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Effective Representation and Fast Computing With

Polyarc Bounded Intervals

Gábor Gerébab and András Sándorcd

Abstract

Complex interval arithmetic is a powerful tool for the analysis of compu-
tational errors. The naturally arising rectangular, polar, and circular interval
types yield overly relaxed bounds. The later introduced polygonal type al-
lows for arbitrarily precise representation for a higher computational cost. We
propose the polyarc interval type as an effective generalization of the above-
mentioned types. The polyarc interval can represent all types and most of
their arithmetic combinations precisely and has a better approximation ca-
pability with that of the polygonal interval. In particular, in specific cases of
antenna tolerance analysis and robot localization it can achieve perfect accu-
racy for lower computational cost then the polygonal type, which we show in
a relevant case study.

Keywords: interval arithmetic, computational geometry, antennas, robotics

1 Introduction

Interval analysis is an effective mathematical technique that allows numerical anal-
ysis of problems involving sets [23]. It has long been used to put bounds on com-
putational errors and has recently been applied in robotics, robust control, and
antenna design. It also proved to be useful for finding all the solutions of nonlinear
equations and inequalities [19]. Interval arithmetic studies the properties of the
numerical representation and arithmetic operations of intervals, and therefore it is
an essential part of interval analysis.

Pioneered by Moore [22], the interval arithmetic for analyzing real-valued com-
putational errors was soon extended to complex numbers in the form of rectangular
and polar intervals by Boche [4], and as circular intervals by Gargantini and Henrici
[13]. Hansen [16] studied the linear algebra of complex intervals and introduced
a generalized interval arithmetic. The field received increased attention in the
1990s: Ohta [24] introduced polygon interval arithmetic, a journal titled Interval
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Computations (later renamed Reliable Computing) was established [21, 20], the
Matlab/Octave software package called INTLAB was published by [27], and the
BLAS FORTRAN package received an interval extension [9]. Books on interval
analysis and arithmetic were published by Petkovic and Petkovic [26], Jaulin et al.
[19], Moore et al. [23] and Dawood [6].

Complex interval arithmetic greatly benefited from its interconnections with
geometric algebra, which is widely used in the fields of computer-aided design, image
processing, mathematical morphology, geometrical optics, and dynamical stability
analysis. The application of the Minkowski algebra to complex intervals opened
up the possibility of the representation and arithmetic combination of intervals
bounded by arbitrary explicit and implicit curves in the complex plane [12, 10].
Efficient algorithms for calculating the Minkowski sum of polygons [7], borrowed
from computational geometry, have been successfully applied in the design of robust
control systems [24, 25] and the tolerance analysis of antenna arrays [28]. The
polygonal representation typically produced much more accurate results than the
original representations, given that the vertex count was high enough (Figure 1).
However, a high vertex count came with a high computational cost.

In the tolerance analysis of sensor arrays, the polar intervals defined by indepen-
dent amplitude and phase intervals are typically the primary operands of evalua-
tion. Motivated by the success of the polygonal representation and its shortcomings
in representing polar and circular intervals and their arithmetic combinations, we
set out to find a more suitable interval type. Replacing vertices by circular arcs
came as a natural extension and led to a new interval type, the polyarc-bounded
(polyarcular) interval. By providing perfect representation for a much wider set of
intervals at a similar complexity as the polygonal interval, the new interval type
suited our application well.

Polyarc is an explicit curve type, defined by an ordered set of circular arcs
and consists of the defining arcs and implicit edges between them (Figure 2). It
allows the exact representation of the boundary of the (bounded) rectangular, polar,
circular, and polygonal intervals. It is closed under addition, negative, reciprocal,
union, and intersection operations, and in some cases under multiplication, too.

In this paper we present the previously unpublished polyarc interval type. In
Section 2 we summarize the necessary background theory and the existing interval
arithmetic methods. We present the polyarc interval type in Section 3, along with
the discussion of its properties and a description of our implementation, which is
available as an open source code in the form of a Matlab package (see Supplementary
materials). To demonstrate the applicability of our method, we show two case-
studies in Section 4, one from antenna design and another from robotics, both
intuitive yet current questions of academic and industrial interest. Finally, we
summarize our findings in Section 5 and discuss future research opportunities.

For the sake of brevity, the typesetting of symbols in equations carry specific
meanings, which is summarized in Table 1.
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Table 1: Typesetting in mathematical expressions

Typesetting Meaning Example

Calligraphic (I,R) Sets of curves or intervals I(R) =
{
t = [t, t]

∣∣t ≤ t}
Bold-italic (a,A) Sets A = {A ∈ C

∣∣Re(A) = 1}
Italic (a,A) Numbers A ∈ A = {t+ it

∣∣t ∈ t}
Lowercase (a,a) Real numbers and sets a ∈ a ⊂ R
Uppercase (A,A) Complex numbers and sets A ∈ A ⊂ C
Sans-sherif (n,N) Natural numbers and sets n ∈ {1..N} ⊂ N
Under-, overlined (t, t) Infimum and supremum [t, t] 3 t, t ≤ t ≤ t

2 Background

2.1 Complex intervals

Complex intervals are certain subsets of the complex plane C, which we will consider
our universe. Since there is no common definition for complex intervals (some prefer
the term: complex sets), for this discussion we assume that all of them are connected
and bounded sets. We also assume that they each have a piece-wise smooth, simple,
closed (Jordan) boundary curve. The set of Jordan curves is J (C).

Definition. A complex set belongs to the set I(C) of complex intervals if it is
bounded by a piecewise smooth Jordan curve:

A ∈ I(C) ⇐⇒ ∂A ∈ J (C).

The three most common complex interval types have emerged as an extension
of real intervals I(R) to the complex plane. These are the rectangular, polar [4]
and circular [13] intervals. Illustrative examples can be found in Figure 1.

Definition. A rectangular interval

a+ bi = {Z ∈ C
∣∣ Re(Z) ∈ a, Im(Z) ∈ b} ∈ R(C)

(with a, b ∈ I(R)) is the Cartesian product of two real intervals.

Definition. A polar interval is defined by the polar product of two real intervals,
that is

reiϕ = {Z ∈ C
∣∣ |Z| ∈ r,∠Z ∈ ϕ} ∈ P(C)

where r ∈ I(R) is the radial and ϕ ∈ I(R) is the angular interval, and the center
is the origin.

Definition. A circular interval is a closed disk in the complex plane, that is

O + [0, r] · ei[−π,π] = {Z ∈ C
∣∣ |Z −O| ≤ r} ∈ C(C)

with center O ∈ C and radius r ∈ R.
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Polygon interval arithmetic was introduced in [24, 25] to represent uncertainty in
robust control systems. Since a polygon can approximate any simple closed curve
with a finite dataset, it can also represent any complex interval with arbitrary
precision limited only by computational constraints. The set of polygonal curves is
J̄ (C).

Definition. Polygonal intervals are complex intervals bounded by polygonal curves.

A ∈ G(C) ⊂ I(C) ⇐⇒ ∂A ∈ J̄ (C)

Each interval type above has a finite data representation and specific algorithms
for arithmetic and set operations. An interval can be represented by different types,
and the representation can be cast from one type to the other. We consider an
interval to be a member of a given type if it can be exactly represented by it. If an
interval is not a member of the corresponding type, then we assume the smallest
inclusive interval of the type, in which case the representation will not be tight.

Definition. The tightness of a representation AX ∈ X (C) of the complex interval
A ∈ I(C) is the ratio of its original size and its represented size.

τ(AX ) =
µ(A)

µ(AX )
∈ [0, 1],

where µ(·) is the Lebesgue measure on C.

2.2 Interval arithmetic

Arithmetic operations on intervals are typically defined by the Minkowski algebra,
which is a collection of pointwise operations on sets.

Definition. For A,B ∈ I(C)

A⊕B = {A+B
∣∣A ∈ A, B ∈ B},

A⊗B = {A×B
∣∣A ∈ A, B ∈ B},

−A = {−A
∣∣A ∈ A},

A−1 = {A−1
∣∣A ∈ A},

A	B = {A+ (−B)
∣∣A ∈ A, B ∈ B} = A⊕ (−B),

A�B = {A×B−1
∣∣A ∈ A, B ∈ B} = A⊗ (B−1).

Minkowski addition (⊕) and multiplication (⊗) are both closed binary opera-
tions. The element-wise negation is a closed unary operation. This means that
the results of the sum, product and negative of complex intervals are also complex
intervals. However, the reciprocal is only a partial unary operation because the
complex zero has no inverse on the complex plane and hence intervals including
zero have unbounded inverses. The element-wise subtraction (	) and division (�)
can be defined as the combination of the operations mentioned above and conse-
quently they are closed and partial binary operations respectively. Similarly to
real intervals, the Minkowski addition and multiplication of complex intervals are
commutative and associative but not distributive [15, 26].
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Figure 1: Sum, product, and reciprocal of a) rectangular (R), b) polar (P) and
c) circular (C) intervals. Each interval type is casted to polygonal (G) and polyarc
(A) types and the tightness (τ(·)) of the arithmetic results are compared.
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Table 2: Arithmetic and set properties of complex interval types. For example
the polar type is not closed under addition, so A,B ∈ P(C) =⇒ A+B ∈A(C).
Blue symbols indicate when the operation points outside the operand type, but
can be represented by another type. In this case we indicate the most specific type
that includes the result considering that R ⊂ G and R,P, C,G ⊂ A. Red symbols
indicate when none of the types can represent the result. (* If one operand is a
polar interval, the result is polyarcular, which has a relevance in our first case study
in Section 4. † The intersection operation assumes that the operands are connected,
while the union operation assumes that the result is connected.) For formal proof
of these properties, see Supplementary materials.

A,B R(C) P(C) C(C) G(C) A(C)

A+B R(C) A(C) C(C) G(C) A(C)

A×B I(C) P(C) I(C) I(C) I(C)∗

−A R(C) P(C) C(C) G(C) A(C)

A−1 A(C) P(C) C(C) A(C) A(C)

A ∩B† R(C) P(C) A(C) G(C) A(C)

A ∪B† G(C) A(C) A(C) G(C) A(C)

Theorem. For A,B,C ∈ I(C)

A⊕B = B ⊕A, A⊗B = B ⊗A,
(A⊕B)⊕C = A⊕ (B ⊕C), (A⊗B)⊗C = A⊗ (B ⊗C),
A⊗ (B ⊕C) ⊆ (A⊗B)⊕ (A⊗C).

Also, there is no additive and multiplicative inverse element for non-degenerate
complex intervals, and therefore no inverse operations either. (Intervals consisting
of a single non-zero complex number have inverses.) We only have the following
trivial inclusions.

A⊕ (−A) 3 0, (A⊕B)	B ⊇ A,
A⊗A−1 3 1, (A⊗B)�B ⊇ A. (1)

Interval types are not closed under all operations. In other words, performing
an operation on intervals of a given type may result in an interval that cannot be
exactly represented with that type. Table 2 summarizes the arithmetic properties
of our complex interval types. These properties can be formally proven using geo-
metric algebra, in fact, they are direct consequences of the well-known arithmetic
properties of lines and circles [12]. The rigorous proof of the properties exceeds the
scope of the present paper, but a review paper is under preparation, where it will
be presented. In practice, the interval arithmetic algorithms determine the smallest
inclusive interval around the result [4, 13, 26].
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3 Polyarc interval

3.1 Concept

The boundaries of rectangular, polar, and circular intervals are all piecewise smooth
Jordan curves consisting of edges and arcs. Similarly, polygonal intervals are
bounded by edges by definition.

Definition. An edge Γ∈ Ō(C) between the points P1, P2 ∈C can be given by the
[0, 1]→ C parametrization

Γ̄(P1, P2)(t) = (1− t)P1 + tP2.

Definition. An arc Γ ∈ O̊(C) centered at O ∈ C, with radius r ∈ R and angular
interval ϕ∈I(R) is given by the [0, 1]→ C parametrization

Γ̊(O, r,ϕ)(t) = O + r exp
(
(1− t) i ϕ+ t i ϕ

)
.

A curve consisting of edges and arcs can precisely represent all the intervals of
the mentioned types. The polyarc curve is a direct extension of the polygonal curve,
where we replace the vertices with arcs keeping the implicit edges between them
(Figure 2). In turn, we propose the corresponding new interval type that contains
all the complex interval types above and has the same or better approximation
capability for arbitrary complex intervals as the polygonal intervals.

Definition. A polyarc curve (or polyarc) Γ ∈ J̊ (C) can be given by the [0, 2N]→ C
parametrization

Γ(t) =

{
Γ̊n(t− 2n + 2) for t ∈ [2n− 2, 2n− 1],

Γ̄n(t− 2n + 1) for t ∈ [2n− 1, 2n],

for n ∈ {1..N}, with alternating arc and edge pieces (either can be a single point if
necessary). Precisely

Γ̊n(t) = Γ̊(On, rn,ϕn)(t),
Γ̄n(t) = Γ̄(P2n−1, P2n)(t),

satisfying

P2n−1 = On+rne
iϕn , P2n = On+1+rn+1e

iϕ
n+1 ,

with ON+1 = O1, rN+1 = r1, ϕN+1 = ϕ1, P2N = P0.

The set of polyarc curves is J̊ (C) ⊂ J (C).

Definition. The polyarc intervals A(C) are complex intervals bounded by polyarcs.

A ∈ A(C) ⇐⇒ ∂A ∈ J̊ (C)
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Figure 2: Example of a complex interval represented by various complex interval
types. The gray area identifies the given complex interval selected to be perfectly
representable by the polyarc type; solid black lines identify the convex polygonal
(G∗) and polyarc (A) boundary curves. The grey dash-dotted lines indicate the
boundaries of inclusive rectangular (R), polar (P) and circular (C) interval type
objects. Representation tightness τ(·) is listed in text-boxes.

3.2 Properties

The properties of the polyarc interval type are directly related to that of the bound-
ary curve, which consists of arcs and edges. Since an interval is uniquely defined by
its boundary curve, arithmetic and set operations can be performed by determin-
ing the result boundary. Moreover, the result boundary can be directly calculated
from the operand boundaries using the Minkowski algebra. Set operations can be
performed by selecting the appropriate subset of the merged operand boundary
segments forming the outer or inner boundary of the joint set, so it is trivial that
the polyarc intervals will be closed under these operations. The arithmetic proper-
ties of arcs and edges can be derived from the properties of lines and circles, which
has been thoroughly analyzed by Farouki et al. in [12], starting with Theorem 2.2.

Even without a rigorous analysis, which would exceed the scope of the present
paper, we can assume the following properties. Since lines and circles are closed
under negation, arcs and edges will be also closed under it, and thus the negative
of a polyarc interval also belongs to this type. The reciprocal operation turns non-
zero-crossing lines into zero-crossing circles and vice versa, therefore arcs and edges
are not closed under it, but since the result boundary will consist of arcs and edges,
it will also be of the polyarc type – with the obvious caveat of the complex zero we
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have discussed earlier (see Figure 1).

When it comes to binary operations, the key question is whether the envelope
of the curve sum or product contains anything else than arcs and edges [11]. The
sum of lines has either no envelope or a line envelope when they are parallel. The
sum of a line and a circle has an envelope of two lines. Last, the sum of circles
has an envelope of one or two circles. We can therefore conclude that polyarc
intervals are closed under the addition operation. However, the product of lines
and circles may involve envelopes of parabola, hyperbole, ellipse and Cartesian
oval curves, except when at least one operand is a zero-crossing line or a zero-
centered circle. Therefore, polyarc intervals are not closed under multiplication.
Table 2 summarizes the arithmetic and set properties of polyarc intervals. A more
detailed description of these properties including their formal proof is available in
the Supplementary materials.

3.3 Implementation

The polyarc interval arithmetic has been implemented using the following data
types. A set of arithmetic and set operations including addition, multiplication,
negative, reciprocal, union and intersection have been implemented for each data
type. We used double precision floating point type (double) to represent real num-
bers, and two real numbers to represent complex numbers.

In our implementation real intervals are represented by storing their endpoints
(2 doubles); edges are represented by storing their complex endpoints (4 doubles);
arcs are represented by storing their complex type center, real type radius and real
interval type argument (5 doubles). Polygonal intervals are represented by storing
the ordered set of complex type vertices of the smallest bounding polygon of a given
vertex count N (2N doubles). Finally, polyarc intervals are represented by storing
the ordered set of defining arcs (see Remark 3.3) of the smallest bounding polyarc
of a given arc count N (5N doubles).

Remark. polyarc curves consist of arcs defined by their data set and the implicit
edges connecting the end-points of adjacent arcs. It is possible to suppress circular
segments by setting rn = 0, while the linear segment can be suppressed by making
sure that the endpoints are equal. Concave arcs can be created using negative
radius values.

A polyarc interval can be efficiently stored by its defining arcs only (some of
which might have zero radius1). However, for the complete representation of the
boundary curve – which will be necessary for the arithmetic operations – the implicit
edges and vertices have to be extracted (see Definition 3.1).

Other interval types (rectangular, polar, circular and polygonal) can be casted
to the polyarc type using Algorithm 1. Figure 2 gives a demonstrative example of
a complex interval represented by the polyarc interval type.

1We allow the radius of an arc to be zero to allow the representation of vertices with arc-type
objects, which simplifies the implementation of the algorithms.
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Algorithm 1 Casting an interval to the polyarc type

1: Decompose the interval boundary to an ordered set of edges and arcs.
2: Convert the vertices at the intersection of edges to zero-radius arcs1.
3: Store the arcs (including the converted vertices) in a counter-clockwise order.

Remark. Roughly speaking, edges ensure the continuity of the curve, whereas ver-
tices ensure the continuity of the direction of the curve. Since the derivative jumps
at the vertices, its value there should be represented by a real interval. Therefore,
we consider a vertex as a combination of a point and an angular interval, which
is the same as a zero-radius arc. We can then consider vertices as implicit arcs
and represent them as arc type variables. Zero-length edges, which occur when
consecutive arcs meet at the same point, and redundant vertices, which can occur
when a defining arc has zero radius, are removed from the curve.

Let us see how did we implement operations of polyarcs.

Negative is the simplest unary operation, since edges are closed under it and
the curve derivative does not have to be considered. It is sufficient to negate the
defining arcs to get the result curve. The negative of an arc is

− Γ̊ = −O̊(C
∣∣O, r,ϕ) = O̊(C

∣∣−O, r,ϕ+ π). (2)

Reciprocal is slightly more involved, because the reciprocal of a non-zero-crossing
edge is an arc, and the reciprocal of an arc that is on a zero touching circle is an
edge. The result boundary curve can be calculated following Algorithm 2.

Algorithm 2 Determining the reciprocal of a polyarc interval

1: Exclude the defining arcs with zero radius.
2: Add implicit edges to the list according to the segment order in the curve.
3: Calculate the reciprocal of each segment.
4: Store the arc type result segments and the vertices at the intersection of edges.

The reciprocal of an arc is

1/Γ̊ = 1/O̊(O, r,ϕ) =

{
Ō(C

∣∣1/Γ̊(0), 1/Γ̊(1))

O̊(C
∣∣O∗, r∗, [∠(1/Γ̊(0)−O∗),∠(1/Γ̊(1)−O∗)]),

(3)

where O∗ = ν̊/(1− (r|̊ν|)2) and r∗ = −r|̊ν|2/(1− (r|̊ν|)2) are the center and radius
of the reciprocal arc respectively, and ν̊ = 1/O is the normalization coefficient that
scale-rotates the operand arc on a real one centered circle. The reciprocal of an
edge is

1/Γ̄ = 1/Ō(C
∣∣P1, P2) =

{
Ō(C

∣∣1/P1, 1/P2) if zero-crossing,

O̊(ν̄/2, |ν̄|/2, [∠(1/P1−ν̄/2),∠(1/P2−ν̄/2)] else,

(4)
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where a = Im(P1 − P2)/Re(P1 − P2) is the slope of the operand edge and ν̄ =
exp(−i arctan(a + π/2)/(P1 cos(arctan(a + π/2))) is the normalization coefficient
that scale-rotates the operand edge on a real one crossing vertical line.

Trimming is a special unary operation that turns a self-intersecting curve into a
Jordan one by extracting the inner or outer boundary. It is an indispensable part
of the implementation of the binary operations: addition, multiplication, union
and intersection. For our purposes, we implemented a simplified trimming method
shown in Algorithm 3. The method is based on the idea of following the boundary
curve in the counter-clockwise direction and turning right at each intersection if
the outer boundary is required; and turning left if the inner boundary is required.
This method cannot identify holes in the interval, which can occur for example
when two polar intervals with wide angular intervals are multiplied. The resulted
annulus is turned into a circle by the simplified trimming algorithm. For a more
sophisticated algorithm see [11].

Algorithm 3 Trimming a self-intersecting polyarc curve

1: Split the boundary curve segments where they intersect each other.
2: Select and store the curve segment containing the smallest real valued point.
3: Find segments with start-points equal to the end-point of the selected one.
4: Select and store the segment with the lowest or highest starting Gauss map

value depending whether the outer or inner boundary is to be extracted.
5: Repeat step 3 and 4 until the end-point of the selected segment equals the

start-point of an already stored segment.
6: If the inner boundary is extracted, remove the stored segments until the one

that is connected to the last one.
7: Keep the stored arcs and the vertices at the intersection of stored edges as

defining arcs for the result.

Union can be directly implemented using the trimming method by choosing the
outer boundary option. The result is only valid if the operand intervals are con-
nected.

Intersection is implemented by extracting the inner boundary with the trimming
method.

Addition is the simpler of the two binary operations, because the result boundary
consists solely of arcs and edges. It requires the extraction of the implicit edges and
vertices (arcs). The result boundary segments are a subset of the pair-wise sum of
the operand boundary segments including the edges and vertices. We identify this
subset using the Gauss map matching and trimming operations.

Gauss map matching identifies those pairs of operand boundary segments that
contribute to the result boundary. It is based on the observation that when two
curve segments (edge or arc) are added, the normal angle interval of the result is
the intersection of that of the operands. The Gauss map of a curve can be seen as
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Figure 3: Two polar intervals, A and B, and their polyarc sum before trimming.
The color of the arcs and the normal vectors indicate the Gauss map value (e.g.
γ(ΓA, t)). The Gauss maps are presented as three concentric curves in the unit
circle (with the result outside), where the angle and color indicates the Gauss map
value γ, and the radius indicates the curve parameter t. (The radii has been offset
to form the concentric rings on the left.)

its normal angle as a function of the curve parameter. A more detailed discussion
about Gauss map matching is available in the Supplementary materials.

Definition. The Gauss map interval of a regular curve segment Γ(t) is

γΓ,t = γ(Γ, t) = ∠iΓ′(t).

Proposition. For two boundary segments ΓA,n ⊂ ∂A and ΓB,k ⊂ ∂B

ΓA,n ⊕ ΓB,k ⊂ ∂(A⊕B) =⇒ γΓA,n
∩ γΓB,k

6= ∅.

Since the Gauss-map value is constant along edges, the sum of two edges
Γ̄A = Ō(C

∣∣PA,1, PA,2) and Γ̄B = Ō(C
∣∣PB,1, PB,2) is only part of the result bound-

ary if they are parallel and have the same direction, in which case the result edge
is

Γ̄A + Γ̄B =
γΓA

=γΓB

Ō(C
∣∣PA,1 + PB,1, PA,2 + PB,2). (5)
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The Gauss-map value of an arc (or vertex) Γ̊B = O̊(C
∣∣OB , rB ,ϕB) is always chang-

ing monotonously along the segment, therefore it is only a single point on the arc
that matches the Gauss map of the operand edge, in which case the result segment
is the operand edge translated by this point on the arc.

Γ̄A + Γ̊B =
γΓA
∈γΓB

Ō(C
∣∣PA,1+OB+rBe

iγΓB , PA,2+OB+rBe
iγΓB ) (6)

If we consider the Gauss map of an arc (or vertex) as an interval, then the
matching of two arcs results the intersection of these intervals, which in some
cases can consist of two disconnected intervals due to the angular wrapping (e.g.

[0.8, 2.2]π ∩ [−0.2, 1.2]π). The Gauss-map matched sum of two arcs Γ̊A and Γ̊B
then results zero, one or two arcs that is

Γ̊A + Γ̊B =
γΓA
∩γΓB

6=∅
O̊(C

∣∣OA +OB , rA + rB ,ϕA ∩ϕB) (7)

Figure 3 shows the addition of two polyarc intervals.
A simplified addition algorithm has been implemented for convex operands. A

convexity test can be implemented by checking if any of the arcs have negative
radius and if any of the vertices have higher Gauss map value at the preceding
segment than the following one. The algorithm can then follow the MinkowskiSum
algorithm in [7, Ch. 13] with the only modification that it uses the Gauss map
values instead of the edge angles and instead of adding vertices it adds arcs as in (7).
Since the sum of convex intervals has a simple boundary, the trimming operation
is unnecessary and the Gauss-map matching is simplified from the quadratic time
complexity to linear. Also, because the edges resulting from adding an operand
edge to a curve segment of the other operand implicitly results from adding the
operand vertices to the other operand segments, the extraction of the implicit edges
is unnecessary. In our code implementation, we created a special interval type
optimized for fast addition of convex polyarc intervals. The type, called polyarx
interval, uses a different storage method to avoid the extraction step of the implicit
vertices.

Multiplication is similar to the addition, because the product can be seen as ad-
dition in logarithmic domain. However, while the envelope [5] of the set formed by
the addition of arcs and edges is always bounded by arcs or edges, this is not true
for the set formed by multiplying arcs and edges [12]. Therefore, the boundary of
two intervals’ product can contain segments that are neither arcs nor edges, where
the arc-edge product set touches the envelope. This interval cannot be exactly
represented by a polyarc curve, but needs to be approximated. To find the subset
of pair-wise product of operand boundary segments that are on the result bound-
ary, we used the log-Gauss map matching and trimming algorithms. The log-Gauss
matching is based on the fact that the log-Gauss map interval of a given segment in
the product interval boundary is the intersection of the log-Gauss map intervals of
the corresponding operand curve segments. Similar to the addition algorithm, this
allows to extract the boundary curve segments by eliminating operand pairs with
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non-overlapping log-Gauss map intervals. Our algorithm also contains the analyti-
cal functions for determining whether a given curve segment touches the envelope,
in which case it will be apporoximated by an arc. Figure 4 shows an example of
the product of two polyarc intervals in both the cartesian and logarithmic domains,
and the log-Gauss map of the boundary curve of both operands and the result.

Definition. The log-Gauss map interval of a regular curve segment F (t) is

γ̊F,t = γ̊(F, t) = γ(logF, t) = ∠
F ′(t)

F (t)
= γF,t − ∠F (t).

Proposition. For two boundary segments ΓA,n ⊂ ∂A and ΓB,k ⊂ ∂B

ΓA,n ⊗ ΓB,k ⊂ ∂(A⊗B) =⇒ γ̊ΓA,n
∩ γ̊ΓB,k

6= ∅.

Algorithm 4 Determining the product of arcs and edges in the general case

1: Determine the normalized product curve from the operand parameters.
2: Determine the intersection of the operands’ log-Gauss map intervals.
3: Find the curve segment corresponding to the log-Gauss map intersection.
4: If the result segment does not touch the envelope, it is an arc, jump to step 6.
5: Fit an arc to the curve, so it is touching from the outside (see Algorithm 5).
6: Scale-rotate the result arc using the reciprocal of the normalization factor.

The special cases of edge and arc multiplication (when at least one operand
is on a zero-crossing line or a zero-centered circle) can be simply implemented
using addition in the logarithmic domain, because the logarithmic image of a zero-
crossing edge and a zero-centered arc are both edges. The only difficulty is finding
the point on the curve segment that corresponds to a given log-Gauss map, which
is less straightforward than in case of the Gauss map value. In our implementation
we used the built-in Matlab function vpasolve to numerically solve the inverse
parametric equation of the curve segment2. The implementation of the general
cases of edge and arc products require the geometric algebra described by Farouki
et al in [12], and the normalization uses Theorem 2.2. Here, the product function is
derived for the normalized (real one crossing vertical) line and (real one centered)
circle. Since the normalization does not change the log-Gauss map value, we can
determine the result curve the following Algorithm 4.

A simplified multiplication algorithm can be implemented when both operands
are convex in the logarithmic domain. A convexity test can be implemented by
checking if any of the arcs have negative radius, any of the edges have decreasing
absolute value, or any of the vertices have higher log-Gauss map value at the
preceding segment than the following one. The simplified algorithm works similar
to the MinkowskiSum algorithm in [7, Ch. 13] with the modification that it should
use the log-Gauss map value instead of the edge angle, and instead of adding vertices

2We solve the γ̊(F, t0) = γ0 equality to get t0.
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Figure 4: Two polar intervals , A and B, and and their polyarc product after
trimming. a) shows the log-Gauss maps presented as three concentric curves in the
unit circle, where the angle and color indicates the log-Gauss map value γ̊, and the
radius indicates the position on the curve t. (The radii has been offset to form the
concentric rings.) One can observe that the result segments located in the outer ring
are at the angular intersection of the operand segments in the inner rings. b) shows
the intervals in the complex plane, where color of the arcs indicate the log-Gauss
map value (e.g. γ̊(ΓA, t)), and the arrows indicate the log-normal of the curves,
which is the normal angle minus the angle of the vector pointing to the point of the
curve from the origin. The colors and arrows allow the identification of the operand
segment pairs that contribute to a given result boundary segment. The green point
cloud indicates samples from the result interval formed by multiplying samples from
the operand boundaries. c) shows the intervals in the complex logarithmic space,
where log(A×B)=log(A)+log(B). One can observe that the result in this domain
is the sum of the operands. While not indicated, the log-normal angle of a curve
at a given point in this domain is the normal angle of the curve.

it should multiply operand segments with log-Gauss-map matching. The products
of arcs and edges would be too long to present in this paper. The method used
for fitting an arc to the product envelope curve is described in Algorithm 5 3 .
The implementation was derived from the results in [12] and can be found in the
open-source code (see Supplementary materials).

3To ensure inclusive bounds, the arc is fitted from the ”outside”, which should be interpreted
as the right hand side of the curve while facing in the increasing curve parameter direction.
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Algorithm 5 Fitting an arc to a product curve segment touching the envelope

1: Determine the implicit function of the envelope curve.
2: Find the endpoints of the curve segment by numerically solving it for the log-

Gauss map parameter bounds of the operands.
3: Find the center of the circle that goes through the endpoints and touches the

envelope segment from the outside by numerically solving an inequality.
4: The fitted arc is defined by the center and the two endpoints.
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Figure 5: Example of a sensor array tolerance analysis using various complex inter-
val types. a) shows the multiplication of a circular (ACm =

∑
nA
C
m,n) and a polar

(EPm) interval. b) shows the summation of two such circular-polar products. Each
plot contains a text-box with the tightness of the rectangular (R), circular (C), con-
vex polygonal (G∗), convex polyarc (A∗) and concave polyarc (A) representations
of the result intervals (EmAm and B).

4 Case studies

4.1 Sensor array tolerance analysis

In this section, we present a case study that motivated the development of the pol-
yarc interval type. The tolerance analysis of antenna arrays using interval analysis
is an active research area within sensor array design and signal processing [18, 17].
We have previously analyzed the worst-case spatial response of acoustic arrays af-
fected by calibration errors and mutual coupling using rectangular, circular and
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polygonal interval [2]. None of these types could provide an exact representation
of the complex interval of the array response, which resulted in relaxed bounds.
Looking for a tighter solution, we found that given the physical model, the polyarc
interval type yields an exact bound, which we demonstrate in the following.

Let {Em ∈ P(C)
∣∣m ∈ {1..M}} represent the combined amplitude and phase sen-

sitivity interval of the individual elements of a sensor array, and let {Am,n ∈
C(C)

∣∣m, n ∈ {1..M}} represent the coupling coefficient interval of each pair of
elements, including the self-coupling An,n = 1. Then, assuming a narrow-band,
far-field operation, the complex response interval of the array is

B =
∑
m

Em

∑
n

Am,n. (8)

Since the boundary segments of the polar intervals are all from zero crossing lines
or zero-centered circles, the product of a circular and a polar interval can be exactly
represented using edges and arcs. Finally, the sum of polyarc intervals is polyarcu-
lar; therefore, the complex response interval is of the polyarc type: B ∈ A(C).

While rectangular and circular types are computationally light, they introduce
a significant loss of tightness at the type-casting and through the multiplication
[29, 1]. The convex polygonal type can approximate the convex arcs with arbitrary
precision, but this comes with a price of increased computational complexity [28].
We found that the polyarc type is an ideal choice for this application, because its
concave implementation can provide perfect tightness, while its convex implementa-
tion provides tighter and faster calculation than the polygonal interval arithmetic.
Figure 5 shows an example of the complex beampattern interval representation. A
more detailed version of this case study, including run-time and accuracy compari-
son of the polyarc interval arithmetic with a number of other methods is available
in [14].

4.2 Robot localization

Desrochers et al. introduce a measurement problem, in which the localization of
a robot is performed by measuring the distance and direction of three landmarks
with some tolerance [8]. In their paper, they use contractor programming, which
is an interval analysis technique – for the outer approximation of the solution set,
which is the region containing the possible locations. Since the problem can be
also formulated as a complex interval arithmetic problem, in this section, we show
a solution using the polyarc interval.

Let rn ∈ I(C) represent the interval of range measurement and ϕn ∈ I(C)
represent the interval of direction measurement of the nth landmark at the known
location Pn ∈ C. We can then represent the set of possible relative locations of the
nth landmark as a polar interval An = rne

iϕn ∈ P(C). Given N landmarks, we can
determine the set of the possible locations of the robot based on the combination
of the measurement as

B =

N⋂
n=1

(Pn −An) ∈ A(C). (9)
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Figure 6: Example of a robot location problem solved with polyarc inter-
val type given the landmark locations P = {6 + 12i,−2 + 5i,−3 + 10i} , range
measurements r = {[11, 12], [8, 10], [5, 7]}, and direction measurements ϕ =
{[14, 100], [−147,−75], [63, 150]}◦.

Since the result boundary consist of the boundary segments of translated polar
intervals, it can be exactly representing using a polyarc curve. Figure 6 the example
based on the paper [8]. It has to be noted that the intersection operation can
result multiple non-connected intervals, as would be the case in this example if the
third landmark would not be present. Such cases can be handled by combining
contractors with a branch and prune algorithm. This, however, is not available in
our current reference implementation.

5 Conclusion

In this paper, we showed that all commonly used complex interval types can be rep-
resented and arithmetically combined using the polyarc interval type with improved
tightness and similar complexity as of the polygonal method. This makes the pol-
yarc type a valuable option for performing calculations in various cases of interval
analysis. We have shown that, similar to the polygonal type, simple arithmetic
operations on convex polyarc intervals can be also performed with a computational
complexity linearly dependent on the number of elements constituting the operand
boundaries.
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We presented an implementation of the polyarc interval arithmetic and provided
an open-source code library as a reference (see Supplementary materials). We
presented a case study from antenna design that served as our motivation to develop
this method. We showed that in this particular case polyarc interval outperforms
the existing methods, when high accuracy is desired. A second case study has
been presented from robotics, where polyarc intervals provide an alternative to
contractors. These examples show that the polyarc interval type is applicable in
practical design tasks.

The reference implementation provided with this paper is for demonstrating the
algorithms and generating reproducible experiments, but not intended for produc-
tion use. The development of an open-source package in a non-proprietary language
(e.g. Python) that would conform with the 1788-2015 - IEEE Standard for Interval
Arithmetic is desirable, and would be natural continuation of the presented work.

When large number of intervals are combined by binary operations, the simpli-
fication of the result boundary is often desired to avoid the explosion of boundary
element count. The removal of collinear vertices is an efficient technique to simplify
polygons, which could be extended to polyarcs in the future by identifying joinable
edges and arcs.

In our current implementation of the polyarc multiplication, we use the built-in
Matlab function vpasolve to determine points on the result curves with a given log-
Gauss map value, and to find the tightest arc approximating the non-polyarcular
segments. Finding closed form solutions to these functions could significantly in-
crease the speed of the algorithm.

Ironically, one of the most significant challenges in the implementation is the
propagation of numerical errors, which is the origin of interval arithmetic. Such er-
rors can make tests of inclusion and equality unreliable, which are indispensable for
the geometric calculations with arcs and edges. While we could handle this problem
for the majority of cases by setting tolerances based on our observations, a thorough
analysis of an error propagation could result in a more robust implementation.

The derivation and implementation of non-linear functions on complex intervals
is also desirable, and a potential direction for future research. Furthermore, a more
detailed study of the robitic localization problem could be of interest.

Supplementary materials

More details about the polyarc arithmetic, including the formal proof of its arith-
metic properties is available in a preprint document at https://arxiv.org/abs/

2402.06430.

Our reference implementation of real and complex interval arithmetic methods
is available as a Matlab package both in the live repository at https://github.

com/unioslo-mn/ifi-complex-interval-arithmetic and in the frozen release
at [3]. The package contains classes for real intervals, rectangular, polar, circular,
convex polygonal, convex polyarc and concave polyarc type complex intervals.

https://arxiv.org/abs/2402.06430
https://arxiv.org/abs/2402.06430
https://github.com/unioslo-mn/ifi-complex-interval-arithmetic
https://github.com/unioslo-mn/ifi-complex-interval-arithmetic
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