Acta Cybernetica 27 (2025) 141-153.

Selecting Execution Path for Replaying Errors*

Zso6fia Erdei®, Istvan Bozé® and Melinda T6th®

Abstract

The identification of the sources of a runtime error is a common task for
Erlang developers. Dynamic and static tools can assist in this task. Our work
aims to help Erlang developers in debugging processes to reproduce a runtime
error. We would like to use and extend the static analyzer framework of
RefactorEr]l with new algorithms to support this fault localization process. In
our previous paper, we presented a symbolic execution-based analysis method
to find the source of runtime errors. This paper extends that work with
path selection heuristics to improve the efficiency of the algorithm in the
RefactorErl framework.

Keywords: static analysis, Erlang, symbolic execution, fault localization,
path selection

1 Introduction

Debugging Erlang programs, particularly in large-scale, distributed systems, pre-
sents significant challenges due to the complexity of tracing and reproducing run-
time errors. Although bugs in the software are usually discovered due to faulty
behaviour (e.g. a runtime error occurs), finding the origin of the fault is a non-
trivial task. Traditional debugging methods often require developers to manually
trace through code, which can be time-consuming and error-prone, especially when
dealing with complex control flows and multiple execution paths. Traditional static
analysis tools, while helpful, often lack the precision to pinpoint the exact source
of a runtime error. Program analysis techniques with symbolic execution can help
to solve this task.

In a concrete execution, a program is evaluated on a specific input, and a single
control-flow path is explored. Symbolic execution [1, 9] uses unknown symbolic
variables in evaluation, allowing to simultaneously explore multiple paths that a

*Project no. TKP2021-NVA-29 has been implemented with the support provided by the Min-
istry of Culture and Innovation of Hungary from the National Research, Development and Inno-
vation Fund, financed under the TKP2021-NVA funding scheme.

“ELTE, E6tvos Lorand University, Budapest, Hungary

bE-mail: zsanart@inf.elte.hu, ORCID: 0000-0002-5089-4984

¢E-mail: bozo_i@inf.elte.hu, ORCID: 0000-0001-5145-9688

4E-mail: tothmeinf.elte.hu, ORCID: 0000-0001-6300-7945

DOI: 10.14232/actacyb. 312432

mailto:zsanart@inf.elte.hu
https://orcid.org/0000-0002-5089-4984
mailto:bozo\protect _i@inf.elte.hu
https://orcid.org/0000-0001-5145-9688
mailto:toth\protect _m@inf.elte.hu
https://orcid.org/0000-0001-6300-7945
https://doi.org/10.14232/actacyb.312432

142 Zsofia Erdei, Istvan Bozo, and Melinda Téth

program could take under different inputs. The use of symbolic execution can help
us in fault localization.

We have previously implemented our prototype algorithm using backtracking
and demonstrated how it finds an execution path to a given expression containing
an error [7]. The algorithm uses a combination of the control-flow graph and
the RefactorErl' [13] frameworks graph representation of the analyzed code to
determine an appropriate execution path that may lead to a given runtime error in
Erlang software.

Because of the path-explosion problem, it is infeasible for symbolic execution
tools to explore all execution paths of any nontrivial programs. Therefore, search
heuristics are required elements of symbolic execution. Using a good search heuris-
tic can maximize code coverage and improve the effectiveness of the analysis in
practice.

In this paper, we examine several path selection heuristics that can be used
to improve the efficiency of our algorithm and make our method feasible for error
detection on larger software bases. In Section 2 we introduce the Erlang language
and the RefactorErl tool. Section 3 discusses related work in the field of symbolic
execution and fault localization, highlighting the contributions of our approach.
Section 4 introduces various path selection heuristics that can be employed to
improve the efficiency of symbolic execution algorithms. Section 5 provides an
overview of our proposed algorithm and Sections 6 and 7 we present our solution
for managing the problem of path explosion. Section 7 contains a short evaluation
on an example found in an open source project.

2 Background

Erlang [4] is a versatile, dynamically typed, concurrent functional programming
language that allows developers to build highly scalable, soft real-time systems.
Initially developed for telecommunication software, Erlang has since found applica-
tions in banking, chat services, and database management systems. Its robustness
and fault-tolerant nature make it an excellent choice for large-scale distributed sys-
tem development. Erlang programs run on a virtual machine (Erlang VM or node),
which ensures platform independence. The standard library, known as OTP (Open
Telecom Platform), along with the Erlang runtime environment, is collectively re-
ferred to as Erlang/OTP.

Erlang’s module system enables programs to be broken down into smaller units
called modules. Each Erlang program consists of multiple modules, each stored in a
file with the extension .erl. A module starts with a declaration at the beginning,
followed by an export declaration that lists functions intended for external use.
This is then followed by the function definitions within the module.

RefactorErl [2, 13] is a static analysis and transformation tool for Erlang, de-
veloped at Ectvos Lorand University. It employs static code analysis techniques and
offers a wide range of features, including data flow analysis, detection of dynamic

1Refactorerl’s website. https://plc.inf.elte.hu/erlang/

https://plc.inf.elte.hu/erlang/

Selecting Execution Path for Replaying Errors 143

function calls, side-effect analysis, and a user level query language for querying
semantic information or structural complexity metrics of Erlang programs. Other
functionalities include examining dependencies among functions or modules and
generating function call graphs that include information on dynamic calls. Refac-
torErl provides multiple user interfaces, such as a web-based interface, an interactive
console, and plugins for Emacs or Vim.

During the initial analysis, RefactorErl constructs an abstract syntax tree from
the source code and enhances it with additional semantic information to form a
Semantic Program Graph (SPG) [8]. After analyzing the source code, this graph
is stored in a database. The tool is capable of transforming the graph back into
source code at any time. The process of refactoring essentially consists of graph
transformation steps, using the SPG to collect the necessary information for the
transformation.

3 Related work

Symbolic execution [1, 9] is a technique used by many program analysis and trans-
formation techniques, such as partial evaluation, test-case generation or model
checking. It can be used for fault detection by exploring different execution paths
of a program with symbolic values instead of concrete values. Symbolic values rep-
resent a range of possible values that can satisfy certain constraints. Tools based
on such techniques can find errors that are hard to detect with conventional testing
methods, such as buffer overflows, division by zero errors, etc.

Symbolic execution maintains a symbolic state and a path condition for each
execution path. The symbolic state contains the symbolic values of variables. The
path condition contains the constraints on the symbolic values that are derived
from branch conditions along the path. Symbolic execution uses a constraint solver
to check the feasibility of each path and to generate concrete inputs that can trigger
faults.

KLEE [3] uses two main search strategies: Random Path Selection and State-
Based Search. Random Path Selection maintains a binary tree recording the pro-
gram path followed for all active states, where the internal nodes are the ones where
the execution has forked and the leaves represent the current states. The states are
selected by traversing this tree from the root and randomly selecting the path to
follow at the branch points. During the symbolic execution when an internal node
is reached, all child nodes of the given node have an equal probability to be selected
by the algorithm regardless of the size of the subtrees. The biggest advantage of
this strategy is that it avoids starvation occurring in loops containing symbolic
conditions and resulting in quick new state creation.

While symbolic execution is not a new topic in the Erlang ecosystem, previously
published papers mostly focus on formal [14, 15] and informal [6] definitions with the
aim of program verification. In a previous paper [7], we present a symbolic execution
technique for Erlang that can support debugging processes of Erlang developers
through the RefactorErl framework. Our goal was not to verify Erlang programs

144 Zsofia Erdei, Istvan Bozo, and Melinda Téth

but to support their debugging processes through the RefactorErl framework.

In Erlang programming, fault localization is a critical yet complex task, espe-
cially in large-scale software systems. Finding the source of runtime errors can be
time-consuming and costly, necessitating the use of automatic methods to assist
developers. Traditional debugging involves reproducing faulty executions, but this
becomes challenging when dealing with multiple paths a program might take under
various inputs. This work addresses the problem of static fault localization in Er-
lang programs using a targeted approach to explore the control-flow graph of the
software.

Our previously proposed method builds on the RefactorErl static analysis frame-
work to identify execution paths that lead to specific runtime errors. The aim is
to reproduce faulty behavior by selecting an appropriate execution path in the
program’s control-flow graph that may lead to the identified error. The approach
employs symbolic execution, where unknown symbolic variables are used to explore
multiple paths within the program. The analysis targets a specific line or expression
in the program, referred to as the ”error path,” which potentially leads to runtime
erTors.

The approach begins with symbolic execution to find a realizable path in the
program from the entry point to the specified error line. As the program is explored,
a set of conditions is gathered, which are then analyzed using an SMT (Satisfiability
Modulo Theories) solver, Z3 [5], to verify the feasibility of the identified path.
By collecting symbolic constraints along the paths in the control-flow graph, the
method can identify the conditions and input values that lead to the runtime error,
aiding developers in reproducing and understanding the fault.

The algorithm operates in a two-step manner: First, it traverses the program’s
control-flow graph in a breadth-first manner to find a potential path to the target
error expression. During this traversal, conditions from branch statements, such
as if expressions, are gathered to build a set of constraints. Variables are tracked
using a map data structure to ensure each unique instance is accounted for in
the constraints. If the conditions derived from the selected path are unsatisfiable,
the algorithm backtracks to find an alternative route. The second step involves
repeating this process recursively through function calls, allowing the exploration
of execution paths that span multiple functions within the program.

This targeted symbolic execution is integrated with the RefactorErl tools exten-
sive code analysis capabilities. RefactorErl constructs a Semantic Program Graph
(SPG) that contains lexical, syntactic, and semantic information about the source
code, as well as control-flow and control dependence information. The SPG aids
in tracking variables and expressions as the program is analyzed. By employing
static backward symbolic execution, the method identifies relevant input parame-
ters and conditions, supporting fault localization in a static analysis context. The
constraints gathered are then passed to the Z3 solver to check for satisfiability and
determine potential inputs that would result in the observed faulty behavior.

Unlike other tools like CutEr? [11], which uses concolic testing [12] based on dy-

2https://github.com/cuter-testing/cuter

https://github.com/cuter-testing/cuter

Selecting Execution Path for Replaying Errors 145

namic symbolic execution, this method is fully static, working with the control-flow
graph to analyze execution paths backward from the error point. It distinguishes
itself by focusing on debugging support rather than program verification, providing
a practical tool for developers dealing with runtime errors in Erlang programs.

4 Path selection algorithms

Path selection heuristics in symbolic execution algorithms are crucial for efficiently
exploring the numerous execution paths in a program. These heuristics aim to
guide the symbolic execution engine to explore the most promising paths, helping
to detect bugs or vulnerabilities while minimizing computational resources.

One common strategy, employed by tools like KLEE [3], is random path selec-
tion. This heuristic builds a binary tree of the program paths being explored. Each
node in this tree represents a decision point (a branch), and the leaves represent
the active execution paths. KLEE traverses this tree randomly, selecting branches
in a way that ensures each path has an equal probability of being chosen, regardless
of the number of processes under it. This approach helps KLEE in two significant
ways, it prioritizes paths that are higher in the tree, which are less constrained and
therefore more likely to lead to new parts of the code, and it prevents KLEE from
being trapped in regions where new branches are generated rapidly, which could
lead to ”fork bombing” or an excessive creation of paths. This method is effective
in providing broad coverage of the execution space, which increases the likelihood
of uncovering unexpected bugs. However, random path selection can be inefficient
when a goal is to discover a specific path in the program graph, as it often leads to
exploring irrelevant paths and may fail to prioritize paths that are more likely to
lead to the target expression.

A more targeted heuristic is concolic execution [12], where symbolic execution is
combined with concrete execution to guide path exploration. Concolic testing uses
concrete inputs to steer symbolic execution towards different branches, ensuring
that the tool avoids paths that have already been explored with similar concrete
inputs. One of the advantages of this method is that it can avoid the path explosion
problem seen in pure symbolic execution by using concrete inputs to prune the space
of possible paths. This heuristic is effective for finding bugs that are triggered by
specific input patterns.

Error-guided path selection is another approach, which focuses on paths that
are likely to lead to known or suspected errors. This heuristic can be highly efficient
when the goal is to locate a particular fault or error condition within a program.
By directing the exploration towards paths where errors are most likely to occur, it
reduces the number of irrelevant paths examined, leading to faster bug detection.

5 Overview of the algorithm

The algorithm uses a kind of symbolic backward execution called call-chain back-
ward symbolic execution [10]. This is a type of symbolic execution that mixes

146 Zséfia Erdei, Istvan Bozo, and Melinda Téth

forward and backward symbolic execution. Inside each function, it explores the
execution paths forward but it follows the call-chain backwards from the target
point to the program’s entry point. Starting at the target expression, we search
for a path from the entry point of the function containing the target expression
itself. This intraprocedural part of the algorithm uses the control-flow graph of the
function to look for possible paths to the target node.

Once a valid intraprocedural path is found, the next step is to determine the
callers of the function. Using RefactorErl we can collect all expressions that con-
tain such a function call. Now the expression containing the function call will be
our target, and the new starting point will be the new function containing that
expression.

We can see that our algorithm has two points when path selection is needed, once
in the intraprocedural part and once in the interprocedural part. Using different
strategies would make sense in each of these cases.

6 Intraprocedural strategy

The intraprocedural part of our fault localization algorithm focuses on analyzing
execution paths within a single function or procedure to find paths that lead to
an error. At this stage, the algorithm works by exploring the control-flow graph
(CFG) of the function to examine all possible execution paths that may reach a
specific target expression, such as a line of code responsible for a runtime error.
The intraprocedural analysis builds upon symbolic execution, where variables are
treated as symbolic values, and conditions at branching points (such as if expres-
sions, variable assignments or pattern matching) generate constraints that must be
satisfied for a path to be feasible. These constraints are gathered as the algorithm
traverses each possible path within the function.

The algorithm starts from the function’s entry point and follows each control-
flow path, collecting symbolic constraints and tracking the flow of execution until
it either reaches the target expression (such as an error). Starting at the root of
the control-flow graph of the selected function, we explore as far as possible along
each branch before backtracking. If a path to the target node is found, we check
the conditions along the path with the help of a constraint solver for feasibility.
Depending on the result we either return the path or reject it and continue the
backtracking to find another one.

Even though there are no loops at the intraprocedural level, making path ex-
plosion less significant than at the interprocedural level, exploring all paths within
a function can still be computationally expensive if the function contains multiple
branching points. This challenge is compounded by the fact that, if a contradiction
arises in the set of conditions during interprocedural exploration, a new intraproce-
dural path must be identified. This new iteration may involve revisiting previously
explored branches with updated constraints or exploring alternative paths that
were not considered in the previous iteration. The algorithm continues to iterate
until a feasible path to the target expression is identified or all possible paths have

Selecting Execution Path for Replaying Errors 147

been exhausted. This approach ensures that the algorithm thoroughly explores the
function’s control-flow graph, increasing the likelihood of finding a valid path to
the error.

To make our algorithm more efficient, we can use estimations in the intraproce-
dural part based on the depth of the target expression within the function’s semantic
program graph to reduce the problem space. The SPG is a representation that con-
tains not only the syntactic structure of the function but also semantic information
about variables, expressions, and dependencies between them. By determining how
deeply nested the target expression is within the SPG, we can establish a depth
limit for path exploration. We can use this metric to reduce the size of the tree by
removing sections of the tree that are deeper than our target.

This depth-based heuristic improves the algorithm’s efficiency by restricting the
exploration to paths that are likely to lead to the error without examining irrelevant
branches or deeply nested conditions that cannot feasibly reach the target. For
example, if the target expression is located within a nested conditional block, the
algorithm sets a maximum depth for the search, focusing only on paths that descend
to the same level of depth as the target expression in the SPG. Paths that exceed
this depth are deprioritized or discarded from the exploration process, as they
cannot feasibly reach the target within the given structure.

Consider the simple example in Figure 1. This code snippet contains divisions,
and if the denominator C is zero, a division by zero error occurs. Suppose that the
error occurred in line 12. We can use the algorithm to find a realizable path to the
target expression from the entry point of the program, and also determine a set of
input values that may trigger the error. We need to traverse the control-flow graph
to find the target expression, but to enumerate all paths might be very expensive
in larger functions. To reduce our searchspace we can cut branches that are deeper
in the tree then our target expression. The tree next to the code snippet shows the
path the algorithm traverses on the simple example function.

7 Interprocedural strategy

We propose a new heuristic for the interprocedural phase of our algorithm, which
leverages the stack trace to optimize the search for execution paths leading to
runtime errors. By using the stack trace to trace the chain of function calls leading
to an error, we can significantly reduce the search space within the control-flow
graph (CFG), improving both the efficiency and precision of the algorithm.

The stack trace is a valuable tool for identifying the chain of functions involved
in an error. Traditionally, developers use stack traces to pinpoint the function where
the error occurred, but this information alone often lacks the accuracy necessary
to determine the specific path through the program leading to the fault. Since the
algorithm is designed to precisely locate the source of a known runtime error, the
stack trace can be provided as part of the initial problem setup. Erlang’s stack
trace is a structured and informative data format that provides a detailed account
of the sequence of function calls leading up to a runtime error. When an exception

148 Zséfia Erdei, Istvan Bozo, and Melinda Téth

| -module(examplel).
2 -export([foo/2]).
3
1

foo(A, B) —->
C=A-8B,
5 if
6 C==A->0;
7 C<A—> C=
8 if
9 B>C->1;
10 true -> 2
11 end
12 C>A—>A/C
13 end.

B>C(O O true

Figure 1: Example module and corresponding path selection

occurs, Erlang generates a stack trace that includes the module name, function
name, arity, and the line number where the error was encountered. This trace also
captures the hierarchical chain of function calls, showing how execution flowed from
one function to another until the error was triggered. For example, a typical stack
trace might look like this:

[{module_name, function_name, [arguments], [{file, line_number}]}, ...1,

where each tuple represents a function call in the call stack.

While the stack trace provides a high-level view of the call-chain, it does not
provide the precise sequence of conditions and decisions that led to the error. Our
heuristic takes advantage of the stack trace by using it as a guide to narrow down
the relevant sections of the CFG that need to be explored, avoiding unnecessary
traversal of unrelated branches. This targeted approach enhances the algorithm’s
ability to find a concrete execution path from the program entry point to the error.

The integration of this heuristic into the algorithm is straightforward. Once an
error occurs and the stack trace is available, the algorithm uses it to follow the func-
tion call sequence in reverse, starting from the point where the error occurred. For
each function in the stack trace, the algorithm identifies the relevant control-flow
path by focusing only on the functions listed in the trace and using the intrapro-
cedural algorithm to generate the necessary conditions within the function. As the
stack trace provides a natural ordering of function calls, the search is restricted to a
narrower subset of the program, reducing the number of potential execution paths
to explore. This is particularly effective in large codebases where the number of
possible paths can be overwhelming.

In example in Figure 2, when the function f (A) is called with a negative number,
a runtime error occurs in the arithmetic expression within f2(A), specifically a
division by zero, as indicated by the stack trace. The interprocedural part of our

Selecting Execution Path for Replaying Errors 149

I -module(multi_fun_example). 11 1(A) —>

2 —export([f/1,1/1,r/1,f2/1]). 12 {ok, f2(A)3}.
3 13

4 f(A) -> 14 r(@) ->

5 if 15 {ok, f2(0@)3};
6 A>=0 —> 16 r(A) >

7 1(A+1); 17 r(A+1).

8 true -> 18

9 r(A) 19 f2(A) —>

10 end. 20 1/A.

Figure 2: Interprocedural example

algorithm uses this stack trace to trace the chain of function calls leading to the
error. Starting with the function f2(A), the algorithm traces back to the caller,
r(A), which recursively calls itself until A becomes zero, triggering the call to
f2(0). The algorithm then follows the call-chain back to f(A), which, when A is
negative, directs execution to r(A). By reconstructing this path from 2/1 through
r/1 and f/1, our algorithm gathers the conditions along the way, such as the fact
that A is initially negative and r(A) will recursively increment it until it reaches
zero. These symbolic constraints are then used to generate inputs, confirming that
any negative value of A leads to the runtime error in f2/1. This targeted path
exploration, guided by the stack trace, allows our algorithm to efficiently pinpoint
the error and the specific input conditions that cause it.

8 Short evaluation

In this section, we evaluate the interprocedural part of our fault localization algo-
rithm using an example from an open-source Erlang codebase shown in Figure 33.
The selected code snippet handles arithmetic expression parsing in a simple in-
terpreter and was chosen because it exhibits a runtime error when processing an
incorrect expression that cannot be parsed shown in Figure 4. This error shows the
evaluation of how our algorithm traces function calls and identifies the root cause
of errors across multiple functions.

The code counsists of functions for parsing and evaluating expressions (parse/1,
parser/1, expression/1, bin/1), with the error manifesting in the expression/1
function due to an invalid argument passed through the function chain. Specifically,
the stack trace generated by the program shows the sequence of calls illustrated in
Figure 5.

The error occurs because expression/1 expects a valid token sequence to parse,
but it receives an invalid list starting with the operator ’+’ that leads to a pattern
matching failure. This is a typical scenario, where we must trace the error through

Shttps://github.com/pichi/epexercises

https://github.com/pichi/epexercises

150

18
19
20
21
22
23
2

CUA W N

multiple function calls, following the chain of execution from the initial function

Zsofia Erdei, Istvan Bozo, and Melinda Téth

parse(L) -> parser(lexer(L)).

parser(L) when is_list(L) ->
{T, [1} = expression(L),
T.

expression([’let’,{id,I},’="|T1) >
{V, [’in’ |R1]1} = expression(T),
{E, R2} = expression(R1),
{{’let’, I, V, E}, R2};
expression([’if’|T]) ->
{C, [’then’|R1]1} = expression(T),
{X, [’else’|R2]} = expression(R1),
{Y, R3} = expression(R2),
{{’if’, C, X, Y}, R3};

expression([’"’|T]) -> {X, R} = expression(T), {{""’, X}, R};

expression([’ (" |T1) -> {X, [’)’|IR]I} = bin(T), {X, R};
expression([{id, _}=X|T1) -> {X, T};
expression([{num, _}=X|T1) -> {X, T3I}.

bin(L) -> {X, [0p|T1} = expression(L),
true = lists:member(Op, [’+’,’=",’*", ’/’1),

{Y, R} = expression(T),
{{Op, X, Y}, R3.

Figure 3: Evaluation

** exception error: no function clause matching

e38:expression([’+’,{num,13},’)’]1) (e38.erl, line 11)

in function e38:bin/1 (e38.erl, line 27)
in call from e38:expression/1 (e38.erl, line 21)
in call from e38:parser/1 (e38.erl, line 8)

Figure 4: Runtime error evaluating an expression

call in parse/1 to the final error point in expression/1.

The interprocedural algorithm effectively traces the error through multiple func-
tion calls by following the stack trace. While the depth-limiting heuristic is not
utilized in this example due to the lack of branching in the code, the stack trace
guided approach proves highly efficient in following the exact path to the error
without unnecessary exploration. Unlike random path selection or other heuris-
tics that might explore the control-flow graph exhaustively, our method provides
a direct and efficient route to identifying the path to the error and also generates

possible input values that can lead to the fault.

Selecting Execution Path for Replaying Errors 151

I {’EXIT’,{function_clause, [{e38,expression,

2 [[’+,{num,13},’)" 11,

3 [{file,"e38.erl"},{1line, 1131},

4 {e38,bin,1,[{file,"e38.erl"},{1line,25}]13},

5 {e38,expression,1,[{file,"e38.erl"},{1line,213}]3},

6 {e38,parser,1,[{file,"e38.erl"},{1line,83}13,
7 {erl_eval,do_apply,7,[{file,"erl_eval.erl”},{1line,9043}1},
8 {erl_eval,expr,6,[{file,"erl_eval.erl”},{1line,6363}13},
9 {shell,exprs,7,[{file,"shell.erl”},{1line,893}1},
10 {shell,eval_exprs,7,[{file,"shell.erl”},{1line,8493}1}1}}

Figure 5: Stack trace of the example code

9 Conclusion

Our proposed method builds upon the RefactorErl framework, a static code analysis
tool designed for analyzing and refactoring existing Erlang codebases. Our proto-
type algorithm utilizes call-chain backward symbolic execution, a combination of
forward and backward symbolic exploration. Within each function, it analyzes exe-
cution paths forward, while tracing the call-chain backwards from the target point
to the program’s entry point. Starting at the target expression, the algorithm
seeks a path from the entry point of the function containing that expression. The
intraprocedural phase uses the function’s control-flow graph to identify potential
paths to the target node.

Given the branching structure of the program graph, checking every possible
path would not be feasible. To make our prototype algorithm more efficient we
use various path selection strategies. We use backtracking within the functions,
supplemented with improvements that take advantage of the information that can
be extracted from the graph of RefactorErl, reducing the size of the graph to be
traversed. In the case of the interprocedural part, we use random path selection
to prevent starvation when some part of the program rapidly creates new states.
Combining these strategies we can effectively identify execution paths that might
lead to runtime errors.

References

[1] Baldoni, R., Coppa, E., D’elia, D. C., Demetrescu, C., and Finocchi, I. A
survey of symbolic execution techniques. ACM Computing Surveys, 51(3),
2018. DOI: 10.1145/3182657.

[2] Bozé, 1., Horpécsi, D., Horvéth, Z., Kitlei, R., Készegi, J., M., T., and Téth,
M. RefactorErl — Source code analysis and refactoring in Erlang. In Proceed-
ings of the 12th Symposium on Programming Languages and Software Tools,
pages 138-148, Tallin, Estonia, 2011. ISBN: 978-9949-23-178-2.

https://doi.org/10.1145/3182657
https://isbnsearch.org/isbn/978-9949-23-178-2

152

[3]

Zsofia Erdei, Istvan Bozo, and Melinda Téth

Cadar, C., Dunbar, D., and Engler, D. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In Proceed-
ings of the 8th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’08, pages 209—224, USA, 2008. USENIX Association. URL:
https://dl.acm.org/doi/10.5555/1855741.1855756.

Cesarini, F. and Thompson, S. Erlang programming. O’Reilly, 2009. ISBN:
978-0-596-51818-9.

de Moura, L. and Bjgrner, N. Z3: An efficient SMT solver. In Ramakrishnan,
C. R. and Rehof, J., editors, Tools and Algorithms for the Construction and
Analysis of Systems, Volume 4963 of Lecture Notes in Computer Science, pages
337-340, Berlin, Heidelberg, 2008. Springer. DOI: 10.1007/978-3-540-78800-
3_24.

Earle, C. B. Symbolic program execution using the Erlang verification tool.
In Alpuente, M., editor, 9th International Workshop on Functional and Logic
Programming, pages 42-55, 2000. URL: http://elp.webs.upv.es/workshops/
wflp2000/WFLP2000Proceedings. zip.

Erdei, Z., T6th, M., and Bozé, I. Supporting the debugging of erlang programs
by symbolic execution. Acta Universitatis Sapientiae, Informatica, 16:44-61,
2024. DOI: 10.47745/ausi-2024-0004.

Horvéth, Z., Lovei, L., Kozsik, T., Kitlei, R., Vig, A. N., Nagy, T., Té6th,
M., and Kirdly, R. Modeling semantic knowledge in Erlang for refactoring.
In Knowledge Engineering: Principles and Techniques, Proceedings of the In-
ternational Conference on Knowledge Engineering, Principles and Techniques,
Volume 54(2009) Special Issue of Studia Universitatis Babes-Bolyai, Series In-
formatica, pages 7T-16. Cluj-Napoca, Romania, 2009. URL: https://www.cs.
ubbcluj.ro/~studia-i/contents/2009-kept/Studia-2009-Kept-1-KCL.pdf.

King, J. C. Symbolic execution and program testing. Commun. ACM,
19(7):385-394, 1976. DOI: 10.1145/360248.360252.

Ma, K.-K., Yit Phang, K., Foster, J. S., and Hicks, M. Directed symbolic
execution. In Yahav, E.; editor, Static Analysis, Volume 6887 of Lecture Notes
in Computer Science, pages 95-111. Springer, Berlin, Heidelberg, 2011. DOLI:
10.1007/978-3-642-23702-7_11.

Sagonas, K. A CutEr tool. Talk at FErlang Factory, 2016.
URL: http://www.erlang-factory.com/static/upload/media/
1457739488660923kostissagonasacutertool.pdf. Accessed: Feb, 2023.

Sen, K., Marinov, D., and Agha, G. CUTE: A concolic unit testing engine for
C. ACM SIGSOFT Software Engineering Notes, 30(5):263-272, 2005. DOI:
10.1145/1095430.1081750.

https://dl.acm.org/doi/10.5555/1855741.1855756
https://isbnsearch.org/isbn/978-0-596-51818-9
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
http://elp.webs.upv.es/workshops/wflp2000/WFLP2000Proceedings.zip
http://elp.webs.upv.es/workshops/wflp2000/WFLP2000Proceedings.zip
https://doi.org/10.47745/ausi-2024-0004
https://www.cs.ubbcluj.ro/~studia-i/contents/2009-kept/Studia-2009-Kept-1-KCL.pdf
https://www.cs.ubbcluj.ro/~studia-i/contents/2009-kept/Studia-2009-Kept-1-KCL.pdf
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-642-23702-7_11
http://www.erlang-factory.com/static/upload/media/1457739488660923kostissagonasacutertool.pdf
http://www.erlang-factory.com/static/upload/media/1457739488660923kostissagonasacutertool.pdf
https://doi.org/10.1145/1095430.1081750

Selecting Execution Path for Replaying Errors 153

[13] Téth, M. and Bozd, I. Static analysis of complex software systems implemented
in erlang. In Zsoék, V., Horvéath, Z., and Plasmeijer, R., editors, Central Fu-
ropean Functional Programming School: 4th Summer School, Revised Selected
Papers, Volume 7241 of Lecture Notes in Computer Science, pages 440-498.
Springer, Berlin, Heidelberg, 2012. DOI: 10.1007/978-3-642-32096-5_9.

[14] Vidal, G. Towards Erlang verification by term rewriting. In Gupta, G. and
Pena, R., editors, Logic-Based Program Synthesis and Transformation, Volume
8901 of Lecture Notes in Computer Science, pages 109-126. Springer Interna-
tional Publishing, Cham, 2014. DOI: 10.1007/978-3-319-14125-1.

[15] Vidal, G. Towards symbolic execution in Erlang. In Voronkov, A. and Virbit-
skaite, 1., editors, Perspectives of System Informatics, Volume 8974 of Lecture
Notes in Computer Science, pages 351-360. Springer, Berlin, Heidelberg, 2015.
DOI: 10.1007/978-3-662-46823-4_28.

https://doi.org/10.1007/978-3-642-32096-5_9
https://doi.org/10.1007/978-3-319-14125-1
https://doi.org/10.1007/978-3-662-46823-4_28

	Introduction
	Background
	Related work
	Path selection algorithms
	Overview of the algorithm
	Intraprocedural strategy
	Interprocedural strategy
	Short evaluation
	Conclusion

