
Acta Cybernetica — online–first paper version — pages 1–21.

Guaranteed Satisfaction of a Signal Temporal

Logic Formula on Tubes∗

Joris Tilletab, Antoine Bessetac,
and Julien Alexandre dit Sandrettoad

Abstract

This paper considers the issue of how to deal with Signal Temporal Logic
(STL) when taking into account uncertainties. The STL is a formalism with
a large expressiveness to describe real-time properties on real-value signals. It
is particularly used for system verification. This work focuses on extensions
of STL that handle bounded uncertainties on predicates or on the signal it-
self, by using tubes to represent the sets of signals. In this way, it becomes
possible to robustly check the satisfaction of specifications for a noisy system.
However, some cases are undecidable due to uncertainty, and other ones are
too complex to determine. Mainly, this paper provides a literature review
and compares the few state-of-the-art STL monitors able to deal with tubes.
In addition, it proposes to go further by introducing Boolean intervals to for-
malize undecidable cases, and by implementing a new STL formalism applied
to sets in DynIbex, a guaranteed integration tool. Thus, STL specifications
can be validated in a guaranteed way for a simulated system. As a result, we
obtain the same reliable result as the state-of-the-art, but faster. A robotic
application with a drone is proposed to illustrate the concept.

Keywords: STL, interval methods, system verification, tubes

1 Introduction

Cyber-physical systems (CPS) are engineered, physical or biological systems (con-
tinuous and real-value systems) with a numerical attached system (discrete states)
as a monitor or a controller. Designers and users of such systems often require
guarantees on the system behavior, hence the need of a runtime verification pro-
cess. This formal verification can be done using temporal logic, a formalism able
to specify the system requirements with temporal constraints.
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In 1977, Linear Temporal Logic (LTL) [24] is introduced, allowing to describe
discrete time properties on a discrete signal. This is mainly used for formal ver-
ification of software or digital hardware, but reaches its limits when considering
real-time constraints. Metric Temporal Logic [15] goes further by providing a se-
mantics to speak of real-time properties on discrete signal (Boolean traces over
continuous time). When considering CPS, man needs an extension of LTL able
to handle real-time properties on real-value signal. This is the purpose of Signal
Temporal Logic (STL) [22].

Let x = (x1, . . . , xn) : R+ → Rn be a signal of dimension n and depending on
time t. Let ϕ be an STL formula. We note the satisfaction of the formula ϕ by the
trace of the signal x starting at time t by: (x, t) � ϕ.

The Signal Temporal Logic syntax is defined iteratively by:

ϕ := > | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U[t1,t2] ϕ2 (1)

with > denoting the true Boolean value, and µ is an atomic predicate: it is a
constraint on the signal at a time t:

(x, t) � µ ⇐⇒ f(x1(t), . . . , xn(t)) > 0. (2)

¬ is the logical not operator, ∧ the logical and and U is the temporal until operator,
defined below.

We also have:

⊥ = ¬> (False) (3)

ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2) (Or, using De Morgan’s law) (4)

Example 1. Let x : R+ → R6 be the state of a drone in 3 dimension (position
and speed):

x =


x
y
z
ẋ
ẏ
ż

 . (5)

We can express a limited speed when the drone is too close to the ground as follows:

ϕ = µlow height =⇒ µspeed (6)

= ¬µlow height ∨ µspeed (7)

with

µspeed =
√
ẋ2 + ẏ2 + ż2 ≤ 1 (8)

µlow height = z ≤ 10. (9)
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Then, if we consider the signal of a drone flying from time t = 0 s, and we check
the satisfaction of the formula ϕ, we obtain (from (2)):

(x, 0) � ϕ ⇐⇒
{
z(0) > 10

or
√
ẋ(0)2 + ẏ(0)2 + ż(0)2 ≤ 1.

(10)

Our specification is only checked at a specific time of the signal (here at 0 s, i.e.
the beginning of the signal). If we want to specify modalities with respect to time,
we have to use the until operator of the STL.

Until The temporal operator U is the until operator defined on the time interval
[t1, t2] with t1, t2 ∈ R+ and t1 ≤ t2, as follows:

(x, t) � ϕ1 U[t1,t2] ϕ2 ⇐⇒
∃t′ ∈ [t1, t2] (x, t+ t′) � ϕ2 and ∀t′′ ∈ [t, t′] (x, t′′) � ϕ1. (11)

In other words, the until operator states that ϕ1 must stay true until a time t′

within [t1, t2] when ϕ2 is true. Note that nothing is specified on what happen
after t′.

We can derive other useful operators from this operator:

F[t1,t2] ϕ = > U[t1,t2] ϕ (Finally) (12)

G[t1,t2] ϕ = ¬
(
F[t1,t2] ¬ϕ

)
(Globally) (13)

Finally The finally operator F corresponds to the satisfaction of ϕ at a time t′

within [t1, t2]:

(x, t) � F[t1,t2] ϕ ⇐⇒ ∃t′ ∈ [t1, t2] (x, t+ t′) � ϕ. (14)

Globally The globally operator G corresponds to the satisfaction of ϕ during the
whole period [t1, t2]:

(x, t) � G[t1,t2] ϕ ⇐⇒ ∀t′ ∈ [t1, t2] (x, t+ t′) � ϕ. (15)

Example 2. If we consider again the example of the drone with limited speed, we
can now express the same constraint but on the whole duration of the flight (final
time is noted T ), using the globally operator:

ϕ = G[0,T ] (µlow height =⇒ µspeed). (16)

STL enables a system designer to express properties on real-time and real-valued
signals. This formalism is very flexible and can adapt easily to many systems, and
yet it is concise.
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Example 3. Now we can express more subtle specifications for our drone. For
instance:

F[0,60] µgoal
(The drone must be at less than 5 m
from the goal within 1 min)

(17)

F[0,60] (G[0,10] µgoal)
(Same as (17) but the drone must stay
around the goal during 10 s at least)

(18)

ϕtakeoff area U[5,10] ¬µlow height

(The drone must stay in its takeoff area
until it reaches 10 m height wihtin the
period 5 s – 10 s)

(19)

with

µgoal =
√

(x− 20)2 + (y + 50)2 ≤ 5 (20)

ϕtakeoff area = |x| ≤ 2 ∧ |y| ≤ 2. (21)

There are two ways to monitor a system based on an STL specification. Firstly,
the qualitative monitoring returns a boolean corresponding to the satisfaction of
a signal with an STL formula ϕ, like in equation (2). Secondly, the quantitative
monitoring results in a real number ρ which is called the robustness degree [8]. The
sign of ρ gives the qualitative information, and the absolute value is the robustness:
the higher this number, the more robust. It can be viewed as the distance to the
boundary between the set of signals satisfying ϕ and the one violating it.

This quantitative monitoring with its robustness is the mainly used approach to
deal with aleatoric uncertainty of systems. However, if the signals are not known
and only bounds are available, this approach becomes insufficient. Indeed, in the
context of system verification based on STL, we should be able to deal with tubes,
which is a robust representation for uncertain signals.

In this paper, a comprehensive overview of the state-of-the-art is proposed to
show the need of a new formalism able to handle bounded uncertainties. The ability
to consider sets of trajectories instead of a single one allows providing guaranteed
results even when the system is too uncertain. The formalism proposed in this
paper paves the way for using set-membership approaches when dealing with STL
specifications. It can address every CPS whose trajectories can be bounded. There
is no assumption of continuity. Theoretically, there is no limitation for this formal-
ism. The limitations of the proposed approach are linked to the implementation.
Indeed, nested temporal operators in the STL formula increase the complexity ex-
ponentially, and pessimism is added by the abstraction of sets.

The next section (2) of this paper proposes a literature review on STL in the
context of handling uncertainties. Then, Section 3 presents how to deal with uncer-
tainties inherent to tubes and introduces Boolean intervals, and an STL formalism
adapted to set-membership approaches. The Section 4 is about the implementation
of this newly introduced STL formalism and proposes a robotic application with
the monitoring of a drone.
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2 Literature review

Specifications of CPS have been widely studied. In particular, a survey can be found
in [4] where qualitative and quantitative monitoring are reviewed, along with exist-
ing tools and applications in different domains. However, it does not deeply review
the uncertainty issue. In this section, we propose to review more specifically how
to deal with uncertainties, based on quantitative satisfaction, stochastic methods
or set-membership approaches.

2.1 Quantitative satisfaction

Uncertainties have already been studied when considering the satisfaction of an STL
formula (monitoring). The quantitative satisfaction can be used to handle some
uncertainties, as in [6] where spatial and temporal uncertainties are considered,
sometimes with the help of intervals. The space robustness is roughly the distance
to border between satisfaction and violation, and the time robustness is the period
around a time during which a formula is satisfied, i.e. the times θ−, θ+ representing
the duration of the satisfaction of the formula at time t. Then the space-time
robustness is the largest rectangle of height c around t. To compute the robustness
degree on continuous time and space, the signal is discretized into a piecewise
linear function. The complexity is linear with respect to the input signal size and
the formula length. If we define the space robustness ρ(ϕ,x, t) for an STL formula
ϕ and a trace (x, t), then we have the following Theorem, from [8]:

ρ(ϕ,x, t) > 0 =⇒ (x, t) � ϕ (22)

(x, t) � ϕ and ‖x− x′‖∞ < ρ(ϕ,x, t) =⇒ (x′, t) � ϕ. (23)

Equation (23) ensures us that if the considered signal satisfies the specifications
with a robustness greater than the distance with the actual signal, then the real
system satisfies the specifications.

In a few papers, intervals have been used to represent these uncertainties. For
instance, in [30], an offline monitoring algorithm with intervals for finite time STL
formulas is proposed. At each time step, an interval containing the estimated
robustness value is computed. In [5], an online monitoring is proposed using an in-
terval of all the possible quantitative satisfaction of a partial signal with unbounded
future.

Finally, the robustness as described in the temporal logic literature corresponds
to how far, in space or time, a signal is from violating or satisfying a property. In [6],
a robustness sensitivity is also defined, so that we can compute the sensitivity of
a formula to a given parameter. This robustness is a great tool to get a metric
for evaluating signals, or do some specification mining (falsification problem to
tune specifications and elicitation). However, this formalism corresponds to the
robustness of one specification to one signal. It is not about the robustness to an
uncertain hybrid system which presents uncountable many traces. In this paper, we
are interested in describing temporal properties for CPS while considering noises
and uncertain signals.
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There are two main representations for uncertain systems: stochastic and set-
membership approaches, whose literature is reviewed in the two next sections.

2.2 Stochastic STL

In this section, we focus on approaches to specify temporal properties over uncertain
systems by using probabilities to represent errors due to noises and estimations.
The main idea is to add probabilities on predicates, such that an STL formula can
be considered as satisfied if the probability of violation is low enough.

For instance, in [27], a probabilistic STL is defined to allow violation of a spec-
ification with a given probability. A threshold ε on probability is defined to set
the tolerance level in satisfaction of the properties. The paper deals with control
design only, and monitoring is not addressed.

Another formalism to express probabilities on predicates can be found in [13].
The introduced temporal logic is called “chance-constrained temporal logic”. How-
ever, the approach is restricted to deterministic and linear dynamical system.
In [20], random STL is also proposed, with random predicates. Robot dynamics is
modelled by a discrete-time, continuous space Markov decision process. Monitoring
a stochastic system with STL is dealt within [10]. It gives a robustness measure
(intervals) of stochastic trajectories. A monitor and motion planning are proposed
using a sampling-based approach. The stochastic intervals of linear predicates are
propagated on the STL.

To go further with the stochastic approach, some researchers have considered
a risk-based STL which is able to consider the probability a property is violated
weighted by the cost of such a violation. For instance, in [28], stochastic dynam-
ical systems are studied. Constraints on atomic predicates are reformulated into
deterministic affine constraints, using axiomatic risk theory. Other papers [18, 21]
handle stochastic signals: the STL robustness risk is estimated for the value-at-risk.
Some applications to data-driven approach are proposed.

2.3 Set-membership STL

Some researchers have worked on using set-membership approaches to deal with
STL. Most papers propose to build robustness intervals, which hold every possible
quantitative value for a given signal and an STL formula. It is the case in [30], where
a monitoring algorithm with intervals for finite time STL formulas is proposed. It
considers spatial deviation and time delay in the signal, but not the uncertainty in
the STL predicates. On the other hand, the paper [3] uses intervals on predicates
and on traces. It is based on a three-valued logical semantics, and relies on inclusion
functions from interval arithmetic. The satisfaction of the STL formula is given by
the resulting robustness interval I as follows: it is true if I ⊂ [0,+∞], false if
I ⊂ [−∞, 0], and undef otherwise. This approach is also used in [5] in the context
of online monitoring.

Finkbeiner paper’s [9] introduces an offline monitoring algorithm, tailored for
handling prevalent sensor uncertainty within the framework of STL. The approach
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integrates error models, including bounded measurement inaccuracies, directly into
the evaluation process of an STL formula. By systematically accounting for un-
certainties, the algorithm provides robust verdicts regarding the satisfaction or
violation of temporal properties. In [29], the authors introduce an online monitor-
ing approach known as model predictive monitoring or model-based monitoring.
This approach uses a dynamical model to estimate future states and provides qual-
itative evaluations for partially observed signals. This enables early certification or
falsification of STL specifications.

Tubes Up to this point, presented set-membership approaches consider single
signals as input, and then compute sets to consider uncertainties. However, in the
context of real systems, signals cannot be exact, and we might want to consider
a set of signals to be sure the actual trace is taken into account. Thus, if we are
sure the actual trace is included in our set of signals, we can guarantee the final
result. Such a set of signals can be represented by a tube, often used to represent
intervals of trajectories [26]. In the remaining of this paper, a tube is noted [x](t),
and tube vectors are noted [x](t). A tube is represented by intervals of value at each
time interval, as explained in Figure 1. The main drawback of this representation
is that some additional traces might be taken into account, making the approach
pessimistic. For instance, the orange signal in the figure is taken into account as it
is included in the tube, even if it is physically impossible. So, a tube is not a signal
with some added uncertainties, it is a set containing an infinite number of signals,
but including every possible signal.

Figure 1: Representation of a set of traces by a tube. Two traces belonging to the
tube are represented in green and in red. The red trace is considered whereas it
might be physically impossible.

In the literature, a few papers consider sets of traces instead of single traces.
Firstly, the Interval STL introduced in [3] considers uncertainties in predicates.
Signals of intervals are handled, and quantitative satisfaction is returned as an
interval.

In [25], Roehm et al. introduce a “Reachset Temporal Logic” (RTL) to address
infinite set of traces. It requires to compute the reachable set. Then, the STL is
sampled in time and converted into RTL. The tubes are cut in the time dimension
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and STL formulas are interpreted as successive discrete states. When there exists
a trace in the set of trace that does not satisfy the constraint, then the proposed
monitor returns false (it is conservative).

At last, the approach proposed by Ishii et al. in [11] is closer to the first proposed
STL monitor for single traces [22]: it searches times when properties become true
or false, and then propagates the information in a bottom up manner to deduce
the result for the whole STL formula. To deal with uncertain results, the algorithm
can return unknown when there is an ambiguity on the satisfaction or the violation
of every trace.

3 Monitoring tubes

When considering tubes instead of single traces, the monitor algorithm to check the
satisfiability of an STL formula must take into account every possible trace within
the tubes, which is infinite. The two papers introduced in last in the previous
section are the only ones able to handle tubes, to our knowledge. These papers are
reviewed more deeply in the following, along with an example.

3.1 Uncertainty on satisfaction of tubes

The main difficulty when considering the satisfaction of an STL formula for a tube
(instead of a single trace) is that the tube may contain traces satisfying and traces
not satisfying the formula at the same time. Then the result is neither completely
false, nor completely true. To stay as conservative as possible, these undetermined
cases can be considered as false. This is the choice of Roehm et al. [25], even if it
introduces some pessimism, and prevents from knowing when every trace is false.
The other option is to keep the undetermined case as a possible result, leading to
a three-valued logic, as done by Ishii et al. [11].

However, in some cases it can be intricate to determine the true result. Indeed,
there are an infinite number of potential traces in a tube, and there are also an
infinite times to check for most STL formulas. This is why the state-of-the-art
algorithms can fail to find the true answer and just consider it as an undetermined
case even if it is not the case. This is illustrated in the following example.

Consider the tube [x](t) represented in the Figure 2. We have a set point ρ ∈ R
that we want our system to reach in the time interval [t1, t2] ⊂ R+. It means that
we want the system to stay below ρ before t1, and be equal or greater than ρ at
least at one time during [t1, t2]. We first consider the STL atomic predicate:

ψ = ([x] ≥ ρ). (24)

In this example, during the period [0, t1], the predicate ψ is never satisfied for
every possible trace included in the tube (every point in the blue area and before
t1 is below the ρ value). Similarly, after time t2, the predicate ψ is always satisfied.
On the other hand, during the period [t1, t2], the satisfaction of the predicate ψ is
ambiguous: some traces always satisfy ψ, others always violate it, and the remaining
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Figure 2: Simple tube representing a set of traces. A trace belonging to the tube
is painted in green.

ones violate the predicate before satisfying it. This is typically an undetermined
case.

Now, if we consider the full STL formula ϕ, corresponding to our problem:

ϕ = ¬ψ U[t1,t2]ψ, (25)

it is well satisfied by any trace taken in the tube [x](t) from time zero. Indeed, if
we look at the definition of the until operator (see (11)), we have:

(x, 0) � ϕ
(25)⇐⇒ (x, 0) � ¬ψ U[t1,t2] ψ

(11)⇐⇒ ∃t′ ∈ [t1, t2]

{
(x, t′) � ψ

∧ ∀t′′ ∈ [0, t′] (x, t′′) 2 ψ
.

It means that for every trace (x, 0) in the tube, we can find a time t′ ∈ [t1, t2] such
that x(t′) ≥ ρ and for every time t′′ in [0, t′], we have x(t′′) < ρ. Such a t′ is given
for the example of the green trajectory in the Figure 2. We can remark that the
until formula does not specify anything on what happen after the time t′. Thus,
we have the following proposition:

Proposition 1. The STL formula ϕ = ¬ψ U[t1,t2]ψ, with ψ = [x] ≥ ρ, is true for
every signal in the blue tube of Figure 2.

Proof. Let (x, 0) be a trace in the tube. Let t′ be the smallest time within [t1, t2]
such that x(t′) ≥ ρ. We know such a t′ exists because we have x(t2) ≥ ρ. Indeed,
the interval of possible values for x at time t2 is above ρ, according to Figure 2.
Then we have ∀t′′ ∈ [0, t′], x(t′′) < ρ.

However, the difficulty in finding an algorithm checking such a formula lies in
the fact that the time t′ may be different for every possible trace included in the
tube. So, there is an infinite number of trace and time to check.
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The two approaches proposed in the state-of-the-art both failed on this example
to provide the expected true result.

Firstly, when applying the approach proposed by Ishii et al. [11] (Figure 3, left),
we obtain the three-Boolean signal for the predicate ψ as already described. Then
we apply the logical not operator (¬), and finally we compute the three-Boolean
signal for the complete formula from the two previously computed signals using a
logical and (∧) operator and a time shifting. As we have an undefined result for the
predicate ψ (depicted by the dark area in the figure), the ambiguity is propagated
until the complete formula and is never removed. Thus, the final result is the
undefined value for the tube at time zero. This result is not wrong, but it is not
the expected one.

Secondly, the proposed approach of Roehm et al. [25] (Figure 3, right) uses only
binary Boolean values. The time is discretized, and the predicate satisfaction is
computed for every slice, resulting in a false value when there is a doubt (traces
both validating and violating the formula in a same slice). Then the logical not
operator (¬) is easy to compute, and finally the until operator (U ) is transformed
into a disjunction of cases depending only on the slices. At the end, the obtained
result is false for this example, which is the conservative result of this approach.

False TrueUndef

Figure 3: Illustration of the approaches from Ishii et al. [11] (left) and Roehm et
al. [25] (right).

This simple example shows that the monitoring of a tube can easily become
intricate, even with a small formula and a linear tube. In this example, and even
more generally, in order to conclude the satisfaction rather than an unknown or false
result, a solution is to use reachability analysis [16]. However, it is not in the scope
of this paper, as reachability requires dealing directly with dynamical equations,
and the computation cost can increase quickly when considering high-dimensional
systems.

3.2 Boolean intervals

As stated above, the three-valued logic is more suitable when dealing with tubes
to separate the cases where we are sure that every trace satisfies or every trace
violates the formula, and when it is undetermined. In this paper, we propose to
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use the formalism of Boolean intervals to represent such a three-valued logic. It is
a well established formalism, based on interval analysis, with an arithmetic already
known [12]. In addition, intervals are used as an abstraction for representing tubes,
so the arithmetic stays the same.

Definition 1. A Boolean interval is a subset of the set of Boolean {true, false},
i.e. an element of IB = {∅, [0], [1], [0, 1]} with:

• ∅ means impossible;

• [0] means false (⊥);

• [1] means true (>);

• [0, 1] means undetermined (uncertain).

The following Table 1 presents the different results with respect to the logical
and temporal operators for the [0, 1] interval.

Table 1: Logical and temporal operators on the Boolean interval [0, 1].

¬[0, 1] = [0, 1]

[0, 1] ∧ 1 = [0, 1]

[0, 1] ∧ 0 = 0

[0, 1] ∨ 1 = 1

[0, 1] ∨ 0 = [0, 1]

[0, 1] U[t1,t2] 1 = [0, 1]

[0, 1] U[t1,t2] 0 = 0

1 U[t1,t2] [0, 1] = [0, 1]

0 U[t1,t2] [0, 1] = 0.

What is important in this table is that some operations remove the uncertainty
(e.g. [0, 1]∧ 0 = 0). So, depending on the form of the STL formula, the final result
can be more or less pessimistic. Indeed, in practice, we hope to not obtain this
uncertain case, as it does not contain actual information.

3.3 Set-Membership STL Formalism

In order to properly deal with tubes using STL specifications, we need to establish
a specific formalism based on sets. Thus, we propose to slightly change the STL
syntax to directly handle tubes and use Boolean intervals. As tubes are based on
sets, the natural atomic predicates are the set operators.

In this way, we define the set predicate µ = S | I for boxes [x], [A] ∈ IRn with:

• S the subset test ([x]
?⊂ [A]);

• I the empty intersection test ([x] ∩ [A]
?
= ∅).

Finally, the new set-membership STL syntax can be written as:

ϕ := β | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U[t1,t2]ϕ2. (26)
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If we abstract sets by using level sets, this new syntax is not less general than
previously. For example, we can represent a predicate µ = x > 0 by X µ = {x ∈ R |
x > 0}. Then, we have, for t ∈ R:

([x], t) � µ =


1 if [x](t) ⊂ X µ (S);

0 if [x](t) ∩ X µ = ∅ (I);

[0, 1] otherwise.

(27)

The differences introduced in this STL are only on Boolean values and atomic
predicates. Thus, there are no changes on the temporal operators.

4 Application

Using the set-membership STL, it becomes possible to implement a monitor for
tubes and use it on real systems. This is presented in this section.

4.1 Implementation

Tubes are used to represent sets of traces. The main advantage is to consider
bounded uncertainties in a guaranteed way. Tubes are well-suited for addressing
dynamical systems, and several set-based libraries already exist, as Vnode [23],
DynIbex [2] or CAPD [14].

DynIbex offers a set of validated numerical integration methods based on Runge-
Kutta schemes to solve initial value problem. In the library, there are already
available objects and functions required for the set-membership STL. We build a
subset of the set-membership STL syntax. Indeed, in this syntax, nested temporal
operators are not allowed, contrary to (1). For instance, an STL formula like the
following one1 is not allowed here as there is a finally composed with an until
operator:

(x ≤ 10) U[0,20] (F[0,5] (x ≥ 15)).

The full syntax is a work in progress. The definition is spread on several lines, with
different variables to prevent nested temporal operators:

β := ∅ | [0] | [1] | [0, 1] (28)

µ := S | I | β (29)

π := ¬µ | µ (30)

σ := G[t1,t2] π | F[t1,t2] π | π1 U[t1,t2] π2 | π (31)

θ := σ ∧ θ | σ ∨ θ | σ (32)

with S, I the subset and empty intersection tests, respectively.

1This formula states that x must reach 10 within 20 s, and as soon as it happens x must
become greater than 15 in less than 5 s.
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All these operators have been implemented in DynIbex. For the sake of effi-
ciency, some compositions of operators are directly implemented as one function.
The following Table 2 gives the corresponding functions for each operator, based
on the S predicate (it is very similar for the I predicate). It corresponds to the
terms σ in the syntax (Equation 31).

Table 2: Corresponding DynIbex functions for each available set-membership STL.
I is an interval of time.

Set-membership STL operator DynIbex function

S subset

GI S globally subset

GI ¬S globally not subset

FI S finally subset

FI ¬S finally not subset

S1 UI S2 until

4.2 Example with a simple tube

If we take again the example used in Section 3 and implement it in DynIbex, we
obtain the same result as with the algorithm proposed by Ishii et al. in [11], i.e.
undefined result ([0, 1] Boolean interval). The simulation time (to generate the
tube) takes less than 7 ms in average, and the verification of the STL formula takes
less than 0.02 ms on a classical laptop (Intel i5-1335U, up to 4.6 GHz).

Figure 4 illustrates the obtained result. Blue boxes have been estimated in a
guaranteed way using DynIbex: the real tube (represented in transparency as a
reference) is well included inside the boxes.

Discussion This example enables comparing the two state-of-the-art methods
able to deal with tubes (Ishii et al. [11] and Roehm et al. [25], see Section 3.1) and
our approach. We obtain the same uncertain result as Ishii et al., which is more
accurate than the conservative false result of Roehm et al. The main advantage of
our approach is that we evaluate only the satisfaction of the STL formula at the
required specific time, which allows to be faster than Ishii et al. when the formula
does not require to study all the signal duration. Indeed, in their work, Ishii et al.
always compute the whole satisfaction signal for every sub-formula. The following
Table 3 recaps the differences between presented approaches.

In order to obtain the expected true result, we may use tools from reachability
analysis. However, it is not in the scope of this paper, as it requires the knowledge
of the system dynamical equations, and often asks heavy computations. In our
context, we do not need the system model since the tube may have been obtained
only with measurements.
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ρ

[0.5, 2.5]

ψ ≡ x ≥ ρ
¬ψ

RESULT: [0, 1]

ϕ ≡ ¬ψ U[0.5,2.5]ψ

Figure 4: Result of the simulation of the simple tube example using DynIbex. The
cyan line represents the ρ parameter. The result is “uncertain” ([0, 1]).

Table 3: Comparison with the state-of-the-art approaches on this example

Method Result
Running time for
computing satisfaction

Roehm et al. [25] False not implemented
Ishii et al. [11] Undef 12 ms

Ours [0,1] 0.02 ms

4.3 A test-case: monitoring of a drone

In this section is presented a test-case example where a drone (DJI Tello) is mon-
itored with respect to an STL formula. This is a real-time monitoring: while the
drone is flying, its state is estimated for the next 4 seconds and the STL specifica-
tions are verified on this estimation. Thus, if the satisfaction is not guaranteed, the
drone can be slowed down or even stopped soon enough. In this example, tubes are
used to represent uncertainties, mostly due to model approximation. Thus, STL
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specifications, which are necessary to guarantee the safety of a critical system like a
drone, have to be verified on the tubes. Finally, the generation of the tubes and the
verification of the STL must be done in real-time, which requires short runtimes
(with respect to the drone velocity).

Setup and modelling The drone state is denoted by y and its control is u. The
drone is commanded in velocity along x, y and z axis. The control is based on a
switched model, which consists on motion primitives that guide one robot move-
ment, ensuring transitions between trajectories while adhering to its dynamical
constraints [19]. Trajectories in the experiment are composed of 8 possible modes,
and modes switching are only possible at every τ seconds.

We denote yref(t) a reference trajectory and uref(t) a reference control. They
represent the precomputed movement and control of each motion primitive.

To track the given trajectory, the drone velocity control is:

u(t) = Kp(yref(t)− y(t)) + uref(t), (33)

with Kp a P corrector.
Even though the behavior of a quadcopter can be represented by a highly non-

linear dynamical model, we consider the drone to be holonomic and use a simplified
dynamical model for model-based monitoring. The model is a first-order system
controlled by speed along each axis. This model is simple compared to dynamical
models that account for the rotation of the quadrotor [1].

ẏ = u. (34)

The main advantage of using a simple model is reducing computation time and
complexity. To account for the simplifications in the dynamical models, we will
introduce interval parameters as in [17].

[ẏ] = [α1] · [u] + [β1] (35)

The presence of [α1]:

• Adjusts the assumption of immediate command responses by incorporating
the drone speed profile,

• Accounts for uncertainties related to forces that depend on velocity,

• Considers uncertainties associated with the tuning of the corrector to track
the trajectory.

The presence of [β1]:

• Corrects uncertainties arising from sudden perturbations,

• Accounts for ambient noise and bias in the control inputs, including noise
induced by the drone itself [17].

Furthermore, when reading sensor values used in the initial state of the dynamic
equation, the initial state y0 becomes [y0] as we introduce bounded uncertainties
in the measurement or state estimation from filtering.
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Monitoring The monitoring process aims to recognize if faults occur. In our
case, it is done by verifying some constraints. Consider the following specification:
“the drone must avoid obstacles within a given time horizon h = N × τ and remain
inside a designated area”. The corresponding STL formula is given by:

ϕflag = G[0,h] ¬Scollision ∧ G[0,h] Senvironment. (36)

To monitor the system, the dynamical model is used to predict the future states
within the time horizon [7]. The predicted state [ỹ] is evaluated using a set-based
simulation approach to reliably determine if a fault occurs. For example, it is
important to ensure that the system stays within safe operating limits. In our
setup, we have for a time t ∈ R:

[ỹ](t) ⊂ [A] =⇒ ([ỹ], t) � Senvironment, (37)

with [A] the bounding box of the authorized environment. If the predicted state
violates such a constraint, the monitor flags a potential fault.

Finally, the satisfaction function C, which now represents the monitor flag for
the STL formula ϕflag, is defined for an n-dimensional system as:

C : (R+ → IRn)→ IB

[ỹ](t) 7→


1 if [ỹ](t) satisfies the formula,

0 if [ỹ](t) violates the formula,

[0, 1] otherwise (uncertain result).

(38)

Results The Figure 5 presents the results of the experimentation. The monitor-
ing process is operated in real time at a given rate of 1 Hz. Thus, each second,
the next 4 seconds of time horizon are estimated and the obtained tube is used to
check the satisfaction of the STL formula. The “Monitor Go flag” is the result of
the satisfaction function. It has been implemented in the ROS2 framework. The
drone is localized using a motion capture system (OptiTrack); the actual trajectory
is represented by green dots. The authorized environment is the green frame. Ob-
stacles are in gray. The reference trajectory is drawn in thick red strokes (following
the possible modes). Finally, the estimated trajectory is the tube starting at the
last known position (end of the green dots) with a small blue box filled in trans-
parent red. This box has been integrated using the dynamic model of the drone,
along with the uncertainties, leading to bigger boxes.

The performance benchmark was conducted over the first four seconds of the
trajectory (h = 4 s). We measured the total execution time on a laptop (Intel
i5-8265u, 8gb RAM). It took 0.211 s, making it suitable for online monitoring.

2ROS: Robot Operating System (see https://www.ros.org/).

https://www.ros.org/


Guaranteed Satisfaction of a Signal Temporal Logic Formula on Tubes 17

Figure 5: Experimentation results. Left: 2 different views of the computed tube
on a given time horizon (red boxes); Right: actual drone flying.

Discussion A simple but realistic STL-based monitor has been tested on a real
system for illustration purpose. This experimentation proves the interest of the
approach: i) the use of a tube to take into account uncertainties and model sim-
plification provides a guaranteed result; ii) the proposed set-based approach for
STL verification is sound and sufficiently fast for real-time application. This exam-
ple can be generalized, and more complex STL formulas can be tested because no
limitations have been imposed.

5 Conclusion

In this paper, literature about dealing with uncertainties has been reviewed in the
context of STL. We focused on how to handle tubes instead of single traces, as
it allows considering sets of traces from real systems with a strong robustness to
uncertainties. Only a few papers have already addressed this issue, and there is
still room for improvements, as shown with a simple example whose true result is
difficult to obtain with existing approaches. Then, a formalism directly applied on
sets is proposed, along with Boolean intervals to rigorously deal with ineluctable
uncertain results. This formalism is used as a base for an implementation within
the DynIbex tool, in order to have a direct link between STL and a guaranteed
integration tool. It is also the base for future works, including dealing with nested
formulas and links with reachability analysis.
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