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Considering Adjacent Sets for
Computing the Visibility Region*

Quentin Brateau®, Fabrice Le Bars®, and Luc Jaulin®

Abstract
This paper explores the problem of the paving of the union of adjacent
contractors. The focus is first put on the analysis of the topology of a set
operator, which can be stable or not stable. Then, depending on the stabil-
ity of the union operator, solutions are proposed to avoid fake boundaries in
stable and non-stable union of sets. For stable unions of sets, a boundary pre-
serving form will be developed to add a set overlapping the fake boundary in
the expression of the union, whereas for non-stable union of sets, a boundary
approach will be developed to avoid fake boundaries. Some problem-specific
solutions are also developed to avoid fake boundaries. As an example, an
enhancement of the separator on the visibility constraint is proposed. This
avoids fake boundaries while characterizing the set of non-visible points from

an observation point relative to a polygon.

Keywords: set methods, interval analysis, contractors, set inversion, topol-
ogy

1 Introduction

Interval Arithmetic and contractor programming have emerged as powerful tools in
the field of robotics [16, 5, 10, 8], offering robust methods for handling uncertainty
and performing set-based computations. These techniques have been widely applied
in robotics area such as in localization [5, 11], in path planning [3, 6], and in control
of systems [19, 14].

Interval analysis is a subset of set methods where sets are represented by inter-
vals. Some operators are defined in classical set theory, such as union, intersection,
complementary of sets and so on [17]. As intervals are representing sets, these
operators are also defined for intervals by interval arithmetic [8].
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Contractors are a mathematical function acting on intervals. They are used to
contract a domain of feasible values relative to a constraint. Denoting by IR" the
set of axis-aligned boxes of R™, the operator C : IR" — TIR™ is a contractor for
X C R™ if it meets the condition Equation (1).

C([x]) C [x] (Contractance)

Cx)NX=[xnX (Completeness) 1)

V[x] € IR, {

Figure 1 shows a graphical representation of a contractor. The contractor Cy is
contracting the provided box [b] relative to the set A in green. The resulting box is
shown in purple and represent the contracted box Ca([b]). To meet the conditions
of Equation (1), the contractor is only able to remove points outside the set A.

Figure 1: Graphical representation of a contractor

A contractor represents a set as defined in [2]. Set operators are then defined
for contractors as it is for sets. Contractors can be combined by computing their
union, their intersection, their cartesian product, and so on.

However, while most of these operations are well-defined and straightforward
to implement, the union operation presents unique challenges, particularly when
dealing with non-overlapping sets. The union of adjacent sets (i.e. sets that share
a common boundary) using contractors can sometimes result in the appearance of
fake boundaries at the interface of these sets. This phenomenon, was first high-
lighted in [20], and a solution was proposed using appropriate Disjunctive Normal
Forms (DNF) and Conjunctive Normal Forms (CNF) [1] to avoid these fake bound-
aries. However, this solution is not always applicable as sets are not always defined
as unions and intersections of sets.

For instance, the set of visible points from an observation point relative to an
obstacle is defined and implemented in [4]. By paving this set, fake boundaries may
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appear in the non-visible area. Figure 2 shows an example of the set of visible points
from an observation point relative to a polygon obstacle. The observation point is
shown in red. The set of visible points from this observation point is shown in blue,
the set of non-visible points is shown in pink, and the set of uncertain points is
shown in yellow. The obstacle is outlined in black. Fake boundaries appear within
the pink area, as lines of yellow boxes in the non-visible area.
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Figure 2: Separator on the visibility constraint

This article aims to address the problem of union operations on adjacent con-
tractors, with a focus on eliminating fake boundaries. By developing new techniques
for performing union operations on adjacent sets, we seek to minimize the added
pessimism to the results, to improve the efficiency of the paving algorithm, and to
enhance the accuracy and reliability of set-based computations in robotic applica-
tions. Added pessimism comes from bad classified boxes around the fake boundary.
These uncertain boxes might suggest a boundary, but they are clearly inside the
considered set.

This paper is organized as follows. Section 2 present the problem of the union
of adjacent contractors by an introducing example. Then, Section 3 analyze the
problem from a topological point of view, and distinguish stable and non-stable set
operators. Section 4 and Section 5 present the solutions to avoid fake boundaries
in both cases. Section 6 presents an application of the boundary approach on the
separator on the visibility constraint. Finally, Section 7 concludes the paper.

2 Problem Statement

2.1 Illustrative example

Consider three sets A, B and C defined below (2):
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A:{r1+3 29 €[—00,0]}
B: {(z1+0.5)? + 23 € [-00,4]} (2)
C: {(x1 — 0.5)? + x5 € [~00,4]}

These sets are shown in Figure 3. The interior of the set is shown in pink, and

the exterior is shown in blue.

3

(b) Set B

Figure 3: Sets A, B and C

Define a set Z, computed using A, B and C, as shown in Equation (3).

Z=(ANB)U(ANC) (3)

Set Z, shown in Figure 4c, is built as the union of sets ANB and ANC represented
in Figure 4a, and Figure 4b.

(a) Set ANB (b) Set ANC () (ANB)U(ANC)

Figure 4: Construction of set Z from A, B and C

Note that the two sets A N B and A N C share a common and non-overlapping
boundary. While paving set Z using the SIVIA algorithm [8], this common bound-
ary appears as shown in Figure 5. This boundary is called a fake boundary [20] as
it is not supposed to belong to Z.
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Figure 5: Paving of set Z

2.2 Paving point of view

As shown in Figure 6, the paving algorithm is unable to classify an inner box [b]
overlapping the fake boundary as fully inside Z. Using contractors defined for Z,
inner parts [b] \ [b1] = [b] \ Cang([b]), and [b] \ [ba] = [b] \ Cz([b]) are well
classified. The remaining part [bs] = [b] \ [b1] \ [bz] is classified as unknown and
is bisected until the paving algorithm reaches the desired precision.

ANB

Figure 6: Paving of the fake boundary

To avoid this issue, the paving algorithm has to take into account the fact that
AUA =R" With this piece of information, the box [b] can be classified as fully
inside Z in one step.
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2.3 Karnaugh map point of view

Karnaugh maps for (A NB) U (A NC) and Z are respectively shown in Figure 7a
and Figure 7b. The interior is shown in pink, the exterior is shown in blue, and the
boundary is shown in yellow. Although the interior and the exterior of these two
sets are equal, the boundaries differ. By denoting by A the boundary of a set A,
the fake boundary appearing on the paving in Figure 5 is 0ANBNC and is exactly
the difference between the boundaries of (A NB) U (AN C) and Z.

f(a,b,c) f(a,b,c)

(a) Karnaugh map of (ANB) U (AN C) (b) Karnaugh map of Z

Figure 7: Comparing Karnaugh maps of (ANB) U (ANC) and Z

2.4 Raised issues

Fake boundaries raise two issues. First they add pessimism to the results by classi-
fying boxes around the common boundary as uncertain, whereas these boxes clearly
belong to the union of the two sets. Secondly, fake boundaries slow down the paving
algorithm by causing unnecessary box bisections around them.

3 Stability of Set Operators

3.1 Topological analysis of set operators

To better understand the issue around the union of adjacent sets, we need to define
some tools to analyze the origin of these fake boundaries. Actually, although it
turns out that fake boundaries may occur regardless of whether a set operator is
Hausdorff-stable, solutions to avoid these fake boundaries are not the same in the
two cases.

3.2 Hausdorff distance
Let (S,d) be a metric space. Define the e-fattening [12] of a set X of S by Equa-
tion (4).

X, = J{zeS|dz ) < e (4)

zeX
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The e-fattening of a set X is the set of all points in S that are at most e away
from a point in X relative to the distance d of the metric space, as shown in Figure 8.

Figure 8: e-fattening of a set

The Hausdorff distance [12] between two subsets X and Y of S is defined by
Equation (5):

dg(X,Y) =inf{ee RT | XC Y, and YCX.} (5)

We also introduce the complementary Hausdorff distance defined in Equa-
tion (6):

dn(X,Y) = du(X,Y) (6)

Example. Figure 9 illustrate cases where Hausdorff distance and complementary
Hausdorff distance are significant. Figure 9a shows an example of two sets A and
B with di (A, B) large because of the small part of A far from the main part, but
dy (A, B) is tiny, whereas Figure 9b shows an example where dp (A, B) is tiny and
dy (A, B) is large because of the hole in A.

A
dy

A A
(a) Large du (A, B) (b) Large du (A, B)

Figure 9: Illustration of large Hausdorff and complementary Hausdorff distances

To take into account the general topology of sets, and to be able to compare it,
the generalized Hausdorff distance is introduced and defined in Equation (7). It is
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the maximum between the Hausdorff distance and the complementary Hausdorff
distance.

Hd(X7 Y) = max{dH (X7 Y),E(X, Y)} (7)

3.3 Hausdorff stability

Consider two subsets X and Y of S. Then a binary operator ¢ acting on set X and
Y is stable if it meets condition of Equation (8).

Hy(X,X)

vneRy, 3JeecRi, {Hd(Y &7)

< ~ o~
S = HyXo¥.Xo¥)<n  (8)
<e

Example. Consider two subsets A and B shown in Figure 10a and two other sets
A and B shown in Figure 10b.

For the union operator, dy (AUB ,AUB) is small, but dg (A UB, AUB) is large
as the union of A and B generates holes at the common boundary of A and B. Then
H;y(AUB, AU B) is large, and the union operator is not Hausdorff-stable for these
sets, as it does not meet the condition of Equation (8).

Example. Consider two sets A and B shown in Figure 10a and two other sets A
and B shown in Figure 10b. o o
For the intersection operator, dz (A NB, ANB) is small, but dg (A NB, ANB) is
large as the intersection of A and B _generates residual sets at the common boundary
of A and B. Then H;(ANB,ANB) is large, and the intersection operator is not
Hausdorf-stable for these sets, as it does not meet the condition of Equation (8).

Example. Consider the illustrative example presented in Section 2. The union
operator between ANB and A N C is Hausdorff stable as the generalized Hausdorff
distance is small. This come from the fact that the same set A is involved in the
computation of Hy(ANB,ANB) and Hy(ANC,ANC).

This Hausdorff stability condition characterizes the fact that a small perturba-
tion on sets will change the topology of the result by opening boundaries or creating
additional ones. It allows identifying topologically different problems. Adapted so-
lutions for Hausdorff-stable and non Hausdorff-stable problems will be proposed in
the following sections.

4 Stable Case Solution: Boundary-Preserving
Form
In the Hausdorff-stable case, it is possible to change the expression of the com-

puted set Z by adding a set overlapping the fake boundary. This set helps in the
classification of boxes around the fake boundary in the paving algorithm. It must
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B
(a) Sets A and B (b) Sets A and B

Figure 10: A and B are not Hausdorff-stable for union and intersection operators

be chosen such that the interior and the exterior of Z are preserved, but also its
boundary. In this example, the set D = BN C is added to the expression of Z which
becomes Z' Equation (9).

7Z'=(ANB)UANC)U(BNC) (9)

The Karnaugh map of the set D is shown in Figure 11a, and the paving of D is
shown in Figure 11b. This set ensures that the Karnaugh map of Z’ is the same as
the Karnaugh map of Z shown in Figure 7b. The resulting paving of Z’ is shown
in Figure 11c. There is no more fake boundaries.

fla,b,c)

(a) Karnaugh map of D (b) Set D

Figure 11: Boundary preserving form

Using the boundary preserving form leads to a correct paving without any fake
boundaries. Therefore, to use this solution, the set boundaries have to be analyzed
to find the fake boundaries and add a set overlapping these fake boundaries in the
expression of the set to pave. This approach is working but is problem-specific
and needs to be adapted on a case-by-case basis. This method works well in the
Hausdorff-stable case, as there is the possibility to add a set that overlap the fake
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boundary. For non Hausdorff-stable operators, the boundary preserving form is
not possible as the Karnaugh map is not highlighting any sets that can be added
to the expression of the paved set to avoid fake boundaries, and another approach
is needed.

5 Non-Stable Case: Boundary Approach

5.1 Topology of the boundary

Let T = (S,7) be a topological space. VX € S, denote by X the complementary of
X in S, by clg(X) the closure of X in S, by ints(X) the interior of X in S, and by
0X the boundary of X in S.

Theorem. Let T = (S,7) be a topological space. Then

V(A,B)cS* 9(AUB) C OAUIB

Proof. By definition of the boundary

VAES, 0A=cs(A)Ncls(A)

By property, intersection is a subset of each set

ANBCA
v(a,B)es?, {°NPE

ANBCB
Then

(AUB) Ncls(AUB)
=clg(ANB)Neclg(AUB)
(ANB) N (cls(A) Ucls(B))
= (cls(ANB) Neclg(A)) Ucls(ANB)Nclg(B)
C (cls(A) Nelg(A)) U (cls(B) N cls(B))
= 0AUOJB O
Section 5.1 demonstrates that the boundary is not preserved over union of sets
as (A UB) C JA U OB. This is why the paving of the union of contractors leads
to fake boundaries.

Section 5.1 present the general formula for the union of the boundary of two
sets.

Theorem. Let (S,7) be a topological space. Then
V(A,B)€S*  OAUOB=I(AUB)UIANB)U (A NIB)
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Proof. Section 5.1 is proven in [9]. O

From Section 5.1, it is noticeable that the union of boundaries is not the bound-
ary of union. This is the reason why Z and (ANB) U (ANC) do not have the same
boundaries when paving these sets. An illustration of Section 5.1 is shown in Fig-
ure 12.

d(AU B)
A AUB

0ANOB

ANB

d(ANB)

(a) Set A and B (b) Decomposition of 0A U OB

Figure 12: Nlustration of Section 5.1

Remark. When ANB = () and A NIB = @ in Section 5.1, the union of boundaries
is the boundary of union. This is the case where the sets are non-overlapping with
no common boundary.

5.2 Boundary approach

A boundary approach can be used to get rid of this fake boundary. This will
help to solve this purely computational problem, as the mathematical expression
of the set Z do not have any fake boundaries. This approach consists in computing
the boundary of the set Z. This boundary will separate an inner and an outer
subpaving. The classification of the resulting subpavings as inside or outside is
done using a predicate. The boundary approach method was first introduced in [7]
to speed up the solving of set inversion problems.

First, 0Z has to be expressed from set A, B, and C without the fake boundary.
Figure 13 and Figure 14 respectively show Karnaugh maps and paving of interme-
diate sets involved in the building of 0Z. Then, 0Z is computed as the union of
these boundaries, and it matches the Karnaugh map of Z shown in Figure 7h.

Then using a predicate, the connected subsets separated by 9Z are classified as
inside or outside. This predicate is based on the expression of Z of Equation (3),
and is tested on box corners until an in and an out points are found. Then,
boxes containing each point are classified as in and out boxes, and the information
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(a) DANBNC (b) DANBNC (d) AnacC

Figure 13: Karnaugh map of the boundaries

(a) GANBNC (b) DANBNC (c) AN OB (d) AnocC

Figure 14: Building the boundary of Z

is propagated near to near without crossing the boundary. Finally, each box is
classified as in, out, or uncertain.

Figure 15a shows 07Z built from boundaries shown in Figure 14 using the pro-
posed method. The resulting paving of Z is shown in Figure 15b, which is classified
using the subpaving coloration method.

(a) 02 ) Z
Figure 15: Boundary approach
This boundary approach is efficient to get rid of fake boundaries. Set Z is

computed from the union of two separators, Synp, and Sz, and this union is
reinforced by a contractor on the boundary Cyy.
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Remark. This method is also working for the Hausdorff-stable case, but it is more
efficient to use the boundary preserving form presented in Section 4, as the con-
tractor on the boundary is not easy to define, and the subpaving coloration method
is not needed.

6 Application

6.1 Boundary approach application to the separator on the
visibility constraint

Separator over the visibility constraint, as implemented in [4], suffer from this fake
boundaries when it deals with polygon obstacles. In fact, the contractor on the
visibility constraint is defined for an obstacle segment. The extension to polygons
involves the union of non-visible areas relative to each segment, and this union
leads to fake boundaries.

Figure 16a shows an illustration of the separator on the visibility constraint as
implemented in [4]. For each obstacle segment, three segments are defined, which
separate the visible and non-visible parts of the space. For segment e; is defined
relative to the observation point p, the oriented half space on the left of segment a,
the one on the left of segment b, and the same for segment c. It is the same for the
set of visible points for segment e, defined by half planes on the left of segments
d, e, and f. The set of masked points from p by e; and es i then the union of
these two sets A; and As. Paving this separator shows a fake boundary as shown
in Figure 16b.

(a) Separator construction (b) Classical approach (c) Boundary approach

Figure 16: Separator on the visibility constraint using the boundary approach

To avoid this problem, the boundary approach can be applied. The set of
masked points from observation point p relative to segments e; and es should be
defined by half planes on the left of segments a, b, €, and f. The simplification of ¢ =
—d has to be taken into account while contracting to avoid this fake boundary. This
simplification is based on algebraic topology [18] in which boundary simplifications
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are defined and used. Figure 16¢ shows the paving of this separator using the
boundary approach. There is no longer fake boundaries appearing.

Remark. For now, fake boundaries have to be identified and removed by hand, as
it not the main topic of this paper. Neither [4] nor this work propose an automatic
boundary simplification to avoid fake boundaries in union of adjacent sets. There-
fore, it is necessary to find solutions that are problem-specific in order to avoid fake
boundaries, as developed in the next subsection.

6.2 Toward a generic implementation of the separator on the
visibility constraint

In the case of the visibility constraint another approach to solve this problem can
be proposed. The set of visible points from an observation point placed at (0, 0)
relative to a shape Y can be defined by :

S={reR?’JaecR|a-xcVY} (10)
Denoting by f the homothety defined in Equation (11).

fiRP > R?

(x,0) > a-x (11)

Remark. If the observation point is not placed at (0, 0), a simple translation of the
problem leads to the presented solution.

The set S can then be defined as the projection of f(Y) for o € [0, 1]. Listing 1
show the implementation of this separator using the Codac Library [15]. Figure 17a
shows the paving of this implementation of the visibility constraint. The comparison
with Figure 17b, where the classical implementation of this constraint from [4] on
the same obstacle polygon is shown, validates that the problem of fake boundaries
is avoided with this method. Figure 17a requires 391 bisections whereas Figure 17b
requires 321 bisections. The complexity of these two approaches is quite similar,
although all the tests carried out lead to a slightly higher number of bisections for
the proposed method, with the benefit of a set without fake boundaries. This is
mainly due to the projection algorithm which induces bisections in the dimension
of the homothety factor «.

Figure 18 shows the paving of the visibility separator on the same obstacle
presented in Figure 2, but the proposed method avoid fake boundaries.

Remark. The separator representing the obstacle could be any separator. How-
ever, the separator must be in a closed form with an interior. This method is not
applicable to segments or open polygons for instance. But the advantage of this
approach is that it can be applied to an ellipsis obstacle.

Remark. There are polygons for which the separator on the visibility constraint does
not generate fake boundaries. In these cases the classical implementation proposed
in [4] is more efficient than the proposed approach, as the algorithm used to project
a separator is based on contractors over quantifiers which requires bisections [2, 13].
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import codac as cd

# Set Y definition
polygon = [[2, 3], [3.5, 2.51, [4, -11, [5, 51, [i, 51, [2, 3]]
Sy = cd.SepPolygon(polygon)

# Set Z definition
f = cd.Function("x", "y", "a", "(a*x,a*xy)")
Sz = cd.SepInverse(Sy, f)

# Projection of for a in [0, 1]
epsilon = 0.1
Sx = cd.SepProj(Sz, cd.Interval(0, 1), epsilon)

Listing 1: Separator on the visibility constraint using Codac Library

(a) Proposed implementation (b) Classical implementation

Figure 17: Generic SepVisible implementation

Figure 19 shows the comparison between the classical and the projection approaches
on the paving of a visibility separator without fake boundaries. The proposed
implementation shown in Figure 19a requires 419 bisections whereas the classical
implementation shown in Figure 19b requires only 278 bisections.
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(a) Proposed implementation (b) Classical implementation

Figure 19: Generic implementation of the separator on the visibility constraint

7 Conclusion

In conclusion, this work has highlighted the problem associated with the union of
adjacent contractors. Paving the union of these contractors creates fake boundaries
that add pessimism to the results and increase the computation time.

This problem occurs in two cases: when an operator applied to sets is Hausdorff-
stable, and when it is non-Hausdorff-stable. An approach for Hausdorff-stable is
to use a boundary preserving form by adding sets overlapping the fake boundary
in the expression of the paved set. For non-Hausdorff-stable operators, a boundary
approach is proposed to get rid of this fake boundary.

The result shows that both these approaches are efficient in fake boundary
avoidance. The drawback of these methods is that they are problem-specific, they
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need to be tuned for each problem, and this paper does not provide an automatic
way to remove fake boundaries.

Finally, a generic implementation of the separator on the visibility constraint
was proposed. This approach shows that sometimes the fake boundary problem
can also be avoided by expressing the problem differently. There are, nevertheless,
cases in which no false boundary appears in the classical implementation of the
separator on the visibility constraint. In these cases, the classical implementation
is more efficient than the proposed method, since the latter involves the projection
of a separator, which is computationally time-consuming.
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