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Multi Model Recursion for

Hungarian Electricity Load Forecasting

Mátyás Sebőkab

Abstract

Time series analysis and prediction is a difficult and complex problem.
Many Machine and Deep Learning methods exist with better and better re-
sults. This paper proposes a strategy called Multi Model Recursion. It uses
separate Deep Learning models per feature that needs predicting. Another
improvement is not predicting features which are easily calculated. Having
extra models per feature helps in ”simulating” a future environment since it
predicts external variables otherwise unknown. The Multi Model Recursion
developed is an improvement of the commonly used Recursive strategy. The
paper compares this method with models and strategies frequently used in
the field. The testing dataset is put together from publicly available Hungar-
ian electricity load and weather data. The task was to predict the country’s
net electricity load for the next 3 hours.

Keywords: time series, deep learning, Multi Model Recursion, electricity
load forecasting

1 Introduction & Related works

Short term electricity load forecasting is useful since the forecasting models can
adapt better to the given situation and give more accurate predictions. The better
predictions give the opportunity for participants to better exploit their resources
and minimize their costs. A 3-hour forecast comparison of Hungary’s net electricity
load shows the different strengths of models at single step forecasting and also
describes their longer range performance.

The difficulty is that while weather data is available at a large resolution, fore-
casts are not always available the same way. The focus of Multi Model Recursion
is to create a simulated environment with the given exogenous variables and their
respective models to further enhance the predictions of the target variable. Com-
pared to the regular Recursive strategy, this architecture can optimize better since
it doesn’t have to directly take into account the exogenous and time-series variables
when calculating the cost function.
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This paper primarily compares Multi Model Recursion with the regular Recur-
sive strategy using recurrent deep-learning algorithms. It also compares it with
the Multi Input Multi Output (MIMO) strategy using Convolutional, Temporal
Convolutional and LSTM networks. Compares it with the very powerful Sequence
to Sequence (Seq2Seq) strategy, which uses an encoder-decoder architecture. To
justify the usage of such complex algorithms it also looks at the performance of a
machine-learning algorithm known as Random Forests and looks at the advantages
compared to a Statistical method known as Seasonal Autoregressive Integrated
Moving Average (SARIMA). The comparison happens based on a dataset created
from public data from OMSZ (Országos Meterológiai Szolgálat) for weather data
and data from MAVIR (Magyar Villamosenergia-ipari Átviteli Rendszeriránýıtó
Zrt.) for electricity load data.

1.1 Electricity load forecasting

Nti et al. provides a review on electricity load forecasting [11]. The authors provide
a comprehensive study on the used forecasting methods and evaluation metrics.
This motivates the use of MAE, RMSE, MPE and MAPE metrics and the evalua-
tion of ANNs as these are the most used algorithms in the field.

Azeem et al. explains the application of electricity load forecasting techniques
including short term electricity load forecasting [1]. The forecast horizon of a
couple of hours can be critical in the operation and financial decision-making of
energy management systems. Such forecasts can be used to decide which resources
to utilize, for e.g. gas, coal, solar or wind. Another decision may be to import
electricity at a lower cost than the utilization of non-renewable resources. The
authors also explain the optimization techniques where the forecasts are used.

While the paper focuses on national load forecasting all methods can be utilized
at a lower resolution such as Virtual Power Plants. Ghavidel et al. explain that
such VPPs aggregate many physical entities such as renewable and non-renewable
power plants, batteries and pump storage [5]. Accurate forecasts help the operation
of such VPPs.

Yazici et al. provide a case study for electricity load prediction for Istanbul [14].
The authors achieve an impressive 1% MAPE metric for one-hour-ahead predictions
and 2.2% for 24-hour-ahead predictions. While not matching this paper’s 3-hour-
ahead forecast horizon they provide a baseline to verify the results of this paper.

1.2 Problem description

Gasparin et al. [4] describes the task of time series forecasting for the electricity
load case where there is a given uniform resolution s = [s[0], s[1]..., s[T ]]|s ⊂ R
time series data vector. It is ordered by time and has an hourly resolution in this
case. For machine and deep learning purposes it is helpful to work with equal
nT length time windows. The prediction window’s length is specified as nO. The
paper explores supervised learning solutions which require input-output pairs. Let’s
specify at time step t the input vector as xt = [s[t−nT + 1], ..., s[t]] and the output
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Figure 1: The sliding window approach [4]

vector as yt = [s[t + 1], ..., [t + nO]]. This concludes in a sliding window type
approach shown in Figure 1.

A model can be described as a parametric function f and its parameter vector
θ, approximated by θ̂. With the above notation at time step t the model’s output
is ŷt = f(xt, θ̂) which is an approximation of yt ∈ RnO . It is important to mention
that in the practical application of such approaches the model is split into Machine
or Deep Learning models and forecasting strategies where a strategy describes the
steps of forecasting. These are discussed separately.

In the extension of the problem description s ⊂ Rd where d−1 is the number of
exogenous or external features. xt[i][k] notates the kth feature of the ith element
in the sequence where i ∈ [0..nT ) and k ∈ [0..d). In layman’s terms this means that
the forecast is helped by including additional features such as the weather, time of
day or year.

1.3 Models

This section discusses the commonly used neural network and machine learning
architectures for time series forecasting. These models are used in conjunction
with the following forecasting strategies to provide predictions. The models are
used later for the new Multi-Model Recursion strategy.

The Random Forest model is a classical machine learning method that uses the
splitting rule for optimization. Probst et al. explains the optimization and training
of such models [12]. This model may be used in any but the Sequence-to-Sequence
strategy.

Gu et al. discusses the advancements made in convolutional neural network
development [7]. By applying the architecture to 1D data like a time series the
model can learn patterns in time that impact the prediction of the next time step.
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[4] show the usage of causal convolution which applies the padding from only 1
side. This can further be expanded with dilated causal convolution ensuring a
large receptive field for each layer.

Bai et al. shows the architecture and advantages of a temporal convolutional net-
work [2]. This architecture, shown in Figure 2, employs dilated causal convolutions
in addition to residual connections. Applying residual connections is beneficial
to combat the vanishing gradient problem where the gradient gets progressively
smaller as the optimization reaches the early layers. Through residual connections
the gradient doesn’t get affected by the weights ensuring a more stable descent.

Figure 2: Temporal Convolutional Network Architecture: dilated convolutional
layers, residual block and example for a residual block [2]

Masum et al. describes the LSTM model’s architecture and its application to
time series forecasting [10]. The advantage of RNNs (Recurrent Neural Network) is
that they can process inputs of different lengths. This architecture can be applied
to the Sequence-to-Sequence strategy that is mentioned and evaluated later in this
paper. Shen et al. describes the workings of GRU based networks [13]. It is a
newer approach compared to the LSTM aiming to resolve the same problem. It is
generally not obvious as to which will perform better for a given task out of LSTM
and GRU based networks. This is the reason both are evaluated in this paper.

1.4 Forecasting Strategies

Forecasting strategies describe how AI models are used for time series prediction.
Strategies have to describe how many models are used and what the output dimen-
sions are. It is possible to have strategies that complete predictions in a single or
multiple steps. The following sections describe the forecasting strategies used and
compared against Multi Model Recursion.

1.4.1 Multi-Input Multi-Output

Taieb et al. finds that multi-output strategies have good performance on time series
forecasting tasks [3]. MIMO (Multi-Input Multi-Output) uses the entire input in
one step at time t to produce the entire output vector yt. The strategy can simply
be described by the equation below if the forecasting model is f .
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ŷt = f(xt), simple multi-output prediction (1)

1.4.2 Sequence-to-Sequence

Seq2Seq (Sequence-to-Sequence) architectures were designed originally because it
can be difficult to provide arbitrary length outputs with RNNs. The encoder-
decoder architecture this strategy follows is the basis of modern LLMs (although
the SoTA models are decoder only at the time of writing).

It consists of 2 models of the same type of RNNs, usually LSTMs or GRUs. The
encoder produces a hidden state (and a cell state in the case of an LSTM). The
decoder then uses this hidden state and its own outputs to produce the output.
This can go until a certain stop sequence or iteration count. Zaki et al. [9] uses an
LSTM based Seq2Seq model for household electricity load prediction but in this
paper more success was found using a GRU based approach. Algorithm 1 describes
the strategy.

Algorithm 1 Seq2seq strategy

1: ht := fenc(xt, h0) only need the hidden state from the encoder
2: ŷt[−1] := SELECT (xt[nT ]) value that corresponds to the target feature
3: for i = 0, . . . , nO − 1 do
4: ŷt[i] := fdec(ŷt, ht) yt is extended step-by-step
5: if random(0 . . . 1) < teacher forcing then
6: ŷt[i] := yt[i] teacher forcing, only while training
7: end if
8: end for
9: return ŷt[0 . . .]

Teacher forcing for training Seq2Seq architectures helps with generalization
over longer sequences. Since previous predictions affect the new ones they are
substituted at a random probability with the real values. The probability gets de-
creased as training goes on. This technique helps the model train for longer forecast
horizons as the compounding effect of incorrect predictions is removed. If ŷt[i] is
swapped for yt[i] then when optimizing based on the ith prediction step ŷt[i] is used
since yt[i] would provide a gradient of zero even if the prediction is incorrect. This
approach is also applicable to the Recursive and Multi Model Recursive strategy.

1.4.3 Recursive

Taieb et al. explains that the recursive strategy uses a single model that is trained
for forecasting only 1 step [3]. Here the model forecasts all external features for the
next time step. This approach is interesting as the model isn’t necessarily trained
for multi step forecasting, but with the strategy it is applicable as such. Algorithm
2 describes the strategy.
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Algorithm 2 Recursive strategy

1: for i = 0, . . . , nO − 1 do
2: ŷt[i] := f(xt) forecast 1 step
3: xt := xt[1..nT ) removing the first element of the input window
4: xt[nT ] := ŷt[i] extend the window by 1 at the end
5: end for
6: return ŷt this includes the external feature forecasts

For each t time step the forecast goes for step t+ 1. This is then viewed as the
”truth” and the model forecasts step t+2. Iterating this approach gives the output
vector. The disadvantage of this method is that external feature forecasting requires
larger weight matrices increasing processing requirements. Usually the optimization
is also not efficient since the model is optimized for features not relevant for an
application.

2 Methodology

2.1 Multi-Model Recursion

This paper presents the MMRec (Multi-Model Recursion) strategy which is an en-
hancement of the previously mentioned Recursive strategy. It aims to keep the
advantages of the Recursive approach such as the single step prediction which gen-
erally gives more accurate predictions at that step. Being able to predict any length
regardless of the training specifications is also an advantage, although performance
may not be desirable if the training and inference output lengths are different.
It incorporates the advantage of the MIMO and Seq2Seq approaches which only
predict and optimize for the target variable.

There are 4 major changes from the Recursive method. The first one is regarding
loss calculation for the network. Instead of training for all features directly the loss
is calculated at the target variable at each step. This way the optimization focuses
on electricity load in this case. The backpropagation will make sure that external
features aren’t left out. This is especially important in the next steps where multiple
models are introduced.

Following the example of Seq2Seq teacher forcing is also applicable for the strat-
egy. The same principles apply with the only difference being that each step’s out-
put vector is larger than 1. The random probability shown in Seq2Seq is calculated
per member instead of once for the vector. It also decreases over the training period
just like the mentioned strategy.

The next difference is the calculation of external features that are simple to
predict. Features like time, or the lag of electricity load are easy to calculate via
equations. These features are either pre-calculated or implemented into the strategy
and used as is. This way no processing power is wasted on features that we know
the exact values of even for the future.
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Algorithm 3 Multi-Model Recursion

1: for i = 0 . . . nO − 1 do
2: for j = 0 . . .m− 1 do
3: ŷt[i, j] := fj(xt) forecast given feature
4: xt := xt[1..nT ) sliding the window
5: xt[nT , j] := ŷt[i, j] substitute in the forecasted features
6: if random(0 . . . 1) < teacher forcing then
7: xt[nT , j] := yt[i, j] teacher-forcing
8: end if
9: end for

10: xt[nT ] := g(xt) g calculates the obvious variables
11: end for
12: return ŷt

The last change is the Multi-Model part of MMRec. Each feature that isn’t
calculated with the previous change gets its own neural network. Each model
forecasts 1 specific feature making the individual models smaller. It is also possible
to vary the architectures of them. Algorithm 3 and Figure 3 describe the strategy
where m is the number of features forecasted by Neural Networks.

Figure 3: Multi-Model Recursion diagram, fk are the different models, g calculates
the obvious features, note that teacher forcing is not indicated here
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2.2 Data

The dataset used for evaluating Multi Model Recursion against the mentioned
methods consists of weather data downloaded from OMSZ’s data publication 1 and
electricity/system load data downloaded from MAVIR’s dataset 2. The observed
time is from 01/01/2015 until 31/08/2023 resulting in an approximately 9 year long
dataset describing Hungary. The timeframe was chosen due to OMSZ establishing
many new weather stations in the year 2014.

(a) Hourly grouping (b) Box plot diagram

Figure 4: Net electricity load graphs

The source for the electricity load part of the dataset contains many fields
from which ”net electricity load (MW)” was chosen as the target and only feature
describing electricity load. This is due to another feature existing in the original
dataset named ”MAVIR forecast” predicting net electricity load at the time step.
This gives a baseline to justify the usage of machine and deep learning methods.
Figure 4 (a) shows the hourly grouping of net electricity load for the observed
timeframe. These type of graphs vary heavily by country. The box plot diagram
in 4 (b) shows the high standard deviation of the dataset making forecasting tasks
difficult.

OMSZ’s weather stations all measure many different weather features like pre-
cipitation, temperature, relative humidity, global radiation and wind speed just
to name a few. These are measured at over 100 stations giving a resolution that
is too large for country scale predictions. So every weather feature was averaged
over all stations resulting in 1 feature for each that describes the entire country.
For example instead of 100+ temperature measurements there is only 1 describing
Hungary.

Intuitively, many of these weather features don’t make a difference for electricity
load forecasting. By applying automatic sequential feature selection using Random
Forests precipitation and global radiation proved to be the most descriptive. The
feature selection algorithm was applied to time describing features at the same

1https://odp.met.hu/
2https://www.mavir.hu/web/mavir/rendszerterheles

https://odp.met.hu/
https://www.mavir.hu/web/mavir/rendszerterheles
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time. This means the process not only gave the useful weather features but time
features as well. The best performance was observed at 11 features (the algorithm
ran until 13 but after 11 the performance decreased). The chosen features are:

• electricity load and its 24-hour lag

• precipitation and global radiation

• holiday and weekend indicators

• hour, day of the week, day of the year, month, year

The feature selection chose global radiation over temperature for the best results.
This is likely due to the fact that global radiation refers to the solar radiation that
falls on a horizontal surface. This is supported by a correlation factor of 0.55 when
observing temperature and global radiation.

The main point of reducing feature count in this way is that Multi Model Recur-
sion is best applied in cases where only a couple external features are present since
they all require separate models. Graphs for precipitation and global radiation
from the dataset can be found in Figure 5.

(a) Precipitation monthly grouping (b) Global radiation hourly grouping

Figure 5: Weather feature graphs

The chosen features were re-evaluated at a later stage while training the MIMO
LSTM approach and the 11 features chosen performed better. At this stage it’s
important to mention the choice of nT = 24 for most strategy model pairs. This
was made after choosing features and testing 12-, 24-, 36- and 48-hour lookbacks
where 24 performed the best. This was re-evaluated for certain models, changes
are mentioned where they were made.

2.3 Training and Evaluation method

When evaluating strategy model pairs it is important to find close to the best
hyperparameter configurations. In this paper this is done using the Grid Search
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algorithm where each hyperparameter gets a specified set of values. All combina-
tions are then tried and the one with the best metrics and/or loss is chosen. Here
RMSE was used since its strong reaction to outliers provides a clear picture of
performance. RMSE is always calculated on the test set.

For machine and deep learning approaches it’s usually important to use some
form of cross validation technique. This means that multiple training loops are run
using different parts of the data. Time series forecasting differs from other tasks
since it wouldn’t make sense to use future data in training while predicting the
past. Due to this when evaluating in this paper, time series k-fold cross validation
(Figure 6) is used. While finding hyperparameters the splits were limited to k = 6
(to save computational resources) and for final evaluation it was limited to k = 9.
The validation set is always separated from the training set, taking up 1/8th of a
single fold. For example if observing the 1st fold in Figure 6, the validation set is
the last 1/8th of the training set. Furthermore, it is the same length for all other
splits but always taken from the end of the training set.

Figure 6: Time series cross validation [8]

After the hyperparameters are found each strategy model pair is trained and
evaluated 6 times. These are done with the same hyperparameters but since the
weights were initialized randomly the results vary. This is taken into account and
the standard deviation of results through each fold and training cycle is displayed in
the final table. Observed metrics are the following: MAE (Mean Absolute Error),
MSE (Mean Squared Error), RMSE (Root Mean Squared Error), MAPE (Mean
Absolute Percentage Error), and MPE (Mean Percentage Error).

Some technical details for the Grid Search algorithm are listed here. For each
strategy pair the size and number of layers were searched for. For convolutional
networks different lookback lengths were also observed such as nt = 48. Learning
rates, batch sizes and dropout ratios were also searched for. For most approaches
not all combinations were observed at once but 2–3 hyperparameters were searched
for once. This was iterated until a satisfying result was reached. After reaching
a good point small changes were tested and if they didn’t yield better results the
parameters were chosen.



Multi Model Recursion for Hungarian Electricity Load Forecasting 231

2.4 Chosen strategy model pairs

This section lists the chosen approaches for evaluation to compare with Multi Model
Recursion. Other than SARIMA all of them are listed as strategy – model with
abbreviations that are present in the final evaluation.

SARIMA (Seasonal Autoregressive Integrated Moving Average) This statistical
method proved to be ineffective for this dataset since its parameters optimized at
1 time step didn’t mean it was good for other time steps. At any one point the
forecasts were comparable to MAVIR’s predictions but it required a new parameter
search to be effective. Due to this it isn’t listed in the final evaluation. Parameter
search may take over an hour which is not acceptable for this application where
the neural network based models show no degradation of performance up to a year
after training.

MIMO – RF (Random Forest) A classical machine learning approach to com-
pare neural networks with. Decent performance on certain folds but heavily de-
grades at others.

MIMO – CNN (Convolutional Neural Network) A 1D Causal Convolution ap-
proach which didn’t perform well on the dataset.

MIMO – TCN (Temporal Convolutional Neural Network) A 1D Temporal Con-
volutional approach performing well on short term forecasting.

MIMO – LSTM (Long Short-Term Memory) An approach that used to be one
of the most popular since Recurrent networks work quite well for short sequence
understanding.

Seq2Seq – GRU (Gated Recurrent Unit) A newer approach that may be viewed
as the ancestor to SoTA transformer models.

Recursive – GRU The simplest forecasting strategy used with a GRU model.
LSTM was also tested but GRUs proved to be more effective.

MMRec – 1 layer GRU Uses CNN and TCN for external features. Larger
hidden state than the following approach.

MMRec – 2 layer GRU Uses CNN and TCN for external features. Smaller
hidden state, when searching for hyperparameters its performance was very close
to the previous one.
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MMRec – FULL GRU Uses GRUs for external features too. A comparatively
large and slow model to view what kind of performance MMRec can reach on the
dataset.

The models observe a 24 horizon and forecast 3 hours ahead. The only exception
to this are the MIMO - CNN and MIMO - TCN methods as these benefit from
observing a 48-hour horizon. The other methods were also tested with shorter and
longer horizons but the 24 hour performed best.

2.5 Training details of MMRec

To make the hyperparameter search faster each model for external features were
first tuned as a Recursive strategy model for the given feature. The external fea-
ture models tried for precipitation and global radiation were CNN, TCN, GRU and
LSTM networks. For global radiation CNNs performed better than TCNs and for
precipitation the opposite was true. When GRUs were tested the addition of ex-
ternal features in relation to precipitation or global radiation slightly outperformed
the Convolutional counterparts.

During the hyperparameter search 2 configurations proved to be powerful in
forecasting. One which used a GRU with 1 layer but a larger hidden state and one
with 2 layers using a smaller hidden state. Due to this both configurations are part
of the final evaluation in addition to the FULL GRU approach.

3 Results

The final evaluation of strategy model pairs listed in Section 2.4 happened according
to Section 2.3. Each pair is trained starting with their respective found ”best”
hyperparameters 6 times for 9 splits each. An interesting observation made during
this is that most approaches using LSTMs performed noticeably worse in the first
2 splits. This was lessened by GRUs but the first splits were generally worse
than anything else. This is likely due to the amount of data required by these
models when training. Due to this the final evaluation lists the best performance of
strategy model pairs while excluding the first or first and second splits, whichever
gives better results.

Table 1 shows the final results for each of the mentioned metrics. Each metric
also has the standard deviation listed over training iterations and the 9 folds per
iteration. This gives more insight into certain models that may perform differently
over the given folds such as CNNs and the Random Forest approach. MAVIR
predictions have a standard deviation of 0 since it is impossible to observe training
iterations or folds because it is given as is by MAVIR. MAVIR’s predictions provide
a higher resolution than 1 hour and are made with a 12-hour forecast horizon.
This heavily affects accuracy at 3 hour predictions as forecasts for longer horizons
generalize more.

From the table it’s possible to observe that in terms of the MIMO strategy
LSTMs perform the best closely followed by TCNs. TCNs struggle more in the
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later steps of forecasting (steps 2 and 3 in this comparison). The Seq2Seq approach
proved to be the most performant for this dataset in terms of metrics but also
in approach size. The Recursive method performs quite poorly in comparison to
others due to the shortcomings mentioned in Section 1.4.3. The presented MMRec
strategy is clearly better than the Recursive strategy it is based on. With the
additional ideas taken from Seq2Seq such as teacher forcing its performance is
comparable with the MIMO LSTM approach and starts closing the gap on the
Seq2Seq strategy as well.

The scores in Table 1 show a MAPE score for the presented approaches of about
1.2− 2.1% which is in line with the case study mentioned in the Introduction done
by Yazici et al. [14]. Although the authors use a different dataset, time horizons and
find that 1D CNNs perform best the performance of the forecasts are comparable.
This shows that the results in this paper compare to an existing real world study.

Table 1: Table of evaluation results

Strategy
Model

MAE
(MW )

RMSE
(MW )

MAPE
(% )

MPE
(% )

MAVIR
prediction

252.58± 0 300.81± 0 4.97± 0 −4.70± 0

MIMO
RF

69.96± 15.29 104.32± 24.0 1.42± 0.32 0.017± 0.25

MIMO
CNN

103.13± 21.5 146.69± 27.55 2.12± 0.46 0.196± 0.416

MIMO
TCN

63.92± 10.46 92.96± 15.57 1.31± 0.22 −0.001± 0.198

MIMO
LSTM

62.62± 6.05 88.97± 9.19 1.28± 0.13 0.05± 0.175

Seq2seq
GRU

58.75 ± 6.22 84.21 ± 9.83 1.21 ± 0.13 0.08 ± 0.168

Recursive
GRU

94.41± 14.41 128.39± 17.39 1.94± 0.28 0.119± 0.744

MMRec
GRU 1L

65.4± 7.68 92.43± 10.88 1.34± 0.17 0.114± 0.292

MMRec
GRU 2L

64.79± 7.31 90.85± 10.27 1.32± 0.16 −0.029± 0.295

MMRec
FULL GRU

62.17± 7.95 88.42± 11.25 1.27± 0.17 0.098± 0.261

Table 2 shows how much time is required for training and predicting with the
models. Average and standard deviation can be understood the same way as for
Table 1 described above. The Recursive GRU strategy training times and the
MMRec GRU 1L/2L ones are similar. Even though multiple models are used for
MMRec, they are much smaller and thus train faster than a large GRU for the
Recursive strategy. Prediction times are the worst for MMRec as it uses multiple



234 Mátyás Sebők

Table 2: Table of training and prediction times

Strategy
Model

Training
(minutes)

Prediction
circa 7500 entries

(seconds)
MIMO RF 2.48± 1.45 0.082± 0.026

MIMO CNN 1.99± 1.09 0.136± 0.011
MIMO TCN 2.82± 1.51 0.258± 0.045

MIMO LSTM 2.99± 1.81 0.153± 0.015
Seq2seq GRU 6.16± 3.66 0.25± 0.019

Recursive GRU 7.16± 3.75 0.731± 0.035

MMRec GRU 1L 6.16± 4.69 2.242± 0.285
MMRec GRU 2L 6.89± 4.94 1.984± 0.044

MMRec FULL GRU 10.9± 6.45 1.884± 0.072

models. The shown times are for circa 7500 entries, so a single prediction is much
faster. The time it takes is insignificant if we consider that it would only be made
once an hour in an application.

For reproducibility the implementation of all strategies, the evaluation suite and
the dataset can be found in the referred repository3.

3.1 MMRec vs Seq2Seq

It was shown that MMRec outperforms the Recursive strategy but lacks the per-
formance at its current stage to perform better than the Seq2Seq strategy on this
dataset. This section provides a detailed explanation of the differences.

MAE and RMSE show a small difference between the two approaches. MPE
varies more for MMRec, but this metric usually depends on the specific training
run for these approaches. It isn’t indicative of performance in this comparison.
In terms of speed, the Seq2Seq model trains faster than MMRec - FULL GRU.
Against the GRU 1L and 2L variants it doesn’t have a clear advantage. MMRec
however is a lot slower in prediction which can be critical for certain applications
but isn’t for this one. A comparison of the exact predictions for a specific date can
be seen on Figure 7. In this example MMRec performs better in predicting the
afternoon and Seq2Seq performs better in the morning.

Figure 8 shows the RMSE of the Seq2Seq and MMRec (FULL GRU approach
here) strategies by how many hours they predicted. The main issue with MMRec
that this graph displays is the first step being inaccurate in comparison to Seq2Seq
(a). Interestingly MMRec accumulates less error as the prediction reaches farther
distances (b). This hints at MMRec maybe performing closely to or better than
Seq2Seq at longer prediction lengths. It could be argued that the algorithm of
MMRec may cause this. For the first step the external feature models are not

3https://github.com/MeepOwned13/es_load_fs_HUN

https://github.com/MeepOwned13/es_load_fs_HUN
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(a) Seq2Seq predictions example

(b) MMRec predictions example

Figure 7: Comparing Seq2Seq and MMRec predictions for a specific date

involved since the real values are known at that stage. This being a 3-step prediction
the optimization algorithm by default will prefer to optimize for the overall best
average. Since all 3 models only get involved on step 2 and 3 it may lean heavier on
the prediction of external feature models. This can cause a performance difference
at step 1. This may be addressed by taking nT = nT + 1 for the input and using
the external feature models to predict the ones it would already know.
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(a) Error by hours predicted ahead

(b) Error accumulation bar plot

Figure 8: Comparing Seq2Seq and MMRec by RMSE per hour ahead prediction

4 Conclusion

This paper presented the MMRec (Multi Model Recursion) strategy for short term
time series forecasting. Comparisons with existing time series forecasting strategies
and models reveal that it outperforms the Recursive strategy it is based on. For
the dataset constructed from Hungarian electricity load and weather data with the
task of electricity load prediction it isn’t the best performer in the comparison.
The Seq2Seq strategy outperforms it in terms of MSE, RMSE, MPE and MAPE
metrics.
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MMRec shows promise in longer forecast horizons because it accumulates less
error over time than Seq2Seq. This is counteracted in the 3-hour horizon by MM-
Rec’s worse performance at the first forecasting step. The conclusion is thus that
MMRec may become a competitor to the mentioned strategies on some datasets
given further refinements. This is backed by the observed error metrics being fairly
close for MMRec and Seq2Seq.

4.1 Possible applications

Apart from the application to electricity load forecasting MMRec may be applied
to any time series forecasting task where the external features that need to be
forecasted by deep learning models are few. An interesting future application is
choosing a task and dataset where external features more heavily influence the tar-
get feature. An example to this would be solar or wind electricity production. These
heavily correlate with external weather features where getting a decent prediction
for them could make a difference.

MMRec can also be used if forecasts of future external variables are sparse, for
example if a better forecast for precipitation can be provided by outside models
in certain cases but not always. In this case the model can take external forecasts
by not using its own for that specific feature. Disruptions could also be caused by
unforeseen events like hardware failures. In this case MMRec can operate without
the need for its external feature models when everything is working as intended
but use the external ones in the event that some forecasts are unavailable. For this
use case MMRec doesn’t require additional changes where other strategies would.
The Recursive strategy also has these advantages but it was shown that MMRec
outperforms it.

4.2 Outlook

The MMRec strategy has shown some advantages and disadvantages against the
Seq2Seq strategy on the given dataset. A single dataset doesn’t provide the full
picture in these kinds of cases. Thus, the following future works can be specified:

• Apply the strategy model pairs to other datasets in electricity load forecast-
ing.

• Apply the strategy model pairs to different time series forecasting tasks such
as solar electricity production.

• Compare the strategies at longer forecast horizons such as 6, 12 and 24 hours.

• Compare the strategies at higher resolution on any time series forecasting
task.

• Compare the strategy with more advanced methods such as Spacetimeformers
introduced by Grigsby et al. [6].
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