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Online Interval Depth Localization of an

Underwater Robot with Ballast

Luc Jaulinab

Abstract

This paper presents an efficient online method to simulate a dynamical
system with interval uncertainties. These uncertainties can be either on the
initial state vector, on the time-dependent inputs, or on the evolution func-
tion. Compared to other techniques used for the guaranteed integration of
differential inclusion, the presented approach is online and requires a small
and fixed number of operations at each sampling time. An illustration re-
lated to underwater robotics will be provided. The application involves a
robot with a ballast that can move from the surface to the sea floor. We
would like to guarantee that the robot will reach a given depth at a given
time.

Keywords: differential inclusion, ballast, underwater robot, interval analy-
sis, interval integration, reachability

1 Introduction

Reachability has been studied by many authors using set-membership tools [4, 6,
9, 10, 11, 21, 27]. Often, the objective of reachability is to predict the future of
a dynamical system under uncertainties [26]. In this paper, we will focus on an
underwater robot equipped with a ballast, namely a float, shown in Figure 1.

The float can only move upward to the surface and downward to the seafloor.
The state equations are given by

ṡ = u

v̇ = gβs
1+βs −

cx
2(1+βs)` v · |v|

ḋ = v

(1)

where the state variables are:
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Figure 1: The buoyancy of the robot may change depending of the position of the
piston

• The sinking coefficient s (or buoyancy) which corresponds to the position of
the piston of the ballast. When s = 0, the density of the float is exactly that
of the water ρ0. When s > 0, the float sinks and when s < 0, it surfaces. The
derivative of s can be controlled by a motor and corresponds to the input u.
Equivalently, u corresponds to rate of fluid which enters in the ballast.

• The depth d expressed in meters. It is the derivative of the vertical speed.

• The vertical speed v. Its evolution depends of the forces (gravitational, buoy-
ant, drag).

The parameters, assumed to be constant, are:

• The acceleration due to gravity g

• The amplification rate of the piston β: When the piston of the ballast is at
position s, the average density of the robot is (1 + βs).

• The drag coefficient cx with respect to the vertical.

• The length ` with respect to the vertical position

To get this model, it suffices to apply the Newton’s second Law:

mv̇ = mg︸︷︷︸
gravitational force

− ρ0A`g︸ ︷︷ ︸
buoyant force

− 1

2
cxρ0A · v · |v|︸ ︷︷ ︸

drag force

(2)

where ρ0 is the density of the water, and A is the cross-sectional area of the robot.
Since the mass of the float is m = (1 + βs) ρ0A`, we get

v̇ = g − ρ0A`g

(1 + βb) ρ0A`
− 1

2

cxρ0Av · |v|
(1 + βb) ρ0A`

(3)
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which corresponds to (1). Note that much more accurate models can be found in
[18].

We assume that we know intervals containing the initial state variables and a
tube (i.e., an interval of trajectories) containing the input u(t). Our goal is to find
a tube for the three state variables. The notion of tube is illustrated by Figure 2.
A tube can be seen as an array containing two lists of intervals: the gates [x](k)
and the slices JxK(k) (see [24]). A tube is the set of all trajectories that cross all
gates and that are always enclosed in the slices. More formally, the slices and the
gates are intervals that should satisfy

∀k, x(kδ) ∈ [x](k) (for the gates)
∀t ∈ [(k − 1)δ, kδ], x(t) ∈ JxK(k) (for the slices)

(4)

For simplicity, this tube is denoted by [x](t).

Figure 2: A tube which encloses the trajectory x(t)

We can now be more precise on the problem we want to solve. Assume that

• we know an initial box [s−0 , s
+
0 ] × [v−0 , v

+
0 ] × [d−0 , d

+
0 ] containing the state

(s, v, d) at time t = 0.

• we know a tube [u](t) containing u(t) for all t ≥ 0.

We want to find a tube for each state variable. Moreover, we want the method
to be online [22]. More precisely, as illustrated by Figure 3, we want an interval
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estimator of the form [s](k)
[v](k)
[d](k)

 = F

 [s](k − 1)
[v](k − 1)
[d](k − 1)

 , JuK(k)


 JsK(k)

JvK(k)
JdK(k)

 = G

 [s](k − 1)
[v](k − 1)
[d](k − 1)

 , JuK(k)


(5)

such that the corresponding tubes enclose the signals s(t), v(t), d(t). Note that we
have gates [s](k), [v](k), [d](k) for s, v, d and a slice JuK(k) for u. The interval state
estimator should execute a fixed set of operations at each sampling time, otherwise
we do not have an online predictor. As a consequence, interval methods based on
Picard fixed point methods ([2, 13, 20]), bisection based methods (see, e.g., [14])
are not allowed. Moreover, the memory used by estimator should be fixed and thus
zonotope approaches [1, 3, 7] should be avoided. In our case, only the three gates
for s, v, d will be memorized.

Figure 3: Online interval state estimator

We will take advantage of the fact that the float is composed of three SISO
(Single-Input Single-Output) systems in series, as illustrated by Figure 4.

The paper is organized as follows. Section 2 recalls some classical results for
differential inclusion for systems with a single state variable. Section 3 introduces
the notion of interval flow which will be main operator used for a reliable discretisa-
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Figure 4: The float is composed of three SISO systems in series

tion of differential inclusions. Section 4 studies the well-known Riccati differential
equation. This part will be needed for the resolution of the sinking body problem
proposed in Section 5. Section 6 combines all these tools to derive an online interval
predictor for the float with interval uncertainties. Section 7 concludes the paper.

2 Differential inclusion

This section recalls some classical results related to differential inclusions [5]. These
results will be used further in order to build a reliable procedure to predict the
evolution of the float with interval uncertainties.

We consider the scalar system

v̇(t) = f(v(t),u(t))
v(0) = v0 ∈ [v0]
u(t) ∈ JuK ⊂ Rn

(6)

The signal u(t) is inside the box JuK ⊂ Rm. Note that u(t) in chosen as a vector
and this is why is it written bold. It varies with time in contrast to the box JuK
which is assumed to be constant with time. We have here a differential inclusion
[5] with many solutions, as many as we have different signals u(t) in the box JuK.
Finding an envelope for the set of all solutions v(t) is a difficult problem which
can be solved using optimal control theory [15] for some cases.

2.1 Comparison theorem

We recall here a theorem which can be used directly to find an envelope for a differ-
ential inclusion with one state variable [8]. It takes into account the monotonicity
of the subsystems [25] to facilitate the interval integration.

Proposition. Assume that the initial condition satisfies v0 ∈ [v−0 , v
+
0 ] and de-

note by [f ] an inclusion function for f [17]. An envelope for any solution v(t) is
[v−(t), v+(t)], where:

v̇− = lb([f ](v−, [u])) , v−(0) = v−0
v̇+ = ub([f ](v+, [u])) , v+(0) = v+

0

(7)

The operator lb takes the lower bound of its interval input and ub returns its upper
bound.
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Proof. The minimal and maximal solutions for (6) satisfy [16]:

v̇ = f(v, argmin
u∈[u]

f(v,u)) , v(0) = v−0

v̇ = f(v, argmax
u∈[u]

f(v,u)) , v(0) = v+
0

(8)

It is a consequence of the Hamilton-Jacobi-Bellman theorem in the scalar case [15].
Let us recall the comparison theorem for scalar differential equations

ẋ1 = ϕ1(x1)
ẋ2 = ϕ2(x2)
ϕ1 ≤ ϕ2

x1(0) ≤ x2(0)

⇒ ∀t, x1(t) ≤ x2(t). (9)

Now, for all v, we have

lb([f ](v−, [u])) ≤ f(v−, argmin
u∈[u]

f(v−,u))

ub([f ](v+, [u])) ≥ f(v+, argmax
u∈[u]

f(v+,u))
(10)

Therefore, using the comparison theorem, we conclude the proof of the proposition.

2.2 Example: the sinking body

We consider a body totally immersed in the ocean as represented by Figure 5. As
it will be seen later this example is chosen since it is an important component of
our underwater robot.

Figure 5: Sinking body

The speed v of the body satisfies the following differential equation

v̇ = a− bv|v| (11)

where b > 0 corresponds to a dumping coefficient. If the body has a negative
buoyancy, the coefficient a is positive and the body sinks toward the bottom. If it
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has a positive buoyancy, a is negative and the body goes up toward the surface.
We assume that both a and b are constant and belong to the intervals [a−, a+], and
[b−, b+], respectively.

First, note that the system is stable and v(t) converges to

v̄ = sign(a)

√
|a|
b
. (12)

Taking into account Proposition 2.1, we get a tube [v−, v+] containing v(t). The
two bounds v− and v+ are defined by the two differential equations

v̇− = lb
(
[a]− [b]v−|v−|

)︸ ︷︷ ︸
f−
[a],[b]

(v−)

, v−(0) = v−0

v̇+ = ub
(
[a]− [b]v+|v+|

)︸ ︷︷ ︸
f+
[a],[b]

(v+)

, v+(0) = v+
0

(13)

The tube [v−, v+] is minimal, i.e., it is the smallest with respect to the inclusion
which contains all feasible v(t). As a consequence, we can find a good approximation
for the two bounds v−(t) and v+(t) using any Runge-Kutta method. For example:

v−(t+ δ) = v−(t) + δ · f−[a],[b]

(
v−(t) + δ

2 · f
−
[a],[b](v

−(t))
)

v+(t+ δ) = v+(t) + δ · f+
[a],[b]

(
v+(t) + δ

2 · f
+
[a],[b](v

+(t))
) (14)

If δ is small, this approximation is very close to the minimal tube, but it does not
provide any guarantee. Guaranteed bounds will be given later in Section 5.

We consider four illustrative cases, illustrated by Figure 6.

Case a We have (v0, a, b) ∈ [0.9, 1.1] × [0.9, 1.1] × [1.9, 2.1]. This means that for
t = 0, the body goes to the bottom. Since a > 0, it sinks (as represented by stones
in the cube of the subfigure at the top). The two trajectories v−(t),v+(t) in red
are obtained by the Runge-Kutta integration (14). We observe that the velocity

interval [v−(t), v+(t)] converges to the interval [v̄] = sign ([a])
√
|[a]|
[b] .

Case b We have (v0, a, b) ∈ [−1.1,−0.9]×[−1.1,−0.9]×[1.9, 2.1]. This means that
for t = 0, the body goes to the surface. Since a < 0, it floats (as represented by the
bubbles in the cube of the Subfigure (b)). Again, the two trajectories v−(t),v+(t)
in red are obtained by the Runge-Kutta integration (14). And again, we observe
that v(t) converges to a value v̄.

Case c We have (v0, a, b) ∈ [0.9, 1.1] × [−1.1,−0.9] × [1.9, 2.1]. For t = 0, the
body is thrown toward the bottom. Since a < 0, the body floats. We observe that
after approximately 1 sec, the body stops sinking and then starts its course to the
surface. For the simulation, we need to compute the time at which v(t) changes its
sign.
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Case d We have (v0, a, b) ∈ [−1.1,−0.9] × [0.9, 1.1] × [1.9, 2.1]. For t = 0, the
body is thrown toward the surface. Since a > 0, the body sinks. We observe that
after approximately 1 sec, the body stops surfacing and then starts its course to
the bottom.

3 Interval flow

In the previous section, we have shown how an integration of a differential inclusion
can be performed in case of interval uncertainties. However, no guarantee was
provided, mainly with respect to the time discretisation. In order to get a reliable
integration approach, this section presents the new notion of interval flow.

3.1 Interval flow

Given a sampling time δ > 0, an interval flow associated with (6) is a function Φf
which satisfies

Φf :
R× IR× IRm → IR× IR

(δ, [v0], JuK) → ([v], JvK) (15)

with
v(0) ∈ [v0]

∀t ∈ [0, δ],u(t) ∈ JuK
v̇(t) = f(v(t),u(t))

([v], JvK) = Φf (δ, [v0], JuK)

⇒
{

v(δ) ∈ [v]
∀t ∈ [0, δ], v(t) ∈ JvK (16)

The interval flow will be used for the discretisation of a differential inclusion. In-
deed, if we know an interval for the state v(tk) at time tk = kδ, and if we know an
interval for the input u(t) for all t ∈ [tk, tk + δ] the interval flow returns an interval
containing v(t), t ∈ [tk, tk + δ] and an interval for v(tk + δ).

3.2 Example: the integrator

Consider the integrator with an uncertain input u(t) and initial state v0: v̇(t) = u(t)
v(0) = v0 ∈ [v0]

u(t) ∈ JuK = [u−, u+]
(17)

From Proposition 2.1, we know that any solution v(t) is inside [v−(t), v+(t)], where:

v̇− = u− , v−(0) = v−0
v̇+ = u+ , v+(0) = v+

0

(18)

As a consequence, an interval flow is

Φf (δ, [v0], JuK) =

(
[v0] + δJuK

[v0] + [0, δ] · JuK

)
(19)
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Figure 6: Sinking body (with stones inside) or floating body (with bubbles in-
side) for different initializations. There is no guarantee that the tubes contain the
trajectory v(t)
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3.3 Example: first order system

Consider a first order linear system with uncertain input u and initial state v:

 v̇(t) = av(t) + u(t)
v(0) = v0 ∈ [v0]

u(t) ∈ JuK = [u−, u+]
(20)

From Proposition 2.1, we know that any solution v(t) is inside [v−(t), v+(t)], where:

v̇− = av− + u− , v−(0) = v−0
v̇+ = av+ + u+ , v+(0) = v+

0

(21)

i.e.

v−(t) = eatv−0 +
∫ t

0
ea(t−τ)u−(τ)dτ

= eat
(
v−0 +

∫ t
0
e−aτu−(τ)dτ

)
= eat

(
v−0 + u−

∫ t
0
e−aτdτ

)
= eat

(
v−0 + u−

[
− 1
a (e−aτ )

]t
0

)
= eat

(
v−0 − u−

a (e−at − 1)
)

v+(t) = eat
(
v+

0 − u+

a (e−at − 1)
)

(22)

As a consequence, an interval flow for the scalar first order system is

Φf (δ, [v0], JuK) =

 eaδ
(

[v0]− JuK
a

(
e−aδ − 1

))
ea[0,δ]

(
[v0]− JuK

a

(
e−a[0,δ] − 1

))
 (23)

3.4 Real time interval integration

Recall that our goal is to integrate the equation of the float (1) with some interval
uncertainties. Now, it will be shown later that the float is a serial composition of
several subsystems for which we have an analytical interval flow. To show how this
real-time interval integration can be done, we consider two compositions: serial and
parallel, as illustrated by Figure 7. Note that the parallel composition will not we
used for our application, but is given here to illustrate that our approach is not
limited to serial systems.
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Figure 7: S1 is serial composition of two systems; S2 is a parallel composition

Serial systems Consider the system S1 (see Figure 7)

S1 :

{
ẋ = f(x, u)
ẏ = g(y, x)

(24)

The following algorithm computes a tube for the output y(t).

in: [x0], [y0]

1 [x] = [x0]

2 [y] = [y0]

3 for k = 1 to kmax

4 Read JuK = JuK(k)

5


[x]

JxK

 = Φf (δ, [x], JuK)

6


[y]

JyK

 = Φg(δ, [y], JxK)

7 write(k, [y], JyK)

Proof. Assume that,

x(tk−1) ∈ [x](k − 1)
x([tk−1 − δ, tk−1]) ∈ JxK(k − 1)

y(tk−1) ∈ [y](k − 1)
y([tk−1 − δ, tk−1]) ∈ JyK(k − 1)

(25)
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with tk = kδ. Now, from Step 5,(
[x](k)
JxK(k)

)
= Φf (δ, [x](k − 1), JuK(k)) (26)

From Equation (16), {
x(tk) ∈ [x](k)

∀t ∈ [tk − δ, tk], x(t) ∈ JxK(k)
(27)

Moreover, from Step 6,(
[y](k)
JyK(k)

)
= Φf (δ, [y](k − 1), JxK(k)) (28)

Thus, from (16), {
y(tk) ∈ [y](k)

∀t ∈ [tk − δ, tk], y(t) ∈ JyK(k)
(29)

Parallel systems Consider the system S2 of Figure 7:

S2 :

 ẋ = f(x, u)
ẏ = g(y, u)
z = x+ y

(30)

The following algorithm computes a tube for the output z(t).

in: [x0], [y0]

1 [x] = [x0]

2 [y] = [y0]

3 for k = 1 to kmax

4 Read JuK = JuK(k)

5


[x]

JxK

 = Φf (δ, [x], JuK)

6


[y]

JyK

 = Φg(δ, [y], JuK)

7

 [z]

JzK

 =

 [x] + [y]

JyK + JyK


8 write(k, [z], JzK)

Proof. The proof is similar to that provided for serial systems.
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4 Analytical solution of the Riccati equation

To be able to simulate our float with an interval uncertainty, we need to find an
interval flow for each of the three blocks of Figure 4. For the first and the last blocks
which are both integrators, the interval flow has been given in Subsection 3.2. For
the block of the middle, the interval flow needs a specific analytical resolution. Now,
this resolution can be derived from the analytical solution of a Riccati equation that
is considered in this section. All results given here are taken from [19] but only
those that are useful for our application have been extracted from this book.

A Riccati equation is given by

v̇ = a− bv2. (31)

We assume here that v0 > 0.

Proposition. If a > 0 then the solution of (31) is

v(t) = v̄ ce
2
√

abt−1

ce2
√

abt+1

c = v̄+v0

v̄−v0

v̄ =
√

a
b

(32)

Proof. Set E(t) = ce2
√
abt, we have Ė = 2

√
abcE. We have

v̇ = a− bv2

⇔ v̄ ddt

(
E−1
E+1

)
= a− b

(
v̄E−1
E+1

)2

⇔ v̄
(
Ė(E+1)−Ė(E−1)

(E+1)2

)
= a− b

(
v̄E−1
E+1

)2

⇔ v̄
(

2
√
abcE(E+1)−2

√
abcE(E−1)

(E+1)2

)
= a− b

(
v̄E−1
E+1

)2

⇔
√

a
b

(
2
√
abE (E + 1)− 2

√
abE (E − 1)

)
= a (E + 1)

2 − a (E − 1)
2

⇔ 4aE = E2 + 2aE + 1−
(
E2 + 2aE + 1

)
(33)

which is true.

The solution of the Riccati equation, as given by Proposition 4 is singular when
a = 0 and numerically ill-conditioned a is near zero. Now, this singularity has no
physical reason and can be avoided by the using the exponential cardinal function
expc(ν) defined by

expc(ν) =
eν − 1

ν
(34)

with expc(0) = 1. This function is continuous and differentiable everywhere. It
is a monotonic function, strictly positive and its graph is similar to that of exp ν.
The singularity we observe in the expression for ν = 0 is artificial and should not
be considered as such.
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Proposition. If a ≥ 0 then the solution of (31) is

v(t) =
e2bv̄t(v̄ + v0) + v0 − v̄

1 + e2bv̄t + 2v0bt · expc(2bv̄t)
(35)

Note that, thanks to the use of the expc function, this expression for v(t) has
no more singularity for t = 0.

Proof. Let us first check that the formula is correct when a > 0. We have

v(t) = v̄
v̄+v0
v̄−v0

e2bv̄t−1
v̄+v0
v̄−v0

e2bv̄t+1
= v̄ (v̄+v0)e2bv̄t−(v̄−v0)

(v̄+v0)e2bv̄t+(v̄−v0)

= v̄
v̄(e2bv̄t−1)+v0(e2bv̄t+1)
v̄(e2bv̄t+1)+v0(e2bv̄t−1)

=
v̄(e2bv̄t−1)+v0(e2bv̄t+1)
(e2bv̄t+1)+v0

(
e2bv̄t−1

v̄

)
=

v̄(e2bv̄t−1)+v0(e2bv̄t+1)
(e2bv̄t+1)+2v0bt·expc(2bv̄t)

(36)

Let is now check that the formula is correct when a = 0. Since v̄ =
√

a
b = 0, we

have

v(t) =
v0

(
e0 + 1

)
1 + e0 + 2v0bt

=
v0

1 + v0bt
. (37)

Thus
v̇ = a− bv2

⇔ v̇ = −bv2

⇔ v0
−v0b

(1+v0bt)2 = −b
(

v0

1+v0bt

)2
(38)

which is true.

Proposition. If a < 0 then the solution of (31) is

v(t) = v̄ tan
(
atan v0

v̄ − bv̄t
)

v̄ = −
√
−a
b

(39)

where

t < t1 =
1

−bv̄

(π
2
− atan

v0

v̄

)
. (40)

The change of sign for v(t) is obtained for

t2 =
1

bv̄
atan

v0

v̄
. (41)

Proof. First, note that a = −v̄2b. We have

v̇ = a− bv2

⇔ d
dt

(
v̄ tan

(
atan v0

v̄ − bv̄t
))

= −v̄2b− bv̄2 tan2
(
atan v0

v̄ − bv̄t
)

⇔
(
1 + tan2

(
atan v0

v̄ − bv̄t
))
· d
dt

(
atan

v0

v̄
− bv̄t

)
︸ ︷︷ ︸

−bv̄

= −v̄b
(
1 + tan2

(
atan v0

v̄ − bv̄t
))

⇔ 1 +
(
tan

(
atan v0

v̄ − bv̄t
))2

= 1 +
(
tan

(
atan v0

v̄ − bv̄t
))2
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which is true. The integration is possible until

atan
v0

v̄
− bv̄t ∈

]
−π

2
,
π

2

[
(42)

This condition is satisfied for t = 0. It will still be satisfied until

atan v0

v̄ − bv̄t ≤
π
2

⇔ t ≤ t1 = 1
−bv̄

(
π
2 − atan v0

v̄

) (43)

For this t1, the solution is at infinity. For the initialization, we need to have
atan v0

v̄ ∈] − π
2 ,

π
2 [ which is always the case. To get the time of change of sign for

v(t), we solve:

atan
v0

v̄
− bv̄t2 = 0. (44)

Thus

t2 =
1

bv̄
atan

v0

v̄
. (45)

Corollary. The solution of the Riccati equation v̇ = a− bv2 for b > 0 is

v(t) = ψ+
a,b,v0

(t) = e2bv̄t(v̄+v0)+v0−v̄
1+e2bv̄t+2v0bt expc(2bv̄t)

if a ≥ 0

= ψ−a,b,v0
(t) = v̄ tan

(
atan v0

v̄ − bv̄t
)

if a < 0
(46)

where v̄ = sign (a)
√
|a|
b .

5 Sinking body problem

We consider again the equation of the sinking body given by

v̇ = a− bv|v| (47)

where b > 0. This equation is close to the Riccati equation v̇ = a−bv2. Equivalently
(47) can be seen as a piecewise Riccati equation. In this section, we propose to
find an analytic solution for the solution v(t). This expression is needed to build
an interval flow for (47) which will then be used to integrate our float with interval
uncertainties.

5.1 Analytical expression of the solution of the sinking body
motion

From the analytical solution of the Riccati equation, we can get an analytical
expression of the sinking body motion in the case where the parameters a, b are
constant.
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Proposition. The solution of v̇ = a− bv|v| is

ϕa,b,v0
(t) =


sign(a) · ψ+

|a|,b,sign(a)·v0
(t) if av0 ≥ 0

− sign(a) · ψ−−|a|,b,− sign(a)·v0
(t) if av0 < 0 and t ≤ t2

sign(a) · ψ+
|a|,b,0(t− t2) if av0 < 0 and t > t2

(48)

where t2 = − sign(a)√
|a|b

atan
(
v0

√
b
|a|

)
, where ψ− and ψ+ are defined by (46).

Proof. If a = 0 or v0 = 0, we have av0 ≥ 0 and we easily check that the Proposition
is valid. We need to check four cases.

Case 1: a > 0,v0 > 0. We have v̇ = a− bv2 which is a Riccati equation. From
Corollary 4, v(t) = ψ+

a,b,v0
(t) for all t ≥ 0.

Case 2: a < 0,v0 < 0. We have v̇ = a− bv|v| = a+ bv2. Set w = −v. We have
−ẇ = a+ bw2, i.e., ẇ = (−a)− bw2. Thus w(t) = ψ+

−a,b,w0
(t) and finally

v(t) = −ψ+
−a,b,−v0

. (49)

Case 3: a < 0,v0 > 0. We have v̇ = a− bv2 , which is again a Riccati equation.
From Corollary 4, we get

v(t) = ψ−a,b,v0
(t) if t ≤ t2 = 1

bv̄ atan v0

v̄

v(t) = −ψ+
−a,b,0(t− t2) if t > t2

(50)

Case 4: a > 0,v0 < 0. We have v̇ = a− bv|v| = a+ bv2. We get

v(t) = −ψ−−a,b,−v0
(t) if t ≤ t2 = − 1

bv̄ atan v0

v̄

v(t) = ψ+
a,b,0(t− t2) if t > t2

(51)

5.2 Interval flow of the sinking body motion

Corollary. If v0 ∈ [v−0 , v
+
0 ], a ∈ [a−, a+], b ∈ [b−, b+] and t ∈ [t−, t+], we have

ϕa,b,v0
(t) ∈ [ϕ][a],[b],[v0]([t]) (52)

where

(i) [ϕ][a],[b],[v0]([t])) = [ϕ]a−,[b],v−0
([t]) t [ϕ]a+,[b],v+

0
([t])

(ii) [ϕ]a,[b],v0
([t]) = [ϕ]a,[b],v0

({t−, t+})

(iii) [ϕ]a,[b],v0
(t) =

{
σ · [ψ+]|a|,[b],σv0

(t) if a · v0≥ 0

[ϕ̂]a,[b],v0
(t) if a · v0< 0

(iv) [ϕ̂]a,[b],v0
(t) =


ϕa,{b−,b+},v0

(t)) if t /∈ [t2]

σ · [ψ+]|a|,[b],0(t− [t2]) if t ∈ [t2]

[t2] = t2(v0, a, {b−, b+})
(v) [ψ+]a,[b],v0

(t) = ψ+
a,{b−,b+},v0

(t)
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where

t2(v0, a, b) = − σ√
|a|·b

atan
(
v0

√
b
|a|

)
σ = sign(a)

and t denotes the interval hull operator.

Remark. In the previous formulas, we use an enumeration notation with braces.
The resulting calculus returns the smallest interval which contains all possibilities
obtained from the list. For instance

sin({0, 1}) = [0, sin(1)]

[ϕ]a,[b],v0
({t−, t+}) = [ϕ]a,[b],v0

(t−) t [ψ]a,[b],v0
(t+) (see Corollary 5.2, (ii))

ψ+
a,{b−,b+},v0

(t) =
[{
ψ+
a,b−,v0

(t), ψ+
a,b+,v0

(t)
}]

(see Corollary 5.2, (v))

Proof. (i) Using the comparison theorem, we have

v0 ∈ [v−0 , v
+
0 ], a ∈ [a−, a+]⇒ ϕa,b,v0(t) ∈

[
ϕa−,b,v−0

(t), ϕa+,b,v+
0

(t)
]
.

It suffices to enclose the two quantities ψa−,b,v−0
(t) and ψa+,b,v+

0
(t).

(ii) The signal v̇(t) can never change of sign. Indeed, v̇(t) = 0 if a−bv|v| = 0 and
in this case, v̇(t) = 0 for all t. As a consequence, the extreme values for ϕa,b,v0

(t)
are obtained for t ∈ {t−, t+}.

(iii) Assume that (a, v0, t) is fixed. If a · v0 ≥ 0, we have no stop point. Thus
ϕa,b,v0(t) = σ · ψ+

|a|,[b],σv0
(t) as seen in 48. Otherwise, we are in a situation with

a stop point.
(iv) We have a stop point. This stop point can be inside or outside the time

window [t]. We have

∂ϕa,b,v0(t)

∂b
= 0⇔ t = t2 = − sign(a)√

|a|b
atan

(
v0

√
b

|a|

)
. (53)

Thus, if t /∈ [t2], where [t2] = t2(v0, a, {b−, b+}), ϕa,b,v0
(t) is monotonic in t and

thus
ϕa,b,v0

(t) ∈ ϕa,{b−,b+},v0
(t) (54)

otherwise
ϕa,b,v0

(t) ∈ σ · ψ+
|a|,[b],0(t− t2(v0, a, {b−, b+})). (55)

(v) The result comes from the monotonicity of ψ+ with respect to b.

Corollary. An interval flow of the sinking body motion is:

Φf :
IR× IR2 → IR× IR

([v0], JaK, JbK) →
(

[v]
JvK

)
=

(
[ϕ]JaK,JbK,[v0](δ)

[ϕ]JaK,JbK,[v0]([0, δ])

)
(56)
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5.3 Example

We take again four cases already treated in Subsection 2.2.

Figure 8: Sinking body for four different initializations. The tubes contains the
trajectory v(t)
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Case a We have (v0, a, b) ∈ [0.9, 1.1] × [0.9, 1.1] × [1.9, 2.1]. In red, we have
the envelope already obtained by the Runge-Kutta method. No pessimism can
be observed which is consistent with the fact that ϕa,b,v0

(t) is monotonic. The
magenta bar corresponds to the initial interval [0.9, 1.1] for v0.

Case b We have (v0, a, b) ∈ [−1.1,−0.9]×[−1.1,−0.9]×[1.9, 2.1]. The envelope is
symmetrical to that obtained for Case a. Again, due to the monotonicity ϕa,b,v0

(t),
no pessimism can be observed.

Case c We have (v0, a, b) ∈ [0.9, 1.1]× [−1.1,−0.9]× [1.9, 2.1]. The pessimism of
the enclosure is too small to be observed; compared to the trajectories obtained by
a Runge Kutta integration (red). From the tube, we can conclude that the speed
of the float will cancel and the float will come back.

Case d We have (v0, a, b) ∈ [−1.1,−0.9] × [0.9, 1.1] × [1.9, 2.1]. The situation is
similar to that given in Case c.

In the figures, the units are t(sec) and v (m/sec).

6 Online integration of the float

Consider again the float described by Equation (1). Due to the serial structure of
the system, we can integrate the differential inclusion using interval flows for each
component, as explained in Subsection 3.4. The corresponding decomposition is
expressed by Figure 9 and is consistent with the initial goal (see Equation 5). For
each sampling time, five steps have to be performed sequentially in the right order.
Between sampling times k to k+ 1, three intervals have to be transmitted through
the memory: [s](k), [v](k), [d](k).

Figure 9: Sequence to be followed for one step interval integration
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At Step 1, we read the input slice JuK(k) which contains all u(t) for t ∈ [(k −
1)δ, kδ]. At Step 2, we integrate JuK using the interval flow for the integrator
presented in Subsection 3.2. As a result, we get a slice JsK(k) for s(t). Using a
static interval evaluation, we then get at Step 3 two slices JaK(k) for a(t) and JbK(k)
for b(t). These two slices will then feed the interval flow [ϕ]JaK,JbK,[v] which yields
the slice JvK(k) and the gate [v](k) at Step 4. The slice JvK(k) is then used at Step
5 by the last block to generate the slice JdK(k) and the gate [d](k).

The resulting computations correspond to the following algorithm.

In: [d0], [v0], [s0]

Init [d] = [d0]

[v] = [v0]

[s] = [s0]

Main loop For k = 1 to kmax

Step 1 Read JuK = JuK(k)

Step 2 JsK = [s] + JuK · [0, δ]

[s] = [s] + JuK · δ

Step 3 JaK = g ·
(

1− 1
1+βJsK

)
JbK = cx

2(1+βJsK)`

Step 4 JvK = [ϕ]JaK,JbK,[v]([0, δ])

[v] = [ϕ]JaK,JbK,[v](δ)

Step 5 JdK = [d] + JvK · [0, δ]

[d] = [d] + JvK · δ

write(k, [d], JdK, [v], JvK, [s], JsK)

The only memory needed by this interval simulator are the three gates [s], [v], [d].

The behavior of the interval simulator is illustrated by Figure 10. We took
g0 = 9.81m · s−2, ` = 1m,β = 0.1, cx = 0.9 for the parameters and [s0] = [v0] =
[d0] = [0, 0.1] for the initial conditions. For the input, we took JuK(k) = exp(−[(k−
1)δ, kδ]). In the figures, the chosen units are t(sec), d(m) and v (m/sec).

Even if the system is unstable in the Lyapunov sense (indeed the variable d
tends to infinity), we do not observe any exponential explosion of the pessimism,
unlike other existing interval methods dealing with differential inclusions.

The implementation is done using the Codac library [23] and the source codes
are available at https://www.ensta-bretagne.fr/jaulin/reachfloat.html.

https://www.ensta-bretagne.fr/jaulin/reachfloat.html
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Figure 10: Sinking float. The tubes contain the trajectories u(t), s(t), v(t), d(t) for
t ∈ [0, 2] (left) and for t ∈ [0, 20] (right)

7 Conclusion

In this paper, a new interval estimator has been proposed for online state prediction.
For this, we have introduced the concept of interval flow that has to be found
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analytically for each component of the whole system. Combining the interval flows
of all subsystems, we have shown that an interval estimator containing the state
variables in a guaranteed way could be derived. For simplicity, but also to evaluate
the accuracy of the approach, only the reachability problem has been addressed.
This means that no exteroceptive measurements (i.e., collected by a sensor able
to interact with the environment, such as a camera, a lidar or a radar) have been
taken into account in order to contract the domains for the state variables. The
interval state estimator that has been obtained has a fixed number of operations to
be performed at each sampling time. This is a strong requirement rarely considered
by classical interval algorithms. Indeed, existing interval algorithms dealing with
differential inclusions use fixed point procedures that are not consistent with real-
time issues. Through an example taken from robotics (an underwater robot with
a ballast), we have shown that it was possible to deal with engineering systems
efficiently.

The presented approach can be applied to a complex system as soon as it can
be built using a parallel and a serial composition of specific scalar systems [12].
More precisely, these scalar systems should have a single state variable, may have
several inputs, and an analytical solution should be available for constant inputs.
The existence of such an analytical solution could be relaxed if we accept to use an
interval resolution of a differential equation based on the Picard operator [13].
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Boston, MA, 1990. DOI: 10.1007/978-0-8176-4848-0.

[6] Collins, P. and Goldsztejn, A. The reach-and-evolve algorithm for reachabil-
ity analysis of nonlinear dynamical systems. Electronic Notes in Theoretical
Computer Science, 223:87–102, 2008. DOI: 10.1016/j.entcs.2008.12.033.

https://doi.org/10.1016/j.automatica.2004.12.008
https://doi.org/10.1016/j.automatica.2004.12.008
https://doi.org/10.1007/s11155-016-0001-2
https://doi.org/10.1109/CDC.2011.6160872
https://doi.org/10.1007/3-540-36580-X_5
https://doi.org/10.1007/978-0-8176-4848-0
https://doi.org/10.1016/j.entcs.2008.12.033


Online Interval Depth Localization of an Underwater Robot with Ballast 23

[7] Combastel, C. A state bounding observer for uncertain non-linear continuous-
time systems based on zonotopes. In Proceedings of the 44th IEEE Conference
on Decision and Control, pages 7228–7234. IEEE, 2005. DOI: 10.1109/CDC.

2005.1583327.
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