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Abstract

Radiomics is an emerging field of CT image processing, that offers non-
invasive quantification of tumour phenotypes using quantitative image fea-
tures. Radiomics analysis has promising applications in cancer treatment
and personalized medicine, like treatment planning and the prediction of clin-
ical factors. However, the optimal feature selection is not established in the
literature, and the applications usually involve data mining of a large pool
of features. In this paper, we propose to extract higher-level radiomic fea-
tures using Radial Harmonic Fourier moments (RHFM). Image moments, and
specially orthogonal Fourier moments are widely used in image processing,
providing efficient and invariant shape descriptors. In particular, RHFMs
are known to perform well on small noisy images, making them a promis-
ing candidate for CT tumour analysis. Motivated by these advantages, we
developed a feature extraction scheme based on RHFM, and we performed
radiomics analysis on lung CT images of non-small cell lung cancer patients.
The proposed method is validated on multiple annotated datasets following
the literature guidelines, evaluating the accuracy, stability, reliability, and
prognostic value of the proposed features. The results show better reliabil-
ity and otherwise comparable performance compared to the state-of-the-art
wavelet descriptors. Furthermore, Fourier moments provide higher level of
flexibility and possible adaptivity compared to wavelets, and unlike wavelet
features, RHFM features are invariant of position, size and orientation in the
tumor region.

Keywords: radiomics, lung CT, quantitative imaging, radial harmonics,
orthogonal moments

∗Project no. K146721 and TKP2021-NVA-29 have been implemented with the support pro-
vided by the Ministry of Culture and Innovation of Hungary from the National Research, Devel-
opment and Innovation Fund, financed under the K 23 ”OTKA” and the TKP2021-NVA funding
schemes.
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1 Introduction

Medical imaging, especially X-ray computed tomography (CT), is a primary diag-
nostic tool of clinical oncology. CT, as an imaging modality, noninvasively quantifies
the internal tissue density, that might help the localization and characterization of
the tumour. CT imaging is routinely used in many areas of clinical oncology not
only for diagnosis, but also for therapy planning and monitoring. In therapy plan-
ning, CT provides precise visualization of the geometric shape of the tumour and
the normal tissue, which helps to determine the optimum radiation dose distribu-
tion in the tumour [13].

In this paper, we research quantitative imaging for lung CT motivated by per-
sonalized medicine. Personalized medicine is an emerging field that promises better
patient care by taking the genetic differences of the tumour into account. In this
personalized medicine, predictive and prognostic data factors coming from multi-
modal information including clinical, imaging, and molecular data are merged to
forecast treatment outcomes [10]. However, the molecular characterization of can-
cer is challenging, and usually requires invasive approaches (biopsies and surgeries),
which themselves may be limited if the tumour is heterogeneous. CT imaging is a
promising supplementary tool to quantify tumour phenotypes [11]. As a noninva-
sive tool, imaging is feasible not only to support oncological diagnosis and treatment
planning, but also for the long term monitor of the therapy outcomes over time.
Radiomics [20] is a quantitative imaging approach that aims to extract robust im-
age features to quantify the tumour phenotype. These radiomics features employ
mathematical algorithms describing the intensity, shape, statistical, and textural
properties of the tumour, usually involving a large number of features. The hetero-
geneity of tumour region due to its molecular characteristic expresses the texture,
which holds the information about the structural arrangement of its surface and
the relationship with the surrounding environment. It is already shown that ra-
diomics correlate to tumour phenotypes [2], and can also be utilized to predict
distant metastasis [4].

This research discusses radiomics features characterized by first, second and
higher order statistics, with the main focus on higher order features. Briefly, first-
order statistical features aims to describe the overall gray-level distribution of the
tumour by quantifying the voxel intensity histogram in the tumour region. Second-
order statistics are used to characterize the tumour texture using local histograms
in the voxel neighborhoods. Meanwhile, higher order statistical features aims to
quantify potential hidden patterns inside the tumour region, usually involving an
image transformation method, like wavelets or Laplacian-of-Gaussian (LoG) pyra-
mids [21]. Here, the desired transformation method provides a compact scale-space
or frequency-space decomposition, is spatially localized, and is invariant of position,
size and orientation in the tumour region. The most widely used wavelet transform
(see e.g., [2]) are favored compared to other transformations (e.g., Fourier trans-
form) because of its efficiency, its ability to provide both space and frequency (i.e.,
scale) representation, and its spatial localization property. However, wavelets are
shift-variant and lack explainability, which might be undesired in medical applica-
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tions, and which serves as a motivation of our research.

Image moments are widely used transformation-invariant feature descriptors
[12], popular for pattern recognition, object representation, and feature extraction.
In particular, orthogonal moments provide efficient and stable time-frequency de-
compositions, with the support for adaptivity and interpretability. In this paper,
we focus on radial harmonic Fourier moments (RHFMs) [16], since they provide
better numerical properties compared to several other moments, and even perform
well on small images in a noisy environment. Compared to wavelets they also offer
shift-invariance. Therefore, they seem promising for higher order analysis of CT
tumour. We propose RHFM reconstructions for higher order radiomics feature ex-
traction. The proposed model is developed and validated using multiple annotated
lung CT datasets of non-small cell lung cancer (NSCLC) patients. The feature
selection, and the optimization of the decomposition parameters are performed ac-
cording to the analysis of the reconstruction accuracy. Finally, we evaluated the
reliability, stability and prognostic power of the proposed features, that are crucial
requirements in a clinical environment. Here, we followed the literature guidelines,
and compared the proposed method to wavelet-based radiomics features [2].

The key contributions of this paper are highlighted as follows:

1. We designed higher order radiomics features based on RHFM reconstruction
of CT images.

2. We performed an accuracy analysis to select features and to optimize the
decomposition parameters (order and repetitions) of RHFM decomposition.

3. We explored and analyzed a total number of 456 RHFM-based radiomics
features of the reconstructed CT image, and compared them with the same
number of wavelet-based features.

The rest of this paper is organized into the five sections. ”Related Works”
overview the most relevant related literature results. In the ”Materials and Meth-
ods” section, a summary of the utilized radiomics features, a short description of the
lung CT datasets, and the basics radial harmonic Fourier moments are provided.
Here, we also introduce proposed method and optimize our feature selection. The
“Result and Discussion” section presents the outcomes of this work and analyzes
the results in terms of reliability, stability and prognosis value. Finally, in the
“Conclusion and Future Work” section, we give the concluding remarks with some
future works.

2 Related Works

In this section, we briefly review the related literature of quantitative radiomics
and orthogonal moments.
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2.1 Quantitative radiomics

Quantitative radiomics became popular recently, since it has been shown that quan-
titative image features are related to tumour phenotypes, offering noninvasive ap-
proach to support cancer treatment. In [2], the authors proposed 440 high-order
radiomics features based on the intensity, shape, texture and wavelet transform and
analyzed those features in terms reliability, stability and prognostic power on the
RIDER dataset. The author claimed that he found many radiomics features hav-
ing prognostic power which were not addressed before. Another claim was that the
selected features through stability and reliability analysis was more informative.
Finally, the authors proposed a radiomics signature for making association with
gene profiles and showed the signature represents the general prognostic tumour
phenotype.

In [4], the authors worked on the extraction of 635 radiomics features based
on intensity, shape, texture, LoG and wavelet-based features to predict distant
metastasis (DM) for lung adenocarcinoma patients. The authors did the prognos-
tic analysis on these feature over 182 patients. They showed that only 35 features
are strongly prognostics for DM and twelve features are prognostics for survival.
A standardized mathematical model for extracting radiomics features is felt in the
clinical oncology. In [21], the authors developed a flexible open-source framework
including a set of well-defined and tested mathematical models for easing the ex-
traction of features from 3D or 2D medical image.

Tang et al. extracted 688 radiomics features based on the first-order statistics,
shapes, texture and wavelet filters to build a classification model for hepatocellular
carcinoma (HCC) patients [18]. In their work, they showed that the combined fea-
tures extracted from original CT image and wavelet-filtered image increase the
classification performance significantly to classify HCC and non-HCC patients.
However, these high-order features are not shift-invariant which motivates us to
move orthogonal moment-based features. These orthogonal moments are explained
briefly in the next section.

2.2 Orthogonal moments

The characterization, evaluation and manipulation of visual information inside the
CT image is a general problem in clinical oncology. The preferable representations
extract features that are invariant of size, position and orientation of the CT im-
age. Image moments (see e.g., [15]) provide potentially transformation-invariant de-
scriptors that are desired properties for CT image quantization in order to achieve
reliability and stability. Here, we overview some historical developments in this
field.

In 1962, Hu introduced a non-orthogonal moment known as geometric moment
for image description, and derived moment invariants based on algebraic invariance
in rectangular coordinates for visual pattern and character recognition [7]. One
disadvantage of this classic moment is that its invariants are restricted to second-
and third- order moments only. In addition, low-order geometric moments provide
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less information about image details, while high-order moments are sensitive to
noise. These problems can be resolved by using circular and orthogonal moments.

In 1980, Teague proposed Zernike Moments (ZMs) as image descriptors which
were constructed from a set of orthogonal Zernike circular polynomials over the
unit circle [19]. The zero points of the ZMs are located in long radial distance from
the origin. Thus, although the ZMs are rotation-invariant, its application for scale-
invariant pattern recognition is challenging for small images. Then, Sheng and Shen
explored orthogonal Fourier–Mellin moments (OFFMs) including generalized ZMs
and orthogonalized complex moments [1] in 1994. The main advantage of OFFMs
is that the zero points are uniformly distributed over the radial interval. For this
reason, OFFMs have better performance than ZMs, providing better description of
small images [17].

However, OFFMs have difficulties to describe the center of the image for higher
order moments because they tend to be infinite in the origin. Ping and Sheng in
2002 solved the problem by proposing Chebyshev–Fourier moments (CHFM) which
used various orders of Chebyshev polynomials over radial interval [14]. The afore-
mentioned orthogonal moments including ZMs, OFFMs and CHFMs are based on
the radial polynomials which cause numerical instability at high order of moments
and high time complexity to compute the corresponding moments. In order to
address these problems, Ping et al. developed new orthogonal moments known as
Radial Harmonic Fourier Moments (RHFMs) where triangular function is used as
radial function [16]. RHFMs are shifting, scaling, rotation, and intensity invariant,
and performs better compared to CHFMs in multiple aspects, like representation
near the origin, the description of small images, and noise sensitivity. These aspect
are also desired for feature extraction of CT tumours that motivated our choice.

3 Materials and Methods

In this section, we provide details of the theoretical and computational background,
the validation datasets, and the proposed method.

3.1 Radiomics Features

In clinical oncology, radiomics features can used to monitor the development, pro-
gression of the cancer and the response to therapy. Those features are constructed
employing advanced hand-coded algorithms, that provide a large set of quantita-
tive imaging features. Aerts et al. [2] decomposed the CT image using wavelet
decomposition and analyzed 440 radiomics features in order to build radiogenomics
signature. These are experimental features, without detailed explanation. In [21],
the authors developed a flexible open-source PyRadiomics platform for extracting
features from medical image. This platform provides a set of very well-defined,
tested and standardized mathematical models for radiomics features. Thus, we
used these verified features to analyze in our study which are grouped under the
following categories.
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• Shape and size related features illustrates the three-dimensional size and
shape of tumour region, using elementary geometric descriptors. The com-
mon features include elongation, flatness, least axis length, major axis length,
maximum 2D diameter column, maximum 2D diameter row, maximum 2D
diameter, mesh volume, minor axis length, sphericity, surface area, surface
volume ratio, voxel volume. We note that these features are independent of
the high-order decompositions discussed in this paper, so they are excluded
from the analysis, and they are mentioned only for the sake of completeness.

• First order statistical (FOS) features describes the gray distribution in
the tumour area by means of statistical properties of the image histogram. We
considered 18 descriptors: 10th percentile, 90th percentile, energy, entropy,
inter quartile range, kurtosis, maximum, mean absolute deviation, mean, me-
dian, minimum, range, robust mean absolute deviation, root mean squared,
skewness, total energy, uniformity and variance.

• Second order statistical features illustrate the statistical correlation be-
tween a voxel and its neighboring voxels, addressing texture information.
That is, second order features describe the heterogeneity of the tumour. In
order to extract the texture features, matrices like Gray-Level Co-Occurrence
Matrix (GLCM) and Gray-Level Run-Length Matrix (GLRLM) are formed
from the CT image. GLCM provides the probability of combined occur-
rence of two intensity values. From that matrix, 24 features including au-
tocorrelation, cluster prominence, cluster shade, cluster tendency, contrast,
correlation, difference average, difference entropy, difference variance, in-
verse difference (ID), inverse difference moment (IDM), inverse difference
moment normalized (IDMN), inverse difference normalized (IDN), informa-
tional measure of correlation 1 (IMC1), informational measure of correlation
2 (IMC2),inverse variance, joint average, joint energy, joint entropy, maximal
correlation coefficient (MCC), maximum probability, sum average, sum en-
tropy and sum square can be extracted. GLRLM represents the run-length
of gray level in the CT image and the 16 associated GLRLM features are
gray level non uniformity, gray level non uniformity normalized, gray level
variance, high gray level run emphasize, long run emphasize, long run high
gray level run emphasize, long run low gray level run emphasize, low gray
level run emphasize, run entropy, run length non uniformity, run length non
uniformity normalized, run percentage, run variance, short run emphasize,
short run high gray level run emphasize and short run low gray level run
emphasize.

• High-order statistical features aim to characterize repeated or nonrepet-
itive potential patterns inside the tumour region. For this purpose, images
are decomposed using different scale-space transformations, like wavelets and
Laplacian-of-Gaussian (LoG) pyramids. After the transformation, first and
second-order statistical features are extracted from the decomposed images.

We also refer the reader to [20] for further information. In our work, as the
the GLCM matrix is symmetrical, sum average feature under the GLCM category
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is 2 times of joint average feature. So, the total number of first and second order
statistical features is 57 (18+23+16). Higher-order statistical features are extracted
from 8 decomposed images using wavelet decomposition and 8 order reconstructed
images employing RHFMs. Therefore, we analyzed a total of 456 wavelet and the
same number of RHFMs features in terms of reliability, stability and prognostic
value.

3.2 Datasets and Data Analysis

In this study, three lung CT datasets are considered, involving non-small cell lung
cancer (NSCLC) patients:

• The RIDER test/retest dataset [2] provides blind delineations to 32 pa-
tients of the RIDER Lung CT dataset where the delineations of three patients
are not perfectly provided [22]. RIDER Lung CT consists of same day re-
peat scans, where two CT scans were acquired from each patient within 15
minutes. In this study, this dataset is used to assess the reliability of the
features.

• The multiple delineation dataset [2] consists of lung CT scans of 21
patients which were manually delineated by five oncologists independently.
As one patient has no manual delineation, twenty CT images of patients are
used to assess the feature stability.

• The Lung1 dataset [2] consists of lung CT scans of 422 patients, together
with manual delineations, clinical, survival data and gene profiles. It has been
observed that three out of 422 patients have absent of proper masks. Thus,
the radiomics features are extracted from 419 patients. This dataset is used
to assess the prognostic value of the radiomic features.

3.3 Image Reconstruction using RHFM

In this study, we propose to extract higher order radiomic features based on RHFM
reconstruction. The theoretical background, and the RHFM decomposition and
reconstruction method are described below.

3.3.1 Radial Harmonic Fourier Moments

Following [16], consider the radial harmonic basis function Hpq (p ∈ N, q ∈ Z),
defined in polar coordinates as

Hpq(r, ϕ) := Rp(r)e
iqϕ (r ∈ [0, 1], ϕ ∈ [0, 2π)) , (1)

where

Rp(r) :=


1/
√
r, if p = 0,√

2/r cos(πpr), if p is even,√
2/r sin (π(p+ 1)r) , if p is odd.
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Radial harmonic basis functions form a complete orthonormal system in the space
of the square integrable functions over the unit disk (i.e., in L2(D)) with respect to
the usual scalar product

〈F,G〉 :=
1

2π

∫ 2π

0

∫ 1

0

F (r, ϕ)G∗(r, ϕ)rdrdϕ
(
F,G ∈ L2(D)

)
. (2)

A grayscale image, represented as a function f ∈ L2(D) over the unit disk, can be
decomposed into a series expansion as

f(r, ϕ) =

+∞∑
p=0

+∞∑
q=−∞

MpqHpq(r, ϕ) (r ∈ [0, 1], ϕ ∈ [0, 2π)) ,

where

Mpq := 〈f,Hpq〉 =
1

2π

∫ 2π

0

∫ 1

0

f(r, ϕ)H∗pq(r, ϕ)rdrdϕ

is the radial harmonic Fourier moment (RHFM) of order p ∈ N and repetition
q ∈ Z.

3.3.2 Image Decomposition

The real application of RHFMs involves discretization and the restriction of the
input image to the unit disk. Here, we followed the discretization and numerical
integral approximation proposed in [3]. Normally, planar images are organized as
the matrix of pixels over rectangular coordinate system, where the coordinate of the
left top corner pixel is (0, 0). Consider a grayscale image f(x, y), and assume that
it is square of size N ×N . As the RHFM is based on the polar coordinate system,
an inner unit circle is inscribed over the grayscale image. Then, the origin of the
image is moved to the center of the inscribed circle, and the central coordinate of
all pixels of the input image f(xi, yj) are computed as

xi =
2j −N + 1

N
, yj =

N − 1− 2i

N
(i, j = 0, 1, 2, ..., N − 1). (3)

After mapping, the new Cartesian coordinates (xi, yj) over the inscribed inner circle
are transformed into the polar coordinate (rij , θij) as

rij =
√
x2i + y2j , θij = atan2(yj , xi) (i, j = 0, 1, 2, ..., N − 1), (4)

where atan2(y, x) = arg(x+ıy) denotes the two-argument arctangent. The RHFMs
Mpq of the image f(rij , θij) with order p ∈ N and repetition q ∈ Z over a unit inner
circle are computed employing the discrete representation of (2) as of

Mpq =
2

πN2

N−1∑
i=0

N−1∑
j=0

f(rij , θij)H
∗
pq(rij , θij). (5)
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Note that the radial factor in (1) depends on the radius of the pixel located in
(xi, yj) coordinate and the order p of that radius, and the exponential factor relies
on the angular distance from x-axis of the pixel and its repetition q. Assuming
that the maximal order and repetition of the computed moments are pmax ∈ N and
qmax ∈ Z, respectively, the total number of RHFMs is (1 + pmax)× (1 + 2qmax).

3.3.3 Image Reconstruction

In this paper, we extract radiomics features using low-level reconstructions using
RHFMs. To this order, consider the partial reconstruction of order pmax ∈ N and
repetition qmax ∈ Z as

f(r, ϕ) ≈ f̂(r, ϕ) :=

pmax∑
p=0

qmax∑
q=−qmax

MpqHpq(r, ϕ) (r ∈ [0, 1], ϕ ∈ [0, 2π)) . (6)

The reconstructions represent low-dimensional approximations of the input image
based on the transformation-invariant moment decomposition.

3.4 Proposed Method

Based on the above motivations and background information, we propose RHFM re-
constructions for high-order radiomic feature extraction. Orthogonal moments pro-
vide efficient frequency-space representations that can capture high-level patterns
on the image, and have further beneficial properties like transformation-invariance.
These make them promising replacements of the wavelet-based high-order features
suggested in [2] and [21]. In particular, RHFMs show better numerical stability
compared to other constructions, and perform well for small noisy images, desired
for CT tumour images. In the following, we summarize the proposed algorithms,
and provide further insight and justification.

3.4.1 Image Representation

The key part of the proposed method is the representation of the CT tumour image
using RHFM. The overall steps are summarized in the Algorithm 1. The algorithm
takes four inputs: the 3D CT image (I), its 3D mask (M), and the maximal order
(p) and repetition (q) for RHFM decomposition and reconstruction; and returns
the reconstructed image based on the RHFM representation.

We note that the representation is performed on the raw CT images without any
filtering or resampling. The only preprocessing step is the correction, cropping, and
squaring the CT image and tumour mask in order to handle the inconsistencies of
the target databases regarding pixel size, spacing, and origin. A sample of cropped
CT tumour image is shown in Fig. 1.

3.4.2 Feature Selection

In the next phase, we optimized feature selection, where we investigated the op-
timal parameters of RHFM decomposition and reconstruction. To this order, we



10 A. H. M. Sajedul Hoque, Gergő Bognár, and Sándor Fridli

Algorithm 1 Proposed Algorithm for Image Representation using RHFM.

Funct RECON(I,M, p, q)

1: Remove inconsistency by correcting, cropping and squaring the image I and
the mask M with N × N size of each slice

2: Combine the 3D image I and the mask M into a new 3D image C
3: Shift the intensity range of the image C to [0, range of intensity]
4: Map each Cartesian coordinate (x, y) into the central coordinate (xi, yj) over

inscribed circle as of (3) and compute the polar coordinate (rij ,θij)
5: Select the list of orders P = [0, 1, ..., p] and the list of repetitions
Q = [−q,−q + 1, ..., q − 1, q]

6: Compute the radial harmonic basis functions Hpq(rij , θij) being a matrix of
size ((p+ 1)× (2q+ 1)×N ×N), where p and q is an order and repetition from
P and Q, respectively

7: Setup the output array Ĉ as shape of image C
8: for each slice f(x, y) in C do
9: Compute matrix of moments Mpq of size ((p+ 1)× (2q + 1)) by performing

the inner product of the image f(x, y) and the radial harmonic basis function
Hpq(rij , θij) as of (5)

10: Compute the reconstructed slice f̂(x, y) by the partial sum of radial harmonic
basis functions Hpq(rij , θij) weighted by moments Mpq as of (6)

11: Store the reconstructed slice f̂(x, y) in Ĉ
12: end for
13: Clip and shift back the intensity of image Ĉ over the range of image C
14: return the reconstructed image Ĉ

evaluated the error in terms of mean squared reconstruction error of the form

MSRE =

N−1∑
x=0

N−1∑
y=0

∣∣∣f(x, y)− f̂(x, y)
∣∣∣2

N−1∑
x=0

N−1∑
y=0

|f(x, y)|2
. (7)

Fig. 2, 3, and 4 present the average MSRE of the three datasets. In this evaluation,
we set the order and repetition of RHFM to be the same, i.e., p = q, as of [16].
Furthermore, we investigated even orders only in order to include both the sine and
cosine radial functions of the same magnitude. The analysis show that the repre-
sentation is optimal around order 10, which behaviour is following the theoretical
expectations: when the order is too low, then the error is high due to the loss of
detail information on the image, and when the level is too high, then numerical
errors arise due to noise and discretization artifacts. In conclusion, we propose to
select the eight orders around 10 for CT image representation, namely we suggest
the list of [2, 4, 6, 8, 10, 12, 14, 16].
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Slice 1 Slice 2 Slice 3 Slice 4 Slice 5

Figure 1: A sample of preprocessed CT Image of Lung1 Dataset. Rows: original
CT slices (cropped, squared), tumour masks, and masked tumour images.

3.4.3 Feature Extraction

We propose radiomics feature extraction following the methodology of [2], and uti-
lizing the lower-order features of [21]. There, one step of 3D stationary wavelet
decomposition was utilized using Coiflet 1, resulting eight image representations
for high-order feature extraction. Instead, we propose eight RHFM reconstruc-
tions here in the above mannner. Then, 18 first-order statistical, 23 GLCM and
6 GLRLM-related features are extracted from those reconstructed images, as in-
troduced above. Totally, we investigated 456 RHFM-based features, which we
compared to the same amount of wavelet-based features as of [2]. The low-order
features were extracted using the pyradiomics package [21].

As a comparison, the eight wavelet decompositions of the CT image shown in
Fig. 1 are illustrated in Fig. 5 and 6, and eight RHFM reconstructions are shown
in Fig. 7 and 8.

4 Results and Discussion

In this study, the extracted 456 radiomics features of lung cancer are analyzed to
evaluate their reliability, stability, and prognostic power, following the workflow
proposed in [2]. For this reason, statistical tests are applied to determine scores
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Figure 2: Average MSRE of Lung1 Dataset

for the reliability, stability and prognostic value of those extracted features. We
explain and evaluate the score below, and compare the proposed method to the
wavelet-based approach in [2].

4.1 Reliability Analysis

In conservative medicine, the reliability of numerical measurements of patients are
always intended to evaluate for making decisions. Reliability implies the assess-
ment of the reproducibility of the numerical measurements over the same set of
patients. Thus, it emphasizes not only the correlation but also the agreement be-
tween measurements. Mathematically, reliability is the ratio of true variance over
the true variance plus the error variance of measurements. The score of the reliabil-
ity ranging from 0 to 1 can be evaluated by Pearson correlation coefficient, paired
t-test and Bland-Altman plot. Those approaches are not ideal for reliability anal-
ysis, as Pearson correlation coefficient focus only on the correlation while paired
t-test and Bland-Altman plot emphasize only on the agreement. Then, intraclass
correlation coefficient (ICC) first introduced by Fisher in 1954 is widely used for
reliability analysis. The ICC score representing both correlation and agreement
between measurements is the index to quantify the reliability. The conservative
care practitioners usually perform three types of reliability: interrater, intrarater
and test-retest reliability. In interrater reliability, ICC score is based on the mea-
surements taken by different raters over same patients, whereas same raters take
measurements on same patients through one or more trial in intrarater reliability.
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Figure 3: Average MSRE of Test-Retest Dataset

In the test-retest reliability, the measurements of the same subjects are taken by
same instruments under same conditions at different time. In this study, the retest
CT images of 31 subjects are taken after a 15 minutes tea break of taking the
test CT image of the same patients in RIDER test-retest dataset. Therefore, the
test-retest reliability is suitable for our study. There is no standard acceptable ICC
value for reliability and the only expected value of ICC is the true ICC estimate.
For this reason, the level of reliability is applied to determine for testing if the
obtained ICC exceeds in statistical inference. Koo and Li suggested four levels of
reliability in his guidelines for ICC reporting: Poor Reliability(ICC < 0.5), Mod-
erate Reliability(ICC ≥ 0.5 and ICC < 0.75), Good Reliability (ICC ≥ 0.75 and
ICC < 0.9) and Excellent Reliability(ICC ≥ 0.9 and ICC ≤ 1) [9]. This guideline
for level of reliability has been used in this research where the ICC score of each
feature is determined by employing intraclass correlation coefficient approach over
two samples of each feature coming from test and retest CT scans. Table 1 shows
the distribution of the number of RHFM and wavelet features among those groups
(poor, moderate, good and excellent) to the usual guidelines. The table implies
that the RHFM features show better reliability than wavelet features.

4.2 Stability Analysis

In clinical oncology, the tumor region of CT image of patients is delineated by mul-
tiple radiation oncologists for stability analysis. Multiple samples including desired
extracted radiomics features from delineated CT images are compared to test if
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Figure 4: Average MSRE of Multiple Delineation Dataset

Table 1: Reliability: number of features based on ICC

Type of Features Poor Moderate Good Excellent
RHFM 22 105 175 154
Wavelet 38 89 157 172

there are any significant difference among the means of those samples. As those
multiple samples are dependent, Repeated-Measures ANOVA and Friedman Test
are used for the statistical test. As Repeated-Measures ANOVA test is parametric
test, the assumptions of samples are to be normally distributed. If the assumptions
of normality are not met, the Friedman test is used [5]. In this study, RIDER
Multiple delineation data consisting of the CT scans of 21 patients delineated by
five radiation oncologists are used to test stability. The Friedman test is applied
over five samples of each feature avoiding the distribution of those sample. The
test provides the p-value which is a probability that measures the evidence against
the null hypothesis. That is, if the p-value of a feature is greater than the usual sig-
nificance level of 5%, the feature is considered to be stable. Otherwise, the feature
is not stable. It has revealed that there are 74 and 135 stable features for RHFMs
reconstruction and wavelet decomposition, respectively, at a 5% significance level.
The test shows that the RHFMs features and wavelet features are comparable in
terms of stability.
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Slice 1 Slice 2 Slice 3 Slice 4 Slice 5

(a) Original CT Image

(b) LLL Wavelet Image

(c) LLH Wavelet Image

(d) LHL Wavelet Image

(e) LHH Wavelet Image

Figure 5: Wavelet Decomposed Images (LLL, LLH,LHL,LHH)
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Slice 1 Slice 2 Slice 3 Slice 4 Slice 5

(a) Original CT Image

(b) HLL Wavelet Image

(c) HLH Wavelet Image

(d) HHL Wavelet Image

(e) HHH Wavelet Image

Figure 6: Wavelet Decomposed Images (HLL,HLH,HHL,HHH)



Radial Harmonic Fourier Moments for CT-based Quantitative Radiomics 17

Slice 1 Slice 2 Slice 3 Slice 4 Slice 5

(a) Original CT Image

(b) Order 2 (MSRE: 0.163)

(c) Order 4 (MSRE: 0.072)

(d) Order 6 (MSRE: 0.057)

(e) Order 8 (MSRE: 0.055)

Figure 7: Reconstructed Images from RHFMs (order 2 to 8)
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Slice 1 Slice 2 Slice 3 Slice 4 Slice 5

(a) Original CT Image

(b) Order 10 (MSRE: 0.058)

(c) Order 12 (MSRE: 0.061)

(d) Order 14 (MSRE: 0.071)

(e) Order 16 (MSRE: 0.086)

Figure 8: Reconstructed Images from RHFMs (order 10 to 16)
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4.3 Prognosis Analysis

Generally, prognosis refers to the expected course and outcomes of a disease over
time. In medical science, healthcare professionals make the assessment considering
the likely course of a condition and its potential results based on their scientific
knowledge, clinical experience and the circumstance of individual patient. This
assessment helps the doctor to guide treatment decisions and set expectations for
recovery or disease progression. In clinical oncology, the valid and prominent ques-
tion is which radiomics features of radio images are correlated with the prognosis.
The answer to this question is solved through the survival analysis which predicts
the time to death by establishing a connection between radiomics features and the
time to death. The difference of survival analysis from the traditional regression
model is that the survival model can work on the partially observed data called
censored data. A popular robust mathematical model of survival analysis is Cox
proportional hazard model which is expressed in terms of hazard model formula as

h(t,X) = h0(t)e

p∑
i=1

βiXi

. (8)

That is, Cox survival model is the product of two quantities: h0(t), baseline hazard
function and exponential expression of the linear sum of βiXi for p radiomics fea-
tures Xi. Here the hazard means the probability of death. The Cox proportional
hazard model does not assume about the distribution for the outcome variable
(time to death), but it assumes that the hazard proportion between different sub-
jects is constant over time [8]. The assumption helps to estimate the regression
coefficient βi without considering the full hazard function. This Cox proportional
hazard regression model can be used to assess the radiomics features by measuring
the predictive discrimination ability [6]. Due to the presence of censored data, this
assessment is performed by Concord index (C-index or CI) proposed by Harrell
et al in 1982 [6]. The C-index is the measure of how well the patients are sorted
according to the event occurrence. The index explains the ability of a radiomics
feature to order subjects by estimating the proportion of correctly ordered pairs
among all usable pairs in the dataset where the patient pairs have at least one died
patient. In our study, as only Lung1 dataset has clinical data having survival time
and death status, its four 419 patients are considered to measure the prognostic
power through C-index for each feature of 456 radiomics features. In our experi-
ment, 378 RHFM and 430 wavelet features are above 0.5 and thus show prognostic
value. The mean and median CI is approximately 0.54 and 0.55 for both the RHFM
and wavelets, which proves a similar prognostic value.

5 Conclusion and Future Work

We investigated the application of orthogonal moments known as RHFMs for ra-
diomics analysis of lung CT images of NSCLC patients, and compared the extracted
RHFMs features with state-of-the-art wavelet features. We proposed a reconstruc-
tion framework for RHFM-based tumour representation, and optimized the feature
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selection by the analysis of reconstruction error. Statistical tests were performed to
determine the stability, reliability, and prognostic value of the proposed features,
which aspects play important roles in clinical oncology. We conclude that orthog-
onal moments are promising for radiomics analysis, since they show comparable
behavior compared to wavelets, while they are more flexible, possibly adaptive, and
preferable due to their shift-invariant property. In the future, we plan to further
investigate the application of orthogonal moments in radiomics in several respects.
This includes the adoption of various orthogonal bases, adaptive transformations,
and discretization approaches. We plan to extend the RHFM model to 3D, and also
direct utilization of transformation invariant moments as radiomic features. Here
the feature selection was optimized for the whole databases, but the optimal order
is worth to be explored in a patient-wise adaptive manner as well. Furthermore, we
will extend our work to build a radiomics signature for associating reliable, stable
and prognosis radiomics features and gene expression profiles.
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