
Acta Cybernetica 27 (2025) 155–174.

Towards Correct Dependency Orders

in Erlang Upgrades∗

Daniel Ferencziab and Melinda Tóthac

Abstract

Erlang tooling offers rich options to control the exact tasks to perform
during an upgrade. This control aims to allow for zero-downtime upgrades.
Upgrades affecting multiple dependent modules must reflect the dependency
order in the upgrade’s configuration, as an erroneous configuration results in
unintended behavior, possibly even downtime. This paper presents two static
analysis-based checkers for verifying module-related aspects of upgrades. In
our first analysis, we compare the actual dependency order derived from the
source code with that expressed in the upgrade configuration. We also analyze
the code to find circular dependencies among its modules. These pose a
problem during upgrades and are generally good practices to avoid. Both
checkers present an argument in favor of using static analysis methods to
define upgrade specifications.

Keywords: Erlang, upgrades, static analysis, upgrade safety, dependency
order, RefactorErl

1 Introduction

Ensuring continuous operation of IT services is considered the norm in today’s
software environment. While this was typically a feature of safety-critical systems
decades ago, today we can encounter it in many customer-facing applications: re-
tail, banking, and entertainment. The need for this is reasonable considering the
global nature of these services. These applications operate around the clock and
are changed while running without a noticeable impact on the end user. The state-
of-the-art tooling based on containers, serverless services, and other features offered

∗Project no. TKP2021-NVA-29 has been implemented with the support provided by the Min-
istry of Culture and Innovation of Hungary from the National Research, Development and Innova-
tion Fund, financed under the TKP2021-NVA funding scheme. Supported by the EKÖP-KDP-24
University Excellence Scholarship Program Cooperative Doctoral Program of the Ministry for
Culture and Innovation from the source of the National Research, Development and Innovation
Fund.

aFaculty of Informatics, Eötvös Loránd University, Budapest, Hungary
bE-mail: danielf@inf.elte.hu, ORCID: 0009-0002-0611-006X
cE-mail: tothmelinda@elte.hu, ORCID: 0000-0001-6300-7945

DOI: 10.14232/actacyb.312294

mailto:danielf@inf.elte.hu
https://orcid.org/0009-0002-0611-006X
mailto:tothmelinda@elte.hu
https://orcid.org/0000-0001-6300-7945
https://doi.org/10.14232/actacyb.312294

156 Daniel Ferenczi and Melinda Tóth

by hyperscalers standardizes some of the associated tasks. However, these solutions
require additional effort from operational specialists, for example, load balancers
and draining periods have to be configured, and the application state has to be
preserved. These update schemes also work on high granularity: even small code
changes require the replacement of a unit typically composed of the whole appli-
cation binary. As larger applications contain multiple such units, upgrades with
a broader scope will require care when determining which unit to change at each
upgrade step.

Some languages and runtimes allow runtime changes on a small granularity.
This allows for preserving the application state during software changes. Erlang is
a language that allows for state-preserving code changes. In our work, we research
the challenge of changing dependent code units in Erlang-based software stacks [2].
Erlang was developed with built-in features for concurrency, fault tolerance and
continuous operation. This thins the software stack Erlang applications require.
Consequently, developers maintaining them can create zero-downtime upgrades by
solely using the features of the language and its runtime. With regard to upgrades,
Erlang allows for live replacement of application modules and has upgrade-related
tooling built-in into the language as well. The tooling, the small upgradeable units,
and the runtime together allow the developer to reason about changes on a small
granularity and declare disruption-free upgrades for her application.

Although upgradeable units are small, the problem of identifying how they de-
pend on each other inside a given application is still applicable. Module dependency
structure is also a good candidate for analysis: circular dependencies are best to
avoid in general, and the Erlang release handling guidelines even advise against
using them, as they might make safe upgrades impossible. We also support the
detection of these with our checker, which will aid developers in structuring their
code.

As the application modules’ code meant to be upgraded and the upgrade speci-
fication are both expressed in Erlang, we based our work on existing static analysis
tools to inspect the dependencies in the code.

This paper is structured as follows: in the next Section 2 we briefly present the
Erlang language and the RefactorErl static analyzer on which we base our work.
In Section 3 we introduce how upgrades work in Erlang applications. Section 4
exposes the specific problems we investigated and our developed checkers. We have
dedicated a specific subsection for each analyzed problem: dependency discrepan-
cies 4.1 and upgrades of dependency cycles 4.2. We evaluate our work in Section 5.
Related work is presented in Section 6. Finally, concluding remarks and future
work are described in Section 7.

2 Erlang and RefactorErl

Erlang is a dynamically typed functional programming language. It was developed
at Ericsson for use in the telecommunications domain. It contains in-language fea-
tures for developing highly scalable, fault-tolerant distributed software. These fea-

Towards Correct Dependency Orders in Erlang Upgrades 157

tures are provided by the runtime and the standard libraries included with Erlang
distributions. This contrasts with other languages that require the introduction of
other components into the software stack to allow for fault-tolerance or disruption-
free code changes. Bundled tooling includes software for defining and managing
upgrades on a fine-grained level to ensure disruption-free upgrades. These tools
are used to define applications, releases (entities composed of multiple Erlang ap-
plications), and respective upgrade files, appup and relup. These upgrade files are
interpreted by the Erlang runtime’s Release Handler [10]. The requirements for re-
liable, upgradeable software have become more general since Erlang’s first release.
By now, the language has been adopted across several other domains: banking,
instant messaging, cloud services [3, 4].

RefactorErl [1] is a static source code analyzer for Erlang that also supports code
comprehension and refactoring. It is available for Linux, macOS and Windows and
can be used through IDE integration, the command line, or a web interface. The
tool analyzes loaded code, generates its abstract syntax tree, and enhances it with
output from different analyzers: function, data-flow, etc. The resulting Semantic
Program Graph (SPG) [8] allows easy analysis of the loaded program through a
query language [17]. It is distributed with several built-in checkers for inspecting
OWASP vulnerabilities, dependency structure, and dynamic function calls. It offers
a rich framework for semantic analysis, including a rich query language. These
features allow the user to develop their own static analyzers. As RefactorErl is also
open-source, even more elaborate checkers can be developed and integrated into
the tool. Given its features and extensibility, we chose it as our tool to implement
our code checkers.

3 Upgrading dependent Modules in Erlang

Erlang source files (modules) may contain references to functions exported in other
modules. We say that module a depends on module b if there is a call in a to a
function in b. We call a module that has dependencies a dependent module. We
represent this relationship with an arrow pointing from a to b: a → b. In this
context a is a dependent module. Dependency relationships can consequently be
represented using directed graphs, and we can analyze the dependencies of appli-
cation by inspecting such graphs.

Figure 1 shows a simple dependency relationship between modules. Module a
depends on module b, which in turn depends on modules c and d.

The order upon which modules depend on each other is important during a
release’s upgrade cycle: as complex upgrades involve changes in multiple modules,
if these depend on each other, their dependency has to be reflected in the upgrade
steps as well. This is required as the application runs and function calls can happen
during the upgrade process. To this result, a developer has to ensure that the
version of the dependent module is aligned with that of the dependency in periods
when calls can be made from the dependent to the dependency. A call from a
different version could result in the dependent assuming a different interface for the

158 Daniel Ferenczi and Melinda Tóth

c

a b

d

Figure 1: A simple dependency relationship between 4 modules represented as a
graph

function in the dependency than what is actually implemented. To solve this, a safe
upgrade procedure must ensure that running dependent modules are compatible
with their dependencies’ interfaces as these are changed.

When using the standard Erlang tooling for managing upgrades, the steps for
performing the upgrade are declared in an appup, application upgrade file by the
developer and are specific to the application that is updated. These files con-
tain high-level instructions for declaring the module-specific actions that are to
be performed during the application’s upgrade. These actions offer control over
whether modules are suspended while changed, added, or removed when upgrading
the application to a new version or downgrading to a previous one. As a release
may consist of multiple applications, appup files are combined into a relup, release
upgrade file that must contain lower-level instructions on how to perform the up-
grade. These files contain upgrade and downgrade instructions to support changes
to different versions. As instructions are executed sequentially, their order must
be aligned with the dependency relation of the modules and the interoperability
between release versions. The structure of these files is illustrated in Figure 2. In
the tuple describing the upgrade Vsn refers to the version to which we want to
upgrade or downgrade. The second element of the tuple lists the versions we can
upgrade from Vsn and the required set of instructions for the given upgrade. The
last element of the tuple lists similarly downgrades paths and instructions.

{Vsn,
[{UpFromVsn, Instructions}, ...],
[{DownToVsn, Instructions}, ...]}.

Figure 2: Structure of appup and relup files

relup files are interpreted by the Erlang Release Handler and must only con-
tain low-level instructions for the upgrade’s definition. Low-level instructions differ
from higher-level ones in that they offer control of the lifecycle of running processes,
including their suspension, transformation of their state or synchronization of Er-
lang nodes. relup files are typically generated from appup files with the help of
the release-related tooling offered by Erlang. This automatic conversion to relup
files assumes however backward compatibility of new modules when determining

Towards Correct Dependency Orders in Erlang Upgrades 159

the order of module changes. As the interoperability of modules between versions
might differ from that assumed by the Release Handler, relup files may also be
written manually.

To account for both manual and automated workflows, we compare the depen-
dencies derived from the source files with those implicitly expressed in the relup
files. An example of an appup and its derived relup file can be seen in Figure 3. The
sample’s first section, from lines 2 to 11, shows high-level instructions for defining a
release. This block includes the identifier of the released version in line 2, and two
lists, from lines 3 to 6, and from lines 7 to 10. These lists allow for listing upgrade
and downgrade paths respectively, following the structure presented in Figure 2. In
our example, we declare the the rules for upgrading from version 1.0 to 1.1, and for
downgrading from version 1.1 to version 1.0. Both blocks support the declaration
of multiple paths, so, for example we could define the instructions to upgrade from
version 0.9 as well.

The second section, from lines 14 to 28, shows a corresponding relup file. Al-
though the structure is the same as that of the appup file, the commands defined
must be low-level instructions which are executed by the Erlang Release Handler.
Details of the example are described in Section 4.1.1.

Defining the steps necessary for an upgrade is a manual, error-prone process that
requires a thorough understanding of the application source code and the depen-
dency relations within. It is also unsafe, as appup or relup instructions inconsistent
with the actual dependency relationship can result in errors or even temporary fail-
ures which are hard to debug. A developer declaring the upgrade instructions would
need to review the dependency relationship of the affected modules, and in case
of an inconsistency either redefine the upgrade instructions or change the source
of the new release. As an incorrect manual analysis can consequently lead to ei-
ther a failed upgrade or unnecessary changes, the developer would benefit of static
checkers that contrast upgrade steps with the dependency structure.

In order to support the otherwise unsafe task of declaring upgrade definitions,
we extended RefactorErl to analyze relup files and contrast the specified upgrade
steps with the actual dependencies of the application. Although existing tools,
such as erlup1, relflow2 or the appup plugin for the rebar3 build tool3 support the
generation of appup or relup files, they work by assuming specific code structures
and backward compatibility and do not support validation of custom relup files
against the actual dependency relationship. Our work is novel in the approach to
verifying custom release definitions using effective module relationships. Our main
contributions are as follows:

• The development of new features for RefactorErl, to retrieve upgrade-related
information from relup files

• The development of two checkers for RefactorErl that use existing dependency-
related analysis along with the one developed for upgrade specifications

1https://github.com/soranoba/erlup
2https://github.com/RJ/relflow
3https://github.com/lrascao/rebar3 appup plugin

https://github.com/soranoba/erlup
https://github.com/RJ/relflow
https://github.com/lrascao/rebar3_appup_plugin

160 Daniel Ferenczi and Melinda Tóth

1 %% appup file for application release_tst
2 {"1.1",
3 [{"1.0", [
4 {load_module, depmod},
5 {update, servermod, [depmod]}
6]}],
7 [{"1.0", [
8 {load_module, depmod},
9 {update, servermod, [depmod]}

10]}]
11 }.
12

13 %% relup file for release consisting of app release_tst
14 {"1.1",
15 [{"1.0",[],
16 [{load_object_code,{release_tst,"1.1",[servermod,depmod]}},
17 point_of_no_return,
18 {suspend,[servermod]},
19 {load,{depmod,brutal_purge,brutal_purge}},
20 {load,{servermod,brutal_purge,brutal_purge}},
21 {resume,[servermod]}]}],
22 [{"1.0",[],
23 [{load_object_code,{release_tst,"1.0",[servermod,depmod]}},
24 point_of_no_return,
25 {suspend,[servermod]},
26 {load,{servermod,brutal_purge,brutal_purge}},
27 {load,{depmod,brutal_purge,brutal_purge}},
28 {resume,[servermod]}]}]}.

Figure 3: Example of appup and relup files

4 Supporting Correct Release Definitions

In the following subsections, we present the checkers that we have developed for
detecting instruction order-related problems in relup files and recognizing updates
of circular dependencies. They present the details of their respective domains that
define the goals of our analyzer.

4.1 Discrepancy Detection in Upgrade Definitions

Our research aims to verify whether the dependency order expressed in relup files
is consistent with the actual dependency of the modules. We begin by discussing
the details of relup files relevant to our checker and how RefactorErl can support

Towards Correct Dependency Orders in Erlang Upgrades 161

our analysis. We continue with the objectives, implementation, and limitations of
our checker algorithm.

4.1.1 Problem Description

To understand how dependency order can be taken into account during upgrades,
we can look at the example in Figure 3. In the example’s appup file, we declared an
upgrade from version 1.0 to 1.1 and a downgrade from version 1.1 to 1.0 respectively
at lines 3 and 7. Specifically, we tell the Release Handler to load the newer version of
depmod and update module servermod, which depends on depmod. The dependency
relation is declared in the lists in lines 5 and 9. If we look at the list of instructions,
both load module and update atoms declare code changes. The difference lies
in that update takes care of temporarily suspending processes running the target
module, and transforming the internal state of the running process if the new
version requires it. These additional operations allow for zero-downtime upgrades.
servermod being a server implementation requires update for its code upgrade.

The generated relup file is of a similar structure: it contains first the upgrade
and then the downgrade instructions. The set of instructions can only contain
however lower-level operations executed by Erlang’s Release Handler. Without
going into detail, we can observe how the dependency relation results in depmod
being changed before the dependent servermod module in lines 19 and 20 for the
upgrade, and 26 and 27 for the downgrade. In these files, we are looking for suspend,
load and resume instructions to ensure that these dependencies are updated before
dependent modules.

The actual dependencies of an application are expressed as function calls in the
Erlang source files. For analyzing and retrieving them, we rely on RefactorErl’s
features to inspect module dependencies. These features allow us to list the set of
modules each dependent module depends on. Figure 4 shows an example of how
RefactorErl generates the text representation of dependency relationships within
an application.

b

a c

c -> []
b -> [c]
a -> [c, b]

Figure 4: An example for dependent modules (Left). RefactorErl’s textual repre-
sentation of the dependencies (Right).

4.1.2 Detection Methodology

Our task is to determine if the upgrade steps declared in relup files are aligned
with the actual dependencies of the application’s modules. A fitting upgrade defini-

162 Daniel Ferenczi and Melinda Tóth

tion ensures that dependent modules use dependencies of the corresponding release
version. If the versions between the dependencies are not aligned, modules might
attempt to use non-existing functions from their dependencies. Using implemen-
tations from other versions can also be dangerous if they contain side effects. An
example of relup instructions that can result in a runtime problem is shown in
Figure 5.

...
{load,{a,brutal_purge,brutal_purge}},
{load,{b,brutal_purge,brutal_purge}},

...

Figure 5: A simple sequence of loaded modules

Here, assuming that module a depends on module b, we load the new version
of the dependent before that of its dependency. As the load instruction simply
replaces the running code without suspending processes, for a brief time window,
between the two steps, code in module a can call functions in module b that do
not yet exist. If we load the dependency before the dependent, the period between
the two steps will allow a to attempt to use functions in b that were present in the
previous version. If b’s new release is backward compatible with the old one, this
will not result in a runtime error.

If the dependency’s new version is not backward compatible, we need to ensure
that calls only happen between modules of the same release version. This can be
achieved by suspending the dependent module and replacing it and its dependencies
during the suspension. Once all affected modules are replaced, the dependent
module can be resumed. This process ensures that all affected modules are of
compatible versions during active periods of the dependent module. Although
execution of code halts during suspension, this still does not cause a disturbance
in the application’s availability, as the Erlang runtime will take care of processing
any requests on the dependent once it is running again. An example of loading
changing code during the dependent’s suspension can be seen in Figure 6.

...
{suspend,[a]},
{load,{b,brutal_purge,brutal_purge}},
{load,{a,brutal_purge,brutal_purge}},
{resume,[a]}

...

Figure 6: Loading a module during suspension

In our research, we look at how dependencies are updated concerning the sus-
pension of their dependents. In terms of the instructions in a relup file, a module’s
suspension period is the set of instructions between the module’s suspend and
resume instructions. An upgrade can be either a load instruction by itself or sur-
rounded by a pair of suspend and resume instructions. Suspension periods can be

Towards Correct Dependency Orders in Erlang Upgrades 163

nested, as dependencies might also require suspension when updating them or their
own set of dependencies.

Our work does not consider the different versions of a module across releases and
hence we do not attempt to reason about interface compatibility of dependencies
and the flexibility this offers. However, if a dependent is updated while suspended
along with its dependencies, we can argue about the correctness of the order of
instructions inside the relup file describing the update. Therefore, we analyze
upgrade sequences where dependent modules are suspended and identify the update
of a dependency with its load instruction.

We can summarize our goals with the following rules:

• A dependency does not have to be loaded if the dependent is suspended

• A dependency must only be loaded during the suspension of its dependent

A release does not have to include changes for all source modules, and the lack of
change in a module does not impact the reliability of the software. With regard to
the second observation, if a dependency were to be upgraded outside the suspension
of the dependent, there could be room for discrepancies between what the depen-
dent expects and the source of the dependency. Consequently, we assume that in
releases where a dependent is suspended, changed dependencies are to be modified
during the dependent’s suspension period. To do so, we iterate through the list of
dependency relationships generated by RefactorErl (see the example in Figure 4),
identifying suspension periods of dependents and verifying whether dependencies
are updated exclusively in these segments.

4.1.3 Algorithm

Our algorithm for detecting issues in relup files is presented in Algorithm 1.
The algorithm receives as input the relup file and the dependency relationships

generated by RefactorErl and presented in Figure 4. In line 1 we retrieve the set
of release definitions from the Relup file. This includes the set of instructions for
both upgrade and downgrade releases. Recall from Figure 3 that a single file may
contain multiple instruction lists, one for each upgrade and downgrade path. To
group our results on a release definition basis, we iterate through these sets in line 2,
and through the dependents in a nested loop in line 3. Next, we iterate through the
individual instructions of the current release definition. For each instruction, we are
interested in whether it affects the suspension state of the actual dependent, or if it
relates to a dependency of the dependent. Throughout the loop, in line 6 we observe
whether the dependent is currently suspended. In line 7 we verify if the current
instruction relates to an update of a dependency. If so, the dependency is upgraded
outside the suspension period of the dependent, and we add the instruction along
with the name of the dependent module and the version identifier to a list in line
8. Storing the name and version is important so that the developer can find the
instruction in the relup file more easily. The loops will perform the same analysis
through the different sets of instructions described in the relup file. Finally, we
return the list of unsafe instructions.

164 Daniel Ferenczi and Melinda Tóth

Algorithm 1 Finding discrepancies between relup instructions and actual depen-
dencies
Funct FindUpdateDiscrepancy(Relup, dependents)

1: Release Definitions ← Relup
2: for all Release Definition ∈ Release Definitions do
3: for all dependent ∈ dependents do
4: Dependencies are determined along with dependent
5: for all Instruction ∈ Release Definition do
6: IsdependentSuspended is determined based on dependent and processed

Instruction
7: if not IsdependentSuspended and Instruction updates a Dependency of

dependent then
8: Store Instruction and dependent pair in UnsafeInstructionList
9: end if

10: end for
11: end for
12: end for
13: return UnsafeInstructionList

A developer should treat this list as a warning, as in practice she knows best if
a module can be changed while the ones using it are still running.

4.1.4 Limitations

As mentioned, our checker does not take into account the interoperability of mod-
ules across releases. Backward compatibility allows flexibility in organizing upgrade
instructions. Therefore, our approach overapproximates and we could produce a
more exact analysis by taking into account actual changes in the source code.

Another limitation is present when analyzing modules that have unrelated de-
pendents. Figure 7 presents such an example.

a

c

b

Figure 7: Multiple independent modules (a and b) depending on a single depen-
dency (c)

Towards Correct Dependency Orders in Erlang Upgrades 165

In such scenarios, it is difficult to argue in which dependent’s suspension period
should the dependency be upgraded. Again, the correct way to upgrade such an
application depends on the actual details in the source code.

4.2 Circular Dependency Detection

Circular dependencies amongst modules may also put upgrades at risk. We look
at the information present in relup files and RefactorErl reports and identify the
exact patterns that we wish to detect. We follow by presenting an algorithm for
this purpose and discuss opportunities for improvement.

4.2.1 Problem Description

As established in Section 3, two modules depend on each other if one module’s code
calls functions implemented in other modules. Module a and b depend on each other
if both a → b and b → a hold true. A circular dependency between two modules
might be either direct, when the modules call each other’s functions explicitly, or
indirect if there are additional modules in the dependency circle. Examples of these
are presented in Figure 8. A code sample with two circularly dependent modules
is shown in Figure 9. In the examples modules a and b directly depend on each
other.

a b

b

b c

Figure 8: Direct (left) and indirect (right) circular dependencies

The difficulties in determining the correct order for defining an upgrade are
noted in the Release Handling Section of the Erlang manual. In most cases, it is
best to avoid them altogether for code meant to be upgraded. For this checker, we
also rely on the graph analysis feature of RefactorErl. For the analysis, we use a
graph model of the dependency structure, where the modules will be the nodes, and
the dependency relations the edges. Our task will be to determine if such a graph,
excluding modules not being subject to an upgrade, has a topological ordering.
We base our work on RefactorErl’s features for analyzing dependency graphs. To
retrieve the list of modules changed in a release from a relup file, as in our work
presented in Section 4.1.

166 Daniel Ferenczi and Melinda Tóth

%% code of module a
-module(a).
-export([sum/0, number/0]).

sum() ->
b:number().

number() ->
42.

%% code of module b
-module(b).
-export([number/0]).

number() ->
a:number().

Figure 9: Sample code with two modules depending on each other

4.2.2 Detection Methodology

Our checker aims to warn developers if their relup contains load instructions for
modules that are part of a dependency cycle. We do not wish to raise warnings
because of the general presence of a cycle, as in such an application it is still possible
to define upgrades of modules that are not part of any cycle.

However, we do want to raise a warning if a module is part of a cycle, as
reasoning about the safe way to release a change would depend on the code. We
present these scenarios in Figure 10. The application consists of six modules, three
of which, a, b and c depend on each other. The top instructions in the relup
file relate to upgrading modules a and b and could as a consequence be unsafe, as
there is no clear dependency order by which the upgrade should be performed. In
contrast, the load instructions for modules f and d (assuming that f is backward
compatible) are safe as a dependency order can be determined from the graph. An
application might also contain multiple cycles. As a result, the set of all cycles
should be an input of our checker. As output, we expect those load instructions
that relate to modules present in circular dependencies.

RefactorErl already provides a method for retrieving all dependency cycles
present in an application. This functionality also detects dynamic function calls
and includes them in the dependency graph. In dynamic function calls, called mod-
ules are not explicitly invoked, but rather the target module is referred to using
a variable. The variable can be defined in other parts of the source code, mak-
ing manual dependency analysis more difficult. An example of a module using a
dynamic function call is presented in Figure 11. This code snippet shows a call
retrieving the name of module b in line 5, and the invocation of b’s my function in
line 6. RefactorErl’s dependency checker can detect dynamic dependencies through
data-flow analysis [16, 7]. Detecting dependencies stemming from dynamic function

Towards Correct Dependency Orders in Erlang Upgrades 167

calls increases our checkers precision, as we can find dependency relationships typ-
ically only detectable during runtime. We base our work on RefactorErls data-flow
analysis-based dependency checker.

b d

a c e f

...
%% possibly unsafe instruction sequence
{load,{a,brutal_purge,brutal_purge}},
{load,{b,brutal_purge,brutal_purge}},
...
%% safe instruction sequence
{load,{f,brutal_purge,brutal_purge}},
{load,{d,brutal_purge,brutal_purge}},
...

Figure 10: The dependency relationship of six modules contains a cycle (left).
The release instructions include changes to the modules not present in the circular
relationship (right)

1 -module(a).
2 -export([fun/0]).
3

4 fun() ->
5 Mod = get_mod(),
6 Mod:my_function().
7

8 get_mod() ->
9 b.

Figure 11: A dynamic function call

4.2.3 Algorithm

Our algorithm for detecting changes in dependency cycles is presented in Algo-
rithm 2.

The algorithm receives the relup contents and set of dependencies as input.
In line 1 we retrieve all dependency cycles from the dependencies. Next, in line 2
we gather the release definitions from the Relup file. We start iterating through
these definitions in line 3, and their individual instructions in line 4. We inspect
each instruction to see if it loads a module present in any of the cycles identified
previously. If the instruction relates to such a module, we store it in a list of unsafe
instructions in line 7, together with an identifier of the release definition so that
the developer can place the problematic instruction more easily. Finally, we return
the List of Unsafe Instructions.

168 Daniel Ferenczi and Melinda Tóth

Algorithm 2 Finding changes in dependency cycles expressed in relup instructions

Funct FindChangeInCycle(Relup, Dependencies)

1: Dependency Cycles ← dependency cycles from Dependencies
2: Release Definitions ← Relup
3: for all Release Definition ∈ Release Definitions do
4: for all Instruction ∈ Release Definition do
5: Changed Module ← Instruction
6: if Changed Module ∈ Dependency Cycles then
7: Store Instruction in UnsafeInstructionList
8: end if
9: end for

10: end for
11: return UnsafeInstructionList

4.2.4 Limitations

RefactorErl provides a solid basis for retrieving all dependency cycles present in the
application. There exists the possibility of safe upgrades of dependency cycles if
the affected modules are backward compatible. Therefore, our method might mark
instructions as unsafe that are safe in practice, but to be more precise we would
have to be aware of implementation details of the application being analyzed.

5 Evaluation

appup and relup files are not typically put under version control and published.
Regardless, we aimed to assess the value of our checkers by inspecting the de-
pendency structure of publicly available sources, made available on GitHub4. We
analyzed 5 popular Erlang applications from several domains: instant messaging
(MongooseIM5), MQTT (emqx6), web servers (Cowboy7, Yaws8) and databases
(couchdb9).

For our evaluation, we used RefactorErl’s same dependency analysis features
applied in the checkers we developed. They identified dependency relations are in-
clude dynamic dependencies in separate rows. These are determined with data-flow
analysis and include dynamic function calls and invocation of the apply function
that allows calling functions set as its arguments. The details and limitations of
combining dependency and static analysis was presented by the authors formerly [7].

4https://github.com
5https://github.com/esl/MongooseIM
6https://github.com/emqx/emqx
7https://github.com/ninenines/cowboy
8https://erlyaws.github.io
9https://couchdb.apache.org

https://github.com
https://github.com/esl/MongooseIM
https://github.com/emqx/emqx
https://github.com/ninenines/cowboy
https://erlyaws.github.io
https://couchdb.apache.org

Towards Correct Dependency Orders in Erlang Upgrades 169

All analyzed applications are designed for implementing highly scalable services,
and fault-tolerant services, where the operator can expect to perform disruption-
free upgrades. For this task, they would have to create the appup or relup files
necessary for their release tooling. In Table 5 we show the number of dependent
modules these projects have, the number modules taking part in a dependency
cycle, the highest number of dependencies a module has and whether this module
and its dependencies has changed in the latest minor release. For contrast, we have
also made these measurements counting dynamic dependencies as well.

Table 1: Dependency complexity in six popular projects: couchdb, MongooseIM,
Cowboy, emqx and Yaws

Metric couchdb MongooseIM Cowboy emqx Yaws

of Dependents 378 496 18 115 35
of Dependents
(including Dynamic
Dependencies)

383 501 20 117 37

of Dependents in
Dependency Cycles 167 83 2 61 15
of Dependents in
Dependency Cycles
(including Dynamic
Dependencies)

224 257 14 68 19

Highest Number of
Dependencies 31 50 12 35 32
Latest Update Affects
Most dependent
Modules Yes Yes Yes Yes Yes

As the table shows, all releases contain dependency cycles that make reasoning
about release correctness more difficult. Additionally, about half of the dependent
modules are also present in a dependency cycle if we take into account dynamic
dependencies. Thus, including dynamic dependencies leads to a significant differ-
ence in the number of modules present in cycles. This shows the value of applying
a broader set of static analysis techniques not only for planning upgrades, but for
analyzing and improving code structure as well. Changing code of such complexity
manually would be unsafe to manage, consequently we find that our tools would
help with these tasks, especially with upgrades where a large number of dependen-
cies is changed. Finally, we have found that all projects had their most dependent
module have its dependencies changed since the last minor release.

170 Daniel Ferenczi and Melinda Tóth

6 Related work

Circular dependencies. Li and Thompson in their previous research [9] have
analyzed the issue of circular dependencies in Erlang as part of their work on the
refactoring tool, Wrangler. The authors’ analyzer focuses on refactoring problem-
atic patterns into clean code. However, it does not analyze upgrade specifications
and can not reason about upgrade safety. Also, Wrangler does not include dynamic
dependencies in its cycle analysis and does not feature analysis of relup files.

Upgrade safety. Naseer, Noccolini, Pain, Frindell, Dasineni and Benson have
researched upgrade safety emphasizing runtime facets typically unrelated to an
application’s implementation language, like connection migration [13] between ap-
plication versions. Being able to migrate connection is important, as reestablishing
them would not only impact the user, but perhaps even require an unavailable
amount of resources. Erlang is singular in the regard, that its runtime provides
facilities for handling state preservation during code changes, without the need for
introducing new tools or bespoke solutions.

Static analysis. Tools to support schema changes in backing databases have been
researched by Maule, Andy and Emmerich [11]. The authors developed an approach
for verifying whether a database schema change is consistent with the application’s
source code, improving on existing string-based checkers with static analysis. They
argue for improving the accuracy of impact analysis by introducing further methods
from static analysis. Meurice, Nagy and Cleve in their work [12] used static analysis
as well to locate source code affected by database schema changes. They also
assess whether a given change affects the developed application. It would be worth
to investigate whether other upgrade-related static properties can be defined for
Erlang using RefactorErl.

Microservice changes. Sampiao, Kadiyala, Hu, Steinbacher, Erwin, Rosa, Be-
schastnikh and Rubin have investigated challenges with regards to support up-
grades in running microservice systems [15]. The research proposes modelling the
software’s evolution by analyzing static and dynamic information obtained from the
system. Such models would help developers design their upgrade schemes and plan
the evolution of their software in a consistent manner. Erlang developers design
the scale, distribution and upgrades of their application in the same codebase. Our
work could be extended by researching a broader set of changes between application
releases.

RefactorErl. Tóth and Bozó have used RefactorErl for analyzing other static
properties of source code, including the presence of common vulnerabilities [18].
These checkers can be used to assess the security of new releases. RefactorErl’s
database and queries can be also used to verify further upgrade-related proper-
ties and data-flow analysis allows inspecting behavior that could typically be only
observed during execution.

Towards Correct Dependency Orders in Erlang Upgrades 171

Code upgrades and downtime. Neamtiu and Dumitra analyzed the relation-
ship between upgrades and downtime [14]. The authors look at challenges across
the stack: database schema migrations, infrastructure changes, mixed-version race
conditions and protocol changes. They highlight the value of upgrade schemes that
provide more control than rolling upgrades and of expressing the details of an up-
grade explicitly. Erlang allows for expressing the details of an upgrade and the
application’s operation in it’s language. This also allows for using existing static
analysis methods for inspecting the details of an upgrade and is the motivation of
our current and future work.

Safe Upgrades for Erlang Software. In our previous work, we have also an-
alyzed other conditions for upgrading Erlang software without disruptions. For
example, code meant to be upgraded must consistently call functions that are still
present in the runtime. State transitions constitute another example: Erlang al-
lows for changing a running application’s state during its upgrade, but it is the
developer’s responsibility to change and use the state consistently. In previous re-
search, we looked into these two problems and identified several coding patterns
that would disrupt safe upgrades. We have also implemented code checkers based
on RefactorErl to aid developers write upgradable software.

We began by researching [5] if applications contain any references to functions
that would expire as the code is upgraded. The Erlang runtime only holds two
versions of a given runtime at the same time. As consequence, local function refer-
ences that remain unchanged during upgrades are unsafe as they become obsolete.
By using fully qualified references, the functions used will be of the module version
loaded last. Our checker helps the developer identify places where fully qualified
references should be used.

In our second work [6] we investigated if state uses in a new application ver-
sion are consistent with the state transformations performed during code changes.
Erlang allows the developer to modify their application’s state during an upgrade.
To this effect they must implement code change functions that specify a state
transformation logic for the different upgrade paths. Researching additional unsafe
patterns and a generic approach to support upgrade safety are further areas worth
exploring.

7 Conclusions and Future Work

Erlang offers the tools necessary to create application releases with fine-grained
instructions to ensure disruption-free upgrades of modules. To achieve this, code
has to be structured in an upgradeable manner, and the release’s descriptor file
should also reflect this structure correctly. We researched how specific upgrade-
related instructions should be ordered to be in line with the actual code structure,
identified two problem categories, and developed checkers for them using the Refac-
torErl framework. Our first checker identifies if dependencies are upgraded during
their dependent’s suspension period. This checker does not cover the flexibility

172 Daniel Ferenczi and Melinda Tóth

that interfaces compatible between releases would allow. For example, assuming
that the new release of a dependency is capable of receiving new calls, its new
version can be loaded before we load the new version of the dependent, without
requiring any sort of suspension. Our research can be extended in two steps: an-
alyzing if modules are loaded in the correct order assuming that their interface
changes are backward compatible; and analyzing actual backward compatibility as
well between code releases. Of course, interface compatibility would not guarantee
a well-working application. Upgrades can introduce domain-specific discrepancies
into application code that retain interface-compatibility but will result in runtime
problems. Such issues are hard to detect with static code analysis, and thus remain
outside the scope of our work.

Our second checker investigates if changed modules are part of dependency cy-
cles. Upgrading such structures is not recommended, as it is difficult to reason
about the correct instruction order to implement an upgrade. Our analysis’ pre-
cision can again be improved by taking into account the interoperability between
code releases.

In conclusion, our research offers two checkers for developers to evaluate the
correctness of their upgrade definitions and covers the directions to improve this
analysis.

References

[1] Bozó, I., Horpácsi, D., Horváth, Z., Kitlei, R., Köszegi, J., M., T., and Tóth,
M. RefactorErl — Source code analysis and refactoring in Erlang. In Proceed-
ings of the 12th Symposium on Programming Languages and Software Tools,
pages 138–148, Tallin, Estonia, 2011. ISBN: 978-9949-23-178-2.

[2] Cesarini, F. and Thompson, S. Erlang Programming: A Concurrent Approach
to Software Development. O’Reilly Media, 2009. ISBN: 9780596555856.

[3] Cesarini, F. Which companies are using Erlang, and why? Erlang Solutions,
2019. URL: https://www.erlang-solutions.com/blog/which-companies-
are-using-erlang-and-why-mytopdogstatus/.

[4] Erlang Solutions. 20 Years of Open Source Erlang: OpenEr-
lang Interview with Anton Lavrik from WhatsApp, 2018. URL:
https://www.erlang-solutions.com/blog/20-years-of-open-source-
erlang-openerlang-interview-with-anton-lavrik-from-whatsapp/.

[5] Ferenczi, D. and Tóth, M. Static analysis for safe software upgrade. In Annales
Mathematicae et Informaticae, Volume 58, pages 9–19, 2023. DOI: 10.33039/
ami.2023.08.010.

[6] Ferenczi, D. and Tóth, M. Safe process state upgrades through static analy-
sis. In Proceedings of the 2024 IEEE 18th International Symposium on Ap-
plied Computational Intelligence and Informatics, pages 000351–000356. IEEE,
2024. DOI: 10.1109/SACI60582.2024.10619854.

https://isbnsearch.org/isbn/978-9949-23-178-2
https://isbnsearch.org/isbn/9780596555856
https://www.erlang-solutions.com/blog/which-companies-are-using-erlang-and-why-mytopdogstatus/
https://www.erlang-solutions.com/blog/which-companies-are-using-erlang-and-why-mytopdogstatus/
https://www.erlang-solutions.com/blog/20-years-of-open-source-erlang-openerlang-interview-with-anton-lavrik-from-whatsapp/
https://www.erlang-solutions.com/blog/20-years-of-open-source-erlang-openerlang-interview-with-anton-lavrik-from-whatsapp/
https://doi.org/10.33039/ami.2023.08.010
https://doi.org/10.33039/ami.2023.08.010
https://doi.org/10.1109/SACI60582.2024.10619854

Towards Correct Dependency Orders in Erlang Upgrades 173

[7] Horpácsi, D. and Koszegi, J. Static analysis of function calls in erlang. refining
the static function call graph with dynamic call information by using data-
flow analysis. e-Informatica Software Engineering Journal, 7(1), 2013. DOI:
0.5277/e-Inf130107.

[8] Horváth, Z., Lövei, L., Kozsik, T., Kitlei, R., Vı́g, A. N., Nagy, T.,
Tóth, M., and Király, R. Modeling semantic knowledge in Erlang for
refactoring. In Knowledge Engineering: Principles and Techniques, Pro-
ceedings of the International Conference on Knowledge Engineering, Prin-
ciples and Techniques, Volume 54(2009) Special Issue of Studia Univer-
sitatis Babeş-Bolyai, Series Informatica, pages 7–16, Cluj-Napoca, Roma-
nia, 2009. URL: http://www.studia.ubbcluj.ro/arhiva/abstract en.php?
%20editie=INFORMATICA&nr=Sp.Issue%201&an=2009&id art=6521.

[9] Li, H. and Thompson, S. Refactoring support for modularity maintenance in
Erlang. In Proceedings of the 2010 10th IEEE Working Conference on Source
Code Analysis and Manipulation, pages 157–166, 2010. DOI: 10.1109/SCAM.
2010.17.

[10] Logan, M., Merritt, E., and Carlsson, R. Erlang and OTP in Action. Man-
ning Publications Co., Greenwich, CT, USA, 1st edition, 2010. ISBN:
9781933988788.

[11] Maule, A., Emmerich, W., and Rosenblum, D. S. Impact analysis of database
schema changes. In Proceedings of the 30th International Conference on Soft-
ware Engineering, pages 451–460, New York, NY, USA, 2008. Association for
Computing Machinery. DOI: 10.1145/1368088.1368150.

[12] Meurice, L., Nagy, C., and Cleve, A. Detecting and preventing program incon-
sistencies under database schema evolution. In Proceedings of the 2016 IEEE
International Conference on Software Quality, Reliability and Security, pages
262–273, 2016. DOI: 10.1109/QRS.2016.38.

[13] Naseer, U., Niccolini, L., Pant, U., Frindell, A., Dasineni, R., and Benson,
T. A. Zero downtime release: Disruption-free load balancing of a multi-billion
user website. In Proceedings of the Annual Conference of the ACM Special
Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication, pages 529–541,
New York, NY, USA, 2020. Association for Computing Machinery. DOI:
10.1145/3387514.3405885.

[14] Neamtiu, I. and Dumitraş, T. Cloud software upgrades: Challenges and op-
portunities. In Proceedings of the 2011 International Workshop on the Main-
tenance and Evolution of Service-Oriented and Cloud-Based Systems, pages
1–10. IEEE, 2011. DOI: 10.1109/MESOCA.2011.6049037.

https://doi.org/0.5277/e-Inf130107
http://www.studia.ubbcluj.ro/arhiva/abstract_en.php?%20editie=INFORMATICA&nr=Sp.Issue%201&an=2009&id_art=6521
http://www.studia.ubbcluj.ro/arhiva/abstract_en.php?%20editie=INFORMATICA&nr=Sp.Issue%201&an=2009&id_art=6521
https://doi.org/10.1109/SCAM.2010.17
https://doi.org/10.1109/SCAM.2010.17
https://isbnsearch.org/isbn/9781933988788
https://doi.org/10.1145/1368088.1368150
https://doi.org/10.1109/QRS.2016.38
https://doi.org/10.1145/3387514.3405885
https://doi.org/10.1109/MESOCA.2011.6049037

174 Daniel Ferenczi and Melinda Tóth

[15] Sampaio, A. R., Kadiyala, H., Hu, B., Steinbacher, J., Erwin, T., Rosa, N.,
Beschastnikh, I., and Rubin, J. Supporting microservice evolution. In Pro-
ceedings of the 2017 IEEE International Conference on Software Maintenance
and Evolution, pages 539–543. IEEE, 2017. DOI: 10.1109/ICSME.2017.63.

[16] Tóth, M. and Bozó, I. Static analysis of complex software systems implemented
in Erlang. In Proceedings of the Fourth Central European Functional Pro-
gramming School, Volume 7241 of Lecture Notes in Computer Science, pages
440–498. Springer-Verlag, 2012. DOI: 10.1007/978-3-642-32096-5 9.

[17] Tóth, M., Bozó, I., Kőszegi, J., and Horváth, Z. Static analysis based support
for program comprehension in Erlang. Acta Electrotechnica et Informatica,
11(3):3–10, 2011. DOI: 10.2478/v10198-011-0022-y.

[18] Tóth, M. and Bozó, I. Supporting secure coding for Erlang. In Proceedings of
the 39th ACM/SIGAPP Symposium on Applied Computing, page 1307–1311,
New York, NY, USA, 2024. Association for Computing Machinery. DOI:
10.1145/3605098.3636185.

https://doi.org/10.1109/ICSME.2017.63
https://doi.org/10.1007/978-3-642-32096-5_9
https://doi.org/10.2478/v10198-011-0022-y
https://doi.org/10.1145/3605098.3636185

	Introduction
	Erlang and RefactorErl
	Upgrading dependent Modules in Erlang
	Supporting Correct Release Definitions
	Discrepancy Detection in Upgrade Definitions
	Problem Description
	Detection Methodology
	Algorithm
	Limitations

	Circular Dependency Detection
	Problem Description
	Detection Methodology
	Algorithm
	Limitations

	Evaluation
	Related work
	Conclusions and Future Work

