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On Propagating Uncertainties for Estimation and
Association using Validated Interval Simulation

Elliot Brendel®, Julien Alexandre dit Sandretto®,
and Charlotte Govignon®’

Abstract

We present a new uncertainty propagation algorithm based on interval
arithmetic. The goal is to explore the benefits of a set-based approach for
estimation and data association using validated simulation. The presented
algorithm capitalises on the measures of a dynamical system to improve its
estimation and reduce uncertainties on its trajectory. Our approach also
contributes to data association by computing the precision required for a
measure to belong to a given track with confidence levels. Mainly interested
in space surveillance, we illustrate the contributions of this new algorithm
with several scenarios of orbit determination and satellite tracking and their
numerical simulations.

Keywords: estimation, association, potential clouds, validated simulation,
satellite tracking

1 Introduction

Estimation and association are crucial steps needed in various critical applications
such as robotics, autonomous vehicles and radar surveillance. When a set of mea-
sures is provided with the respective uncertainties, the estimation problem consists
in using this information to compute the state of a dynamical system of interest,
for example its position and velocity coordinates. Usually, uncertainties on this es-
timated state are also computed. Estimation techniques which minimize the state’s
uncertainties, for instance in terms of Cramér-Rao bound, are often chosen rather
than less accurate ones. The estimation accuracy can also be improved by the

®Thales Land and Air Systems, Paris, France

YE-mail: elliot.brendel@thalesgroup.com, ORCID: 0000-0002-0458-4993

¢ENSTA Paris, Institut Polytechnique de Paris, 828 Boulevard des Maréchaux, Palaiseau
91120, France

4E-mail: julien.alexandre-dit-sandretto@ensta-paris.fr, ORCID: 0000-0002-6185-2480

¢Ecole des Ponts ParisTech, Cité Descartes, 6 et 8 avenue Blaise Pascal, 77420 Champs-sur-
Marne, France

fE-mail: charlotte.govignon@ponts.org, ORCID: 0009-0003-7703-0785

DOI: 10.14232/actacyb.314226


mailto:elliot.brendel@thalesgroup.com
https://orcid.org/0000-0002-0458-4993
mailto:julien.alexandre-dit-sandretto@ensta-paris.fr
https://orcid.org/0000-0002-6185-2480
mailto:charlotte.govignon@ponts.org
https://orcid.org/0009-0003-7703-0785
https://doi.org/10.14232/actacyb.314226

2 Elliot Brendel, Julien Alexandre dit Sandretto, and Charlotte Govignon

simulation of the considered dynamical system, which often requires computing
the solution of a differential equation representing its dynamics. When multiple
systems evolve in the observed environment, the sensor providing the measures
can produce data coming from different objects. Then, filtering of the measures
between those coming from the system of interest and the rest is mandatory to
prevent the estimate from corruption. This problem is called association. In this
paper, estimation and association techniques are presented with a focus on dealing
with dynamical systems subject to potentially large uncertainties (such as low-
earth satellites), while providing guarantees and confidence levels on the computed
results and constraining conservatism.

Data association techniques can be divided in two categories. First, delayed de-
cision techniques wait until several measures are received to perform an association
using the set of the measures. For example, Multi-Hypothesis Tracking (MHT)
[5, 17] approaches consist in building and updating a set of association hypothe-
ses until their respective estimated probabilities lead to the removal of one of the
previous hypotheses. These techniques are efficient but show high combinatorial
cost, which can lead to a long time before decision, and can be a drawback in
an operating environment. Many other delayed decision approaches consist in the
combination of gating [6] and estimation [13, 19, 20] steps. A gating step consists
in the selection of a subset of measures satisfying a condition (e.g. all the measures
whose distance with the estimate is under a chosen threshold). Then, estimation
methods, such as Extended Kalman Filter [5, 13, 19, 20] or Least Squares optimiza-
tion [10, 19, 20] perform an update of the estimate with the subset of previously
selected measures. At last, the new estimate is used to realize a final gating step,
and the new selected measures are considered as associated with the object.

Instantaneous decision techniques allocate a measure to an object at the time
when, or very shortly after, the measure is received. In these techniques, Nearest
Neighbor (NN) [5] methods consist in allocating the considered measure to its
closest object by computing a chosen quantity representing a distance between the
measure and the objects in its environment. These quantities can be deterministic
(e.g. the Cartesian distance) or statistical (e.g. the Mahalanobis distance [20]).
When multiple measures and multiple objects are considered at the same time,
Global Nearest Neighbor (GNN) methods [5] perform optimization algorithms, such
as the Hungarian method [14], to maximize association scores between measures
and objects. In general, when the number of measures and objects increases, NN
and GNN’s efficiency decreases. Probabilistic Data Association (PDA) [3, 5, 8]
techniques are instantaneous decision techniques performing the computation of
the probability of each association hypothesis and the selection of a subset of these
hypotheses. Then, a combination of the selected hypotheses is computed, allocated
to an object and used to improve its estimate. This approach is usually suitable
for environments with multiple objects and risk of confusion.

Most of the described association techniques are probabilistic approaches which
are often based on the hypothesis that Gaussian distributions describe well enough
the considered uncertainties (from the measures and the estimates) all along the
trajectories of the observed objects. However, in multiple documented examples
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such as satellite tracking [11], a Gaussian distribution propagated along a trajec-
tory can lose its Gaussian nature, in particular with large uncertainties, which can
happen when the tracked object generated a limited number of measures. The
previously presented methods then become unsuitable. Conversely, deterministic
set-based propagation and association approaches, using classical set theory func-
tions such as intersection, inclusion and contractors, provide a guaranteed enclosure
of all the possible values of the objects states. The obtained enclosures can be used
to decide, with guarantee, if a measure belongs to an object or not.

The main tool used for deterministic association and state estimation is the
well known interval arithmetic (IA). For example, the latter has been applied to
the localization of a robot in [12]. In real world, measures come with uncertainties,
but in some cases they can be completely wrong. This is the problem of outliers.
They must be carefully handled. With IA, the relaxed intersection is efficient for
the outlier management as in [7, 12]. In this paper, we focus on dynamical ob-
jects (satellites) and thus, an approach handling dynamics is required. In [18], a
method for data association and state estimation with dynamics has been proposed.
However, all these techniques require continuous, frequent or regular observations
of landmarks, which is not the case of stallites tracking. Observations are rare
and tracking is highly uncertain. If IA based techniques seem relevant in a space
surveillance context, some new methods are needed. The approaches developed in
this paper are applied to association, estimation and tracking of satellites observed
by a ground radar. Performances and benefits of these approaches are discussed in
connection to this space surveillance application. Indeed, classical IA techniques
for the propagation of uncertain trajectories will provide a too large approxima-
tion, because of the long time between observations of a satellite by a radar, due
to Earth revolution and the dynamics of satellites. The result will not be usable
for discrimination between two satellites. To deal with this issue, we propose a
confidence-based approach that allows us to make varying the well known conser-
vatism associated with TA.

Section 2 provides preliminary notions required in this paper. Our approach
for estimation and association from rare and uncertain measures is presented in
Section 3. Then, Section 4 presents numerical results for the simulation in four
different scenarios. Conclusion and perspectives are given in Section 5.

2 Preliminary Notions

One of the most used tool to handle bounded uncertainties is the interval arithmetic.
In this section, we present the notions used in the paper.

2.1 Interval arithmetic

An interval [a] = [a, @] defines the set of a € R such that ¢ < a <@. IR denotes the
set of all intervals over R. Usual mathematical operators are extended to intervals:
[a] * [b] = {a*b]|a € [a], b € [b]} with * a binary operator on real numbers. Such
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operations can sometimes be expressed via the bounds of the intervals, but not
always. For instance, the sum of two intervals [a] and [b] gives [a + b, @+ b], but
the division of an interval [a] by an interval [b] gives different expressions depending
on interval [b] containing 0 or not. Elementary functions can also be extended to
interval arithmetic. A tube denotes the image of a function f : t € R — [f(¢)] € IR.
The Cartesian product of n intervals is called an interval vector or a bozx [a] € IR".

An interval contractor associated with the set A C R™ is an operator C :
[a] € IR™ — C([a]) € IR™ satisfying the contractance property C([a]) C [a] and the
correctness property C([a])NA = [a]NA. Associated with a constraint, a contractor
allows to reduce the size of an interval while preserving the subset of real numbers

verifying the constraint.

2.2 Validated Simulation

Numerical integration consists in approximating a solution of an ordinary differ-
ential equation (ODE), & = f(z), using an integration scheme (such as Euler or
Runge-Kutta). Interval arithmetic can be applied to numerical integration to pro-
vide validated numerical integration methods, also named reachability analysis or
guaranteed simulation.

Such validated integration methods use guaranteed integration schemes, pro-
viding a discretization of time, ¢y < -+ < tend, and a computation of enclosures of
the set of states of the system xg, ..., Teng-

A guaranteed integration scheme consists in an integration method ®(f, z;,¢;, h),
approximating the exact solution z(t;.1; x;), i.e., z(tj11; ;) = ®(f,x;,t;,h), where
x; is an initial value, ¢; the initial time, and h the step-size (t;11 =t; + h), and a
truncation error function LTEs (f, z;,t;, h), such that x(¢;11; ;) = ®(f, z;,t;,h)+
LTEq;.(f, Zj, t]‘, h)

Taking into account the approximation of the used integration scheme, in con-
trast with usual integration methods, a validated numerical integration method is a
two-step method which, firstly, computes an enclosure [z;] of the solution over the
time interval [¢;,¢;4+1] to bound LTEs(f, ;,t;, k), then, computes a tight enclosure
of the solution for the final time instant ¢;,,. Multiple methods exist to perform
these steps, such as Taylor series and Runge-Kutta, see [2, 15] and the references
therein for more details. The step-size can be fixed (h is a constant) or adaptive.
Finally, functions R and R are provided by validated numerical integration methods

R — IR" ~ IR — IR"

R'{ t oo 2] { 7] — [ (1)
which for a given t;, R(t;) = {x(t;; x0) : Vo € [0]} C [2], and R([t,7]) = {z(t; z0) :
Vxo € [$0] AVt € [ﬁ,ﬂ} - [i’]

2.3 Confidence Contractor

Intervals and probabilities are strongly connected. Indeed, the universe of a distri-
bution is an interval, and a given confidence level is associated with a confidence
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interval. A confidence interval is a set S for which the probability of the given
random variable to be in this set is equal to a given probability P. In other words,
let T be a single observed sample of a quantity X. In statistics, an observed data
allows to compute a confidence interval [16], that is to say an interval which may
contain the actual value, with respect to a given confidence level. For example,
considering a confidence level CL = 95%, one can define the confidence interval
Cgs%. This interval can be obtained by observation (statistical approach) or with
the help of a known distribution (probabilistic approach). A new measure Z coming
from the (same) experiment will be in the associated confidence interval such that
.7E\ S 095% 95% of the time.
We use in our algorithm the confidence contractor proposed in [1]:

Che([z]|fx,cc) : IR — IR
[z] = [z]N[y]

(2)

with [y] defined such that Pr(z € [y]) = f[y} fx(z)dz = cc ([y] is the confidence
interval), Pr(z € [y]) stands for “probability that z is in [y]”, with « following the
distribution fx, and cc being the confidence coefficient (0 < cc < 1). For example,
cc = 0.68 for a 68% confidence level. In the domain of ODEs, confidence contractor
has been used to produce potential clouds [9] in [1]. A potential cloud obtained
from the validated simulation of an ODE is a set of reachable tubes computed from
the most conservative initial states (the support) to the less one (the mean).

3 Association and Estimation of Measures

Based on interval arithmetic and validated simulation, our approach uses measures
of the observed object’s state to improve the estimation of its trajectory and rule
out incompatible measures and tracks, where a track is a set of measures associated
together and the corresponding state estimate and uncertainties.

3.1 Definition of Measures

Measuring instruments or sensors provide measures and their corresponding un-
certainties, in either a deterministic (3) or a probabilistic (4) approach. In the
deterministic case, the measure 26 € R™ and uncertainty Az, € R’ generate
an interval vector that necessarily includes the true quantity Tiyue:

Ttrue € [xmes - Axmesa Tmes + A-’I;mes]- (3)

In the probabilistic approach, the measure is represented as a random variable X5
normally distributed with mean ., and covariance P € R"*™:

Xmes ~ N(xtrueap)- (4)

In the probabilistic approach, the uncertainty is carried by the covariance matrix
P. The probabilistic approach is often preferred to represent uncertain measures.
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However, the downside of this model is its lack of accuracy to describe rare events
and singularities that have a low probability to be drawn. In contrast, the de-
terministic, or set-based approach, allows to take the entire measure interval into
consideration, which is significantly more robust with worst case scenarios. For this
reason, we choose to consider measures as real valued intervals.

When sensors provide probabilistic uncertainties, a conversion from the uncer-
tainty covariance P to a deterministic uncertainty Axes can be performed (see
Subsection 4.2).

3.2 Estimation with Interval Measures

In an ideal case, complete observation of the system is provided. However, it is often
impossible (e.g. position is measured but not velocity), therefore a more realistic
case has to be considered with an only partial observation of the system.

3.2.1 Complete Observation of the System

A dynamical system of state ziue(t) € R™ at time ¢ € R, following the dynamics
Ztrue = f(@true) With f : R™ — R™ is considered. The state is measured with a
deterministic approach, as in (3).

From the sensor point of view, measures of the dynamical system with their
corresponding uncertainties provide an enclosure of the state. At time ¢, the mea-
sure ri* € R™ and its corresponding uncertainty Az* € R’} are received, and lead
to the following inclusion:

Tirue(t) € [z — Az, 2t + Axy’]. (5)

From the observed object point of view, validated numerical integration of the dy-
namical system provides an interval estimate encompassing the state of the system.
At time ¢, the estimate [Z;] of the system is given by:

[#] := R(t) € IR", (6)

~

where R(-) is defined in (1), and R(tg) = [Zo] with [Z(] the initial value of the
system estimate, at time to. The true state at time ¢ is also included in [Z;]:

Torue(t) € [T4]. (7)

Using (5) and (7), the state of the dynamical system is included in the intersection
of the measure and the estimate:

Tirue(t) € [z — Az 2]t + Az N [Ty]. (8)

Furthermore, if the exact time ¢ € R of the measure is not known precisely,
it can be approximated by a time interval. Assuming that the exact time ¢ is
bounded by ¢ < ¢ < ¢, then instead of using R(-) to provide the estimate as in (6),

the function R(-) generates an estimate [Z;] := R(t) € IR", taking into account the
uncertainty on the time of the measure.
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3.2.2 Partial Observation of the System

In some cases, the sensor provide measures from the dynamical system in a different
reference frame or partial measures with respect to the state. In this section, it
is considered that the sensor can only make observations y;” € RP of the system
Zerue(t) € R™, with p < m. An observation function g : R® — RP allowing the
conversion of a vector from the state frame to the measure frame, gives the following
theoretical constraint for a measure without uncertainty

9(Terue(t)) —y" =0, 9)

which represents the compatibility of the system iy with the measure y;* at
time ¢. If a measure y;" does not verify this constraint, then it cannot come from
the system xiyye. Further, if the measure y;* comes from the system Zrue, the
constraint in (9) provides more information on the state of system iy (t).

The constraint in (9) can be written as a double inclusion between two single-
tons: {g(@true(t))} C {yi"} and {yi"} C {g(@true(?))}. This last constraint can be
written as {g7! (y")} C {@true(t)} When g is bijective. Therefore, given a partial
measure interval [y"] € IRP and an estimated interval [Z;] € IR" of a system at
time ¢, the interval counterpart of (9) is as follows:

(7)) € ")
{ A (10)

The smallest subset of [Z;] that respects (10) is computed with a forward-backward
contractor [4], providing a solution without computing ¢!, as g is usually not
bijective.

As a result, when the measures are only partial and cannot be used to directly
intersect the estimated interval (8), interval contractors allow to use the partial
information provided by the measures (10).

3.3 Association of Measures

Association is performed by comparing the estimate of a dynamical system with
new measures. If the association decision is positive, the estimation step is com-
puted using the information of the measures and their uncertainties to reduce the
uncertainty of the estimate. Our algorithm (see Algorithm 1) performs these steps
for the complete observation case (see Subsection 3.2.1). A similar algorithm has
been implemented for the partial observation case (see Subsection 3.2.2) using (10)
instead of (8) as an association rule and improvement of the estimate.

Our algorithm (see Algorithm 1) ensures that a measure is compatible with
the simulated dynamical system to perform their association. Since the simula-
tion is validated, the estimated interval vector necessarily includes every possible
states of the dynamical system. So, if a measure interval does not intersect with
the simulated interval corresponding to the same instant, this necessarily means
that the measurement is incompatible with the evaluated track. Nonetheless, it is
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possible that certain measures give a non-empty intersection with the simulation
estimate, but do not really correspond to the same system. Hence the significance
of introducing confidence levels in the measurements.

Algorithm 1 Interval Measure Association with Complete Observation Algorithm.
Funct IMACO([Zy], =}, Az}*)

L if [Z] N [z — Az, 2 + Axl*] # () then Association rule
2:  Association because of compatibility

3:  Improvement of the estimate: [Z;] < [Z¢] N [z} — Aal*, 2] + Az]?] (8)
4: else
5
6
7

: Incompatibility, no association
: end if
: return [7;] and association decision

for some values of confidence 0 < cc; < 1 do
9:  Compute [T¢]ec;

10:  IMACO([Zt]ce;, z7", Ax})

11: end for

i

Once the algorithm ruled out incompatible measures, it uses the additional
information of the measure to increase the precision on the state of the dynamical
system using Section 3.2. This gives an upgrade of the estimate by reducing the
uncertainty on the state of the system after the measure.

4 Application to Satellite Tracking

Space surveillance of low-earth objects has become a major challenge, notably in
a military context. It can be addressed by ground radars, providing detection and
tracking of satellites of interest. Estimation and association are crucial steps for
the tracking of these objects.

It is important to notice that a ground radar can only provide measures for
low-earth satellites when these objects are in its field of view. Therefore, due
to earth rotation and satellite dynamics (see Subsection 4.1.2), measures of an ob-
served satellite can be spaced out by several hours. This potentially important time
range between measures can cause a loss of precision in the estimate of the satellite
state, leading to increased uncertainties and, possibly, confusion with other objects.
Moreover, the fact that a Gaussian distribution propagated along an orbital tra-
jectory can lose its Gaussian nature [11] has been documented, in particular when
uncertainties are large, for instance when the object generated a limited number of
measures.

Therefore, the deterministic set-based propagation and association approaches
developed in this paper can be relevant in a space surveillance context, allowing to
relax the Gaussian hypothesis. In this section, useful preliminary notions of orbit
determination are presented. Then, in order to demonstrate the benefits of our
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approach in various substeps of the tracking task, our approach is studied through
propagation, estimation and association scenarios. Finally, the performances of
our approach are compared to a probabilistic NN method in a propagation and
association scenario.

4.1 Preliminary Notions of Orbit Determination
4.1.1 Orbit Description

The state of a dynamical system can be given with its vectors of position and veloc-
ity. For a satellite, these six coordinates can be expressed in earth-centered Carte-
sian references such as Earth-Centered Intertial (ECI) or Farth-Centered Earth-
Fized (ECEF). Alternatively, it can be convenient to describe a satellite state in
the Keplerian or the Equinoctial frames [19], especially when the dynamics are un-
perturbed, since these frames provide a more direct handling of the parameters of
the ellipse. Modified equinoctial elements [21] (mEOE) are derived from Keplerian
elements (a, e, i, Q,w, ) as follows:

p:a(l—eQ),
f=ecos(w+Q),
g = esin (w + Q),

h = tan (%) cos {2,

k = tan (%) sin €,

L=Q+4w+0,

where a denotes the semi-major axis, e the eccentricity, ¢ the inclination, {2 the lon-
gitude of the ascending node, w the argument of the periapsis, 6 the true anomaly.
The element p is called the semi-parameter and the element L is called the true
longitude. This reference is useful for trajectory analysis because of the stability of
the state components in time (see Subsection 4.1.2).

4.1.2 Dynamics of a Satellite
The dynamics of a satellite in mEOE is given by (12) [21]:

p="2\/rAn
g= \/% (((w—i-l) sinL::g)AH'fjA” — Ay cos L) ’
h = \/ZSQAH cos L
no 2w ’
b=k sin L,

[ =Yy L B(hsinL —kcos L)A,,
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where w = 1+ fcosL + gsinL, s2 = 1+ h? + k?, and j = hsin L — kcos L.
Ay, A, and A,, are the non-two-body perturbations in the radial, tangential and
normal directions, respectively. These perturbations aggregate all other orbital
perturbations acting on the satellite, like the Jj, effects (k € {2,3,...}) which come
from the non-sphericity of the Earth, or the atmospheric drag for instance. For
low-earth orbit satellites, Jo effects induce the strongest perturbation. Therefore,
the considered perturbations are:

Jo _ _ 3pJaR2 1252
Af = —BEE (112

274
Jy _ 12pJaR? [ j(hcos L+ksin L)
At - = i s4 9 (13)
A2 — _ 6uJaR? ((1—h2—k2)j)
n rd s4 ’

where Jy is the second order zonal coefficient, R, the earth radius, p the stan-
dard gravitational parameter and r = £ is the radius. Without perturbations,
all equinoctial elements are constant except the true longitude L which is close to

linear (12).

4.1.3 Satellite Tracking by Ground Radar

The space is periodically scanned by a ground radar trying to detect new satellites.
Then, every produced measure is compared to the estimates of known objects in
order to decide if the measure was generated by a known object or by a previously
unknown one: this is the measure association step. If the measure belongs to
a known object, its estimate is updated and improved by the information of the
measure. If the measure belongs to a new object, an estimate of this object is
computed and the object will be considered as known for the future measures
performed by the radar.

4.2 Simulation Hypotheses

In this paper, the considered radar produces measures of the position of detected
objects in the ECI frame. This simplification is justified by the fact that mea-
sures performed in a Radar frame, such as Azimuth-Elevation-Range, can easily be
converted in a Cartesian frame using classical formulas [19].

The measures provided by the radar come with a covariance matrix, also in
ECI, representing the uncertainties of the associated measures. Mathematically,
each of these measures can be modelled by a random variable X ,,cs € R3 normally
distributed with mean ¢, € R? (the true position of the satellite in the ECI
frame) and covariance P € R3*? (depending on the radar performances and the
satellite position), as in (4). The confidence contractor presented in (2) provides
measure boxes, as in (3), corresponding to a chosen confidence level (in this paper,

99%).
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The presented method has been implemented in the DynIbex framework [2]. It
provides interval arithmetic tools such as contractors and offers a validated numer-
ical integration procedure based on Runge-Kutta methods with adaptive step-size.
The presented simulations were computed using the implicit midpoint method. The
tolerance on the local truncation error [2] was set to 10~7. This choice of parameters
granted a good trade-off between computation time and precision.

The objects were simulated in the mEOE frame. The semi-parameter p was
normalised by the Earth radius and the time unit for the integration was hours
instead of seconds to facilitate the computations.

Figure 1: Simulation of a trajectory of a satellite for 6 hours, represented by the
boxes of uncertainties on its position, with the starting box in red.

The initial estimate of each simulated satellite is supposed to be normally dis-
tributed with a mean vector xy and a covariance matrix P. zo depends on the
scenario. P is common to scenarios 1 to 3 (see Subsections 4.3, 4.4 and 4.5) and
chosen diagonal such that Pj; = 594.817, Pgg = 1.258-107 " and P;; = 5.948-10714
for i = {2,...,5}. This covariance matrix is representative of the uncertainties on
the state of a satellite after a few measures. It is satisfactory to demonstrate the
contribution of our algorithm but in operating environment, distinct covariance ma-
trices for the satellites of interest would be considered, depending on the measures
used to compute their respective estimate, and a given time at which the matrices
are evaluated.

Then, a reference box is computed using the confidence contractor of (2) with a
99% confidence level: Azyer = [—Zref, Tref] Where Zyer1 = 100, Trer,g = 1.45408-107°
and Zyer; = 1070 for i = {2,...,5}. This represents an uncertainty of [—100, 100]
meters on the semi-parameter p, and approximately [—100, 100] meters on the arc
of circle represented by the true longitude L when the altitude of the satellite is
500 kilometers.
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The potential clouds associated with the 5% and 95% confidence levels are given
by Azsy, = 0.21AZef and Axgsy = 0.645Axer. Then, with 2y an initial state of a
satellite, the initial box associated with the n% potential cloud (n = 5,95) is given
by xo + Ax,e.

4.3 Scenario 1: Propagation of Uncertainties

The first scenario consists in the propagation of the 5% and 95% potential clouds
of a satellite for 6 hours, using the function R defined in (1).

Comparison between 5% (blue) and 95% (red) confidence levels
T T T T

300

200

100 -

-100

-200

p (m) centered using 95% value
(=]

-300 . ‘
0 0.5 1

time (s) «10%

w1078 Comparison between 5% (blue) and 95% (red) confidence levels
T T T

L (rad) centered using 95% value

2 1 I 1 I
0 0.5 1 1.5 2

time (s) «10%

Figure 2: Propagation of the 5% (blue) and 95% (red) potential clouds on the p
and L components.

Figure 2 shows the results on the components p and L. For an easier comparison
between the two potential clouds, the intervals are translated using the center of
the 95% interval. After 6 hours, the 95% potential cloud associated with the semi-
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parameter p is about 600 meters wide, three times greater than the 5% potential
cloud. Along the propagation, the order of magnitude stays the same for the two
potential clouds associated with p. In contrast, the widths of the potential clouds
associated with L increase faster and after 6 hours, the circular arcs corresponding
to such intervals are about 7 kilometers for the 5% potential cloud and 27 km for
the 95% potential cloud. The specificity of the component L is discussed in 4.4.
Finally, it can be observed that, as expected, the 5% intervals are always included
in the 95% intervals.

4.4 Scenario 2: Effect of Measures on Estimation Uncertain-
ties

In this scenario, a ground radar provided an estimate of the state of the satellite
at an initial time, and propagated its estimate for 12 hours with the function R
defined in equation (1) before being able to measure its position again. When the
satellite gets in the field of view of the radar again, a series of 10 measures of its
position over 5 minutes are taken. Using our algorithm, these measures are added
to the estimation process.

4 -3 f -3
2 x10 p ) x10 ' 4 x10 g .
I 4 f — I
— 1S
E1s yoo£ 3 | Ss ‘,'
= OV o i
— e i o I’
2 ! 52 i/ 5 2
2 = £,
0.5 21 °
= S S
0 0 0
0 5 10 15 0 5 10 15 0 5 10 15
Time (h) Time (h) Time (h)
-4 h -4 k L
g0 6 10 ¢ 015 i
B . E I3 !
56 / 5 I © /
3 ! 34 I/ £ o1
8 , 8 ; I
<, . ~ Y - 4
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e e =
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= = =
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Figure 3: Propagation of the uncertainties, with (blue) and without (black) addition
of 10 measures after 12 hours (red).

Figure 3 shows that L is significantly impacted by the series of measures, in
comparison to other components of the state of the satellite. Indeed, the uncertainty
over L drops with the addition of measures. The precision of the other components
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also improves after the addition of measures, compared to the scenario where no
measure was added. This comes from the precision gain of L spreading to the other
state’s components through the dynamics equations.

The impact of the measures on the component L is due to L encoding the
position of the satellite along the orbit. Therefore, this component is strongly
linked to the position of the satellite, hence the steep decrease of its uncertainties
when a position measure is added. Further, the true longitude L is the component
which is the most subject to variations over time, since it is the only non-constant
one when the dynamics is unperturbed (12). Therefore, it makes the propagated
uncertainties grow faster for the true longitude L.

oorl

0.06 -

0.04 -

Width of L (rad)

0.03 -

0.02 -

0.01 -

-0.01 -

11.9 11.95 12 12.05 12.1
Time (h)

Figure 4: Focus on the effect of each measure on L.

By focusing on the impact of each measure of the series on L, it gives Figure 4,
which helps raising two points. First, not every measure helps improving the esti-
mate of the satellite’s position. Here, the first measure of the series does not reduce
the estimate’s uncertainty. Mathematically, it means that the estimation interval
was included in the measure interval. The radar is not precise enough to bring new
information. Secondly, most of the precision given by the series of measures comes
from the first measures. This could allow computing the number of measures that
would be necessary to achieve a certain precision on the position of the tracked
satellite, depending on the accuracy of the ground radar.
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4.5 Scenario 3: Potential Clouds for the Collision Issue and
Consequences on Sensor Design

The 5% and 95% potential clouds for two satellites are propagated using validated
simulation and the R function (1) with the initial states:

p1 = 6890939, po = 6961989,
f1 =0.0014125,  fo = 0.0014182,
g1 = —0.0014160, go = —0.0014102,
hy = 0.57763, hy = —0.57763,
ki = 0.0095098, ks = —0.0095068,
Ly = —0.32425, L, = —0.31903.

(14)

At last, the trajectories of the two satellites can be compared as in Figures 5a and
5b. These figures show a sample of the trajectories where the propagated boxes
intersect for a 95% confidence level but not for a 5% confidence level. In that
respect, the sensor performances can be evaluated in terms of required confidence
level and decisions can be made depending on this analysis. These decisions can be
design decisions such as improving the sensor’s accuracy or multiplying the sources
producing measures. In that case, if a sensor can only ensure that a collision will
never happen with a 5% confidence level, one can decide to use complementary
sources of measures in order to improve the estimation of the satellites states. An
other decision could be to maneuver one of the satellites in order to increase the
confidence level associated with the collision.

4.6 Scenario 4: Comparison with NN method

In this scenario, two close satellites are considered, but only one of them is the
satellite of interest whose state needs to be estimated. Two methods are compared:
a NN method [5] whose performance is evaluated with a Monte-Carlo simulation,
and a set-based approach using validated simulation and interval arithmetic.

4.6.1 Scenario inputs

The true initial states of the 2 satellites are such that they belong to the same
orbit, but satellite 2 is about 200 meters behind satellite 1 on this orbit:

p1 = 6878130, p2 =p1,
leOOO]-v f2:.f17

g1 = 07 92 = 91,

hy = 0.57735, hy = hy, (15)
kl = 0) k2 = kla

Ly =0, Ly = —0.000029078.

The estimation step is assumed to produce a normally distributed estimated state
Z1 of mean x1 = (p1, f1,91, h1, k1, L1) and covariance matrix P:

/.2?\1 NN(JH,P), (16)
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Figure 5: Position boxes at the same time in the ECI frame for the propagation
of the 5% and 95% potential clouds of two satellites (blue boxes for satellite 1 and
red boxes for satellite 2).



Estimation and Association using Validated Interval Simulation 17

where P is chosen diagonal such that Pj; = 594.817, Ps = 1.258 - 10~ and

Py = 5.948 - 1077 for i = {2,...,5}. This covariance matrix is representative of
the uncertainties on the state of a satellite after a few measures, with amplified
uncertainties for ¢ = {2,...,5} in order to enhance the comparison with Monte-

Carlo simulation.

4.6.2 NN method and Monte-Carlo simulation

Using (16), 1000 estimated states are randomly drawn and propagated for one hour
with a Runge-Kutta method of order 4. The true states of satellites 1 (z1 prop) and
2 (22,prop) are also propagated using the same method. The covariance matrix P
is propagated using the formula

Pprop = JPJT, (17)

where J is the numerically computed Jacobian matrix of the propagation function
evaluated at z; (as performed in the Extended Kalman Filter [5, 13, 19, 20]). The
association metric used to perform the NN method is the Mahalanobis distance
[20]. For each simulated estimated state Z . and for j € {1,2}, this distance is
computed using the formula

.. —~ T _ P
d;\/l,] = (-fj,prop - xll,prop) Ppr(l)p (xj7PF0P - xll,prop) . (18)

Then, for each 4 € [1,1000], if d'f\}ll < d{\f, then the ith estimate is associated the the
satellite 1. Otherwise, the ith estimate is associated with the satellite 2. The same
computations are made in the ECI frame, by converting every state and covariance
using the formulas from [21], and (17) with the Jacobian matrix of the conversion
function.

Finally, confusion rates are computed: in the mEOE frame, starting from a 0%
confusion rate (i.e. every particle is correctly associated with satellite 1), a 20.3%
confusion rate is obtained after a one hour propagation (see Figure 6). In the ECI
frame, this phenomenon is amplified and the confusion rate is about 83.4% after a
one hour propagation (see Figure 7), which means that in a large majority of cases,
the NN method would perform the wrong association in this scenario. Considering
10 consecutive measures with these confusion rates, there would only be a 10.3%
probability that the batch of 10 measures contains only measures of satellite 1 in
the mEOE frame, and 0.0000015% in the ECI frame. Therefore, the estimates of
the state of satellite 1 computed with such corrupted batch of measures would be
very often corrupted as well.

4.6.3 Set-based approach

The initial states of the two satellites and the estimate of satellite 1 are propagated
using validated simulation and the R function (1). The initial states of the two
satellites are the same as in (15), with no uncertainty. The initial state of the
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Figure 6: Confusion rate in mEOE after one hour of propagation with 1000 Monte-
Carlo simulations.

estimate of satellite 1 is drawn using (16):

P1 = 6878138,

#1 = 0.000935524,
§1 = —0.001727603,
h1 = 0.578592956,
1 = 0.000283935,
L1 = 0.000004533,

(19)

and the corresponding box of uncertainties is computed using the confidence con-
tractor of (2) with a 99% confidence level.

Unlike the NN method which in this case fails to associate the right satellite
in about 20% of the Monte-Carlo simulations in mEOE (and 83% in ECI), the
box provided by the set-based approach is guaranteed to include the true state
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Figure 7: Confusion rate in ECI after one hour of propagation with 1000 Monte-
Carlo simulations.

of satellite 1 at least 99% of the time. In this case, both true states of satellites
1 and 2 are included (see Figure 8 and Figure 9) and no association hypotheses
can be definitively chosen or left out. However, it is important to keep in mind
that multiple measures and backward propagation could enable to decide between
these hypotheses with a certain time delay and then improve the accuracy of the
state estimate. There is no need to perform a conversion of the tubes from the
mEOE frame to the ECI frame here, since the inclusions are preserved by interval
arithmetic, Figure 8 and Figure 9 already show that the conclusion would be the
same in the ECI frame.

4.7 Discussion

The considered scenarios demonstrate the contribution of our method to various
steps of the tracking of low-earth orbit satellites. Scenarios 1 and 3 emphasize
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Figure 8: Propagated uncertainty boxes after one hour: satellites 1 and 2 are
included in the estimate of satellite 1.

on our ability to compute trajectories of satellites using validated simulation and
confidence levels: the prediction step. Scenario 2 shows an association and update
step using Algorithm 1. Our set-based approach is compared to a classical NN
method in scenario 4, especially in terms of confusion rate, showing the benefits of
a set-based approach regarding association decision making in particular.

The missing step for a complete tracking would be the initialization of a track,
i.e. the first computation of a satellite state using one or very few measures. Track
initialization, also known as initial orbit determination in this context, usually relies
on different techniques, such as Gauss’s method [19], which remain to be studied
and eventually adapted in an interval counterpart.

5 Conclusion and Future Works

In this paper, we proposed a validated approach for association and estimation of
dynamical systems, taking account of uncertainties on the initial state, measures
and parameters. Our approach uses measures and their uncertainties to quantify
likelihood to belong to a certain track. Unlike Monte Carlo methods, our approach
provides mathematically guaranteed results related to confidence levels using po-
tential clouds and computed with contractors, provided that these confidence levels
reflect the performances of the sensor. Therefore, our results do not ignore low-
probability cases, while taking advantage of probability distributions to supplement
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Figure 9: Centered uncertainty tubes for one hour of propagation: the tubes of
satellites 1 and 2 are almost always included in the tube of the estimate of satellite
1, and always intersect with it.

the information provided by measures.

Furthermore, Monte Carlo methods require a substantial number of simula-
tions to be reliable, compared to set-based validated methods which only need one
simulation to have as much information with more guarantees. Then associated
measures allow to improve the state estimate, using interval arithmetic tools such
as intersection and contractors. Three scenarios showed promising results on vari-
ous steps of the tracking problem, and a fourth scenario demonstrated advantages
of such an approach compared to classical techniques such as NN.

As future works, implementing the retro-propagation feature of Dynlbex to our
algorithm would allow using the information given by a measure to reduce the
uncertainty of the track beforehand. Moreover, studying the impact of a series
of measures depending on the number of measures, the state of the system, the
precision of the estimate and the precision of the sensor could help computing
the optimal times for taking measures, to gain a maximum of information on the
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system. Since operational data are available through various sources online, it
would be interesting to apply our approach to such data, and then implement it
on an operating ground radar. New developments could then be made in order to
deal with outliers or false alarm measures which are common in this context.
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