 8: Legal instruction formats in the RISC-V standard

result in destination register ry. Two corresponding backward-contractors can be
defined to contract each input separately. In robotics, the output of the backward
contraction is often intersected with the corresponding input pre-propagation to
update state variables (z. and y. in Table 3). As a consequence, we made the
choice to optimize this precise case at the expense of an additional register rg3.

Table 6: Instructions linked to operator +.

Instruction | Prototype Type Operation Register
movements
addfwctc ”D,S, T” + forward z=xz+y Td = Ts1 + Ts2
contractor

addbwctcl | ”D,S,T,R” | + backward | zc =z N (2-y) | ra =151 N (rs3 - Ts2)
contractor 1
addbwcte2 | ”D,S,T,R” | + backward | ye =y N (z-x) | rqa =152 N (rs3 - 751)
contractor 2

The principle differs a bit for algebraic and elementary functions, and especially
for those which are not defined everywhere and suffer from the bug recalled in
Section 3.2. The example of the square root illustrates all these issues. The forward
contractor performs a modified version of the square root (sqrt,) which sets the ¢
flag of the output interval when the input is not entirely in the domain of definition.



Hardware Acceleration in the Context of Mobile Robotics 905

The backward contractor evaluates the ¢ flag of the input and performs a mod-
ified version of the backward square root function (sqrt,bw). It works the same
way as the traditional operator but decorates the interval with a iota if the input
is partially in the square root domain of definition. This time, square root required
only one interval input (in 751) so the matching prototype in RISC-V assembly for
forward and backward are respectively ”D,S” and ”"D,S,T”. These operations are
described in Table 7.

Table 7: Instructions linked to function V-

instruction | Prototype Type Operation Register
movements
sqrtfwcete ”’D,S” Square root y = sqrt.(x) ra = sqrt,(rs1)

forward contractor

sqrbwctc ”D,S, T” Square root Tq = Ty =
backward contractor | sqrt.bw(z,y) | sqrt.bw(rsi,rs2)

The custom extension xinterval proceeds in an analog way for all the operators
and algebraic, elementary functions which are often used in robotics applications
(Table 8).

Table 8: Supported contractor primitives in xinterval.

Addition Subtraction | Multiplication | Division
Square root Square Exponential | Logarithm
Cosine Sine

5.4 Modification of the software stack

The GCC RISC-V toolchain is an open-source project bundled as part of the RISC-
V software stack. Support for new instructions can be added by modifying the
binutils module whose purpose is to convert assembly code into an executable
binary. This module is then called by GCC as part of the compilation process as
depicted in (2) in Figure 6. This method is simple because it only requires the
modification of binutils assembler which is a far less complex code base than the
compiler itself.

The encoding of new assembly instructions must be added to the source code
of binutils and satisfy two rules:

e Uniqueness: two instructions cannot have the same encoding to prevent col-
lisions.

e Format: instruction must have one of the legal types presented in Figure 8.
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Let us take the example of two-input forward-contractors of zinterval presented
in Section 5.3. Since they belong to the R-Type, each new instruction must have
a unique {opcode, functs, funct;} combination which does not collide with other
standard instructions. Field opcode acts as a preliminary filter and is encoded
using 7 bits. The standard has officially left some opcode values unused (0xB,
0x2B, 0x5B and 0x7B) by built-in extensions to accommodate custom increments
(Table 9). An opcode can only regroup instructions of same formats due to micro-
architecture limitations but this is not a problem for us since most of our added
operators are R-Type with the opcode value fixed (0xB), all our 2-inputs forward
contractors must have unique { functs, funct;} pairs as depicted in Table 10.

Table 9: The opcode space of the RISC-V standard

inst[1:0] = 711" for RV32

inst[4:2]

000 001 010 011 100 101 110 111

inst[6:5]
LOAD N MISC VM IV

00 LOAD P custom-0 MEM OP-IMM | AUIPC [OP-IMM-32 48b
01 STORE STPQPRE custom-11| AMO op LUL 0oP-32 64b
10 MADD | MSUB NMSUB | NMADD | OP-FP | reserved |lcustom-2 48b
11 BRANCHl JALR reserved JAL SYSTEM | reserved [|custom-3 >80b

e . .
|| Available for custom extensions

Table 10: Examples of forward-contractor encoding in zinterval

instr name | funct; | rso | rs1 | functs | rq | opcode
addfwctc 0000000 | - - 100 - | 0001011
subfwctc 0000001 | - - 100 - | 0001011
mulfwete 0000010 | - - 100 - | 0001011
divfwctc 0000011 | - - 100 - | 0001011

In the source code of binutils, the user can add a relationship between an as-
sembly mnemonic (ie the name of the instruction as written in code) and a machine
code encoding [30]. This information is used by GCC during the compilation pro-
cess GCC to produce efficient machine code from the assembly code.

After the patch, RISC-V GCC is now able to compile the following C code
using our new instructions (Listing 1). The same process can be repeated for all
instructions of xinterval to lay the foundations of a hardware-accelerated interval
library as presented in Figure 4.
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/* interval is defined as a double (64 bits) */
typedef interval double;

/* inline function which uses of xinterval instruction addfwctc x*/
/* inputs loaded from double registers x*/
/* output stored in double register */
inline interval __attribute__((always_inline))
_addFwCtc (interval itvl, interval itv2) {

interval result;;
asm("addfwctc %0, %1, %2" : "=f"(result) : "f"(itvl), "f"(itv2));
return result;

}
Listing 1: Calling addfwctc from C

5.5 Solving the localization problem

In order to solve the localization problem, the robot must compute the intersec-
tion of contractors C7, Cy and C3 using the landmark distance measurements. We
implemented Algorithms 1 and 2 in C with explicit use of xinterval operators to
mimic an embedded program running inside a robot. It was then compiled with
the modified GCC and executed by the simulated core presented in Section 5.2.

(@D on Figure 6 ).

The event simulator shown in (3) on Figure 6 is an external tool which generates
coherent sensor measurements to simulate a trajectory between landmarks. These
data are periodically written to the robot sensor virtual device to be used by the
program running on the ISS. After each localization step, the pose estimate and the
SIVIA box are written to dedicated robot devices for a posteriori analysis. Figure
9 shows examples of localization paving obtained with our virtual prototype.

6 Results and future works

This paper discussed the advantages of using dedicated hardware to perform inter-
val computations in the context of embedded robotics. This approach differs from
the usual one which consists in using software libraries in conjunction to general-
purpose hardware. We took advantage of the RISC-V standard to design a custom
ISA extension regrouping interval primitives such as forward and backward contrac-
tors (Section 5.3). Naturally, the existing software stack and especially the GCC
compiler has been modified to expose the new assembly instructions in a high-level
language such as C (Section 5.4). Finally, we tested the core in a real-world lo-
calization problem using a virtual prototype and performed a successful run of the
Algorithm 1 and 2 as shown in Figure 9 (Section 5.5).

As stated in Section 5.1, the goal of this paper was not to implement a full hard-
ware accelerator but to demonstrate the possibility of handling interval primitives
directly in hardware. The presented virtual prototype demonstrated the model
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Cdisk

Figure 9: Contractors union and intersection (simulated hardware)
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correctness up to the machine code level and is a step toward another refinement
of the model to add the RTL layer (under the form of HDL code).

In future works, the focus will be made on the transition between virtual proto-

type and hardware synthesized on FPGA. The design strategy explained in Section
5.1 will be performed. The main topics are recalled below:

e Synthesis of an existing RISC-V design on a middle-range FPGA. As ex-

plained in Section 5, this has been done several times in literature and a lot
of designs on shelf are available.

Execution metrics such as execution time. number of clock cycles and overall
frequency will be measured on Algorithm 1 and 2 with only the standard
extensions. This process gives a baseline to compare with interval-dedicated
instructions.

Implementation of interval primitives in hardware and integration in RISC-V.
The most challenging part is to implement IEEE-754 arithmetic and algebraic
operators in an HDL such as VHDL. Once again, such a topic has been widely
studied in the literature and the job will be to perform the concatenation of
all this work in a dedicated chip. As we target multi-precision, several design
trade-offs must be explored for these operators which are mainly hardware
resources utilization on FPGA, output frequency and latency.

Characterization of the performances achieved by the hardware acceleration.
We will re-run the Algorithms 1 and 2 (now compiled with xinterval support)
and compare the results through the prism of the metrics defined in Step 2.
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