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Invariants and String Properties in the Analysis of

the Knuth-Morris-Pratt Algorithm∗

Tibor Ásványia

Abstract

This paper is about the string-matching problem. We find the occurrences
of a pattern inside a text. First, we formally define the problem and sum-
marise its naive solution. Next, we analyse an efficient method, the Knuth-
Morris-Pratt (KMP) algorithm.

We prove the correctness of the KMP algorithm. We also analyse its
efficiency. Our reasoning is based on the properties of the pattern and the
text. It is also based on the invariant properties of KMP. In this way, we
could develop an extremely compact and elegant proof. And the method of
proving program correctness with the invariant properties of the program is
already familiar to our students at our university.
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1 Notations and basic notions

N = { i ∈ Z | i ≥ 0 } i . . k = [i . . k] = { j ∈ N | i ≤ j ≤ k }
[i . . k) = { j ∈ N | i ≤ j < k } (i . . k) = { j ∈ N | i < j < k }
Σ = {σ1, σ2, . . . , σd} is the alphabet where d ∈ N ∧ d > 0

T : Σ[n] is the text, an array of letters. T = T [0 . . n) = T [0 . . n−1].
Provided that 0 ≤ i ≤ l ≤ n, T [i . . l) is a string; T [i . . i) = ε is the empty string.
T [j . . k) is a substring of T [i . . l) if i ≤ j ≤ k ≤ l.

P : Σ[m] is the pattern (0 < m ≤ n). We search for the occurrences of P in T , i.e.
we look for the substrings of T equal to P.
P:j = P [0 . . j) = P [0 . . j−1] and similarly for T . Thus, P:0 = ε.

P [j . . k) w P [i . . k) (string P [j . . k) is a suffix of string P [i . . k)) if i ≤ j ≤ k.
Consequently, P:0 w P:j because P:0 = ε = P [j . . j) w P [0 . . j).
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P [j . . k) A P [i . . k) (string P [j . . k) is a proper suffix of string P [i . . k)) if i < j ≤ k.
Thus, P:0 A P:j if j > 0. (Proof: P:0 = P [j . . j) A P [0 . . j) if j > 0.)

P [i . . j) is a proper prefix of P [i . . k)) if i ≤ j < k.
String x is a proper prefix-suffix (PPS) of y if x is a proper prefix and suffix of y.
Consequently, P:i is a PPS of P:j if P:i A P:j (because P:i A P:j implies i < j).

The following three lemmas on strings will be useful. (Most of them are illustrated
in [2]. We present their proof here.) The first one tells us that a proper suffix of a
string’s suffix is a proper suffix of this string.

Lemma 1.1. (Transitivity of the suffix relation)
x A y ∧ y w z ⇒ x A z.

Proof. We can suppose that z = R[i . . l) where R[i . . l) is a string. Thus, y w z
means that y = R[j . . l) where i ≤ j ≤ l; and x A y means that x = R[k . . l) where
j < k ≤ l. Consequently, i < k ≤ l. Therefore, x = R[k . . l) A R[i . . l) = z.

The second lemma contains three statements. Given two suffixes of a string,
(1) one is a suffix of the other if it is not longer than the other, (2) one is a proper
suffix of the other if it is shorter than the other, (3) they are equal if their lengths
are equal.

Lemma 1.2. (Overlapping-suffix lemma)
Suppose that x, y and z are strings such that x w z and y w z.
|x| ≤ |y| ⇒ x w y. |x| < |y| ⇒ x A y. |x| = |y| ⇒ x = y.

Proof. We can suppose that z = R[i . . l). Thus, x w y means that x = R[j . . l)
where i ≤ j ≤ l; and y w z means that y = R[k . . l) where i ≤ k ≤ l. Consequently,
(1) |x| ≤ |y| means that l − j ≤ l − k; therefore, k ≤ j ≤ l, i.e. x = R[j . . l) w
R[k . . l) = y. (2) |x| < |y| means that l − j < l − k; therefore, k < j ≤ l, i.e.
x = R[j . . l) A R[k . . l) = y. (3) |x| = |y| means that l − j = l − k; therefore,
k = j ≤ l, i.e. x = R[j . . l) = R[k . . l) = y.

The third lemma tells us that given two nonempty strings (the strings on the
right side of the logical equivalences), one is a (proper) suffix of the other if and
only if their last letters are the same and the first without its last letter is a (proper)
suffix of the second without its last letter.

Lemma 1.3. (Suffix-extension lemma)
P:j w T:i ∧ P [j] = T [i] ⇐⇒ P:j+1 w T:i+1.
P:i A P:j ∧ P [i] = P [j] ⇐⇒ P:i+1 A P:j+1.

Proof.
(1) P:j+1 = P [0 . . j] ∧ T:i+1 = T [0 . . i]. Thus,
P:j+1 w T:i+1 ⇐⇒ P [0 . . j] = T [i−j . . i] ⇐⇒
P [0 . . j) = T [i−j . . i) ∧ P [j] = T [i] ⇐⇒ P:j w T:i ∧ P [j] = T [i].

(2) P:i+1 = P [0 . . i] ∧ P:j+1 = P [0 . . j]. Thus,
P:i+1 A P:j+1 ⇐⇒ i < j ∧ P [0 . . i] = P [j−i . . j] ⇐⇒
i < j ∧ P [0 . . i) = P [j−i . . j) ∧ P [i] = P [j] ⇐⇒ P:i A P:j ∧ P [i] = P [j].
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2 Introduction

In this paper, we suppose that P : Σ[m], T : Σ[n] and their lengths, i.e. m and
n are fixed where 0 < m ≤ n. We search for those shifts s of P on T where
T [s . . s+m) = P [0 . .m). Clearly, s must be in 0 . . n−m.

Definition 2.1. s ∈ 0 . . n−m is a possible shift of P on T .

It is a valid shift if T [s . . s+m) = P [0 . .m). Otherwise, it is an invalid shift.

Problem 2.1 (String-matching). Compute the set V of the valid shifts of P on T ,
i.e.

V = { s ∈ 0 . . n−m | T [s . . s+m) = P [0 . .m) }

The naive string-matching (Brute-Force) algorithm checks each possible shift in
order and collects the valid shifts with maximal (i.e. worst-case) time complexity
Θ((n−m+1)∗m), which is Θ(n2) if m = bn/2c. [2] (See the details of this Θ-notation
in the first chapter of [4].)

More advanced methods – like the different versions of the Boyer-Moore [1, 3],
Rabin-Karp, and KMP [2] algorithms – use information gained about the pattern
and the text. They do not check each possible shift of P on T but often make a
jump in T .

We prefer KMP because it runs in Θ(n) time on all the possible inputs, and
it never backtracks on T , making it easy to implement on sequential files. KMP
is traditionally introduced as a highly efficient simulation of string matching with
finite automata [2]. Here, we avoid these automata and start with analysing P and
T , i.e. the strings. To introduce KMP, let us see Example 2.1.

Example 2.1. In this example, we suppose there is a longer text T , but we consider
only T [i−5 . . i+2] = BABABABB here. The pattern is P = P:6 = BABABB.
The actual shift is i− 5. The successfully matched characters are underlined. The
unsuccessfully matched character is crossed out.

. . . Ti−5 Ti−4 Ti−3 Ti−2 Ti−1 Ti Ti+1 Ti+2

. . . B A B A B A B B
P = B A B A B ��B

B A B A B B

In the third line of the table, we successfully matched P:5 to T [i−5 . . i) but
P [5] 6= T [i]. Consequently, i−5 is not a valid shift.

Thus we make a minimal additional shift of P on T so that the P:k (0 ≤ k < 5)
which is still against T [i−k . . i) matches it, i.e. P:k A T:i. (See the last line of the
table.) This shift is ≤ 5, because P:0 A T:i. And with this shift, we do not jump
over any possibly valid shift. Actually k = 3. Then we successfully match P [3] to
T [i], P [4] to T [i+1] and P [5] to T [i+2]. Thus, i−3 is a valid shift. The bigger
possible shifts would jump over the valid shift i−3.



8 Tibor Ásványi

Understanding the previous example, the question remains: How do we efficiently
determine the value of k above? In the previous example, j = 5, but the following
argument can be applied to any j ∈ 1 . .m where i− j is the actual shift, P:j w T:i
and (P [j] 6= T [i] ∨ j = m).

Unquestionably, a greater additional shift corresponds to a smaller k, and a
smaller additional shift corresponds to a greater k. And k corresponds to the
minimal additional shift of P on T so that P:k A T:i. Thus, k is the greatest h so
that P:h A T:i and 0 ≤ h < j. Moreover, P:h A T:i is equivalent to P:h A P:j because
P:j w T:i and 0 ≤ h < j. Consequently, k is the greatest h so that P:h A P:j .

As a result, k depends only on P:j . After all, we need the longest PPS of P:j . Its
length is defined by the prefix function π. Because P is fixed, this length depends
only on j.

Definition 2.2. π(j) = max{h ∈ 0 . . j−1 | P:h A P:j } (j ∈ 1 . .m)

An efficient calculation of this function is given in Section 4, but before it, in Section
3, we analyse the main procedure of the KMP algorithm.

3 The KMP algorithm

In this section, first, we transform the intuitive approach of the KMP algorithm of
the Introduction into Algorithm 1. Next, we analyse it.

Algorithm 1 the Knuth-Morris-Pratt algorithm

procedure KMP(T : Σ[n] ; P : Σ[m] ; S : N{})
1: π : N[1 . .m] ; INIT(π, P ) ; S := {} ; i := j := 0
2: while i < n do
3: if P [j] = T [i] then
4: i+ + ; j + +
5: if j = m then
6: S := S ∪ {i−m} ; j := π[j]
7: end if
8: else if j = 0 then
9: i+ +

10: else
11: j := π[j]
12: end if
13: end while

We will prove in Section 4 that INIT(π, P ) collects the values of the π prefix
function into the π[1 . .m] prefix array in Θ(m) time. And the postcondition of the
INIT(π, P ) call is ∀j ∈ 1 . .m : π[j] = π(j). (See Algorithm 2.) Our analysis of
the KMP algorithm is based on the invariant (Inv) of Theorem 3.1 where i − j is
the actual shift. (See Section 2.4 of [4] on an exact program correctness proof with
loop invariant.)
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3.1 The partial correctness of the procedure KMP(T, P, S)

The following lemma will be appropriate where i− j is the actual shift. (It tells us
the following. When we search for a valid shift of P on T , i− j is P ’s actual shift
and ε 6= P [0 . . j) = T [i− j . . i), then the shift values between i−j and i−π(j) are
invalid: We find no solution there; and this does not depend on the validity of the
actual shift, i.e. i− j.)

Lemma 3.1. j ∈ 1 . .m ∧ P:j w T:i ⇒ there is no valid shift in (i−j . . i−π(j)).

Proof. Assume indirectly that k ∈ (π(j) . . j) and i− k is a valid shift. This means
T [i−k . . i−k+m) = P [0 . .m). Clearly, k < j ≤ m, therefore k < m. Thus
T [i−k . . i) = P [0 . . k), i.e. P:k w T:i. And P:j w T:i ∧ k < j. As a result, P:k A P:j

because of the Overlapping-suffix lemma (1.2). But k > π(j). For this reason,
P:k 6AP:j follows from Definition 2.2 of the π function.

The following theorem is the key to the KMP algorithm. It formulates an invariant
property of its main loop. Again, i−j is P ’s actual shift and P [0 . . j) = T [i− j . . i),
but P [0 . . j) is not the the whole pattern. Thus, we do not know whether i−j is a
valid shift, but we know that the S set already contains all the valid shifts before
the actual shift.

Theorem 3.1.
Statement (Inv) is an invariant of the loop of the procedure KMP(T, P, S).
(Inv) P:j w T:i ∧ 0 ≤ j ≤ i ≤ n ∧ j < m ∧ S = V ∩ [0 . . i−j).

Proof. Immediately before the first loop iteration, we perform the
S := {}; i := j := 0 initialisations. Thus, (Inv) holds because
i = j = 0 ∧ P:0 w T:0 ∧ 0 ≤ 0 ≤ 0 ≤ n ∧ 0 < m ∧ S = {} = V ∩ [0 . . 0).

We prove that each iteration of the loop keeps (Inv). The postcondition of the
init(π, P ) call, i.e. (∀j ∈ 1 . .m : π[j] = π(j)) is implicitly added to each statement.

Supposing that i < n, we enter the loop and
(Inv1) P:j w T:i ∧ 0 ≤ j ≤ i < n ∧ j < m ∧ S = V ∩ [0 . . i−j) stands.

• If P [j] = T [i], then
P:j+1 w T:i+1 according to the Suffix-extension lemma (1.3). After increasing
i and j we have
(Inv2) P:j w T:i ∧ 0 < j ≤ i ≤ n ∧ j ≤ m ∧ S = V ∩ [0 . . i−j).

1. If j = m, then P:m w T:i, i.e. P [0 . .m) = T [i−m. . i). This means
i−m is a valid shift. Thus, we add it to S. Then, we have the following
statement.

(Inv3) P:j w T:i ∧ 0 < j ≤ i ≤ n ∧ j ≤ m ∧ S = V ∩ [0 . . i−j].
Because j ∈ 1 . .m ∧ P:j w T:i, considering Lemma 3.1, we receive that
there is no valid shift in the interval (i−j . . i−π(j)). Thus
P:j w T:i ∧ 0 < j ≤ i ≤ n ∧ j ≤ m ∧ S = V ∩ [0 . . i−π(j)).
Consider that P:π(j) A P:j w T:i. Based on the transitivity of the suffix
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relation (Lemma 1.1) and π[j] = π(j):
P:π[j] A T:i ∧ 0 < j ≤ i ≤ n ∧ j ≤ m ∧ S = V ∩ [0 . . i−π[j]).
Because π[j] = π(j) ∈ [0 . . j), after the j := π[j] assignment already
0 ≤ j < i ∧ j < m stands. Consequently,
P:j A T:i ∧ 0 ≤ j < i ≤ n∧ j < m ∧S = V ∩ [0 . . i−j) holds. At the end
of the first program branch, this directly implies (Inv).

2. Provided that j 6= m, (Inv2) implies j < m. Thus, (Inv) holds at the
end of the second program branch.

• In case of P [j] 6= T [i], the Suffix-extension lemma (1.3) implies P:j+1 6w T:i+1,
i.e. P [0 . . j] 6= T [i − j . . i]. Based on (Inv1), j < m. Thus, P [0 . .m) 6=
T [i− j . . i− j +m) if i− j +m < n. Consequently, i−j is not a valid shift.
Comparing this to (Inv1), i.e.
P:j w T:i ∧ 0 ≤ j ≤ i < n ∧ j < m ∧ S = V ∩ [0 . . i−j), we have
(Inv4) P:j w T:i ∧ 0 ≤ j ≤ i < n ∧ j < m ∧ S = V ∩ [0 . . i−j].

3. If j = 0, then considering (Inv4) we receive
P:0 w T:i ∧ 0 = j ≤ i < n ∧ j < m ∧ S = V ∩ [0 . . i−j].
After performing i+ +,
P:0 w T:i ∧ 0 = j ≤ i ≤ n ∧ j < m ∧ S = V ∩ [0 . . i−j) stands.
Therefore, (Inv) holds at the end of the third program branch:
(Inv) P:j w T:i ∧ 0 ≤ j ≤ i ≤ n ∧ j < m ∧ S = V ∩ [0 . . i−j).

4. Provided that j 6= 0, then taking (Inv4) into account, we obtain
P:j w T:i ∧ 0 < j ≤ i < n ∧ j < m ∧ S = V ∩ [0 . . i−j]
This has the direct consequence
(Inv3) P:j w T:i ∧ 0 < j ≤ i ≤ n ∧ j ≤ m ∧ S = V ∩ [0 . . i−j].
We have already seen in the examination of the first program branch
that in the case of (Inv3), after performing assignment j := π[j], the
invariant (Inv) holds. Finally, (Inv) also stands at the end of the last
program branch.

Theorem 3.2. If the KMP algorithm terminates, it solves Problem 2.1 of string-
matching, i.e. S = V holds when it returns.

Proof. Let us consider Theorem 3.1. The (Inv) invariant of KMP’s loop with the
loop’s termination condition, i.e. P:j w T:i∧0 ≤ j ≤ i ≤ n∧j < m∧S = V ∩[0 . . i−j)
with i ≥ n implies that i = n∧j < m∧S = V ∩[0 . . n−j) holds when the loop of KMP
becomes completed. Furthermore, j < m⇒ [0 . . n−j) ⊃ [0 . . n−m) ⊇ { s ∈ 0 . . n−
m | T [s . . s+m) = P [0 . .m) } = V ⇒ [0 . . n−j) ⊃ V . Thus S = V ∩ [0 . . n−j) = V .
Consequently, S = V holds when the procedure KMP returns.

3.2 The termination of the procedure KMP(T, P, S)

First, we prove that the loop iterates at least n times. Before the first iteration,
i = 0. Each iteration increases i by 1 or 0. And the loop terminates with i = n
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according to the i < n condition and the 0 ≤ i ≤ n invariant. Thus, there are at
least n iterations before the loop terminates.

Second, we prove that the loop iterates at most 2n times. Let the termination
function be 2i − j where 0 ≤ j ≤ i ≤ n [see the (Inv) invariant in Theorem 3.1].
Thus 2i−j ∈ 0 . . 2n. Before the loop, 2i−j = 0, and each iteration increases 2i−j.
Consequently, there are at most 2n iterations before the loop terminates.

The loop of KMP runs in Θ(n) time because n is at least the number of the
iterations of the KMP loop, which is at most 2n.

Remember that we will prove in Section 4 that the INIT(π, P ) call terminates
in Θ(m) time.

As a result, the time complexity of the KMP(T, P, S) procedure is Θ(n) +
Θ(m) = Θ(n) because n ≥ m ≥ 0.

4 Initializing the prefix array

In this section, we will compute the values of the π : [1 . .m] → [0 . .m) prefix
function (see Definition 2.2) and store them in the π[1 . .m] array. Remember that
π(j) is the length of the longest PPS of P:j . Thus, π(1) = 0, and we can perform
π[1] := 0. Subsequently, provided that we have filled π[1 . . j] where 1 ≤ j < m, we
want to calculate π(j + 1), store it in π[j + 1] and so on.

π(j + 1) is the length of the longest PPS of P:j+1. If this PPS is nonempty, let
us denote it with P:k+1. Thus 0 ≤ k < j. According to the 1.3 Suffix-extension
lemma, P:i+1 A P:j+1 ⇐⇒ P:i A P:j ∧ P [i] = P [j]. This means that P:k is the
longest P:i A P:j where P [i] = P [j]. To determine P:k (and hence P:k+1), we check
the P:i PPSs of P:j in decreasing order according to i and find the first one where
P [i] = P [j]. If we do not find such a P:i, then π(j + 1) = 0.

The question is, given a P:i A P:j where i > 0 and P [i] 6= P [j], how to determine
the next longest PPS of P:j . Let it be P:l. As a result, P:i A P:j ∧P:l A P:j ∧ l < i.
Thus, P:l A P:i (see Lemma 1.2) and it is the longest one. Consequently, l = π(i).
π(i) = π[i] because i < j and π[1 . . j] is already calculated. As a result, we can
apply i := π[i] and have the following intuitive loop invariant:

π[1 . . j] have been calculated where 1 ≤ j ≤ m, and if j < m, then P:i is the longest
PPS of P:j for which still there is a chance that P [i] = P [j].

Based on this invariant, we can write the INIT(π, P ) procedure, i.e. Algorithm 2.
The following lemmas will be appropriate to prove the correctness of Algorithm

2. The first one says that the π-values can only increase at most one by one (when
they grow). When π(j) has been calculated, it provides an upper limit for π(j+1).

Lemma 4.1. j ∈ [1 . .m)⇒ π(j + 1) ≤ π(j) + 1

Proof. If π(j + 1) = 0 ⇒ π(j + 1) = 0 ≤ 0 + 1 ≤ π(j) + 1 because π(j) ≥ 0
by definition. If π(j + 1) > 0 ⇒ with Definition 2.2, P:(π(j+1)−1)+1 = P:π(j+1) A
P:j+1 ⇒ with Lemma 1.3, P:π(j+1)−1 A P:j ⇒ again with Definition 2.2, π(j+1)−
1 ≤ π(j)⇒ π(j + 1) ≤ π(j) + 1.
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Algorithm 2 Knuth-Morris-Pratt initialization

procedure INIT(π : N[1 . .m] ; P : Σ[m])

1: π[1] := i := 0 ; j := 1
2: while j < m do
3: if P [i] = P [j] then
4: i+ + ; j + + ; π[j] := i
5: else if i = 0 then
6: j + + ; π[j] := 0
7: else
8: i := π[i]
9: end if

10: end while

The next lemma also helps us when we are going to calculate π(j + 1), i.e. the
length of the longest PPS of P:j+1: In this situation, because of the following
invariants of the INIT() procedure, the conditions of the lemma are almost satisfied.
If P [i] 6= P [j], then π(j+1) ≤ i will be found. In this case, if i = 0, then π(j+1) = 0
follows; and if i > 0, then the lemma reduces the upper bound of π(j + 1).

Lemma 4.2. P:i A P:j ∧ 0 < i ∧ j < m ∧ π(j + 1) ≤ i⇒ π(j + 1) ≤ π(i) + 1

Proof. If π(j + 1) = 0 then π(j + 1) < 0 + 1 ≤ π(i) + 1 because π(i) ≥ 0 by
definition. Provided that π(j + 1) > 0, k := π(j + 1) − 1. Thus i > k ≥ 0 and
k+ 1 = π(j + 1). By the definition of the π function, P:k+1 A P:j+1. Consequently
P:k A P:j . Considering P:i A P:j and k < i, we have P:k A P:i, thus k ≤ π(i).
Therefore π(j + 1) = k + 1 ≤ π(i) + 1.

4.1 The partial correctness of the procedure INIT(π, P )

The following invariant of the INIT(π, P ) procedure’s loop is the formalised version
of the intuitive loop invariant above. It is the key to the partial correctness of this
subroutine, which means that ∀k ∈ 1 . .m : π[k] = π(k) stands when it returns.

Theorem 4.1.
Statement (inv) is an invariant of the loop of the procedure INIT(π, P ).
(inv) P:i A P:j ∧ (∀k ∈ 1 . . j : π[k] = π(k) )∧

0 ≤ i < j ≤ m ∧ ( j < m→ π(j + 1) ≤ i+ 1 ).

Proof. Because of the initialisations π[1] := i := 0; j := 1, immediately before
the first iteration of the loop, (inv) corresponds to the following statement: P:0 A
P:1∧(∀k ∈ 1 . . 1 : π[k] = π(k) = π(1) = 0 ) ∧0 ≤ 0 < 1 ≤ m∧( 1 < m→ π(2) ≤ 1 ).
To prove the elements of this formula, the P:0 empty string is a proper suffix of any
nonempty string; according to Definition 2.2, π(1) = 0; the size m of the pattern
P is not zero; and finally, because of Lemma 4.1, π(1 + 1) ≤ π(1) + 1 = 1, provided
that m > 1.
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Still, we have to prove that the iterations of the loop keep the (inv) invariant,
i.e. provided that (inv) holds before an iteration of the loop, it will also stand at
the end of any branch of the loop’s body. When we enter into the body of the loop,
(inv) and the loop’s condition (j < m) implies

(inv1) P:i A P:j ∧ (∀k ∈ 1 . . j : π[k] = π(k) )∧
0 ≤ i < j < m ∧ π(j + 1) ≤ i+ 1.

1. If P [i] = P [j], according to Lemma 1.3 we have P:i+1 A P:j+1 because P:i A
P:j [see (inv1)]. Based on the definition of the π prefix function (2.2), P:i+1 A
P:j+1 implies π(j + 1) ≥ i + 1. But π(j + 1) ≤ i + 1 is found in (inv1).
Consequently, π(j + 1) = i+ 1.
Performing the assignments i+ +; j + +;π[j] := i,

P:i A P:j ∧ (∀k ∈ 1 . . j : π[k] = π(k) ) ∧ 0 < i < j ≤ m ∧ π(j) = i.

Provided that j < m, π(j) = i and Lemma 4.1 implies π(j + 1) ≤ π(j) + 1 =
i+ 1. Therefore, at the end of the first branch of the loop’s body, (inv) holds.

2-3. If P [i] 6= P [j], then P:i+1 6AP:j+1 because of Lemma 1.3. Thus, π(j+1) 6= i+1,
according to Definition 2.2. In (inv1) we have π(j+1) ≤ i+1. Consequently,
π(j + 1) ≤ i.
Comparing this to (inv1), we receive that (inv2) stands in line 5 before the
if-statement:

(inv2) P:i A P:j ∧ (∀k ∈ 1 . . j : π[k] = π(k) )∧
0 ≤ i < j < m ∧ π(j + 1) ≤ i.

2. Provided that i = 0, consider π(j + 1) ≤ i from (inv2).
We have π(j + 1) = 0 because the π function is non-negative.

Comparing this to (inv2), after the assignments j+ +; π[j] := 0, we
receive

P:i A P:j ∧ (∀k ∈ 1 . . j : π[k] = π(k) ) ∧ 0 = i < j ≤ m ∧ π(j) = i.

If j < m, Lemma 4.1 and π(j) = i implies π(j + 1) ≤ π(j) + 1 = i + 1.
Therefore, at the end of the second branch of the loop’s body, (inv) also
holds.

3. Provided that i 6= 0, then (inv2) implies (inv3):

(inv3) P:i A P:j ∧ (∀k ∈ 1 . . j : π[k] = π(k) )∧
0 < i < j < m ∧ π(j + 1) ≤ i.

Thus, we can apply Lemma 4.2, and we have π(j + 1) ≤ π(i) + 1.

On the other hand, from (inv3) we receive π[i] = π(i). Comparing this
to Definition 2.2, we receive P:π[i] A P:i. In (inv3), P:i A P:j is found.
With Lemma 1.1, P:π[i] A P:j follows.

Consider (inv3) and π(j + 1) ≤ π(i) + 1. After the assignment i := π[i],
we receive
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P:i A P:j ∧ (∀k ∈ 1 . . j : π[k] = π(k) )∧
0 ≤ i < j < m ∧ π(j + 1) ≤ i+ 1.

Therefore, at the end of the last branch of the loop’s body, (inv) also
holds.

Corollary 4.1. The loop invariant (inv) and the negation of the loop’s condition,
i.e. j ≥ m, implies j = m. As a result, procedure INIT(π : N[1 . .m] ; P : Σ[m])
has the post-condition ∀k ∈ 1 . .m : π[k] = π(k).

4.2 The termination of the procedure INIT(π, P )

First, we prove that the loop iterates at least m−1 times. Before the first iteration,
j = 1. Each iteration increases j by 1 or 0. And the loop terminates with j = m
according to the j < m condition and the j ≤ m invariant. Thus, there are at least
m− 1 iterations before the loop terminates.

Second, we prove that the loop iterates at most 2m − 2 times. Let the termi-
nation function be 2j − i where 0 ≤ i < j ≤ m. Thus 2j − i ∈ 2 . . 2m. Before the
loop, 2j− i = 2, and each iteration increases 2j− i. Consequently, the loop iterates
not more than 2m− 2 times.

As a result, the time complexity of the INIT(π, P ) procedure is Θ(m).

5 Summary

In this paper, we found relatively simple and short proof of the correctness and
efficiency of the KMP algorithm. (Compare it to 32.3-4 in [2].) It is based on
(1) the properties of strings,
(2) the appropriate invariant properties of the loops of the algorithm and
(3) the suitable termination functions of these loops.
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