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On the Initial Set of Constraints for Graph-Based

Submodular Function Maximization∗

Eszter Csókásab and Tamás Vinkóacd

Abstract

A crucial problem in combinatorial optimization is the submodular func-
tion maximization (SFM), and in many cases it involves graphs on which the
maximization is specified. The problem is well-studied and hence there are
several proposed algorithms in the literature. The greedy strategy quickly
finds a feasible solution that guarantees an approximation of (1− 1/e). How-
ever, there are many applications that expect an optimal result within a
reasonable computational time. One popular method for finding the global
optimum is the constraint generation (CG) algorithm. Traditionally, the ini-
tial feasible solution of CG is given by the greedy algorithm. It turns out that
choosing different starting point than the greedy solution might lead to bet-
ter performance in terms of running time. In this paper we introduce such a
strategy which is beneficial on non-complete bipartite graphs. Benchmarking
results on different versions of the solution methods are shown to demonstrate
the efficiency of the proposed methods.

Keywords: submodular function maximization, combinatorial optimization,
integer programming

1 Introduction

Nemhauser and Wolsey concluded in their seminal paper [17] that four problems are
fundamental to solving an integer linear problem in terms of practicality: formula-
tion of the model, selection of an initial set of constraints, decisions in a branch-and-
bound algorithm, finding good feasible solutions. Among these essential issues, we
are concerned with that of the starting point selection, i.e., the selection of initial
constraints that would make the algorithms more efficient in terms of runtime.
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There are integer or mixed-integer linear programs that require exponentially
large numbers of linear constraints. A well-known example is the traveling sales-
man problem, which has exponentially many constraints to eliminate subtours [4].
A general group of these problems are mixed integer linear programs to be solved
by Benders decomposition. The basic approach is to start with a reduced relaxed
problem with a small number of constraints. During the algorithm execution, ad-
ditional constraints are generated if the existing ones are violated. When selecting
the initial constraints, care should be taken to ensure that they are important or
significant in some sense during the solution process. The recommended initial
constraints are the solution of the greedy algorithm [15, 17].

1.1 Submodular function

Let the finite set N be defined as N = {1, . . . , n}. A function f : 2N → R is called
submodular if for every S, T ⊆ N ,

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ).

Perhaps more intuitive is the following equivalent definition:

f({i} | S) ≥ f({i} | T )

holds for every S ⊆ T ⊆ N and i ∈ N \ S where f({i} | S) := f(S ∪ {i})− f(S).

The function f is monotone if f({i} | S) ≥ 0 for all i ∈ N \ S.

A submodular function f is non-decreasing if f(S) ≤ f(T ) holds for all S ⊆
T ⊆ N . In the following we assume that f satisfies this property, i.e., it is a
non-decreasing submodular function.

The goal of the submodular maximization problem with a cardinality constant
0 < k ≤ n is to find a subset S ⊆ N maximizing f(S) such that |S| ≤ k.

1.2 Solvability

In contrast to the task of minimizing submodular functions, which can be done
in polynomial time [8, 10, 22], maximizing non-decreasing submodular functions is
known to be NP-hard [5, 14]. The greedy method for solving the non-decreasing,
monotone submodular maximization problem with cardinality constraint was pro-
posed in [16]. They showed that the greedy strategy achieves an (1− 1/e)-approx-
imation of the optimal solution.

Although this is a simple and efficient technique for solving many optimization
problems and is therefore very commonly used, the global optimum is often more
needed in real-world applications, which was the motivation for a new solution
method proposed in [17]. This is based on a mixed integer programming (MIP)
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model:
max z

s.t. z ≤ f(S) +
∑

i∈N\S

f({i} | S) · yi, S ∈ F,∑
i∈N

yi ≤ k,

yi ∈ {0, 1}, i ∈ N,

(1)

where f(T | S) := f(S ∪ T ) − f(S) for all S, T ⊆ N and F denotes the set of all
feasible solutions satisfying the cardinality constraint | S |≤ k.

Since the number of constraints increases exponentially in (1), this motivated
a new procedure, the so-called constraint generation (CG) algorithm, proposed in
[17]. CG is an iterative algorithm that starts with solving a reduced problem. The
reduced problem consists of a set of constraints generated from the initial set, which
is extended on demand at each iteration by the addition of a feasible solution. So in
essence it solves many reduced MIP problems, which are not always sufficiently effi-
cient in applications. For this reason, the branch-and-bound algorithmic approach
is often used, which exploits the relaxation of MIP.

1.3 Constraint generation algorithm (CG)

A constraint generation algorithm was proposed in [17], which starts from a reduced
MIP problem to start with a few constraints to solve. It is an iterative algorithm,
and in every iteration solving the reduced MIP problem while adding a new con-
straint. Let define the reduced problem MIP(Q), where Q ⊆ F is a set of feasible
solutions:

max z

s.t. z ≤ f(S) +
∑

i∈N\S

f({i} | S) · yi, S ∈ Q,∑
i∈N

yi ≤ k,

yi ∈ {0, 1}, i ∈ N.

(2)

Note that MIP(Q) is a reduced problem of (1). An optimal solution vector ŷ of
MIP(Q) for which the corresponding set Ŝ is in Q is also an optimal solution of the
original problem (1).

The pseudo code of CG is shown in Algorithm 1. The starting point of the

algorithm is a set Q = {S(0)
[0] , . . . , S

(0)
[k] }, where S[i] is the first i elements of a feasible

solution S(0) which comes from the order of the greedy algorithm’s solution. In the

t-th iteration we solve the problem MIP(Q), Q = {S(0)
[0] , . . . , S

(0)
[k] , . . . , S

(t−1)} to

obtain the optimal solution y(t) = (y
(t)
1 , . . . , y

(t)
n ) and z(t) the optimal value which

gives an upper bound of the problem (1). Let S∗ be the best feasible solution
of problem (1) up to this point and S(t) ∈ F be the set which is generated the
optimal solution y(t) of MIP(Q), i.e., y(t) is the characteristic vector of S(t). When
f(S(t)) > f(S∗) holds, then update S∗ with S(t). If z(t) > f(S∗) ≥ f(S(t)) holds,



4 Eszter Csókás and Tamás Vinkó

Algorithm 1 CG(S(0))

Input The initial feasible solution S(0).

Output The optimal solution S∗ of problem (1).

Step 1: Set Q← S(0), S∗ ← S(0) and t← 1.

Step 2: Solve MIP(Q). Let z(t) be the optimal value of MIP(Q) and S(t) is the set
corresponding to the optimal solution y(t) of MIP(Q).

Step 3: If f(S(t)) > f(S∗), then let S∗ ← S(t).

Step 4: If z(t) = f(S∗) holds, then output the solution S∗ and exit.

Step 5: Set Q← Q ∪ {S(t)}, t← t + 1 and return to Step 2.

then we have that S(t) /∈ Q, so (in Step 5) add S(t) to Q. This effectively adds the
following constraint to MIP(Q):

z ≤ f(S(t)) +
∑

i∈N\S(t)

f({i} | S(t)) · yi. (3)

The algorithm stops when z(t) = f(S∗) is satisfied which means that it is proven
that the optimal solution is found.

1.4 From where to start the CG algorithm?

It can be observed that the choice of the starting point plays a role in the effi-
ciency (i.e., its runtime) of the CG algorithm. More precisely, starting from a high
function-valued initial point might not provide the fastest runtime. This effect is
illustrated in Figure 1. Exact details of the test problem (called C.60.5.3) will be
given later in Section 5, right now it is enough to specify that the task of the CG
algorithm was to select the optimal k = 5 nodes from a graph of 60 vertices. The
globally optimal solution for this benchmark example was known.

We created 250 test cases, part of which started from a random starting point,
while in the other part we chose 3 of the best 5 vertices belonging to the global
optimum, fixed them and randomly added 2 other nodes. The reason for this is
that we did not get an initial set with a larger function value in the random choices,
so we have also biased the sensitivity analysis a bit towards the more interesting
scenarios.

Figure 1 shows the scatter plot of the 250 test cases. It is important to note
that in this figure, the x-axis shows the runtime of the CG algorithm and the y-
axis shows the function value of the initial set. In the figure, two sets of points
can be roughly separated, due to the semi-random chosen test cases. The green
dot indicates the original CG algorithm starting from the initial point proposed by
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Figure 1: Visualization of the sensibility of the starting point: starting points with
similar function values can have rather different running times

greedy. Note that for the other results, we used all subsets of randomly generated
points as starting point since we did not have any order. This figure perfectly
illustrates that the running time of a CG algorithm can be very different even if
the function value of the initial points are similar.

The phenomenon introduced informally above is the main motivation for our
paper.

1.5 Roadmap

The relevant literature summary follows in Section 2. The algorithms investigated
in this paper are reviewed in Section 3. A new starting point generation rule for
accelerating the algorithms is discussed in Section 4. In Section 5, we present our
numerical experiments, the benchmark instances that we used for testing the algo-
rithms, including a description of the computational environment, the properties
of the test graphs and then the benchmarking results. Finally, Section 6 concludes
the work.

2 Related work

CG-type algorithms are often used to solve mixed-integer linear problems (MILP),
hence their efficiency is of high interest. A popular approach is to use machine
learning to improve the speed of these algorithms. By achieving a good initial
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set, the number of iterations is reduced, which reduces the computational cost. In
this spirit, a learning strategy was proposed in [19] that employs a modified near-
est neighbor method to filter out redundant constraints in the Unit Commitment
(UC) problem. In [11], a machine-learning-aided warm-start constraint generation
algorithm was introduced which speeds up the search for the optimal solution of
a MILP. The method is constructed on the offline detection of the invariant con-
straint sets of earlier occurrences of the target MILP. This significantly improves
the prediction of invariant constraint sets for instances that have not yet been
seen. Thus, much fewer iterations are required to run the constraint generation
algorithm and the online computational burden is significantly reduced. A similar
idea for solving MIP problems can be found in [25], where a machine learning tech-
nique has been proposed. This is based on extracting efficient data from previous
instances in order to improve the solution for similar instances. Good initial feasi-
ble solutions, affine subspaces, and redundant constraints were predicted based on
statistical data, leading to a significant reduction in problem size.

Focusing on the submodular function maximization problem, most solving algo-
rithms use the result of the greedy approach as a starting point, i.e., the constraints
of the initial set, as proposed in [15, 17]. Correspondingly, in [23], the constraint
generation procedure and its improved versions used the subsets generated from the
greedy result as starting points. The study in [24] investigated fairness and bal-
ancing utility in submodular maximization, which was formulated as a bicriteria
optimization problem. For this, two instance-dependent approximation algorithms
were introduced. In these solving methods, the initial set is also the solution of
the greedy algorithm. The well-known benchmarks (maximum coverage, influence
maximization and facility location) were used to test the efficiency.

A cutting-plane algorithm for submodular maximization problems was described
in [12], which is in fact an iterative binary-integral linear programming model.
They used a so-called submodular cut plane, based on the submodularity of a set
function via the Lovász extension, which ensures that the algorithm converges to
the optimum in finite iterations. In the experiments, they used the solution by a
greedy algorithm as initial subset.

3 Variants of constraint generation algorithm

In this section, we briefly describe the algorithms that are used in the paper. The
basic algorithm, the constraint generation algorithm, was presented earlier, so vari-
ations of it follow. As the procedures are already available in the literature, we will
only give a general description of them, without the exact details. For the complete
discussion the reader is referred to the cited papers below.

3.1 Improved constraint generation (ICG)

In [23], the authors proposed an improved generation method based on CG, where
not one but several constraints are added per iteration. It complements Algorithm
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1 by creating a new set Q+ containing the elements of the set Q and the result of
the internal sub-algorithm (SUB-ICG). Step 5 of the CG algorithm is completed
by calling SUB-ICG and adding its return value to the set Q+. If a solution is
found in this part of the algorithm whose function value is greater than the current
f(S∗), it is also updated.

The SUB-ICG is an iterative algorithm that generates λ = 10 · k new feasible
solutions (i.e., k vertices are selected). To do this, it uses a heuristic method to
assign a value pi to the vertices i ∈ N . This is based on the number of times the
vertices i ∈ N appear in the sets S ∈ Q. These are recalculated after updating the
set Q. Finally, the final selection order is given by ri, which is generated randomly
such that 0 ≤ ri ≤ pi.

3.2 ICG with reduced k (ICG(k − 1))

We proposed ICG with reduced k in [2]. What has been changed from the ICG
is that in SUB-ICG we choose k − 1 nodes for the constraints. Thus, the function
value calculated in (2) computes the value of the k-th vertex when adding it to the
set. We have kept this change for the remaining algorithm variants, i.e., we choose
k− 1 nodes for the constraints in both GCG and ECG, which are presented below.

3.2.1 ICG using graph structure (GCG)

In this variant of ICG(k − 1), that we proposed in [2], we changed the heuristic
that calculated the value pi to select the nodes in the SUB-ICG. The new heuristic
is based on the structure of the input graph. If the graph is fully connected, then
we do not consider all of the edges. Specifically, we compute the median of the
outgoing edges’ weights for every vertex j ∈ M . Edges with weights less than the
median are ignored. The pi value is the sum of the weights of the incoming edges
at node i ∈ N normalized with the targets node’s degree. Accordingly, the value
of ri is uniformly randomly adjusted so that 0 ≤ ri ≤ pi. We also use the concept
coming from ICG(k − 1), so we select k − 1 nodes.

3.2.2 ICG using enumeration (ECG)

In contrast to ICG and GCG, in this variation no sub-algorithm is repeated within
the main algorithm, which can result in less computation time. ECG was proposed
in [2]. Instead of the sub-algorithm, we add a few additional steps to the Algorithm
1 so that we still generate λ constraints per iteration. We choose some nodes
from the union of the set S(t) and a randomly chosen set Q of feasible solutions
satisfying certain conditions. The choice is based on a graph structure according
to the largest pi values. From these we generate subsets with cardinality at most
k− 1. From these we generate subsets with cardinality at most k− 1 and compute
their function values. Of these we keep λ subsets with the smaller function values.
These correspond to the return sets of SUB-ICG.
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3.3 A modern implementation

In this subsection, we would like to present a brief summary of a relevant and
efficient method for submodular maximization, as found in [21]. A modern imple-
mentation of the MIP model of Nemhauser and Wolsey based on lazy constraint
generation was presented. These procedures were also used to test the new ini-
tial point selection strategy. An analogy was discovered between the MIP model
of submodular function maximization and the Benders decomposition [1]. Specifi-
cally, they were able to exploit some of the algorithmic improvements proposed for
the Benders decomposition. That is, they took advantage of the support of modern
MIP solvers for lazy constraints, so they could provide a stronger initial primal
constraint and could also improve the dual constraint faster.

In terms of runtime, these algorithms are much faster than the algorithms pre-
sented previously, as can be seen from the numerical results. However, we would like
to note that we are not demonstrating the effectiveness of the solving algorithms,
but to show how the starting point selection strategy works.

3.3.1 GRASP heuristic

At the end of the greedy phase, a local search was inserted using a neighborhood
structure. This was based on the fact that replacement neighbourhoods were ex-
amined: subsets of elements that had been dropped and a new element not yet in
the set added. The GRASP heuristic can be obtained with the greedy algorithm
extended by local search, based on [6]. Then, a randomized component is added to
the greedy procedure, i.e., a candidate is chosen randomly, which is then corrected
by local search. This is iterated until an iteration/resource limit is reached.

3.3.2 Separating fractional solutions

Separating fractional solutions is not trivial, but separating integer solutions is easy.
This is because for fractional solutions, the point to be cut cannot be mapped to
a subset of the ground set. This was the motivation for proposing two heuristic
solutions for decomposition in [21]. One is based on the greedy algorithm, while
the other is based on the Lovász-expansion.

Of the methods summarized above, 3 algorithms have been constructed and
tested in [21]: base is the basic constraint generation method, bc has constraints
separated as lazy constraints on the fly without using custom branching, while bc+
is the improved version of bc and custom branching are included. bc and bc+ use
GRASP as a warm start, so we used these algorithms to test our new starting point
selection strategy.
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4 A new starting point for constraint generating
algorithms

To find a new starting point for a CG-type algorithm we use the input graph’s
structure. The idea is based on our previous work [2] (cf. calculate the pi value),
but the procedure used there is not directly appropriate. In fact, the current
approach is completely new, and it was not used in our previous work. Moreover,
in this method, the nodes are dynamically selected.

To choose k node as a new starting point, first of all, we calculate a new cen-
trality1 value nsi to every node i ∈ N . This centrality is adding up the weights of
the incoming edges at node i ∈ N normalized with the degree of the targets node,
then multiplying the sum with the degree of the source node:

nsi = di ·
∑

j:(j,i)∈E(G)

wji

dj
, (4)

where G is the input graph of the optimization problem, E(G) is the set of edges
of G, the edges have wji weights, dj is the degree of the node j ∈M and di is the
degree of node i ∈ N . Observe that this formula works well for graphs that are not
fully connected, because weighting by the degree of the vertices only makes sense
then.

Choose node i with highest nsi value and delete node i with their edges and
recalculate all the nsi for every node i ∈ N . The next vertex is chosen for the
starting point based on the recomputed centrality value. Repeat this method until
k nodes are selected.

See the graph on Figure 2 as a small illustrative example, where the labels of
the nodes are marked with black numbers. The vertices signed by their labels and
their corresponding nsi values calculated by (4) are shown next to them highlighted
by tanning color. Taking the nsi values into account, we first choose node 7 and
then delete this vertex with its edges. Then, the result graph is shown on Fig. 3
with its recalculated nsi values. Accordingly, the next selected vertex is 5 and not
node 6, but note that in the first step it seemed that node 6 is the better choice.

Although we choose k nodes fromN , we also use the vertices fromM to calculate
the new centrality metric. We divide the weight of the outgoing edges j ∈ M by
the degree of j, which is used to normalize the effect of the edges. We sum this
normalized incoming edge weights for each i ∈ N nodes, which expresses the average
effect of selecting i ∈ N nodes relative to the other N nodes. This is weighted by
the degree of node i, which helps to better scale the effect of the N vertices.

Let’s revisit the example in Figure 2. Node 4 can be served only if node 7 is
selected, because there is only one edge from node 4 to node 7, so node 7 is impor-
tant. When computing the centrality metric, we add an edge weight to the value of
this peak, which is divided by 1 (i.e., it remains itself), thus greatly increasing the
value of ns7. There are two other vertices connected to vertex 7 with two edges,

1importance of graph nodes is indicated by a centrality measure; it is a non-negative value
assigned to each vertex [18].
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7ns7 = 4.89

6ns6 = 1.07

5ns5 = 1.01
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0.93

0.73

0.94

0.75

Figure 2: Example graph to calculate the nsi values; initial step

but in both cases the edge with the higher weight is connected to the node 7. This
effect is further increased by multiplying the value by the degree of the node.

Next, we delete node 7 with its edges, thus obtaining a new graph showing the
case where vertex 7 no longer serves a function. This is the reason why, in the case
of the graph in Figure 3, we now choose vertex 5. In the current state of the graph,
the value of ns5 is larger, i.e., the vertex is more important, because there is only
one edge coming out of vertex 1, and its value is larger than the edge coming into
vertex 6 from vertex 2. Notice that we always choose the most important vertex
of the current ones. This is regardless of the edge weight going to the previously
selected vertex from vertices j ∈M (e.g., the vertex 7 has a high weight edge going
to it from 3). This is crucial for the strength of the method.

Finally, we generate all subsets from the k vertices proposed by the new cen-
trality metric. We start a CG-type algorithm from the constraints defined by these
subsets.

5 Numerical experiments

5.1 Computational environment

The implementation of the above proposed new centrality were done in R version
4.3.2 using its igraph 1.4.2 package. For numerical experiments, CG-type algo-
rithms [2] are implemented in AMPL [7], using the original code with the param-
eters in [2]. The solver CPLEX 22.1.1.0 called from AMPL using default options.
The modern implementations, the bc and bc+ algorithms, were previously provided
by the author of [21]. Thus the original C++ code was used for testing and the
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Figure 3: Example graph to calculate the nsi values; result of the first iteration

settings in [21] were not changed. The MIP solver is IBM ILOG CPLEX 22.1.1
[9]. The computer used had Intel Core CPU i5-6500 at 3.20GHz with 64G memory
running Ubuntu Linux 22.04.3.

5.2 Problem instances

We use two types of well-known and often employed instances with a non-decreasing
submodular property, called weighted coverage (COV) and bipartite influence (INF)
[13, 20]. It is important to note that the COV problem has simple MIP formulation
that can be solved rather efficiently with standard MIP solvers, see [23]. In contrast,
the INF problem, which we discussed below, cannot be formulated as a simple
MIP, and this justifies the attempt to make the universal submodular maximization
framework more efficient [21].

5.2.1 Weighted coverage (COV)

Let M = {1, . . . ,m} be the set of items, where m is the number of items and
N = {1, . . . , n} be the set of sensors, where n is the number of sensors. Each sensor
j ∈ N covers a subset of elements Mj ⊆M , and each item i ∈M has a non-negative
weight wi. We select a set of sensors S ⊆ N to cover the items. Let ai,j = 1 be, if
i ∈Mj and ai,j = 0 otherwise. The definition of the the total weighted coverage is
the following:

f(S) =
∑
i∈M

wi max
j∈S

ai,j . (5)

5.2.2 Bipartite influence (INF)

Let n be the number of items and m be the number of targets. The set of items
N = {1, . . . , n} and the set of targets M = {1, . . . ,m} are given. Let the influence
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maximization problem be defined on a bipartite graph G = (M,N ;E), where E ⊆
M ×N is the set of directed edges. The activation probability pj ∈ [0, 1] of every
j ∈ N item is given. Let 1 −

∏
j∈S(1 − qij) be the probability that a set of items

S ⊆ N activates a target i ∈ M , where qij = pj if (i, j) is a directed edge in E,
otherwise qij = 0 holds. Then, the determination of the number of targets activated
by the set of elements S ⊆ N :

f(S) =
∑
i∈M

(
1−

∏
j∈S

(
1− qij

))
. (6)

Let’s notice that the formula of INF as a submodular function (6) includes a product
containing the elements of the set S, which contains the product of the elements
from the set S. It could be formulated with binary variables to select the set
elements, and that would result in a polynomial type non-linear program. This
could possibly be converted to MILP with e.g., McCormick formalism but it is
neither simple nor promising in terms of its solvability.

5.3 Test graphs

All the algorithms presented in Section 3 were re-run during testing to ensure a
fair comparison with the procedures started from the new point (i.e., same config-
urations and software versions). We also tested the algorithms used in [2, 21] and
their versions started from a new initialization point, a short summary of this is
given below. For both problems we used the benchmarks from [23], since they are
available online.

Following the approach in [23] we had:

• N = 20, 40, 60, 80, 100;

• M = N + 1 and k = 5, 8.

• For COV instances, a sensor j ∈ N randomly covers an item i ∈ M with
probability 0.15, and wi is a random value taken from interval [0, 1]; and

• for INF instances, an edge is randomly generated with probability p = 0.1
probability and pj is a random value taken from the interval [0, 1].

• We had λ = 10 · k.

• The cardinality of set Σ in ECG: κ = 12, see [2] for details.

• Finally, all the random parameters were generated with uniform distribution.

5.4 Benchmarking results

Detailed results are available in an electronic supplement [3] containing 24 tables,
for the transparency of the publication. The average results for each instance are
given in Table 1 and Table 2.
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Table 1: Summary of results: starting from greedy versus NS (using CG-type
algorithms)

inst., k algorithm time iter.nr. cons.nr. NS-time NS-iter.nr. NS-cons.nr.

COV, 5 CG 478.14 95.65 100.65 115.82 63.00 94.00
ICG 302.05 17.80 597.28 204.51 15.92 542.02
ICG(k − 1) 261.33 20.53 715.82 186.86 18.80 664.24
GCG 184.53 14.79 649.67 138.70 14.09 628.55
ECG 955.36 45.38 383.42 583.16 36.92 363.92

COV, 8 CG 290.41 22.78 30.78 565.18 24.17 279.17
ICG 541.56 7.11 432.98 666.79 7.85 707.11
ICG(k − 1) 441.73 7.61 478.57 427.16 8.85 778.79
GCG 394.74 6.39 442.13 542.99 7.37 767.75
ECG 591.54 8.65 398.30 494.53 8.31 745.98

INF, 5 CG 426.19 197.00 203.00 243.38 104.10 135.10
ICG 904.53 51.76 1219.89 15.92 13.75 300.24
ICG(k − 1) 560.43 38.77 1025.61 68.78 15.20 388.13
GCG 591.83 33.28 1086.53 72.16 14.18 460.08
ECG 0.86 3.68 88.68 0.85 3.00 93.60

INF, 8 CG 20.52 81.00 90.00 2.93 14.33 269.33
ICG 524.63 26.04 1194.26 6.66 7.56 441.08
ICG(k − 1) 202.74 18.12 917.20 4.10 5.30 425.83
GCG 947.46 25.21 1486.46 40.66 9.86 770.40
ECG 442.63 17.22 1322.61 36.65 6.52 703.26

Table 2: Summary of results: starting from GRASP versus NS (using the modern
implementation)

inst., k algorithm time NS-time

COV, 5 bc 3.04 2.40
bc+ 2.84 1.66

COV, 8 bc 49.09 48.18
bc+ 34.31 33.34

INF, 5 bc 0.35 0.11
bc+ 0.32 0.13

INF, 8 bc 3.62 4.31
bc+ 5.96 9.80
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Five instances were tested for each class, indicated by the last digit of the
instances. All algorithms, for each task, were run 5 times using different random
seeds for the heuristic choices. The time limit used for the runs was 7,200 sec (2
hours). If, for any instance, not all of the 5 runs were completed within the time
limit, the number of successful runs was indicated in brackets. The instances that
did not run within the limit were described by the the mean relative gap2 with the
average number of cases counted in brackets behind it.

The following is a textual assessment of the tables. We denote new start al-
gorithms with NS prefix. Where all of the instances were successful, we have
highlighted in the table the one that was faster. In the textual evaluation, we use
the ratio (time/NS-time) and (NS-cons.nr./cons.nr.) to express the change in
time and the number of constraints. For the comparison of iteration numbers, we
used (NS-iter.nr./iter.nr.)× 100 percent.

For the average values in Table 1, only graph instances were considered which
could ran within the given time limit in all 5 cases using the given algorithm and
its NS variant. The table shows that the NS algorithm was faster on average in
most cases.

COV, k = 5 The results are reported in Tables 3-8 in the supplement [3]. Con-
sidering all of these methods together, the algorithms started from the new point
were able to solve the problems within the time limit in more cases. For the suc-
cessful instances, NS-CG was able to speed-up the running time the most, it was
2.46 times faster, while the iterations were decreased to 68.22% and the number
of constraints was 1.70 times more compared to CG. Next was NS-ECG with 2.00
times speed-up, 71.06% reduction in the number of iteration and 1.54 times the
number of constraining conditions. NS-ICG was 1.54 times faster and reduced it-
eration to 85.85%, while using 1.05 times more constraints to solve the problem.
NS-ICG(k − 1) and NS-GCG achieved similar results: NS-ICG(k − 1) achieved
1.37 times faster with less iterations (90.23%) and 1.05 times more constraints;
NS-GCG was 1.32 times faster, reduced iterations by 93.41% and used 1.07 times
more constraints.

Examining the bc and bc+ algorithms, we can see that by replacing the GRASP
heuristic with the NS starting point, bc is 3.56 times faster, while bc+ is 3.53 times
faster on average. In the case of bc, there are 2 graph instances where the GRASP
heuristic algorithm runs faster.

COV, k = 8 The results are reported in Tables 9-14 in the supplement [3]. The
results obtained for this instance are very interesting. Although we started all NS
algorithms from the same new point, we did not achieve improvements in many
cases. One reason for this is that the number of all the subsets of the k = 8 se-
lected vertices is large, so there are already many constraints when starting the
reduced MIP problem. Another reason is that algorithms generate new constraints

2(zUB − zLB)/zLB × 100, where zUB and zLB are the upper and lower bounds reported by
the algorithms, respectively
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in different ways per each iteration after the initialization. This results in an av-
erage speedup of 1.01 times for NS-ECG, while no speedup was achieved for the
other algorithms. For NS-ECG, there were 176.15% more iterations and 15.08 times
more constraint conditions compared to ECG. NS-CG was 0.38, NS-ICG was 0.57,
NS-ICG(k− 1) was 0.59 whereas NS-GCG was 0.61 slower than the corresponding
greedy initiated methods. Even the number of iterations and constraints has in-
creased. Note that this is the only group of problems where the algorithms from
the new starting point did not show absolute success. Much the same phenomenon
can be observed when examining the relative gap values.

Using the NS starting point instead of the GRASP heuristic, the average speedup
is 3.58 for bc and 4.25 for bc+. Note that, there are a few cases where bc, bc+ runs
faster than NS-bc, NS-bc+; to be precise, 8 graphs for bc and 8 graphs for bc+.

INF, k = 5 The results are reported in Tables 15-20 in the supplement [3].
The best results were obtained for NS-ICG, with an average 32.11 faster runtime,
32.66% reduction in the number of iterations and 80.28% reduction in the number
of constraints. As with NS-ICG, NS-ICG(k − 1) and NS-GCG ran faster than the
original algorithm for all examples and reduced both the number of iterations and
the number of constraints. In numerical terms, ICG(k − 1) achieved 8.84 times
faster runtime and reduced the number of iterations by 40.71% and the number of
constraint conditions by 66.54%; GCG similarly achieved 6.82 times faster runtime
and reduced the number of iterations by 40.71% and the number of constraint
conditions by 54.99%. NS-CG and NS-ECG did not win in terms of runtime for
all graphs, but when looking at the average runtime results, they still ran faster.
CG achieved a speedup of 3.82 times, while increasing the number of iterations and
constraint conditions (by 1.08 times and 1.82 times, respectively). For ECG, the
average speedup was 1.18, but note that the ECG solution time for these examples
is under 5 sec.

The gap values are similar: the gap values of the NS algorithms are smaller,
and note that there were several times when the original algorithm could not run
within the time limit, while the NS algorithms solved the problem in a short time.

For these tasks, we can achieve an average speedup of 3.31 times on bc and 2.64
times on bc+.

INF, k = 8 The results are reported in Tables 21-26 in the supplement [3].
For these instances, there were many cases where the algorithms could not solve
within the time limit. That is why we can see several instances where only the
NS procedure solved. The best average speedup here was also achieved with NS-
ICG, exactly 8.33 times, while the iteration was less than halved (44.41%), but
the number of constraints was almost 4 times more (3.89). We achieved similarly
good results with NS-ICG(k − 1), with 15.50 times faster. NS-GCG also achieved
9.63 times faster results with half as many iterations (50.44%). ECG ran the most
graphs, so we were able to make the most comparisons here and was 6.84 times
faster with NS-ECG with no increase in the number of constraints (99.07%). In
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contrast, CG used 9.04 more constraints but also reduced the runtime by 8.33
times. Comparing the gap values, we can see that in most cases the NS algorithms
achieved smaller gap values. In fact, there are 23 cases where the NS ran within
the time limit in all 5 cases, while starting from greedy, the algorithm could not.

For the bc and bc+ algorithms, the average speedup is 2.09 and 2.04, respectively.
For these instances, both for the bc and bc+ algorithms, the average runtime is lower
when starting from the GRASP heuristic. Accordingly, this is where most of the
graph instances where the GRASP heuristic algorithm proved to be faster (7 cases
for bc and 8 cases for bc+).

6 Conclusion

A new centrality metric based on the input graph structure was proposed. The
graphs under consideration are not fully connected bipartite graphs, for which we
have used both the edge weights and the degrees, taking into account the baseline
problem. The centrality metric is dynamically recalculated after selecting and
deleting a vertex, and the resulting node ordering is used to select the initial set of
submodular function maximization problems. The importance of the choice of the
starting point was already stated by Nemhauser and Wolsey in [17]. In most cases,
the solution proposed by the greedy method or randomly selected feasible solution
is used as the starting point for solving algorithms. But there are other proposals
in the literature, more precisely, we have presented here the GRASP [21] heuristic.

We used five different algorithm variants for the non-decreasing submodular
function maximization problem based on a MIP formulation using constraint gen-
eration approach which we started from the greedy’s solution and also from the new
starting point proposed by the centrality metric. Furthermore, we used two modern
implementations of Nemhauser and Wolsey’s MIP model for submodular function
maximization problem based on lazy constraint generation, which we started from
the GRASP heuristic and also from the new starting point proposed by the central-
ity metric. According to our benchmarking results, algorithms starting from the
new initial set reduced the runtime by a factor of 5.37 for all test cases. Overall, we
can conclude the initial set suggested by the new centrality metric is worth using,
as shown by our run-time tests and, in their absence, the relative gap tests.
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