
Acta Cybernetica — online–first paper version — pages 1–24.

Online Interval Depth Localization of an

Underwater Robot with Ballast

Luc Jaulinab

Abstract

This paper presents an efficient online method to simulate a dynamical
system with interval uncertainties. These uncertainties can be either on the
initial state vector, on the time-dependent inputs, or on the evolution func-
tion. Compared to other techniques used for the guaranteed integration of
differential inclusion, the presented approach is online and requires a small
and fixed number of operations at each sampling time. An illustration re-
lated to underwater robotics will be provided. The application involves a
robot with a ballast that can move from the surface to the sea floor. We
would like to guarantee that the robot will reach a given depth at a given
time.

Keywords: differential inclusion, ballast, underwater robot, interval analy-
sis, interval integration, reachability

1 Introduction

Reachability has been studied by many authors using set-membership tools [4, 6,
9, 10, 11, 21, 27]. Often, the objective of reachability is to predict the future of
a dynamical system under uncertainties [26]. In this paper, we will focus on an
underwater robot equipped with a ballast, namely a float, shown in Figure 1.

The float can only move upward to the surface and downward to the seafloor.
The state equations are given by

ṡ = u

v̇ = gβs
1+βs −

cx
2(1+βs)` v · |v|

ḋ = v

(1)

where the state variables are:

aRobex, Lab-STICC, ENSTA-Bretagne, France
bE-mail: lucjaulin@gmail.com, ORCID: 0000-0002-0938-0615

DOI: 10.14232/actacyb.314709

mailto:lucjaulin@gmail.com
https://orcid.org/0000-0002-0938-0615
https://doi.org/10.14232/actacyb.314709

2 Luc Jaulin

Figure 1: The buoyancy of the robot may change depending of the position of the
piston

• The sinking coefficient s (or buoyancy) which corresponds to the position of
the piston of the ballast. When s = 0, the density of the float is exactly that
of the water ρ0. When s > 0, the float sinks and when s < 0, it surfaces. The
derivative of s can be controlled by a motor and corresponds to the input u.
Equivalently, u corresponds to rate of fluid which enters in the ballast.

• The depth d expressed in meters. It is the derivative of the vertical speed.

• The vertical speed v. Its evolution depends of the forces (gravitational, buoy-
ant, drag).

The parameters, assumed to be constant, are:

• The acceleration due to gravity g

• The amplification rate of the piston β: When the piston of the ballast is at
position s, the average density of the robot is (1 + βs).

• The drag coefficient cx with respect to the vertical.

• The length ` with respect to the vertical position

To get this model, it suffices to apply the Newton’s second Law:

mv̇ = mg︸︷︷︸
gravitational force

− ρ0A`g︸ ︷︷ ︸
buoyant force

− 1

2
cxρ0A · v · |v|︸ ︷︷ ︸

drag force

(2)

where ρ0 is the density of the water, and A is the cross-sectional area of the robot.
Since the mass of the float is m = (1 + βs) ρ0A`, we get

v̇ = g − ρ0A`g

(1 + βb) ρ0A`
− 1

2

cxρ0Av · |v|
(1 + βb) ρ0A`

(3)

Online Interval Depth Localization of an Underwater Robot with Ballast 3

which corresponds to (1). Note that much more accurate models can be found in
[18].

We assume that we know intervals containing the initial state variables and a
tube (i.e., an interval of trajectories) containing the input u(t). Our goal is to find
a tube for the three state variables. The notion of tube is illustrated by Figure 2.
A tube can be seen as an array containing two lists of intervals: the gates [x](k)
and the slices JxK(k) (see [24]). A tube is the set of all trajectories that cross all
gates and that are always enclosed in the slices. More formally, the slices and the
gates are intervals that should satisfy

∀k, x(kδ) ∈ [x](k) (for the gates)
∀t ∈ [(k − 1)δ, kδ], x(t) ∈ JxK(k) (for the slices)

(4)

For simplicity, this tube is denoted by [x](t).

Figure 2: A tube which encloses the trajectory x(t)

We can now be more precise on the problem we want to solve. Assume that

• we know an initial box [s−0 , s
+
0] × [v−0 , v

+
0] × [d−0 , d

+
0] containing the state

(s, v, d) at time t = 0.

• we know a tube [u](t) containing u(t) for all t ≥ 0.

We want to find a tube for each state variable. Moreover, we want the method
to be online [22]. More precisely, as illustrated by Figure 3, we want an interval

4 Luc Jaulin

estimator of the form [s](k)
[v](k)
[d](k)

 = F

 [s](k − 1)
[v](k − 1)
[d](k − 1)

 , JuK(k)


 JsK(k)

JvK(k)
JdK(k)

 = G

 [s](k − 1)
[v](k − 1)
[d](k − 1)

 , JuK(k)


(5)

such that the corresponding tubes enclose the signals s(t), v(t), d(t). Note that we
have gates [s](k), [v](k), [d](k) for s, v, d and a slice JuK(k) for u. The interval state
estimator should execute a fixed set of operations at each sampling time, otherwise
we do not have an online predictor. As a consequence, interval methods based on
Picard fixed point methods ([2, 13, 20]), bisection based methods (see, e.g., [14])
are not allowed. Moreover, the memory used by estimator should be fixed and thus
zonotope approaches [1, 3, 7] should be avoided. In our case, only the three gates
for s, v, d will be memorized.

Figure 3: Online interval state estimator

We will take advantage of the fact that the float is composed of three SISO
(Single-Input Single-Output) systems in series, as illustrated by Figure 4.

The paper is organized as follows. Section 2 recalls some classical results for
differential inclusion for systems with a single state variable. Section 3 introduces
the notion of interval flow which will be main operator used for a reliable discretisa-

Online Interval Depth Localization of an Underwater Robot with Ballast 5

Figure 4: The float is composed of three SISO systems in series

tion of differential inclusions. Section 4 studies the well-known Riccati differential
equation. This part will be needed for the resolution of the sinking body problem
proposed in Section 5. Section 6 combines all these tools to derive an online interval
predictor for the float with interval uncertainties. Section 7 concludes the paper.

2 Differential inclusion

This section recalls some classical results related to differential inclusions [5]. These
results will be used further in order to build a reliable procedure to predict the
evolution of the float with interval uncertainties.

We consider the scalar system

v̇(t) = f(v(t),u(t))
v(0) = v0 ∈ [v0]
u(t) ∈ JuK ⊂ Rn

(6)

The signal u(t) is inside the box JuK ⊂ Rm. Note that u(t) in chosen as a vector
and this is why is it written bold. It varies with time in contrast to the box JuK
which is assumed to be constant with time. We have here a differential inclusion
[5] with many solutions, as many as we have different signals u(t) in the box JuK.
Finding an envelope for the set of all solutions v(t) is a difficult problem which
can be solved using optimal control theory [15] for some cases.

2.1 Comparison theorem

We recall here a theorem which can be used directly to find an envelope for a differ-
ential inclusion with one state variable [8]. It takes into account the monotonicity
of the subsystems [25] to facilitate the interval integration.

Proposition. Assume that the initial condition satisfies v0 ∈ [v−0 , v
+
0] and de-

note by [f] an inclusion function for f [17]. An envelope for any solution v(t) is
[v−(t), v+(t)], where:

v̇− = lb([f](v−, [u])) , v−(0) = v−0
v̇+ = ub([f](v+, [u])) , v+(0) = v+

0

(7)

The operator lb takes the lower bound of its interval input and ub returns its upper
bound.

6 Luc Jaulin

Proof. The minimal and maximal solutions for (6) satisfy [16]:

v̇ = f(v, argmin
u∈[u]

f(v,u)) , v(0) = v−0

v̇ = f(v, argmax
u∈[u]

f(v,u)) , v(0) = v+
0

(8)

It is a consequence of the Hamilton-Jacobi-Bellman theorem in the scalar case [15].
Let us recall the comparison theorem for scalar differential equations

ẋ1 = ϕ1(x1)
ẋ2 = ϕ2(x2)
ϕ1 ≤ ϕ2

x1(0) ≤ x2(0)

⇒ ∀t, x1(t) ≤ x2(t). (9)

Now, for all v, we have

lb([f](v−, [u])) ≤ f(v−, argmin
u∈[u]

f(v−,u))

ub([f](v+, [u])) ≥ f(v+, argmax
u∈[u]

f(v+,u))
(10)

Therefore, using the comparison theorem, we conclude the proof of the proposition.

2.2 Example: the sinking body

We consider a body totally immersed in the ocean as represented by Figure 5. As
it will be seen later this example is chosen since it is an important component of
our underwater robot.

Figure 5: Sinking body

The speed v of the body satisfies the following differential equation

v̇ = a− bv|v| (11)

where b > 0 corresponds to a dumping coefficient. If the body has a negative
buoyancy, the coefficient a is positive and the body sinks toward the bottom. If it

Online Interval Depth Localization of an Underwater Robot with Ballast 7

has a positive buoyancy, a is negative and the body goes up toward the surface.
We assume that both a and b are constant and belong to the intervals [a−, a+], and
[b−, b+], respectively.

First, note that the system is stable and v(t) converges to

v̄ = sign(a)

√
|a|
b
. (12)

Taking into account Proposition 2.1, we get a tube [v−, v+] containing v(t). The
two bounds v− and v+ are defined by the two differential equations

v̇− = lb
(
[a]− [b]v−|v−|

)︸ ︷︷ ︸
f−
[a],[b]

(v−)

, v−(0) = v−0

v̇+ = ub
(
[a]− [b]v+|v+|

)︸ ︷︷ ︸
f+
[a],[b]

(v+)

, v+(0) = v+
0

(13)

The tube [v−, v+] is minimal, i.e., it is the smallest with respect to the inclusion
which contains all feasible v(t). As a consequence, we can find a good approximation
for the two bounds v−(t) and v+(t) using any Runge-Kutta method. For example:

v−(t+ δ) = v−(t) + δ · f−[a],[b]

(
v−(t) + δ

2 · f
−
[a],[b](v

−(t))
)

v+(t+ δ) = v+(t) + δ · f+
[a],[b]

(
v+(t) + δ

2 · f
+
[a],[b](v

+(t))
) (14)

If δ is small, this approximation is very close to the minimal tube, but it does not
provide any guarantee. Guaranteed bounds will be given later in Section 5.

We consider four illustrative cases, illustrated by Figure 6.

Case a We have (v0, a, b) ∈ [0.9, 1.1] × [0.9, 1.1] × [1.9, 2.1]. This means that for
t = 0, the body goes to the bottom. Since a > 0, it sinks (as represented by stones
in the cube of the subfigure at the top). The two trajectories v−(t),v+(t) in red
are obtained by the Runge-Kutta integration (14). We observe that the velocity

interval [v−(t), v+(t)] converges to the interval [v̄] = sign ([a])
√
|[a]|
[b] .

Case b We have (v0, a, b) ∈ [−1.1,−0.9]×[−1.1,−0.9]×[1.9, 2.1]. This means that
for t = 0, the body goes to the surface. Since a < 0, it floats (as represented by the
bubbles in the cube of the Subfigure (b)). Again, the two trajectories v−(t),v+(t)
in red are obtained by the Runge-Kutta integration (14). And again, we observe
that v(t) converges to a value v̄.

Case c We have (v0, a, b) ∈ [0.9, 1.1] × [−1.1,−0.9] × [1.9, 2.1]. For t = 0, the
body is thrown toward the bottom. Since a < 0, the body floats. We observe that
after approximately 1 sec, the body stops sinking and then starts its course to the
surface. For the simulation, we need to compute the time at which v(t) changes its
sign.

8 Luc Jaulin

Case d We have (v0, a, b) ∈ [−1.1,−0.9] × [0.9, 1.1] × [1.9, 2.1]. For t = 0, the
body is thrown toward the surface. Since a > 0, the body sinks. We observe that
after approximately 1 sec, the body stops surfacing and then starts its course to
the bottom.

3 Interval flow

In the previous section, we have shown how an integration of a differential inclusion
can be performed in case of interval uncertainties. However, no guarantee was
provided, mainly with respect to the time discretisation. In order to get a reliable
integration approach, this section presents the new notion of interval flow.

3.1 Interval flow

Given a sampling time δ > 0, an interval flow associated with (6) is a function Φf
which satisfies

Φf :
R× IR× IRm → IR× IR

(δ, [v0], JuK) → ([v], JvK) (15)

with
v(0) ∈ [v0]

∀t ∈ [0, δ],u(t) ∈ JuK
v̇(t) = f(v(t),u(t))

([v], JvK) = Φf (δ, [v0], JuK)

⇒
{

v(δ) ∈ [v]
∀t ∈ [0, δ], v(t) ∈ JvK (16)

The interval flow will be used for the discretisation of a differential inclusion. In-
deed, if we know an interval for the state v(tk) at time tk = kδ, and if we know an
interval for the input u(t) for all t ∈ [tk, tk + δ] the interval flow returns an interval
containing v(t), t ∈ [tk, tk + δ] and an interval for v(tk + δ).

3.2 Example: the integrator

Consider the integrator with an uncertain input u(t) and initial state v0: v̇(t) = u(t)
v(0) = v0 ∈ [v0]

u(t) ∈ JuK = [u−, u+]
(17)

From Proposition 2.1, we know that any solution v(t) is inside [v−(t), v+(t)], where:

v̇− = u− , v−(0) = v−0
v̇+ = u+ , v+(0) = v+

0

(18)

As a consequence, an interval flow is

Φf (δ, [v0], JuK) =

(
[v0] + δJuK

[v0] + [0, δ] · JuK

)
(19)

Online Interval Depth Localization of an Underwater Robot with Ballast 9

Figure 6: Sinking body (with stones inside) or floating body (with bubbles in-
side) for different initializations. There is no guarantee that the tubes contain the
trajectory v(t)

10 Luc Jaulin

3.3 Example: first order system

Consider a first order linear system with uncertain input u and initial state v:

 v̇(t) = av(t) + u(t)
v(0) = v0 ∈ [v0]

u(t) ∈ JuK = [u−, u+]
(20)

From Proposition 2.1, we know that any solution v(t) is inside [v−(t), v+(t)], where:

v̇− = av− + u− , v−(0) = v−0
v̇+ = av+ + u+ , v+(0) = v+

0

(21)

i.e.

v−(t) = eatv−0 +
∫ t

0
ea(t−τ)u−(τ)dτ

= eat
(
v−0 +

∫ t
0
e−aτu−(τ)dτ

)
= eat

(
v−0 + u−

∫ t
0
e−aτdτ

)
= eat

(
v−0 + u−

[
− 1
a (e−aτ)

]t
0

)
= eat

(
v−0 − u−

a (e−at − 1)
)

v+(t) = eat
(
v+

0 − u+

a (e−at − 1)
)

(22)

As a consequence, an interval flow for the scalar first order system is

Φf (δ, [v0], JuK) =

 eaδ
(

[v0]− JuK
a

(
e−aδ − 1

))
ea[0,δ]

(
[v0]− JuK

a

(
e−a[0,δ] − 1

))
 (23)

3.4 Real time interval integration

Recall that our goal is to integrate the equation of the float (1) with some interval
uncertainties. Now, it will be shown later that the float is a serial composition of
several subsystems for which we have an analytical interval flow. To show how this
real-time interval integration can be done, we consider two compositions: serial and
parallel, as illustrated by Figure 7. Note that the parallel composition will not we
used for our application, but is given here to illustrate that our approach is not
limited to serial systems.

Online Interval Depth Localization of an Underwater Robot with Ballast 11

Figure 7: S1 is serial composition of two systems; S2 is a parallel composition

Serial systems Consider the system S1 (see Figure 7)

S1 :

{
ẋ = f(x, u)
ẏ = g(y, x)

(24)

The following algorithm computes a tube for the output y(t).

in: [x0], [y0]

1 [x] = [x0]

2 [y] = [y0]

3 for k = 1 to kmax

4 Read JuK = JuK(k)

5


[x]

JxK

 = Φf (δ, [x], JuK)

6


[y]

JyK

 = Φg(δ, [y], JxK)

7 write(k, [y], JyK)

Proof. Assume that,

x(tk−1) ∈ [x](k − 1)
x([tk−1 − δ, tk−1]) ∈ JxK(k − 1)

y(tk−1) ∈ [y](k − 1)
y([tk−1 − δ, tk−1]) ∈ JyK(k − 1)

(25)

12 Luc Jaulin

with tk = kδ. Now, from Step 5,(
[x](k)
JxK(k)

)
= Φf (δ, [x](k − 1), JuK(k)) (26)

From Equation (16), {
x(tk) ∈ [x](k)

∀t ∈ [tk − δ, tk], x(t) ∈ JxK(k)
(27)

Moreover, from Step 6,(
[y](k)
JyK(k)

)
= Φf (δ, [y](k − 1), JxK(k)) (28)

Thus, from (16), {
y(tk) ∈ [y](k)

∀t ∈ [tk − δ, tk], y(t) ∈ JyK(k)
(29)

Parallel systems Consider the system S2 of Figure 7:

S2 :

 ẋ = f(x, u)
ẏ = g(y, u)
z = x+ y

(30)

The following algorithm computes a tube for the output z(t).

in: [x0], [y0]

1 [x] = [x0]

2 [y] = [y0]

3 for k = 1 to kmax

4 Read JuK = JuK(k)

5


[x]

JxK

 = Φf (δ, [x], JuK)

6


[y]

JyK

 = Φg(δ, [y], JuK)

7

 [z]

JzK

 =

 [x] + [y]

JyK + JyK


8 write(k, [z], JzK)

Proof. The proof is similar to that provided for serial systems.

Online Interval Depth Localization of an Underwater Robot with Ballast 13

4 Analytical solution of the Riccati equation

To be able to simulate our float with an interval uncertainty, we need to find an
interval flow for each of the three blocks of Figure 4. For the first and the last blocks
which are both integrators, the interval flow has been given in Subsection 3.2. For
the block of the middle, the interval flow needs a specific analytical resolution. Now,
this resolution can be derived from the analytical solution of a Riccati equation that
is considered in this section. All results given here are taken from [19] but only
those that are useful for our application have been extracted from this book.

A Riccati equation is given by

v̇ = a− bv2. (31)

We assume here that v0 > 0.

Proposition. If a > 0 then the solution of (31) is

v(t) = v̄ ce
2
√

abt−1

ce2
√

abt+1

c = v̄+v0

v̄−v0

v̄ =
√

a
b

(32)

Proof. Set E(t) = ce2
√
abt, we have Ė = 2

√
abcE. We have

v̇ = a− bv2

⇔ v̄ ddt

(
E−1
E+1

)
= a− b

(
v̄E−1
E+1

)2

⇔ v̄
(
Ė(E+1)−Ė(E−1)

(E+1)2

)
= a− b

(
v̄E−1
E+1

)2

⇔ v̄
(

2
√
abcE(E+1)−2

√
abcE(E−1)

(E+1)2

)
= a− b

(
v̄E−1
E+1

)2

⇔
√

a
b

(
2
√
abE (E + 1)− 2

√
abE (E − 1)

)
= a (E + 1)

2 − a (E − 1)
2

⇔ 4aE = E2 + 2aE + 1−
(
E2 + 2aE + 1

)
(33)

which is true.

The solution of the Riccati equation, as given by Proposition 4 is singular when
a = 0 and numerically ill-conditioned a is near zero. Now, this singularity has no
physical reason and can be avoided by the using the exponential cardinal function
expc(ν) defined by

expc(ν) =
eν − 1

ν
(34)

with expc(0) = 1. This function is continuous and differentiable everywhere. It
is a monotonic function, strictly positive and its graph is similar to that of exp ν.
The singularity we observe in the expression for ν = 0 is artificial and should not
be considered as such.

14 Luc Jaulin

Proposition. If a ≥ 0 then the solution of (31) is

v(t) =
e2bv̄t(v̄ + v0) + v0 − v̄

1 + e2bv̄t + 2v0bt · expc(2bv̄t)
(35)

Note that, thanks to the use of the expc function, this expression for v(t) has
no more singularity for t = 0.

Proof. Let us first check that the formula is correct when a > 0. We have

v(t) = v̄
v̄+v0
v̄−v0

e2bv̄t−1
v̄+v0
v̄−v0

e2bv̄t+1
= v̄ (v̄+v0)e2bv̄t−(v̄−v0)

(v̄+v0)e2bv̄t+(v̄−v0)

= v̄
v̄(e2bv̄t−1)+v0(e2bv̄t+1)
v̄(e2bv̄t+1)+v0(e2bv̄t−1)

=
v̄(e2bv̄t−1)+v0(e2bv̄t+1)
(e2bv̄t+1)+v0

(
e2bv̄t−1

v̄

)
=

v̄(e2bv̄t−1)+v0(e2bv̄t+1)
(e2bv̄t+1)+2v0bt·expc(2bv̄t)

(36)

Let is now check that the formula is correct when a = 0. Since v̄ =
√

a
b = 0, we

have

v(t) =
v0

(
e0 + 1

)
1 + e0 + 2v0bt

=
v0

1 + v0bt
. (37)

Thus
v̇ = a− bv2

⇔ v̇ = −bv2

⇔ v0
−v0b

(1+v0bt)2 = −b
(

v0

1+v0bt

)2
(38)

which is true.

Proposition. If a < 0 then the solution of (31) is

v(t) = v̄ tan
(
atan v0

v̄ − bv̄t
)

v̄ = −
√
−a
b

(39)

where

t < t1 =
1

−bv̄

(π
2
− atan

v0

v̄

)
. (40)

The change of sign for v(t) is obtained for

t2 =
1

bv̄
atan

v0

v̄
. (41)

Proof. First, note that a = −v̄2b. We have

v̇ = a− bv2

⇔ d
dt

(
v̄ tan

(
atan v0

v̄ − bv̄t
))

= −v̄2b− bv̄2 tan2
(
atan v0

v̄ − bv̄t
)

⇔
(
1 + tan2

(
atan v0

v̄ − bv̄t
))
· d
dt

(
atan

v0

v̄
− bv̄t

)
︸ ︷︷ ︸

−bv̄

= −v̄b
(
1 + tan2

(
atan v0

v̄ − bv̄t
))

⇔ 1 +
(
tan

(
atan v0

v̄ − bv̄t
))2

= 1 +
(
tan

(
atan v0

v̄ − bv̄t
))2

Online Interval Depth Localization of an Underwater Robot with Ballast 15

which is true. The integration is possible until

atan
v0

v̄
− bv̄t ∈

]
−π

2
,
π

2

[
(42)

This condition is satisfied for t = 0. It will still be satisfied until

atan v0

v̄ − bv̄t ≤
π
2

⇔ t ≤ t1 = 1
−bv̄

(
π
2 − atan v0

v̄

) (43)

For this t1, the solution is at infinity. For the initialization, we need to have
atan v0

v̄ ∈] − π
2 ,

π
2 [which is always the case. To get the time of change of sign for

v(t), we solve:

atan
v0

v̄
− bv̄t2 = 0. (44)

Thus

t2 =
1

bv̄
atan

v0

v̄
. (45)

Corollary. The solution of the Riccati equation v̇ = a− bv2 for b > 0 is

v(t) = ψ+
a,b,v0

(t) = e2bv̄t(v̄+v0)+v0−v̄
1+e2bv̄t+2v0bt expc(2bv̄t)

if a ≥ 0

= ψ−a,b,v0
(t) = v̄ tan

(
atan v0

v̄ − bv̄t
)

if a < 0
(46)

where v̄ = sign (a)
√
|a|
b .

5 Sinking body problem

We consider again the equation of the sinking body given by

v̇ = a− bv|v| (47)

where b > 0. This equation is close to the Riccati equation v̇ = a−bv2. Equivalently
(47) can be seen as a piecewise Riccati equation. In this section, we propose to
find an analytic solution for the solution v(t). This expression is needed to build
an interval flow for (47) which will then be used to integrate our float with interval
uncertainties.

5.1 Analytical expression of the solution of the sinking body
motion

From the analytical solution of the Riccati equation, we can get an analytical
expression of the sinking body motion in the case where the parameters a, b are
constant.

16 Luc Jaulin

Proposition. The solution of v̇ = a− bv|v| is

ϕa,b,v0
(t) =


sign(a) · ψ+

|a|,b,sign(a)·v0
(t) if av0 ≥ 0

− sign(a) · ψ−−|a|,b,− sign(a)·v0
(t) if av0 < 0 and t ≤ t2

sign(a) · ψ+
|a|,b,0(t− t2) if av0 < 0 and t > t2

(48)

where t2 = − sign(a)√
|a|b

atan
(
v0

√
b
|a|

)
, where ψ− and ψ+ are defined by (46).

Proof. If a = 0 or v0 = 0, we have av0 ≥ 0 and we easily check that the Proposition
is valid. We need to check four cases.

Case 1: a > 0,v0 > 0. We have v̇ = a− bv2 which is a Riccati equation. From
Corollary 4, v(t) = ψ+

a,b,v0
(t) for all t ≥ 0.

Case 2: a < 0,v0 < 0. We have v̇ = a− bv|v| = a+ bv2. Set w = −v. We have
−ẇ = a+ bw2, i.e., ẇ = (−a)− bw2. Thus w(t) = ψ+

−a,b,w0
(t) and finally

v(t) = −ψ+
−a,b,−v0

. (49)

Case 3: a < 0,v0 > 0. We have v̇ = a− bv2 , which is again a Riccati equation.
From Corollary 4, we get

v(t) = ψ−a,b,v0
(t) if t ≤ t2 = 1

bv̄ atan v0

v̄

v(t) = −ψ+
−a,b,0(t− t2) if t > t2

(50)

Case 4: a > 0,v0 < 0. We have v̇ = a− bv|v| = a+ bv2. We get

v(t) = −ψ−−a,b,−v0
(t) if t ≤ t2 = − 1

bv̄ atan v0

v̄

v(t) = ψ+
a,b,0(t− t2) if t > t2

(51)

5.2 Interval flow of the sinking body motion

Corollary. If v0 ∈ [v−0 , v
+
0], a ∈ [a−, a+], b ∈ [b−, b+] and t ∈ [t−, t+], we have

ϕa,b,v0
(t) ∈ [ϕ][a],[b],[v0]([t]) (52)

where

(i) [ϕ][a],[b],[v0]([t])) = [ϕ]a−,[b],v−0
([t]) t [ϕ]a+,[b],v+

0
([t])

(ii) [ϕ]a,[b],v0
([t]) = [ϕ]a,[b],v0

({t−, t+})

(iii) [ϕ]a,[b],v0
(t) =

{
σ · [ψ+]|a|,[b],σv0

(t) if a · v0≥ 0

[ϕ̂]a,[b],v0
(t) if a · v0< 0

(iv) [ϕ̂]a,[b],v0
(t) =


ϕa,{b−,b+},v0

(t)) if t /∈ [t2]

σ · [ψ+]|a|,[b],0(t− [t2]) if t ∈ [t2]

[t2] = t2(v0, a, {b−, b+})
(v) [ψ+]a,[b],v0

(t) = ψ+
a,{b−,b+},v0

(t)

Online Interval Depth Localization of an Underwater Robot with Ballast 17

where

t2(v0, a, b) = − σ√
|a|·b

atan
(
v0

√
b
|a|

)
σ = sign(a)

and t denotes the interval hull operator.

Remark. In the previous formulas, we use an enumeration notation with braces.
The resulting calculus returns the smallest interval which contains all possibilities
obtained from the list. For instance

sin({0, 1}) = [0, sin(1)]

[ϕ]a,[b],v0
({t−, t+}) = [ϕ]a,[b],v0

(t−) t [ψ]a,[b],v0
(t+) (see Corollary 5.2, (ii))

ψ+
a,{b−,b+},v0

(t) =
[{
ψ+
a,b−,v0

(t), ψ+
a,b+,v0

(t)
}]

(see Corollary 5.2, (v))

Proof. (i) Using the comparison theorem, we have

v0 ∈ [v−0 , v
+
0], a ∈ [a−, a+]⇒ ϕa,b,v0(t) ∈

[
ϕa−,b,v−0

(t), ϕa+,b,v+
0

(t)
]
.

It suffices to enclose the two quantities ψa−,b,v−0
(t) and ψa+,b,v+

0
(t).

(ii) The signal v̇(t) can never change of sign. Indeed, v̇(t) = 0 if a−bv|v| = 0 and
in this case, v̇(t) = 0 for all t. As a consequence, the extreme values for ϕa,b,v0

(t)
are obtained for t ∈ {t−, t+}.

(iii) Assume that (a, v0, t) is fixed. If a · v0 ≥ 0, we have no stop point. Thus
ϕa,b,v0(t) = σ · ψ+

|a|,[b],σv0
(t) as seen in 48. Otherwise, we are in a situation with

a stop point.
(iv) We have a stop point. This stop point can be inside or outside the time

window [t]. We have

∂ϕa,b,v0(t)

∂b
= 0⇔ t = t2 = − sign(a)√

|a|b
atan

(
v0

√
b

|a|

)
. (53)

Thus, if t /∈ [t2], where [t2] = t2(v0, a, {b−, b+}), ϕa,b,v0
(t) is monotonic in t and

thus
ϕa,b,v0

(t) ∈ ϕa,{b−,b+},v0
(t) (54)

otherwise
ϕa,b,v0

(t) ∈ σ · ψ+
|a|,[b],0(t− t2(v0, a, {b−, b+})). (55)

(v) The result comes from the monotonicity of ψ+ with respect to b.

Corollary. An interval flow of the sinking body motion is:

Φf :
IR× IR2 → IR× IR

([v0], JaK, JbK) →
(

[v]
JvK

)
=

(
[ϕ]JaK,JbK,[v0](δ)

[ϕ]JaK,JbK,[v0]([0, δ])

)
(56)

18 Luc Jaulin

5.3 Example

We take again four cases already treated in Subsection 2.2.

Figure 8: Sinking body for four different initializations. The tubes contains the
trajectory v(t)

Online Interval Depth Localization of an Underwater Robot with Ballast 19

Case a We have (v0, a, b) ∈ [0.9, 1.1] × [0.9, 1.1] × [1.9, 2.1]. In red, we have
the envelope already obtained by the Runge-Kutta method. No pessimism can
be observed which is consistent with the fact that ϕa,b,v0

(t) is monotonic. The
magenta bar corresponds to the initial interval [0.9, 1.1] for v0.

Case b We have (v0, a, b) ∈ [−1.1,−0.9]×[−1.1,−0.9]×[1.9, 2.1]. The envelope is
symmetrical to that obtained for Case a. Again, due to the monotonicity ϕa,b,v0

(t),
no pessimism can be observed.

Case c We have (v0, a, b) ∈ [0.9, 1.1]× [−1.1,−0.9]× [1.9, 2.1]. The pessimism of
the enclosure is too small to be observed; compared to the trajectories obtained by
a Runge Kutta integration (red). From the tube, we can conclude that the speed
of the float will cancel and the float will come back.

Case d We have (v0, a, b) ∈ [−1.1,−0.9] × [0.9, 1.1] × [1.9, 2.1]. The situation is
similar to that given in Case c.

In the figures, the units are t(sec) and v (m/sec).

6 Online integration of the float

Consider again the float described by Equation (1). Due to the serial structure of
the system, we can integrate the differential inclusion using interval flows for each
component, as explained in Subsection 3.4. The corresponding decomposition is
expressed by Figure 9 and is consistent with the initial goal (see Equation 5). For
each sampling time, five steps have to be performed sequentially in the right order.
Between sampling times k to k+ 1, three intervals have to be transmitted through
the memory: [s](k), [v](k), [d](k).

Figure 9: Sequence to be followed for one step interval integration

20 Luc Jaulin

At Step 1, we read the input slice JuK(k) which contains all u(t) for t ∈ [(k −
1)δ, kδ]. At Step 2, we integrate JuK using the interval flow for the integrator
presented in Subsection 3.2. As a result, we get a slice JsK(k) for s(t). Using a
static interval evaluation, we then get at Step 3 two slices JaK(k) for a(t) and JbK(k)
for b(t). These two slices will then feed the interval flow [ϕ]JaK,JbK,[v] which yields
the slice JvK(k) and the gate [v](k) at Step 4. The slice JvK(k) is then used at Step
5 by the last block to generate the slice JdK(k) and the gate [d](k).

The resulting computations correspond to the following algorithm.

In: [d0], [v0], [s0]

Init [d] = [d0]

[v] = [v0]

[s] = [s0]

Main loop For k = 1 to kmax

Step 1 Read JuK = JuK(k)

Step 2 JsK = [s] + JuK · [0, δ]

[s] = [s] + JuK · δ

Step 3 JaK = g ·
(

1− 1
1+βJsK

)
JbK = cx

2(1+βJsK)`

Step 4 JvK = [ϕ]JaK,JbK,[v]([0, δ])

[v] = [ϕ]JaK,JbK,[v](δ)

Step 5 JdK = [d] + JvK · [0, δ]

[d] = [d] + JvK · δ

write(k, [d], JdK, [v], JvK, [s], JsK)

The only memory needed by this interval simulator are the three gates [s], [v], [d].

The behavior of the interval simulator is illustrated by Figure 10. We took
g0 = 9.81m · s−2, ` = 1m,β = 0.1, cx = 0.9 for the parameters and [s0] = [v0] =
[d0] = [0, 0.1] for the initial conditions. For the input, we took JuK(k) = exp(−[(k−
1)δ, kδ]). In the figures, the chosen units are t(sec), d(m) and v (m/sec).

Even if the system is unstable in the Lyapunov sense (indeed the variable d
tends to infinity), we do not observe any exponential explosion of the pessimism,
unlike other existing interval methods dealing with differential inclusions.

The implementation is done using the Codac library [23] and the source codes
are available at https://www.ensta-bretagne.fr/jaulin/reachfloat.html.

https://www.ensta-bretagne.fr/jaulin/reachfloat.html

Online Interval Depth Localization of an Underwater Robot with Ballast 21

Figure 10: Sinking float. The tubes contain the trajectories u(t), s(t), v(t), d(t) for
t ∈ [0, 2] (left) and for t ∈ [0, 20] (right)

7 Conclusion

In this paper, a new interval estimator has been proposed for online state prediction.
For this, we have introduced the concept of interval flow that has to be found

22 Luc Jaulin

analytically for each component of the whole system. Combining the interval flows
of all subsystems, we have shown that an interval estimator containing the state
variables in a guaranteed way could be derived. For simplicity, but also to evaluate
the accuracy of the approach, only the reachability problem has been addressed.
This means that no exteroceptive measurements (i.e., collected by a sensor able
to interact with the environment, such as a camera, a lidar or a radar) have been
taken into account in order to contract the domains for the state variables. The
interval state estimator that has been obtained has a fixed number of operations to
be performed at each sampling time. This is a strong requirement rarely considered
by classical interval algorithms. Indeed, existing interval algorithms dealing with
differential inclusions use fixed point procedures that are not consistent with real-
time issues. Through an example taken from robotics (an underwater robot with
a ballast), we have shown that it was possible to deal with engineering systems
efficiently.

The presented approach can be applied to a complex system as soon as it can
be built using a parallel and a serial composition of specific scalar systems [12].
More precisely, these scalar systems should have a single state variable, may have
several inputs, and an analytical solution should be available for constant inputs.
The existence of such an analytical solution could be relaxed if we accept to use an
interval resolution of a differential equation based on the Picard operator [13].

References

[1] Alamo, T., Bravo, J., and Camachoa, E. Guaranteed state estimation by zono-
topes. Automatica, 41(6):1035–1043, 2005. DOI: 10.1016/j.automatica.

2004.12.008.

[2] Alexandre dit Sandretto, J. and Chapoutot, A. Validated simulation of dif-
ferential algebraic equations with Runge-Kutta methods. Reliable Computing,
22:56–77, 2016. DOI: 10.1007/s11155-016-0001-2.

[3] Althoff, M. and Krogh, B. Zonotope bundles for the efficient computation of
reachable sets. In Proceedings of the 2011 50th IEEE Conference on Decision
and Control and European Control Conference, pages 6814–6821, 2011. DOI:
10.1109/CDC.2011.6160872.

[4] Asarin, E., Dang, T., and Girard, A. Reachability analysis of nonlinear systems
using conservative approximation. In Maler, O. and Pnueli, A., editors, Hybrid
Systems: Computation and Control, Volume 2623 of Lecture Notes in Com-
puter Science, pages 20–35. Springer, 2003. DOI: 10.1007/3-540-36580-X_5.

[5] Aubin, J. and Frankowska, H. Set-Valued Analysis. Birkhäuser, Boston,
Boston, MA, 1990. DOI: 10.1007/978-0-8176-4848-0.

[6] Collins, P. and Goldsztejn, A. The reach-and-evolve algorithm for reachabil-
ity analysis of nonlinear dynamical systems. Electronic Notes in Theoretical
Computer Science, 223:87–102, 2008. DOI: 10.1016/j.entcs.2008.12.033.

https://doi.org/10.1016/j.automatica.2004.12.008
https://doi.org/10.1016/j.automatica.2004.12.008
https://doi.org/10.1007/s11155-016-0001-2
https://doi.org/10.1109/CDC.2011.6160872
https://doi.org/10.1007/3-540-36580-X_5
https://doi.org/10.1007/978-0-8176-4848-0
https://doi.org/10.1016/j.entcs.2008.12.033

Online Interval Depth Localization of an Underwater Robot with Ballast 23

[7] Combastel, C. A state bounding observer for uncertain non-linear continuous-
time systems based on zonotopes. In Proceedings of the 44th IEEE Conference
on Decision and Control, pages 7228–7234. IEEE, 2005. DOI: 10.1109/CDC.

2005.1583327.

[8] Efimov, D. and Räıssi, T. Design of interval observers for uncertain dynamical
systems. Automation and Remote Control, 77(2):191–225, 2016. DOI: 10.

1134/S0005117916020016.

[9] Frehse, G. PHAVer: Algorithmic verification of hybrid systems past HyTech.
International Journal on Software Tools for Technology Transfer, 10:263–279,
2008. DOI: 10.1007/s10009-007-0062-x.

[10] Goubault, E., Mullier, O., Putot, S., and Kieffer, M. Inner approximated
reachability analysis. In Proceedings of the 17th International Conference on
Hybrid Systems: Computation and Control, pages 163–172. ACM, 2014. DOI:
10.1145/2562059.2562113.

[11] Guernic, C. L. and Girard, A. Reachability analysis of linear systems using
support functions. Nonlinear Analysis: Hybrid Systems, 4(2):250–262, 2010.
DOI: 10.1016/j.nahs.2009.03.003.

[12] Jaulin, L. Integral algebra for simulating dynamical systems with interval
uncertainties. International Journal of Approximate Reasoning, 178, 2025.
DOI: doi.org/10.1016/j.ijar.2024.109353.

[13] Kapela, T., Mrozek, M., Wilczak, D., and Zgliczynski, P. CAPD: DynSys,
A flexible C++ toolbox for rigorous numerical analysis of dynamical systems.
Communications in Nonlinear Science and Numerical Simulation, 101:105578,
2021. DOI: 10.1016/j.cnsns.2020.105578.

[14] Kieffer, M., Jaulin, L., and Walter, E. Guaranteed recursive nonlinear state
estimation using interval analysis. In Proceedings of the 37th IEEE Conference
on Decision and Control, pages 3966–3971, Tampa, FL, USA, 1998. IEEE.
DOI: 10.1109/CDC.1998.761926.

[15] LaValle, S. Planning Algorithm. Cambridge University Press, 2006. DOI:
10.1017/CBO9780511546877.

[16] Mitchell, I., Bayen, A., and Tomlin, C. Validating a Hamilton-Jacobi approx-
imation to hybrid system reachable sets. In Benedetto, M. and Sangiovanni-
Vincentelli, A., editors, Hybrid Systems: Computation and Control, Volume
2034 of Lecture Notes in Computer Science, pages 418–432. Springer Berlin
Heidelberg, 2001. DOI: 10.1007/3-540-45351-2_34.

[17] Moore, R. Methods and Applications of Interval Analysis. Society for Industrial
and Applied Mathematics, 1979. DOI: 10.1137/1.9781611970906.

https://doi.org/10.1109/CDC.2005.1583327
https://doi.org/10.1109/CDC.2005.1583327
https://doi.org/10.1134/S0005117916020016
https://doi.org/10.1134/S0005117916020016
https://doi.org/10.1007/s10009-007-0062-x
https://doi.org/10.1145/2562059.2562113
https://doi.org/10.1016/j.nahs.2009.03.003
https://doi.org/doi.org/10.1016/j.ijar.2024.109353
https://doi.org/10.1016/j.cnsns.2020.105578
https://doi.org/10.1109/CDC.1998.761926
https://doi.org/10.1017/CBO9780511546877
https://doi.org/10.1007/3-540-45351-2_34
https://doi.org/10.1137/1.9781611970906

24 Luc Jaulin

[18] Munson, B., Young, D., Okiishi, T., and Huebsch, W. Fundamentals of
Fluid Mechanics. John Wiley & Sons, 7th edition, 2013. DOI: 10.1002/

9781118912652.

[19] Polyanin, A., Andrei, D., and Zaitsev, V. Handbook of Exact Solutions for
Ordinary Differential Equations. Chapman and Hall, CRC, 2nd edition, 2003.
DOI: 10.1201/9781420035330.

[20] Ramdani, N. and Nedialkov, N. Computing reachable sets for uncertain nonlin-
ear hybrid systems using interval constraint-propagation techniques. Nonlinear
Analysis: Hybrid Systems, 5(2):149–162, 2011. DOI: 10.1016/j.nahs.2010.

05.010.

[21] Rauh, A., Kersten, J., and Aschemann, H. Techniques for verified reacha-
bility analysis of quasi-linear continuous-time systems. In Proceedings of the
2019 24th International Conference on Methods and Models in Automation
and Robotics, pages 18–23, 2019. DOI: 10.1109/MMAR.2019.8864648.

[22] Rauh, A., Lahme, M., Rohou, S., Jaulin, L., Dinh, T., Räıssi, T., and Fnadi,
M. Offline and online use of interval and set-based approaches for control and
state estimation: A review of methodological approaches and their application.
Logical Methods in Computer Science, 2023. DOI: 10.48550/arXiv.2309.

11622.

[23] Rohou, S., Desrochers, B., and Bars, F. L. The codac library. Acta Cybernetica,
26(4):871–887, 2024. DOI: 10.14232/ACTACYB.302772.

[24] Rohou, S., Jaulin, L., Mihaylova, L., Bars, F. L., and Veres, S. Reliable Robot
Localization. Wiley, 2019. DOI: 10.1002/9781119680970.

[25] Smith, H. Monotone dynamical systems: An introduction to the theory of
competitive and cooperative systems. Mathematical Surveys and Monographs,
41, 1995. DOI: 10.1090/surv/041.

[26] Taha, W. and Duracz, A. Acumen: An open-source testbed for cyber-physical
systems research. In Conference on CYber physiCaL systems, iOt and sensors
Networks, 2015. DOI: 10.1007/978-3-319-47063-4_11.

[27] Wan, J. Computationally reliable approaches of contractive model predictive
control for discrete-time systems. PhD dissertation, Universitat de Girona,
Girona, Spain, 2007. URL: http://www.tdx.cat/TDX-1008107-141828.

https://doi.org/10.1002/9781118912652
https://doi.org/10.1002/9781118912652
https://doi.org/10.1201/9781420035330
https://doi.org/10.1016/j.nahs.2010.05.010
https://doi.org/10.1016/j.nahs.2010.05.010
https://doi.org/10.1109/MMAR.2019.8864648
https://doi.org/10.48550/arXiv.2309.11622
https://doi.org/10.48550/arXiv.2309.11622
https://doi.org/10.14232/ACTACYB.302772
https://doi.org/10.1002/9781119680970
https://doi.org/10.1090/surv/041
https://doi.org/10.1007/978-3-319-47063-4_11
http://www.tdx.cat/TDX-1008107-141828

	Introduction
	Differential inclusion
	Comparison theorem
	Example: the sinking body

	Interval flow
	Interval flow
	Example: the integrator
	Example: first order system
	Real time interval integration

	Analytical solution of the Riccati equation
	Sinking body problem
	Analytical expression of the solution of the sinking body motion
	Interval flow of the sinking body motion
	Example

	Online integration of the float
	Conclusion

