
Acta Cybernetica 27 (2025) 53–65.

P4 Specific Refactoring Steps∗

Máté Tejfelab, Dániel Lukácsac, and Péter Hegyiad

Abstract

P4 is a domain-specific programming language for programmable switches
running inside next-generation computer networks. The language is designed
to use the software defined networking (SDN) paradigm which separates the
data plane and the control plane layers of the program. The paper introduces
tool-supported refactoring steps for P4. The challenge in this task is that
P4 has special domain-specific constructs that cannot be found in other lan-
guages and as such there is no existing methodology yet for refactoring these
constructs. The proposed steps are implemented using P4Query, an analyzer
framework dedicated to P4.

Keywords: P4 language, refactoring steps

1 Introduction

P4 [2] is a domain-specific programming language which enables a new approach
to programming computer networks. It adopts the software defined networking
(SDN) paradigm [10] which separates the data plane and the control plane layers
of the program. P4 focuses on the data plane, while we need some other tool to
create the control plane. It facilitates the implementation of the concept of fully
programmable networks making possible the development of programmable data
planes.

The paper introduces tool-supported refactoring steps for P4 with two-fold ob-
jectives. On one hand, we aim to assist developers to take full advantage of the
programmability of P4, by providing standard refactoring services commonly found
in IDEs of modern high-level languages. On the other hand, we want to enable P4
code optimizations that are aware of the unique make-up of this language.

∗This research is in part supported by the project no. FK 21 138949, provided by the National
Research, Development and Innovation Fund of Hungary. The research was partly supported by
Ericsson Hungary.

aFaculty of Informatics, Eötvös Loránd University, ELTE, Budapest, Hungary
bE-mail: matej@inf.elte.hu, ORCID: 0000-0001-8982-1398
cE-mail: dlukacs@inf.elte.hu, ORCID: 0000-0001-9738-1134
dE-mail: immsrb@inf.elte.hu

DOI: 10.14232/actacyb.308085

mailto:matej@inf.elte.hu
https://orcid.org/0000-0001-8982-1398
mailto:dlukacs@inf.elte.hu
https://orcid.org/0000-0001-9738-1134
mailto:immsrb@inf.elte.hu
https://doi.org/10.14232/actacyb.308085


54 Máté Tejfel, Dániel Lukács, and Péter Hegyi

The difficulty of the task is that P4 has many unique language constructs, for
which there is no existing methodology for refactoring. One example is the dec-
laration and application of lookup tables. As these components are performance-
critical, their definitions are target-dependent: compilers have to consider the ca-
pabilities of their target architectures, and choose where to map tables to get the
most efficient outcomes. Unfortunately, this is less straightforward than it looks, in
particular because the intended content of the tables is unknown at compile-time,
and so is the traffic that will be processed by these tables. As such, performing
such optimizations is usually out of the scope of standard compilers, and it falls
on specialized optimization tools, or maybe the well-informed developer, who can
take into account these application-specific factors. We expect neither of these ap-
proaches to be prepared for handling machine-specific representations, and so it is
preferable to perform the optimizing code transformation on the highest level, that
is, directly on the P4 code.

1.1 Related work

There are currently many different tools that support the development of P4 pro-
grams. Some of them concentrate on error checking of P4 programs. For example,
BF4 [3] is created as a P4C backend, which can not only detect error possibilities,
but it is able to repair them by adding new keys to the lookup tables of the pro-
gram and modify the table contents. Another tool p4-data-flow [1] uses data flow
analysis to detect potential bugs in P4 switch codes.

Some other tools have been created for different purposes. For example,
p4pktgen [9] uses symbolic execution for automatically generating test cases.
SafeP4 [4] is a language which has precise semantics and a static type system
that can be used to obtain guarantees about the validity of all headers which are
used or modified by the program. The type checker of the language (P4Check) can
also check P4 programs executing some static analysis on them.

P4 refactorings can be particularly useful for dataplane disaggregation, a prob-
lem recently addressed by Flightplan [13]. The objective here is to optimally seg-
ment P4 programs so that individual program segments can be assigned to re-
sources, in turn transforming P4 into a programming language for the “one big
switch” networking model. Flightplan can solve the allocation problem, and refac-
toring can help with the realization of program splitting, moreover, semantics-
preserving program transformations may allow new, previously unseen forms of
segmentations, enabling further optimization of allocations.

Another potential application for P4 refactorings can be found in [8]. The au-
thors apply the normal form concept of relational database theory to lookup tables
in P4 programs. Due to dependencies between their fields, large tables often contain
significant amount of redundancy. By recognizing these dependencies, tables can
be decomposed into smaller, irredundant tables. This irredundant representation is
called a normal form, and normalization can be realized by vertically splitting ta-
bles. The authors find that on many targets normalization leads to better efficiency,
because smaller, simpler tables can be updated by the controller with less work,



P4 Specific Refactoring Steps 55

and because it is easier for compilers to find optimal representations for simpler
tables.

The refactorings presented in this paper build on P4Query [7], whose program
graph representation was mostly inspired by [5], a similar, but more established
static analysis tool for Erlang, also developed at ELTE. A key idea in RefactorErl
is that persisting pre-calculated semantic information in a database can both sim-
plify and speed up refactorings. This also enables incremental refactorings where
syntactical changes automatically trigger semantic analysis. Beyond being a tool
for Erlang developers, RefactorErl is also a framework aiming to support quick and
correct implementation of new refactorings.

2 P4 language

Every P4 program contains at least three main components: these are the parser,
the match/action pipeline and the deparser [11]. The parser reads a packet from
the network (as a bitstream) and builds up its header structure and its meta-
data information (while leaving the payload part of the packet unchanged). The
match/action pipeline can read and modify the headers and the metadata (add,
delete headers, modify header fields or metadata). While the deparser part creates
the new packet using the original payload (for example, by changing the order of
headers or omitting headers). This new packet will be sent forward on the network.

Figure 1: Match/Action table application

One of the most important part of the execution of a P4 program is the ap-
plication of the match/action tables1. Figure 1 illustrates a match/action table
application. The different colours in the headers represent different fields, which
may vary in size. Every row in the table contains a key and an action part. The
key refers to some fields of the header structure. The table application – when
processing a specific packet – first searches the appropriate row in the table based
on the concrete field values of the headers using a given lookup algorithm (exact,
longest prefix match or ternary lookup). If the algorithm finds the appropriate

1More information about P4 can be found on the official website: https://p4.org/.

https://p4.org/


56 Máté Tejfel, Dániel Lukács, and Péter Hegyi

row, it will execute the action part of the row, which will modify the headers of
the packet. If no appropriate line exists, the program executes the default action
of the table. If the default action is not defined and no entry matches, then the
table does not affect the packet.

It is worth mentioning that a P4 program defines only the data plane layer of a
packet processing algorithm, namely it will define only the structure of match/ac-
tion tables. Listing 1 introduces an example declaration of a match/action table in
P4.

The declaration defines the key fields, the used lookup mechanisms, the possible
actions, the maximum size (maximum number of rows), the default action and the
const entries (the explicitly defined rows) of the table. The last three are optional.
Specific data in the table (which actions will be executed for which field values)
are specified by the control plane layer of the algorithm which is out of the scope
of the P4 program.

table ipv4_lpm {

key = {

hdr.ipv4.srcAddr: exact;

hdr.ipv4.dstAddr: lpm;

}

actions = {

ipv4_forward;

modify_dst;

drop;

NoAction;

}

size = 1024;

default_action = drop();

const entries = {

...

}

}

Listing 1: Example of a match/action table declaration in P4

3 P4Query

The refactorings were realized with P4Query [7], a static analysis framework for
P42. The framework is centered around an extensible internal graph representation
where the results of the different static analysis methods are stored also as part of
the graph. The information in the knowledge graph is accessed using graph queries
written in the Gremlin query language [12]. This way the framework guarantees
unique standard representation both for the stored data, and for the data access
mechanism. As the graph instance is detached from the code analysis, users and
developers alike can access it by external tools for visualising, monitoring and

2The P4Query framework is available in GitHub: https://github.com/P4ELTE/P4Query.

https://github.com/P4ELTE/P4Query


P4 Specific Refactoring Steps 57

validating purposes. Each static analysis has to declare which other static analyses
it depends on, and a central component ensures that all analyses are executed in
order, and without collisions. This also ensures that only necessary analyses are
performed.

TableDeclarationContext

table NameContext

<table name>

{ TablePropertyListContext

<keys>

. . .

<actions>

. . .

<size>

. . .

<default action>

. . .

<entries>

. . .

}

Figure 2: Representation of a match/action table in P4Query

Figure 2 illustrates the representation of a match/action table in P4Query. As
the steps analyse and manipulate this representation, they can use the built-in
analyzers of the tool to make checking the prerequisites much more easier.

4 Refactoring steps

In this section, we present the refactorings we defined for P4. Ultimately, refac-
torings are transformations of the syntax tree, satisfying the assumption that the
resulting tree is semantically equivalent to the original one. Due to the complexity
of the refactorings, circumspection must be exercised when executing the transfor-
mation, requiring to a considerable overhead. The general scheme of the refactoring
is depicted by Algorithm 1, executing an R set of refactorings over a P4Query pro-
gram graph G.

As we will see, more complex transformations often have various preconditions:
for example, splitting a match/action table by its keys naturally requires a table
with at least two keys. Thus, the first step of the algorithm is to check such
transformation-specific preconditions. If the precondition is not satisfied, it does
not make sense to start the refactoring. As P4 match/action tables are usually filled
at runtime (by the SDN controller), it may be impossible to check all preconditions
at analysis-time: in this case, the user should be warned that some preconditions
could not be checked and it will be the responsibility of the user to ensure that
the P4 program is being executed in the right environment. Additionally, the user
should be subsequently given an option to cancel the refactoring, if they cannot
guarantee this.

Checking the semantic equivalence between input and output syntax tree is
one of the most important properties regarding implementation correctness. Un-
fortunately, exhaustive checking is not feasible due to the halting problem, which
means we have to resort to non-exhaustive testing. While post-compile-time test-
ing is the standard method for ensuring implementation correctness, it is difficult



58 Máté Tejfel, Dániel Lukács, and Péter Hegyi

Algorithm 1 General scheme of refactorings

Procedure Refactor(R,G):
Input: R is a list of refactorings
Input: G is graph, includes AST
Result: G conditionally transformed by refactorings in R

1: for all r ∈ R do
2: if ¬ r.CheckPreconditions(G) then
3: Exit(“Preconditions failed:”, r.FailedPreconditions(G))
4: end if
5: if r.HasExternPreconditions(G) then
6: Warn(“Preconditions could not be checked:”, r.FailedPreconditions(G))
7: end if
8: G.StartTransaction()
9: r.Execute(G)

10: if ¬CheckConsistency(G) then
11: Warn(“Consistency test failed, reverting.”)
12: G.RollbackTransaction()
13: else
14: G.FinishTransaction()
15: end if
16: end for

to sufficiently test complex systems with varied runtime parameters. For example,
the graph backend under P4Query can be switched with relative ease, but this may
have unexpected effects due to differences between graph backend implementations.
Another issue could be parallelization (not yet a feature of P4Query, but could be
a feature in graph backends) that – due to non-determinism – can also have unex-
pected effects. For this reason, the algorithm supports testing graph consistency
after a refactoring was executed: if the test fails, the transformation is reverted so
that the graph is left in a consistent state.

One of the promises of using a graph database in P4Query was that the database
provides built-in support for operations such as atomic transactions and transaction
rollback. Unfortunately, this is not always the case in practice: in the implemen-
tation, we had to implement rollbacks manually, since the in-memory database
engine version (TinkerPop 3.4.4) used by default in P4Query does not support
these features.

With having the general outline discussed, we can now focus on individual
refactorings.

4.1 Table structure modification

The P4 program can modify the incoming packets (namely the headers) by applying
match/action tables. For a given program, determining the optimal table structure
is a difficult task. It can often be the case that in a given hardware environment



P4 Specific Refactoring Steps 59

Figure 3: Horizontal splitting

using fewer but larger tables, while in another environment using more but smaller
tables may yield better results. Therefore our implemented refactorings mainly
focus on the modification of the match/action tables, namely horizontal and vertical
splitting of tables, merging tables, changing the execution order of tables.

4.1.1 Horizontal table splitting

One of the simplest ways of table splitting is horizontal splitting introduced by
Figure 3. In this case, the basic table structure remains the same, but we duplicate
the table by halving the maximum size.
The prerequisites of the transformation are the following.

• The maximum size of the original table is explicitly defined.

• The table uses exact lookup mechanism.

• The application of the table appears in the match/action pipeline.

If the prerequisites hold, the following transformation steps must be taken.

1. Creating a new table with the same structure (using also the same default
action).

2. Halving the maximum sizes.

3. Modifying the default action of the original table to NoAction. (A built-in
action that changes nothing.)

4. If there exist more explicitly defined rows in the original table as the new
maximum, copying the excess into the new table. (It is a possibility in P4 to
defining explicit rows to a table.)

5. Searching every point in the match/action pipeline where the original table
was applied. Modifying these applications to the execution of a sequence
which first applies the original table and if no appropriate row was found
during the lookup (the default action was executed) applies the newly created
table.



60 Máté Tejfel, Dániel Lukács, and Péter Hegyi

4.1.2 Vertical table splitting

A much more complex case is when the table is split vertically. This step is exe-
cutable if the table key contains two different fields. The parameter of the step is a
value set which determines the likely values of the first key part which can appear in
the table. It is worth noting that the control plane layer can change table contents
dynamically, therefore this parameter has to be determined manually by an expert
or based on some information coming from the control plane layer. Using this set,
we can split the original table in such a way that first we just lookup the first key
part in the determined set and then lookup the second key part in independent
tables.

Considering more precisely the prerequisites of the transformation, we obtain
the following conditions.

• The key of the table contains two different field values.

• The table uses the exact lookup mechanism for the first key part.

• The parameter set contains valid values for the first key part.

• The application of the table appears in the match/action pipeline.

If the prerequisites hold, the following transformation steps must be taken.

1. Creating a new dispenser table. Adding an explicit row for every values from
the parameter set using a specific variant of the built-in NoAction as action.

2. Creating one executor table for every value from the parameter set. Copying
the appropriate rows from the explicitly defined rows of the original table into
the new tables.

3. Modifying the explicitly defined rows of the original table leaving only key
values which do not appear in the parameter set.

4. Searching every point in the match/action pipeline where the original table
was applied. Modifying these applications to the execution of a sequence
which first applies the dispenser table and after that a switch branch based
on the executed action, where every branch executes the application of the
corresponding new executor table. Add the application of the original table
as the default branch.

As an illustration, consider the table shown in Listing 1 and assume that the
control plane layer will set the entries described in Table 1 into the table (for
simplicity, we use only small numbers instead of real addresses in the example).

Executing a vertical splitting with the parameter set {1, 2, 3}, first we have to
create three new specific version of the action NoAction. The new actions are
introduced by Listing 2.



P4 Specific Refactoring Steps 61

Table 1: Before vertical splitting

src addr dst addr action

1 1 ipv4 forward

1 2 ipv4 forward

1 3 drop

2 1 drop

2 2 modify dst

3 1 modify dst

4 4 NoAction

action case1() { }

action case2() { }

action case3() { }

Listing 2: Three new empty actions

Then a new table (called dispenser) should be created which determines based
on the first key value which new table will be used during the lookup. The table
declaration of the dispenser table of our example is described by Listing 3.

table dispenser {

key = {

hdr.ipv4.srcAddr: exact;

}

actions = {

case1;

case2;

case3;

}

size =1024;

}

Listing 3: Example dispenser table

After that we have to create a new table for every value in the parameter set
(called executor tables) to execute the remaining part of the lookup (based on the
second key value). Listing 4 defines the declaration of the first executor table in
the example (the other two executor tables have very similar declarations).

table executor1 {

key = {

hdr.ipv4.dstAddr: lpm;

}

actions = {

ipv4_forward;

modify_dst;



62 Máté Tejfel, Dániel Lukács, and Péter Hegyi

drop;

NoAction;

}

size = 1024;

default_action = drop();

}

Listing 4: Example executor table

Finally the ipv4_lpm.apply() match/action table application should be re-
placed with the code snippet described by Listing 5 at each point in the program
where it originally appears.

switch(dispenser.apply().action_run) {

case1 : { executor1.apply(); }

case2 : { executor2.apply(); }

case3 : { executor3.apply(); }

default : { ipv4_lpm.apply(); }

}

Listing 5: New code snippet

Using the new structure, we need to use the entries described by Table 2 and
Table 3 in the new dispenser table, in the original table and in the new executor
tables to provide the same functionality.

Table 2: Vertical dispenser and the original table after splitting

src addr action

1 case1
2 case2
3 case3

src addr dst addr action

4 4 NoAction

Table 3: Executor tables

executor1
dst addr action

1 ipv4 forward

2 ipv4 forward

3 drop

executor2
dst addr action

1 drop

2 modify dst

executor3
dst addr action

1 modify dst



P4 Specific Refactoring Steps 63

4.2 Changing the execution order of tables

In addition to the structure of the tables, P4 programs also define the order in which
they are executed. However in many cases the applied tables use independent fields
of the header structure, so changing the execution order of them will not modify
the results of the program. Changing the order can lead to more optimal memory
usage or can allow further modifications, such as table merging.

More formally we check the independence between tables based on the depen-
dency relations defined by Lavanya et al. [6]:

• Match dependency where the actions of the first table can modify a field
which is used as a key in the subsequent second table.

• Action dependency where the first table and a subsequent second table
both can change the same field.

• Successor dependency where the match result of the first table determines
whether a second table should be executed or not.

• Reverse match dependency where the first table matches on a field that
can be modified by a subsequent second table, and the first table must finish
matching before the second table changes the field.

Based on these definitions we have implemented a dependency analysis in
P4Query which – using the existing control flow and data flow analyses – can
determine the dependency between two tables. We have defined and implemented
a simple version of execution order changing based on this analysis.

The prerequisites of the transformation are the following.

• The applications of the two table are successive applications in the match/ac-
tion pipeline of the P4 program.

• There does not exist match, action, successor or reverse match dependency
relation between the two tables.

If the prerequisites hold, the transformation swaps the application of the two
table in the program.

4.3 Further refactoring step

In addition to those described above, we have defined additional P4 specific steps.
One is the merging operation corresponding to the previously described splitting
transformations. We also defined a variant of the horizontal splitting which split
the table based not on the size, but on some much likely used action appearing
in the table and using as parameter of the transformation. We have defined some
generic (not P4 specific) transformation steps too (e.g. parameter renaming and
magic number replacing).



64 Máté Tejfel, Dániel Lukács, and Péter Hegyi

5 Conclusion

We have presented the definition of refactoring steps for P4. The proposed transfor-
mations focus mainly on the manipulation of match/action tables which are basic
language elements in P4. The steps were implemented using the P4 specific ana-
lyzer tool, P4Query. The transformations are executed on the level of the internal
representation of the tool which helps in performing the analyses of the prereq-
uisites. Our current solution applies some generic consistency check provided by
P4Query on the resulted graph. In the future we plan to implement further, more
complex refactoring steps using the created refactoring infrastructure and extend
the actual consistency checks with more specific verification methods.

References

[1] Birnfeld, K., da Silva, D. C., Cordeiro, W., and de França, B. B. N. P4
switch code data flow analysis: Towards stronger verification of forwarding
plane software. In NOMS 2020 – 2020 IEEE/IFIP Network Operations and
Management Symposium, pages 1–8, 2020. DOI: 10.1109/NOMS47738.2020.

9110307.

[2] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J.,
Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. P4:
Programming protocol-independent packet processors. SIGCOMM Computer
Communication Review, 44(3):87–95, 2014. DOI: 10.1145/2656877.2656890.

[3] Dumitrescu, D., Stoenescu, R., Negreanu, L., and Raiciu, C. Bf4: Towards
bug-free P4 programs. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication, SIGCOMM
’20, page 571–585, New York, NY, USA, 2020. Association for Computing
Machinery. DOI: 10.1145/3387514.3405888.

[4] Eichholz, M., Campbell, E., Foster, N., Salvaneschi, G., and Mezini, M.
How to avoid making a billion-dollar mistake: Type-safe data plane pro-
gramming with SafeP4. In Donaldson, A. F., editor, 33rd European Con-
ference on Object-Oriented Programming, Volume 134 of LIPIcs, pages 12:1–
12:28. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. DOI:
10.4230/LIPIcs.ECOOP.2019.12.

[5] Horváth, Z., Lövei, L., Kozsik, T., Kitlei, R., Tóth, M., Bozó, I., and Király,
R. Modeling semantic knowledge in Erlang for refactoring. In International
Conference on Knowledge Engineering, Principles and Techniques, pages 38–
53, Cluj-Napoca, Romania, 2009.

[6] Jose, L., Yan, L., Varghese, G., and McKeown, N. Compiling packet programs
to reconfigurable switches. In 12th USENIX Symposium on Networked Systems

https://doi.org/10.1109/NOMS47738.2020.9110307
https://doi.org/10.1109/NOMS47738.2020.9110307
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/3387514.3405888
https://doi.org/10.4230/LIPIcs.ECOOP.2019.12


P4 Specific Refactoring Steps 65

Design and Implementation, pages 103–115, Oakland, CA, 2015. USENIX As-
sociation. URL: https://www.usenix.org/conference/nsdi15/technical-
sessions/presentation/jose.

[7] Lukács, D., Tóth, G., and Tejfel, M. P4Query: Static analyser framework for
P4. Annales Mathematicae et Informaticae, 2023. DOI: 10.33039/ami.2023.

03.002.

[8] Németh, F., Chiesa, M., and Rétvári, G. Normal forms for match-action
programs. In Proceedings of the 15th International Conference on Emerging
Networking Experiments And Technologies, CoNEXT ’19, page 44–50, New
York, NY, USA, 2019. Association for Computing Machinery. DOI: 10.1145/

3359989.3365417.

[9] Nötzli, A., Khan, J., Fingerhut, A., Barrett, C., and Athanas, P. P4pktgen:
Automated test case generation for P4 programs. In Proceedings of the Sym-
posium on SDN Research, SOSR ’18, New York, NY, USA, 2018. Association
for Computing Machinery. DOI: 10.1145/3185467.3185497.

[10] Nunes, B. A. A., Mendonca, M., Nguyen, X.-N., Obraczka, K., and Turletti,
T. A survey of software-defined networking: Past, present, and future
of programmable networks. IEEE Communications Surveys and Tutorials,
16(3):1617–1634, 2014. DOI: 10.1109/SURV.2014.012214.00180.

[11] P4 language specification, 2021. URL: https://p4.org/p4-spec/docs/P4-
16-v1.2.2.html.

[12] Rodriguez, M. A. The Gremlin graph traversal machine and language. Pro-
ceedings of the 15th Symposium on Database Programming Languages, 2015.
DOI: 10.1145/2815072.2815073.

[13] Sultana, N. and et al. Flightplan: Dataplane disaggregation and placement
for P4 programs. In Mickens, J. and Teixeira, R., editors, 18th USENIX
Symposium on Networked Systems Design and Implementation, pages 571–592.
USENIX Association, 2021. URL: https://www.usenix.org/conference/

nsdi21/presentation/sultana.

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/jose
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/jose
https://doi.org/10.33039/ami.2023.03.002
https://doi.org/10.33039/ami.2023.03.002
https://doi.org/10.1145/3359989.3365417
https://doi.org/10.1145/3359989.3365417
https://doi.org/10.1145/3185467.3185497
https://doi.org/10.1109/SURV.2014.012214.00180
https://p4.org/p4-spec/docs/P4-16-v1.2.2.html
https://p4.org/p4-spec/docs/P4-16-v1.2.2.html
https://doi.org/10.1145/2815072.2815073
https://www.usenix.org/conference/nsdi21/presentation/sultana
https://www.usenix.org/conference/nsdi21/presentation/sultana

	Introduction
	Related work

	P4 language
	P4Query
	Refactoring steps
	Table structure modification
	Horizontal table splitting
	Vertical table splitting

	Changing the execution order of tables
	Further refactoring step

	Conclusion

