
Acta Cybernetica 26 (2024) 913–932.

GPU-Accelerated, Interval-Based Parameter

Identification Methods Illustrated Using the

Two-Compartment Problem

Lorenz Gillnerab and Ekaterina Auerac

Abstract

Interval methods are helpful in the context of scientific computing for
reliable treatment of problems with bounded uncertainty. Most traditional
interval algorithms, however, were designed for sequential execution while in-
ternally depending on processor-specific instructions for directed rounding.
Nowadays, many-core processors and dedicated hardware for massively par-
allel data processing have become the de facto standard for high-performance
computers. Interval libraries have yet to adapt to this heterogeneous com-
puting paradigm.

In this article, we investigate the parallelization of interval methods with
an emphasis on modern graphics processors. Using a parameter identifica-
tion scenario in combination with newly developed or enhanced GPU-based
interval software, we evaluate different methods for reducing the size of large
interval search domains. For the first time, algorithmic differentiation can
be used with intervals on the GPU. Different versions of interval optimiza-
tion algorithms are compared wrt. their functionality, run times, and energy
consumption.

Keywords: parameter identification, interval software, parallelization, GPGPU

1 Introduction

Since many decades, interval analysis [27] has been used in the context of scientific
computing for obtaining verified solutions to many problems, for example, in com-
puter graphics or in engineering. One of its advantages is the possibility to quantify
or propagate bounded uncertainty through systems in simulations in a determinis-
tic way. Many of the major programming languages have built-in interval capabil-
ities; over 20 libraries for interval arithmetic alone are available today. With the
emergence of multi-core processors, parallelization of interval methods using well

aUniversity of Applied Sciences Wismar, Germany
bE-mail: lorenz.gillner@hs-wismar.de ORCID: 0009-0007-8244-5810
cE-mail: ekaterina.auer@hs-wismar.de, ORCID: 0000-0003-4059-3982

DOI: 10.14232/actacyb.306774

mailto:lorenz.gillner@hs-wismar.de
https://orcid.org/0009-0007-8244-5810
mailto:ekaterina.auer@hs-wismar.de
https://orcid.org/0000-0003-4059-3982
https://doi.org/10.14232/actacyb.306774

914 Lorenz Gillner and Ekaterina Auer

established libraries such as C–XSC, Boost, or Profil/Bias has been tested in
multi-threaded and distributed systems [11, 23, 28, 35]. However, high-performance
computing industry is moving towards developing specialized hardware to acceler-
ate repetitive tasks, for example, graphics processing units (GPUs), data processing
units (DPUs), or field-programmable gate arrays (FPGAs). Interval software still
has to be adapted to such specific co-processors.

Especially general-purpose graphics processing units (GPGPUs) have inspired
much interest among the scientific community. One part of the reason is their
low cost and high availability compared to conventional supercomputers or large-
scale CPU clusters. The application of GPUs for computations with the focus
on uncertainty has been investigated in [2, 3, 9, 10, 29, 34], just to name a few.
Nonetheless, popular interval libraries cannot typically be used on the GPU directly,
because the co-processors’ architecture differs significantly from that of conventional
CPUs. For example, the switching of rounding modes commonly applied in CPU-
based interval libraries, which has a negative influence on computing performance,
is not necessary on the GPU, since most mathematical operations are available
as specifically rounded versions. Notable examples of custom interval libraries for
the GPU are given in [5, 7, 21]. In this paper, we are interested in the usefulness
of GPUs in the area of interval computations. We extend traditional (sequential)
ideas to the massively parallel computing paradigm of GPUs and apply them in a
classic parameter estimation scenario.

The paper is structured as follows. In Section 2, the basics of the employed
interval techniques are described and software implementing them on the GPU is
highlighted where applicable. In Section 3, parameter identification methods we
implement using the GPU are detailed. In Section 4, we employ the described
methods within our testing procedure relying on the well-known example of a two-
compartment problem and highlight the comparison results. A perspective on the
paper’s findings and an outlook on our further research are in Section 5.

2 Background on Interval Analysis

In this section, we provide a short overview of the concepts from the area of interval
analysis that are applied in the rest of this article. Where necessary, we also
highlight the GPU-based software implementing them.

2.1 Interval Analysis and Algorithmic Differentiation

Interval analysis (IA), formally introduced by R. Moore in 1966 [26], is a powerful
mathematical tool for verified computations, that is, computations with an auto-
matically provided guarantee of correctness. In the context of scientific computing,
IA offers a way to compensate for numerical uncertainty caused by finite floating
point (FP) number representation as specified by the IEEE 754 standard. Instead
of working with a crisp FP number approximating a given real number, IA meth-
ods rely on an interval with FP bounds containing it, propagating this uncertainty

GPU-Accelerated, Interval-Based Parameter Identification Methods 915

through a computation. Almost as a by-product, this approach allows us to propa-
gate uncertainty representable by intervals through systems in a deterministic and
verified way. A real interval x is a closed interval defined as

x = [x, x] = {x ∈ R | x ≤ x ≤ x} ,

whereas a machine interval has to be additionally rounded towards ±∞ to the next
possible representation [⌊x⌋, ⌈x⌉]. For two intervals x and y, arithmetic operations
◦ ∈ {+,−, ·, /} can be defined as

x ◦ y = {x ◦ y | ∀x ∈ x, y ∈ y} ,

while elementary functions ζ(.) (e.g. sinx) can be extended for the use with intervals
as

ζ[](x) = [min{ζ(a) | ∀a ∈ x},max{ζ(b) | ∀b ∈ x}] .
These simple rules can be used to define (naive) interval arithmetic, that is, a way
to evaluate composite functions over intervals directly, without having to solve any
optimization problems as in the equation above. There are more involved interval
algorithms, for example, those for computing verified enclosures of solutions to
(non-linear) systems of (differential) equations.

Although replacing FP values by intervals guarantees an enclosure of the true
result, the results can exhibit overestimation, that is, intervals being wider than
necessary. This behaviour originates from the so-called dependency problem, when
multiple occurrences of the same interval variable are interpreted as separate new
variables, and the wrapping effect, meaning that an interval enclosure of any (multi-
dimensional) shape not identical to an axis-aligned box will always contain some
amount of superfluous data [27].

The ability to perform automatic differentiation (AD) is essential for any form
of (non-naive) interval analysis [14]. For example, the centered form of an interval
extension to the real-valued function g, in the univariate case defined as

g[τ](x) = g(τ) + g′(x) · (x− τ), τ ∈ x , (1)

requires the evaluation of the first derivative of g. The same is true for interval
root-finding algorithms, such as the interval Newton method [5]. The widely used
divided differences method

g′(x) ≈ g(x+ h)− g(h)

h
(2)

yields only an approximation of the true derivative, with the error increasing as the
step size decreases, which makes computations using it less reliable [4]. Although
symbolic differentiation (SD) produces expressions for exact derivatives, it might
exhibit a considerable computational overhead (since it is a top-down approach) or
even increase overestimation when used with intervals [16]. By contrast, automatic
differentiation allows us to compute the value of a function’s exact derivative at a
specific point or its enclosure in a bottom-up approach without errors introduced
by floating point approximation and with less of the overhead. In general, AD falls
into three steps:

916 Lorenz Gillner and Ekaterina Auer

1. Decomposition of g into elementary expressions (e.g., lnx)

2. Differentiation of elementary expressions
(
e.g., ∂

∂x lnx = 1
x

)
3. Application of the chain rule, i.e.

(y(x(t)))′ = ∂y
∂t = ∂y

∂x ·
∂x
∂t = y′(x(t)) · x′(t) , e.g., ∂

∂t lnx(t) =
1

x(t)x
′(t) .

This allows us to differentiate not only mathematical functions, but also entire code
segments containing them. While there is a wide selection of AD libraries available,
some of them even compatible with the GPU [13], interval arithmetic is typically
not supported by these libraries. Although many popular interval libraries can
perform AD of interval-valued functions on the CPU, to the authors’ knowledge,
the Julia language is the only open-source tool offering a straightforward way of
using AD with interval-valued functions on the GPU [31], see Section 2.3 for details.

2.2 Cooperativity

For the so-called cooperative dynamical systems, it is possible to perform set-based
computations taking into account bounded uncertainty in parameters without nec-
essarily applying methods with result verification. Consider an ODE system in the
explicit, autonomous form

y′ = f(y, p), y : R 7→ Rny , p ∈ Rnp , f : Rny+np 7→ Rny (3)

depending on a time-invariant parameter p (that is, p′ = 0) and parameter-invariant

initial conditions y (t0) of the solution function y (that is,
∂yi(t0, p)

∂pj
= 0), possibly

influenced by bounded uncertainty with y(t0) ∈ y0 for a t0 ∈ R and p ∈ p, where
the bold face denotes characteristics described by intervals as introduced in the
previous subsection. The property of cooperativity holds for the system in Eq. (3)
if

∂fi
∂yj
≥ 0 for all i ̸= j, i, j = 1 . . . ny . (4)

Müller’s theorem [25] combined with the property of cooperativity results in the
Smith’s theorem [32] that shows the possibility to quantify the uncertainty in the
system (3) by working with two systems with crisp parameters that are independent
of each other (the bracketing systems)

y′lb = f(ylb, pb) and y′ub = f(yub, pb) (5)

instead of one system with uncertain parameters. Here, pb means that the crisp
values of the lower or upper bounds of the interval p = [plb , pub] are used (not the
values in between them). The true result y(t) lies in the convex hull [y

lb
(t), yub(t)]

of the enclosures ylb(t), yub(t) of the true solutions ylb(t), yub(t) to (5). Considering
such enclosures in each point of time tk of the chosen time grid gives us the verified

flow of the uncertain system (3) over this grid. Good approximations y
(k)
lb , y

(k)
ub

GPU-Accelerated, Interval-Based Parameter Identification Methods 917

to the verified solutions ylb(tk), yub(tk) are obtained by solving the systems in (5)
using traditional floating point arithmetic (e.g., solvers odeint available in the C++
library Boost). This procedure captures the bulk of output uncertainty and can
be useful on the GPU (cf. Section 3.2.1) since appropriate GPU implementations
of verified ODE solvers are not available at the time of writing.

2.3 Software for IA and IA-Based AD on the GPU

Implementation of interval methods in any programming language requires interval
arithmetic as the core component; performing full interval analysis for a practical
problem often needs further functionalities and methods. The C–XSC toolbox [20]
or INTLAB [30], for example, offer additional modules for AD, root-finding and
optimization, but due to their CPU-specific instructions for rounding control, they
are not suited for use on the GPU. One very promising tool for GPU computations
involving interval-based AD is the Julia language, because its meta-programming
approach allows for generating hardware-specific instructions from generically for-
mulated source code. In [31], it was demonstrated that it was indeed possible to
compute derivatives of interval functions for both the CPU and GPU, albeit with-
out tight-as-possible rounding and full support for elementary functions. However,
the focus of this paper is on native C++ implementations, because the comfort of
Julia’s generic programming comes at the price of lengthy compile times.

The Compute Unified Device Architecture (CUDA) is the programming frame-
work for NVIDIA-manufactured GPUs. A basic library for interval arithmetic on
CUDA-compatible GPUs was presented in [7]. This library has been extended by a
selection of elementary set-based functions in [8]. While arithmetic operations such
as addition are available in different directed rounding modes in CUDA C++, the
same is not true for trigonometric and other elementary functions. Their results,
therefore, need to be rounded to the next and previous FP number if the simplest
kind of enclosure is to be obtained. Hence, enclosures produced by the GPU are
in some cases wider than they would have been on the CPU. We use our own,
enhanced version of this interval library for all interval computations in this paper.

To use interval methods requiring derivatives, programmers are required to pro-
vide all necessary derivatives directly in the source code at the moment. To enable
AD for these libraries, we ported the forward mode of the well-established C++
library Fadbad [6] to the CUDA C++ dialect. It is entirely template-based, which
allows it to work both with different FP data types and interval ones, as long as a
corresponding arithmetic is defined completely. Compatibility with CUDA-capable
devices can be implemented in a fairly straightforward way, at least in the case of
forward mode AD. The data structures and functions used by Fadbad are entirely
compatible with CUDA-intrinsic functions, so they merely have to be labeled as
suitable for CPU (host) and GPU (device) use. This modification makes
Fadbad the first AD library to fully support IA on both the CPU and the GPU.
A topic for our future work is to test the limitations of this implementation on the
GPU and to improve it accordingly, if possible.

918 Lorenz Gillner and Ekaterina Auer

3 Parameter Identification

In this section, we describe set-based optimization methods — some of them based
on IA and fully verified — for the general goal of parameter identification on the
GPU. Our approach is not to parallelize a given optimization method; rather, we
rely on the massive data parallelism of the GPU to employ brute-force techniques
that would be too time-consuming on the CPU.

3.1 General Possibilities for Parameter Identification

The task of identifying n unknown but bounded system parameters can be viewed
as a global optimization problem of the form

min
x∈Rn

c(x), c : Rn 7→ R , (6)

where c is the objective (cost) function wrt. the system parameters x. According
to the widely used least-squares principle, the cost function Φ can be employed to
identify unknown parameters p ∈ Rnp of a dynamic model of the form in Eq. (3)
with initial conditions at t0 := Tb − 1, given a search space p ∈ IRnp and measured
data over a discrete time grid tk ∈ {Tb, Tb + 1, . . . , Te}:

Φ(p) =

Te∑
k=Tb

nm∑
j=1

(
yj(tk, p)− y

(k)
m,j)

)2 p∈p−→ min , (7)

where yj(tk, p) is the jth component of the solution to the model in Eq. (3); y
(k)
m,j

is the jth component of the measurement made for the solution at the time point
tk ∈ [Tb, Te]; nm is the number of the measured solution components; Te, Tb are the
end and start times of data recording. There are different possibilities to tackle this
problem, with varying degrees of verification associated with them. The available
options are:

F0 Do we use the formula in Eq. (7)?

F0.a (no) Experimental/neural networks/other F0.b (yes) Least squares

F1 How exactly is y(tk, p) obtained?

F1.a A closed-form solution

F1.b Approximation by an expression (e.g., Euler’s method)

F1.c Numerical solution from a “black-box” solver

F2 What is the underlying technique for the implementation?

F2.a Fixed or floating point F2.b Interval F2.c Other verified

F3 How do we represent the measured data y
(k)
m,j?

GPU-Accelerated, Interval-Based Parameter Identification Methods 919

F3.a As provided by sensors: Hundreds of MB of floating point numbers

F3.b With the help of any reliable means for data reduction

As an example, consider the set of options F0.a-F1.b-F2.b-F3.a. The true solu-
tion y(t, p) of the IVP in Eq. (3) can be approximated by an explicit method (e.g.,
Euler’s) in its interval version taking into account numerical errors but not the dis-
cretization error. For Euler’s method, the formula is y(k) := y(k−1)+h·f(y(k−1),p)
for a constant step size h := tk − tk−1. The interval approximation y(k) at tk is
then substituted for the exact solution y(tk, p) in the cost function (7) and the
discretization error ignored. For the example we consider in this paper as an illus-
tration (cf. Section 4.3), the step size is chosen to be equal to the sampling time for
the data, h = 1. In general, for this approach to give good results, that is, for y(k)

to be an acceptable approximation of the true solution y(tk, p), this sampling time
(or the step size) should be significantly smaller than the dominant time constant
of the process described by the IVP. The approximated cost function can then be
rewritten as

Φapp(p) =

Te∑
k=Tb

nm∑
j=1

(
y
(k−1)
j − y

(k)
m,j + h · fj(y(k−1), p)

)2

, (8)

where y(Tb−1) is the initial condition. Although the whole process is not verified,
even if interval optimization procedures are applied, the overall verification degree
is high if the first (and second) derivatives of Φapp are computed exactly with the
help of AD.

Option F3 deserves a separate discussion. On modern multi-processor systems,
high-bandwidth interconnect technologies and large amounts of expandable main
memory allow for quick access to terabytes of data, either stored locally or in a
distributed manner. By contrast, GPUs typically have a fixed amount of on-board
memory that is often limited to a fraction of the capacity available on the CPU. So
in case of option F3.a, the question arises how large data sets should be handled
on the GPU. Data partitioning and sequential processing of small data blocks at
a time involves many expensive memory transfers. One idea is to interpolate the
data, for example, by a (piecewise) scalar Bézier curve b(t) depending on time
with a predefined degree and enclose them in a verified way by a corresponding
interval extension b[](t). That is, the kernel functions depending on data can be
implemented much easier and more efficiently on the GPU using Option F3.b.

Using the CPU as the basis, we explored, for example, the option F0.b-F1.b-
F2.b-F3.a for different kinds of solid oxide fuel cell models in [1, 19]. The option
F0.a-F1.c-F2.a-F3.a is studied for a distributed heating system on the GPU in [2].

3.2 Optimization Algorithms

In this subsection, we describe in detail different GPU-based optimization ap-
proaches depending on the choices made according to the general options from
Section 3.1. All of them are brute-force approaches; the availability of the cheap

920 Lorenz Gillner and Ekaterina Auer

GPU computing power makes it possible to carry them out in acceptable time.
Note that the algorithms proposed here do not try to parallelize a sequential opti-
mization algorithm, but rather execute the sequential approach for each considered
data item in parallel.

3.2.1 Experimental Identification

Let us suppose that measurements y
(k)
m,j for specified solution components yj(t) are

available at all times tk ∈ {Tb, . . . , Te}. For these, plausibility bounds ym,j can
be derived on the basis, for example, of physical constraints or of tolerances of
measurement devices. This information can be used to reduce the initial search
box p for optimal parameters. A general scheme for a brute-force algorithm is

Step 1 Bisect p =
l⋃

j=1

pj until a predefined bound on the width of pj is reached

Step 2 Compute an enclosure y
(k)
i of yi(tk,pj) in parallel

Step 3 Exclude pj if ∃k, i: y(k)
i ∩ y

(k)
m,i = ∅ (in parallel)

Result List L ⊆ {1, . . . , l} containing indices of suitable boxes

Steps 2 and 3 can be performed on the GPU, for example, in floating-point arith-
metic using the Smith theorem [32]. Moreover, the plausibility test in Step 3 can
be replaced by any other test mentioned in the next subsection. One possible use
for the results is to build the hull of pj for j ∈ L to obtain a reduced search space.
The algorithm can then be reiterated if necessary using the tighter search interval
with a lower bisection bound. A possibly better use is to compute the convex hull
of enclosures for y(tk,pj) for j ∈ L (again on the GPU). This new enclosure can
be good enough even without subsequent least squares.

3.2.2 Preconditioning

When the parameter domain has a large plausibility range, different preliminary
tests can be applied to exclude boxes from the search [18, 33]. In the brute-force
algorithm in the previous subsection, the test in Step 3 can be replaced by various
other preconditioning approaches.

The midpoint test is one possibility for such preconditioning. A box pj is
excluded from the search space if c[](pj) > z∗, where z∗ is an enclosure of the global

minimum and c[] an interval extension of the cost function c [18]. For example, we
know that the least squares cost function Φ(p) from Eq. (7) has zero as its global,
ideal minimum. This global minimum, however, might not be known beforehand in
general, or cannot be reached. On the GPU, where all tests are virtually executed
at the same time, this value must be chosen carefully.

A more elaborate option is the monotonicity test. A box pi is excluded from
the search if it fails to satisfy the condition 0 ∈ ∇c[](pi) (∇ meaning the exact
gradient). In this paper, we apply the monotonicity test in parallel on the GPU,
see the example in Section 4. We plan to consider the convexity test in our future
work.

GPU-Accelerated, Interval-Based Parameter Identification Methods 921

3.2.3 Set Inversion Approach

Nonlinear parameter identification can be characterized as a set inversion problem.
Sivia — set inversion via interval methods — is an algorithm frequently employed
in optimization and parameter estimation tasks involving quantities with bounded
uncertainty [15]. There are different variations of the algorithm; Algorithm 1 de-
scribes its simplest form. Given an interval function c[], an image z and an initial
search domain p0, the algorithm tests whether c[](pi) is a real subset of z, pi being
sub-boxes of p0 obtained by bisection, until the width of a box is at most ϵ in its
width. Boxes that certainly are preimages of z are part of the solution set S (also
called paving), boxes containing no solution are members of N and boxes with the
width smaller than ϵ belong to the boundary set E .

Algorithm 1 Generic Sivia algorithm.

Require: c[], z, p0, ϵ
1: S ← ∅, N ← ∅, E ← ∅, L ← {p0}
2: while L ≠ ∅ do
3: p← pop(L)
4: if c[](p) ⊂ z then
5: push(S, p)
6: else if c[](p) ∩ z = ∅ then
7: push(N , p)
8: else if diam(p) < ϵ then
9: push(E , p)

10: else
11: pL,pR ← bisect(p)
12: push(L, pL)
13: push(L, pR)
14: end if
15: end while
16: return S,N , E

The approach from Algorithm 1 can be parallelized in two basic ways:

PSivia: a priori subdivision of p0 into small boxes with subsequent inclusion test
in parallel, or

NSivia: coarse subdivision of p0, then parallel execution of Sivia on sub-boxes.

In the first version, PSivia, the bisection step is eliminated by the pre-computation
of a grid, making the remaining part of the algorithm perfectly parallelizable. Since
all boxes are similar in size, the inclusion of a box into the set E is no longer de-
termined by the box width. Instead, the remaining boxes, being neither a subset
of z nor having an empty intersection with z, satisfy the condition pi ∩ z ̸= ∅,
qualifying as boundary boxes. This type of lightweight algorithm benefits the most

922 Lorenz Gillner and Ekaterina Auer

Algorithm 2 Parallelized Sivia.

Require: c[], z, p0

1: S ← ∅, N ← ∅, E ← ∅
2: L ← {subdivide(p0)}
3: for all pi ∈ L do
4: if c[](pi) ⊂ z then
5: push(S, pi)
6: else if c[](pi) ∩ z = ∅ then
7: push(N , pi)
8: else
9: push(E , pi)

10: end if
11: end for
12: return S,N , E

from parallel processing, especially on the GPU. Algorithm 2 shows the reformu-
lated, parallelizable Sivia procedure. In parameter identification scenarios, we
are interested in enclosures containing the system parameters. Depending on the
subdivision strategy, the optimal enclosure box might be situated directly on the
boundary of two boxes in the subdivision. Hence, forming a convex hull of all boxes
contained in S might seem sensible. However, the solution set S might consist of
non-adjacent boxes, or be a set of adjacent boxes enveloping a set that does not
contain any solutions. In the worst case, the hull of such a paving will be marginally
smaller than, or equal to, the initial search domain p0. While this box might be
guaranteed to contain optimal parameters, it might also get too large to lead to
any meaningful conclusions about the problem under study. From this perspective,
building a convex hull over solutions y(tk,pi) to Eq. (3) over each pi ∈ S (or,
possibly, S ∪ E) at each tk might be a more useful option. Another possibility is
to treat boxes from S as entities in an n-dimensional feature space so that we can
apply density-based clustering to group suitable boxes into smaller sets as described
in Algorithm 3. The result of that algorithm is a set of boxes C, where each box
contains at least one box belonging to S, ultimately containing the entire S.

4 Test Application: Two-Compartment Model

In this section, we test the performance of the methods introduced in Section 3 by
applying them to the example of the two compartment model similarly to [17].

4.1 Problem Description

The two-compartment model described in [14] has been a standard example in
parameter identification since many years. It describes the evolution of two inter-
connected compartments after an impulse. This dynamic system can be described

GPU-Accelerated, Interval-Based Parameter Identification Methods 923

Algorithm 3 Fast interval clustering.

Require: B, θ
1: C ← ∅
2: for all bi ∈ B do
3: processed← false
4: for all qj ∈ C do
5: if max

k
|bi,k − qj,k| ≤ θ then

6: qi ← bi ∪ qj

7: processed← true
8: end if
9: end for

10: if ¬processed then
11: push(C, bi)
12: end if
13: end for
14: return C

by a two-dimensional first-order ODE of the form

ẏ1 = −(p3 + p1) · y1 + p2 · y2
ẏ2 = p3 · y1 − p2 · y2

(9)

with the initial condition y(0) = (1, 0)T . We are interested in the values of p1, p2, p3
given (measurement) data. The problem is formulated such that only the second
component y2 is measured (i.e., the data is given only for y2). These linear ODEs
can be solved analytically:

y2(t) = α ·
(
e−λ1·t − e−λ2·t

)
(10)

with its macro-parameters defined as

D =
√
(p1 − p2 + p3)2 + 4p2 · p3 , α =

p3
D

,

λ1 =
1

2
(p1 + p2 + p3 −D) , λ2 =

1

2
(p1 + p2 + p3 +D) .

(11)

Following [17], this exact solution can be reformulated to reduce overestimation as

y2(t) =
(
p3 · e

−p3·t
2

)(
e

−p2·t
2

)(
e

−p1·t
2

)(
e

D·t
2 − e−

D·t
2

)
/D . (12)

We implemented three GPU-based approaches to reduce the search space for
the parameter estimation and applied them to the two-compartment model: the
experimental approach from Section 3.2.1 involving the black-box solver odeint,
taking advantage of the system’s cooperativity (I), the monotonicity test from Sec-
tion 3.2.2 (II) and PSivia from Section 3.2.3 with the image Φ[](p) ⊂ [0, 0.005]

924 Lorenz Gillner and Ekaterina Auer

(III). All three methods have been tested with raw data points for y2 in combi-
nation with the respective plausibility bounds copied to the GPU’s memory and
a continuous enclosure of the measurements by interval Bézier curves. Methods
II and III were additionally tested with the exact solution from Eq. (12) and an
approximation of y(t) by using Euler’s method as described in the formula from
Eq. (8). The scenarios we considered in this paper are therefore defined as follows
with respect to the parameter identification options mentioned in Section 3.1: Ia
and Ib correspond to F0.a-F1.c-F2.a-F3.a/b; IIa/IIIa and IIb/IIIb to F0.b-F1.a-
F2.b-F3.a/b; IIc/IIIc and IId/IIId to F0.b-F1.b-F2.b-F3.a/b. Note that IIa/IIIa
and IIb/IIIb use only verified operations and algorithms and in this way can be
considered verified on the GPU.

4.2 Reference System and Testing Setup

With an emphasis on reproducibility of the experiments, measurement data were
synthesized by the following procedure. First, system parameters were defined
as p = (0.232718, 1.925403, 0.145076)T . Inserting p into the exact solution from
Eq. (10), we then calculated the values of y2(t) from Tb = 1 to Te = 16 with a
step size h = 1. Afterwards, small pseudo-random FP numbers were added to each
value to achieve a simulated measurement noise. For random number generation,
the well-known Classic Mersenne Twister [24] with a seed value of 1788 was used.
The resulting uniform distribution was then transformed into a normal distribution
with a mean value of µ = 0 and a standard deviation σ = 1

29 . We used the C++
standard library function std::normal distribution, which is based on the Box-
Muller transform. Finally, the results were truncated after the sixth decimal place.
Table 1 shows the data points acquired in that way.

Table 1: Artificial measurements for y2 (with added plausibility bounds of ± 0.007).

t 1 2 3 4 5 6 7 8

ym,2 0.051801 0.046753 0.040787 0.032543 0.024291 0.021511 0.020577 0.012213

t 9 10 11 12 13 14 15 16

ym,2 0.008919 0.007634 0.004929 0.008158 0.006349 0.002386 0.005543 0.004355

All computations were performed on

– a CPU system with an Intel Xeon Gold 5215 64 bit CPU with 192 GB of main
memory and

– a GPU system with an NVIDIA Quadro RTX 6000 GPU with 24 GB of memory,

running the operating system Ubuntu 22.04 with CUDA 12 and the NVIDIA driver
525.105 installed. Experiments on the GPU were written in the CUDA C++. For
interval computations on the CPU, we used the interval library from Boost. On
the GPU, we used a modified version of the extended cuda interval lib from [8],

GPU-Accelerated, Interval-Based Parameter Identification Methods 925

originally published in [7]. Device-side automatic differentiation of interval data
types was made possible by a custom port of the forward-mode differentiation from
Fadbad [6] to CUDA C++ (both described in more detail in Section 2.3). Function
execution times were measured by wrapping the relevant parts of the program be-
tween two calls to std::chrono::high resolution clock::now() and calculating
their difference at nanosecond resolution. The execution time of entire programs
was captured by the standard Unix command time. Since the testing environment
was accessed exclusively via a remote connection, measurements of power consump-
tion were limited to software-based tools. According to [22], the reported sampling
time of power usage information on NVIDIA GPUs is 20 ms. Taking into account
that a kernel might complete its operation in less time for the considered relatively
small example, these measurements are only rough approximations.

4.3 Results

We conducted a series of (standardized) tests to compare the approaches pre-
sented in the previous sections. Given the measurements in Table 1, we chose
the (hypothetical) plausibility bounds ym,2 = [ym,2 ± 0.007], the search space
p = [0.01, 1] × [1, 2] × [0.05, 2], and a maximum box width w = 0.05, which re-
sulted in a subdivision containing 216 possible boxes. The search space was chosen
in such a way as to exclude possible symmetric parameter values; theoretically,
only one optimum is contained in p if we consider the data generation procedure
described in Section 4.2. The averaged results for 100 test trials for each method
are shown in Table 2.

The enclosure p∗ is the convex hull of all suitable boxes after search space
reduction. To achieve a fair comparison between all methods, the enclosure of
the Sivia-like method includes the boundary set E as well, since the other two
methods make no distinction between uncertain boxes and definite solutions. In
Column Boxes, the number of boxes in the corresponding solution list is shown.
Kernel time tkern represents the execution time of each method on its own, while
twall is the total number of seconds elapsed (wall-clock time) for the entire program
execution, including post-processing. During each test, peaks in CPU and GPU
power usage were recorded. The highest enduring peaks during kernel execution
Ppeak are listed in the last column.

The scenarios I, II and III were described in Section 4.1. For comparison, we
also tested the example with a CPU-based C++ implementation of Sivia (IV) and
with the @infsup/fsolve function (V) provided by the interval package for GNU
Octave [12]. Decimal values in the table are rounded outwards/to nearest to four
decimal places for improved readability.

Based only on enclosure size, the best results are obtained by the experimen-
tal method. Although its execution time is also fairly low, this method has the
highest peak in power consumption. This comes as no surprise since the use of the
black-box solver odeint adds a significant amount of computations. This impact
on energy efficiency might be a factor to consider when solving more complex prob-
lems. Moreover, although the bulk of uncertainty is captured by this approach, the

926 Lorenz Gillner and Ekaterina Auer

Table 2: Test results for the parameter space p = [0.01, 1]× [1, 2]× [0.05, 2].

Method p∗ Boxes tkern (s) twall (s) Ppeak (W)

G
P
U

Ia [0.0718, 0.505]× [1, 2]× [0.05, 0.2024] 597 0.0579 0.3664 39.2905

Ib [0.0718, 0.505]× [1, 2]× [0.05, 0.2024] 548 0.0568 0.3664 39.1510

IIa [0.01, 1]× [1, 2]× [0.05, 2] 47 531 22.9567 25.3034 90.5923

IIb [0.01, 1]× [1, 2]× [0.05, 2] 47 509 22.9817 25.3283 90.5746

IIc [0.01, 1]× [1, 2]× [0.05, 2] 65 536 28.547 31.8037 90.8255

IId [0.01, 1]× [1, 2]× [0.05, 2] 65 536 28.3206 31.7399 90.5315

IIIa [0.01, 1]× [1, 2]× [0.05, 0.6899] 11 215 0.0056 0.4193 37.6086

IIIb [0.01, 1]× [1, 2]× [0.05, 0.6899] 11 178 0.0288 0.4358 37.6487

IIIc [0.01, 1]× [1, 2]× [0.05, 0.8727] 12 910 0.0038 0.6337 36.2425

IIId [0.01, 1]× [1, 2]× [0.05, 0.8727] 12 899 0.0274 0.625 36.0214

C
P
U IVa [0.01, 1]× [1, 2]× [0.05, 0.5985] 8 877 0.4384 0.4548 46.7245

Va [0.01, 1]× [1, 2]× [0.05, 0.7875] 1 067 26.781 29.117 49.572

computations are not verified.
Although the monotonicity test should actually be less computationally expen-

sive, it takes considerably longer than the previous method, while reducing the
initial search space only slightly (not even noticeable from the convex hull). Be-
cause only a fraction of the search space has been discarded (18 005 out of 65 536),
this test alone is not sufficient for search space reduction, at least in this scenario.
The high execution time is a result of our GPU version of Fadbad still having
essentially the same structure as the version on the CPU, where memory access is
not as limited and expensive as on the GPU. Using the Euler-based approximation
of the solution to (3) in IIc/d does not help to exclude any boxes.

Out of the three GPU-based methods considered here, PSivia shows the best
performance in terms of computation time and power usage due its simplicity,
even surpassing the traditional CPU-based Sivia implementation in execution time,
despite being a brute-force approach. In Figure 1, visualizations of the reduced
parameter space are shown after each of the methods with the exact solution and
measurement data provided was applied.

If only the set of guaranteed boxes S is considered for PSivia, the remaining
enclosure is

[0.2265, 0.4122]× [1.2187, 2]× [0.0804, 0.2024],
outperforming the experimental approach wrt. the width of the convex hull. When
we apply Algorithm 3 with θ = 0.25 as part of the post-processing to the solution set
produced by PSivia (using the exact solution and no interpolation), the resulting
boxes are

GPU-Accelerated, Interval-Based Parameter Identification Methods 927

(a) p∗
Ia (b) p∗

IIa (c) p∗
IIIa

Figure 1: Visualizations of the reduced parameter space after GPU computations.

[0.2265, 0.4122]× [1.7187, 2]× [0.1109, 0.2024],
[0.2575, 0.4122]× [1.4375, 1.7188]× [0.1109, 0.1718],
[0.2884, 0.4122]× [1.2187, 1.4375]× [0.0804, 0.1415],

the first of which is a small enclosure of the original parameters used for synthesizing
our measurements (see Section 4.1).

At this scale, preferring interpolated measurement data over raw data points
adds some computational overhead, despite global memory access being a perfor-
mance bottleneck. Furthermore, it can be observed that Euler’s method is not
suitable for this task. In the case of PSivia, the time horizon of 16 steps is long
enough for the wrapping effect to significantly impact the resulting enclosure, lead-
ing to intervals so large in width that the criterion Φapp(pi) ⊂ z cannot be satisfied
anymore. As a result, all suitable boxes belong to the boundary set E , while S
remains empty.

Considering a wider search space p = [0.05, 3] × [0.05, 3] × [0.01, 2] with w
unchanged, the tests were repeated. Results are shown in Table 3.

Depending on the method used, we observe different increases in execution time.
While the experimental approach is more than two times slower than before, both

Table 3: Test results for a larger parameter domain p = [0.05, 3]×[0.05, 3]×[0.01, 2].

Method p∗ Boxes tkern (s) twall (s) Ppeak (W)

G
P
U

Ia [0.05, 3]× [0.0960, 3]× [0.0410, 0.2899] 1 420 0.1369 0.9377 60.5923

IIa [0.05, 3]× [0.05, 3]× [0.01, 2] 182 603 90.0465 156.2434 95.1462

IIIa [0.05, 3]× [0.05, 3]× [0.01, 2] 102 618 0.0222 1.5053 35.5917

C
P
U

IVa [0.05, 3]× [0.05, 3]× [0.01, 2] 102 618 4.5162 4.6874 60.91

928 Lorenz Gillner and Ekaterina Auer

the monotonicity test and PSivia need approximately four times of the previous
kernel time. However, this larger search space highlights the advantage of using
the GPU; now the CPU implementation is significantly slower than both methods
I and III. Another factor to take into account is that p now contains a symmetric
solution [14]. In Figure 2, the effectiveness of method III compared to I is high-
lighted at this scale (under the assumption that only S and not the boundary E is
considered).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

p1

p
2

(a) p∗
Ia

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

p1

p
2

(b) SIIIa

Figure 2: Visual comparison of methods I and III for a larger parameter domain
(top view of p1 and p2).

5 Conclusions

In this paper, we demonstrated— for the first time— a solid combination of IA with
AD capabilities in C++ employed on a graphics processor, using enhanced pub-
lic domain software. Furthermore, we applied an experimental set-based and two
actually verified methods to a well-known example of a two-compartment problem
and compared them wrt. computational cost, both in terms of execution time and
approximate power consumption, as well as wrt. the quality of the resulting convex
hull of the parameter enclosures. In regard to the rising interest in energy-efficient
software design and “green computing”, the comparison of power consumption is of
particular interest. The PSivia method seems to be a good compromise between
the power consumption and solution quality, even outperforming other considered
methods if only the definite solution set S is taken into account. Using a data re-
duction method, although easier to implement, could not be shown to lead to better
run times in case of the simple test scenario we considered. However, we expect
it to be so for more complex examples. Likewise, using the Euler approximation

GPU-Accelerated, Interval-Based Parameter Identification Methods 929

did not bring any significant reduction of the initial search space in the considered
scenario, the cause of which was that the data sampling time of h = 1s was too
large compared to the dominant time constants of the process. Nonetheless, we
expect it to be helpful in more complex scenarios with appropriate sampling times.
Finally, we succeeded in obtaining a tight enclosure of the optimum on the GPU.

It remains to be seen how the methods presented in this paper scale up when
applied to more complex and close-to-life problems. On the one hand, good perfor-
mance of our GPU-based set-inversion approach indicates that this type of hard-
ware might allow algorithms like Sivia to solve problems of higher dimensionality
than currently possible. On the other hand, we aim to improve the currently low
performance of interval-based AD on the GPU, because our ultimate goal is to
implement a GPU-enabled verified solver for differential equations, for which the
ability to perform set-based AD is essential.

Our results indicate that AD at run time might not be an ideal concept for
the GPU, because it requires every kernel to produce essentially the same deriva-
tive, which is expensive computationally. A more elegant approach would be to
compute a function’s derivatives once and then make them available to all GPU
kernels, which we plan to test in our future work. Even better results might be
achieved by evaluating derivatives beforehand during compilation. Finally, after an
extensive phase of testing the introduced (and extended) GPU-based approaches,
we plan to apply the most promising ones in the context of battery systems and
fuel cells. To improve our currently purely software-based testing process, we plan
to include hardware-based measurement tools for higher accuracy as well as further
comparison criteria to assess the performance of our algorithms.

References

[1] Auer, E., Kiel, S., and Rauh, A. Verified parameter identification for solid
oxide fuel cells. In Proceedings of the 5th International Conference on Reliable
Engineering Computing, pages 41–55, 2012. URL: https://rec2012.fce.
vutbr.cz/documents/papers/auer.pdf.

[2] Auer, E., Rauh, A., and Kersten, J. Experiments-based parameter identifi-
cation on the GPU for cooperative systems. Journal of Computational and
Applied Mathematics, 371:112657, 2020. DOI: 10.1016/j.cam.2019.112657.

[3] Bagóczki, Z. and Bánhelyi, B. A parallel interval arithmetic-based reliable
computing method on a GPU. Acta Cybernetica, 23(2):491–501, 2017. DOI:
10.14232/actacyb.23.2.2017.4.

[4] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. Automatic
differentiation in machine learning: A survey. Journal of Marchine Learning
Research, 18:5595–5637, 2017. DOI: 10.5555/3122009.3242010.

[5] Beck, P.-D. and Nehmeier, M. Parallel interval Newton method on CUDA.
In Proceedinngs of the 11th International Conference on Applied Parallel and

https://rec2012.fce.vutbr.cz/documents/papers/auer.pdf
https://rec2012.fce.vutbr.cz/documents/papers/auer.pdf
https://doi.org/10.1016/j.cam.2019.112657
https://doi.org/10.14232/actacyb.23.2.2017.4
https://doi.org/10.5555/3122009.3242010

930 Lorenz Gillner and Ekaterina Auer

Scientific Computing, pages 454–464. Springer, Berlin, 2013. DOI: 10.1007/

978-3-642-36803-5_34.

[6] Bendtsen, C. and Stauning, O. FADBAD, a flexible C++ package for
automatic differentiation. Technical report, Department of Mathematical
Modelling, Technical University of Denmark, Lyngby, 1996. URL: https:
//www2.imm.dtu.dk/~kajm/FADBAD/tr17_96.pdf.

[7] Collange, C., Daumas, M., and Defour, D. Interval arithmetic in CUDA. In
Hwu, W. W., editor, GPU Computing Gems Jade Edition, chapter 9, pages
99–107. Elsevier, 2012. DOI: 10.1016/b978-0-12-385963-1.00009-5.

[8] Eriksen, M. B. and Rasmussen, S. GPU accelerated parameter estimation by
global optimization using interval analysis. Master’s thesis, Aalborg Univer-
sity, 2013. URL: https://projekter.aau.dk/projekter/files/77291483/
report.pdf.

[9] Fan, H., Ferianc, M., and Luk, W. Enabling fast uncertainty estimation: Ac-
celerating Bayesian transformers via algorithmic and hardware optimizations.
In Proceedings of the 59th ACM/IEEE Design Automation Conference, pages
325––330, New York, NY, 2022. Association for Computing Machinery. DOI:
10.1145/3489517.3530451.

[10] González-Arribas, D., Sanjurjo-Rivo, M., and Soler, M. Multiobjective optimi-
sation of aircraft trajectories under wind uncertainty using GPU parallelism
and genetic algorithms. Computational Methods in Applied Sciences, 2018.
DOI: 10.1007/978-3-319-89890-2_29.

[11] Grimmer, M. and Krämer, W. An MPI extension for the use of C–XSC
in parallel environments, 2005. Preprint 2005/3, Universität Wuppertal.
URL: https://www2.math.uni-wuppertal.de/wrswt/preprints/prep_05_
3.pdf.

[12] Heimlich, O. Interval arithmetic in GNU Octave. In SWIM 2016: 9th
Summer Workshop on Interval Methods, 2016. URL: https://swim2016.
sciencesconf.org/data/SWIM2016_book_of_abstracts.pdf.

[13] Ifrim, I., Vassilev, V., and Lange, D. J. GPU accelerated automatic differenti-
ation with Clad. In Journal of Physics: Conference Series, page 012043. IOP
Publishing, 2023. DOI: 10.1088/1742-6596/2438/1/012043.

[14] Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. Applied Interval Analysis.
Springer, London, 2001. DOI: 10.1007/978-1-4471-0249-6.

[15] Jaulin, L. and Walter, E. Guaranteed nonlinear parameter estimation from
bounded-error data via interval analysis. Mathematics and Computers in Sim-
ulation, 35(2):123–137, 1993. DOI: 10.1016/0378-4754(93)90008-I.

https://doi.org/10.1007/978-3-642-36803-5_34
https://doi.org/10.1007/978-3-642-36803-5_34
https://www2.imm.dtu.dk/~kajm/FADBAD/tr17_96.pdf
https://www2.imm.dtu.dk/~kajm/FADBAD/tr17_96.pdf
https://doi.org/10.1016/b978-0-12-385963-1.00009-5
https://projekter.aau.dk/projekter/files/77291483/report.pdf
https://projekter.aau.dk/projekter/files/77291483/report.pdf
https://doi.org/10.1145/3489517.3530451
https://doi.org/10.1007/978-3-319-89890-2_29
https://www2.math.uni-wuppertal.de/wrswt/preprints/prep_05_3.pdf
https://www2.math.uni-wuppertal.de/wrswt/preprints/prep_05_3.pdf
https://swim2016.sciencesconf.org/data/SWIM2016_book_of_abstracts.pdf
https://swim2016.sciencesconf.org/data/SWIM2016_book_of_abstracts.pdf
https://doi.org/10.1088/1742-6596/2438/1/012043
https://doi.org/10.1007/978-1-4471-0249-6
https://doi.org/10.1016/0378-4754(93)90008-I

GPU-Accelerated, Interval-Based Parameter Identification Methods 931

[16] Jerrell, M. E. Automatic differentiation and interval arithmetic for estimation
of disequilibrium models. Computational Economics, 10:295–316, 1997. DOI:
10.1023/A:1008633613243.

[17] Kieffer, M., Markót, M. C., Schichl, H., and Walter, E. Verified global op-
timization for estimating the parameters of nonlinear models. In Modeling,
Design, and Simulation of Systems with Uncertainties. Springer, Berlin, 2011.
DOI: 10.1007/978-3-642-15956-5_7.

[18] Kieffer, M. andWalter, E. Interval analysis for guaranteed nonlinear parameter
estimation. In MODA 5 — Advances in Model-Oriented Data Analysis and
Experimental Design, pages 115–125, Heidelberg, 1998. Physica-Verlag. DOI:
10.1007/978-3-642-58988-1_13.

[19] Kiel, S., Auer, E., and Rauh, A. Uses of GPU powered interval optimization
for parameter identification in the context of SO fuel cells. In Proceedings of
the 9th IFAC Symposium on Nonlinear Control Systems, pages 558–563. Inter-
national Federation of Automatic Control, 2013. DOI: 10.3182/20130904-

3-FR-2041.00169.

[20] Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C., and Rauch, M. C–XSC, A
C++ Class Library for Extended Scientific Computing. Springer, Berlin, 1993.
DOI: 10.1007/978-3-642-58058-1.

[21] Kozikowski, G. and Kubica, B. J. Interval arithmetic and automatic differenti-
ation on GPU using OpenCL. In Proceedings of the 11th International Confer-
ence on Applied Parallel and Scientific Computing, pages 489–503. Springer,
Berlin, 2013. DOI: 10.1007/978-3-642-36803-5_37.

[22] Lang, J. and Rünger, G. High-resolution power profiling of GPU functions us-
ing low-resolution measurement. In Proceedings of the 19th International Con-
ference on Parallel Processing, pages 801–812. Springer, Berlin, 2013. DOI:
10.1007/978-3-642-40047-6_80.

[23] Marvel, S. W., de Luis Balaguer, M. A., and Williams, C. M. Parameter esti-
mation in biological systems using interval methods with parallel processing.
In Proceedings of the 8th International Workshop on Computational Systems
Biology, pages 129–132, 2011.

[24] Matsumoto, M. and Nishimura, T. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans-
actions on Modeling and Computer Simulation, 8(1):3–30, 1998. DOI:
10.1145/272991.272995.

[25] Meslem, N. and Ramdani, N. Interval observer design based on nonlinear hy-
bridization and practical stability analysis. International Journal of Adaptive
Control and Signal Processing, 25(3):228–248, 2011. DOI: 10.1002/acs.1208.

[26] Moore, R. E. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.

https://doi.org/10.1023/A:1008633613243
https://doi.org/10.1007/978-3-642-15956-5_7
https://doi.org/10.1007/978-3-642-58988-1_13
https://doi.org/10.3182/20130904-3-FR-2041.00169
https://doi.org/10.3182/20130904-3-FR-2041.00169
https://doi.org/10.1007/978-3-642-58058-1
https://doi.org/10.1007/978-3-642-36803-5_37
https://doi.org/10.1007/978-3-642-40047-6_80
https://doi.org/10.1145/272991.272995
https://doi.org/10.1002/acs.1208

932 Lorenz Gillner and Ekaterina Auer

[27] Moore, R. E., Kearfott, R. B., and Cloud, M. J. Introduction to Interval
Analysis. Society for Industrial and Applied Mathematics, 2009. DOI: 10.

1137/1.9780898717716.

[28] Pilarek, M. and Wyrzykowski, R. Solving systems of interval linear equations
in parallel using multithreaded model and “interval extended zero” method.
In Proceedings of the 9th International Conference on Parallel Processing and
Applied Mathematics, pages 206–214. Springer, Berlin, 2012. DOI: 10.1007/

978-3-642-31464-3_21.

[29] Rebner, G. and Beer, M. CUDA accelerated fault tree analysis with C–XSC.
In Scalable Uncertainty Management, pages 539–549. Springer, Berlin, 2012.
DOI: 10.1007/978-3-642-33362-0_41.

[30] Rump, S. M. INTLAB — INTerval LABoratory. In Developments in Reliable
Computing, pages 77–104. Springer, Dordrecht, 1999. DOI: 10.1007/978-

94-017-1247-7_7.

[31] Sanders, D. P. and Churavy, V. Branch-and-bound interval methods and
constraint propagation on the GPU using Julia. In Proceedings of the
19th International Symposium on Scientific Computing, Computer Arith-
metic, and Verified Numerical Computations, page 79, Szeged, Hungary,
2021. URL: https://www.inf.u-szeged.hu/scan2020/sites/default/

files/scan2020_proceedings.pdf.

[32] Smith, H. L. Monotone Dynamical Systems: An Introduction to the The-
ory of Competitive and Cooperative Systems. Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 1995. DOI:
10.1090/surv/041.

[33] Tucker, W. Validated Numerics: A Short Introduction to Rigorous Computa-
tions. Princeton University Press, 2011. DOI: 10.1515/9781400838974.

[34] Wojtkiewicz, S. F. and Wojtkiewicz, G. Use of GPU computing for uncer-
tainty quantification in computational mechanics: A case study. Scientific
Programming, 19(4):199–212, 2011. DOI: 10.3233/SPR-2011-0328.

[35] Zimmer, M. Using C–XSC in a multi-threaded environment, 2011. Preprint
2011/2, Universität Wuppertal. URL: https://www2.math.uni-wuppertal.
de/wrswt/preprints/prep_11_2.pdf.

https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1007/978-3-642-31464-3_21
https://doi.org/10.1007/978-3-642-31464-3_21
https://doi.org/10.1007/978-3-642-33362-0_41
https://doi.org/10.1007/978-94-017-1247-7_7
https://doi.org/10.1007/978-94-017-1247-7_7
https://www.inf.u-szeged.hu/scan2020/sites/default/files/scan2020_proceedings.pdf
https://www.inf.u-szeged.hu/scan2020/sites/default/files/scan2020_proceedings.pdf
https://doi.org/10.1090/surv/041
https://doi.org/10.1515/9781400838974
https://doi.org/10.3233/SPR-2011-0328
https://www2.math.uni-wuppertal.de/wrswt/preprints/prep_11_2.pdf
https://www2.math.uni-wuppertal.de/wrswt/preprints/prep_11_2.pdf

	Introduction
	Background on Interval Analysis
	Interval Analysis and Algorithmic Differentiation
	Cooperativity
	Software for IA and IA-Based AD on the GPU

	Parameter Identification
	General Possibilities for Parameter Identification
	Optimization Algorithms
	Experimental Identification
	Preconditioning
	Set Inversion Approach

	Test Application: Two-Compartment Model
	Problem Description
	Reference System and Testing Setup
	Results

	Conclusions

