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Ultra-Wideband Smart Wheelchair Pose

Estimation Using Interval Analysis

Théo Le Terrierab, Marie Babelac, and Vincent Drevellead

Abstract

In this paper, we introduce a reliable positioning method for a smart
wheelchair by using ultra-wideband (UWB) technology. This method pro-
vides confidence domains of the pose by assuming bounded measurement
errors and proprioceptive information, without any assumptions of indepen-
dence. Exploiting interval analysis and constraint propagation techniques,
we characterize the sets of all feasible poses that are consistent with the
measurements. Our method has been validated through experiments with a
smart power wheelchair equipped with UWB sensors in realistic conditions.
The results demonstrate that our approach consistently provides guaranteed
uncertainty domains with 100% integrity across the tested dataset, even when
faced with inconsistent measurements. In addition, we compare our interval-
based method with M-estimator approaches, and show that while achieving
slightly worse positioning accuracy, our method offers superior consistency.

Keywords: localization, interval analysis, ultra-wideband, smart wheelchair

1 Introduction

Preserving independence and access to social activities is essential for wheelchair
users. Indeed, a decrease in mobility can lead to reduced self-esteem, isolation and
fear of abandonment [9]. However, operating power wheelchairs requires significant
driving skills, which might prove infeasible for people with cognitive impairments
or visual deficiencies. To make this assistive technology more accessible, smart
wheelchairs have been proposed by enhancing standard power wheelchairs with
sensors and embedded systems. These advanced robotic assistive devices aim to
provide safe navigation assistance, thereby preserving the user’s independence and
social engagement. Both autonomous [27, 24] and semi-autonomous [25, 7] naviga-
tion systems have emerged to provide the right level of assistance to the user.

aUniv Rennes, INSA Rennes, Inria, CNRS, IRISA – UMR 6074, F-35000 Rennes, France
bE-mail: theo.le-terrier@irisa.fr, ORCID: 0009-0000-8800-7159
cE-mail: marie.babel@irisa.fr, ORCID: 0000-0001-6425-389X
dE-mail: vincent.drevelle@irisa.fr, ORCID: 0000-0001-9579-7793

DOI: 10.14232/actacyb.315261

mailto:theo.le-terrier@irisa.fr
https://orcid.org/0009-0000-8800-7159
mailto:marie.babel@irisa.fr
https://orcid.org/0000-0001-6425-389X
mailto:vincent.drevelle@irisa.fr
https://orcid.org/0000-0001-9579-7793
https://doi.org/10.14232/actacyb.315261
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Fully autonomous navigation systems face the challenge of localization, which
can be addressed with integrated smart wheelchair sensors. For widespread adop-
tion, the localization system should offer low cost, easy attachment to any smart
wheelchair, robustness and efficiency [20]. Also, for privacy concerns and accept-
ability reasons, visual sensors are avoided.

This paper proposes a reliable positioning method for a smart wheelchair, using
a set of ultra-wideband (UWB) sensors [3]. The latter have gained popularity for
indoor robotics where GNSS signals are unavailable, and commercially available
sensors such as the DWM1001 by Qorvo meet the aforementioned requirements. A
typical UWB-based positioning setup involves fixed UWB nodes (anchors), mea-
suring their distance from UWB nodes on the robot (tags). Statistical approaches
have been commonly considered to design UWB based positioning systems: non-
linear least squares [2, 17], or Kalman filters [21, 22]. In these papers, UWB
measurement error distributions are modeled as Gaussian, and independence be-
tween each measurement from one time to another is assumed. Such assumptions
are reasonable when considering line-of-sight (LOS) signal propagation. The case
of non-line-of-sight (NLOS) signal propagation in multipath environments was also
widely explored in the field of probabilistic methods [5, 16], with e.g., particle
filters [11]. Furthermore, with access to the UWB channel estimation data and
additional prior knowledge on the initial receiver position and moving direction,
the localization process can be based on the estimated multipath components [10].

An alternative to make as less assumptions as possible is to assume only a
bounded-error model, meaning that measurement errors and model parameters are
within known bounds. Set-membership estimators then compute a domain of so-
lutions consistent with the model and the measurements without removing any
feasible solution. Interval analysis [14] provides tools to compute such domains
and has been used for reliable pose estimation [23, 26] in various contexts, includ-
ing aerial robotics [18], marine applications [28], and underwater robotics [13, 29].
These systems typically use sensors like cameras or sonars. GNSS receivers have
also been employed for reliable positioning of outdoor vehicles [8, 30], sometimes
in combination with UWB [1]. However, to our knowledge, interval methods have
not been applied to indoor UWB localization.

The main contribution of this paper is a reliable UWB based positioning method
using interval analysis and an experimental validation of the latter in a realistic
scenario, involving a user in a smart wheelchair. Our approach is compared with
M-estimator methods (classical Huber [12], and the half-Cauchy of [16]).

This paper is structured as follows. We first provide an overview of the pose
estimation problem and introduce interval analysis and robust set inversion. We
then present our proposed method and conclude with experimental results using
UWB sensors mounted on a smart wheelchair.
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2 Problem Statement

In this paper, we aim to provide a reliable 2-D pose estimation of a smart wheelchair
equipped with UWB sensors. The wheelchair is operated by a user-controlled joy-
stick. The wheelchair is assumed to move in a horizontal planar world without
slipping. The robot configuration is denoted p = (x, y, θ)

T
where (x, y) are the

planar coordinates, and θ is the heading angle between the frame Fw and the local
frame attached to the wheelchair Fr. Assuming that the wheelchair’s kinematics
is similar to those of a unicycle, its continuous-time model is

ẋ(t) = v(t) · cos θ(t)
ẏ(t) = v(t) · sin θ(t)
θ̇(t) = ω(t).

(1)

The input commands are the linear velocity, denoted v, and the angular velocity,
denoted ω. These inputs are estimated by the embedded control system (power
module) of the power wheelchair from the joystick position. A set of UWB anchors
is installed in a room, and distance measurements to UWB tags installed on the
wheelchair are performed. An overview of the system is presented in Figure 1.
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Figure 1: System Overview. Each tag (green) measures its distance to each an-
chor (yellow), thus estimates its own position in Fw. The wheelchair pose is then
deduced, since the positions of the tags are known in Fr

Let nT be the number of tags installed on the wheelchair, and nA the number of
anchors. We denote Ti, i∈{1,...,nT }, the ith tag, and Aj, j∈{1,...,nA}, the jth anchor.
The coordinates of Ti, expressed in Fr, are denoted rxTi

= (rxTi
, ryTi

, rzTi
). The

coordinates of Ti in Fw are denoted xTi = (xTi , yTi , zTi). The fixed coordinates of
Aj in Fw, are denoted xAj = (xAj , yAj , zAj ). The measured range between Ti and
Aj is denoted ri,j and is defined as

ri,j = ‖xTi − xAj‖2 + βi,j , (2)

where βi,j is the range measurement error.
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3 Interval Analysis and Robust Set Inversion

3.1 Interval Analysis

Interval analysis [14] relates to intervals [x] = [x, x] and their multidimensional
extension, interval vectors or boxes [x] = [x, x]. x and x respectively represent the
lower and upper bounds of [x]. The width of an interval is defined as the difference
between its upper and lower bounds. The width of a box is the width of its largest
interval components. The radius of an interval, or box, is defined as its half-width.
The set of real intervals is denoted IR, and the set of n-dimensional boxes is IRn.

Let f be a function from Rn to Rm. The image by f of an n-dimensional box
[x] is a set f([x]) which is not necessarily a box (Figure 2). The inclusion function
[f ] from IRn to IRm is then defined to enclose f([x]) by a box [f ]([x]) such that

∀[x] ∈ IRn, f([x]) ⊂ [f ]([x]).

The smallest box containing f([x]) is returned by the minimal inclusion function
[f ]∗. The smallest box enclosing a set S is denoted � S and is called the interval
hull of S. Thus, [f ]∗([x]) = � f([x]).

x1

x2 [x] f

[f]

[f]*

y1

y2

Figure 2: Image of a box [x] by a function f , an inclusion function [f ], and the
minimal inclusion function [f ]?.

3.2 Contractors

Let x be a vector which variables are linked by relations, or constraints. A Con-
straint Satisfaction Problem (CSP) can be formulated H : {f(x) = 0,x ∈ [x]},
where f(x) = 0 represents the constraints, and [x] the variables’ domain.

Let S = {x ∈ [x] | f(x) = 0} be the solution set of H. A contractor C [4] is a
mapping from IRn to IRn such that

• ∀[x] ∈ IRn, C([x]) ⊆ [x] (contraction),

• ∀[x] ∈ IRn, C([x]) ∩ S = [x] ∩ S (completeness).

In other words, the variables’ domain [x] can be reduced without excluding any
solution by applying a contractor. A contractor C? is minimal if C?([x]) is the
smallest box containing S ∩ [x], i.e., C?([x]) = � S ∩ [x]. In Figure 3 (a), C? is the
minimal contractor.
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Figure 3: (a) Contractors reducing the variables’ domain of a box [x]. (b) Inner
(orange) and outer (yellow) approximation of a set X by subpavings.

3.3 Robust Set Inversion

Let Y be a known subset of Rm, e.g., obtained from m measurements. Set inversion
problem [14] consists in characterizing

X = {x ∈ Rn|f(x) ∈ Y} = f−1(Y).

Two subpavings (sets of non-overlapping boxes) that provide an inner and outer
approximation of X, i.e. such that X ⊂ X ⊂ X, can be computed with the Set In-
version via Interval Analysis (SIVIA) algorithm [14]. Such subpavings are shown in
Figure 3 (b). The SIVIA algorithm employs a branch and bound strategy. Starting
from an initial domain [x0] to which X is guaranteed to belong, SIVIA performs
successive contractions and bisections to refine the inner and outer approximations
of the solution set. Algorithm 1 describes our anytime implementation, with a
breadth-first exploration strategy that can be stopped after a timeout.

Algorithm 1 Anytime SIVIA(in: [x0], C, ε, timeout ; out: X)

1: X ← ∅ Outer subpaving of the solution set
2: L ← ([x0]) Add initial domain to the FIFO queue
3: while L 6= ∅ and time() ≤ timeout do
4: ([x],L)← L Dequeue a box from the FIFO
5: [xc]← C([x]) Contract the box
6: if [xc] 6= ∅ then
7: if width([xc]) > ε then Bisect large boxes
8: ([x1], [x2])← bisect([xc]) Bisect the box
9: L ← (L, [x1], [x2]) Enqueue the subboxes

10: else Don’t further process small boxes
11: X ← X ∪ [xc]
12: end if
13: end if
14: end while
15: X ← X ∪ L Add pending boxes to the solution
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Sensor measurements are affected by noise and may contain outliers due, for
instance, to NLOS signal propagation. The set X of all parameters consistent with
the measurements might then be empty, or do not contain the true configuration.
A solution to overcome this situation is to define X as the set of all parameters
consistent with at least m−q measurements. This method is the so-called q-relaxed

intersection [19], denoted
⋂{q}

and represented in Figure 4.
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Figure 4: q-relaxed intersection for q ∈ {0, 1, 2}

Computing a reliable pose confidence domain, i.e., a box in which the wheelchair
is guaranteed to belong, only requires an outer approximation of X. The Robust
Set Inversion via Interval Analysis (RSIVIA) algorithm [14] computes an outer
subpaving of the q-relaxed solution. It is computed the same way as in Algorithm 1,
but with a contractor for the q-relaxed intersection as input. The value of q can
be estimated at each measurement epoch, using the Guaranteed Outlier Minimal
Number Estimator (GOMNE) [15, 6]. This algorithm increases the number of
relaxed constraints q until a non-empty solution set is found with RSIVIA. Thus,
it returns the minimal number of constraints to relax. This section has presented
the basic concepts needed to develop our robust interval-based positioning method.
The results of Algorithm 1 are presented in Section 5.

4 Interval-Based Reliable State Estimation

In this section, we present our interval-based method to solve the state estimation
problem, in the presence of outliers. Only a bounded-error model is assumed. No
other assumptions about the distribution and independence of measurement errors
are made, contrary to probabilistic methods.

The problem is defined as a CSP, and the constraints are presented in the fol-
lowing subsections. The variables of the problem, and domains we seek to reduce,
are the position of the tags in Fw, denoted xTi ∈ [xTi ], and the wheelchair config-
uration p ∈ [p]. The larger the domains, the higher the uncertainties. Thus, we
seek to contract them by removing all the configurations that are not consistent
with the constraints.
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Figure 5: Set-membership localization with three anchors, with one unidentifiable
outlier. The solution set is represented in black. The black cross is the actual tag
position. The 1-relaxed solution set is represented in gray.

4.1 Constraints over a single epoch

At a given time k or epoch, the wheelchair is in a configuration pk = (xk, yk, θk).
Assuming known bounds on range measurement errors, the UWB ranges are rep-
resented by a box of interval distances [r]k = ([r1,1]k, [r1,2]k, . . . , [rnA,nT

]k)T. Con-
sidering all these ranges, and the geometry of the problem, a set of constraints
can be derived at each epoch k (epoch index k is omitted in the notation). These
constraints are presented in this subsection.

UWB constraints in LOS conditions

Lri,j expresses the distance constraint between the tag Ti and the anchor Aj . It is
defined by

Lri,j : {ri,j = ‖xTi
− xAj

‖2}, ri,j ∈ [ri,j ], i ∈ {1 . . . nT }, j ∈ {1 . . . nA}. (3)

These constraints are written considering LOS signal propagation for [ri,j ] mea-
surement error bounds.

Robustness scheme for the multipath case

The multipath case is handled by the constraint relaxation technique with GOMNE.
In the case of an identifiable outlier (i.e., inconsistent with all other measurements),
the constraint relaxation strategy can be seen as a measurement rejection scheme.
Indeed, in such a case, the non-relaxed solution is empty, and 1-relaxed solution
corresponds to the set of all tag positions that are consistent with all measurements
except the identifiable outlier.

The case of an unidentifiable outlier is illustrated in Figure 5. In such conditions,
the solution set resulting from all constraints is either empty (b), or does not contain
the true solution ((a) and (c)), whereas it is the case for the relaxed solution set.
The GOMNE algorithm is used to compute the minimal number qmin of constraints
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to relax in order not to compute an empty solution set. Thus, a value of qmin = 0
will be returned for conditions (a) and (c), and the true solution will not belong to
the corresponding solution set. To prevent such a situation, the value computed by
GOMNE is then incremented by one to give an additional protection layer against
an undetected outlier, such that q = qmin + 1.

Wheelchair geometry constraints

The positions of the tags and the wheelchair configuration are linked by geometrical
constraints

Lp,xTi
:

{
xTi = x+ rxTi cos θ − ryTi sin θ
yTi

= y + rxTi
sin θ + ryTi

cos θ

}
, i ∈ {1 . . . nT }. (4)

The two above constraints are fundamental, since they enable propagating con-
straints from UWB range measurements to the wheelchair configuration. However,
redundant constraints can be added to better contract the variables’ domains, thus
reducing the uncertainties. Coordinates of the tags, expressed in Fr, are known.
The inter-tag distances dTi,Tj can also be computed. Let rxTi,j = rxTi − rxTj and
ryTi,j = ryTi − ryTj be the difference between the coordinates of ith and jth tag
expressed in Fr. This leads to these redundant constraints:

LxTi
,xTj

:


xTi

= xTj
+ rxTi,j

. cos θ − ryTi,j
. sin θ

yTi
= yTj

+ rxTi,j
. sin θ + ryTi,j

. cos θ
dTi,Tj

= ‖xTi
− xTj

‖2

 ,

(i, j) ∈ {1 . . . nT }2, i < j. (5)

Single epoch pose-domain computation

All the constraints related to UWB sensors for a given epoch define a constraint
graph, presented in Figure 6. We define Lk

UWB as the composition of (3), (4), and (5)
at a given epoch. A contractor is created from Lk

UWB, using the forward-backward
algorithm [14]. We then set an initial domain for the wheelchair configuration.
Finally, we apply GOMNE and the RSIVIA algorithm with the defined contractor,
to compute an outer subpaving of all feasible wheelchair poses that are consistent
with all measurements except q of them. Notice that, for each epoch k, the compu-
tation of the subpaving w.r.t UWB constraints graph is independent from previous
epochs, and can be seen as an initial localization problem.

4.2 Pose Estimation from Input Commands

As explained in section 4.1, the wheelchair-configuration domain at epoch k is com-
puted using Algorithm 1 with q-relaxed contractor LUWB, independently from the
previous epoch. To better reduce the estimated pose domain, we use proprioceptive
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Figure 6: Lk
UWB: UWB-related constraints over a single epoch k . The tag posi-

tions are contracted with a robust q-relaxed constraint propagation of the range
measurements. Geometrical constraints then contract the wheelchair configuration
domains.

information, in the form of linear and angular velocities (vk, ωk) directly read from
the wheelchair power module.

Discretizing model of (1) using Euler’s method, with a sampling period T , the
evolution constraints are defined by

Lpk−1,pk
:

 xk+1 = xk + T · vk · cos θk
yk+1 = yk + T · vk · sin θk
θk+1 = θk + T · ωk

 , vk ∈ [vk], ωk ∈ [ωk]. (6)

Integration errors are insignificant w.r.t. uncertainties on the input commands
that are handled by our bounded-error model. Evolution constraints are forward-
backward propagated in a window containing a horizon of N previous epochs. If
[[pk−N ], ..., [pk−1], [pk]] are the pose domains in the horizon at epoch k, then the
next epoch horizon is [[pk−N+1], ..., [pk], [pk+1]]. The advantage of such a method is
that the evolution constraint propagation related to a wrong configuration domain
will only affect domains that share the same horizons. Therefore, N has to be chosen
to provide better domain contraction, while not propagating erroneous data over a
long period. Evolution constraints graph over one horizon is shown in Figure 7.
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Figure 7: Sliding horizon overview. Robot configuration is computed at each epoch
w.r.t. UWB-related constraints. Evolution constraints are then propagated to all
variables sharing the same horizon.

5 Experimental Results

5.1 Experimental Setup

To validate our positioning process, we conducted two 4-minute trials using a power
wheelchair from Medical Sunrise, which features six wheels: two powered and four
caster wheels. Its kinematic is described by the unicycle model of (1). The UWB
network was configured by placing 4 UWB anchors in a room and attaching 2 front
and 2 rear UWB tags to the wheelchair, as illustrated in Figure 8. UWB range
measurements were collected at a frequency of 10 Hz, thus resulting in a total of
4,800 data epochs. Additionally, 8 Qualisys motion capture cameras provide ground
truth data for both the wheelchair pose and the positions of the anchors and tags.

During these trials, a user was instructed to navigate the wheelchair using a
joystick along a predefined path (see reference trajectory in Figure 12). To mimic
real-life activities, the user was tasked to move an object from one table to another
located at the opposite end of the room. In the first trial, the user was alone in
the wheelchair. In the second trial, a pedestrian walked alongside the wheelchair,
occasionally obstructing the line-of-sight (LOS) between some tags and anchors
(Figure 9).

We computed the theoretical distances between the anchors and tags and com-
pared them to the measured distances. Figure 10 presents a histogram of the UWB
range measurement errors across all trials. The data shows that 85% of the range
errors fit a Gaussian distribution with σ = 0.08 m, corresponding to LOS condi-
tions, while the remaining 15% fit a mixture of Rayleigh distributions, indicative
of NLOS conditions.
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Figure 8: Experimental setup. World frame Fw and robot frame Fr are shown in
(a).

(a) (b)

Figure 9: Experiments without (a) and with (b) a pedestrian. The user had to
move the objects from one table to another.

5.2 Pose Domain Computation

The interval-based localization method is tested over both trials. Considering the
standard deviation σ estimated in Section 5.1, the UWB range measurement error
bounds are set to ± 2.5-σ, i.e., ± 20 cm. With these bounds, 12.82% of the mea-
surements are considered as outliers. UWB anchors’ positions are known. Input
command error bounds are set to ± 0.05m.s−1 for linear velocity, and ± 0.1rad.s−1

for angular velocity. The horizon length is set to N = 10, corresponding to 1 s of
data. Indeed, a greater N does not provide better domain contraction, thus only
increases the risk of propagating an erroneous estimation over a longer time. We
assume no prior knowledge of the wheelchair configuration; thus for each epoch,
the initial pose domain is set to [x0] = ([−∞,∞], [−∞,∞], [0, 2π]).

As explained in Section 4.1, all UWB-related constraints, over a single epoch, are
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Figure 10: Histogram of the UWB range measurement errors over all trials. 85%
of the error distribution is approximated by a Gaussian (green dotted line) in LOS
conditions, and 15% by a Rayleigh (red dotted line) in NLOS conditions. The sum
of the two distributions fits our range error distribution.

used to create a contractor for the q-relaxed intersection. The q-relaxed contractor
is given as input to the RSIVIA algorithm (Algorithm 1), to characterize the set of
all feasible poses consistent with the measurements.

At each epoch, 100 ms in total are available to first determine the q value with
GOMNE and then compute the pose domain with RSIVIA. A 10 ms budget is
allotted to each GOMNE iteration, and all remaining time is then used by RSIVIA
to refine the pose domain estimation.

Figure 11 shows outer subpavings (orange boxes) resulting from the RSIVIA
algorithm, at epochs corresponding to the minimum (a) and maximum (b) hori-
zontal position error, as well as a disconnected solution set (c). One can observe
that these subpavings enclose the ground truth pose (white dots).

Furthermore, the evolution constraints over the horizon enable to significantly
reduce our uncertainty domains, as shown by the green boxes in Figure 11. Pose
domain contraction using the horizon requires only 3 ms of computation. Thus, the
frequency of pose estimation can be increased to provide high-rate predicted poses
between two measurement epochs.

At each epoch, as shown in Figure 11, the center of the box [pk], denoted p̂k,
is used as an estimation of the unknown wheelchair configuration p?

k. Figure 12
shows the estimated trajectory and the ground truth position for the trial with an
accompanying pedestrian, with UWB measurements from all four tags.

Our method was tested, for both trials, using data from either all four tags,
only the two front tags, or only the two rear tags. Figure 13 shows the cumulative
distribution function (CDF) of the horizontal position error (HPE), for each above
condition. Slightly higher errors are observed with the presence of a pedestrian
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Figure 11: RSIVIA outer subpavings (orange boxes) at t = 149.4 s (a), t = 133.6 s
(b), and t = 7 s (c), for the trial with a pedestrian, with four tags. Projections
on the x,y plane (left), x,θ plane (middle) and y, θ plane (right). The green
boxes represent the box resulting from the contraction of the hull of the orange
subpavings, with respect to the evolution constraints. Pose estimate is represented
with green dots. Ground truth is represented with white dots.

when using only the two rear tags. This is because the pedestrian was walking
next to these particular tags during the experiment. However, when using front or
all tags, the CDF are very similar. Thus, the presence of a pedestrian next to the
wheelchair has no significant impact on the pose estimation accuracy.

The four-tag solution, with a mean HPE of 6.65 cm (Table 1), is unsurprisingly
more accurate than the two-tag solutions. However, the experiments clearly show
that using only the two front tags yields better position accuracy (11.44 cm) than
the two rear tags (19.46 cm). This is because the position estimate from the rear
tags is highly dependent on the orientation estimate, while it is not the case with
the two front tags, almost aligned with the robot’s y-axis.
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Figure 12: Reference trajectory (red) measured by Qualisys motion capture system,
and estimated trajectory (green) with the interval-based localization method, for
the trial with a pedestrian, four tags. Tables (orange) and UWB anchors (yellow)
are displayed.
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Figure 13: Cumulative Distribution Function of horizontal position error over both
trials, with various tag configurations.

To ensure the safety of a task to be performed, each computed pose domain
should enclose the true solution. Figure 14 shows the lower and upper bounds of
each pose domain, w.r.t. the ground truth, which is at 0. Integrity is obtained if
each domain’s lower (resp. upper) bound is under (resp. above) the reference line.
It can be seen that our method provides confidence domains which are consistent
with ground truth, and this is true over the whole dataset. Uncertainties along the
x-axis are lower than along the y-axis, due to the geometry of the UWB anchors
in the room.
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Figure 14: Set-membership position estimation error (green), and confidence lower
and upper bounds (orange), for the trial with a pedestrian, with four tags. The
reference is at zero (black).

5.3 Comparison with M-Estimator Method

To demonstrate the accuracy of our solution, a comparison with two M-estimators
has been carried out, using the same dataset with a horizon of 10 measurement
epochs. The first implements the classical Huber loss [12] with 2-σ threshold, and
the second a half-Cauchy distribution based loss function, well suited for UWB
localization with NLOS [16]. Statistics on the horizontal position error (HPE)
and absolute yaw error are given in Table 1. It can be seen that the half-Cauchy
M-estimator method is more precise than the classical Huber loss, as shown in [16].

It can be seen that, except when only the two rear tags are used, our interval-
based method presents HPE accuracy results close to the half-Cauchy M-estimator
method (mean HPE error is 1.76 cm worse). The yaw estimation accuracy is also
close (mean absolute yaw error is 0.86◦ worse) when using all tags, but significantly
decreases for both methods when using only two tags. Our method is primarily
designed to compute confidence domain in the worst-case scenario, thus is not
focused on pose estimate accuracy as it is the case for the M-estimator methods.
This explains the better HPE accuracy results for the latter.

We also compared our uncertainty domains with those of the M-estimator
method. Results are shown in Table 2. The half-Cauchy M-estimator 3σ bounds
on position and angular estimates are significantly smaller than the radius of the
computed interval domains (e.g., a mean 3σ radius over x estimate of 4 cm, instead
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Table 1: Horizontal position error (HPE) and absolute yaw error |θ̃| statistics over
both trials, with a horizon of 10 epochs

Method RSIVIA M-estimator (Huber) M-est. (half-Cauchy)
Tag group rear front all rear front all rear front all.

Mean HPE (cm) 19.46 11.44 6.65 11.43 9.03 5.10 10.77 8.07 4.89
Med. HPE (cm) 16.55 10.50. 5.90 10.11 8.67 4.36 9.85 7.76 4.26
95% HPE (cm) 40.42 23.85 14.35 23.88 16.20 11.86 21.79 14.65 11.07
Max HPE (cm) 70.89 41.17 27.45 65.66 28.52 20.62 60.64 30.96 21.14

Mean |θ̃| (deg) 13.27 20.12 5.12 9.07 8.49 4.49 8.77 7.47 4.26

Med. |θ̃| (deg) 10.72 13.92 4.66 7.79 7.22 4.08 7.64 6.19 3.84

95% |θ̃| (deg) 39.04 58.10 11.58 20.79 20.14 9.93 19.55 18.32 9.46

Max |θ̃| (deg) 83.18 76.71 19.56 45.78 49.18 22.13 43.85 57.83 21.22

Table 2: Estimation Uncertainty (four tags, both trials) with a horizon of 10:
RSIVIA interval domain radius, half-Cauchy (HC) M-estimator with 3σ bounds

Method RSIVIA: radius HC M-est.: 3σ Consistent HC M-est.: 3σ
Domain x (cm) y (cm) θ (deg) x (cm) y (cm) θ (deg) x (cm) y (cm) θ (deg)

min 12.20 21.26 21.48 2.37 3.82 4.17 9.31 15.01 16.37
mean 22.46 35.69 33.43 3.02 4.97 4.95 11.86 19.55 19.46
95% 27.66 43.67 38.49 3.99 5.87 5.27 15.70 23.07 20.70
max 44.05 58.50 51.65 8.13 13.81 16.06 31.95 54.27 63.13

of 22.5 cm with intervals). However, our method provides consistent confidence
domains over the whole tested dataset, which is not the case for the half-Cauchy
M-estimator method, where the 99% confidence ellipsoid contains the ground truth
pose in only 41.7% of the epochs. The latter assumes that measurement errors
are independent between two epochs, which is not verified since multipath effects
are spatially and therefore temporally correlated, and UWB nodes also have small
ranging biases. The 99% confidence ellipsoid needs to be inflated 3.9 times to be
consistent with ground truth (i.e. considering a increased measurement error stan-
dard deviation of 33 cm). The corresponding uncertainty domains are shown in
the last three columns of Table 2. They remain smaller than those provided by our
method, but in the same order of magnitude (e.g., a mean 3σ radius over θ esti-
mate of 19.5◦, instead of 33.4◦ with intervals). However, our interval-based method
does not need over-tuning to become consistent. It only assumes a bounded-error
model, without any independence assumption. Thus, our confidence domains are
bigger than those obtained from M-estimator, but no overconfidence is given to the
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estimated pose when using realistic measurement error bounds.
The conservative behavior of our method is mostly related to constraint relax-

ation. Indeed, using the SIVIA algorithm without q-relaxed intersection instead of
RSIVIA in our methods results in smaller confidence domains (Figure 15). How-
ever, as shown by the blank spaces in Figure 15, the SIVIA method returns an
empty solution-set over 86.7% of the dataset, where pose estimation is thus un-
available. It is remarkable that the unavailability of the SIVIA method occurs for
large periods of time. This was predictable since multipath are temporally corre-
lated. Our method was designed to provide a high integrity level while ensuring
the availability of the localization process. It is then a step toward robust pose
estimation for the specific case of UWB for smart wheelchairs.
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Figure 15: Results of single epoch SIVIA method without constraint relaxation, for
the trial with a pedestrian, with four tags. Estimation error in green and bounds
in orange (as in Figure 14). The blank spaces correspond to empty solution sets.

6 Conclusion

In this paper, an interval-based localization method for a smart wheelchair has
been presented. It provides a real-time robot pose estimate, as well as reliable con-
fidence domains, from bounded-error UWB range measurements and proprioceptive
information.

The pose estimation is performed using robust q-relaxed constraint propagation
over a horizon of data. The set of the feasible robot poses is computed at each
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epoch, using UWB-related constraints. These pose domains are then refined by
propagating evolution constraints over the data horizon.

Experiments have been conducted on the smart wheelchair equipped with UWB
sensors. Results exhibit consistency of the pose estimation w.r.t. ground truth,
despite the large presence of outliers. Close results in terms of accuracy were
highlighted when comparing interval-based and M-estimator methods. However,
without measurement noise variance inflation, the M-estimator yields inconsistent
uncertainty ellipsoids, while our method provides confidence domains that enclose
the ground truth 100% of the time over the tested dataset.

The method has been designed to provide worst-case confidence domains, hence
its conservative behavior. In order to be exploitable in a fully autonomous navi-
gation and control loop, a trade-off between integrity and confidence domain size
could be performed, given a tolerated risk level. Smaller confidence domains could
also be computed by developing more efficient contraction methods, and by allocat-
ing more time to the GOMNE and RSIVIA algorithms. Also, it seems acceptable
to integrate a gyroscope to the smart wheelchair to directly measure the yaw rate
with smaller uncertainties, and improve horizon contraction efficiency.
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