
Acta Cybernetica 27 (2025) 197–219.

Smart Contract in the Loop: Fault Impact

Assessment for Distributed Ledger Technologies∗

Bertalan Zoltán Péterab, Zsófia Ádámac,
Zoltán Micskeiad, and Imre Kocsisae

Abstract

Due to their decentralized and trustless nature, blockchain and distributed
ledger technologies are increasingly used in several domains, including critical
applications. The behavior of such blockchain-integrated systems is typically
driven by smart contracts. However, smart contracts are application-specific
software and may contain faults with severe system-level impacts. This is
especially true in the case of the extensively used Hyperledger Fabric (HLF)
platform, where smart contracts are written in general-purpose languages
(Java, among others), and applications can go far beyond handling virtual-
currency-like assets. In this work, we present a novel formal-verification-based
approach to smart contract verification and a high-level empirical model of the
HLF platform. Our Smart Contract in the Loop (SCIL) method uses a model
checker (Java Pathfinder) to check whether specific error properties hold for
a given smart contract, while a predefined combination of platform-level fault
modes is active. We facilitate the checking of HLF smart contracts without
modification and enable the propagation or non-propagation of platform faults
through the smart contracts to the system failure level.

Keywords: distributed ledger technology, blockchain, formal verification,
model checking, Java Pathfinder, Hyperledger Fabric

1 Introduction

Distributed ledger technologies (DLTs) – especially blockchains – provide high-
integrity distributed databases without requiring a trusted party. Initially devel-
oped with financial applications in mind and powering cryptocurrencies, blockchain

∗This paper was supported by multiple programs detailed in the Acknowledgments section.
aCritical Systems Research Group, Department of Artificial Intelligence and Systems Engi-

neering, Faculty of Electrical Engineering and Informatics, Budapest University of Technology
and Economics; Műegyetem rkp. 3, H-1111 Budapest, Hungary

bE-mail: bpeter@edu.bme.hu, ORCID: 0000-0002-5577-1369
cE-mail: adamzsofi@edu.bme.hu, ORCID: 0000-0003-2354-1750
dE-mail: micskei.zoltan@vik.bme.hu, ORCID: 0000-0003-1846-261X
eE-mail: kocsis.imre@vik.bme.hu, ORCID: 0000-0002-2792-3572

DOI: 10.14232/actacyb.312501

mailto:bpeter@edu.bme.hu
https://orcid.org/0000-0002-5577-1369
mailto:adamzsofi@edu.bme.hu
https://orcid.org/0000-0003-2354-1750
mailto:micskei.zoltan@vik.bme.hu
https://orcid.org/0000-0003-1846-261X
mailto:kocsis.imre@vik.bme.hu
https://orcid.org/0000-0002-2792-3572
https://doi.org/10.14232/actacyb.312501

198 Bertalan Zoltán Péter, Zsófia Ádám, Zoltán Micskei, and Imre Kocsis

technology now has a variety of use cases, including supply chain management,
healthcare, and telecommunication.

Blockchains & Smart Contracts Blockchains have powerful properties, such
as immutability, distribution, decentralization, and high security that make them fit
for cross-organizational (enterprise) applications. Where high integrity is paramount,
they are already widely used, even in critical applications; e.g., in the nuclear [9]
or the railway [14] industry (although, importantly, not in safety-critical func-
tions). Typically, such use cases are backed by permissioned platforms, such as
R3 Corda [12] or Hyperledger Fabric [1], but Ethereum [5] can also power permis-
sioned networks. However, where other extra-functional properties, such as timeli-
ness, age-of-information, dependability, or availability are also matters of concern,
the system-level analysis of critical applications is still largely an open challenge.

Smart contracts, introduced with Ethereum [5], are akin to stored procedures
and describe computations executed on the blockchain with effects that are per-
sisted on-chain. They extend the original accounting “ledger” functionality of per-
missionless blockchains with rich, self-executing business logic. Smart contracts
have since become ubiquitous and are widely used in most blockchain frameworks,
enabling decentralized collaboration among the participants.

However, smart contracts are pieces of software and thus susceptible to faults
with potentially devastating consequences. The beneficial properties of blockchains
may also pose some issues; e.g., even if a bug is found, the ledger’s immutability
inherently prevents fault removal. Because of these risks, verifying smart contracts
has been a central research topic in recent years, bringing about several approaches
for fault removal and prevention [22]. These are mostly design-time methods, such
as static analysis, and primarily target Ethereum and the Solidity programming
language.

Hyperledger Fabric (HLF) [1] is a widely used, mature, enterprise-grade permis-
sioned blockchain platform maintained by Linux Foundation Decentralized Trust
(LFDT). It offers pluggable consensus mechanisms, identity management, flexible
“subnetting” features, and privacy mechanisms. Fabric powers several projects in
both development and production in various domains1. In HLF, the network must
have smart contracts (called “chaincode”) for any meaningful transactions to be
able to occur.

Lack of Cross-Organizational V&V Support There is significantly less sup-
port for verifying enterprise smart contracts, even though recent developments show
that the Ethereum Virtual Machine (EVM) is no longer the only available smart
contract execution environment; known alternatives include:

• WebAssembly (WASM) [19] (used by Polkadot [23])
• the Berkeley Packet Filter (BPF) [15] VM (used by Solana [24])
• the Move [2] VM (used by the Aptos Blockchain [2])

1See the use case tracker at https://www.hyperledger.org/learn/use-case-tracker/.

https://www.hyperledger.org/learn/use-case-tracker/
https://www.hyperledger.org/learn/use-case-tracker/

Smart Contract in the Loop: Fault Impact Assessment for DLTs 199

Enterprise smart contracts necessitate developing different techniques from its pub-
lic counterparts for several reasons, such as the usage of general-purpose program-
ming languages instead of domain-specific ones to write smart contracts or addi-
tional variable features that have to be taken into account in the enterprise case,
such as deployment. Further complications arise from the fact that enterprise solu-
tions are often not openly available, lowering the number of available case studies
and evaluations, thus hindering research efforts in this area.

One cannot follow the same methodologies for the verification and validation
(V&V) of cross-organizational platforms and smart contracts that are already
widely available in the literature. The main reason is that while in public platforms
such as Ethereum, a canonical set of platform events and relevant attacks can be
defined, there is much more variability in these aspects on consortial networks. We
explain this notion in detail in Section 2.

Nevertheless, some formal verification approaches can be employed to verify
smart contracts both in public and consortial applications [11, 3]. However, to our
knowledge, no tooling enables the impact assessment of platform-level faults given
an unmodified smart contract implementation, especially for enterprise platforms
such as HLF – even though the differences in deployment and the platform greatly
influence the possible fault modes. To take all of that into account, verification
methods either need to divide all of these components into small parts and verify
them separately, or they need to experiment with methods that can handle several
of these layers together. We believe that the latter cannot be disregarded, as issues
emerging from these systems as a whole must be considered.

While we have little information about cross-organizational smart contracts, as
they are typically kept private, we can hypothesize that the majority of them are
more or less direct translations of existing contracts from the public blockchain
world. Furthermore, as the general-purpose languages used by most consortial
platforms were not designed with smart contract development in mind, we also
postulate that there are more types of faults to consider for these programs than for
those written for the EVM. Unfortunately, we do not have a library of such common
faults, as no suitable corpus of consortial contracts is available. At the same time,
faults in cross-organizational smart contracts may be more consequential, as the
potential damage is not limited to losses in financial assets.

Based on all this, we recognize a lack of V&V methods specialized to enterprise
solutions, even though they are necessary based on both the use cases and the
individual characteristics of the world of enterprise blockchain platforms.

Contributions & Paper Structure In this work, we propose the application
of model checking to show whether a smart contract may develop errors in the
presence of certain platform-level faults. To this end, we present a simplified model
of the HLF blockchain platform with its primary components and configurable fault
modes. This model implementation enables the user to define several aspects of
deployment (e.g., the number of peers per organization or the channel’s endorsement
policy) and specify what faults or attacks can arise.

200 Bertalan Zoltán Péter, Zsófia Ádám, Zoltán Micskei, and Imre Kocsis

We demonstrate the viability of our approach with a Java-based prototype ca-
pable of simulating network faults in the context of a (hypothetical) safety-critical
application. This prototype can be verified using the model checker Java Pathfinder
(JPF) [16]. Our method provides the means for one to plug in their Java HLF smart
contract to the framework and determine whether a predefined property holds while
select platform-level faults are active. We dub this approach Smart Contract in the
Loop (SCIL). The prototype implementation and all other artifacts related to this
paper are open-source and available online on GitHub2.

In the next section, we briefly overview the application of formal verification
to smart contracts and DLTs and what motivates this research. In Section 3, we
present our model of the HLF platform, and we describe our Smart Contract in
the Loop approach, followed by an overview of our prototype implementation in
Section 4, and a worked out case study in Section 5. Finally, we conclude and
discuss future work in Section 6.

2 V&V of Cross-Organizational Smart Contracts

Smart contracts are programs that run on blockchains, and as with any other
software, they are prone to contain faults (“bugs”). Unfortunately, while tradi-
tional software can usually be patched and thus its faults can be removed, smart
contracts are inherently immutable; i.e., platforms are typically unprepared to sup-
port patching or upgrading these programs because they follow an append-only
paradigm. The public blockchain world quickly recognized the need for verifica-
tion and validation (V&V) activities in the smart contracts development process to
prevent these faults from making it into the deployed contracts, proposing several
diverse approaches. That being said, cross-organizational (consortial) blockchain
applications and smart contracts have unique aspects that warrant different V&V
techniques. These different techniques are still largely unexplored.

Smart contract faults may result in the loss of (commonly financial) assets in
permissionless systems and the cryptocurrency world (see, for example, the infa-
mous DAO hack [7]). The potential effects are arguably far more devastating in the
context of permissioned and especially critical applications. While smart contracts
can be enhanced with various defenses (including runtime verification mechanisms
or techniques such as n-version programming (NVP) [18]), faults of the platform
itself may still induce unintended behavior.

2.1 An Overview of Smart Contract V&V Approaches

Since the initial release of Ethereum [5] and the quick recognition of the need for
V&V techniques in smart contract development, hundreds of research papers have
been published about various verification tools and approaches. [22] collected 202
papers that are concerned with blockchain V&V techniques in general, such as
model checking, theorem proving, program verification, symbolic execution, and

2https://github.com/ftsrg/scil

https://github.com/ftsrg/scil
https://github.com/ftsrg/scil

Smart Contract in the Loop: Fault Impact Assessment for DLTs 201

Model Checking

Theorem Proving

Program Verification

Symbolic Execution

Runtime Verification

Other by technique

Bitcoin

Ethereum

Hyperledger Fabric

Other

by platform

Figure 1: Distribution of V&V techniques in the underlying corpus of [22]

runtime verification. We have summarized the distribution of these techniques
among the papers in Figure 1. The diagrams were created by filtering the papers
listed at the website3 created by the authors and counting the results.

It is clear from the results that there are significant research efforts towards
smart contract V&V, but methods targeting Ethereum far outweigh those proposed
for enterprise platforms. Indeed, Ethereum smart contracts are publicly available,
and their common problems are already well-known. On the other hand, enterprise
smart contracts are seldom made public, and therefore, we know much less about
incidents or common faults in these programs. Furthermore, there are several key
differences in cross-organizational blockchain applications that we outline in the
following subsection.

2.2 Enterprise and Public Smart Contract V&V Differences

Although not immediately apparent, applications and smart contracts on cross-
organizational distributed ledger technology (DLT) platforms may be radically dif-
ferent from their public platform counterparts. The fundamental difference is that
while the relevant failure modes and effects in public platforms are fairly canon-
ical, they are much more varied in cross-organizational DLTs. This subsection
overviews the most important differences that highlight why the V&V of consortial
DLTs forms a different, largely unsolved problem set.

Deployment The deployment model of a consortial DLT and a public blockchain
differs. First of all, the infrastructure is typically given and available for smart
contracts on permissionless blockchains. Its potential failure modes and their
associated risks are known; e.g., selfish mining [10] on Ethereum [5] before The
Merge4, but similar attacks have been identified [17] for the current PoS consen-
sus, too. Conversely, the deployment of a cross-organizational DLT is application-

3https://ntu-srslab.github.io/smart-contract-publications/
4Ethereum [5] switched from proof of work (PoW) consensus to proof of stake (PoS) on

2022-09-15.

https://ntu-srslab.github.io/smart-contract-publications/
https://ntu-srslab.github.io/smart-contract-publications/

202 Bertalan Zoltán Péter, Zsófia Ádám, Zoltán Micskei, and Imre Kocsis

dependent. It depends on the number of participating organizations, their relation-
ships, the consensus protocol (especially the endorsement policy in Hyperledger
Fabric (HLF)), and the underlying physical infrastructure, among others. Applica-
tions based on smart contracts may be affected by these parameters in unforeseeable
ways.

Further, some consortial DLTs have capabilities that simply do not exist in the
case of public networks. For instance, in HLF’s model, smart contracts is installed
independently to a number of peers in such a way that it is theoretically possible
to have different implementations of the same smart contract specification installed
onto different nodes within an organization or even across organizations. This idea
is explained in further detail in [18].

Programming Model While there has been a recent, noticeable shift towards
other programming languages and execution environments even in the public block-
chain space (e.g., Rust in Solana [24], Move on Aptos [2], Python on Algorand [6],
etc.), the vast majority of smart contracts have been written for the Ethereum
Virtual Machine (EVM) [5] and in Solidity. The common Solidity vulnerabilities,
weaknesses, and code smells are known; some examples include reentrancy, arith-
metic over- and underflow, frontrunning, and access control [21]. On the other hand,
smart contracts on consortial platforms are typically written in general-purpose
programming languages. HLF [1], for example, currently supports Go, Java, and
JavaScript. Corda [12] smart contracts are written in Java (or Kotlin).

The significance of this is twofold. First, as these languages were not developed
with smart contracts in mind, we hypothesize that their usage may imply a more
extensive yet unexplored set of potential software faults (“bugs”). As there is
practically no publicly available corpus of enterprise smart contract written in these
languages, we do not know the statistically most common problems (as opposed to
contracts written in Solidity, where sizable corpora exist). Second, while Solidity is
still a relatively new and unique language, extensive research has already been done
regarding V&V techniques for pieces of software written in ubiquitous programming
languages like Java.

Besides the language, the way the world state is stored often also differs; e.g., in
HLF, the underlying database is a simple (versioned) key-value store. This greatly
affects how smart contracts must be written, especially since serialization and key
management issues also become matters of concern.

Execution Model Both consortial and public systems rely on consensus among
participants to establish a world state agreed upon by all parties. However, the way
this consensus is reached is radically different between the two types of systems.

Finality is a crucial difference; e.g., HLF offers immediate, absolute transaction
finality, meaning that a transaction accepted by the network will deterministically
end up in a block. Consensus mechanisms in public networks are different. In PoW,
finality is probabilistic: as the block height grows, an accepted transaction is more
and more likely to become final. In PoS, there is economic finality: a transaction is

Smart Contract in the Loop: Fault Impact Assessment for DLTs 203

final when “reversing” it would be financially infeasible due to the collateral losses
of validators. As a corollary, temporary forks can form on these public platforms,
but usually not on permissioned ones (like Fabric).

Another difference is how the smart contract halting problem is solved. In
Ethereum [5] and its derivatives, gas is used for this purpose. In consortial DLTs,
timeout mechanisms are employed since it often does not make sense to track
money-like assets on the ledger.

Calls to external services from within smart contracts may be supported and
even desired in consortial DLTs, while it is only possible through oracles in Ethereum.

Variability of Platform Events and Failure Effects Since deployment and
configuration aspects need not be considered for individual applications, the ex-
pected platform-level events, attacks, and failure effects in public networks are
fairly canonical and thus can be anticipated. All of these are variable regarding
cross-organizational DLTs.

For example, in a HLF network, depending on the endorsement policy, the
downtime of a peer may result in unintended behavior even when the smart con-
tracts are entirely fault-free. Or, malicious behavior of a HLF channel’s ordering
service may also lead to issues regardless of smart contract quality. We detail an
example in our case study in Section 5, where the ordering service reorders trans-
actions (a kind of frontrunning attack), resulting in an incorrect final state of the
ledger state and a real-world accident occurring as an effect.

Based on the above, we propose that due to the radically different models of exe-
cution, programming, and expected failure effects, the V&V of cross-organizational
blockchain applications requires different, specialized approaches from those de-
veloped for public platforms. In fact, there are several traditional fault-tolerance
techniques (such as NVP or runtime verification) that are not practically applicable
to public networks (usually because of the added costs) but could be employed in
consortial settings.

Because there are so many other “moving parts,” one cannot rely on simple,
direct V&V of smart contracts (like testing or formal, static analysis). Instead, we
suggest a holistic approach where the smart contract is verifiable in the context
of the entire target network, including deployment, configuration, higher-level ap-
plications (dApps) using on the smart contract as a backend, and any potential
defenses. To this end, we have modeled the components of HLF to be able to run
simulations. However, instead of requiring the smart contract to be modeled, we
have developed a framework (for Java smart contracts) where the contract code
can be plugged in as is. We elaborate on this framework in the Section 3.

2.3 Related Work

As shown in Subsection 2.1 there has been significantly more research on V&V
techniques for public, permissionless platforms. Still, there are some papers aiming
at the permissioned HLF platform, too.

204 Bertalan Zoltán Péter, Zsófia Ádám, Zoltán Micskei, and Imre Kocsis

In [3], the authors present an approach for the formal verification and deduc-
tive verification of HLF smart contracts using the KeY prover. They define the
formal specification of Java smart contracts using Java Modeling Language (JML)
that is translated into Java Dynamic Logic (JavaDL) [4] and then perform static
analysis to ensure the specification’s rules are fulfilled. The paper states explicitly
that “verifying the correctness of the Fabric framework itself (e.g., communication
between peers and orderer) [. . .] is not within the scope” of their work.

The BCVerifier [20] tool for HLF checks the integrity of the ledger itself to detect
local modifications and to ensure transaction executions are valid. A Hyperledger
Labs project5 was created for the tool but has been since archived.

We were unable to find any such literature about other permissioned platforms,
such as R3 Corda [12]. The only related research paper is [13], where the authors
show a model-driven engineering (MDE) methodology that includes validation.

These existing solutions focus on specific elements of DLT-based applications,
such as the smart contracts or the ledger state. The model-checking-based Smart
Contract in the Loop (SCIL) approach presented in this paper is more comprehen-
sive in the sense that it does not only verify smart contract correctness or state
changes but also considers various platform-level events (faults) and potentially
deployed defenses (e.g., smart contract NVP).

3 The Smart Contract in the Loop Approach

As explained in Subsection 2.2, we propose a holistic treatment of cross-organizational
distributed ledger technology (DLT) systems for the verification and validation
(V&V) of smart-contract-based consortial applications. Concretely, we have devel-
oped our Smart Contract in the Loop (SCIL) approach that performs model check-
ing of a configurable Hyperledger Fabric (HLF) network model instance, given a
smart contract and an error property to check for. We have visualized the core
elements of our approach in Figure 2. At the core of our framework, there is an
executable HLF model (written in Java), which we describe in the next subsection.
In Subsection 3.2, we describe the further components of the SCIL framework for
HLF.

3.1 Executable Model of Hyperledger Fabric

Hyperledger Fabric (HLF) [1] is a permissioned, highly configurable, modular en-
terprise blockchain platform maintained by Linux Foundation Decentralized Trust.
Among R3’s Corda [12] and Canton [8], it is among the few widely used consortial
(cross-organizational) DLT platforms. Fabric is known to power several enterprise
use cases6.

Even with state-of-the-art verifiers, out-of-the-box model checking of a large
project, such as the implementation of HLF, is still not feasible due to numerous

5https://github.com/hyperledger-labs/blockchain-verifier
6See footnote 1.

https://github.com/hyperledger-labs/blockchain-verifier
https://github.com/hyperledger-labs/blockchain-verifier
https://github.com/hyperledger-labs/blockchain-verifier

Smart Contract in the Loop: Fault Impact Assessment for DLTs 205

Network
Design

Fault
Modes

Smart
Contract

Executable Model of HLF

Error Property
+

Bytecode Model Checker
Ò

No Error / Failure
¢

Error / Failure Trace
m

derive

Figure 2: Verification Process

factors, such as scalability issues, libraries, and the distributed nature of the project.
Therefore, we have instead created our simplified implementation-independent model
of HLF with a level of abstraction that enables meaningful formal analysis but does
not generate an overly complex state space.

The difficulty of this approach lies in the empirical nature of modeling the
network – verification outcomes are hard to trust on an abstract model based on
informal documentation and some code. We identified abstraction as a key point
regarding the quality of the model; i.e., finding the right abstraction to catch all
relevant aspects to the faults and the error property while keeping the model and
its limitations clear.

Please refer to Figure 3 for a high-level overview of our model that incorporates
both structure and dynamics (i.e., the messages between the components).

10: Block

10: Block

Peer 1
(endorsing peer)Client Chaincode Peer 2

Peer 3
(endorsing peer)Chaincode

Ordering Service

Organization 1

Organization 2

1: Transaction Proposal 2

34: R/W Set

5: Transaction Proposal

6

7

8: R/W Set

9: Transaction Envelope 10: Block

Figure 3: High-level overview of Fabric’s architecture

206 Bertalan Zoltán Péter, Zsófia Ádám, Zoltán Micskei, and Imre Kocsis

3.1.1 Main Components

In the following, we elaborate on how the main components illustrated on Figure 3
have been modeled, including how they are mapped to the “real” HLF platform’s
components and their fault modes and interactions with other components.

Unlike common public blockchain platforms such as Ethereum [5], HLF is not
designed to provide a de-facto network to be used by participants. Rather, a HLF
network comprises several independent channels used by independent consortia.
Figure 4 provides a high-level overview of this “consortial architecture.”

p Organization 1

Ò Organization 2

� Organization 3

í Organization 4

¯
Consortium 1

¯
Consortium 2

À Channel 1.1

À Channel 1.2

À Channel 2.1

ó
Ledger

ó
Ledger

ó
Ledger

Figure 4: Overview of organizations, consortia, and channels in HLF

Organizations In HLF (and so-called “consortial” platforms and networks in
general), the participants are collaborating organizations. Organizations form con-
sortia, and each consortium maintains one or more channels.

Most other components, such as peers, orderers, and clients, belong to organiza-
tions. Although not explicitly modeled at this stage, it is important to mention that
consortium member organizations agree on a per-channel so-called endorsement pol-
icy that defines the number of organizations required to endorse transactions for
them to be accepted.

Ordering Service The ordering service is an abstraction formed by all orderer
nodes in a channel, responsible for establishing a total order over the transactions
and creating new blocks. Typically, an independent organization (or several inde-
pendent organizations) provide ordering services.

We did not model individual orderer nodes at this phase, mainly due to the
high complexity of the consensus mechanisms employed during ordering. We did
model, however, the critical fault modes of ordering services:

Smart Contract in the Loop: Fault Impact Assessment for DLTs 207

1) Dropping Transactions An erroneously or maliciously behaving ordering
service may occasionally ignore transactions, refusing their inclusion in new
blocks.

2) Reordering Transactions Transaction reordering is usually done to per-
form a frontrunning-type attack; i.e., unfairly moving certain favored trans-
actions ahead of others for some business advantage.

Peers Peers maintain the distributed ledgers for the channels they are in. Fur-
thermore, peers receive and simulate client transaction requests and validate blocks
published and broadcast by the ordering service.

As we have focused on ordering, we have not yet modeled fault modes of peers,
but there are some ways they may misbehave – although the cause of these faulty
behaviors would likely not be malicious intent. For instance, a peer may simply
become unavailable, either due to issues with its physical host or network infras-
tructure problems. If the number of reachable peers is insufficient, clients will not
be able to gather enough transaction endorsements, and desired state changes may
be delayed.

Ledgers Each channel has its own ledger, where the world state is being stored.
In HLF, the ledger is a simple key-value store. Accordingly, smart contracts (chain-
code) are provided a stub through which they can read/write values from/to keys
(but more complex operations, such as range queries, are also usually available).

Channels Channels group some peers to form a “subnet” in the HLF network
with its own isolated and independent ledger. Newly created blocks are broadcast
to the peers in the channel.

If endorsement policies were also modeled, they would significantly affect the be-
havior of the channels. Inappropriately chosen policies can have significant system-
level effects – in fact, problems with endorsement policy configuration are funda-
mental fault modes of channels. However, in our current simplified implementation,
there is no specific endorsement step; thus, we did not model the endorsement pol-
icy.

Application Clients Clients are the most user-facing components of the net-
work, who submit transaction requests to peers. There may be additional logic
embedded within clients, but in our current model’s scope, clients can do noth-
ing more than submit basic transactions (function names and arguments) to select
peers.

Smart Contracts Smart contracts define the business logic of the cross-organiza-
tional collaboration a channel enables. In HLF ’s terminology, smart contracts are
typically referred to as chaincode – although more accurately, a piece of chaincode
is a group of smart contracts.

208 Bertalan Zoltán Péter, Zsófia Ádám, Zoltán Micskei, and Imre Kocsis

Chaincode is installed on one or more peers in the channel. When clients submit
transactions to peers, they in turn invoke the chaincode installed on them. The
chaincode may read and write state (key-value pairs) from/to the ledger and return
a so-called read-write set to the peer. The process is described in more detail in
the Transaction Flow subsection.

Network The collection of all independent channels, all participating peers and
orderers, the ledgers maintained by the peers, as well as the chaincode installed on
them, form a HLF network.

3.1.2 Transaction Flow

A simplified version of HLF ’s transaction flow is part of our model. Clients first
submit transaction requests to endorsing peers, who respond with their endorse-
ments and corresponding read/write sets (based on the results of the chaincode
execution simulation). Then, the client sends the endorsed requests to the ordering
service. Figures 3 and 5 visualize the process.

: Client endorser n : Peer cc at endorser n : Chaincode : Ordering Service peer m : Peer

tx proposal
invoke

r/w set
r/w set

tx envelope

block

loop [∀ endorsing peers]

loop [∀ peers]

Figure 5: Transaction flow in our HLF model

3.2 Components of the SCIL Framework

We have already described our executable HLF model in detail in the previous
subsection. In the SCIL framework, there are three configurable elements of the
model:

1) Fault Modes
The fault modes of the individual components can be toggled before sim-
ulation. For example, in HLF, if a malicious ordering service intentionally
reorders and selectively accepts (i.e., occasionally drops) transactions, ledger
updates may not always reflect the expected world state. Platform-level faults
in HLF include:

Smart Contract in the Loop: Fault Impact Assessment for DLTs 209

• malicious orderer behavior (transaction dropping, reordering)

• network faults (e.g., traffic congestion)

• host-level faults (e.g., a peer becomes unavailable)

• incorrect configuration (e.g., unsuitable endorsement policies)

• other malicious or unintentional behavior (e.g., client issues)

In a correctly configured network, Fabric protects against some of the poten-
tial faults. For example, endorsement policies can be designed to tolerate the
downtime of some peers.

2) Network Design
The network design is an instantiation of the modeled components and de-
scribes the deployment of the network. This includes aspects such as how
many organizations there are, how many peers do these organizations main-
tain, where are smart contracts installed, and what operation-time defenses
have been employed.

3) Smart Contract
Our approach’s core idea is to include the smart contract in the simulation
as is. After defining the network and selecting the fault modes, one simply
needs to plug in their existing smart contract code.

Error Property The error properties to consider during model checking can be
derived from the smart contract and the application. This would usually be an un-
desired world state after a series of transactions or some erroneous results returned
by the smart contract. We should note that while model checking can prove that
a particular error property cannot be satisfied in a given configuration (an error
state cannot be reached), it does not guarantee an utterly fault-free system.

Model Checking Given the network design, the enabled fault modes, and most
importantly, the smart contract, a model checker can determine whether the speci-
fied error property can be satisfied. If so, the model checker also provides a failure
trace – a list of events leading to the undesired state. If the property cannot be
satisfied, we have formal proof that a certain error state is unreachable (if the initial
model was correct).

The “In The Loop” Aspect We have dubbed our approach Smart Contract in
the Loop because the smart contract source code is given to the model checker “as
is.” We do not expect smart contract developers to employ model-driven engineer-
ing (MDE) methods, and thus, a formalized model of the smart contract is likely
not available. Furthermore, even if such a model exists, it is still worthwhile to
test the concrete implementation in a simulation. The advantage of this approach
is efficiency for the user: they simply need to provide the network configuration
once, then plug in their existing smart contract implementation, and run the model
checker.

210 Bertalan Zoltán Péter, Zsófia Ádám, Zoltán Micskei, and Imre Kocsis

4 Prototype Implementation

Our Java prototype implementation contains the Hyperledger Fabric (HLF) model
described in Subsection 3.1, as well as a framework for model checking using the
Smart Contract in the Loop (SCIL) approach. In the following, we describe the
key elements of the prototype in more detail.

4.1 Implementation of the HLF Model

We have visually represented the most important classes of the model in Figure 6.
A class exists for all major components, and there are also some additional util-
ity classes; e.g., we package the invoked method and the arguments passed in
InvocationRequest objects and the results returned from smart contracts (more
accurately, chaincode) in InvocationResult instances. The latter includes the
arbitrary result returned by the smart contract method and the read/write set
resulting from the transaction simulation.

Peer

processBlk() : void

getWorldState(key : String) : byte [0..*]

recvInvocationReq(req : InvocationRequest) : void

simulateTxReq() : void

installContract(contract : ContractInterface, chan : Channel) : void

recvBlk(block : Block) : void

Organization

Block

txs : RWSet [0..*]

InvocationRequest

method : String

args : Object [0..*]

Ledger

LedgerEntry

key : String

val : byte[0..*]

vers : int

OrderingService

receiveTx(rws : RWSet) : void

orderTxs() : void

Channel

broadcastBlk(b : Block) : void

Client

sendTxReq(res : InvocationRequest) : void

receiveTx(res : InvocationResult) : void

forwardTxToOrderer() : void

ContractInstance

InvocationResult

result : Object

rws : RWSet

Network

endorsingPeer

create

create

requests

blocksToValidate

create

create

create

Figure 6: Simplified class diagram of the prototype

Most of Figure 6 follows from the conceptual HLF model presented in Subsec-
tion 3.1, but there are a few bespoke classes needed for network simulation and
enabling smart contract “in the loop.” For instance, the ContractInstance class
does not, in fact, refer to a concrete instance of a specific smart contract class.
Rather, it represents a smart contract installed at a peer, but it does have a refer-
ence to a ContractInterface object that is going to be an actual instance of the
plugged smart contract class.

Smart Contract in the Loop: Fault Impact Assessment for DLTs 211

The ledger is stored in memory; the Ledger class contains a list of LedgerEntry
objects, which are, in turn, versioned key-value plain old Java objects (POJOs).
Peers have their local copy of the ledger and provide smart contracts with ledger
data during transaction “simulation.”

The Client class is not a concrete client implementation either, but an ab-
stract, logical application client that can be used to send parameterized transaction
requests (proposals) to the network.

There are several more classes present in the prototype that we have omitted for
brevity and simplicity. Many of these facilitate the network simulation explained
in the following subsection.

We should note that this model deliberately does not accurately reflect how
the real HLF works. In the actual HLF implementation, transaction processing is
much more complex as it uses shims, stubs, context providers, etc. We have done
some simplifications and abstractions to improve model checking performance (by
avoiding unnecessarily increasing the state space) and to keep our code concise and
maintainable.

4.2 Network Simulation

To perform model checking, we simulate predefined transaction requests’ execution
on the user-configured abstract HLF network. The sequence diagram in Figure 7
concisely models how the framework simulates the network.

: NetworkRunner : Client : Network peer n : Peer : ContractInterface : OrderingService

run()

sendTxReq(req)

execute()

step()
invoke()

readWriteSet
continue?

step()

continue?

step()

continue?

loop [∀ requests]

loop [∀ peers]

loop

[until ¬continue]

Figure 7: Network simulation

The primary logical entry point is the NetworkRunner#run(String,

OrderingService.FaultMode, List<InvocationRequest>) method, which first
instantiates all network components according to the supplied design and configu-
ration. For now, network design is hardcoded into NetworkRunner’s source code,

212 Bertalan Zoltán Péter, Zsófia Ádám, Zoltán Micskei, and Imre Kocsis

but in a later iteration of the tool, we plan to offer a lightweight configuration
language in which it can be specified at runtime. The method also dynamically
instantiates the smart contract (chaincode) class based on a fully qualified class
name passed as the first argument. We did not illustrate these instantiations in
Figure 7 to make the diagram more readable.

The next step is sending what is essentially a call sequence to a client defined
in the network. This call sequence is provided to the run method as its third
argument. Each call represents an invocation with a method name and a list of
arbitrary-type arguments.

The network is then ready for simulation. NetworkRunner calls Network

#execute, which in turn begins a simulation loop. In each iteration, the
Network class sequentially calls the step method of the individual components:
peers first, then clients, then the ordering service. All components implement the
Participant interface that requires them to define such a step method. Dur-
ing Peer#step, peers simulate an invocation of their local chaincode by calling
ContractInterface#invoke – which will finally delegate the call to the actual
smart contract implementation. The network simulation loop ends when no com-
ponent indicates that there is still more to do.

At this point, all (virtual) ledger updates have occurred, and it is time to check
the error property. For now, this is also hardcoded into NetworkRunner#run as a
simple Java assertion.

4.3 Plugging in Smart Contracts

As explained in the previous subsection, our prototype framework dynamically
instantiates chaincode classes based on fully qualified names passed as input argu-
ments.

To make these pieces of chaincode work in the simulation without any addi-
tional modifications, we have developed a “shadowing,” mock HLF Java package
with stubbed versions of the classes required by smart contracts. These stubbed
classes are in the org.hyperledger.fabric package and are intended to be found
on the classpath before the classes in the real package supplied with HLF. Key
mocked classes include Context, ContractInterface, ChaincodeStub, and anno-
tations offered by HLF such as @Transaction and @Contract. This setup enables
the seamless specification of existing pieces of chaincode to the framework.

4.4 Model Checking with JPF

Our framework uses Java Pathfinder (JPF) [16] (developed by National Aeronau-
tics and Space Administration (NASA)) for model checking. JPF uses a proper-
ties file for configuration where the target main class, command line arguments,
classpath, and other JPF-specific options. can be set. Listing 1 shows a partial
example configuration where the ordering service’s CAN_DROP fault mode is enabled
(meaning it randomly ignores transactions), the “Smart Contract in the Loop” is a

Smart Contract in the Loop: Fault Impact Assessment for DLTs 213

minimal implementation of the train crossing example described in Section 5, and
invocations are read from a traincrossing.invocations file.

target = hu.bme.mit.ftsrg.scil.Cli.CommandLineInterface

target.args = -f,CAN_DROP,-i,traincrossing.invocations,hu.[...].TrainCrossing

classpath = ./[...]/app-0.1.0-all.jar:./examples/train-crossing/[...]

cg.enumerate_random = true

+vm.assert = enable

Listing 1: Example (simplified) JPF configuration

5 Case Study

In the following, we demonstrate the viability of our approach in the context of a
(hypothetical) safety-critical application where an autonomous vehicle may cross
an unguarded railway intersection if, according to a (permissioned) decentralized
application (dApp), it is safe to do so; i.e., no train is approaching. Figure 8 shows
a simple schematic of this scenario.

write ledger

read ledger

Figure 8: Visualization of the train crossing scenario

The precise operation of this illustrative system (implemented for Hyperledger
Fabric (HLF)) is the following:

1. The two network participants are the railway company and the operators
of the autonomous vehicles. For simplicity, let us assume there is only a
single train and a single self-driving car – this is inconsequential from the
application’s perspective but simplifies the explanations in this paper.

2. There is a single world state entry that is updated and checked by the partic-
ipants in any transaction: the value at the canGo key, which is either "true"
or "false".

214 Bertalan Zoltán Péter, Zsófia Ádám, Zoltán Micskei, and Imre Kocsis

3. The chaincode (smart contract) has a single updateState function that takes
a boolean parameter and sets canGo to that parameter’s value.

4. The train invokes updateState before entering the intersection (to set ca ⌋

nGo to "false"). After the train has left the intersection, it again invokes
updateState (this time parameterizing it with "true").

5. Upon approaching the intersection, the car queries the ledger content and
decides to cross or wait depending on the current latest value of canGo.

One way to phrase the fundamental safety-critical requirement in this elemen-
tary system: the value of canGo MUST NOT be "true" when a train is in the
intersection.

The following describes how the individual elements first introduced in Section 3
are parameterized for the case study.

Network Design As mentioned in Section 4, the tool does not yet support dy-
namic network definitions at runtime; the network design must be specified pro-
grammatically before compiling to bytecode. For our case study, the network has
the following components:

• two organizations R1 and R2

• a single channel C1 with an ordering service O1

• one peer at each organization (P1 at R1 and P2 at R2), both in C1

• the smart contract is installed on P1

• there is a single client in O1 that connects to P1

The programmatic setup of this network can be seen in Listing 2.

Fault Modes For illustration, let us assume that the O1, the ordering service of
the channel, behaves maliciously (or at least in a faulty manner): it randomly drops
some transactions received. This behavior is enabled by passing the -f CAN_DROP

option to the program, as seen in Listing 1.

Smart Contract We have attached the implementation of the train intersection
smart contract in the Appendix, in Listing 3. It must be available on the classpath
at runtime, and its fully qualified class name is specified as the first (and only)
positional argument to the command line interface (CLI) of the framework.

Invocation Sequence We use an arbitrary sequence of a few transactions that
update the state of canGo. The final invocation in the simulation invokes the
smart contract with a "false" parameter, meaning there is a train entering the
intersection, and it is not safe to cross.

Smart Contract in the Loop: Fault Impact Assessment for DLTs 215

Error Property Based on the safety-critical requirement and derived from the
smart contract being checked (as well as the client-side invocations used for testing),
we have specified the error property as an assertion of canGo being equal to ⌋

"false" at the end of the simulation. A "true" value at the end represents a
potential accident where the train has entered the intersection, but the ledger was
not updated accordingly.

Model Checking To run the model checking, one needs to run the jpf binary
on the properties file (Listing 1). Extensive logging is implemented throughout
the framework so that, in case the error property is violated, there is a readily
available execution trace. For example, due to the CAN_DROP fault mode of the
ordering service in our example, it is possible to reach the error state when the
orderer places a transaction with a "true" parameter last. See Listing 4 for the
resulting execution trace leading up to the error.

6 Conclusion

In this paper, we have presented the novel Smart Contract in the Loop (SCIL)
method and framework in detail that can be used for the comprehensive verification
of a Hyperledger-Fabric-based [1] distributed ledger technology (DLT) application.
In contrast to the few other verification and validation (V&V) tools available for
permissioned (consortial) platforms, the approach presented in this paper does not
only take the smart contracts or the ledger state into consideration but also aspects
such as deployment and potential component-level faults.

SCIL contains a high-level model of HLF’s key components and their interac-
tions and performs model checking (based on Java Pathfinder (JPF) [16]) to deter-
mine whether a predefined error property can be fulfilled in the defined network and
having the smart contract implementation (given to the tool “as is”) installed. In
other words, the tool can show how platform-level behavior can impact service-level
behavior through smart contracts.

We have described our approach in theory and our prototype implementation
created for the Hyperledger Fabric (HLF) platform and Java smart contracts. We
have also presented a case study to demonstrate the viability of our approach on a
theoretical safety-critical DLT application.

The framework can already be used, but there are still implementation efforts
for future work, such as allowing the specification of the network’s design at runtime
(through the command line interface (CLI)) and implementing the possibility to
define runtime defenses as well as faults. Furthermore, our model currently includes
a limited set of fault modes for the ordering service component, while there are
several other fault modes to consider.

We believe SCIL can also be extended to platforms other than HLF. Indeed, while
Solidity smart contracts and the Ethereum Virtual Machine (EVM) can still be con-
sidered “common denominators” in the blockchain space, more and more new plat-
forms support general-purpose programming languages and other domain-specific

216 Bertalan Zoltán Péter, Zsófia Ádám, Zoltán Micskei, and Imre Kocsis

languages (DSLs) for smart contract development – see, for example, Corda [12],
which also supports Java, or Substrate7, where so-called pallets are written in Rust.
The key idea of reusing already existing, ready-to-use tools for analyzing smart con-
tract bytecode also applies to other platforms wherever a virtual machine (VM) is
used for execution. This includes Corda, as well as a few other platforms, such as
Algorand [6].

Acknowledgments

The work of Bertalan Zoltán Péter, partially supported by the Doctoral Excellence
Fellowship Programme (DCEP), is funded by the National Research Development
and Innovation Fund of the Ministry of Culture and Innovation and the Budapest
University of Technology and Economics under a grant agreement with the National
Research, Development and Innovation Office.

The work of Bertalan Zoltán Péter was partially created under, and financed
through, the Cooperation Agreement between the Hungarian National Bank (MNB)
and the Budapest University of Technology and Economics (BME) in the Digitisa-
tion, artificial intelligence and data age workgroup.

The research of Zsófia Ádám was partially funded by the EKOP-24-3 New National
Excellence Program under project number EKÖP-24-3-BME-288, and the Doctoral
Excellence Fellowship Programme under project number 400434/ 2023; funded by
the NRDI Fund of Hungary.

References

[1] Androulaki, E. et al. Hyperledger Fabric: A distributed operating system
for permissioned blockchains. In Proceedings of the Thirteenth EuroSys Con-
ference, EuroSys ’18, New York, NY, USA, 2018. Association for Computing
Machinery. DOI: 10.1145/3190508.3190538.

[2] The Aptos Blockchain: Safe, scalable, and upgradeable Web3 infrastructure.
Whitepaper, Aptos Foundation, 2020. URL: https://aptosfoundation.org/
whitepaper/aptos-whitepaper_en.pdf.

[3] Beckert, B., Herda, M., Kirsten, M., and Schiffl, J. Formal specification and
verification of a Hyperledger Fabric chaincode. In 3rd Symposium on Dis-
tributed Ledger Technology, page 44–48. Institute for Integrated and Intelligent
Systems, 2018. DOI: 10.5445/IR/1000092715.

[4] Beckert, B., Klebanov, V., and Weiß, B. Dynamic Logic for Java. In Deductive
Software Verification – The KeY Book – From Theory to Practice, page 49–106.
Springer, 2016. DOI: 10.1007/978-3-319-49812-6_3.

7https://substrate.io/

https://doi.org/10.1145/3190508.3190538
https://aptosfoundation.org/whitepaper/aptos-whitepaper_en.pdf
https://aptosfoundation.org/whitepaper/aptos-whitepaper_en.pdf
https://doi.org/10.5445/IR/1000092715
https://doi.org/10.1007/978-3-319-49812-6_3
https://substrate.io/

Smart Contract in the Loop: Fault Impact Assessment for DLTs 217

[5] Buterin, V. Ethereum: A next-generation smart contract and decentralized
application platform. Whitepaper, Ethereum, 2014. URL: https://github.
com/ethereum/wiki/wiki/White-Paper/.

[6] Chen, J. and Micali, S. Algorand: A secure and efficient distributed ledger.
Theoretical Computer Science, 777:155–183, 2019. DOI: https://doi.org/

10.1016/j.tcs.2019.02.001.

[7] Dhillon, V., Metcalf, D., and Hooper, M. The DAO Hacked. In Blockchain
Enabled Applications: Understand the Blockchain Ecosystem and How to Make
it Work for You, page 67–78. Apress, Berkeley, CA, 2017. DOI: 10.1007/978-

1-4842-3081-7_6.

[8] Digital Asset. Canton Network: A network of networks for smart con-
tract applications. Whitepaper, Digital Asset, 2024. URL: https://www.
digitalasset.com/hubfs/Canton/CantonNetwork-WhitePaper.pdf.

[9] Dı́az, M., Soler, E., Llopis, L., and Trillo, J. Integrating blockchain in
safety-critical systems: An application to the nuclear industry. IEEE Access,
8:190605–190619, 2020. DOI: 10.1109/ACCESS.2020.3032322.

[10] Feng, C. and Niu, J. Selfish mining in Ethereum. In Proceedings of the 2019
IEEE 39th International Conference on Distributed Computing Systems, page
1306–1316, 2019. DOI: 10.1109/ICDCS.2019.00131.

[11] Garfatta, I., Klai, K., Gaaloul, W., and Graiet, M. A survey on formal verifica-
tion for Solidity smart contracts. In Proceedings of the 2021 Australasian Com-
puter Science Week Multiconference, ACSW ’21, New York, NY, USA, 2021.
Association for Computing Machinery. DOI: 10.1145/3437378.3437879.

[12] Gendal Brown, R., Carlyle, J., Grigg, I., and Hearn, M. Corda: An introduc-
tion. Whitepaper, R3, 2016. URL: https://docs.r3.com/en/pdf/corda-
introductory-whitepaper.pdf.

[13] Górski, T. and Bednarski, J. Applying model-driven engineering to distributed
ledger deployment. IEEE Access, 8:118245–118261, 2020. DOI: 10.1109/

ACCESS.2020.3005519.

[14] Kuperberg, M., Kindler, D., and Jeschke, S. Are smart contracts and
blockchains suitable for decentralized railway control? Ledger, 5, 2020. DOI:
10.5195/ledger.2020.158.

[15] McCanne, S. and Jacobson, V. The BSD packet filter: A new architecture for
user-level packet capture. In Proceedings of the USENIX Winter 1993 Con-
ference, USA, 1993. USENIX Association. DOI: 10.5555/1267303.1267305.

[16] National Aeronautics and Space Administration (NASA). Java Pathfinder,
2005. URL: https://github.com/javapathfinder/.

https://github.com/ethereum/wiki/wiki/White-Paper/
https://github.com/ethereum/wiki/wiki/White-Paper/
https://doi.org/https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1007/978-1-4842-3081-7_6
https://doi.org/10.1007/978-1-4842-3081-7_6
https://www.digitalasset.com/hubfs/Canton/Canton Network - White Paper.pdf
https://www.digitalasset.com/hubfs/Canton/Canton Network - White Paper.pdf
https://doi.org/10.1109/ACCESS.2020.3032322
https://doi.org/10.1109/ICDCS.2019.00131
https://doi.org/10.1145/3437378.3437879
https://docs.r3.com/en/pdf/corda-introductory-whitepaper.pdf
https://docs.r3.com/en/pdf/corda-introductory-whitepaper.pdf
https://doi.org/10.1109/ACCESS.2020.3005519
https://doi.org/10.1109/ACCESS.2020.3005519
https://doi.org/10.5195/ledger.2020.158
https://doi.org/10.5555/1267303.1267305
https://github.com/javapathfinder/

218 Bertalan Zoltán Péter, Zsófia Ádám, Zoltán Micskei, and Imre Kocsis

[17] Neu, J., Tas, E. N., and Tse, D. Two more attacks on proof-of-stake
GHOST/Ethereum. In Proceedings of the 2022 ACM Workshop on Devel-
opments in Consensus, page 43–52, New York, NY, USA, 2022. Association
for Computing Machinery. DOI: 10.1145/3560829.3563560.

[18] Péter, B. Z. and Kocsis, I. N-version programming as a mitigation for smart
contract faults in execute-order-validate blockchain systems. In Proceedings
of the 30th Minisymposium of the Department of Measurement and Informa-
tion Systems, page 33–36, Budapest, Hungary, 2023. Budapest University of
Technology and Economics. DOI: 10.3311/minisy2023-009.

[19] Rossberg, A. WebAssembly core specification. W3c recommendation, W3C,
2019. URL: https://www.w3.org/TR/wasm-core-1/.

[20] Shimosawa, T., Sato, T., and Oshima, S. BCVerifier: A tool to verify Hyper-
ledger Fabric ledgers. In Proceedings of the 2020 IEEE International Confer-
ence on Blockchain, page 291–299, 2020. DOI: 10.1109/Blockchain50366.

2020.00043.

[21] Soud, M., Liebel, G., and Hamdaqa, M. A fly in the ointment: an empiri-
cal study on the characteristics of Ethereum smart contract code weaknesses.
Empirical Software Engineering, 29(1):13, 2024. DOI: 10.1007/S10664-023-

10398-5.

[22] Tolmach, P., Li, Y., Lin, S.-W., Liu, Y., and Li, Z. A survey of smart contract
formal specification and verification. ACM Computing Survey, 54(7):1–38,
2021. DOI: 10.1145/3464421.

[23] Wood, G. Polkadot: Vision for a heterogeneous multi-chain framework.
Whitepaper, Ethereum & Parity, 2016. URL: https://whitepaper.io/

document/596/polkadot-whitepaper.

[24] Yakovenko, A. Solana: A new architecture for a high performance
blockchain. Whitepaper, Solana Foundation, 2017. https://solana.com/

solana-whitepaper.pdf.

https://doi.org/10.1145/3560829.3563560
https://doi.org/10.3311/minisy2023-009
https://www.w3.org/TR/wasm-core-1/
https://doi.org/10.1109/Blockchain50366.2020.00043
https://doi.org/10.1109/Blockchain50366.2020.00043
https://doi.org/10.1007/S10664-023-10398-5
https://doi.org/10.1007/S10664-023-10398-5
https://doi.org/10.1145/3464421
https://whitepaper.io/document/596/polkadot-whitepaper
https://whitepaper.io/document/596/polkadot-whitepaper
https://solana.com/solana-whitepaper.pdf
https://solana.com/solana-whitepaper.pdf

Smart Contract in the Loop: Fault Impact Assessment for DLTs 219

Appendix

1 Network network = Network.builder()

2 .addOrganization("R1")

3 .addOrganization("R2")

4 .addPeer("P1", "R1")

5 .addPeer("P2", "R2")

6 .addOrderingService("O1", blockSize, faultMode)

7 .addChannel("C1")

8 .registerPeersToChannel(List.of("P1", "P2"), "C1")

9 .installContract(contract /* <- SCIL */ , "P1", "C1")

10 .registerOrderingServiceToChannel("O1", "C1")

11 .addClient("Client", "P1", "O1")

12 .build();

Listing 2: Programmatic network design setup for the train crossing case study

1 package hu.bme.mit.ftsrg.chaincode.traincrossing;

2

3 import org.hyperledger.fabric.contract.Context;

4 import org.hyperledger.fabric.contract.ContractInterface;

5 import org.hyperledger.fabric.contract.annotation.*;

6 import org.hyperledger.fabric.shim.ChaincodeException;

7

8 @Contract(

9 name = "TrainCrossing",

10 info = @Info(/* contract metadata */))

11 public class TrainCrossing implements ContractInterface {

12

13 @Transaction

14 public void updateState(Context ctx, String value) {

15 if (!(value.equals("true") || value.equals("false"))) {

16 throw new ChaincodeException("Value must be 'true' or 'false'");

17 }

18

19 ctx.getStub().putStringState("canGo", value);

20 }

21 }

Listing 3: Implementation of the train crossing scenario’s chaincode

220 Bertalan Zoltán Péter, Zsófia Ádám, Zoltán Micskei, and Imre Kocsis

$ jpf model.jpf
JavaPathfinder core system v8.0 [...]

== system under test
hu.bme.mit.ftsrg.scil.cli.CommandLineInterface.main(

"-v","-v","-v","-f","CAN_DROP",
"-i","updateState false! updateState true! updateState false! updateState false! updateState

true! updateState false",↪→
"hu.bme.mit.ftsrg.chaincode.traincrossing.TrainCrossing"

)

== search started: 9/30/24, 6:25 PM
[INFO | Peer#P1 @ 2024-09-30 18:25:03.164] simulating transaction request [...]
[INFO | Client#Client[connected to P1] @ 2024-09-30 18:25:03.335] forwarding transaction to

orderer [...]↪→
[INFO | OrderingService#O1 @ 2024-09-30 18:25:03.384] building a new block [...]
[INFO | Peer#P2 @ 2024-09-30 18:25:03.663] transaction applied to ledger, world state in peer

updated↪→
[INFO | network @ 2024-09-30 18:25:03.665] Network stopped

== results
error #1: gov.nasa.jpf.vm.NoUncaughtExceptionsProperty "java.lang.AssertionError: canGo should

be false in..."↪→

== statistics
elapsed time: 00:00:03
states: new=10,visited=1,backtracked=2,end=3
search: maxDepth=9,constraints=0
choice generators: thread=3 (signal=0,lock=1,sharedRef=0,threadApi=0,reschedule=2), data=6
heap: new=5543,released=2117,maxLive=3316,gcCycles=10
instructions: 274880
max memory: 248MB
loaded code: classes=324,methods=5455
== search finished: 9/30/24, 6:25 PM

Listing 4: Execution trace leading up to the violation of the error property

	Introduction
	V&V of Cross-Organizational smart contracts
	An Overview of smart contract V&V Approaches
	Enterprise and Public smart contract V&V Differences
	Related Work

	The Smart Contract in the Loop Approach
	Executable Model of Hyperledger Fabric
	Main Components
	Transaction Flow

	Components of the SCIL Framework

	Prototype Implementation
	Implementation of the HLF Model
	Network Simulation
	Plugging in smart contracts
	Model Checking with JPF

	Case Study
	Conclusion

