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Optimizing SAP Machine Learning-based Solutions

through Custom API Integration

Georgina Asuahab, Arafat Md Easinac, and Tamás Oroszad

Abstract

Rapid changes, dynamic consumer preferences, and evolving market trends
are the hallmarks of the business environment. SAP HANA has emerged as a
potent platform to meet this demand due to its resilient foundation for real-
time data analytics and processing and in-memory processing architecture.
This research aims to improve anomaly detection capabilities by integrating
machine learning (ML) models into the SAP HANA Fiori web application.
This will be achieved by developing a custom Application Programming Inter-
face (API). The proposed solution integrates ML models with the SAP system
using FastAPI, providing real-time insights and decision-making capabilities,
by employing Local Outlier Factor (LOF) for anomaly detection. Multiple
ML estimators were evaluated and the results indicate that LOF consistently
outperforms other models, offering higher detection accuracy and computa-
tional efficiency. This research provides a practical framework for integrating
machine learning-based anomaly detection into enterprise applications, ad-
dressing the limitations of SAP’s built-in Predictive Analysis Library (PAL).
To guarantee seamless performance and scalability, the API is deployed on
Azure using Docker containers. This paper presents the capability of custom
APIs to integrate ML models into enterprise systems, enhance operational
efficiency, and establish a reliable framework for real-time anomaly detection
as a practical solution. The article addresses challenges associated with API
integration, scalability, and system configuration, providing valuable insights
for enhancing the deployment of machine learning in enterprise applications.
These findings offer valuable insights for organizations seeking to enhance
their predictive analytics capabilities using modern AI-driven approaches.

Keywords: SAP HANA Fiori, machine learning, API integration, anomaly
detection, Local Outlier Factor (LOF)

aDepartment of Data Science and Engineering, Faculty of Informatics, Eötvös Loránd Univer-
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1 Introduction

Organizations nowadays strive to derive actionable insights from their massive data
sets, owing to prevalent digital technologies and big data [31]. The business world
is characterized by rapid changes, evolving tastes of customers, and unpredictable
market trends [35]. Companies in diverse sectors now consider real-time decision
assistance a need rather than a luxury. SAP HANA emerged as a strong platform
to address this need, due to its in-memory computing design and solid basis for
processing and analytics of data in real-time [10].

However, a smooth integration of machine learning and artificial intelligence
(AI) capabilities is necessary to fully explore SAP HANA’s potential [9, 15]. Tasks
like anomaly detection benefit greatly from this connection since ML models can
detect variations in data trends, which can help spot vulnerabilities like fraud, sys-
tem failures, or inventory shortages early. This link allows companies to quickly and
easily conclude their data which will help them make better decisions. Unsuper-
vised anomaly detection methods can be easily built using SAP HANA’s Predictive
Analysis Library (PAL) [22]. However, this approach has limitations, such as not
letting the user modify the algorithm’s settings or apply domain expertise for anom-
aly identification. This necessitates using custom APIs to enhance the precision
and efficiency of anomaly detection.

Nowadays, ML algorithms utilize data analysis techniques to identify patterns
and correlations in historical data, enabling the extraction of valuable information
and the creation of algorithms [33]. Application Programming Interfaces are vital
for connecting machine learning models to enterprise systems such as SAP HANA
[27]. Organizations can efficiently tackle unique business difficulties by adapting
ML models to their specific needs and requirements through these APIs [7]. Custom
APIs offer flexibility in integrating specialized machine learning models tailored to
the unique needs of a business, providing a means to optimize these models’ deploy-
ment and scaling [26]. APIs act as connectors, enabling seamless communication
between machine learning algorithms and SAP applications [16]. They allow data to
flow efficiently between these systems, ensuring that ML models can be integrated
without significantly disrupting existing workflows.

The capacity to promptly identify deviations from typical behavior is essential
for the preservation of operational efficiency, security, and system performance in
anomaly detection. The anomaly detection process can be automated and enhanced
by the integration of machine learning models into SAP HANA through custom
APIs, which can provide real-time insights that traditional rule-based systems may
overlook [13]. This research investigates the potential of custom API integration
to optimize SAP machine learning-based solutions, with a particular emphasis on
the improvement of anomaly detection capabilities in enterprise environments.

The main motivation is derived from the constraints of the current SAP HANA
PAL capabilities, which restrict customization and domain-specific tailoring. Anom-
aly detection is essential for identifying unusual patterns in data, including fraud,
system malfunctions, and inventory discrepancies. Although SAP HANA’s PAL
provides fundamental anomaly detection capabilities, it is unable to integrate so-
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phisticated ML models. In this study, we developed a custom API that incorporates
sci-kit-learn’s Local Outlier Factor (LOF) anomaly detection model to overcome
these constraints and offer a more flexible anomaly detection solution. The aim
of this research is the development of a resilient custom API using FastAPI to in-
tegrate machine learning models, specifically the LOF, with SAP Fiori Web, and
the deployment of this solution on Azure Kubernetes Service (AKS) to guaran-
tee scalability, security, and high availability. Improve the pace and precision of
decision-making in real-time enterprise settings.

The main contributions of this study are summarized as follows:

• Developing a FastAPI-based model for the integration of machine learning
anomaly detection with the SAP HANA Fiori application.

• Optimizing anomaly detection where various machine learning models were
analyzed, revealing that the LOF exhibits enhanced accuracy, recall, and
ROC AUC.

• Employing containerized cloud-based deployment through Docker and AKS
to enhance scalability, security, and high availability.

• Designing an interactive interface for seamless integration of SAP HANA
Fiori, enabling real-time anomaly detection within enterprise SAP applica-
tions.

2 Literature Review

Applying machine learning models for anomaly detection within SAP systems is
becoming more popular as organizations strive to become more operationally effi-
cient, reduce risks, and improve data-oriented decision-making [4, 12]. It has been
noted that anomaly detection is important for any enterprise system as it involves
detecting suspicious activity.

Anomaly detection methods are numerous, with some basic techniques extend-
ing to the use of artificial intelligence in application. Traditional statistical tech-
niques such as Z-score and boxplot-based outlier detection are commonly used [18].
Techniques such as these establish a cutoff point based on mean-variance or other
statistical moments such as quantiles. A Z-score, for example, tells how many stan-
dard deviations a given observation is away from the average, with higher scores
meaning that they are closely related to anomaly activity [8]. However, these
methods do not work satisfactorily with multi-dimensional or other complex data
distributions. These methods are quite simple to adopt but the gutter lies on the
prerequisite of a certain type of distribution which effectively dismisses them on
dynamic or complex spheres.

Machine learning methodologies have become increasingly popular owing to
their capacity to represent intricate patterns. For instance, Support Vector Ma-
chines (SVM) have proven effective in anomaly detection by identifying a hyper-
plane that separates typical instances from atypical ones [28]. Similarly, neural
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networks, especially autoencoders, have found widespread application, as these
models reconstruct input data, with significant reconstruction errors signaling the
presence of anomalies [25]. Although these models are adaptable, they typically
necessitate substantial datasets for training and may struggle with limited inter-
pretability. Ensemble techniques, such as Isolation Forest and Random Forest,
have also been employed to improve anomaly detection. Isolation Forest isolates
anomalies through recursive partitioning, making it particularly effective for high-
dimensional datasets [17]. While ensemble methods provide robustness and en-
hanced generalization, they also introduce increased computational complexity and
often necessitate careful hyperparameter tuning to achieve the best performance.

Custom API integration is essential for embedding machine learning-based
anomaly detection models within SAP systems. APIs are the interface between
ML models and enterprise systems, allowing for smooth data transfer and enabling
real-time predictions. According to [11], RESTful APIs are frequently used to
expose ML models, providing a standardized method for communication between
SAP systems and ML services. These APIs should accommodate various data for-
mats (e.g., JSON, XML) and feature clear endpoints for model training, inference,
and monitoring. Creating custom APIs for machine learning integration necessi-
tates adherence to some fundamental principles. Best practices for API integration
emphasize several key considerations as described by [5, 34]. Firstly, versioning is
critical to guarantee backward compatibility as APIs progress. Secondly, adhering
to RESTful principles and using JSON-based communication can make APIs more
adaptable and easier to integrate with different applications. Lastly, security is
essential, especially when integrating APIs into enterprise systems. Implementing
encryption, authentication, and role-based access control mechanisms is crucial to
protect sensitive information.

As machine learning models evolve, continuous deployment pipelines should be
implemented to automate model updates in production environments [3]. In [21],
the authors proposed a distributed and unified API service for machine learning
models that helps ensemble multiple models. This results in better predictions and
benefits such as wider availability, greater usability, and lesser resource constraints.
[24] tackled the issue of developing user-friendly ML APIs, particularly for begin-
ners. Their research centered on examining how the Kaggle community utilizes
scikit-learn, a popular ML API. The work of [23], discussed a case study showing
how they integrated an SAP ERP system with an external web service through
API access, illustrating the use of algorithms and transactions within SAP ERP.

Enhancing SAP machine learning solutions for anomaly detection involves uti-
lizing various methods, including custom API integration. Creating custom APIs is
essential for linking machine learning models with enterprise systems, simplifying
complicated processes, and improving user experience. Custom APIs will continue
to be essential for achieving smooth and scalable ML integration in enterprise sys-
tems as organizations delve into AI-powered solutions.
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3 Methodology

The proposed solution is intended to capitalize on the machine learning models
available in the esteemed scikit-learn (sklearn) library. The SAP HANA Fiori solu-
tion’s proposed implementation employs machine learning models from the sklearn
library to improve predictive modeling and data analysis. The FastAPI framework
is implemented to incorporate predictive capabilities within a scalable and accessi-
ble application programming interface. The Azure cloud service provider is selected
for its seamless integration with FastAPI and robust infrastructure, which is where
the API deployment is orchestrated. The API that has been finalized, functions
as a connection between the SAP HANA Fiori web application and the machine
learning model. It improves the web application’s functionality by integrating in-
telligent decision-making capabilities that are based on the predictions of the ML
model. A critical component of the operational strategy is integrating an anomaly
detection API into the SAP HANA Fiori web application.

3.1 System Architecture

The system architecture integrates five key components: SAP HANA, SAP Fiori,
FastAPI, Azure Kubernetes Service (AKS), and Azure Container Registry (ACR).
This design ensures flawless interaction between enterprise data management, anom-
aly detection, and cloud-based deployment. Figure 1 provides a detailed view of
the system’s flow, showcasing how user interactions in SAP HANA Fiori trigger
anomaly detection through the custom API. The entire process starts with SAP
HANA, which stores and preprocesses the dataset before sending it via OData
services to the FastAPI backend. A Local Outlier Factor (LOF) model is hosted
by FastAPI to evaluate incoming data and produce anomaly predictions in real
time that are returned in JSON format. Azure Container Registry manages con-
tainerized instances of the FastAPI application, guaranteeing version-control, and
secure image storage. AKS coordinates scalable deployment, integrating HTTPS
encryption and token-based authentication for secure operations and dynamically
adjusting resources to meet demand.

Afterwards, the processed data are sent to SAP Fiori, which offers an easy-to-
use, role-based interface for interactive anomaly analysis and prediction visualiza-
tion. Using SAP platforms (HANA, Fiori) for data handling and user interaction
and Azure Cloud Services (ACR, AKS) for robust infrastructure management, the
architecture prioritizes modularity. It is secured by Role-based Access Controls
(RBAC) and built for smooth scalability in enterprise settings.

3.1.1 SAP HANA

SAP HANA (High-performance Analytic Appliance) is an advanced in-memory
database and application development platform designed for processing large vol-
umes of real-time data [20]. In-memory processing stores data directly in the main
memory of a system rather than on traditional disk storage, and this significantly
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Figure 1: Overall architecture of the proposed system

enhances the processing speed for analytics and transactional workloads. It reduces
the time taken to fetch data and accelerates computations by avoiding the latency
related to disk I/O operations. Its Integrated Development Environment facili-
tates the creation of applications with the SAP HANA Deployment Infrastructure
(HDI) containers, enabling smooth integration and data administration. Through
its Predictive Analysis Library (PAL) [30], it facilitates predictive analytics, allow-
ing developers to apply a variety of machine learning algorithms directly. The data
source and preparation engine for this study is SAP HANA, which also prepares
datasets and stores them in HDI containers for convenient access. It makes effective
use of OData services to move data to external systems, such as the custom API.

3.1.2 SAP Fiori

SAP Fiori is a user experience (UX) platform for communicating intuitively and
easily with enterprise systems through role-based interfaces [29]. It provides a
responsive workflow for users on different devices through user-centered design,
hence making laborious jobs less straining and hard business processes much eas-
ier. This work integrates it with the anomaly detection system using FastAPI,
where the user can trigger the analysis in real time and in several directions with
dynamic dashboards. Using SAPUI5 in the development, this platform provides
much-needed customization possibilities according to organizational needs. The
presented research extends the default functionality of SAP Fiori by incorporat-
ing new components, which interface directly with the anomaly detection API and
showcase its adaptability in an advanced analytics context.
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3.1.3 FastAPI

This study uses a scikit-learn LOF model to detect anomalies in real-time, and the
real emotional core is a FastAPI-based backend. Incoming queries from SAP Fiori
are processed by the API. It then uses the trained LOF algorithm to check the
data for abnormalities and delivers predictions in standardized JSON format via
RESTful endpoints. The system uses asynchronous request processing to maximize
speed, guaranteeing low latency responsiveness and good scalability. This archi-
tecture allows anomaly scores to be dynamically shown on business dashboards
by bridging the gap between machine learning algorithms and SAP Fiori’s user
interface.

3.1.4 Azure Container Registry

The centralized location for managing and storing Docker container images related
to the FastAPI application is the Azure Container Registry. Immutable image
tags provide strong version control, while integrated vulnerability assessment and
role-based access restrictions guarantee safe deployment. ACR provides automated
continuous integration and deployment (CI/CD) pipelines. It also and enables
smooth connection with Azure Kubernetes Service by simplifying image distribu-
tion and authentication. This preserves adherence to company security rules while
guaranteeing regular, auditable upgrades to the anomaly detection system.

3.1.5 Azure Kubernetes Service

The containerized FastAPI application is deployed and managed using Azure Ku-
bernetes Service, which facilitates high availability and smooth scaling to satisfy
business needs. Through auto-scaling capabilities, it automatically adjusts work-
loads in response to traffic changes, guaranteeing optimal resource use. To protect
API endpoints and user interactions, AKS incorporates strong security mechanisms.
These include token-based authentication using Azure Active Directory (AAD) and
HTTPS encryption via ingress controllers. The platform supports zero-downtime
upgrades and maintains a secure, auditable pipeline by utilizing Azure Container
Registry for image retrieval and deployment. AKS is positioned as the foundation
for production-ready anomaly detection processes because of its fault tolerance,
scalability, and enterprise-grade security.

3.2 Data Preparation

The dataset1 was the transactional sales data from SAP HANA (shows in Figure 2),
preprocessed to remove null values and categorical anomalies. The sales transac-
tion data from SAP HANA was deployed into a NativeDevelopment HDI container.
This container functions as a repository for structured data, which is indispensable
for developing and training machine learning models. The Multi-Target Applica-
tion (MTA) paradigm was employed to import table definition files and construct

1https://webide.h08z.ucc.ovgu.de/watt/index.html

https://webide.h08z.ucc.ovgu.de/watt/index.html
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the MTA project, which initiates the configuration process. A node.js module
with XSJS support was used to establish OData services, guaranteeing connectivity
between the database and auxiliary services. The SAP HANA Fiori application en-
ables data transfer to the API to facilitate real-time decision-making. Categorical
variables, including Currency and Product, were encoded through Label Encod-
ing, whereas numerical variables underwent standardisation via StandardScaler to
maintain scale-invariance in model performance.

This study employed Stratified 10-Fold Cross-Validation to evaluate model per-
formance in a robust and generalisable way. This approach guarantees that each
fold maintains the same anomaly distribution as the complete dataset, which is
essential in tasks involving imbalanced anomaly detection. Training and testing
were conducted iteratively for each fold, with performance metrics averaged across
the folds. A rigorous cross-validation process was employed on various anomaly
detection models, such as Local Outlier Factor, One-Class SVM, Isolation Forest,
and Robust Covariance, to determine the most effective estimator.

Figure 2: Snapshot of the sales dataset

3.3 Anomaly Detection Algorithms

In this paper, we have applied four machine-learning algorithms: Robust Covari-
ance, Isolation Forest, One-Class Support Vector Machine, and Local Outlier Factor
using the scikit-learn toolkit.

3.3.1 Robust Covariance

This method detects outliers by fitting data distribution through a robust esti-
mation of covariance (e.g., Minimum Covariance Determinant) [1]. It calculates
Mahalanobis distances to identify deviations from normality, making elliptical as-
sumptions regarding data distributions. While performing well on low-dimensional
Gaussian-like data, in high-dimensional data spaces, performance degrades since
covariance estimation becomes unstable. The contamination parameter was set
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to contaminatiset=0.05 which determines the predicted fraction of outliers and is
important to its success. A mismatch in this parameter results in over- or under-
detection. This scikit-learn method is intended to find outliers in datasets with a
Gaussian distribution. It successfully detects outliers that depart from the center
distribution by modeling the data and fitting an ellipse to it. When the data follows
elliptical assumptions, this approach works well.

3.3.2 Isolation Forest

Isolation Forest is a tree-based ensemble method that effectively isolates anomalies
by recursive partitioning. A process utilizing the fact that anomalies require fewer
splits to be separated due to sparsity in the feature space [18, 32]. Though effec-
tive on high-dimensional data, it scales poorly with dataset size. The predicted
percentage of outliers is indicated by the contamination parameter, set to contam-
ination=0.05 in this implementation. The number of tren estimators controls the
number of trees which was set to 100 in this experiment to balance speed and
accuracy.

3.3.3 One-Class SVM

This technique, which assumes anomalies are few and unique, finds anomalies by
learning a decision border around normal data [19]. The choice of the kernel (ra-
dial basis function, for example) and hyperparameter tuning, specifically, nu (con-
tamination estimate), kernel, and gamma, determine how successful it is. The
implemented One-Class SVM algorithm uses the hyperparameters nu=0.05, ker-
nel=‘rbf’, and gamma=‘auto’. This is well suited for cases when the anomalies are
well separated and kernel parameters match the inherent structure of the data.

3.3.4 Local Outlier Factor

This algorithm estimates the density of every point as a function depending on
its k nearest neighbors. If the point’s local density is lower compared to its k
nearest neighbors, then it can be labeled as an anomaly. This reachability Distance
to smoothen out this density notion can be formalized as the maximum actual
distance between the two points, or the kth nearest neighbor distance. [14]. Local
Reachability Density (LRD) [2] is the inverse of the average reachability distance
of a point’s neighbors. LOF creates a score ratio between LRD for each point
and an average of that same neighborhood around it. Scores greater than 1 would
mark possible anomalies. The usefulness of LOF resides in the fact that it is
a non-parametric technique with no assumptions of particular data distributions.
This algorithm handles datasets with different densities more efficiently than global
methods like the Z-score by evaluating the local density deviation of a data point
about its neighbors. The n neighbors (denoted as k) option adds versatility by
enabling customization for various anomaly features. To find novel abnormalities
in new data points The following hyperparameters were used: n neighbors=80,
contamination=0.05, metric=‘manhattan’, and novelty=True.
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The base algorithm, the LOF, was selected because of its versatility and per-
formance. The ability of the LOF model to detect local density deviations and
identify outliers in complex datasets led to its selection for deployment. Because
it is non-parametric, it can adapt to different data distributions. When anomalies
differ in degree from the norm, LOF performs exceptionally well. The pseudocode
for the LOF algorithm is presented in Algorithm 1.

Algorithm 1: Local Outlier Factor (LOF) Algorithm

Input : Dataset D = {x1, . . . , xN}; number of neighbors k;
contamination level τ ; distance metric d; novelty detection flag

Output: Anomaly labels L = {l1, . . . , lN}, where li ∈ {normal, outlier}
foreach point p ∈ D do

Compute distance matrix M where Mij = d(pi, pj)
end
foreach point p ∈ D do

Find kth nearest neighbors: kNN(p)← sort(Mp)[1:k + 1]
end
foreach point p ∈ D do

foreach q ∈ kNN(p) do
Compute reachability distance:
reach-dist(p, q)← max(d(p, q),distance(q, qk))

end

end
foreach point p ∈ D do

Compute local reachability density:

LRD(p)← 1
avg({reach-dist(p,q) | q∈kNN(p)})

end
foreach point p ∈ D do

Compute LOF score:

LOF(p)← avg({LRD(q) | q∈kNN(p)})
LRD(p)

end
Determine threshold θ using contamination level τ
foreach point p ∈ D do

if LOF(p) > θ then
lp ← outlier

else
lp ← normal

end

end
return L
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3.4 Performance Evaluation

The performance metrics and evaluation protocols used in this study to precisely
assess the efficacy of the anomaly detection models are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

The percentage of correctly categorized cases (both normal and abnormal) is quan-
tified.

Precision =
TP

TP + FP
(2)

Evaluate the percentage of actual anomalies among all predicted anomalies to de-
termine how well the model prevents detection errors.

Recall =
TP

TP + FN
(3)

Assesses the model’s ability to prevent false detections while identifying the major-
ity of true anomalies.

F1 = 2× Precision× Recall

Precision + Recall
(4)

Represents the balance between false positives and false negatives by taking the
harmonic mean of precision and recall.

Execution Time: The Total amount of time (in seconds) needed for both model
inference and training is essential for evaluating scalability.

Area Under the ROC Curve (AUC-ROC):

AUC =

∫ 1

0

TPR(x) dx or equivalently, AUC =
∑

(TPR×∆FPR) (5)

The model’s capability to distinguish anomalies from normal instances at various
thresholds of classification.

TPR =
TP

TP + FN
; FPR =

FP

FP + TN
(6)

The assessment of anomaly detection models is predicated on several crucial
terms: False Negatives (FN) are anomalies that the model failed to identify, False
Positives (FP) are normal cases that were mistakenly identified as anomalies, True
Negatives (TN) are normal instances that were correctly classified, and True Posi-
tives (TP) are anomalies that were accurately identified. Overall, anomaly classifi-
cation based on threshold values determined by contamination levels. The evalua-
tion employed a stratified 10-fold cross-validation approach to enhance robustness
and generalizability. This method ensures that each fold preserves the distribution
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of anomalies across the dataset, thereby mitigating bias in imbalanced learning
tasks. Performance metrics, including accuracy, precision, recall, F1 score, and
ROC AUC, were calculated using Scikit-learn’s classification tools and averaged in
all folds to obtain a reliable estimate of the effectiveness of each model.

4 Results and Discussion

This work involves the creation of a REST API using Python to enhance SAP ML-
based solutions. The experimental results are shown and discussed below. This
application consumes OData API/Service and loads data from the system. The
experiment evaluated various machine learning models for anomaly detection, in-
cluding Robust Covariance (RC), Isolation Forest (IF), One-Class SVM (OCSVM),
and Local Outlier Factor (LOF) from the scikit-learn. To test the models for anom-
aly detection, the sales transaction data was used to evaluate the estimators. Table
1 compares the performance metrics of evaluated models, highlighting LOF’s su-
perior results. The hyperparameter specification for LOF includes k (number of
neighbors): 80, Contamination: 0.05, metric: ‘manhattan’, Novelty: True. The
Python pickle library saves the trained model for reuse via API.

4.1 Model Selection for Anomaly Detection

Our primary goal was to deliver robust outlier detection within SAP’s inherently
time-critical transaction environment, where prediction latency must remain min-
imal. Classical methods such as RC, IF, OCSVM, and LOF offer sub-second in-
ference times and have demonstrated very strong detection performance in our
benchmarks. We therefore prioritized these algorithms to ensure both speed and
accuracy under production constraints.

Table 1: Comparison of different anomaly detection models evaluated on the full
feature set using 10-fold cross-validation

Model Acc Precision Recall F1-Score ROC AUC Execution Time
RC 0.989 0.898 0.900 0.898 0.941 4.3s
IF 0.983 0.834 0.828 0.829 0.910 4.73s
OCSVM 0.969 0.674 0.756 0.711 0.868 1.48s
LOF 0.991 0.911 0.920 0.914 0.958 9.37s

Finding the optimum anomaly detection approach necessitates balancing sen-
sitivity to class imbalance, computational efficiency, and accuracy [6]. Table 1
compares four popular anomaly detection models (RC, IF, OCSVM, and LOF)
for all the features using 10-fold cross-validation, across accuracy, precision, recall,
F1-score, ROC AUC, and execution time. Whereas, LOF achieves the best overall
detection quality with the highest accuracy (0.991), precision (0.911), and recall
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(0.920), yielding the top F1-score (0.914) and ROC AUC (0.958). However, this
superior performance comes at the expense of speed: LOF is the slowest, requiring
9.37s to execute.

In contrast, OCSVM is the fastest (1.48s) but delivers the weakest detection
metrics (accuracy 0.969, precision 0.674, recall 0.756, F1-score 0.711, AUC 0.868),
making it less reliable for high-stakes anomaly identification. Both RC and IF
offer more balanced trade-offs: RC provides strong recall (0.900) and accuracy
(0.989) with moderate precision (0.898) and AUC (0.941) in 4.30s, while IF yields
respectable accuracy (0.983) and precision (0.834) in 4.73s but slightly lower recall
(0.828) and AUC (0.910).

Figure 3: Feature importance from the complete feature set

After experimenting with the complete feature set on our anomaly-detection
models, we utilized a RandomForestClassifier for feature-importance ranking to
choose importance features. During the feature selection, three features were
dropped including Order Number, Order Item, and Unit of Measure. As Figure 3
illustrates, Sales Quantity, Discount, and Revenue together contribute over 90% of
the overall importance, whereas Product, Customer Number, Day, Month, Year,
and Currency have only a little effect. Thus, we re-trained all our outlier detector
models based on 9 features out of 12 features.

Table 2 demonstrates the superiority of the LOF even when using only sig-
nificant features with 10-fold cross-validation. LOF achieves the highest accuracy
(0.993) and outperforms all other models in precision (0.927), recall (0.932), F1-
score (0.928), and ROC AUC (0.964). These gains translate into a more reliable
detection of anomalies with fewer false positives and false negatives, making LOF
the strongest choice for scenarios where detection quality is paramount.
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Table 2: Comparison of different anomaly detection models evaluated on the sig-
nificant features using 10-fold cross-validation

Model Acc Precision Recall F1-Score ROC AUC Execution Time
RC 0.987 0.868 0.876 0.871 0.934 10.66s
IF 0.986 0.869 0.864 0.865 0.928 4.11s
OCSVM 0.972 0.699 0.784 0.737 0.882 1.34s
LOF 0.993 0.927 0.932 0.928 0.964 7.45s

IF and RC both hover around 98.6–98.7% accuracy which is closer to LOF
but fall behind LOF in other key metrics. IF delivers a slightly faster execution
time (4.11s vs. LOF’s 7.45s) yet its precision (0.869), recall (0.864) and ROC
AUC (0.928) are notably lower, indicating less consistent anomaly coverage. RC,
while yielding solid accuracy (0.987), requires the longest runtime (10.66s) and
offers lower recall (0.876), precision (0.868) and AUC (0.934) compared to LOF.
This makes it less attractive for both speed-critical and high-performance use cases.
OCSVM exhibits the fastest inference (1.34s) but at the cost of significantly reduced
detection quality (accuracy 0.972, F1-score 0.737, AUC 0.882). Its poor balance
between precision (0.699) and recall (0.784) underlines why it is unsuitable for
applications demanding both reliability and robustness.

LOF strikes the optimal balance and achieves peak anomaly-detection perfor-
mance across all major metrics while maintaining acceptable latency. Overall, if
detection quality is paramount and latency is less critical, LOF is recommended.
However, the LOF method is particularly well-suited for mission-critical applica-
tions where minimizing undetected anomalies is a top priority, such as fraud de-
tection and system monitoring, given its improved recall and processing efficiency.
Therefore, it was chosen as the base method for this study due to its balanced
performance metrics, especially in scenarios that need both scalability and accu-
racy. For time-sensitive scenarios where some performance can be sacrificed, RC or
IF may be preferable, with OCSVM reserved only for cases demanding the fastest
inference despite lower accuracy.

Figures 4 and 5 present ROC-curve comparisons for our four anomaly detectors,
including RC, IF, OCSVM, and LOF; first on the complete full-feature set and then
on the reduced significant-feature set. In Figure 4 (all features, 10-fold CV), LOF’s
ROC curve consistently lies above the others, achieving an AUC of 0.9576. This
steep rise toward the top-left corner reflects LOF’s excellent true-positive rate at
very low false-positive rates, confirming its superior recall and precision trade-off
(highest F1-score). RC follows closely with AUC = 0.941, indicating strong overall
discrimination but slightly less sensitivity at low FPR. IF attains AUC = 0.9096,
demonstrating good but not top-tier performance, while OCSVM trails behind
(AUC = 0.8682), consistent with its lower precision and recall.

After pruning the less important features, Figure 5 shows that all models’ ROC
curves tighten and AUCs improve except for RC: LOF increases to 0.9640, IF to
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Figure 4: Comparison of ROC curves for different anomaly detection models with
complete feature set

0.9284, and OCSVM to 0.8828 while RC decreases to 0.9346. Notably, LOF’s
curve becomes even sharper, underscoring that dimensionality reduction enhances
its anomaly-separation power. IF benefits substantially as well, losing much of its
gap to LOF while retaining fast inference. OCSVM also show modest gains, though
OCSVM remains the weakest overall. However, RC shows a slight reduction in all
performance metrics. These plots demonstrate that LOF is the top performer under
both feature sets. Eliminating the three insignificant predictors further boosts all
models’ ability to distinguish anomalies from normal data except RC; especially
improving LOF and IF in practical, real-time settings.

Figure 6 illustrates how a significant, relevant feature affects the model’s func-
tionality. Plotting the data demonstrates how changes in this characteristic cor-
relate to changes in anomaly scores, hence improving the ability to distinguish
between normal and anomaly cases. Notably, the graphic highlights the model’s
crucial role in reducing false negatives by showing that as the feature value rises, the
model achieves increased detection accuracy and improved recall. Having all fac-
tors considered, the figure emphasizes how important the feature is for maximizing
the anomaly detection procedure.
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Figure 5: Comparison of ROC Curves for Different Anomaly Detection Models
with significant features

Figure 6: Visualizing sales patterns and anomalies
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Figure 7 is a heatmap that shows a sales dataset’s feature correlation matrix.
It displays how strongly and in which direction linear correlations exist between
two variables. The heatmap aids in uncovering potential correlations for feature
engineering and further study. While execution time stays efficient, higher feature
values are linked to increases in accuracy, recall, and the F1 score. This indicates
that the function is essential for improving the model’s detection power without
compromising speed.

Figure 7: Sales feature correlation heatmap

4.2 API Development and Deployment

The FastAPI application encapsulates the predictive capabilities of the trained
anomaly detection model. FastAPI facilitates effortless interaction with the anom-
aly detection model by providing automatic OpenAPI documentation and asyn-
chronous support. A real-time API endpoint is established to expose the model’s
anomaly detection capabilities, accept input data, and return predictions.

To assure consistent deployment across varying environments, the FastAPI ap-
plication is containerized using Docker. Azure Kubernetes Service is employed
to deploy the containerized API on Azure, guaranteeing efficient and scalable ad-
ministration. Security was guaranteed via HTTPS encryption and token-based
authentication, while Azure’s scalability accommodated high-throughput demand.
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The LOF model’s predictive capabilities were integrated into a custom API uti-
lizing the FastAPI framework. The API enabled external systems, including the
SAP HANA Fiori web application, to transmit real-time transaction data and ob-
tain anomaly detection results in return. The API was deployed on Azure Cloud uti-
lizing Docker containers, guaranteeing scalability and uniform performance across
environments. FastAPI’s automatic documentation and capacity to manage high-
volume API requests rendered it an optimal framework for showcasing the machine
learning model’s functionalities. Additionally, the use of Azure’s scalable cloud
infrastructure ensured that the API could handle varying workloads without sac-
rificing performance. This was critical for ensuring that the system could meet
real-time processing requirements in enterprise settings, providing a scalable and
accessible platform for real-time anomaly detection.

4.3 SAP HANA Fiori Integration

The SAP HANA Fiori web application is seamlessly integrated with the API, which
allows for the real-time detection of anomalies within the user interface. The web
application is connected to the API by configuring a service destination in the
SAP HANA Cloud Platform Cockpit. To facilitate communication between the
web application and the API, an extension to the OData service is developed that
specifies input parameters and response structures.

The web application was configured to interact with the anomaly detection
(shown in Figure 8). This application consumes the OData service and loads data
from the system. The app is configured to show the sample data and make the
external API call. The system facilitated smooth communication between the SAP
HANA database, which held the transactional data, and the deployed ML model
through the API. The configuration involved setting up OData services, defining
input parameters, and establishing routes for API calls within the Fiori interface.
This integration enabled end-users to interact with the model predictions seam-
lessly. The SAP HANA Fiori web application was successfully integrated with the
anomaly detection API, allowing real-time interaction and decision-making based
on the model’s predictions Figure 9.

A user-provided service is created on SAP HANA XS Advanced Cockpit and
the custom API endpoint credentials are assigned. Afterwards, the OAfterward-
cation is assigned to this user-provided service in mta.yaml file. The route of
service to OData has been used in outbound.controller.js. This is defined in
the xs-app.json file.

The proposed environment offers significant advantages by incorporating
FastAPI for API development and scikit-learn’s ML models to improve anomaly
detection in the SAP HANA Fiori web application. This integrated system utilizes
powerful algorithms, offering immediate insights for well-informed decision-making.
Moreover, the adaptability of customized APIs effectively overcomes the constraints
of SAP HANA’s PAL, guaranteeing the streamlined identification of irregularities.
This methodology could be applied to other enterprise systems requiring anomaly
detection, such as network security or operational monitoring. Despite its bene-
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Figure 8: Overview of SAP HANA Fiori web configuration

Figure 9: Creating a user-provided service on SAP HANA XS advanced cockpit
and assigning the custom API endpoint credentials

fits, the challenges included ensuring seamless integration of the machine learning
model, the API, and the SAP HANA Fiori web application. This incurs additional
costs and effort for maintenance and the possibility of scaling issues as the vol-
ume of data grows. Future research could concentrate on optimizing the model for
even larger datasets and automating updating the model as new transaction data
becomes available.
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5 Conclusions

In this study, an anomaly detection system inside the SAP HANA Fiori Web Tool
was successfully implemented. The experimental results indicate that LOF sur-
passes other anomaly detection methods, including Isolation Forest and One-Class
SVM, in terms of both accuracy and processing speed. The model utilized transac-
tional sales data from SAP HANA, confirming its relevance to practical enterprise
contexts. The constraints of SAP HANA’s PAL were addressed by integrating
a custom API-based solution powered by scikit-learn’s LOF model, thus creating
a more reliable anomaly detection method. Moreover, FastAPI allowed a high-
performance API interface, boosting the LOF model’s usability. Azure deployment
guaranteed scalability and dependability by employing Docker and Kubernetes.
This solution easily links scikit-learn, FastAPI, Azure, and SAP HANA Fiori to
create a robust and unified predictive analytics system that tackles technical issues
and improves functionality, adaptability, and real-time anomaly detection in busi-
ness environments. Therefore, many technical challenges are addressed using this
solution. This approach proved to be effective, but there are still many areas that
need improvement. Maintaining the performance of the anomaly detection sys-
tem as data quantities becomes a challenge. Future studies might look into using
anomaly detection algorithms based on evaluating some lightweight neural network
alternatives (e.g., shallow autoencoders or one-layer graph networks). Once we
have validated that their computational overhead remains compatible with SAP’s
real-time requirements, which could offer even more accuracy and flexibility. This
study particularly contributes to the field of enterprise AI integration by presenting
a scalable and efficient solution for real-time anomaly detection in SAP HANA envi-
ronments. The findings highlight the significance of integrating machine learning,
cloud technologies, and API-driven architectures to improve enterprise analytics
capabilities.

Data Availability Statement

The dataset utilized in this study was obtained from the SAP HANA platform.
While it is not publicly available, access may be granted upon formal request
through the appropriate official channels. The source code and supplementary
materials can be accessed at the following URL: https://github.com/Georgina-
asuah/SAPML.
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