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Boundary Approach to Characterize the Inner and

Outer Approximation of the Image of a Disk∗

Maël Godardab, Luc Jaulinac, and Damien Masséde

Abstract

Calculating directly the inner and outer approximation of the image of
a set by a function can be challenging. Then, it is sometimes preferred to
compute the image of the boundary of the set instead. However, boundary-
based methods are subject to the apparition of fake boundaries in the image
set. These fake boundaries add pessimism when characterizing the inner
approximation of the image set. This paper then introduces the notion of Box
Chains to simplify the detection and the suppression of the fake boundaries.
The characterization of the inner and outer approximation of the image set
in the case of a function from the unit disk D to R2 will be considered, with
two examples.

Keywords: fake boundaries, box chains, boundary approach

1 Introduction

Calculating the image of a set by a function has many applications in robotics
[7]: Image of a subpaving [9], estimation of the area covered by a sensor [3], state
estimation [1, 12]. The interval analysis tools have then been shown to be efficient
for roboticians [6, 11].

The methods to calculate the image of a set by a function can be divided into
two subclasses. The set-based methods compute directly an outer, and sometimes
an inner, approximation of the image of the whole set. They can rely on Interval
Analysis for the operations on sets. The boundary-based methods compute instead
the image of the boundary of the set, and from this image an inner and outer
approximation of the image set can be deduced. These methods are lighter to
calculate, but they are subject to the appearance of fake boundaries in the image
set.
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These fake boundaries are the result of the difference between the boundary of
the image set, and the image of the boundary. These fake boundaries are parts of
the image of the boundary that are in facts inside of the image set and should be
classified as such. As they add an unwanted pessimism to the estimation of the
inner approximation of the image set, these fake boundaries have to be removed.

This problematic has often been addressed as different applications favor dif-
ferent solutions. The papers [2, 16] both expose the fact that the result obtained
when using interval methods depends on the way the problem itself is formulated.
For example the union of adjacent but non-overlapping sets is subject to the ap-
pearance of fake boundaries, whereas a reformulation of the problem can avoid this
issue. In [16] a first solution is presented by using a DNF (Disjonctive Normal
Form) / CNF (Conjonctive Normal Form) to prevent the fake boundaries from ap-
pearing. The paper [2] is a direct continuation of this work and proposes to rely
on Karnaugh maps [8] to highlight how an outer approximation of the boundary
can be constructed part by part. From this outer approximation of the boundary
without the fake boundaries, an inner and outer approximation of the whole set
can be obtained.

The problematic of fake boundaries can also be seen from a topological point of
view. In [3], the notion of winding number is used to detect the fake boundaries.
More precisely, it extends the works from [15] and [5] in order to compute the
winding number, i.e. the topological degree, of a whole area. In the context of
a coverage measure, the winding number represents how many times a given area
was seen. The boundaries then have an interval of winding number, for example
[0, 1] if the boundary is between an area seen one time and an unseen area. Fake
boundaries can finally be spotted as their winding number does not contain 0.

The method presented in this article is a continuation of these works as the
problem considered here can easily be seen as the computation of a covered or
visible area without fake boundaries. While the works presented earlier are limited
to R2, the work presented in this article aims to be usable in higher dimensions
while remaining as computationally light as possible. To do so a first step is to
delete the fake boundaries before computing an inner and an outer approximation
of the image set.

Section 2 presents the notions and notations that will be used for the remainder
of the article. Section 3 introduces the notion of Box Chains that will be used in
the boundary simplification algorithm of Section 4. For this article two examples
from the unit disk D to R2 will be considered. Finally Section 5 concludes the
paper.

2 Problem presentation

2.1 Notations and definitions

Let D be the unit disk with S1, the unit circle, its contour. As computing the
image of the whole disk D can give a result too pessimistic to be usable, it is often
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prefered to compute the image of its boundary S1 instead. For this article we will
consider functions of the form f : D → R2 that satisfies :

• f is C1, we will note Jf its Jacobian function.

• f has no singularity on D, i.e. the determinant of its Jacobian is never null.

Thanks to these assumptions, cases where the image of the set contains a cusp
or a fold, as depicted Figure 1, will not be considered.

Figure 1: Fold in the image of the set

Considering a set X, we will further note ∂X its boundary. For the unit disk
D, its boundary ∂D is the unit circle S1.

We will then denote f(D) the image of the unit disk by the function f and
∂f(D) its boundary. Similarly, f(S1) will denote the image of the unit circle by the
function f .

As depicted in Figure 2a, we then have:

∂f(D) ⊆ f(S1) (1)

Proof. Consider a function f : D → R2. Under the assumptions cited earlier:

• f is C1.

• The determinant of its Jacobian is never null.

We can say that f is locally bijective at every point of D and is an open mapping.
This mean that the image of an open set by f is an open set:

∀x ∈ D,x /∈ S1 =⇒ f(x) /∈ ∂f(D) (2)

Then,
∀y ∈ R2,y ∈ ∂f(D) =⇒ ∃x ∈ S1,y = f(x) (3)

Finally, all the points of ∂f(D) are points of f(S1).

Calculating the image of S1 instead of the image of D makes fake boundaries
appear. These fake boundaries are defined by:
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2(a) Fake boundaries 2(b) Unknown area due to the fake
boundaries

Figure 2: Pessimism induced by the fake boundaries

FBf (D) = f(S1) \ ∂f(D) (4)

When calculating the image of a disk, or any other closed outline, we often want
to compute the inner and the outer approximation of the image set to verify if they
satisfy a given condition (e.g. obstacle avoidance [4, 10]).

Given ∂f(D) it is possible to compute the inner and the outer approximation
of the image set. However using f(S1) will give a more pessimistic result as the
neighborhood of FBf (D) will be considered as part of the boundary as depicted on
Figure 2b.

Remark. As f is continuous, the image of S1 by f is a closed outline in R2.

For practical reasons we define the function displayed Figure 3 ϕ : [0, 2π] → S1

by :

∀t ∈ [0, 2π], ϕ(t) =

(
cos(t)

sin(t)

)
(5)

Figure 3: Function ϕ from [0, 2π] to S1.

Remark. This function ϕ is bijective over [0, 2π[ and ϕ(0) = ϕ(2π). This means
that ϕ is bijective over any strict subset of [0, 2π].

For the sake of simplicity, let us denote g the function f ◦ϕ, function from [0, 2π]
to R2. We then have:

∀t ∈ [0, 2π],g(t) = f(ϕ(t)) (6)
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Considering an interval [t] ⊂ [0, 2π], studying the properties of g over [t] or the
properties of f over ϕ([t]) will then give the same result as ϕ is bijective on this
interval (see Remark 2.1). For instance, if g is injective over [t], then f is injective
over ϕ([t]). For the remaining of this article the focus will then be on the function
g to detect and remove the fake boundaries in the image of the unit disk D by f .
Note that as for f , g is a C1 function and we note Jg its Jacobian.

Definition. Consider a set X. A collection of sets {Uα}α∈A is a cover of X if

X ⊂
⋃
α∈A

Uα (7)

As computing the exact image of [0, 2π] by g is not possible, in this article
we will consider a cover C of [0, 2π] that does not contain [0, 2π], and compute
[g([t])] for each interval [t] ∈ C. The result is a set of boxes that contains the true
boundary, image of [0, 2π] by g. Figure 4 shows the computation of the image of
[0, 2π] by g in the case where f is the identity. In this example all the intervals of
C have a width of 0.1.

Figure 4: Image of [0, 2π] by g when f is the identity.

2.2 Problem formulation

The objective of this article is to compute the inner and the outer approximation
of the image of the unit disk D by a function f using a boundary approach. We will
limit our study to the cases where the function f respects the assumption presented
in Subsection 2.1.

As suggested in Subsection 2.1, the study of the boundary will rely on the
function g : [0, 2π] → R2 defined by g = f ◦ ϕ, ϕ being the function defined by
Equation (5).

As we are using a boundary approach, the method presented here is subject
to the appearance of fake boundaries. As these fake boundaries add an unwanted
pessimism to the computation of the image set, the first step is to detect and remove
them.

Section 3 introduces the notion of Box Chains to decompose [0, 2π] into subsets
where g is injective in order to facilitate the detection of self-intersections in the
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boundary. This definition will later be used in the boundary simplification algo-
rithm presented in Section 4. Once the fake boundaries have been removed, the
computation of the inner and outer approximation of the image set can be done
with less pessimism.

3 Box Chains

3.1 Neighborhood relation

To define the notion of Box Chain we first need to introduce the relation of neigh-
borhood.

Definition. Let [ti] ∈ IR and [tj ] ∈ IR be two intervals. We define the neighborhood
relation noted Rn between [ti] and [tj ] as :

[ti]Rn [tj ] ⇔ [ti] ∩ [tj ] ̸= ∅ (8)

This relation can be represented for real-value intervals in the t-plane [14] or by
its logical matrix as shown Figure 5.

Figure 5: Neighborhood Relation in the t-plane and logical matrix.

The t-plane represents real-value intervals [0, t1], [t1, t2], ... on the abscissa and
on the ordinate. The grid is then colored where the corresponding intervals verify
the relation, and is left blank otherwise. The resulting grid can be interpreted as
a logical matrix, say M , where the blank boxes are null, and the colored boxes are
ones. This graphical representation of the relation highlights its properties:

• Reflexivity As the main diagonal of the grid has no blank box, i.e. the
identity matrix is included in M , it means that the relation is reflexive.

• Symmetry As M is symmetric, the relation itself is symmetric.

However we can see that (ti ∩ tj ̸= ∅) ∧ (tj ∩ tk ̸= ∅) ≠⇒ ti ∩ tk ̸= ∅ , meaning
that this relation is not transitive.



Boundary Approach to Characterize the Approximation . . . 7

3.2 Box Chain relation

Definition. Let [ti] ∈ IR and [tj ] ∈ IR be two intervals and g : R → R2. We
define the Box Chain relation for g, noted RBC,g between [ti] and [tk], as:

[ti]RBC,g [tk] ⇐⇒ ∃m ∈ N, ([tj1 ] , . . . , [tjm ]) ∈ IRm,

{
[ti]Rn [tj1 ] ∧ · · · ∧ [tjm ]Rn [tk]
g [ti]∪[tj1 ]∪...∪[tjm ]∪[tk]

is injective

(9)

Equivalently, [ti] and [tk] are in Box Chain relation for g if a trajectory from
neighbor to neighbor exists between [ti] and [tk] on which g is injective.

The t-plane representation and the logical matrix of the Box Chain relation
depends on both the expression of g and the chosen t1, t2, · · · . However this rela-
tion is always symmetric as the neighborhood relation and the union of sets are
symmetric.

3.3 Box Chain decomposition

As depicted in Figure 2a, fake boundaries appear when the considered contour
crosses itself. This means that the considered function is not globally injective as
two distincts inputs give the same output.

As mentioned in Section 2, the boundary we are dealing with is not a line, but
a set of boxes. Finding the self intersections in the contour can then be hard as
each box of the contour crosses at least two other boxes as shown Figure 6. This
is the result of the continuity of the function g.

Figure 6: Intersections between the boxes.

3.3.1 Decomposition algorithm

To make this detection easier, Box Chains can be used to decompose the domain
of any function into subsets on which the function is locally injective. Looking
for the self-intersections in the boundary will then come down to looking for the
intersections between different Box Chains. Algorithm 1 is suggested to perform
this decomposition. It takes three inputs :

• The studied function g
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• An injectivity criterion h

• A cover of [0, 2π], C

The injectivity criterion is defined over the powerset of [0, 2π], P([0, 2π]). For a
given interval in [0, 2π] it outputs 1 if g is injective over this interval, 0 otherwise.
This criterion must be sufficient, but does not need to be necessary. An example
of injectivity criterion will be given in Section 3.3.3.

The algorithm takes the element of the cover C one by one and try to group
them into Box Chains. As soon as an element can not be added to the Box Chain
without loosing the injectivity of g on it, a new Box Chain is created. Finally the
algorithm sorts the intervals of the cover C into a list of Box Chains.

Algorithm 1 Box Chain decomposition.

Input : a function g : [0, 2π] → R2,
an injectivity criterion h : P([0, 2π]) → {0, 1} and C a cover of [0, 2π]

Output : LBC a list of Box Chains

1: Set the working list LW := C and the final list LBC := {}
2: Pop E from LW

3: while ( LW ̸= ∅ ) do
4: Initialize the Box Chain LB :={E}
5: while (LW ̸= ∅) do
6: Pop E from LW

7: if h(LB ∪ E) and LBRnE then injectivity criterion
8: Store E in LB

9: else
10: break
11: end if
12: end while
13: Store LB in LBC

14: end while
15: return LBC

3.3.2 Complexity

To get the best result possible, i.e. as few Box Chains as possible, the cover C will be
sorted in increasing order of lower bound, noted lb below, and the popped element
will be the first of the list. If we consider a cover of n elements C = {[ci]}i∈J1,nK,
we then have :

∀(i, j) ∈ J1, nK2, i < j =⇒ lb([ci]) ≤ lb([cj ]) (10)

This sorting and popping process allows to have successive elements in neigh-
borhood relationship.
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In terms of complexity the tests h(LB∪E) and LBRnE require the computation
of m jacobians and m−1 unions and intersections, m being the number of elements
in the list LB . These tests then have a complexity in O(m).

The worse case happens when all the elements can be added to the same Box
Chain except the last one. The tests mentionned earlier are then runned with
m ∈ J1, n− 1K elements. Finally, the complexity of the algorithm in the worse case
is O(n2).

3.3.3 Injectivity criterion

An example of injectivity criterion could rely on the tangent to the contour. The
Jacobian of a function represents this tangent when defined, see Figure 7. Note
that as the domain of the studied function g is R, its Jacobian is a vector.

Theorem. Let T be a subset of R,g : R → R2 be a C1 function and Jg : R → R2

its Jacobian. If 0R2 /∈

[⋃
t∈T

Jg(t)

]
, then g is injective over T.

Proof. Let us demonstrate the contrapositive.
If g is not injective, ∃(t1, t2) ∈ T2, t1 ̸= t2 so that g(t1) = g(t2) as shown Figure

7. Let us denote g1 : R → R and g2 : R → R the functions that give respectively
the first and second component of g. t1 and t2 then verify

∀i ∈ {1, 2}, gi(t1) = gi(t2) (11)

Figure 7: Loop in R2, g is not injective.

The mean value theorem can then be applied to each of the gi functions, giving

∃τi ∈ [t1, t2], Jg,i(τi) = 0 (12)

Meaning that

∀i ∈ {1, 2}, 0 ∈ Jg,i([t1, t2]) (13)

Then,

0R2 ∈ Jg,1([t1, t2])× Jg,2([t1, t2]) (14)
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Finally per definition of the cartesian product and as shown Figure 8,

Jg,1([t1, t2])× Jg,2([t1, t2]) =

 ⋃
t∈[t1,t2]

Jg(t)

 (15)

As (t1, t2) ∈ T2, [t1, t2] ⊂ T. Then 0R2 ∈

[⋃
t∈T

Jg(t)

]
.

Finally, we get that if g is not injective over T, 0R2 ∈

[⋃
t∈T

Jg(t)

]
.

Figure 8: The brown box contains the origin, we can’t conclude on the injectivity.

4 Determination of the inner and outer approxi-
mation of the image a disk

To limit the pessimism while determining the inner and outer approximation of
the image of the whole set, the first step is to remove the fake boundaries. To do
so, Box Chains presented in the previous section will be used to detect the boxes
that belong to the self intersections in the boundary. Once these boxes have been
set aside, the fake boundary can be removed before computing the inner and outer
approximation of the image set.

4.1 Boundary Simplification algorithm

In this section, the function f defined in Equation (16) will be considered for the
illustrations. However the algorithm presented works with any function as long as
the assumptions from Section 2 are satisfied.
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∀x =

(
x1

x2

)
∈ D, f(x) =

(
x2
1 − x2

2 + x1

2x1x2 + x2

)
(16)

As explained in Section 2, when studying this function on its boundary S1, we
will work with the function g : [0, 2π] → R2 for illustration purposes. It is defined
by:

∀t ∈ [0, 2π],g(t) =

(
cos(t)2 − sin(t)2 + cos(t)
2cos(t)sin(t) + sin(t)

)
(17)

If we consider a cover C of [0, 2π] where each element has a diameter of 0.01,
Figure 9 shows the image of C by the function g of Equation (17) with and without
fake boundaries. As mentioned earlier, the boundary is here a set of boxes that
constitutes an over-approximation of the real boundary.

Figure 9: Boundary with (left) and without (right) fake boundaries.

The different steps to eliminate the fake boundaries in the image of C by g are
described below.

4.1.1 Step 1: Box Chain decomposition

The first step before removing the fake boundaries is to look for the self-intersections
in the boundary. Indeed the boxes that belong to the intersections have to be kept
in the resulting boundary.

The first step is then to decompose the cover C into Box Chains as suggested in
Subsection 3.3. This decomposition will make the detection of the fake boundaries
easier. Algorithm 1 can be used to this end and Theorem 3.3.3 gives an injectivity
criterion h:

∀[t] ⊂ [0, 2π], h([t]) =

{
0 if 0R2 ∈ [Jg([t])]
1 otherwise

(18)

C can then be decomposed into Box Chains thanks to Algorithm 1 to get the
result shown on Figure 10. As expected the self intersections in the boundary
appear between different Box Chains.
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Figure 10: Eight Box Chains in S1 (left) and their image by g (right).

4.1.2 Step 2: Finding the self intersections

Once the Box Chain decomposition of C has been done, we can look for intersections
between the images of the Box Chains by g. Two cases of intersections can be
observed Figure 11.

• If two Box Chains are in neighborhood relation, their images by g intersect
each other at their junction point.

• If fake boundaries exist, the boundary crosses itself and the image of two
different Box Chains intersect each other.

Figure 11: Two cases of intersections between the images of two Box Chains.
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Remark. The neighborhood relation can be extended to Box Chains : Let there be
two Box Chains B1 and B2, B1RnB2 ⇔ ∃([t1], [t2]) ∈ B1 ×B2, [t1]Rn[t2]

The injectivity criterion h can be used to distinguish these two cases. Indeed in
the first case the function g is injective around the junction point between the two
Box Chains, which is not the case when the boundary really crosses itself. Algo-
rithm 2 sums up this step. When applied, this algorithm outputs a list of intervals
where the studied function g is not injective. The corresponding intersections can
be then computed as visible in red on Figure 12.

Algorithm 2 Finding self intersections.

Input : a function g : [0, 2π] → R2, a list of Box Chains LBC and an injectivity
criterion h : P([0, 2π]) → {0, 1}

Output : a list of intervals LI

1: Set the working list LI := {}.
2: for i = 1 to len(LBC) do
3: for j = i+ 1 to len(LBC) do
4: for ti in (LBC [i]) do
5: for tj in (LBC [j]) do
6: if g(ti) ∩ g(tj) ̸= ∅ and not h(ti ∪ tj) then self intersection
7: Store individually ti and tj in LI

8: end if
9: end for

10: end for
11: end for
12: end for
13: return LI

Figure 12: Self intersection in the boundary (in red).
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4.1.3 Step 3: Determination of the inner areas

To determine the inner approximation of the image set an initial paving of the set

S =
⋃

[t]∈C

[g([t])] is needed. To achieve this the SIVIA algorithm [7] was used with

an accuracy of 0.04 to get the result shown on Figure 13. By doing so, the union of
the yellow boxes is an outer approximation of S, and each yellow box has a width
smaller than 0.04.

The blue boxes then represent the complementary of the yellow boxes. Their
union is an inner approximation of the complementary of S. They can be divided
into connected subsets as shown on Figure 13. For this work we will rely on the
connected subset decomposition implemented in the Codac library [13].

Figure 13: Paving with three connected subsets.

Then instead of qualifying each box individually as inside or outside the image
set, we can qualify the whole connected subset. This means that once a box is
proven to be inside, the corresponding connected subset can directly be classified
as inside.

A solution to distinguish the boxes that are inside and outside is to look at
the normal to the boundary. As depicted Figure 15 the normal of a real boundary
points towards the exterior. This means that the opposite corner is inside.

Remark. Note that in the case of a fake boundary the normal vector points toward
the interior of the set, but the opposite corner is still inside. This is due to the fact
that a fake boundary is inside the set it should bound.

Remark. For a given interval [t] ∈ [0, 2π] the tangent to the oriented boundary
evaluated in [g]([t]) belongs to [Jg([t])], and rotating [Jg([t])] by −π

2 gives a box
containing the normal to the boundary. Note that the sign of the rotation depends
on the orientation chosen for the unit circle (here counterclockwise). Figure 14
displays the oriented unit circle with a tangent and the associated normal vector.
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Figure 14: A tangent and the associated normal to the unit circle.

Figure 15: Determination of the inner areas.

Applying this to every box of the boundary, except the ones that were previously
proven to belong to the self intersections, gives a set of points that are inside. The
connected subsets containing at least one of these points can be marked as inside,
and the other can be marked as outside. Figure 16 shows an example of output for
this step.

4.1.4 Step 4: Suppressing the fake boundaries

As mentioned earlier, the normal to the boundary is supposed to point outwards.
Figure 17 illustrates the fact that in the case of fake boundaries this normal points
towards an area that was classified as inside in the last step. This can be seen as
the fact that the normal of a fake boundary aims towards a fake exterior.

Suppressing the boxes with a normal pointing towards an inside area allows us
to remove the fake boundaries to obtain a less pessimistic approximation of ∂f(D)
as visible on Figure 18. Note that as the self-intersections in the contour have been
detected in Step 2, it is possible to propagate the information of a box belonging
to the fake boundary from neighbor to neighbor until an intersection is reached.
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Figure 16: Inner (green) and outer (green + yellow) approximation of the image
set with fake boundaries.

Figure 17: Case of a fake boundary.

Figure 18: Fake boundaries removed.



Boundary Approach to Characterize the Approximation . . . 17

4.2 Inner and outer approximation of the image set

Once the fake boundaries have been removed, Step 3 can be applied again with the
remaining boxes to get the inner and outer approximation of the image set without
fake boundaries.

To do so if we denote by Cr the set of remaining intervals of the cover C after

the boundary simplification, we first proceed to an initial paving of S =
⋃

[t]∈Cr

[g([t])]

by using the SIVIA algorithm a second time. Then the boxes that are not part of
the boundary are sorted into connected subsets and are finally classified as inside
or outside the image set with the criteria illustrated Figure 15.

Finally, we are able to characterize the inner and outer approximation of the
image of the unit disk. Figure 19 shows the result obtained with the function f
defined by Equation (16) and an initial cover where all the elements have a diameter
of 0.01. The whole process, from the Box Chain decomposition to the final result
took approximatly 0.6 seconds.

Figure 19: Inner (green) and outer (green + yellow) approximation of the image
set without fake boundaries.

4.3 Additional example

The algorithm presented here also work in more complex cases. Algorithm 3 gives
another example of a function f : D → R2.

As earlier a function g : [0, 2π] → R2 can be defined by ∀t ∈ [0, 2π],g(t) =
f(ϕ(t)). Figure 20 shows the image of the unit circle S1 by this function f . This
result is obtained by considering a cover C of [0, 2π] and computing [g([t])] for each
interval [t] ∈ C. For this application each element of the cover has a diameter of
0.005.

With this function, Algorithm 1 gave 15 Box Chains as shown on Figure 21.
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Algorithm 3 Pseudocode of the implementation of the f function.

Define s(τ, a, b, c) = a+ (b− a) · 0.5 · (1 + tanh(10 · (τ − c)))

Input: p = (p1, p2) a point in the unit disk

ρ =
√

p21 + p22
α = arctan2(p2, p1)
τ = 0.03 + α · 1.01

2π
t1 = 1− cos(2πτ)

d =

(
5− 50 · cos(5 · t1)

30 · sin(5 · t1)

)
θ = s(τ,−3 · π/2,−π/2, 0) + s(τ, 0, π, 0.5) + s(τ, 0, π, 1)

y =

(
5 · t1 − 5 · sin(5 · t1)

2− 3 · cos(5 · t1)

)
+ ρ√

d2
1+d2

2

(
cos θ − sin θ

sin θ cos θ

)
d

Output: y

Figure 20: Boundary with fake boundaries.

Figure 21: Fifteen Box Chains in S1 (left) and their image by g (right).
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Thanks to this Box Chain decomposition, we were able to detect the self-
intersections in the boundary as shown in red on Figure 22.

Figure 22: Self-intersections in the boundary (in red).

Finally, the fake boundaries are detected and removed before computing the
inner and outer approximation of the image set without fake boundaries as displayed
on Figures 23a and 23b.

For this application the whole process took 14 seconds. This increase in the
computation time is due to two factors. First the higher resolution of the cover
leads to an increase in the computation time as the Box Chain decomposition
algorithm has a complexity in O(n2) (see Section 3.3.2). In addition, the area
to pave in this example is larger while the same accuracy was used in the SIVIA
algorithm. Indeed in the first example the area to cover is a 5x5 square, whereas
in this example the area is a 16x12 rectangle. As the SIVIA paving is called twice,
this second factor influences even more the computation time.

23(a) Fake boundaries removed 23(b) Inner (green) and outer (green +
yellow) approximation of the image set

Figure 23: Fake boundaries are detected and removed before computing the inner
and outer approximation of the image set without fake boundaries
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5 Conclusion

This paper presented the problematic of fake boundaries in the computation of the
image of a set by a function. A method to remove them in the case of a function
from D to R2 was presented. The method was finally applied with two examples
where it was indeed able to remove the fake boundaries.

The notion of Box Chains was introduced with the definition of the neighbor-
hood and the Box Chain relations. This Box Chain relation relies on an injectivity
criterion and an example for the case of a function from R to R2 was proposed.
These Box Chains can be used to make the detection of self-intersections in the
boundary easier. In addition, a Box Chain decomposition algorithm in O(n2) was
presented.

Finally a boundary simplification algorithm was displayed. It relies on Box
Chains to facilitate the detection of self intersections in the contour. Once the fake
boundaries have been removed, a better inner approximation of the image set can
be obtained.
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