
Acta Cybernetica 27 (2025) 241–264.

Multithreading Atomicity: Static Analysis Checkers

Patrik P. Sülia, Judit Knollb, and Zoltán Porkolábc

Abstract

Ensuring thread safety in applications is crucial for preventing subtle
and challenging bugs in concurrent programming. This paper presents two
algorithmic approaches to improve thread safety through static analysis and
to demonstrate their benefits in real life, the authors also implemented them
as two detectors in SpotBugs static analyzer. These checkers are designed to
identify unsafe usages of shared resources and improper atomic operations in
concurrent Java programming, aiming to mitigate common multithreading
issues such as race conditions. By emphasizing consistent locking strategies
and the correct use of atomic types, the study offers insight into how to
improve the reliability of multithreaded applications.

Keywords: Java, concurrency, atomic operations, static analysis

1 Introduction

Static analysis in software development can detect several types of issues, such as
runtime errors and security violations in the code, without running the program
itself, so developers could be informed about bugs in early stages of development [6].
There are many ways to analyze source codes, for example, Control Flow Analysis
examines the execution, revealing infinite loops, unreachable codes, and improper
usages of control structures [9]; Data Flow Analysis focuses on data tracking to
identify issues like uninitialized variables, null pointer dereferences, and potential
memory leaks [1]; Pattern-Based Analysis uses predefined rules to look for common
issues or antipatterns in the code [13, 16].

Guidelines have been created to assist developers in producing code that is
secure and reliable. The Software Engineering Institute (SEI) of the Carnegie
Mellon University has its own, called CERT Coding Standards1. It has many rules

aDoctoral School of Applied Informatics and Applied Mathematics, Obuda University, Budapest,
Hungary, E-mail: suli.patrik@uni-obuda.hu, ORCID: 0009-0001-9481-3664

bSigma Technology Hungary Ltd., E-mail: judit.knoll@sigmatechnology.com, ORCID:
0009-0004-2400-6391

cDepartment of Programming Languages and Compilers, Institute of Computer Science, Faculty
of Informatics, ELTE Eötvös Loránd University, Budapest, Hungary, E-mail: gsd@inf.elte.hu,
ORCID: 0000-0001-6819-0224

1https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards

DOI: 10.14232/actacyb.311949

mailto:suli.patrik@uni-obuda.hu
https://orcid.org/0009-0001-9481-3664
mailto:judit.knoll@sigmatechnology.com
https://orcid.org/0009-0004-2400-6391
mailto:gsd@inf.elte.hu
https://orcid.org/0000-0001-6819-0224
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://doi.org/10.14232/actacyb.311949


242 Patrik P. Süli, Judit Knoll, and Zoltán Porkoláb

covering various aspects of coding practices, including memory handling, proper
use of concurrency, input validation, and more, with the aim of preventing software
vulnerabilities such as buffer overflows, race conditions, and injection attacks.

The SEI Cert Coding Standard contains several rules for atomicity, which is
essential in software that work with parallel threads. This paper focuses on two
specific rules of these, which are concerned with thread-safe usage of shared data.

There are several tools that can analyze code and make suggestions to improve
it, one of them is SpotBugs2. SpotBugs is an open source tool that looks for possible
issues in Java programs using Apache BCEL (Byte Code Engineering Library)3,
so it can handle binary .class files and understand instructions and methods at
the bytecode level. When analyzing classes, SpotBugs reads and understands the
structure of the bytecode, looking for specific patterns, coding practices, or known
issues.

In this paper, we present two algorithms we designed and implemented as new
detectors that cover possible concurrent programming problems in the Java language,
which are described in the Visibility and Atomicity SEI Cert Rule group, focusing
on the VNA03-J 4 and VNA04-J 5 rules. These rules provide practical guides with
examples of both correct and incorrect usage, making it easy to identify common
programming mistakes in connection with threads and shared resources, such as race
condition, when a computation depends on timing or interleaving of multiple threads
by the runtime. The VNA03-J rule highlights that a group of calls to independently
atomic methods may not be atomic. VNA04-J underscores the method chaining
mechanism, where the methods used in the chain can be atomic, but the chain
overall is inherently non-atomic.

The rest of the paper is organized as follows: Section 2 introduces the concept of
atomic types in different programming languages and details cases of non-thread-safe
usage of this type. Section 3 presents the technical background used as a basis for
our algorithms. The current state of the art is shown in Section 4 as a benchmark
of a few static analyzer tools. The outline of the algorithms and the detectors
developed are detailed in Section 5. The results are presented in Section 6, which
are obtained from open source projects, with a comparison of their effectiveness with
other static analysis tools. Furthermore, Section 7 highlights known limitations and
opportunities for further development to improve the accuracy of the implemented
detectors. The paper concludes in Section 8.

2 Related work

The concept of atomic types, also known as atomic operations or atomic classes,
was introduced in concurrent programming to manage and manipulate shared data

2https://spotbugs.github.io
3https://commons.apache.org/proper/commons-bcel/
4https://wiki.sei.cmu.edu/confluence/display/java/VNA03-J.+Do+not+assume+that+a+

group+of+calls+to+independently+atomic+methods+is+atomic
5https://wiki.sei.cmu.edu/confluence/display/java/VNA04-J.+Ensure+that+calls+to+

chained+methods+are+atomic

https://spotbugs.github.io
https://commons.apache.org/proper/commons-bcel/
https://wiki.sei.cmu.edu/confluence/display/java/VNA03-J.+Do+not+assume+that+a+group+of+calls+to+independently+atomic+methods+is+atomic
https://wiki.sei.cmu.edu/confluence/display/java/VNA03-J.+Do+not+assume+that+a+group+of+calls+to+independently+atomic+methods+is+atomic
https://wiki.sei.cmu.edu/confluence/display/java/VNA04-J.+Ensure+that+calls+to+chained+methods+are+atomic
https://wiki.sei.cmu.edu/confluence/display/java/VNA04-J.+Ensure+that+calls+to+chained+methods+are+atomic


Multithreading Atomicity: Static Analysis Checkers 243

safely and efficiently without the need for complex synchronization mechanisms.
The term atomic in this context refers to operations that are completed as a single,
indivisible, and unbreakable unit.

This idea was first proposed and explored in low-level hardware and assembly
languages where atomic instructions such as ”test-and-set” [3] or ”compare-and-
swap” (CAS) [11] were implemented directly by the CPU to facilitate safe concurrent
access to shared memory.

2.1 Atomic types in programming languages

As multithreading and parallel processing have become more prevalent, the sig-
nificance of atomic operations in high-level programming languages has grown.
Although, this challenge is not unique: similar issues occur in a wide range of
programming languages. Therefore, it is crucial to extend this analysis to different
languages to gain a comprehensive understanding of how usable the atomic type
is in different environments. By comparing the atomic types in Java (and other
JVM based languages like Kotlin and Scala), C++, Python, and Rust, we can
understand how different languages approach the challenge of concurrency and
atomic operations, highlighting the strengths and trade-offs of each approach.

Java introduced atomic types with the release of Java 5 in 2004. Java’s
java.util.concurrent.atomic package6 includes several atomic classes such
as AtomicInteger, AtomicLong, AtomicBoolean, and AtomicReference. These
classes leverage low-level atomic instructions to offer thread-safe operations on single
variables without the overhead of locks7. For instance, AtomicInteger provides
methods like incrementAndGet(), decrementAndGet(), and compareAndSet(),
which are implemented to ensure that operations are completed without interrup-
tion.

Kotlin and Scala as JVM-based languages leverage the same concurrency mech-
anisms and atomic types provided by the Java platform. Developers can use the
java.util.concurrent.atomic package directly and create atomic-typed classes
in the same way as in Java.

1 AtomicInteger atomicInteger = new AtomicInteger (0);

2 atomicInteger.incrementAndGet ();

Code 1: Example usage of Java’s AtomicInteger typed variable

One of the major high-level programming languages, the C++ programming
language, was lack of proper solution for atomics until the C++11 standard defined
the C++ memory model and introduced atomic classes8 in the C++11 Standard
Library [12]. The std::atomic template encapsulates the complexity of atomic
instructions and provides a standardized interface for the developers.

6https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-

summary.html
7https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.

html
8https://cplusplus.com/reference/atomic/atomic/

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://cplusplus.com/reference/atomic/atomic/


244 Patrik P. Süli, Judit Knoll, and Zoltán Porkoláb

1 std::atomic <int > counter {0};

2 counter.fetch_add (1);

Code 2: Example of C++ std::atomic variable

As C++ is a highly performance critical programming language, the instantia-
tions of the std::atomic template, where the hardware provides atomic instructions
handling the type parameter (e.g., std::atomic<int>) are compiled without any
run-time overhead, while more complex template parameters, like structs have an
external locking mechanism to provide atomicity.

Python is known for its simplicity and readability, making it a favorite for
tasks ranging from web development to data science. However, Python’s Global
Interpreter Lock (GIL) presents challenges in concurrent programming9. To address
atomic operations, Python relies on external libraries like ‘atomicx‘ 10 or built-in
threading primitives11 to simulate atomicity.

1 from atomicx import AtomicInt

2

3 atomic_int = AtomicInt (0)

4 atomic_int.inc()

Code 3: Example of an atomic operation using Python’s atomicx library

In contrast, Rust is designed with a strong emphasis on memory safety and
concurrency without sacrificing performance. Rust’s ownership system ensures
memory safety, while its standard library provides built-in atomic types12 like
AtomicBool, AtomicIsize, and AtomicUsize. These types support thread-safe
lock-free operations, making Rust an excellent choice for programming systems and
applications that require high reliability.

1 use std::sync:: atomic ::{ AtomicUsize , Ordering };

2

3 let atomic_usize = AtomicUsize ::new(0);

4 atomic_usize.fetch_add(1, Ordering :: SeqCst);

Code 4: Example of an AtomicUsize variable in Rust

Despite the differences in syntax, all these languages share a common foundation
when it comes to atomic types. They provide atomic operations to manage shared
resources in multithreaded environments. However, the same challenges persist
across these, namely avoiding race conditions and managing the complexity of
lock-free programming, so the algorithms that are detailed in this paper could be
applicable for each programming language mentioned before.

9https://wiki.python.org/moin/GlobalInterpreterLock
10https://github.com/RuneBlaze/atomicx
11https://docs.python.org/3.10/library/threading.html
12https://doc.rust-lang.org/std/sync/atomic/index.html

https://wiki.python.org/moin/GlobalInterpreterLock
https://github.com/RuneBlaze/atomicx
https://docs.python.org/3.10/library/threading.html
https://doc.rust-lang.org/std/sync/atomic/index.html


Multithreading Atomicity: Static Analysis Checkers 245

2.2 Thread safety issues with Java concurrency types

When working with atomic types or synchronized collections in Java, it is important
to understand that while individual method calls on these variables are atomic,
combining these operations within a thread introduces potential thread safety issues.
If an operation in a thread involves multiple atomic variables, proper synchronization
is necessary to ensure that the entire operation remains atomic.

To bring attention to this issue, the SEI Cert VNA03-J rule – titled ”Do not
assume that a group of calls to independently atomic methods is atomic” – was
created to avoid wrong usages of atomic typed variables and collections, which can
lead to difficult-to-detect concurrency bugs.

1 private AtomicInteger a = new AtomicInteger (10);

2 private AtomicInteger b = new AtomicInteger (15);

3 // ...

4 a.get().add(b.get()); // Combination is not thread -safe

Code 5: Combine Java atomic typed variables unsafe

In code snippet 5, the get() method calls on both variables are atomic separately,
but the add() operation itself is not thread safe, because meanwhile another thread
may make changes on one or both variables, as it is shown on Figure 1.

thread1 : Thread thread2 : Thread a : AtomicInteger b : AtomicInteger

sd Visualization of VNA03-J problem

get()

get()

returnValue

set(42)

Thread 2 changed
 the value of b

returnValue

a.get().add(b.get())

Figure 1: Sequence diagram of unsynchronized combination of atomic typed variables



246 Patrik P. Süli, Judit Knoll, and Zoltán Porkoláb

2.3 Multiple atomic operations in threads

If a method contains more than one operation for an atomic variable without
additional synchronization, then they are not atomic overall and could cause race
condition between the threads, just like in section 2.2. So, to handle this, synchro-
nization of code blocks or functions is necessary to guarantee that multiple threads
cannot simultaneously modify or access shared resources.

1 private AtomicInteger number = new AtomicInteger (0);

2 // Thread 1, combined atomic method calls are not atomic together

3 number.get();

4 // ...

5 number.get();

6 // Thread 2

7 number.getAndIncrement (); // It is safe standalone

Code 6: Unsafe multiple operations on atomic variable

Thread 1 in Code 6 is not thread-safe, because between the two atomic method
calls Thread 2 can change the value of the variable.

2.4 Unsynchronized concurrent collection elements

The usage of thread-safe collections such as SynchronizedList or
ConcurrentHashMap is not sufficient to ensure thread safety in itself, be-
cause any access to the collection’s elements is not synchronized. The operations on
these collections, such as adding or removing elements, are basically thread-safe, but
accessing or modifying their elements themselves are not inherently synchronized.
Consequently, any operations performed on the elements retrieved from these
collections must be properly synchronized to avoid concurrent modification issues.

1 private final Map <Integer , Integer > counterMap =

2 Collections.synchronizedMap(new HashMap <Integer , Integer >());

3

4 public void incrementCounter(int id) { // Called by multiple threads

5 Integer count = counterMap.get(id);

6 counterMap.put(id, count + 1);

7 }

Code 7: Unsafe access to thread-safe collection elements

If multiple threads run the counter increment lines in Code 7 at the same time,
it results in race condition, because the operation on the collection’s element is not
synchronized.

2.5 Unsafe usages of shared resources in multiple threads

The SEI Cert’s VNA04-J rule - titled ”Ensure that calls to chained methods are
atomic” - is about the nonatomic-typed variable usages in threads. It focuses on a
special case: method chaining.



Multithreading Atomicity: Static Analysis Checkers 247

Method chaining is a mechanism that allows multiple method calls on the
same object in a single statement. It consists of a series of methods returning the
this reference, allowing chained method invocations using the return value of the
preceding method.

This style is often used in classes that employ the Builder Pattern13 to set up
objects with multiple parameters. For a common example, the StringBuilder

class14 uses this kind of mechanism.

1 StringBuilder sb = new StringBuilder ();

2 String result = sb.append("Hello , ").append("World!").toString ();

Code 8: Example usage of StringBuilder class in Java

Although individual methods in a chain can be atomic, the chain as a whole is
not. Consequently, callers must ensure sufficient locking for the chain’s atomicity.

While the VNA04-J rule specifically deals with chained methods with builder
pattern, its underlying principle can be extended to a wider range of scenarios. By
generalizing this rule, a broader set of cases can be covered: any method can be
found that modifies the state of a shared resource across multiple threads and may
lead to race conditions. Overall, the checker is more flexible, it can recognize thread
safety issues in various contexts, beyond just method chaining.

In Code 9 multiple threads modify the User object’s state and when the execution
reaches the getName() method call, the state of the name property is unambiguous.

1 public class User {

2 private String name;

3

4 public void setName(String name) {

5 this.name = name;

6 }

7

8 public String getName () {

9 return name;

10 }

11 }

12

13 public class ExampleClient {

14 private User user = new User();

15

16 public ExampleClient () {

17 new Thread (() -> {

18 user.setName("Jane");

19 System.out.println("New name: " + user.getName ());

20 }).start ();

21

22 new Thread (() -> {

23 user.setName("Bob");

24 System.out.println("New name: " + user.getName ());

25 }).start ();

13https://refactoring.guru/design-patterns/builder
14https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuilder.html

https://refactoring.guru/design-patterns/builder
https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuilder.html


248 Patrik P. Süli, Judit Knoll, and Zoltán Porkoláb

26 }

27 }

Code 9: Unsafe operation in multiple threads to a shared resource

The visualisation of the problem in the Code 9 can be seen in Figure 2.

thread1 : Thread thread2 : Thread user : User

sd Visualization of VNA04-J problem

setName("Jane")

getName()

setName("Bob")

Thread 2 changed
 the value of the name

getName()

returnValue := Bob

returnValue := Bob

Figure 2: Sequence diagram visualization of Code 9

2.6 Similar concurrency issues in C/C++

Concurrency bugs involving atomic operations are not unique to Java. The SEI
CERT guidelines for C and C++ also address atomicity and threading issues
through rules such as CON40-C (”Do not refer to an atomic variable twice in an
expression”)15 and CON43-C (”Do not allow data races in multithreaded code”)16.

These rules highlight problems analogous to VNA03-J and VNA04-J in Java, not-
ing that while individual atomic operations (e.g., atomic load(), atomic store(),
and compound assignments) are guaranteed to be thread-safe, combining multiple
atomic reads or writes in a single expression or code block can result in race condi-
tions without a careful locking mechanism. The recommendation in both languages

15https://wiki.sei.cmu.edu/confluence/display/c/CON40-C.+Do+not+refer+to+an+atomic+

variable+twice+in+an+expression
16https://wiki.sei.cmu.edu/confluence/display/c/CON43-C.+Do+not+allow+data+races+

in+multithreaded+code

https://wiki.sei.cmu.edu/confluence/display/c/CON40-C.+Do+not+refer+to+an+atomic+variable+twice+in+an+expression
https://wiki.sei.cmu.edu/confluence/display/c/CON40-C.+Do+not+refer+to+an+atomic+variable+twice+in+an+expression
https://wiki.sei.cmu.edu/confluence/display/c/CON43-C.+Do+not+allow+data+races+in+multithreaded+code
https://wiki.sei.cmu.edu/confluence/display/c/CON43-C.+Do+not+allow+data+races+in+multithreaded+code


Multithreading Atomicity: Static Analysis Checkers 249

to adopt explicit locking (e.g., using mutexes or synchronization) when performing
compound operations.

Static analyzers in the C/C++ ecosystem, such as CodeSonar17 or Coverity18,
provide support for detecting atomicity violations and data races according to
the SEI Cert rules. Although each language’s memory model differs in detail,
the overarching principle remains the same: atomic types ensure thread safety
only for single operations, and automated tools can help developers to detect and
handle cases where multiple atomic operations compose a non-atomic sequence. By
drawing these parallels, we emphasize that detecting improper atomic usages is a
cross-language challenge that requires consistent locking strategies and thorough
static analysis approaches.

3 Technical background

Contrary to testing and dynamic analysis methods, static analysis works at compile
time, based only on the source code of the system, and does not require any
input data [4]. Most of these methods are fast enough feasibly integrated into
the continuous integration (CI) loop providing a positive impact on speed up the
development-bug detection-bug fixing cycle. As the earlier a bug is detected, the
lower is the cost of the fix [5], therefore, static analysis is a useful and relatively
cheap supplement to testing.

All static methods apply heuristics, which means that sometimes they may
underestimate or overestimate the program behavior [14]. In practice this means
static analysis tools sometimes do not report existing issues which situation is called
as false negative, and sometimes they report correct code erroneously as a problem,
which is called as false positive. Therefore, all reports need to be reviewed by a
professional who has to decide whether the report stands.

During the last two decades various static analysis techniques evolved. The most
simple, but surprisingly strong method is pattern matching. First, the source code
is transformed into some canonical format (e.g., all loops are converted to while

and the body of the loop to a single line) and then predefined regular expressions
are applied against this code. While context-sensitive problems (as divergence
between the declaration and the use of a variable) are impossible to detect, many
programmer’s mistakes are detectable. As a huge advantage, this method does not
require the successful construction of the Abstract Syntax Tree (AST), therefore
applicable for non-compiling or partial code fragments too. Earlier versions of
CppCheck19 used pattern matching to find issues in C and C++ programs.

Most of the available static code analysis tools, however, are based on the analysis
of the Abstract Syntax Tree (AST). The AST is a usual internal representation of a
program or at least a translation unit used by the compiler [2]. Various versions of
the AST can represent only the structure of the parsed tokens or may hold semantic

17https://codesecure.com/our-products/codesonar/
18https://scan.coverity.com
19http://cppcheck.sourceforge.net/

https://codesecure.com/our-products/codesonar/
https://scan.coverity.com
http://cppcheck.sourceforge.net/


250 Patrik P. Süli, Judit Knoll, and Zoltán Porkoláb

information too. It encodes the structure of the program, the declarations, the
variable usages, selection and loop statements, function calls. Thus, AST-based
static analysis is capable to detect complex errors, like erroneous implicit conversions,
inconsistent design rules, and many others. Such checks are relatively fast, some
of them may be implemented using a single traversal of the AST. These features
make the AST-based method the most frequently used type of static analysis with
notable examples as the Clang Tidy20 for C++, SpotBugs for Java and PyLint21

for Python.
While the AST-based method is more powerful than the regular expression

based one, seeing only the structure of the program it still lacks of the reasoning
on the possible values of the variables at a certain point of the program. Symbolic
execution [10] is a path-sensitive abstract interpretation method. During symbolic
execution we interpret the source code, but instead of using the exact (unknown)
run-time values of the variables we use symbolic values and gradually build up
constraints on their possible values. Symbolic execution is the most powerful, but
also the most expensive method for static analysis, and requires a precise modeling
of the language semantics and the representation of the memory usage [7].

3.1 SpotBugs overview

SpotBugs is designed to detect bugs in Java programs by analyzing bytecode. It is
the successor to FindBugs and maintains compatibility with many of its features
and plugins. SpotBugs can identify a wide range of potential issues in Java code,
including but not limited to concurrency problems, performance bottlenecks, and
potential security vulnerabilities.

SpotBugs primarily operates by analyzing the Abstract Syntax Tree (AST)
generated from Java bytecode. It uses various detectors, which are specialized
components designed to identify specific types of bugs. These detectors can be
visitor-based, which analyze the bytecode in a straightforward manner, or CFG-
based, which utilize control flow graphs to perform more sophisticated analysis.
CFG-based detectors are particularly powerful, but come with higher computational
costs.

One of the strengths of SpotBugs is its extensibility. Developers can create custom
detectors through a plugin architecture, allowing SpotBugs to be tailored to specific
project needs. The tool is capable of integrating into continuous integration (CI)
pipelines, providing ongoing feedback on potential issues as code is developed.

3.1.1 Applying SpotBugs to Kotlin and Scala: FindSecBugs

SpotBugs, while originally designed for Java, can also be applied to other JVM-
based languages like Kotlin and Scala. This is particularly useful in projects where
multiple JVM languages are used, allowing for consistent static analysis across
different parts of the codebase.

20https://clang.llvm.org/extra/clang-tidy/
21http://pylint.pycqa.org/en/latest/

https://clang.llvm.org/extra/clang-tidy/
http://pylint.pycqa.org/en/latest/


Multithreading Atomicity: Static Analysis Checkers 251

To facilitate security-focused static analysis in these languages, the Find Security
Bugs (FindSecBugs)22 plugin extends SpotBugs’ capabilities. FindSecBugs is a
SpotBugs plugin that specializes in detecting security vulnerabilities in Java, Kotlin,
and Scala code. Identifies potential security issues such as SQL injection, cross-site
scripting (XSS), and improper validation of input data.

When applied to Kotlin and Scala, FindSecBugs leverages the underlying byte-
code analysis capabilities of SpotBugs, adapting them to handle the syntactic and
semantic differences of these languages. While Kotlin and Scala introduce language-
specific constructs that may not map directly to Java, the bytecode they compile to
is still compatible with SpotBugs’ analysis techniques.

However, it is important to note that, due to differences in the way Kotlin and
Scala handle certain programming concepts, such as lambdas and coroutines [8, 15],
there may be limitations in the accuracy and coverage of the analysis. Despite this,
FindSecBugs and the SpotBugs itself remain valuable tools for enhancing security
in multi-language JVM projects, providing a unified approach to identifying and
mitigating security risks across Java, Kotlin, and Scala codebases.

4 State of the art

With the help of test cases focusing on the above-mentioned issues which we
developed for the SpotBugs testing framework, we performed a comparative analysis
with other existing static analyzers for Java.

On our test cases (which are detailed in Section 6) there should be 22 hits on the
VNA03-J cases and 10 hits on the VNA04-J, but it seems like the static analysis
tools we tested do not detect these multithreading atomicity rules, as can be seen
in Table 1.

Table 1: Result of static analyzer tools hits on VNA03-J and VNA04-J test cases

Name of the tool VNA03-J hits VNA04-J hits

PMD v7.0.0 23 0 0
SonarQube v9.9.5.90363 24 0 0

The Checker Framework v3.43.025 0 0
Google’s Error Prone v2.27.126 0 0

SpotBugs v4.8.627 0 0

Although all tools report atomicity-related issues, these are limited to other
aspects, such as do not use the volatile keyword28, and suggests replacing it with

22https://github.com/find-sec-bugs/find-sec-bugs
27This version of SpotBugs does not yet include the detectors detailed in this paper.
28https://docs.pmd-code.org/latest/pmd_rules_java_multithreading.html#

avoidusingvolatile

https://github.com/find-sec-bugs/find-sec-bugs
https://docs.pmd-code.org/latest/pmd_rules_java_multithreading.html#avoidusingvolatile
https://docs.pmd-code.org/latest/pmd_rules_java_multithreading.html#avoidusingvolatile


252 Patrik P. Süli, Judit Knoll, and Zoltán Porkoláb

a Java-built-in atomic type. These tools do not detect issues related to the complex
usage of atomic types or synchronized collections29.

In conclusion, our analysis indicates that the static analysis tools we tested do
not currently detect the specific multithreading atomicity issues described in the
VNA03-J and VNA04-J rules. SpotBugs is open source and free to use, it allows
the detection of these bugs to be distributed to a large community of developers.

5 Detector algorithms

The VNA03-J and VNA04-J SEI Cert rules focus on the proper use of locking with
synchronization as it is described in Section 2.2 and 2.5 in detail. We designed two
algorithms and implemented them as detectors in the SpotBugs static analyzer to
find unsafe usages of common references between threads, and make sure the proper
usage of fields with Java atomic types. The algorithm that covers rule VNA04-J
works with references of types which are not related to the Java Concurrent API,
and the algorithm using the rule VNA03-J ensures the proper usage of atomic
type-based classes.

The source code and test cases of these detectors are publicly accessible in the
official SpotBugs repository, where our contributions are submitted as two pull
requests: #2919 – VNA03-J Sequence of calls on a synchronized abstraction may
not be atomic, and #2986 – VNA04-J. Ensure that calls to chained methods are
atomic. VNA04-J is already available in SpotBugs from version 4.9.0.

5.1 Finding unsafe reference usages in multiple threads

The algorithm implementing VNA04-J rule works in class context, which means
that it scans class bytecode, but it does not see the relations between classes and
can only work with the code inside the currently analyzed class. This limitation is
inherited from the SpotBugs Framework, as detailed in Section 7.2. The detector
searches and collects methods that are in a call hierarchy that starts with a lambda
(anonymous) or referenced method passed directly to a Thread object, but takes
place in the current class. In Java, a Thread object30 requires a method in its
constructor that implements the Runnable functional interface.

We developed and tested a variation of the algorithm, in which the detector was
designed to include all methods in its scan, meaning that it also works with the
operations running on the main thread. When testing this solution on large open
source projects (these are introduced in Section 6, with the final detection results)
it had many false positive hits, so it was less useful on real world projects. Because
of this we decided to use the stricter version of the algorithm, to only cover a subset
of the original problem, but have more useful, accurate hits.

29The VNA03-J SEI Cert Rule Wiki page mentions that the Coverity and Parasoft Jtest
(https://www.parasoft.com/solutions/static-code-analysis/) tools cover the rule, however,
being proprietary tools and not freely available for research we do not cover them in our evaluation.

30https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

https://github.com/spotbugs/spotbugs/pull/2919
https://github.com/spotbugs/spotbugs/pull/2986
https://www.parasoft.com/solutions/static-code-analysis/
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html


Multithreading Atomicity: Static Analysis Checkers 253

Algorithm 1 Collect methods used in threads

1: methodsInThread← ∅
2: for all method invokation bytecode instruction in methods do
3: if method invokation implements ”java.lang.Runnable” and is passed to

”java.lang.Thread” then
4: methodsInThread← invokedMethod ▷ This is a starting point
5: else if Contains(methodsInThread, currentMethod) and

currentClass = invokedClass then
6: methodsInThread← invokedMethod
7: end if
8: end for

When detecting the issue the class context is scanned twice, this is necessary,
because the methods are visited in the order of definition, not in call order, so every
method is visited once during one scan. The issue can only happen in methods
which are used by threads, so in the first scan these relevant functions are gathered
(as it is shown in Algorithm 1).

The second time the algorithm visits the code (see Algorithm 2), it looks for the
usages of variables inside the stored methods. It collects the operations and groups
them by variables which are performed on variables with not atomic or synchronized
types.31

Every operation on the referenced fields - which meet the type constraint - is
processed and the following boolean flags are saved about each variable:

• onlySynchronized is true, if all modifier operations are under proper syn-
chronization.

• onlyPutField is true, if the threads only assign new values to the field.

• modified is true, if a thread modifies a variable or assigns a new value to it
either directly or via a method call.

The onlySynchronized flag is necessary because, in the end, only those variables
are relevant that have at least one operation not properly synchronized.

An acceptable solution could be that the threads only assign new values to
fields and don’t perform any other operations on them. E.g., construct the message
variable with the help of Builder class, the construction of the object is finalized
by calling the build() method. This pattern makes the Message class immutable
and, consequently, thread-safe. The onlyPutField flag helps to identify this special
case.

The modified flag is used to decide if there are multiple threads with only
reading operations, since then it does not lead to race condition, but if at least one
thread modifies the referenced object’s state, then the state is not ambiguous in the
threads.

31Improper usages of variables with Java’s built-in atomic types and synchronized collections
are handled by the VNA03-J algorithm.



254 Patrik P. Süli, Judit Knoll, and Zoltán Porkoláb

A bug is reported, if a field is modified in multiple threads, accessed outside of
synchronized blocks, and is neither a synchronized collection nor an atomic typed
field. The algorithm marks instructions as a bug if shared data is used in multiple
threads, with at least one modifying its state without a consistent locking policy.

The algorithm marks all instances of not thread-safe field accesses as a potential
bug, because it helps the developer to identify which statements require synchroniza-
tion, so in general it makes easy to locate and accurately determine the appropriate
scope of the synchronized block necessary to ensure thread safety in a method.

Algorithm 2 Collect operation data in threads

1: List methodsInThread ▷ Inherited from Algorithm 1
2: Map⟨Field, F ieldData⟩ fieldInThreads← ∅
3: for all bytecode instructions in methodsInThread do
4: if (field assignment or method call on field and

Contains(methodsInThread, currentMethod)) then
5: data← GetOrCreate(fieldsInThreads[field])
6: data.onlySynchronized← data.onlySynchronized ∧ isSynchronized
7: data.onlyPutF ield← data.onlyPutF ield ∧ isF ieldAssign
8: data.modified← data.modified ∨ isF ieldAssign ∨ looksLikeSetter
9: fieldsInThreads[field]← PutOrUpdate(data)

10: end if
11: end for

5.2 Finding non-atomic usages of the Java Concurrent types

The atomic typed fields and collections have atomic methods that are inherently
atomic. The algorithm based on the rule VNA03-J searches for scenarios where
these atomic methods are used in a combined or sequential manner. If a shared data
is used more than once, the operations together are not atomic, so these accesses are
marked as bug. There may be the possibility that all shared data are used just once
in a method, but if combined (for example a.get().add(b.get())) then it is a bug
too, because these two resource accesses must be atomic not only individually. It is
important to note that, if a shared data is used by multiple methods and at least
one accesses it more than once, all methods that work with it need synchronization
for consistent locking to avoid race conditions between the threads that are using
the same shared resource at the same time while parallel running.

The algorithm has the following base logic: analyzing functions in a class context
and mark each method call and field assignment of common objects which are not
synchronized. If a method contains a synchronized block, the detector logs only
once for every different object inside the block, no matter how many times they are
accessed; because of the synchronization, it is considered an atomic operation. If a
private method performs an unsafe operation without proper synchronization, but
all the methods that call it have proper synchronization, then the private function
does not need another one.



Multithreading Atomicity: Static Analysis Checkers 255

Shared data could be a field of the class, a function argument, or a local variable
containing a reference for a shared resource, for example, an element of an atomic
collection.

The algorithm also visits the class two times: first, the atomic or synchronized
collection typed fields of the class are collected. For fields with types inherited from
the atomic package (such as AtomicInteger, AtomicLong, AtomicBoolean, and
AtomicReference) only the type needs to be checked, but finding the synchronized
collections is a bit more complex: the fields only has a general List, Set or Map type
and the algorithm must look for the field assignments to determine the concrete
type. For example, Code 10 shows a synchronized list assignment:

1 List <String > lst = Collections.synchronizedList(new ArrayList <>());

Code 10: Create a synchronized list

Overall, a method which creates a synchronized collection can be recognized by
being in the Collections class32 (of the java.util.concurrent.atomic package),
and its name starting with ”synchronized” followed by the concrete collection type’s
name (e.g. synchronizedSet, synchronizedMap). The checker stores the variables,
which are assigned the return value of these methods.

Algorithm 3 Check if a Class Member’s type is atomic or a synchronized collection

1: function IsAtomicTypedField(classMember)
2: methodNames← GetMethodNamesReturningSyncCollections()
3: className← GetClassName(classMember)
4: isCollectionsClass← ”java.util.Collections” = className
5: isAtomicClass← className.StartsWith(”java.util.concurrent.atomic”)
6: isNameInteresting ← Contains(methodNames, className)
7: return (isCollectionsClass ∧ isNameInteresting) ∨ isAtomicClass
8: end function

It is possible that a collection typed field has more than one assignment, and not
all of them are synchronized collection assignments, for example, in the constructor a
List collection is only assigned a simple ArrayList value, but after the application
starts running, it is assigned a synchronizedList value. In this case, the checker
treats this field as a synchronized collection, it assumes that the variable is used in
concurrent operations.

In the second visit using the data of the collected variables, the detector looks
for operations on these fields in every method in the class, except the constructor
and synchronized methods. Constructors (as well as the static initializer) only
run on object creation once, they do not appear in parallel operations, they may
initialize fields, but this is part of the life-cycle of the object and can run only once.
In addition to the stored fields, there may be local variables or method arguments
with atomic types, and the checker also has to mark operations on these variables.

32https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html

https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html


256 Patrik P. Süli, Judit Knoll, and Zoltán Porkoláb

Overall, the following operations are logged:

• A value assigned to a stored variable.

• A method called on a stored field.

• An operation on an atomic typed local variable or method argument.

• Multiple atomic typed variables combined.

When the algorithm has logged every instruction that meets the above list, it
cumulates the results to determine which operations need to be reported as a bug.
First of all, logged private methods are removed if they have proper synchronization
on the call site in every method. Code 11 shows an example for this:

1 private AtomicInteger count = new AtomicInteger (0);

2

3 public void modifyCountSafely () {

4 synchronized (count) { // Every other caller methods call the

private method with proper synchronization

5 incrementAndPrint ();

6 }

7 }

8

9 private void incrementAndPrint () {

10 count.incrementAndGet ();

11 System.out.println("Current count: " + count.get());

12 }

Code 11: Synchronized private method on the call side

This optimization only works with private methods because, with higher visibility,
these methods can be accessed from outside the current class, and their usages are
unknown (see Subsection 7.2).

After this, the algorithm has the information, which atomic typed fields are
accessed multiple times by multiple methods without proper locking strategy. If
operations are performed in multiple methods, these are marked as a bug, and it
informs the developer to put these lines under a synchronization or refactor the
usage strategy of the shared resource.

5.3 Generalization possibilities

Although our current algorithms are explained through the example of the Java
language and contain language specific details, such as the Atomic* classes and
standard library synchronized collections, our underlying detection logic can be
extended to other programming languages, if they follow similar usage patterns (e.g.
those mentioned in Section 2).

The core principle of identifying multiple potentially conflicting operations on
shared data applies generally to any abstraction that offers atomic operations, but
it can be composed unsafely if not synchronized consistently. However, in other
programming languages, the same algorithmic idea remains valid, it must be adapted



Multithreading Atomicity: Static Analysis Checkers 257

to detect their particular locking primitives – for example, std::mutex in C++, or
threading.Lock in Python – instead of Java’s synchronized blocks.

In SpotBugs, many Java-specific base type names are hardcoded rather than
making them project-configurable. Since these elements are essentially part of
the standard library, it is typically more practical and efficient to hardcode some
parts of the detection logic than to parameterize it for every possible project. The
synchronized collections used by the algorithms are specific to Java, but this approach
could be extended to any language. For example, in C# the .NET Framework33

offers ConcurrentDictionary, ConcurrentQueue, and ConcurrentBag, all of which
ensure thread safety without requiring explicit external locking.

By enumerating these known synchronization and atomic constructs in other
languages, the algorithms could be extended beyond Java to automatically detect
non-atomic compositions of supposedly atomic operations.

6 Results

To validate our checkers, we implemented a considerable number of unit test cases
to eliminate potential bugs and filter out possible false positive cases. After that,
we evaluated our checkers on large, modern, open source Java projects, which were
selected based on the following criteria:

1. Concurrency intensity: The project needs to use multithreading or concur-
rent data structures extensively.

2. Codebase size and activity: The project should be large and actively
maintained, ensuring real-world relevance.

3. Popularity and community participation: The project should have a
diverse contributor base and a significant user community, allowing meaningful
feedback on potential bugs.

The unit tests are written in the SpotBugs testing framework, which makes them
suitable to be used as integration test. Every test runs without issues, as expected.

For the VNA03-J there are 46 test cases overall: 22 positive and 24 negative
to cover all possible mechanisms, such as edge cases like if there are multiple
synchronized blocks in a method, but not every operation is inside, or lambda or
anonymous method is passed to an atomic field’s method call as argument, but this
method itself performs additional operations on that same atomic field. Every test
case has its own example class (which may have inner classes depending on the
test’s complexity) with a unique usage of atomic field(s).

For VNA04-J there are 14 test cases, with 10 positive and 4 negative. It has
fewer test cases than the other checker, because in this case it is not necessary to
include several atomic based types, it just works with any type that is not in Java’s
atomic package. However, it also includes some special cases like handling that if

33https://learn.microsoft.com/en-us/dotnet/standard/collections/thread-safe/

https://learn.microsoft.com/en-us/dotnet/standard/collections/thread-safe/


258 Patrik P. Süli, Judit Knoll, and Zoltán Porkoláb

a Thread is passed to Java’s Runtime34 as a shutdown hook, or to verify that the
checker can also work and detect bugs correctly with nested classes.

6.1 Results of detection the VNA03-J rule

The test results on the projects (can be seen in Table 2) show that the VNA03-J
detector has low hit rate. We performed a manual review of each found bug by
examining the relevant code regions, verifying whether the detected pattern could
indeed lead to a race condition or data inconsistency. We confirmed that the
reported issues were legitimate concurrency pitfalls. We found no code usage that
was mistakenly classified as problematic, and we believe that all the identified hits
were true positive.

Table 2: VNA03-J Measurements on large, open source projects

Project Lines of Atomic Combined Simple
Java Code variables access bugs access bugs

Bt35 78 483 25 3 7
MATSim-Libs36 679 033 47 24 9
OpenGrok37 132 290 1 0 0

Kafka38 980 184 213 40 75
ElasticSearch39 3 149 220 339 71 99

Combined atomic accesses are reported where atomic variables are accessed
multiple times in the same function without synchronization and marked cases of
simple atomic accesses, when the access needs synchronization due of the existence
of the combined resource usages in other methods.

Code 12 is a code snippet, a simplified version of the Counter class40 originally
from the MatSim-Labs open source repository, represents a real true positive finding.
The class-level variable nextCounter is accessed multiple times – once with a get()

call and again with a compareAndSet() call in the incCounter() method. These
calls constitute an unsynchronized combined atomic accesses bug. Consequently, the
reset()method, which also modifies nextCounter, can overlap with incCounter(),
resulting in a simple atomic access bug.

34https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html
35https://github.com/atomashpolskiy/bt/commit/6041303
36https://github.com/matsim-org/matsim-libs/commit/1c6779d
37https://github.com/oracle/opengrok/commit/077089f
38https://github.com/apache/kafka/commit/b436499
39https://github.com/elastic/elasticsearch/commit/44c92715
40https://github.com/matsim-org/matsim-libs/blob/1c6779d/matsim/src/main/java/org/

matsim/core/utils/misc/Counter.java

https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html
https://github.com/atomashpolskiy/bt/commit/6041303
https://github.com/matsim-org/matsim-libs/commit/1c6779d
https://github.com/oracle/opengrok/commit/077089f
https://github.com/apache/kafka/commit/b436499
https://github.com/elastic/elasticsearch/commit/44c92715
https://github.com/matsim-org/matsim-libs/blob/1c6779d/matsim/src/main/java/org/matsim/core/utils/misc/Counter.java
https://github.com/matsim-org/matsim-libs/blob/1c6779d/matsim/src/main/java/org/matsim/core/utils/misc/Counter.java


Multithreading Atomicity: Static Analysis Checkers 259

1 private final AtomicLong counter = new AtomicLong (0);

2 private final AtomicLong nextCounter = new AtomicLong (1);

3

4 public void incCounter () {

5 long i = this.counter.incrementAndGet ();

6 long n = this.nextCounter.get();

7 if ((i >= n) && (this.nextCounter.compareAndSet(n, n*multiplier)

)) { // combined atomic access bug , multiple accesses

8 log.info(this.prefix + n + this.suffix);

9 }

10 }

11

12 public void reset() {

13 this.counter.set(0);

14 this.nextCounter.set(1); // simple atomic access bug

15 }

Code 12: Example of the relation between the bug types

While our research was more to find out the possibilities of detecting concurrency
related errors with static analysis, we intend to apply our tool for solving practical
problems. We initiated discussions with the maintainers of the projects where we
find possible problems and we are looking for their feedback whether the findings
were true positives. We hope a more intensive communication with theses developers
when the new version of SpotBugs including our checkers will be available for the
larger community.

6.2 Results of detection the VNA04-J rule

The test results for the VNA04-J rule on large, open source projects (with the same
versions that are noted in Table 2) can be seen in Table 3. We found no hits on the
evaluated projects because we opted to use the algorithm variation that excludes
main thread analysis. This decision was made to avoid the checker being so noisy
that it is unusable (see the details in Section 5.1).

Table 3: VNA04-J Measurements on large, open source projects

Project Lines of Java Code Thread starts Unsafe access bugs
Bt 78 483 1 0

MATSim-Libs 679 033 1 0
OpenGrok 132 290 4 0

Kafka 980 184 1 0
ElasticSearch 3 149 220 0 0



260 Patrik P. Süli, Judit Knoll, and Zoltán Porkoláb

It is very rare that in one class more than one Threads run parallel, which are
using common resources. The detector has a serious limitation; it only works within
the class context, and cannot see the relations, method calls outside of a class. This
limitation is inherited from the SpotBugs framework, as discussed in Section 7. Is
it possible that the public functions of a class are run in different threads in parallel
way, but the checker cannot detect that usage.

6.3 Performance and integration with SpotBugs

SpotBugs keeps the analyzed application classes in memory (via BCEL) and performs
separate passes on each classes for all enabled detectors, which are completely
independent of each other, there is no shared data or any connection between
them. This design simplifies the analysis process and avoids unintended interactions
between detectors.

Our newly introduced concurrency checkers are implemented as additional
detectors in SpotBugs. The VNA03-J algorithm, due to certain implementation
details, is a CFG-Based detector, which means it is more expensive to run, than the
visitor-based detectors, like the VNA04-J. To quantify runtime overhead, we ran
SpotBugs on the Kafka codebase (same commit as noted in Table 2) on an Apple
MacBook M2 Pro, repeating each run five times. We used the following command
for benchmarking:

./gradlew clean core:spotbugsMain core:spotbugsTest -x test \

--rerun-tasks --no-build-cache --profile

Table 4: Benchmark results on Kafka, run on an Apple MacBook M2 Pro

Configuration Avg. Runtime
No concurrency detectors 15.21s
VNA03-J enabled 18.46s
VNA04-J enabled 15.54s
VNA03-J and VNA04-J enabled 18.79s

These results align with SpotBugs’ documented tendency for CFG-based detec-
tors to incur more overhead than visitor-based ones.

Similar to other SpotBugs detectors, our checkers rely on SpotBugs’ in-memory
class repository and do not add extra complex data structures. Consequently, we
anticipate negligible memory overhead even when analyzing large-scale projects.
Compared to existing detectors, our concurrency checkers primarily store per-class
metadata for pattern matching and analysis and follow similar design principles and
performance characteristics.



Multithreading Atomicity: Static Analysis Checkers 261

7 Known limitations and possibilities for further
development

This section highlights limitations in the current implementation of the SpotBugs
detectors and suggests some possible opportunities to improve them.

7.1 Use of atomic typed variables in public methods

Atomic types are typically used to ensure thread safety. However, if they appear in
public methods not utilized in a threaded context, hits of the algorithm based on the
rule VNA03-J are false positives. The algorithm assumes that, if the developer used
atomic-typed variables, then it is because it is used in threads. This limitation could
be solved by analyzing the relations of the classes (see Section 7.2), and exclude
those public methods from the analysis which are not run in parallel way.

7.2 SpotBugs’ class context analyzing limitation

SpotBugs operates within a single-class context, as such can only analyze operations
within a class. This restriction may lead to potential false negatives in both detectors
in systems where class interactions play a crucial role in the application’s concurrency
logic.

Without these limitations, the checker implementation of the algorithm based on
the rule VNA03-J could exclude those nonprivate methods, which are not running
in parallel threads, and the algorithm with rule VNA04-J could include those
nonprivate methods which are passed to a Thread in another class, or just called by
another method outside of the analyzed class that is running in parallel thread.

7.3 False positives in single-function modifications

Another issue is related to the scenario where multiple threads modify a common
field, such as incrementing a counter. While this might technically represent a
concurrency issue, if each thread’s modification is self-contained and thread-safe
(like atomic increments), it currently triggers a false positive.

1 private AtomicInteger count = new AtomicInteger (0);

2

3 // Thread 1:

4 public void incrementByOne () {

5 count.incrementAndGet (); // Safe atomic operation

6 }

7

8 // Thread 2:

9 public void incrementByTwo () {

10 count.addAndGet (2); // Another safe atomic operation

11 }

Code 13: Example of safe usage of parallel modifications



262 Patrik P. Süli, Judit Knoll, and Zoltán Porkoláb

It is hard to determine by method names, what are those operations that only
modify the common data, so since there were no hits like this in our evaluations
of large open source projects, we chose to leave this false positive chance in the
algorithm because it is not noisy for the developers.

7.4 Challenges with Lambda Expressions

The introduction of Lambda Expressions41 into Java 8 marked a significant milestone
in the evolution of the language. This feature was one of the most anticipated
additions to Java and fundamentally changed the way Java programmers write code,
especially when dealing with collections and concurrency.

Technically, a lambda expression in Java is an instance of a functional interface42,
an interface with a single abstract method (SAM interface). The Java compiler
infers the type of lambda expression from the context in which it is used, allowing
simpler and more concise syntax.

Lambda Expressions are implemented under the hood as bootstrap methods
using the invokedynamic bytecode instruction. With the SpotBugs framework,
there is some limitation to analyze lambda methods, because the calls and operations
on these kinds of method are different due to the specialized bytecode instruction,
and certain features are either not implemented or implemented in an alternative
manner in the current version of SpotBugs, resulting in the loss of some information
during analysis.

8 Conclusion

In concurrent programming, it is crucial to use shared resources in a thread-safe way.
To achieve this, it is recommended to use a consistent locking policy, which could
be even necessary, when a program works with Java atomic based types or with
synchronized collections. Static analysis is a very useful tool to look for mistakes
and make sure the developers identify and rectify potential errors, and implement
their concurrent logics in a proper way.

We analyzed practices in thread safety, not only in Java but also by reviewing
methodologies in other programming languages, such as Python, Rust and C++.

We delved into the SEI Cert Coding Standards, which is pivotal in guiding
developers toward safer coding practices. Our research into this guideline was not
just theoretical; we applied part of these standards practically by designing an
algorithm and implementing corresponding checkers (which cover the VNA03-J and
VNA04-J rules) in SpotBugs Static Analyzer Tool.

By integrating new detectors, our research has directly contributed to the en-
hancement of this tool, allowing it to identify unsafe resource usage across concurrent
threads more effectively. The addition of these detectors extends SpotBugs’ capa-

41https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
42https://docs.oracle.com/javase/8/docs/api/java/lang/FunctionalInterface.html

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/8/docs/api/java/lang/FunctionalInterface.html


Multithreading Atomicity: Static Analysis Checkers 263

bilities, enabling it to catch subtle bugs that could otherwise lead to inconsistent
states or even system failures in production environments.

The enhancements in SpotBugs that we implemented offer practical benefits to
developers by reducing the time and effort required to identify concurrency issues.
This not only increases productivity, but also improves the overall reliability of
software applications. By detecting potential problems in the early stages of the
development cycle, developers can address issues before they manifest in deployed
systems, reducing downtime and maintenance costs. These advantages also enable
managers to reduce the use of project resources and financial expenditures.

Furthermore, our work underscores the value of community-driven open source
projects in the evolution of software development tools. Our contributions to the
SpotBugs project exemplify how individual efforts can lead to significant improve-
ments in tools that are widely used by the developer community. The advanced
capabilities of SpotBugs, enriched with more robust detectors for concurrency issues,
render it a valuable tool for developers aiming to write safer and more reliable Java
applications.

References

[1] Aghav, I., Tathe, V., Zajriya, A., and Emmanuel, M. Automated static
data flow analysis. In 2013 Fourth International Conference on Computing,
Communications and Networking Technologies (ICCCNT), pages 1–4, 2013.
DOI: 10.1109/ICCCNT.2013.6726670.

[2] Aho, A. V., Sethi, R., and Ullman, J. D. Compilers principles, techniques, and
tools. Addison-Wesley, Reading, MA, 1986. ISBN: 9780201100884.

[3] Anderson, T. The performance of spin lock alternatives for shared-money
multiprocessors. IEEE Transactions on Parallel and Distributed Systems,
1(1):6–16, 1990. DOI: 10.1109/71.80120.

[4] Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros,
C., Kamsky, A., McPeak, S., and Engler, D. A few billion lines of code later:
Using static analysis to find bugs in the real world. Communications of the
ACM, 53(2):66–75, 2010. DOI: 10.1145/1646353.1646374.

[5] Boehm, B. and Basili, V. R. Software defect reduction top 10 list. Computer,
34(1):135–137, 2001. DOI: 10.1109/2.962984.

[6] B́ıró, P., Kádek, T., Kósa, M., and Pánovics, J. A new method to increase
feedback for programming tasks during automatic evaluation. Acta Polytechnica
Hungarica, 19(9):103–116, 2022. DOI: 10.12700/aph.19.9.2022.9.6.

[7] Clang SA Static Analyzer, 2019. URL: https://clang-analyzer.llvm.org/.

[8] Coroutines, K. O. D. https://kotlinlang.org/docs/coroutines-overview.
html. Accessed: 08 2024.

https://doi.org/10.1109/ICCCNT.2013.6726670
https://isbnsearch.org/isbn/9780201100884
https://doi.org/10.1109/71.80120
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1109/2.962984
https://doi.org/10.12700/aph.19.9.2022.9.6
https://clang-analyzer.llvm.org/
https://kotlinlang.org/docs/coroutines-overview.html
https://kotlinlang.org/docs/coroutines-overview.html


264 Patrik P. Süli, Judit Knoll, and Zoltán Porkoláb

[9] Halim, V. H. and Dwi Wardhana Asnar, Y. Static code analyzer for detecting
web application vulnerability using control flow graphs. In 2019 International
Conference on Data and Software Engineering (ICoDSE), pages 1–6, 2019.
DOI: 10.1109/ICoDSE48700.2019.9092687.

[10] Hampapuram, H., Yang, Y., and Das, M. Symbolic path simulation in path-
sensitive dataflow analysis. SIGSOFT Software Engineering Notes, 31(1):52–58,
2005. DOI: 10.1145/1108768.1108808.

[11] Herlihy, M. Wait-free synchronization. ACM Transactions on Programming
Languages Systems, 13(1):124–149, 1991. DOI: 10.1145/114005.102808.

[12] ISO/IEC. N4917 post-summer 2022 C++. Working draft, International
Organization for Standardization (ISO), Geneva, Switzerland, 2022. URL:
https://isocpp.org/std/the-standard. Accessed: 07 2024.

[13] Paľsa, J., Hurtuk, J., Chovanec, M., and Chovancová, E. Using machine
learning algorithms to detect malware by applying static and dynamic analysis
methods. Acta Polytechnica Hungarica, 19(7):177–196, 2022. DOI: 10.12700/

aph.19.7.2022.7.10.

[14] Rice, H. G. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74:358–366, 1953. DOI:
https://doi.org/10.2307/1990888.

[15] Scala Coroutines. URL: https://scala-coroutines.github.io/

coroutines/. Accessed: August 2024.

[16] Zhang, X., Zhou, Y., and Tan, S. H. Efficient pattern-based static analysis
approach via regular-expression rules. In 2023 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 132–143,
2023. DOI: 10.1109/SANER56733.2023.00022.

https://doi.org/10.1109/ICoDSE48700.2019.9092687
https://doi.org/10.1145/1108768.1108808
https://doi.org/10.1145/114005.102808
https://isocpp.org/std/the-standard
https://doi.org/10.12700/aph.19.7.2022.7.10
https://doi.org/10.12700/aph.19.7.2022.7.10
https://doi.org/https://doi.org/10.2307/1990888
https://scala-coroutines.github.io/coroutines/
https://scala-coroutines.github.io/coroutines/
https://doi.org/10.1109/SANER56733.2023.00022

	Introduction
	Related work
	Atomic types in programming languages
	Thread safety issues with Java concurrency types
	Multiple atomic operations in threads
	Unsynchronized concurrent collection elements
	Unsafe usages of shared resources in multiple threads
	Similar concurrency issues in C/C++

	Technical background
	SpotBugs overview
	Applying SpotBugs to Kotlin and Scala: FindSecBugs


	State of the art
	Detector algorithms
	Finding unsafe reference usages in multiple threads
	Finding non-atomic usages of the Java Concurrent types
	Generalization possibilities

	Results
	Results of detection the VNA03-J rule
	Results of detection the VNA04-J rule
	Performance and integration with SpotBugs

	Known limitations and possibilities for further development
	Use of atomic typed variables in public methods
	SpotBugs' class context analyzing limitation
	False positives in single-function modifications
	Challenges with Lambda Expressions

	Conclusion

