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Domain Semirings United

Uli Fahrenberga, Christian Johansenb, Georg Struthc,
and Krzysztof Ziemiańskid

Abstract

Domain operations on semirings have been axiomatised in two different
ways: by a map from an additively idempotent semiring into a boolean sub-
algebra of the semiring bounded by the additive and multiplicative unit of
the semiring, or by an endofunction on a semiring that induces a distributive
lattice bounded by the two units as its image. This note presents classes of
semirings where these approaches coincide.

Keywords: semirings, quantales, domain operations

1 Introduction

Domain semirings and Kleene algebras with domain [1, 2] yield particularly simple
program verification formalisms in the style of dynamic logics, algebras of predicate
transformers or boolean algebras with operators (which are all related).

There are two kinds of axiomatisation. Both are inspired by properties of the
domain operation on binary relations, but target other computationally interesting
models such as program traces or paths on digraphs as well.

The initial two-sorted axiomatisation [1] models the domain operation as a map
d : S → B from an additively idempotent semiring (S,+, ·, 0, 1) into a boolean
subalgebra B of S bounded by 0 and 1. This seems natural as domain elements
form powerset algebras in the target models mentioned. Yet the domain algebra B
cannot be chosen freely: B must be the maximal boolean subalgebra of S bounded
by 0 and 1 and equal to the set Sd of fixpoints of d in S.

The alternative, one-sorted axiomatisation [2] therefore models d as an endo-
function on a semiring S that induces a suitable domain algebra on Sd—yet gener-
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ally only a bounded distributive lattice. An antidomain (or domain complementa-
tion) operation is needed to obtain boolean domain algebras.

In the model of binary relations over a set X, + is set union and · relational
composition; 0 is the empty relation and 1 the identity relation. The domain of
relation R ⊆ X × X is d(R) = {(x, x) | ∃y. (x, y) ∈ R} while its antidomain
is a(R) = {(x, x) | ∀y. (x, y) /∈ R}. In the path model over a directed graph
σ, τ : E → V , the carrier set consists of all finite paths (v1, e1, v2, . . . , vn−1, en−1, vn)
in the graph in which vertices vi ∈ V and edges ei ∈ E alternate and are compatible
with the source map σ and target map τ . The operations + and 0 are again ∪ and
∅, respectively; 1 is V with elements v ∈ V seen as paths of length 1. Extending
σ and τ to paths as expected, composition π1;π2 of paths π1 and π2 is defined
if τ(π1) = σ(π2), and it then glues on this vertex. Path composition is lifted
to sets of paths as P ;Q = {π1;π2 | π1 ∈ P, π2 ∈ Q, τ(π1) = σ(π2)}. Finally
d(P ) = {σ(π) | π ∈ P} and a(P ) = {v | ∀π. σ(π) = v ⇒ π 
∈ P}. Other models can
be found in the literature.

This note revisits the two axiomatisations mentioned above to tie some loose
ends together. We describe a natural algebraic setting in which they coincide, and
which has so far been overlooked. It consists of additively idempotent semirings in
which the sets of all elements below 1 form boolean algebras, as is the case, for in-
stance, in boolean monoids and boolean quantales. We further take the opportunity
to discuss domain axioms for arbitrary quantales.

The restriction to such boolean settings has little impact on applications: most
models of interest are powerset algebras and hence (complete atomic) boolean alge-
bras anyway. Yet the coincidence itself does make a difference: one-sorted domain
semirings are easier to formalise in interactive proof assistants and apply in program
verification and correctness.

2 Domain Axioms for Semirings

First we recall the two axiomatisations of domain semirings and their relevant
properties. To distinguish them, we call the first class, introduced in [1], test dioids
with domain and the second one, introduced in [2], domain semirings.

We assume familiarity with posets, lattices and semirings. A dioid, in particular,
is an idempotent semiring (S,+, ·, 0, 1), that is, x + x = x holds for all x ∈ S. Its
additive monoid (S,+, 0) is then a semilattice ordered by x ≤ y ⇔ x + y = y and
with least element 0; multiplication preserves ≤ in both arguments. (We generally
omit the · for multiplication.)

We write S1 = {x ∈ S | x ≤ 1} for the set of subidentities in S and call S
bounded if it has a maximal element, 
.

We call a dioid S full if S1 is a boolean algebra, bounded by 0 and 1, with + as
sup, · as inf and an operation ( )′ of complementation that is defined only on S1.

Definition 1 ([1]). A test dioid (S,B) is a dioid S that contains a boolean subal-
gebra B of S1—the test algebra of S—with least element 0, greatest element 1, in
which + coincides with sup and that is closed under multiplication.
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Once again we write ( )′ for complementation on B.

Lemma 1 ([1]). In every test dioid, multiplication of tests is their meet.

Lemma 2 ([1]). Let (S,B) be a test dioid. Then, for all x ∈ S and p ∈ B,

1. x ≤ px ⇔ p′x = 0,

2. x ≤ px ⇔ x ≤ p
 if S is bounded.

Definition 2 ([1]). A test dioid with predomain is a test dioid (S,B) with a
predomain operation d : S → B such that, for all x ∈ S and p ∈ B,

x ≤ d(x)x and d(px) ≤ p.

It is a test dioid with domain if it also satisfies, for x, y ∈ S, the locality axiom

d(xd(y)) ≤ d(xy).

Weak locality d(xy) ≤ d(xd(y)) already holds in every test dioid with predomain.
Thus d(xd(y)) = d(xy) in every test dioid with domain.

It is easy to check that binary relations and sets of paths satisfy the axioms of
test dioids with domain, and that B = S1 in both models.

Lemma 3 ([1]). In every test dioid (S,B), the following statements are equivalent:

1. (S,B, d) is a test dioid with predomain,

2. the map d : S → B on (S,B) satisfies, for all x ∈ S and p ∈ B, the least left
absorption property

d(x) ≤ p ⇔ x ≤ px, (lla)

3. in case S is bounded, d : S → B on (S,B) is, for all x ∈ S and p ∈ B, the
left adjoint in the adjunction

d(x) ≤ p ⇔ x ≤ p
. (d-adj)

Interestingly, test algebras of test dioids with domain cannot be chosen ad libi-
tum: they are formed by those subidentities that are complemented relative to the
multiplicative unit [1]. This has the following consequences.

Proposition 1. The test algebra B of a test dioid with domain (S,B, d) is the
largest boolean subalgebra of S1.

We write Sd = {x | d(x) = x} and d(S) for the image of S under d.

Lemma 4 ([2]). Let (S,B, d) be a test dioid with domain. Then B = Sd = d(S).

Next we turn to the second type of axiomatisation.
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Definition 3 ([2]). A domain semiring is a semiring S with a map d : S → S such
that, for all x, y ∈ S and with ≤ defined as for dioids,

x ≤ d(x)x, (d1)

d(xd(y)) = d(xy), (d2)

d(x) ≤ 1, (d3)

d(0) = 0, (d4)

d(x+ y) = d(x) + d(y). (d5)

Every domain semiring is a dioid: d(1) = d(1)1 = 1 + d(1)1 = 1 + d(1) = 1,
where the second identity follows from (d1) and the last one from (d3), therefore
1+ 1 = 1+ d(1) = 1 and finally x+ x = x(1+ 1) = x. It follows that ≤ is a partial
order and that axiom (d1) can be strengthened to d(x)x = x.

Once again it is straightforward to check that binary relations and sets of paths
form domain semirings.

In a domain semiring S, d induces the domain algebra: d ◦ d = d and therefore
Sd = d(S). Moreover, (Sd,+, ·, 0, 1) forms a subsemiring of S, which is a bounded
distributive lattice with + as binary sup, · as binary inf, least element 0 and greatest
element 1 [2], but not necessarily a boolean algebra.

Example 1 ([2]). The distributive lattice 0 < a < 1 is a dioid with meet as
multiplication, and a domain semiring with d = id and therefore Sd = S.

Proposition 2 ([2]). The domain algebra of a domain semiring S contains the
largest boolean subalgebra of S bounded by 0 and 1.

Axiom (d5) implies that d is order preserving: x ≤ y ⇒ d(x) ≤ d(y). In
addition, d(px) = pd(x) for all p ∈ Sd, d(1) = 1, and d(
) = 1 if S is bounded.
More importantly, (lla) can now be derived for all p ∈ Sd (it need not hold for
p ∈ S1) [2]; it becomes an adjunction when S is bounded.

Lemma 5. In any bounded domain semiring S, (d-adj) holds for all p ∈ Sd.

Proof. d(x) ≤ p implies x = d(x)x ≤ px ≤ p
 and d(x) ≤ d(p
) = pd(
) = p1 = p
follows from x ≤ p
.

As mentioned in the introduction, an antidomain operation is needed to make
the bounded distributive lattice Sd boolean.

Definition 4 ([2]). An antidomain semiring is a semiring S with a an operation
a : S → S such that, for all x, y ∈ S,

a(x)x = 0, a(x) + a(a(x)) = 1, a(xy) ≤ a(xa(a(y))).

Antidomain models boolean complementation in the domain algebra; the do-
main operation can be defined as d = a◦a in any antidomain semiring S. The second
and third antidomain axioms then simplify to a(x)+d(x) = 1 and a(xy) ≤ a(xd(y)).
The domain algebra Sd of S is the maximal boolean subalgebra of S1, as in Propo-
sition 1. This leads to the following result.
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Lemma 6 ([2]). Let (S, a) be an antidomain semiring. Then (S, Sd, d) is a test
dioid with domain.

If the domain algebra Sd of a domain semiring S happens to be a boolean
algebra, it must be the maximal boolean subalgebra of S1 by Proposition 2, so that
S is again a test dioid with B = Sd. Antidomain is then definable.

Lemma 7. Every domain semiring with boolean domain algebra is an antidomain
semiring.

Proof. With a = ( )′ ◦ d, the first antidomain axiom follows immediately from
Lemma 2(1); the remaining two axioms hold trivially.

Example 2. In the dioid 0 < a < 1 from Example 1, d : 0 �→ 0, a �→ 1, 1 �→ 1 defines
another domain semiring with Sd = {0, 1} = B. So Sd ⊂ S1 is the maximal boolean
subalgebra in S1. In addition, a : 0 �→ 1, a �→ 0, 1 �→ 0 defines the corresponding
antidomain semiring. Finally, this dioid is a test dioid by Lemma 6 and in fact a
test dioid with domain in which B = Sd ⊂ S1.

As powerset algebras, relation and path domain semirings have of course boolean
domain algebras with complement x′ = 1 ∩ x, where x denotes complementation
on the entire powerset algebra. Both are therefore antidomain semirings, with the
operations shown in the introduction.

We finish this section with an aside on fullness:1 While every test dioid with
domain and every antidomain semiring is full whenever Sd = S1 by Proposition 1
and Lemma 6, in domain semirings, Sd = S1 need not imply that Sd is boolean
(Example 1) and vice versa (Example 2). A domain semiring S is therefore full
precisely when Sd is boolean and equal to S1.

3 Coincidence Result

The results of Section 2 suggest that the two types of domain semiring coincide
when the underlying dioid is full. We now spell out this coincidence.

Proposition 3. Let (S,B, d) be a test dioid with domain. Then (S, d) is a domain
semiring with Sd = B and an antidomain semiring with a = ( )′ ◦ d.
Proof. The domain semiring axioms are derivable in test dioids with domain [1]; the
antidomain axioms follow by Lemma 7. Moreover, B is the maximal boolean sub-
algebra of S1 by Proposition 1, and thus equal to Sd by Proposition 2 (alternatively
Lemma 4).

We know from Lemma 6 that every antidomain semiring is a test dioid with
domain. Hence, by Proposition 3, antidomain semirings and test dioids with domain
are interdefinable (see also [2]). For the other converse of Proposition 3 we consider
full domain semirings S where Sd = S1 is a boolean algebra by Proposition 2. These
are test dioids, hence (lla) can be used to define domain.

1We are grateful to a reviewer for reminding us of this fact.
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Corollary 1. Let S be a full dioid with map d : S → S. Then (lla) holds for all
x ∈ S and p ∈ S1 if and only if the predomain axioms

x ≤ d(x)x and d(px) ≤ p

from Definition 2 hold for all x ∈ S and p ∈ S1.

Proof. As S is a test dioid with B = S1, Lemma 3(1) applies.

Lemma 8. Let S be a full dioid with map d : S → S that satisfies (lla) for all
x ∈ S and p ∈ S1. Then (S, S1, d) is a test dioid with predomain and Sd = S1.

Proof. S is a test dioid with predomain by Corollary 1. Sd ⊆ S1 because d(x) ≤ 1 in
any test dioid with predomain [1]. S1 ⊆ Sd because p ≤ 1 implies p = d(p)p ≤ d(p)
and d(p) ≤ p because pp = p, using (lla).

Proposition 4. Let (S, d) be a full domain semiring. Then (S, Sd, d) is a test dioid
with domain.

Proof. If (S, d) is a full domain semiring, then (lla) is derivable and locality holds.
Then (S, Sd, d) is a test dioid with predomain by Lemma 8 and therefore a test
dioid with domain because of locality.

Our coincidence result, through which the two types of domain semirings are
united, then follows easily from Propositions 3 and 4.

Theorem 1. A full test dioid is a test dioid with domain if and only if it is a
domain semiring.

On full dioids, domain can therefore be axiomatised either equationally by the
domain semiring axioms or those of test dioids with domain, or alternatively by
(lla) and locality. The domain algebras of relation and paths domain semirings, in
particular, are full.

In any dioid, hence in particular any domain semiring, fullness can be enforced,
for instance, by requiring that every p ∈ S1 be complemented within S1, that is,
there exists an element q ∈ S1 such that p+ q = 1 and qp = 0. It then follows that
S1 is a boolean algebra [2].

Alternatively, in any test dioid with domain or any antidomain semiring, Sd =
S1 whenever x ≤ 1 ⇒ d(x) = x, for all x ∈ S. Yet Example 2 shows that this
implication does not suffice to make Sd boolean in arbitrary domain semirings.

Finally, locality need not hold in full test dioids that satisfy (lla).

Example 3. Consider the full test dioid with S = {0, 1, a,
} in which a and 1 are
incomparable with respect to ≤, aa = 0, multiplication is defined by a
 = 
a = a
and 

 = 
, and d maps 0 to 0 and every other element to 1. Then (lla) holds,
but d(ad(a)) = d(a1) = d(a) = 1 > 0 = d(0) = d(aa).
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4 Examples

The restriction to full test dioids is natural for concrete powerset algebras, like the
relation and path algebras mentioned. It is captured abstractly, for instance, by
boolean monoids and quantales.

A boolean monoid [1] is a structure (S,+,�, ·, , 0, 1,
) such that (S,+, ·, 0, 1)
is a semiring and (S,+,�, , 0,
) a boolean algebra. As all sups, infs and multipli-
cations of subidentities stay below 1, every boolean monoid is a full bounded dioid;
boolean complementation on S1 is given by p′ = 1 � p for all p ∈ S1.

Domain can now be axiomatised as an endofunction, either equationally us-
ing the domain semiring or test dioid with domain axioms, or by the adjunction
(d-adj) and locality, as in Section 3. Once again, the antidomain operation a is
complementation on S1. Theorem 1 has the following instance.

Corollary 2. A boolean monoid is a test dioid with domain if and only if it is a
domain semiring.

Quantales capture the presence of arbitrary sups and infs in powerset algebras
more faithfully. Formally, a quantale (Q,≤, ·, 1) is a complete lattice (Q,≤) and
a monoid (Q, ·, 1) such that composition preserves all sups in its first and second
argument. We write

∨
for the sup and

∧
for the inf operator. We also write

0 =
∧
Q for the least and 
 =

∨
Q for the greatest element of Q, and ∨ and ∧ for

binary sups and infs.
A quantale is boolean if its complete lattice is a boolean algebra. Every boolean

quantale is obviously a boolean monoid, and every finite boolean monoid a boolean
quantale. If Q is a boolean quantale, then Q1 forms even a complete boolean
algebra. In boolean quantales, predomain, domain and antidomain operations can
therefore be axiomatised like in boolean monoids, and we obtain another instance
of Theorem 1, analogous to Corollary 2, simply by replacing “boolean monoid”
with “boolean quantale”.

As for domain semirings, Qd need neither be full nor boolean in an arbitrary
domain quantale: the dioids in Examples 1 and 2 are defined over finite semilattices
and hence complete lattices. They are therefore quantales. In this case, the identity
d(x ∧ 1) = x ∧ 1 forces Qd = Q1, because this inequality implies d(x) = x for all
x ≤ 1, and in fact a domain semiring with a meet operation suffices for the proof.2

In antidomain quantales, this identity thus implies fullness. Whether or how the
fullness could be forced equationally in arbitrary domain semirings or antidomain
semirings is left open.

5 Domain Quantales

Some loose ends remain to be tied together in this note as well:

• Does the interaction of domain with arbitrary sups and infs in quantales
require additional axioms?

2Again we owe this observation to a reviewer.
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• Why has domain not been axiomatised explicitly using the adjunction (d-adj),
at least for boolean quantales?

• And why has domain in boolean monoids or quantales not been axiomatised
explicitly by d(x) = 1 ∧ x
, as in relation algebra?

This section answers these questions.
First, we consider the domain semiring axioms in arbitrary quantales and argue

that additional sup and inf axioms are unnecessary.

Definition 5. A domain quantale is a quantale that is also a domain semiring.

As every quantale is a bounded dioid, the adjunction (d-adj) holds for every
p ∈ Qd. In addition, domain interacts with sups and infs as follows.

Lemma 9. In every domain quantale,

1. d(
∨
X) =

∨
d(X),

2. d(
∧
X) ≤ ∧

d(X),

3. d(x)(
∧
Y ) =

∧
d(x)Y for all Y 
= ∅.

Proof.

1. d is a left adjoint by Lemma 5 and therefore sup-preserving. Sups over X are
taken in Q; those over d(X) in Qd.

2. (∀x ∈ X.
∧
X ≤ x) ⇒ (∀x ∈ X. d(

∧
X) ≤ d(x)) ⇔ d(

∧
X) ≤ ∧

d(X).

3. Every y ∈ Y 
= ∅ satisfies

d
(∧

d(x)Y
)
≤ d(d(x)y) = d(x)d(y) ≤ d(x)

and therefore∧
d(x)Y = d

(∧
d(x)Y

)(∧
d(x)Y

)
≤ d(x)

(∧
d(x)Y

)
≤ d(x)

(∧
Y
)
.

The converse inequality holds because x(
∧
Y ) ≤ ∧

xY in any quantale.

If Y = ∅ in part (3) of the lemma, then d(x)(
∧
Y ) = d(x)
 need not be equal

to

 =

∧
∅ =

∧
d(x)Y.

In the quantale of binary relations over the set {a, b}, for instance, R = {(a, a)},
satisfies d(R) = R and

d(R)
 = {(a, a)} · {(a, a), (a, b), (b, a), (b, b)} = {(a, a), (a, b)} ⊂ 
.

Moreover, part (1) of the lemma implies that the domain algebra Qd is a com-
plete distributive lattice: d(

∨
d(X)) =

∨
d(X) holds for all X ⊆ Q, so that any
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sup of domain elements is again a domain element. Yet the sups and infs in Qd

need not coincide with those in Q.
Second, the adjunction d(x) ≤ p ⇔ x ≤ p
 holds for all p ∈ Q1 in a boolean

quantale Q. General properties of adjunctions then imply that, for all x ∈ Q,

d(x) =
∧

{p ∈ Q1 | x ≤ p
}.

Lemma 8, in turn, guarantees that this identity defines predomain explicitly on
boolean quantales. Yet Example 3 rules out that it defines domain: the full test
dioid from this example is, in fact, a boolean quantale; it satisfies (lla) and thus
(d-adj), but violates the locality axiom of domain quantales.

Finally, we give two reasons why the relation-algebraic identity

d(x) = 1 ∧ x


cannot replace the domain axioms in boolean monoids and quantales.
It is too weak: In the boolean quantale {⊥, 1, a,
} with 1 and a incomparable

and multiplication defined by 

 = 
 and aa = a
 = 
a = a, it holds that
d(a) = ⊥ (when defined by d(x) = 1 ∧ x
), yet d(a)a = ⊥a = ⊥ < a. Therefore
d(x)x = x is not derivable from d(x) = 1 ∧ x
 even in boolean quantales.

It is too restrictive: although d(x) = 1 ∧ x
 obviously holds in the quantale of
binary relations, it fails, for instance, in the quantale formed by the sets of (finite)
paths over a digraph σ, τ : E → V mentioned in the introduction. Recall that the
domain elements of a set P of paths are a subset of V given by the sources of the
these paths. It is then obvious that V ∩P
 = ∅ unless P contains a path of length
one and d(P ) = ∅ ⇔ P = ∅, so that d(P ) = V ∩ P
 fails for any P in which all
paths have length greater than 1.

This type of argument applies to all powerset quantales in which the composition
of underlying objects (here: paths) is generally length-increasing and the quantalic
unit and domain elements are formed by fixed-length objects.
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Abstract

In this paper we investigate realizability of discrete time linear dynamical
systems (LDSs) in fixed state space dimension. We examine whether there
exist different Θ = (A,B,C,D) state space realizations of a given Markov
parameter sequence Y with fixed B, C and D state space realization matrices.
Full observation is assumed in terms of the invertibility of output mapping
matrix C.

We prove that the set of feasible state transition matrices associated to a
Markov parameter sequence Y is convex, provided that the state space real-
ization matrices B, C and D are known and fixed. Under the same conditions
we also show that the set of feasible Metzler-type state transition matrices
forms a convex subset. Regarding the set of Metzler-type state transition
matrices we prove the existence of a structurally unique realization having
maximal number of non-zero off-diagonal entries.

Using an eigenvalue assignment procedure we propose linear programming
based algorithms capable of computing different state space realizations. By
using the convexity of the feasible set of Metzler-type state transition matrices
and results from the theory of non-negative polynomial systems, we provide
algorithms to determine structurally different realization. Computational ex-
amples are provided to illustrate structural non-uniqueness of network-based
LDSs.
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1 Introduction

Many problems in computer science and engineering involve sequences of real-valued
multivariate observations. It is often assumed that observed quantities are cor-
related with some underlying latent (state) variables that are evolving over time.
Considering linear dependencies among the latent states and the observed variables
leads us to linear dynamical systems. The application of linear systems is ubiqui-
tous, ranging from dynamical systems modeling to time series analysis, including
econometrics, meteorology, telecommunication, biomedical signal processing, or so-
cial network dynamics [15, 23, 35, 30, 17].

The aim of system identification is to construct parameterized models of dy-
namical systems by observing their input-output trajectories [22, 37]. A popu-
lar and theoretically advantageous method for estimating the parameters of linear
dynamical systems is the maximum likelihood method together with expectation
maximization or numerical optimization [31, 25, 16, 10]. Although the underlying
mathematical representation of linear systems is simple, due to the fact that the
associated optimization problem to be solved might be non-convex, estimating their
parameters could be a computationally challenging task [16]. A related problem,
structural identifiability examines the theoretical possibility to uniquely determine
the model parameters, assuming perfect observational data [37, 24, 3]. It turns out
that even in the case of linear dynamical systems, the underlying parameters may
not be uniquely determined, i.e. different parameterizations of the same model
structure may provide us with the same dynamical behavior.

One can observe a growing interest in both quantitative and qualitative exami-
nation of the underlying interconnected structure of dynamical systems [7, 20, 32,
4, 34]. There is a growing importance of large scale distributed engineering systems,
such as power grids, distributed computing networks and intelligent transportation
networks that are composed of smaller functional subunits. The interconnected
structure corresponding to the state variables has attracted much attention in the
context of physico-chemical systems such as chemically interacting species com-
posing systems biological networks: gene regulatory networks, protein-protein in-
teraction networks, metabolic networks and signal transduction pathways [36, 38].
Analyzing the locally connected structure of social networks could help us under-
stand how viruses and information spread across the population [5, 26, 28, 29].
Subsystems, functional units are locally connected to each other according to some
physical interaction topology encoded by their differential equation based descrip-
tion. The distributed, locally connected structure of dynamical systems poses im-
portant requirements towards efficient computational approaches, e.g. distributed
controller synthesis methods over traditional centralized control algorithms [33, 9].
It can be observed in many dynamical systems that the underlying network struc-
ture is topologically non-unique i.e., different interconnection (graph) patterns can
be encoded by the same dynamical equations [1, 2]. Naturally, the non-uniqueness
of the network structure implies that the dynamical system is structurally non-
identifiable.
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Main results: In this paper we investigate realizability and structural properties
of discrete time linear time invariant dynamical systems. We examine structural im-
plications of non-unique realizability on the interaction pattern of the state variables
as they are encoded in the state transition matrix. We examine the non-uniqueness
of state transition matrix of LDSs. Assuming fixed input matrix B and invertible
observation matrix C we prove that the feasible set of system matrices formulate a
convex set. We devote particular attention to LDSs of state transition matrices that
are constrained to be of Metzler property. We prove the convexity of the feasible
set of state transition matrices provided that the Metzler constraint is posed. Us-
ing the eigenvalue assignment procedure we formulate a convex optimization based
procedure that can be efficiently employed to find different realizations of LDSs.
Assuming the Metzler property and making use of the convexity of the feasible
set of system matrices we provide algorithms capable of determining structurally
different dynamically equivalent state space realizations.

2 Background and problem formulation

Mathematical notations

The notations used in the paper are summerized in Table 1 below.

Table 1: Notations

∅ empty set
R the set of real numbers
Rn×m the set of (n×m)-dimensional real valued matrices
0n×m (n×m)-dimensional zero matrix
[A]ij the entry in the ith row of the jth column of matrix A
� subtraction operator acting on a set and a matrix, A �A is the set

given by subtracting the matrix A from all the elements of A

2.1 The studied system class and its properties

A discrete time linear dynamical system (LDS) in state space representation is given
by a tuple Θ = (A,B,C,D) and the associated system of difference equations (DEs)
is as follows:

x(k + 1) = Ax(k) +Bu(k), x(0) = x0,

y(k) = Cx(k) +Du(k),
(1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. x(k) ∈ Rn denotes the
vector of state variables, u(k) ∈ Rm and y(k) ∈ Rp are the input and the associated
output of the system.

Though the solution associated to a particular parametrization Θ and initial
condition x0 is unique, the parameters characterizing the underlying dynamics are
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not necessarily. There may exist distinct Θ, Θ′ parametrizations of the same input-
output behavior meaning that the system is not structurally identifiable.

Definition 1. A system of the form of E.q. (1) is said to be structurally (globally)
identifiable, if for any admissible input u(k) and k ≥ 0 we have that

y(k|Θ1) = y(k|Θ2) ⇒ Θ1 = Θ2,

where y(k|Θ) denotes the output of the system E.q. (1) parametrized by Θ.

If the condition of structural identifiability does not hold, the system is said to
be structurally non-identifiable.

In case of structural non-identifiability, in order to quantitatively characterize
the system, it is appealing to describe the feasible set of possible parameters. A
quantitative characterization of the feasible set may help us finding realizations of
favorable properties, such as sparsity.

Definition 2. It is said that a tuple Θ′ = (A′, B′, C ′, D′) is a (dynamically equiva-
lent) realization of a LDS of the form E.q. (1) parametrized by Θ, if Θ′ provides the
same input-output behavior, i.e. y(k|Θ′) = y(k|Θ) for any admissible input signal
u(k), k ≥ 0.

By recursively expanding E.q. (1) one can obtain the input-output equations –
a common starting point of system identification – of the following form:

y(k) = CAkx(0) +

k−1∑
i=0

Yk−i−1u(i) +Du(k), (2)

where the terms Yk−i−1 = CAk−i−1B and D are called the Markov parameters
of the systems which are unique descriptors of the input-output behavior and are
invariant to any invertible state transformations. Since Markov parameters are
unique regarding the input-output behavior, we can formulate sufficient and nec-
essary condition of dynamical equivalence with respect to the Markov parameters
as follows: a tuple Θ′ = (A′, B′, C ′, D′) is a dynamically equivalent realization of
Y = {Yk = CAkB}k≥0, if it satisfies Yk = C ′A′kB′ for k ≥ 0 and D′ = D.

2.2 Problem setup

A related problem of structural non-identifiability of LDSs is the existence of dis-
tinct, A, A′ ∈ Rn×n state transition matrices having different patterns in their
non-zero entries, i.e. structurally different state transition matrices. Assuming
that E.q. (1) describes the dynamical behavior of a network-based system, the
state transition matrix A can be viewed as a weighted adjacency matrix character-
izing the interactions – in terms of both the interaction pattern and the magnitudes
– among the components, i.e. state variables. Such a way structural non-uniqueness
of a network topology can be recast as an identification problem, namely finding
structurally different n-dimensional state space realizations.
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In this work we concerned with the existence different realizations of LDSs and
focus on the non-uniqueness and structure of the feasible state transition matrices.

Assumptions Throughout this paper we assume that a LDS is given by a
state space realization Θ = (A,B,C,D) and the matrices B, C and D are fixed
over all the dynamical equivalent realizations of interest. We set C to be invertible.
Regarding the initial condition we assume x(0) = 0n.

By fixing the matrices B, C and D we explicitly restrict our attention to dynam-
ically equivalent realizations with different system matrices, but fixed input and
output patterns. This is particularly important in the context of network-based
dynamical systems where different state transition matrices incorporate distinct
interaction patterns of the system components. We note that the invertibility of C
covers the case of fully observable state variables.

Making use of the Markov parameter based description together with the above
assumptions, the following constraint set can be employed in order to express dy-
namical equivalence of different realizations:

CAkB = CA′kB, k ≥ 0. (3)

One difficulty with respect to the above constraint set is that generally we have a
countable set of Markov parameters Y = {Yk}k≥0 implying infinitely many con-
straints of the from E.q. (3). On the other hand, the terms CA′kB are non-linear
and are not convex in the entries of A′ – even for stable systems of nilpotent state
transition matrices – which could easily make the identification problem computa-
tionally intractable.

In this paper identifiability of the above defined class of LDSs is studied. We
wish to quantitatively characterize the feasible set of state transition matrices in
the studied class of LDSs. We also address the problem of determining structurally
different n-dimensional realizations of a LDS given by a particular initial state space
realization Θ.

3 Embedding eigenvalue assignment procedure

In this section a static full-output feedback based approach is used for stabilizing
a LDS and constructing a compressed set of closed-loop Markov parameters. The
procedure detailed here is known as embedding eigenvalue procedure and applied
in LDS identification to recover the Markov parameters [27, 18].

Let us take a LDS of E.q. (1). By taking an arbitrary M ∈ Rn×n we can
reformulate Eq. (1) as follows:

x(k + 1) = Ax(k) +Bu(k) +My(k)−My(k)

y(k) = Cx(k) +Du(k).
(4)

Then for the state equation we have

x(k + 1) = (A+MC)x(k) + (B +MD)u(k)−My(k). (5)
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Let us introduce the following matrices and new input variable

A = A+MC, (6)

B = [B +MD, −M ], (7)

v(k) = [u(k) y(k)]�. (8)

Then the state space model Eq. (1) can be reformulated in the following equivalent
form:

x(k + 1) = Ax(k) +Bv(k)

y(k) = Cx(k) +Du(k).
(9)

Now by recursively expanding E.q. (9) the input-output behavior can be expressed
as

y(k) = CA
k
x(0) +

k−1∑
i=0

CA
i−1

Bv(k − i) +Du(k). (10)

If M can be chosen so that A = A+MC is a stability matrix, then for the Markov
parameters asympthotically we have

lim
i→∞

CA
i
B = 0 (11)

In this case, E.q. (10) can be approximated as

y(k) ≈
p−1∑
i=0

CA
i−1

Bv(k − i) +Du(k) (12)

for a suitably high p ∈ N. In particular, if A + MC is set to be nilpotent,
then (A + MC)n = 0n×n holds. Note that such a stabilizing M matrix exists,
if the system E.q. (1) is observable. Such a way the countable set of Markov
parameters Y = {CB, CAB, CA2B, . . . } is compressed to a finite set Y =

{CB, CAB, CA
2
B, . . . CA

n−1
B}. For the compressed Markov parameters we

introduce the notation Y k = CA
k
B.

It can be shown that the system Markov parameters Y can be uniquely recovered
from that of the closed-loop system Y of E.q. (4) as follows: [27, 18]:

Yk = Y
(1)

k +

k−1∑
i=0

Y
(2)

i Yk−i−1 + Y
(2)

k D, k ≥ 1, (13)

where

Y k = CA
k
B =

[
C(A+MC)k(B+MD) −C(A+MC)kM

]
= [Y

(1)

k Y
(2)

k

]
(14)

for k ≥ 1.
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4 Representing different realizations using a com-
pressed set of Markov parameters

In this section we show that dynamic equivalence of n-dimensional LDS realizations
can be traced back to a finite set of linear equations. We make use of the eigenvalue
assignment procedure, such a way instead of a countable set of Markov parameters
Y one can consider a compressed set of n Markov parameters Y of a (stabilized)
closed-loop system. By an inductive proof a linear reformulation of the non-convex
equations of E.q. (3) is provided. We also show the existence of a bijection between
the original state space realizations and the closed-loop system realizations.

Making use of the embedding eigenvalue assignment procedure we can obtain
a finite set of compressed system descriptors Y = {Y k}n−1

k=0 which is unique with
respect to the closed-loop system. Finding different realizations of Y can be recast
in the form of a finite set of non-linear equations:

CA′
k
B = CA

k
B, k = 1, . . . n. (15)

Note that the nilpotency of A implies that the nth equation is equivalent to

CA′
n
B = 0n×(n+m), furthermore, the invertability of C means that CA′

k
B =

0n×(n+m) for k ≥ n.

E.q. (15) together with CA′
n
B = 0n×(n+m) provide us with a finite set of con-

straints to be satisfied by all the dynamically equivalent realizations (A′, B, C,D)
of Y. However, E.q. (15) contains high nonlinearities in A′ which makes the iden-
tification problem non-convex and computationally intractable.

Proposition 1. Let us consider a LDS of Markov sequence Y with a state space
representation Θ = (A,B,C,D). Assume that ∃C−1. Then we have that

CAkB = CA′Ak−1B, k ≥ 1 (16)

holds for any feasible n-dimensional realization Θ′ = (A′, B, C,D) of Y.

Proof. Let us assume that Θ′ = (A′, B, C,D) is a dynamically equivalent realization
of Y we have that

CAkB = CA′kB, k ≥ 0.

For k = 1

CAB = CA′B = CA′A0B.

By induction assume that for some k > 1 the equation CAkB = CA′kB holds.
Then

CAk+1B = CA′k+1B = CA′A′kB = CA′C−1CA′lB = CA′C−1CAkB = CA′AkB.
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Making use of Proposition 1 the constraint set defined by E.q. (3) can be
equivalently reformulated as CAkB = CA′Ak−1B for k ≥ 0 which are linear in
A′. Similarly one can formulate a finite set of linear constraints for the closed-loop
system:

CA
k
B = CA′A

k−1
B, k = 1, . . . n (17)

By equipping E.q. (17) with a linear objective function c : Rn×n �→ R, we obtain a
linear program of the decision variables A′, e.g.:⎧⎪⎨

⎪⎩
max c(A′)
subject to

CA
k
B = CA′A

k−1
B, k = 1, . . . n

(18)

Such a way a computational model is provided to determining dynamically equiv-

alent realizations (A,B,C,D) of the closed-loop system Y = {CA
k
B}nk=1. Fur-

thermore, the feasible set of solutions of the linear program (18) provides all the
dynamically equivalent realizations of Y. We note that in the optimization prob-
lem (18) the decision variables are the entries of the matrix A′, i.e. the number of
decision variables is n2 where n is the dimension of the system.

Now it can be shown that the resulted closed-loop state transition matrix A′
can be used to reconstruct an n-dimensional realization of the open loop system
E.q. (1) described by the initial countable set of Markov parameters.

Proposition 2. Let us consider a closed-loop LDS Y with a state space represen-
tation Θ = (A,B,C,D) so that A

n
= 0n×n, A = A+M and B = [B +MD,−M ]

for some A,M ∈ Rn×n and B ∈ Rn. Assume that there exists A′ ∈ Rn×n, A′ 
= A
so that

CA
k
B = CA′

k
B, k = 1, . . . n,

i.e. Θ′ = (A′, B, C,D) is a dynamically equivalent realization of Y. Then Θ′ =
(A′, B, C,D) is a dynamically equivalent realization of Y = {CAkB}k≥0, where
A′ = A′ −M .

Proof. For the sake of convenience we introduce the following notations

Yk(A) = CAkB, Y k(A) = CA
k
B,

Y
(1)

k (A) = C(A+MC)k(B +MD), Y
(2)

k (A) = −C(A+MC)kM

to emphasize the dependence on a particular A. E.q. CA
k
B = CA′

k
B implies that

Y
(1)

k (A) = Y
(1)

k (A′) and Y
(2)

k (A) = Y
(2)

k (A′) hold for k ≥ 1. Since Y0 = CB does
not depend on the state transition matrix, applying recursively E.q. (13) for k ≥ 1
we obtain that Yk(A) = Yk(A

′), k ≥ 0, i.e. Θ′ = (A′, B, C,D) is a dynamically
equivalent realization of Y.
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5 The geometrical structure of the set of feasible
system matrices

In this section we consider the set of feasible n-dimensional system matrices. We
prove that for fixed B, C and D parameters, the set of feasible system matrices with
respect to any Y Markov sequence is convex. The set of feasible system matrices
is denoted as follows:

A(Y, B, C,D) =
{
A

∣∣∣ A ∈ Rn×n, (A,B,C,D) is a realization of Y = {Yk}k≥0

}
.

(19)

Proposition 3. Let us consider a countable sequence of Markov parameters Y real-
izable by a state space realization (A,B,C,D) of order n and denote A(Y, B, C,D)
the set of feasible n-dimensional system matrices as it is defined by E.q. (19).
Assume that C is invertible. Then A is convex.

Proof. Let us consider two matrices A1, A2 ∈ Rn×n so that (A1, B, C,D) and
(A2, B, C,D) are realizations of Y. From Proposition 1 it follows that for any
a ∈ (0, 1)

CAkB = aCAkB + (1− a)CAkB =

aCA1A
k−1B + (1− a)CA2A

k−1B = C
(
aA1 + (1− a)A2

)
Ak−1B, k ≥ 1

(20)

In the sequel for the sake of convenience we use the notation Â = aA1 +(1− a)A2.
Now by induction we prove that CAkB = CÂkB for k ≥ 1.
For l = 1 we have

CAB = C
(
aA1 + (1− a)A2

)
B.

Using the inductive assumption CAlB = CÂlB for general l we obtain that

CAl+1B = CÂAlB = CÂC−1CAlB =

CÂC−1CÂlB = CÂl+1B

We have that any convex combination aA1 + (1 − a)A2 results in a feasible state
space realization (aA1 + (1− a)A2, B, C,D) of the Markov sequence Y.

6 Characterizing structurally different system re-
alizations

In this section we consider realizations of special structure in their state transition
matrices. The off-diagonals are constrained to be non-negative. State transition
matrices having non-negative off-diagonal entries are particularly important when
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the purpose is to model networks of interacting components: non-zero off-diagonal
entries could represent the magnitude of interactions while negative diagonals may
incorporate to information or mass leakage. Positive systems – in which all the en-
tries of the state transition matrix are constrained to be non-negative – compose a
widely-studied class of linear time invariant systems with the above structural prop-
erties [8]. Discrete time linear compartmental models – having many applications
in modeling biological systems – also satisfy the above non-negativity condition
[14, 13]. Social networks provide an important application field of modeling dis-
crete time dynamical systems defined on networks [26, 28, 29, 21]. The DeGroot
and Friedkin-Johnsen models are well-known discrete time linear models of opinion
dynamics and information spreading in networks where the off-diagonal entries of
state transition matrices are also constrained to be non-negative [6, 11].

Formally, for a Markov sequence Y we restrict our attention to realizations
Θ = (A,B,C,D) so that A is Metzler, i.e. [A]ij ≥ 0 for i 
= j. Then the feasible
set of state transition matrices can be defined as follows:

Ap(Y, B, C,D) =

{
A

∣∣∣∣∣ [A]ij ≥ 0 for i, j = 1, . . . n, i 
= j,

(A,B,C,D) is a realization of Y
} (21)

Note that the convexity ofAp(Y, B, C,D) is guaranteed as a corollary of Proposition
3 which can be seen as follows. For any A1, A2 ∈ Ap(Y, B, C,D), the convex
combination aA1 + (1 − a)A2 with a ∈ (0, 1) is a feasible state transition matrix
in A(Y, B, C,D). Since a convex combination is a linear combination with non-
negative coefficients, the sign of the off-diagonal entries remain non-negative, i.e.
Ap(Y, B, C,D) is convex.

Now with respect to the set Ap(Y, B, C,D) we identify matrices having dis-
tinguished structural properties and show how they relate to all the other feasible
state transition matrices.

In order to ease the discussion of structural properties state transition matri-
ces, we introduce a simple graph-based description of LDSs with state transition
matrices of Metzler-type using the analogy of influence graphs in the literature of
positive systems [8]. Considering a state transition matrix A ∈ Rn×n, the asso-
ciated directed graph representation G(A) = (E, V ) is defined as follows. V , the
set of nodes corresponds to the set of states of the associated LDS. E, the set of
edges represents the influences between state variables, i.e. (i, j) ∈ E if and only if
[A]ij > 0. Such a way G(A) provides a unique description of the structure of A.

In the sequel the term structure of a state transition matrix A ∈ Ap(Y, B, C,D)
refers to the structure (topology) of the associated directed graph representation
G(A) as it is defined above.

Definition 3. Let us consider a LDS Y with fixed B ∈ Rn×m, C ∈ Rn×n and
D ∈ Rn×m. A matrix A ∈ Ap(Y, B, C,D) is called dense (sparse) state transition
matrix if it contains maximal (minimal) number of non-zero off-diagonal entries.
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Then the associated realization Θ = (A,B,C,D) is said to be a dense (sparse)
realization.

Definition 4. Let us consider a LDS Y with fixed B ∈ Rn×m, C ∈ Rn×n and D ∈
Rn×m. A state transition matrix A ∈ Ap(Y, B, C,D) is said to have superstructure
property, if its graph representation G(A) contains the graph representations of
all other feasible Metzler system matrices as subgraphs, formally G(A′) ⊆ G(A)
∀A′ ∈ Ap(Y, B, C,D).

It can be shown that a dense realization provides a superstructure with respect
to Ap(Y, B, C,D).

Proposition 4. Let us consider a LDS of Markov parameters Y with fixed B ∈
Rn×m, C ∈ Rn×n and D ∈ Rn×m state space realization matrices. Any dense state
transition matrix Ad ∈ Ap(Y, B, C,D) is of superstructure property.

Proof. Assume that there exists a dense state transition matrixAd ∈ Ap(Y, B, C,D)
so that Ad has no superstructure property. Then it follows that there exists a state
transition matrix A ∈ Ap(Y, B, C,D) for which there is an index-pair (i, j), i 
= j so
that [A]ij > 0, but [Ad]ij = 0. The convexity of Ap(Y, B, C,D) guarantees that for
any a ∈ (0, 1) the resulted matrix A′ = aA+(1−a)Ad provides a dynamically equiv-
alent realization with non-negative off-diagonal entries, i.e. A′ ∈ Ap(Y, B, C,D).
Such a way we obtained a state transition matrix A′ having more non-zero off-
diagonal entries, than Ad has, which is contradiction.

Corollary 1. Let us consider a Markov sequence Y. For any B ∈ Rn×m, C ∈ Rp×n

and D ∈ Rp×m, there exists a structurally unique state transition matrix Ad having
maximal number of non-zero off-diagonal entries with respect to Ap(Y, B, C,D).

7 Computational framework for finding
structurally different realizations

In this section first we assume a state space realization Θ = (A,B,C,D) so that its
respective Markov parameter sequence Y is of finite-length, i.e. CAkB = 0n×m, k ≥
p for some finite p. Examining the realizability of finite-length Markov sequences
can be motivated by a partial realization problem or realizability analysis of stable
and damping systems having only a finite number of non-zero Markov parameters
[27, 12].

Algorithms for determining structurally different realizations of LDS with re-
spect toAp(Y, B, C,D) are provided. Making use of the convexity ofAp(Y, B, C,D),
we adopt algorithms proposed for mass action law kinetic systems and show that
structurally different realizations regarding the feasible set of Metzler system ma-
trices Ap(Y, B, C,D) can be efficiently obtained [1]. We prove that a dense state
transition matrix Ad in Ap(Y, B, C,D) can be computed in polynomial time using a
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convex optimization based procedure. Then it can be also shown that all the struc-
turally different realizations of Ap(Y, B, C,D) can be determined by iteratively
computing constrained dense realizations.

Finally we show that using the eigenvalue assignment procedure, the proposed
algorithms can be extended to compute structurally different realizations of LDSs
of arbitrary Markov parameter sequences.

7.1 Algorithm for computing dense realization

Here we provide an algorithm capable of finding a dense realization with respect
to Ap(Y, B, C,D) in polynomial time, given that Y is a finite sequence. The cor-
rectness of the algorithm follows from the convexity of Ap(Y, B, C,D). First we
define a subroutine denoted by FindRealization in order to determine feasible
state transition matrices.

FindRealization:
(
Θ = (A,B,C,D), L,H

)
: returns a tuple (A′, P ) so that

A′ ∈ Rn×n is a feasible state transition matrix of Metzler-type, i.e. A′ ∈
Ap(Y, B, C,D), and the objective function

∑
(i,j)∈H [A′]ij is maximized by A′,

where H is a set of index pairs. L denotes a set of index pairs so that [A′]ij = 0, if
(i, j) ∈ M . Formally, A′ is obtained as the solution of the following linear program:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max
∑

(i,j)∈H
[A′]ij

subject to

CAkB = CA′Ak−1B, k = 1, . . . p

[A′]ij = 0, (i, j) ∈ L

(22)

P denotes the set of ordered pairs encoding the non-zero pattern of A′ so that
(i, j) ∈ P iff [A′]ij > 0. If feasible realization A′ does not exist, it returns (0n×n, ∅).

Next we introduce Algorithm 1 (FindDenseRealization) for finding a dense
dynamically equivalent realization, given a state space model Θ = (A,B,C,D).

Proposition 5. The state transition matrix Ad returned by algorithm
FindDenseRealization(Θ = (A,B,C,D), L) provides a dynamically equivalent
realization Θ′ = (A′, B, C,D) of the LDS with Markov parameters Y = CAkB,
k = 1, . . . p. Furthermore, Ad is dense among all the state transition matrices
in Ap(Y, B, C,D) satisfying the zero-constraints defined by L. Ad is computed in
polynomial time.

7.2 Algorithm for computing all structurally different real-
izations

Here we describe an algorithm capable of determining all structurally different re-
alizations of any LDS Θ = (A,B,C,D) with respect to Ap(Y, B, C,D), given that
Y = {CAkB}pk=0 with p > 0 finite. Making use of Algorithm FindDenseRe-
alization described in the previous section, the proposed computational method
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Algorithm 1 FindDenseRealization
Input: Θ = (A,B,C,D), L
Output: Result

1: H ← {1, . . . , n2 − n}
2: P ← H
3: Ad ← 0n×n

4: loops ← 0
5: while TRUE do
6: (A′, P ) ← FindRealization(Θ = (A,B,C,D), L,H)
7: if P 
= ∅ then
8: BREAK
9: end if

10: Ad ← Ad +A′

11: H ← H \ P
12: loops ← loops+ 1
13: end while
14: if Ad 
= 0n×n then

15: Ad ← Ad

loops

16: return Ad //Result is a dense realization.
17: else
18: return -1 //There is no feasible realization.
19: end if

iteratively finds constrained dense realizations. Such a way all distinct structure
can be obtained.

Assuming a fixed ordering of the state variables, we introduce the notation R
to denote the set of binary sequences of length (n× n)− n encoding the structure
of non-zero off-diagonal patterns of the system matrices. The i’th entry of R ∈ R
is denoted by R[i]. An edge e is in the graph G(A) iff there exists an index i ∈{
1 . . . |E(G(A))|

}
for which e = ei and R[i] = 1.

We introduce the array Exist of 2|R| binary variables such that Exist[R] = 1 iff
there exists a dynamically equivalent realization encoded by the sequence R ∈ R.

A stack S is employed to temporarily store tuples of the form (R, k) with R ∈ R
and k ∈ N. The command ’push (R, k) into S’ pushes the tuple (R, k) into S, while
’pop from S’ returns the last tuple (R, k).

We say that the binary relation =k holds between the sequences R,W ∈ R
(R =k W ) if for i = 1 . . . k, R[i] = W [i]. The equivalence class of the relation
=k for which R is a representative element is denoted by Ck(R). Note that for an
equivalence class more representative elements may exist.
The following subroutines are employed in the algorithm:

1. FindDenseRealizationSequence(Θ = (A,B,C,D), R, k, i): computes a
dense state transition matrix Ad with respect to Ap(Y, B, C,D), given a se-
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quence R ∈ R and k, i ∈ N. It returns a feasible state transition matrix
A ∈ Ap(Y, B, C,D) and the associated binary sequence W ∈ R so that
W =k R and for every W [j] = 0 for j = k + 1, . . . i. If such a reaction does
not exist returns -1.

Note that FindDenseRealizationSequence can be implemented by means
of FindDenseRealization.

2. FindNextOne(R, k) returns the smallest index i for which k < i and R[i] =
1. If R[i] = 0 for all k < i then it returns z + 1.

Algorithm 2 FindAllRealizations
Inputs: Θ = (A,B,C,D)
Output: Exist

1: D ← FindDenseRealization(Θ = (A,B,C,D), ∅)
2: push (D, 0) into S
3: Exist[D] ← 1
4: while size(S) > 0 do
5: (R, k) ← pop from S
6: i ← FindNextOne((R, k))
7: if i < z then
8: push (R, i) into S
9: end if

10: while i < z do
11: (A′,W ) ← FindDenseRealizationSequence(Θ = (A,B,C,D), R, k, i)
12: if W < 0 then
13: BREAK
14: else
15: i ← FindNextOne(W, i)
16: Exist[W ] ← 1
17: if i < z then
18: push (W, i) into S
19: end if
20: end if
21: end while
22: end while

Proposition 6. Algorithm FindAllRealizations(Θ = (A,B,C,D)) determines
all structurally different dynamical equivalent state transition matrices of a LDS
given by Θ = (A,B,C,D) with respect to Ap(Y, B, C,D), provided that Y =
{CAkB}pk=0 for some finite p > 0.
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7.3 Extension to arbitrary LDS

This section extends the aforementioned results in order to find structurally dif-
ferent realizations of arbitrary LDS. We consider a LDS Θ = (A,B,C,D) so that
there are no constraints on Y = {CAkB}k≥0. Assuming that the pair (A,C) is ob-
servable, the eigenvalue assignment procedure can be employed. Then there exists
M ∈ Rn×n so that A = A+M is nilpotent, i.e. A

n
= 0.

Consider the linear program⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
∑

(i,j)∈H
[A′]ij

subject to

CA
k
B = CA′A

k−1
B, k = 1, . . . n

[A′]ij ≥ [M ]ij , i, j = 1, . . . n, i 
= j

[A′]ii ≤ [M ]ii, i = 1, . . . n

[A′]ij = 0, (i, j) ∈ L

(23)

Given a solution A′ of the linear program E.q. (23), Proposition 2 guarantees
that A′ = A′ − M provides a dynamically equivalent realization of the system
Θ = (A,B,C,D) and A′ ∈ Ap(Y, B, C,D). Now we replace the linear program
of E.q. (22) with E.q. (23) in FindRealization so that it returns (A′, P ) where
A′ + M = A′ is the solution of E.q. (23) and P is as it is defined above. Then
we have that the resulted algorithms FindDenseReal and FindAllRealizations
determine a set of matrices A for which A�M defines a set of structurally different
realizations of Θ = (A,B,C,D). For each A′ ∈ A, we have that (A′ − M) ∈
Ap(Y, B, C,D). This way structurally different realizations with Metzler-type state
transition matrices of a LDS – of arbitrary Markov sequence – can be computed.

8 Computational examples

In this section we provide examples to illustrate structural non-uniqueness of the
non-zero off-diagonal patterns of state transition matrices associated to a Markov
sequence Y. By some simple linear dynamical system models we show that the set
of feasible state transition matrices A(Y, B, C,D) is not necessary unique and struc-
turally different dynamically equivalent realizations can be computed. Throughout
the section we restrict our attention to realizations with system matrices of Metzler-
type.

In each example, first the system is stabilized by a full-state feedback M using
the algorithm of [19] in order to obtain a closed-loop system of the form of E.q. (4)
with a finite sequence of non-zero Markov parameters Y. In Example 8.1 Algorithm
1 and 2 are employed to determine all the structurally different realizations with re-
spect to Ap(Y, B, C,D). Then Proposition 2 guarantees that structurally different
realizations of the open-loop system Y can be recovered by subtracting M from the
closed-loop system matrices. Example 8.2 illustrate the structural non-uniqueness
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of a social network equipped with a linear dynamical behavior. Indirect sparsity
and density constraints are employed in order to find different realizations.

8.1 Example 1

Let us consider the following system

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0
0 1 0 −2 0 0 0 0 0 0 0
0 0 1 0 −2 0 0 0 0 0 0
0 0 0 1 0 −1 0 1 0 0 0
0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

B =
[
1 0 0 0 0 0 0 0 0 0 0

]
, (25)

C is an (n× n)-dimensional identity matrix and D = 0n.

A full-output feedback M is obtained by the algorithm [19]. Then using Al-
gorithm 2 we determined all the structurally different closed-loop system matrices
in Ap(Y, B, C,D). Finally a set of structurally different state transition matrices
with respect to Ap(Y, B, C,D) is computed by Ap(Y, B, C,D)�M .

Figure 1 depicts the number of structurally different realizations as the function
of the number of non-zero off-diagonal entries in the state transition matrix. Table
2 provides a set of structurally different realizations in Ap(Y, B, C,D) as they are
determined in the above described way.

Ad =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0
0 1 0 −2 0 0 0 0 0 0 0
0 0 1 0 −2 0 0 0 0 0 0
0 0 0 1 0 −1 0 1 0 0 0
0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0
0 0 0 1 0 100 100 100. −100 0 0
0 0 0 0 1 0 0 0 0 −100 100
0 0 0 0 1 0 0 0 0 100 −100

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)
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Table 2: Graph representations of all the structurally different state transition
matrices computed by FindAllRealizations. Non-zero entries which are not con-
tained in the initial realization are denoted by dashed lines.
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Figure 1: Structural non-uniqueness of feasible system matrices A associated to
dynamically equivalent state space realizations of E.q.

The non-uniqueness of the network structure has important theoretical and
practical consequences. It turned out that the system is structurally non-identifiable,
that is the same dynamical behavior can be realized with different parameteriza-
tions. At the same time, a computational procedure is provided to test structural
non-identifiability with theoretical guarantee. Non-uniqueness of the underlying
network topology is a specific case of the lack of structural identifiability: the un-
derlying dynamical behavior is realizable with different sets of interconnections of
the state variables. The existence of different network structures is particularly im-
portant if the state variables have some biological, physical or chemical meaning:
the same dynamical behavior (functionality) can be implemented using different
relationships between the system variables.

8.2 Example 2

The Zachary karate club network is a widely studied social network representing
the interactions of 34 members outside a Karate club [39]. Here we study the
information flow across the network equipped with a particular weighted directed
edge set as it is depicted in Figure 2. The weighted directed edges can be uniquely
encoded in the form of an adjacency matrix A ∈ R34×34, assuming a fixed ordering
of the nodes, i.e. state variables. For the entries of A see Appendix 9. With the
chosen edge directions we wish to simulate the information flow from the direction
of the first node, i.e. x1 (source) to the last nodes, x33 and x34 (sinks).

We make use of the adjacency matrix A of the network to define the dynamics
of information flow over the nodes and formulate a simple LDS of the from E.q.
(1). The adjacency matrix A defines the state transition matrix, [A]ij > 0 iff there
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is direct information flow from node j to node i. B ∈ R34 is set to be zero for all
the entries except for the first one which is equal to 1, i.e. [B]1 = 1 and [B]i = 0
for i = 2, . . . 34. This way we can examine how an input signal u(k) ∈ R, k ≥ 0
– perturbing the state of the first node – propagates along all the other nodes.
C ∈ R34×34 is the identity matrix, i.e. we assume that all the state variables are
observable. D = 034. The state variable vector x(t) ∈ R34, t ≥ 0 encodes the
information content of the state variables. We assume that x(0) = 034.

Starting with the above defined state space model Θ = (A,B,C), first we per-
formed the eigenvalue assignment procedure. A matrix M ∈ R34×34 is determined
so that the resulting A = A + M be nilpotent. This way a stabilized closed-loop
system Θ = (A,B,C) – having at most 34 non-zero Markov parameters – is ob-
tained, where B = [B, −M ]. In order to find a dynamically equivalent realization
of the stabilized system Θ with Metzler-type state transition matrix and sparsity
constraint, we solved the following optimization procedure⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
34∑

i,j=1
i �=j

∣∣∣[A′]ij∣∣∣
subject to

CA
k
B = CA′A

k−1
B, k = 1, . . . 34

[A′]ij ≥ [M ]ij , i, j = 1, . . . 34, i 
= j

[A′]ii ≤ [M ]ii, i = 1, . . . 34

(27)

where the entries of A′ correspond to the decision variables. Denoting the solution
of (27) by As, Proposition 2 guarantees that Âs = As −M provides a dynamically
equivalent realization of the initial system. The obtained realization (Âs, B, C) has
78 non-zero off-diagonal entries and its graph representation G(Âs) is isomorph to

that of the initial state transition matrix G(A). Next a dense realization (Ad, B, C)
is computed with respect to the closed-loop system Θ using Algorithm 1. Proposi-
tion 2 guarantees that Âd = Ad−M determines a dynamically equivalent realization
with respect to the initial system Θ. We found that the obtained state transition
matrix Âd contains 451 non-zero off-diagonal entries. The obtained matrices Âs

and Âd are illustrated in Figure 3.
Since [As]ij ≥ [M ]ij and [Ad]ij ≥ [M ]ij hold for i, j = 1, . . . 34, i 
= j, the state

transition matrices Âs and Âd are of Metzler-type. Furthermore, [As]ij = [M ]ij
and [Ad]ij = [M ]ij for i 
= j imply that [Âs]ij = 0 and [Âd]ij = 0, respectively, i.e.

G(As) and G(Ad) are isomorph to G(Âs) and G(Âd), respectively. Such a way we
can put indirectly sparsity and density constraints to state transition matrices of
LDS having arbitrary Markov parameters. However, it is important to note that the
resulted state transition matrices Âs and Âd are not proved to be sparse and dense
with respect to the initial system Θ, i.e. there may exist dynamically equivalent
realizations having less or more non-zero off-diagonal entries, respectively.

The existence of structurally different realizations implies that the Karate club
network equipped with the above dynamical system model is structurally non-
identifiable. The particular importance of the example is that the same dynamical



604 Gergely Szlobodnyik and Gábor Szederkényi

behavior, that is information propagation among the nodes, is feasible with struc-
turally different network topologies. Different interconnections can provide the
same emergent dynamical behavior described by a DTLTI system. The result un-
derlines that a certain network topology, even in the case of linear systems, might
not be a complete descriptor of the modeled process.

Figure 2: Illustration of Zachary’s karate club network with a particular directed
edge set.
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Figure 3: Graphical representation of state transition matrices associated to dif-
ferent realizations. Initial: the initial state transition matrix A. Sparse (com-
puted): the state transition matrix Âs computed by posing l1 sparsity constraints
on the off-diagonal entries (i.e. decision variables). Dense (computed): the state
transition matrix Âd obtained by Algorithm 1. Note that the initial and sparse
matrices are equivalent in terms of the pattern of their non-zero off-diagonal en-
tries, i.e. G(A) and G(Âs) are isomorph graphs. We emphasize that sparsity, as
a structural property, is understood with respect to the off-diagonal entries. The
existence of structurally different state transition matrices implies that the same
information propagation dynamics can emerge in structurally different networks.
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9 Conclusion

In this paper we considered realizability of discrete time linear dynamical systems.
Throughout the paper it is assumed that a LDS is given by a Markov parameter
sequence Y and that the state space realization matrices B, C and D are known
and fixed. Under these assumptions the existence of different realizations of Y is
equivalent to the existence of distinct state transition matrices of the same dimen-
sion that provides the same sequence Y. Assuming that the state space realization
matrix C is invertible, we quantitatively characterized the set of feasible state space
realizations. It is proved that the set of state transition matrices A(Y, B, C,D) as-
sociated to a Markov sequence Y is convex, given B, C and D matrices. Under the
same conditions it is also shown that the subset of Metzler-type system matrices
Ap(Y, B, C,D) is convex. Furthermore, we proved that there exists a structurally
unique state transition matrix Ad ∈ Ap(Y, B, C,D) of maximal number of off-
diagonal entries whose respective graph representation G(Ad) contains that of any
other feasible state transition matrix in Ap(Y, B, C,D) as subgraph.

Making use of the eigenvalue assignment procedure, we reformulated dynamical
equivalence of state space realizations in terms of a finite set of linear constraints in
the entries of the state transition matrix. This way we proposed a convex optimiza-
tion based algorithm that can be used to find different realizations of any Markov
sequence. Since the existence of different system matrices implies structural non-
identifiability of the underlying dynamical system, this way non-identifiability of
LDSs can be validated in fixed state space dimension in polynomial time. By
making use of the convexity of Ap(Y, B, C,D) and adopting results from the field
of non-negative polynomial systems, we provided algorithms that can determine
structurally different realizations of LDSs with respect to Metzler-type state tran-
sition matrices. Representative examples are presented in order to illustrate that
dynamically equivalent realizations of LDSs are not necessary structurally unique,
i.e. there may exist structurally different realizations of the same LDS even in the
case of fixed B, C and D state space realization matrices.
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Appendix A: Proof of Proposition 5

Proof. Since Ad returned by FindDenseRealization is a convex combination of
dynamical equivalent realizations computed by Algorithm FindRealization, Ad ∈
Ap(Y, B, C,D) holds and [Ad]ij = 0 for all (i, j) ∈ L.

Assume that Ad returned by FindDenseRealization is not dense in
Ap(Y, B, C,D) among the state transition matrices satisfying the zero-constraints
defined by L. Then there exists a tuple (i, j), i 
= j for which there is a realization
A′ ∈ Ap

M so that [A′]ij > 0, but [Ad]ij = 0. By construction it is guaranteed
that Algorithm FindDenseRealization has at least one iteration in which the
optimization objective to be maximized involves the entry indexed by (i, j), i.e.
(i, j) ∈ H. Then it follows that [Ad]ij > 0 which is a contradiction.

Since FindDenseRealization computes a linear program of the form E.q. 22
at most (n2 − n)-times, Ad is obtained in polynomial time.

Appendix B: Proof of Proposition 6

Proof. Let us assume that there exists a sequence V ∈ R encoding a feasible state
transition matrix which is not returned by the algorithm FindAllRealizations.
Then consider the sequence R for which R =p V and p is maximal. If p = 0 then the
encoding sequence of the dynamically equivalent dense realization is an appropriate
choice for R. For i = FindNextOne(R, p) and j =FindNextOne(V, p) we have
i ≤ j, since V ∈ Cp(R). Moreover if i = j then it follows that p is not the maximal
integer such that R =p V which is a contradiction.

Let us consider the sequence W1 returned by FindReal(R, p, i). There exists
a dynamically equivalent realization encoded by W1, since the input constraints
of FindReal(R, p, i) are fullfilled by V . For W1 we get that j1 = FindNex-
tOne(W1, p) for some j1 ∈ Z>0. Then the inequality j1 ≤ j must hold, since
V ∈ Ci(W1). If j1 = j then it would follow that R is not that sequence for which
V ∈ Cp(R) holds with a maximal p, i.e. j1 = j is a contradiction.

There is a step in the algorithm FindAllRealizations when the sequence W2 is
computed by FindDenseRealizationSequence(Θ = (A,B,C,D), R, p, j1). For
W2 we have that V ∈ Cj1(W2) which implies that j2 ≤ j for j2 = FindNex-
tOne(R, p, j1). If j = j2 would hold, then j2 would be the maximal integer with
the sequnece W2 for which W2 =j2 V holds, but this is a contradiction.

Continuing the above steps would lead to infinitely many valid graph structures
which is a contradiction.
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Appendix C: Adjacency matrix of Example 2

Non-zero entries in the initial adjacency matrix of Example 2.

[A]2,10 = 1;

[A]3,1 = 0.5; [A]3,2 = 0.5;

[A]4,1 = 0.3; [A]4,2 = 0.5; [A]4,3 = 0.2;

[A]5,1 = 1;

[A]6,1 = 1;

[A]7,1 = 0.3; [A]7,5 = 0.4; [A]7,6 = 0.3;

[A]8,1 = 0.2; [A]8,2 = 0.2; [A]8,3 = 0.2; [A]8,4 = 0.4;

[A]9,1 = 0.4; [A]9,3 = 0.6;

[A]10,3 = 1.0;

[A]11,1 = 0.1; [A]11,5 = 0.1; [A]11,6 = 0.8;

[A]12,1 = 1.0;

[A]13,1 = 0.9; [A]13,4 = 0.1;

[A]14,1 = 0.1; [A]14,2 = 0.2; [A]14,3 = 0.3; [A]14,4 = 0.4;

[A]17,6 = 0.7; [A]17,7 = 0.3;

[A]18,1 = 0.8; [A]18,2 = 0.2;

[A]20,1 = 0.1; [A]20,2 = 0.9;

[A]22,1 = 0.4; [A]22,2 = 0.6;

[A]26,24 = 0.65; [A]26,25 = 0.35;

[A]28,3 = 0.2; [A]28,24 = 0.3; [A]28,25 = 0.5;

[A]29,3 = 1.0;

[A]30,24 = 0.3; [A]30,27 = 0.7;

[A]31,2 = 0.1; [A]31,9 = 0.9;

[A]32,1 = 0.25; [A]32,25 = 0.25; [A]32,26 = 0.4; [A]32,29 = 0.1;

[A]33,3 = 0.1; [A]33,9 = 0.1; [A]33,15 = 0.1; [A]33,16 = 0.1; [A]33,19 = 0.05; [A]33,21 = 0.05;

[A]33,23 = 0.1; [A]33,24 = 0.1; [A]33,30 = 0.1; [A]33,31 = 0.1; [A]33,32 = 0.1;

[A]34,9 = 0.05; [A]34,10 = 0.05; [A]34,14 = 0.15; [A]34,15 = 0.05; [A]34,16 = 0.01;

[A]34,19 = 0.09; [A]34,20 = 0.02; [A]34,21 = 0.08; [A]34,23 = 0.03; [A]34,24 = 0.07;

[A]34,27 = 0.1; [A]34,28 = 0.05; [A]34,29 = 0.05; [A]34,30 = 0.05; [A]34,31 = 0.05;

[A]34,32 = 0.05; [A]34,33 = 0.05
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The Inverse Epsilon Distribution as an Alternative

to Inverse Exponential Distribution with a Survival

Times Data Example∗
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Abstract

This paper is devoted to a new flexible two-parameter lower-truncated
distribution, which is based on the inversion of the so-called epsilon distribu-
tion. It is called the inverse epsilon distribution. In some senses, it can be
viewed as an alternative to the inverse exponential distribution, which has
many applications in reliability theory and biology. Diverse properties of the
new lower-truncated distribution are derived including relations with existing
distributions, hazard and reliability functions, survival and reverse hazard
rate functions, stochastic ordering, quantile function with related skewness
and kurtosis measures, and moments. A demonstrative survival times data
example is used to show the applicability of the new model.

Keywords: epsilon distribution, inverse exponential distribution, inverse ep-
silon distribution

1 Introduction

The exponential distribution and its generalizations play an important role in many
areas of science, including physics, chemistry, medical sciences and reliability engi-
neering (see e.g. [1, 2, 16, 19]). Dombi et al. [6] introduced the epsilon distribution,
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E-mail: jonas@gtk.elte.hu, ORCID: 0000-0001-8241-2321
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which may be treated as an alternative to the exponential distribution. Here, we
will briefly review the epsilon distribution and its connection with the exponential
distribution. Dombi et al. [6] defined the epsilon function as follows.

Definition 1. The epsilon function ελ,d(x) : (−d, d) → (0,∞) is given by

ελ,d(x) =

(
d+ x

d− x

)λ d
2

,

where λ ∈ R, λ 
= 0, d ∈ R, d > 0.

The following proposition concerns a key property of the epsilon function.

Proposition 1. For any x ∈ (−d,+d), if d → ∞, then

ελ,d(x) → eλx.

Proof. See the proof of Theorem 1 in [6].

Utilizing the epsilon function given in Definition 1, the continuous random vari-
able X said to have an epsilon distribution with the parameters λ > 0 and d > 0,
if its cumulative distribution function (CDF) is given by

Fλ,d(x) =

⎧⎪⎨
⎪⎩
0, if x ≤ 0

1− ε−λ,d(x), if 0 < x < d

1, if x ≥ d.

Notation 1. From now on, X ∼ ε(λ, d) will denote that the random variable X
has an epsilon distribution with the parameters λ > 0 and d > 0.

Exploiting Proposition 1, we can state the following proposition.

Proposition 2. Let X ∼ ε(λ, d) and let Y ∼ exp(λ), where λ > 0, d > 0. Then,
for any x ∈ R

lim
d→∞

P (X < x) = P (Y < x).

Proof. By making use of the definitions for the epsilon and the exponential distri-
butions, the proposition immediately follows from Proposition 1.

Based on Proposition 2, we may state that the asymptotic epsilon distribution is
just the exponential distribution. It is worth mentioning that while the hazard
function of an exponentially distributed random variable is constant, the hazard
function of a random variable with an epsilon distribution can exhibit both constant
and increasing shapes. That is, in reliability analyses, the epsilon distribution can
be utilized to describe the distribution of the time to first failure random variable
both in the second and in the third phases of the hazard function.

The reciprocal of a random variable with an exponential distribution is said to be
a random variable with an inverse exponential distribution. The inverse exponential
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distribution, like the exponential distribution, has a wide range of applications (see
e.g. [17]). For example, if a random variable with an exponential distribution
represents the time between failures of a system, then the reciprocal of this random
variable, which has an inverse exponential distribution, describes the frequency of
the system failures over time.

In this study, we will present the inverse epsilon distribution and, by the means
of an illustrative data example, show that it may be viewed as an alternative to the
inverse exponential distribution. The key features of the inverse epsilon distribution
and the main motivations of our study can be summarized as follows:

(a) It is a new, flexible, lower-truncated power-polynomial distribution.

(b) The famous inverse exponential distribution is just the limit of the inverse
epsilon distribution.

(c) The literature lacks of a flexible inverted lower-truncated distributions.

(d) The hazard function of the inverse exponential distribution has a first, in-
creasing part and a second, slowly decreasing part (see [18]). This explains
why in the course of the study of mortality associated with some diseases, the
inverse exponential distribution may be utilized as a life distribution model
(see [12, 5]). Taking into account the asymptotic property of the inverse
epsilon distribution, this latter one can also be utilized in mortality studies.

This paper is structured as follows. In Section 2, we will introduce the inverse
epsilon distribution and describe its key properties including the hazard function,
survival and reverse hazard rate functions, stochastic ordering, quantile function
and moments. Next, in Section 3, we will present a demonstrative example of the
application of the new distribution on survival times data. Lastly, in Section 4, our
main findings are summarized.

2 Theoretical aspects

2.1 Basics on the inverse epsilon distribution

Here, we will present the inverse epsilon distribution and show that it may be
viewed as an alternative to the inverse exponential distribution.

Now, let the random variable X have an epsilon distribution with the param-
eters λ, d > 0; that is, X ∼ ε(λ, d). Next, let Y = 1/X, where X > 0, and let
Gλ,d : R

+ → (0, 1) be the CDF of Y . Then, noting that X and Y are continuous
random variables, after direct calculation, we have

Gλ,d(y) = P (Y < y) = P

(
X >

1

y

)
= 1− P

(
X ≤ 1

y

)
= 1− Fλ,d

(
1

y

)
.

Therefore,

Gλ,d(y) =

⎧⎨
⎩
0, if 0 < y ≤ 1

d(
d+y−1

d−y−1

)−λ d
2

, if y > 1
d .
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By taking the derivative of function Gλ,d(x), we get the probability density function
(PDF) gλ,d(x) = G′λ,d(x) of the random variable Y :

gλ,d(y) =

⎧⎨
⎩
0, if 0 < y ≤ 1

d

λ d2

d2y2−1

(
d+y−1

d−y−1

)−λ d
2

, if y > 1
d .

Following this line of thinking, we define the inverse epsilon distribution as follows.

Definition 2. The continuous random variable X > 0 has an inverse epsilon
distribution with the parameters λ > 0 and d > 0, if the PDF fλ,d of X is given by

fλ,d(x) =

⎧⎨
⎩
0, if 0 < x ≤ 1

d

λ d2

d2x2−1

(
d+x−1

d−x−1

)−λ d
2

, if x > 1
d .

(1)

Note that the CDF of the inverse epsilon distribution given in Definition 2 is

Fλ,d(x) =

⎧⎨
⎩
0, if 0 < x ≤ 1

d(
d+x−1

d−x−1

)−λ d
2

, if x > 1
d .

(2)

Notation 2. From now on, X ∼ ε(λ, d) will denote that the random variable X > 0
has an inverse epsilon distribution with the parameters λ > 0 and d > 0.

It is a familiar fact that a continuous random variable X > 0 has an inverse
exponential distribution with the parameter λ > 0, if the PDF fλ(x) and the CDF
Fλ(x) of X are given by

fλ(x) =
λ

x2
e−λ 1

x , Fλ(x) = e−λ 1
x , (3)

respectively.

Notation 3. Hereafter, X ∼ invexp(λ) will denote that the random variable X > 0
has an inverse exponential distribution with the parameter λ > 0.

The following proposition concerns the connection between the inverse expo-
nential and inverse epsilon distributions.

Proposition 3. Let X ∼ ε(λ, d) and let Y ∼ invexp(λ), where λ > 0, d > 0 and
X,Y > 0. Then, for any x > 0

lim
d→∞

P (X < x) = P (Y < x).

Proof. Noting the CDFs of X and Y given in Eq. (2) and Eq. (3), respectively,
and applying Proposition 1, for any x > 0, we can write

lim
d→∞

P (X < x) = lim
d→∞

(
d+ x−1

d− x−1

)−λ d
2

= e−λ 1
x = P (Y < x).
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Based on Proposition 3, the inverse exponential distribution may be viewed as the
asymptotic inverse epsilon distribution.

Using the results above, we may state that the interests in the inverse epsilon
distribution is based on the following facts:

(a) It is a new, flexible, lower-truncated power-polynomial distribution.

(b) The famous inverse exponential distribution is just the limit of the inverse
epsilon distribution.

(c) The literature lacks of a flexible inverted lower-truncated distributions.

Some example plots of the CDFs of the inverse epsilon distribution are shown
in Figure 1.

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

x

cd
f o

f t
he

 in
ve

rs
e 

ep
si

lo
n 

di
st

rib
ut

io
n

Figure 1: CDF of the inverse epsilon distribution with three sets of parameters for
(λ, d): (0.6, 1.3), (1.6, 2) and (3, 7).

We observe that the CDF can be more or less concave (for the considered values).

2.2 Hazard function

By making use of the PDF and CDF of the inverse exponential distribution, we get
that its hazard function hλ : (0,∞) → (0,∞) is

hλ(x) =
fλ(x)

1− Fλ(x)
=

λ
x2 e

−λ 1
x

1− e−λ 1
x

,
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where λ > 0.
Using the PDF and the CDF of the inverse epsilon distribution with the pa-

rameters λ, d > 0, the hazard function hλ,d : (0,∞) → [0,∞) of this distribution
is

hλ,d(x) =
fλ,d(x)

1− Fλ,d(x)
=

⎧⎪⎪⎨
⎪⎪⎩
0, if 0 < x ≤ 1

d

λ
d2

d2x2−1

(
d+x−1

d−x−1

)−λ d
2

1−
(

d+x−1

d−x−1

)−λ d
2

, if x > 1
d .

Proposition 4. Let X ∼ ε(λ, d) and let Y ∼ invexp(λ), where λ > 0, d > 0 and
X,Y > 0. Furthermore let hλ,d : (0,∞) → [0,∞) and hλ : (0,∞) → (0,∞) be the
hazard functions of X and Y , respectively. Then, for any x > 0

lim
d→∞

hλ,d(x) = hλ(x).

Proof. This proposition immediately follows from Proposition 1.

The first derivative of the hazard function hλ,d(x) is

dhλ,d(x)

dx
= −

λd4
(
(2x− λ)

(
dx+1
dx−1

)λd
2 − 2x

)

(dx− 1)
2
(dx+ 1)

2

((
dx+1
dx−1

)λd
2 − 1

)2 .

Using the first derivative of hλ,d(x), one can see that

• if 0 < λd ≤ 2, then hλ,d(x) is strictly decreasing in the interval
(
1
d ,∞

)
• if λd > 2, then in the interval

(
1
d ,∞

)
, hλ,d(x) is first increasing, and then

decreasing; that is, hλ,d(x) has a local maxima.

Figure 2 shows example plots of hazard functions of the inverse exponential distri-
bution and the inverse epsilon distribution.

It is an acknowledged fact that in the course of the study of mortality associated
with some diseases, the hazard function has a first, increasing part and a second,
slowly decreasing part [18]. We can see that the hazard function of the inverse
exponential distribution (see the left upper plot in Figure 2) exhibits such a shape.
This is why the inverse exponential distribution may be utilized as a life distribution
model (see [12, 5]).

Now, by taking into account the above mentioned characteristics of the hazard
function of the inverse epsilon distribution, we can draw the following practical
conclusions.

• The hazard function of the inverse epsilon distribution with the parameters
λ, d > 0 may be viewed as an alternative to the hazard function of the inverse
exponential distribution, if the value of parameter d is sufficiently large. If
d → ∞, then the two hazard functions coincide.
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Figure 2: Example plots of hazard functions of the inverse exponential distribution
and the inverse epsilon distribution.

• If λd > 2, then the shape of the hazard function of the inverse epsilon distri-
bution is very similar to that of the hazard function of the inverse exponential
distribution. In this case, the hazard function is first increasing and then it
is slowly decreasing (see the upper plots in Figure 2).

• If 0 < λd ≤ 2, then the hazard function of the inverse epsilon distribution is
strictly decreasing in the interval

(
1
d ,∞

)
(see the lower plot in Figure 2).

Therefore, the inverse epsilon distribution can be used to model life time data
that have either first monotonically increasing and then decreasing hazard rates,
or monotonically decreasing hazard rates.
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2.3 Survival and reverse hazard rate functions

The following functions are of interest, mainly in hazard and reliability analysis.
The survival function of the inverse epsilon distribution is obtained as

Sλ,d(x) = 1− Fλ,d(x) =

⎧⎨
⎩
1, if 0 < x ≤ 1

d

1−
(

d+x−1

d−x−1

)−λ d
2

, if x > 1
d .

The reversed hazard rate function of the inverse epsilon distribution is given by

rλ,d(x) =
fλ,d(x)

Fλ,d(x)
=

{
0, if 0 < x ≤ 1

d

λ d2

d2x2−1 , if x > 1
d .

The cumulative hazard rate function is expressed as

Hλ,d(x) = − ln(Sλ,d(x)) =

⎧⎨
⎩
0, if 0 < x ≤ 1

d

− ln

[
1−

(
d+x−1

d−x−1

)−λ d
2

]
, if x > 1

d ,

where the logarithmic term can be decomposed as

− ln

[
1−

(
d+ x−1

d− x−1

)−λ d
2

]
= − ln

[(
d− x−1

)−λ d
2 −

(
d+ x−1

)−λ d
2

]

− λ
d

2
ln(d− x−1).

Further details on these functions can be found in [11].

2.4 Stochastic ordering

The following stochastic ordering result on the inverse epsilon distribution holds.

Proposition 5. Let Fλ,d be the CDF of the inverse epsilon distribution as defined
by (2). Then, for d2 ≥ d1 > 0 and any x > 0, we have

Fλ,d2(x) ≥ Fλ,d1(x);

and for any λ2 ≥ λ1 > 0 and any x > 0, we have

Fλ1,d(x) ≥ Fλ2,d(x).

Proof. For x < 1/d2, the CDFs are equal to 0. For x ∈ [1/d2, 1/d1), since
Fλ,d1

(x) = 0, the inequality is clear too. Now, for x > 1/d1 > 1/d2, by using
the following inequality:

1

2
ln

(
1 + x

x− 1

)
<

x

x2 − 1
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for x > 1, we get

∂

∂d
Fλ,d(x) = λ

(
d+ x−1

d− x−1

)−λ d
2
[

dx

d2x2 − 1
− 1

2
ln

(
1 + dx

dx− 1

)]
> 0,

implying that Fλ,d(x) is increasing with respect to d.
For λ2 ≥ λ1, we have

Fλ1,d(x) ≥ Fλ2,d(x).

Indeed, the function Fλ,d(x) is decreasing with respect to λ: we have

∂

∂λ
Fλ,d(x) = −d

2

(
d+ x−1

d− x−1

)−λ d
2

ln

(
d+ x−1

d− x−1

)
< 0.

Under the conditions of Proposition 5, we see that X1 ∼ ε(λ1, d) first order
stochastically dominates X2 ∼ ε(λ2, d).

2.5 Quantile function

The quantile function of the inverse epsilon distribution is obtained by inverting
Fλ,d(x). After some developments, we arrive at

Qλ,d(u) =
1

d

(
u−

2
dλ + 1

u−
2
dλ − 1

)
=

1

d

(
1 + u

2
dλ

1− u
2
dλ

)
, u ∈ (0, 1).

This function is of importance because it allows us to define the main quartiles
of the inverse epsilon distribution, as the first quartile: Qλ,d(1/4), the median:
Qλ,d(1/2) and the third quartile: Qλ,d(3/4). Also, it can be served to generate
values from the inverse epsilon distribution.

We should also add that we can use Qλ,d(u) to define measures of skewness and
kurtosis as the Bowley skewness and Moors kurtosis are given by

Bλ,d =
Qλ,d(1/4)− 2Qλ,d(1/2) +Qλ,d(3/4)

Qλ,d(3/4)−Qλ,d(1/4)

and

Mλ,d =
Qλ,d(7/8)−Qλ,d(5/8) +Qλ,d(3/8)−Qλ,d(1/8)

Qλ,d(6/8)−Qλ,d(2/8)
.

These measures provide alternative definitions to the skewness and kurtosis mea-
sures defined with moments. For more details on these alternative definitions see
[8] and [13].

Figure 3 shows the plots of Bowley skewness and Moors kurtosis as functions of
the parameters λ and d. The graphics for Bλ,d and Mλ,d are useful to determine
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Figure 3: Plots of Bowley skewness and Moors kurtosis

the ability of the inverse epsilon distribution in skewness and kurtosis. This is very
interesting for the inverse epsilon distribution because it does not admit mean (and
obviously raw moments of superior order). This aspect is developed in the next
section.

Also, upon differentiation of Qλ,d(u) according to u, the quantile density func-
tion is defined by

qλ,d(u) =
4

λd2
u

2
dλ−1(

1− u
2
dλ

)2 , u ∈ (0, 1).

This function is of interest since it appears in several statistical tools. For further
details see [10].

2.6 Moments

Let us now investigate the moments of X ∼ ε(λ, d). Then, assuming that it exists,
the mean of Xr is defined by

μ′r = E(Xr) =

∫ +∞

1/d

xrfλ,d(x)dx =

∫ +∞

1/d

xrλ
d2

d2x2 − 1

(
d+ x−1

d− x−1

)−λ d
2

dx.
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Proposition 6. The mean of Xr exists if and only if r ∈ (−λd/2, 1), and it is
given as

μ′r =
λ

dr
B

(
1− r,

λd

2
+ 1

)
2F1

(
λd

2
+ 1, 1− r; 1− r +

λd

2
;−1

)
,

where B(a, b) and 2F1(a, b; c;x) are the classical beta and Gauss hypergeometric
functions, respectively.

Proof. When x → 1/d, we have fλ,d(x) ∼ λd22−λ d
2−1(xd − 1)λ

d
2−1 so, by the

Riemann integrability, the integral converge in 0 if and only if 1 − λd/2 − r < 1,
hence r > −λd/2. Also, when x → +∞, we have fλ,d(x) ∼ λxr−2 so, by the
Riemann integrability, the integral converge in +∞ if and only if 2− r > 1, hence
r < 1. That is, μ′r exists if and only if r ∈ (−λd/2, 1). Following the lines of [15]
with the use of Y ∼ ε(λ, d) and the change of variable y = x/d, we have

μ′r = E(Y −r) = λd2
∫ d

0

x−r

d2 − x2

(
d+ x

d− x

)−λ d
2

dx

=
λ

dr

∫ 1

0

y−r(1− y)λ
d
2−1(1 + y)−λ d

2−1dy.

The desired result involving the beta and Gauss hypergeometric functions is an
immediate application of Eq. 3.197.3 of [9].

In particular, from Proposition 6, we see that the mean of X doesn’t exist.
Some inverse raw moments of X exists, depending on the large values for λ and d.

Remark 1. Alternatively, by applying the change of variable x = Qλ,d(u) and use
he general binomial theorem, one can also express μ′r as

μ′r =

∫ 1

0

[Qλ,d(u)]
rdu =

1

dr

∫ 1

0

(
1 + u

2
dλ

1− u
2
dλ

)r

du

=
1

dr

∫ 1

0

[
+∞∑
k=0

(
r

k

)
uk 2

dλ

][
+∞∑
�=0

(−r

�

)
(−1)�u� 2

dλ

]
du

=
1

dr

+∞∑
k,�=0

(
r

k

)(−r

�

)
(−1)�

1

2(k + �)/(dλ) + 1
,

from which an acceptable approximation can be given by substituting +∞ by any
large integer. If λ or d are sufficiently large, the negative moments of X can be
investigated for moments analysis.

The incomplete moments of X exists when r ≥ 0; the rth incomplete moment
of Xr at t > 1/d is given by

μ′r(t) = E(Xr1{X≤t}) =
∫ t

1/d

xrfλ,d(x)dx =

∫ t

1/d

xrλ
d2

d2x2 − 1

(
d+ x−1

d− x−1

)−λ d
2

dx
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or, equivalently,

μ′r(t) =
∫ Fλ,d(t)

0

[Qλ,d(u)]
rdu =

1

dr

∫ (
d+t−1

d−t−1

)−λ d
2

0

(
1 + u

2
dλ

1− u
2
dλ

)r

du.

To our knowledge, there is no close form μ′r(t). For known parameters (including
t), we can have a numerical value of it. As a complementary approach, a series
expansion of μ′r(t) is possible through the application of the generalized binomial
series expansion. Following this approach, we get

μ′r(t) =
1

dr

+∞∑
k,�=0

(
r

k

)(−r

�

)
(−1)�

1

2(k + �)/(dλ) + 1

(
d+ t−1

d− t−1

)−(k+�)−λ d
2

.

From the incomplete moments, one can define applied curves, functions or indexes
of interest, such as the Lorenz curves, Gini index and mean residual life or others.
See, for instance, [3].

3 A demonstrative survival times data example

Oguntunde et al. [14] used the following data of survival times (in days) of a
group of patients suffering from head and neck cancer diseases and treated using a
combination of radiotherapy and chemotherapy (see [7]):
12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26,
74.47, 81.43, 84, 92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179,
194, 195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776.

Oguntunde et al. [14] modeled these survival times using the exponential inverse
exponential (EIE) distribution that has the following PDF and CDF, respectively,

fθ,α(x) = α
θ

x2
e−

θ
x

1(
1 + e−

θ
x

)2 e
−α e

− θ
x

1−e
− θ

x (4)

Fθ,α(x) = 1− e
−α e

− θ
x

1−e
− θ

x , (5)

where x, α, θ > 0. The values of the maximum likelihood estimations θ̂ and α̂
for the parameters θ and α, respectively, the maximum value of the log-likelihood
function, the value of the Akaike information criterion (AIC) and the value of the
Bayesian information criterion (BIC) are shown in Table 1.

For this data set, Table 1 shows the maximum likelihood estimation results for
the inverse exponential (IE) distribution as well.

Here, we computed the maximum likelihood estimations of the parameters for
the inverse epsilon distribution as follows. Let the random variable X be the
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Table 1: Estimation results

Distribution Parameters Log-likelihood AIC BIC

EIE θ̂ = 33.4469 α̂ = 0.1609 -280.4043 564.8086 568.3770

IE λ̂ = 76.7000 -279.5773 561.1546 562.9389

Inverse epsilon λ̂ = 76.7000 d̂ = 11.9953 -279.5773 563.1547 566.7231

survival time of patients, X ∼ ε(λ, d), and let x1, x2, . . . , xn be independent obser-
vations on X. Then, the likelihood function L : (0,∞)2 → (0,∞) for the sample
x1, x2, . . . , xn is given by

L(λ, d;x1, x2, . . . , xn) =

n∏
i=1

⎛
⎝λ

d2

d2x2
i − 1

(
d+ x−1

i

d− x−1
i

)−λ d
2

⎞
⎠ ,

where d > 1
mini=1,2,...,n (xi)

. The log-likelihood function l = ln ◦L is given by

l(λ, d;x1, x2, . . . , xn) = n ln(λ) +

n∑
i=1

ln

(
d2

d2x2
i − 1

)
− λ

d

2

n∑
i=1

ln

(
d+ x−1

i

d− x−1
i

)
,

where d > 1
mini=1,2,...,n (xi)

. We used the GLOBAL method, which is a stochastic

global optimization procedure introduced by Csendes et al. [4], to find the maxima

of the log-likelihood function. The estimations of λ and d, respectively, λ̂ and d̂,
and the maximal value of the log-likelihood function are shown in Table 1.

Based on the maximum likelihood estimation results, we can summarize our
findings as follows.

(a) For the studied survival times, the inverse epsilon distribution gives better
maximal log-likelihood value and better AIC and BIC values than the ex-
ponential inverse exponential distribution. At the same time, the PDF and
the CDF of the inverse exponential distribution have much simpler formulas
(see Eq. (1) and Eq. (2)) than those of the exponential inverse exponential
distribution (see Eq. (4) and Eq. (5)).

(b) The inverse epsilon distribution and the inverse exponential distribution result
the same maximal log-likelihood value. That is, in line with the finding of
Proposition 3, these two distributions coincide if d → ∞. Notice that in our
case, these two distributions may be viewed as being identical already for
d = 11.9953.

(c) The inverse epsilon distribution has two parameters (λ and d), while the
inverse exponential distribution has only one parameter (λ). Therefore, as in
our case these two distributions result the same maximal log-likelihood value,
the AIC and BIC values for the inverse exponential distribution (561.1546 and
562.9389, respectively) are lower than those for the inverse epsilon distribution
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(563.1547 and 566.7231, respectively). It should be added that by fixing the
value of parameter d at a large value (e.g. d = 100), the inverse epsilon
distribution may be treated as a one-parameter distribution, which coincides
with the inverse exponential distribution.

(d) The PDFs and the CDFs of the exponential distribution and the exponential
inverse exponential distribution contain exponential terms, while the PDF
and the CDF of the inverse epsilon distribution do not contain any exponential
term.

Figure 4 shows the plots of the empirical CDF, EIE CDF, inverse exponential
CDF and inverse epsilon CDF with the parameter values listed in Table 1.
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Figure 4: Empirical CDF, EIE CDF, Inverse exponential CDF and Inverse epsilon
CDF

4 Conclusions

In this paper, we study the possibilities offered by a new two-parameter lower-
truncated distribution constructed from the inversion of the so-called epsilon dis-
tribution. Here, diverse motivations for this new distribution are provided. We
have studied in depth the shapes of the probability density and hazard rate func-
tions, determined the quantile function and discussed the moments. The theory
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is illustrated by a complete graphical analysis. Through the maximum likelihood
approach, the new model is derived and an application with real data is also given.

We further plan to use the inverse epsilon distribution in an applied regression
setting, and to investigate some of its natural generalizations through standard
schemes (Marshall-Olkin, transmuted, type I half-logistic, etc).
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An Efficient Sampling Algorithm

for Difficult Tree Pairs∗

Sean Clearya and Roland Maiob

Abstract

It is an open question whether there exists a polynomial-time algorithm
for computing the rotation distances between pairs of extended ordered binary
trees. The problem of computing the rotation distance between an arbitrary
pair of trees, (S, T ), can be efficiently reduced to the problem of computing
the rotation distance between a difficult pair of trees (S′, T ′), where there
is no known first step which is guaranteed to be the beginning of a minimal
length path. Of interest, therefore, is how to sample such difficult pairs of
trees of a fixed size. We show that it is possible to do so efficiently, and
present such an algorithm that runs in time O(n4).

Keywords: rotation distances, associahedra, rooted binary trees, sampling

1 Introduction

Trees are a fundamental data structure with wide applications ranging from effi-
cient search (such as binary search trees) to modeling biological processes (such as
phylogenetic trees). Given pairs of trees, there are numerous ways of calculating
metrics of interest between trees. These metrics measure of the amount of com-
monality and difference, which depend on the class of trees considered and what
features of the trees are regarded as important to have in common.

Trees arise in data storage and searching as efficient structures. When there is
a natural order on leaves, we have binary search trees which underlie many storage
and searching systems. See Knuth [10] for background and important foundational
notions and algorithms. Binary search trees and their generalizations underlie
almost all modern file-storage and data-storage systems. To ensure good average-
time search performance of log(n), it is necessary to have reasonably balanced trees
and rotations are a quick, local change which can be used to keep trees close to
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Figure 1: An example of a left rotation in an ordered tree. We rotate leftward at
node 5, with the rotation promoting node 7 to the position of its former parent.
Node 5 is demoted to become a left child of node 7 and node 7 is promoted to be
the right child of node 1. Node 6 changes from being the left child of 7 to the right
child of 5.

balanced during sequences of insertions and deletions. Furthermore, rooted binary
trees are in direct correspondence with triangulations of polygons with a marked
edge, and as described by Hanke, Ottmann, and Schuierer [9], such tree metrics
apply to edge-flipping conversions between triangulations of planar regions.

One widely-considered tree distance metric on trees with a natural left-to-right
order on leaves is that of the rotation distance between a pair of extended ordered
binary trees. A rotation at a node is a simple local transformation which does not
affect the order, with an example shown in Figure 1. Rotation distance between
trees is the length of the shortest possible sequence of rotations to accomplish the
transformation between trees. There are no known polynomial-time algorithms
for computing rotation distance. Culik and Wood [7] originally described rotation
distance, and ground-breaking work of Sleator, Tarjan and Thurston [13] used
the correspondence between trees with n internal nodes and triangulations of the
marked regular n + 2-gon to show that if there is a common edge between the
two triangulations then any shortest path does not flip this edge. Such a common
edge thus breaks the rotation distance problem into two smaller sub-problems.
Furthermore, they showed that if it is possible to flip an edge of either polygon
to obtain a common edge, then there is a shortest path which begins by doing
so. We call edges which are not common but which can be flipped to become a
common edge one-off edges, as they are one move away from being common edges
themselves. Cleary and St. John [6] used these reduction rules to show that the
rotation distance problem is fixed parameter tractable.

We call a pair of trees with no common edges and no edges which can be
immediately flipped to create a common edge a difficult tree pair. The above
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reductions transform the problem of computing the rotation distance on a pair of
trees drawn from all possible pairs to a pair of trees drawn from the set of all such
difficult tree pairs. A common edge, arising either immediately or from performing
a single flip to change a one-off edge to a common edge, then naturally splits the
tree pair into a pair of smaller tree pairs, as explained in Sleator, Tarjan, and
Thurston [13]. The kernel of the difficult of the rotation distance problem at this
point is to find distances between difficult tree pairs.

To understand how effective different approximation and partial algorithms are
at evaluating and estimating rotation distance, it would be useful to sample difficult
tree pairs. It is possible to find examples of difficult tree pairs by picking a tree
pair of large size at random, and then performing all possible reductions and one-off
moves, splitting the problem into a collection of smaller subproblems, until either
the trees are identical (extremely unlikely) or until a collection of difficult tree pairs
is obtained. But such a procedure is not only time-consuming, it is not possible to
tell in advance how many reductions there will be and what the resulting sizes of
the smaller remaining difficult piece pairs will be. Thus there is no control on the
resulting size of the difficult tree pairs produced. In general (see Cleary, Rechnitzer
and Wong [2]) there are a sizable number of common edges and one-off edges,
resulting on average about at least a 10% reduction in the size of a randomly selected
tree pair to a largest difficult remaining tree pair. It is not difficult to construct
specific examples of specified size of difficult tree pairs- examples of Dehornoy [8],
Pournin [11], and Cleary and Maio [3] are families of difficult pairs but in each case
of a restricted type. In many of these very specific cases, analysis to that family of
instances can give coincident upper and lower bounds on rotation distance, giving
an exact calculation. But these families are very sparse in the set of all difficult tree
pairs. The set of all difficult tree pairs appears to grow exponentially with size, but
at a slower expontial growth rate than the set of all tree pairs, per work of Cleary
and Maio [4] suggesting that the fraction of all tree pairs decreases exponentially
at a rate of about 0.77n, with already ratio of less than 1 in a billion tree pairs of
size 70 being difficult and the fraction dropping with further increases of size.

Difficult tree pairs lie at the kernel of a number of questions of interest. Because
the rotation distance problem frequently splits into smaller subproblems, the es-
sential difficulties are contained in the set of difficult tree pairs. Difficult tree pairs
can be used to test estimation algorithms for rotation distance, to find estimates
for typical rotation distance between tree pairs selected at random, and to look for
difficult pathological behavior for rotation distance paths.

This motivates studying difficult tree pairs in their own right. We describe
below an efficient algorithm for sampling difficult tree pairs of a specified size. This
sampling is not uniform across all difficult tree pairs of a prescribed size but does
have wide coverage of such pairs.

The algorithm we describe can be seen as a variation on Remy’s algorithm [12]
for efficiently generating rooted ordered trees uniformly at random, but instead of
working on growing the size of a single tree, we grow a pair of trees while applying
a filtering criterion. Unlike Remy’s algorithm, the difficult pairs are not sampled
uniformly at random but having an efficient (polynomial-time) means of generating
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pairs is useful for understanding rotation distance problem instances better and for
testing the performance of new algorithms. Computational experiments show that
the distribution of selected tree pairs are not uniformly random but there does seem
to be wide dispersion, with relatively broad coverage of difficult tree pairs.

2 Background

An extended ordered binary tree is a rooted binary tree where every node has exactly
0 or 2 children and whose leaves are labelled starting with 0 in their order defined
by a pre-order traversal from the root. The label of a leaf node � is denoted label(�).
The size of an extended ordered binary tree T , denoted |T |, is the number of internal
nodes T contains. The set of all nodes in T is denoted nodes(T ). In the following
tree will refer to an extended ordered binary tree and S and T will be trees of the
same size.

A rotation at a node ν in a tree is a local operation which promotes an internal
node ν to the position of its parent μ, demotes μ to one of ν’s children, and makes
one of ν’s children a child of μ, illustrated in Figure 1 where the rotation is leftward
at node 7 going from the left tree to the right tree. The inverse operation of going
from the right tree to the left tree is a rightward rotation at node 5. We will denote
the partial function that returns the parent of a node by π : nodes(T ) �→ nodes(T ),
with π(root(T )) is undefined. We adopt the convention that the statement “rotate
at a node ν”, denoted rotate(ν), means to perform that rotation which promotes ν
to the position of its parent. Whether that is a right or left rotation depends upon
whether ν is a left or right child of its parent. For a tree of size n there are n − 1
possible rotations, one for each internal node except the root.

Given a pair of trees (S, T ) of the same size, it is possible to transform one
into the other by some sequences of rotations. The minimum length of any such
sequence defines the rotation distance between S and T , which we denote d(S, T ).

The interval of a node ν, interval(ν), is the pair (α, β) where α is the label of the
least-labelled leaf in the tree rooted at ν and β is the label of the greatest-labelled
leaf in the tree rooted at ν. The label α is called the lower bound of the interval of
ν and is denoted �interval(ν)�. Similarly, the label β is called the upper bound of
the interval of ν and is denoted �interval(ν) . If ν is a leaf, then its lower bound is
the same as its upper bound and is defined to be its label. If ν is an internal node,
then its lower bound is the lower bound of its left child, and its upper bound is the
upper bound of its right child; formally

interval(ν) =

{
(label(ν), label(ν)) if ν is a leaf

(�interval(left(ν))�, �interval(right(ν)) ) otherwise

The intervals of a tree T , denoted intervals(T ), is the set of all intervals of the
internal nodes of T .

The labels α and β are related to each other by the size of the subtree rooted
at ν in the following way:
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Proposition 1. Let ν be an internal node of T , and N the subtree rooted at ν,
and (α, β) = interval(ν), then β = α+ |N |.
Proof. Recall that N has |N | + 1 leaves. It is a property of pre-order traversal
that once the traversal visits a node it will visit the entire subtree rooted at that
node before it visits any other part of the tree. Consequently, when the pre-order
traversal reaches ν, the next |N |+ 1 leaf nodes that will be visited will be the leaf
nodes of N . Thus, the greatest label any leaf in N can have is α + |N | and this
must be attained by the last leaf that is visited in N .

In addition to changing one tree into another, a rotation in a tree T at a node
ν has the effect of replacing one of the intervals of the tree by a new one. This
new interval is uniquely determined by T and ν and is denoted 1-interval(ν). The
1-interval(ν) can be defined in terms of the intervals of ν, the parent of ν, and the
children of ν. If ν is the left child of its parent, then the lower bound of 1-interval(ν)
is the lower bound of the right child of ν and the upper bound of 1-interval(ν) is
the upper bound of the parent of ν. If ν is the right child of its parent, then the
lower bound of 1-interval(ν) is the lower bound of its parent, and the upper bound
of 1-interval(ν) is the upper bound of the left child of ν. Formally

1-interval(ν) =

{
(�interval(t)�, �interval(π(ν)) ) if ν = left(π(ν))

(�interval(π(ν))�, �interval(s) ) otherwise

where s = left(ν) and t = right(ν).
The 1-intervals(T ) is the set of all n − 1 intervals that can be obtained by

rotating some node in T .
Trees correspond naturally to the marked triangulations of a polygon, and we

denote the corresponding triangulation by !(T ). The edges of !(T ) correspond
to the intervals(T ).

While the reduction rules were first developed from the perspective of triangu-
lations of the polygon, they may be formulated from the tree perspective in terms
of intervals and rotations. A common edge between triangulations corresponds to
a common interval occuring in the intervals of both trees. A one-off edge between
triangulations corresponds to a common interval that can be obtained by rotating
at one of the nodes in S or T .

The binary word of T , word(T ), is obtained by beginning with the empty string,
traversing T in pre-order and appending at each node a ‘1’ if the node is an internal
node and a ‘0’ otherwise. Thus the symbol at the ith index in word(T ) is determined
by the ith node visited in T by a pre-order traversal. This determines a mapping
from symbols in word(T ) to nodes(T ).

Definition 1. Let T be an extended ordered binary tree, and let ν be the i-th node
visited in a pre-order traversal of T . The symbol of ν in word(T ), denoted symT(ν),
is defined to be the the symbol of word(T ) at index i.

The following property of word(T ) gives one method for computing the intervals
of T .
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Proposition 2. Let � be a leaf node of T , then the label of � is given by the number
of ‘0’s that precede symT(l).

Proof. Suppose the label of � is α. By the definition of label, � is the (α + 1)st
leaf node visited in the preorder traversal of T . In computing word(T ), therefore,
exactly α ‘0’s must have been appended before symT(l) is appended.

Proposition 3. Let T be an extended ordered binary tree, ν an internal node of
T , N the subtree of T rooted at ν, and (α, β) = interval(ν). Then α is given by the
number of 0’s that precede symT(ν), and β = α+ |N |.
Proof. To prove α is given by the number of 0’s that precede symT(ν) it suffices,
by Proposition 2, to show that the symbol of the leaf node, �, with label α is the
first 0 that proceeds symT(ν). Suppose this is not the case, then there is at least
one 0 that proceeds symT(ν) and precedes symT(l). Then there is some leaf node
k in the subtree rooted at ν that is visited after ν and before �. So the label of k is
at most α− 1, but this contradicts the assumption that � is the least labelled leaf.
Finally, from Proposition 1 it follows that β = α+ |N |.

We let ◦ denote string concatenation and we let ν be a node of a tree. We define
the functions left(ν) and right(ν) to return the left or right child or ν respectively.
A recursive definition for word(ν) can then be given as follows

word(ν) =

{
1 ◦ word(left(ν)) ◦ word(right(ν)) if ν is an internal node

0 otherwise

With this definition word(T ) = word(r) where r is the root of T .
Remy’s algorithm [12] is a method for sampling trees of a fixed size uniformly

at random by growing a tree larger at each stage ensuring that each possible tree
of that size is equally likely to be generated. The algorithm begins with a tree of
size 1 and iteratively grows the tree until a tree of the desired size is obtained. On
each iteration, one of the internal or external nodes, say ν, of the current tree, say
T , is selected uniformly at random. Then a new node, μ, is created. The new node
μ takes the place of ν in the tree, and ν is set as the left or right child of μ with
equal probability. We say that the resulting tree is obtained from T by growing
left (or right) at ν.

If a tree S may be grown in some way by an iteration of Remy’s algorithm to
obtain a tree T , then we call T a growth neighbor of S and denote the set of all
growth neighbors of S by growthNeighbors(S).

On an iteration of Remy’s algorithm, if an external node is chosen to be grown,
then growing left or right will result in the same tree. Thus, an upper bound on
the number of growth neighbors a tree of size n may have is 3n+ 1.

3 Difficult Pair Sampling Algorithm

The Difficult Pair Sampling algorithm, DPS, begins by randomly choosing one of
the 4 difficult pairs of trees of size 4. We call these difficult pairs primitive because
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there are no difficult pairs of trees that are smaller. The algorithm then iteratively
grows the pair of trees in size by 1 until a pair of the desired size is obtained. On
each iteration, for the current pair of trees S and T , DPS finds all difficult pairs of
trees (U , V ) such that U is a growth neighbor of S and V is a growth neighbor of
V and randomly selects one of these pairs to be the next S and T .

DPS(n)

1 S, T = randomPrimitiveDifficultPair()
2 for i = 5 to n
3 choices = ∅
4 for U in growthNeighbors(S)
5 for V in growthNeighbors(T )
6 if isDifficultPair(U, V )
7 choices.add((U, V ))
8 S, T = choices.randomElement()
9 return S, T

What is not obvious about DPS is that for an arbitrary difficult pair (S, T ), it is
always possible to grow S and T into a difficult pair (U, V ). We will show that this
is the case by examining a particular growth neighbor. Generally there are many
additional growth neighbors but the existence of a single one suffices for proving
the correctness of the algorithm.

Definition 2. Let T be an extended ordered binary tree of size n, and ω be the
internal node of T whose right child is the leaf with label n. The extended ordered
binary tree of size n+ 1, obtained by growing T at ω left, will be denoted σ(T ).

We will show that given a difficult pair (S, T ), the pair of trees (σ(S), σ(T )) is
also a difficult pair. The proof that (σ(S), σ(T )) is a hard pair will rest on the rela-
tion between intervals(T ) to intervals(σ(T )) and 1-intervals(T ) to 1-intervals(σ(T )).

Relating intervals(T ) to intervals(σ(T )) and 1-intervals(T ) to 1-intervals(σ(T ))
will require relating word(T ) to word(σ(T )) which we will do next.

Lemma 1. Let T be an extended ordered binary tree of size n, then word(T ) = ΛΩ
and word(σ(T )) = Λ1Ω0.

Proof. Let ω be the parent of the leaf node with label n in T , this implies that ω,
and all of its ancestors are either the root or the right child of their parent. From
the definition of word it follows that word(T ) is of the form ΛΩ where Ω = word(ω).

When T is grown left at ω, the new node, φ, will take ω as its left child and
become the right child of ω’s former parent. Consequently, word(σ(T )) will be ΛΦ
where Φ = word(φ).

word(φ) = 1 ◦ word(left(φ)) ◦ word(right(φ))
= 1 ◦ word(ω) ◦ 0

Φ = 1Ω0
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Figure 2: Growing a node and preserving the difficulty of the pair.
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There is a natural way in which the nodes in T correspond to the nodes in σ(T ).
The intuition for this is shown in Figure 2. This correspondence can be formalized
in terms of the relation between word(T ) and word(σ(T )).

Definition 3. Let T be an extended ordered binary tree. The natural growth injec-
tion of the nodes of T to the nodes of σ(T ), G : nodes(T ) �→ nodes(σ(T )) is defined
as

G(ν) = sym-1
σ(T)(word(σ(T ))(i+ 1{|Λ| < i}))

where i is the index of symT (ν) and 1{. . .} is the indicator function.

There are several properties of G which will be critical to proving our claim that
DPS can always grow a difficult pair (S, T ) into another difficult pair (U, V ). The
first that we will examine relates the interval of a node, ν, in T to the interval of
G(ν) in σ(T ).

Lemma 2. Let T be an extended ordered binary tree of size n, ω be the node of
T whose right child is the leaf with label n, ν be any node of T that is not ω and
(α, β) = interval(ν). Then interval(G(ν)) = (α, β + 1{β = n}).

Proof. Let (γ, n) = interval(ω). By Lemma 1, we have word(T ) = ΛΩ and
word(σ(T )) = Λ1Ω0. Now we partition nodes(T )− {ω} into three sets:

1. {ν : (α, β) = interval(ν), α < γ, β < n} all nodes that have an interval with a
lower bound less than the lower bound of ω and with an upper bound that is
less than n.

2. {ν : (α, β) = interval(ν), α < γ, β = n} all nodes that have an interval with a
lower bound less than the lower bound of ω and with an upper bound equal
to n.

3. {ν : (α, β) = interval(ν), γ ≤ α} all nodes that have an interval with a lower
bound greater than or equal to the lower bound of ω.

We consider the first case. Let N be the subtree rooted at ν, a be the leaf with
label α, b be the leaf with label β and g be the leaf with label γ. Since α < γ,
the symbol of a in word(T ) must precede the symbol of g in word(T ) and therefore
symT (a) ∈ Λ and symT (ν) ∈ Λ. By the definition of G it follows that the index
of symσ(T )(G(ν)) is the same as the index of symT (ν) and so symσ(T )(G(ν)) ∈ Λ.
Therefore, by Proposition 2 the lower bound of G(ν) must be α. Since β < n it
follows β < γ, otherwise g is in N , but this would imply that ω is also in N and so
β = n, which is impossible. Consequently the symbol of b in word(T ) must precede
the symbol of g in word(T ) and therefore symT (b) ∈ Λ and symσ(T )(G(b)) ∈ Λ.
This implies that word(ν) = word(G(ν)) and so the size of the subtree rooted at
G(ν) is the same as the size of N . Applying Theorem 3 it follows that the upper
bound of G(ν) is β. Therefore interval(G(ν)) = (α, β) = (α, β + 1{β = n}).

Now we consider the second case. Let N be the subtree rooted at ν, a be the
leaf with label α, b be the leaf with label β and g be the leaf with label γ. Since
α < γ, the symbol of a in word(T ) must precede the symbol of g in word(T ) and so
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symT (a) ∈ Λ and symT (ν) ∈ Λ. By the definition of G, the index of symσ(T )(G(ν))
is the same as the index of symT (ν) and by Proposition 2 the lower bound of G(ν)
is α. Since β = n, ω must be contained in the subtree rooted at ν. Therefore, when
T is grown left at ω, the subtree rooted at G(ν) will be larger in size by one than
N . Applying Theorem 3 it follows that the upper bound of G(ν) is β + 1. And so
interval(G(ν)) = (α, β + 1) = (α, β + 1{β = n}).

Finally, we consider the third case. Let N be the subtree rooted at ν. Since
γ ≤ α, ν is a descendant of ω. Therefore word(ν) is a proper substring of Ω. We
observe that for |Λ| < i ≤ |word(T )|, we have word(T )(i) = word(σ(T ))(i + 1),
combined with the definition of G it follows that word(ν) = word(G(ν)). So the
size of the subtree rooted at G(ν) is the same as the size of N . Since the number
of ‘0’s which precede symσ(T )(G(ν)) is the same as the number of ‘0’s that precede
symT (ν) it follows that the lower bound of G(ν) is α. Therefore interval(G(ν)) =
(α, β) = (α, β + 1{β = n}).

The growth injection G also captures several of the node-to-node relationships of
T which are preserved in σ(T ): G preserves the relation between parents and their
left children, G preserves the relation between parents and their right children,
except for the parent of the node whose right child is the leaf labelled n, and
taken together, a consequence of the preceding two properties is that G preserves
the relation between parents and children except for the node whose right child
is the leaf labelled n. We will next state and prove these relationships formally
because we will exploit them in proving the relationship between 1-intervals(T )
and 1-intervals(σ(T )).

Lemma 3. Let T be an extended ordered binary tree of size n and ω be the internal
node of T whose right child is the leaf with label n. For any internal node ν ∈ T ,
the image of the left child of ν under G is the left child of the image of ν under G,
that is, G(left(ν)) = left(G(ν)).

Proof. It will suffice to show that the index of the symbol of G(left(ν)) in the word
of σ(T ) is the same as the index of the symbol of left(G(ν)) in the word of σ(T ).
Let i be the index of symT (ν) and consider two cases as to whether |Λ| < i or not.

Case I: |Λ| < i: the index of symT (left(ν)) = i + 1 and so the index of
symσ(T )(G(left(ν))) = i + 2. By definition, the index of symσ(T )(G(ν)) = i + 1
giving index symσ(T )(left(G(ν))) = i+ 2.

Case II: |Λ| ≥ i:, we must verify that i+ 1 ≤ |Λ|. Since ν is an internal node,
its symbol must be a ‘1’ and since the suffix of Λ is the word of the left child of the
parent of ω, the last symbol in Λ must be a ‘0’ and so i ≤ |Λ| − 1 which implies
i+ 1 ≤ |Λ|. Now the index of symT (left(ν)) = i+ 1. Since i+ 1 < |Λ| the index of
symσ(T )(G(left(ν))) = i + 1. By definition, the index of symσ(T )(G(ν)) = i and so
the index of symσ(T )(left(G(ν))) = i+ 1.

Lemma 4. Let T be an extended ordered binary tree of size n and ω be the internal
node of T whose right child is the leaf with label n. For any internal node ν ∈ T ,
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except for π(ω), the image of the right child of ν under G is the right child of the
image of ν under G, that is G(right(ν)) = right(G(ν)).

Proof. It will suffice to show that the index of the symbol of G(right(ν)) in the
word of σ(T ) is the same as the index of the symbol of right(G(ν)) in the word of
σ(T ). Let i be the index of symT (ν) and consider two cases as to whether |Λ| < i
or not.

Case I: |Λ| < i: the index of symT (right(ν)) = i + |word(left(ν))| + 1 and
so the index of symσ(T )(G(right(ν))) = i + |word(left(ν))| + 2. By definition, the
index of symσ(T )(G(ν)) = i + 1 and so the index of symσ(T )(right(G(ν))) = i +
|word(left(G(ν)))| + 2. Observe that the upper bound of the interval of left(ν)
must be less than n since it is the left child of its parent. Applying Lemmas 2
and 3 it follows that interval(left(ν)) = interval(G(left(ν))) = interval(left(G(ν))).
Therefore the size of the subtree rooted at left(ν) is the same as the size of the
subtree rooted at left(G(ν)) and so |word(left(ν))| = |word(left(G(ν)))|

Case II: |Λ| ≥ i: we must verify that i + |word(left(ν))| + 1 ≤ |Λ|. But this
is clearly true since the only case in which |Λ| < i + |word(left(ν))| + 1 is when
ν = π(ω), but we have excluded π(ω) from consideration. Observe that the index of
symT (right(ν)) = i+ |word(left(ν))|+1 and so the index of symσ(T )(G(right(ν))) =
i + |word(left(ν))| + 1. By definition, the index of symσ(T )(G(ν)) = i and so the
index of symσ(T )(right(G(ν))) = i + |word(left(G(ν)))| + 1. Since left(ν) is a left
child the upper bound of its interval must be less than n. Applying lemmas 2 and
3 it follows that interval(left(ν)) = interval(G(left(ν))) = interval(left(G(ν))). This
implies that the size of the subtree rooted at left(ν) is the same as the size of the
subtree rooted at left(G(ν)) and so |word(left(ν))| = |word(left(G(ν)))|.

Together Lemma 3 and Lemma 4 show the preserved parent structure.

Corollary 1. Let T be an extended ordered binary tree of size n and ω be the
internal node of T whose right child is the leaf with label n. For any node ν ∈
nodes(T )−{ω}, the image of the parent of ν under G is the parent of the image of
ν under G, that is, G(π(ν)) = π(G(ν)).

The next lemma will relate intervals(T ) to intervals(σ(T )).

Lemma 5. Let T be an extended ordered binary tree of size n and ω be the internal
node of T whose right child is the leaf with label n. Then the intervals of σ(T ) are
related to the intervals of T by

intervals(σ(T )) ={(α, β + 1{β = n}) : (α, β) ∈ intervals(T )} ∪ {interval(ω)}. (1)

Proof. Let (γ, n) = interval(ω). By Lemma 2 we have the intervals for the internal
nodes of σ(T ) that are the image under G of some node in T , except for ω. This gives
us n−1 intervals of σ(T ) and we have only to consider the interval of G(ω) and the
interval of π(G(ω)). By Lemma 1 the number of ‘0’s which precede symσ(T )(G(ω))
is the same as the number of ‘0’s which precede symσ(T )(π(G(ω))) which is the
same as the number of ‘0’s which precede symT (ω) and so the intervals of G(ω) and
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π(G(ω)) have the same lower bound, namely γ, which is the lower bound of ω. By
construction, the subtree rooted at G(ω) has the same size as the subtree rooted
at ω. Applying Proposition 1 it follows that interval(G(ω)) = interval(ω). Also by
construction, the subtree rooted at π(G(ω)) is greater in size by 1 than the subtree
rooted at ω. Applying Proposition 1 again yields interval(π(G(ω))) = (γ, n+ 1) =
(α, β + 1{β = n}).

With the relationship between intervals(σ(T )) and intervals(T ) proven, we can
state and prove the relationship between 1-intervals(σ(T )) and 1-intervals(T ). Our
proof strategy will be to determine for each internal node of T , ν, the local structure
that determines the 1-interval(ν) in T . Then we will determine how that local
structure maps to the local structure of G(ν) in σ(T ) and use this to compute
1-interval(G(ν)).

Lemma 6. Let T be an extended ordered binary tree of size n, ω the internal node
of T whose right child is the leaf with label n, and φ the internal node of σ(T ) that
is the parent of G(ω). Then the 1-intervals of σ(T ) are related to the 1-intervals of
T by

1-intervals(σ(T )) ={(α, β + 1{β = n}) : (α, β) ∈ Θ}
∪{1-interval(left(ω)), (n, n+ 1), 1-interval(φ)}

where Θ = 1-intervals(T )− {1-interval(ω), 1-interval(left(ω))}.

Proof. Let (γ, n) = interval(ω) and apply lemma 1 to obtain word(T ) = ΛΩ and
word(σ(T )) = Λ1Ω0. Now we partition nodes(T ) into 6 sets:

1. {ν : (δ, n) = interval(ν), ν /∈ {ω, root(T )}} every node, excluding the root and
ω, whose interval has an upperbound of n.

2. {ν : (δ, β) = interval(π(ν)), β < n, ν = left(π(ν))} every node whose parent’s
interval has an upperbound less than n and that is a left child of its parent.

3. {ν : (α, δ) = interval(π(ν)), δ < n, ν = right(π(ν))} every node whose parent’s
interval has an upperbound less than n and that is a right child of its parent.

4. {ν : (δ, n) = interval(π(ν)), (κ, n) 
= interval(ν), ν 
= left(ω)} every node, ν,
excluding the left child of ω, such that the upper bound of the interval of ν
is not n and the upper bound of the interval of ν’s parent is n.

5. {ω} the singleton set containing ω.

6. {left(ω)} the singleton set containing the left child of ω.

We proceed analyzing these six sets:
Case 1: Because we have excluded the root, the parent of ν is a node in T and

its right child must be ν. Since the 1-interval(ν) = (α, β) is obtained by taking
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the lower bound of ν’s parent and the upper bound of the left child of ν it follows
that interval(π(ν)) = (α, n) and interval(left(ν)) = (δ, β). Since we have excluded
ω, α, β and δ must be less than γ. Applying Lemma 2, Lemma 3 and Corol-
lary 1 we have interval(G(ν)) = (δ, n + 1), interval(G(π(ν))) = interval(π(G(ν))) =
(α, n + 1) and interval(G(left(ν))) = interval(left(G(ν))) = (δ, β). It follows that
1-interval(G(ν)) = (α, β) = (α, β + 1{β = n}) = 1-interval(ν).

Case 2: interval(ν) = (δ, ε) and interval(right(ν)) = (α, ε) for some ε and α.
Since β < n, applying Lemma 2, Lemma 4 and Corollary 1 yields interval(G(ν)) =
interval(ν), as well as interval(G(π(ν))) = interval(π(G(ν))) and also
interval(right(G(ν))) = interval(right(ν)). Computing 1-interval of G(ν) yields
1-interval(G(ν)) = (α, β) = (α, β + 1{β = n}) = 1-interval(ν).

Case 3: interval(ν) = (ε, δ) and interval(left(ν)) = (ε, β) for some ε and β.
Since δ < n, applying Lemma 2, Lemma 3 and Corollary 1 yields interval(G(ν)) =
interval(ν), interval(G(π(ν))) = interval(π(ν)), and also that interval(left(G(ν))) =
interval(left(ν)). Therefore, 1-interval(G(ν)) = (α, β) = (α, β + 1{β = n}) =
1-interval(ν).

Case 4: Because the upperbound of ν is not n, it follows ν is the left child
of its parent, and so (δ, ε) = interval(ν) and (α, ε) = interval(right(ν)) for some
ε and α such that ε < n. Consequently 1-interval(ν) = (α, n) for some α and
interval(right(ν)) = (α, ε). Applying Lemma 2, Lemma 4 and Corollary 1 we have
that interval(G(ν)) = interval(ν), interval(π(G(ν))) = (δ, n+ 1) and
interval(right(G(ν))) = interval(right(ν)) therefore, 1-interval(G(ν)) = (α, n+ 1) =
(α, β + 1{β = n}).

Case 5: interval(G(ω)) = (γ, n), interval(π(G(ω))) = (γ, n + 1) and the right
child of G(ω) is the leaf with label n. Therefore, 1-interval(G(ω)) = (n, n+ 1).

Case 6: By definition, we have π(left(ω)) = ω and so interval(π(left(ω))) =
interval(ω) = (γ, n). Because the right child of ω is the leaf with label n it follows
that interval(left(ω)) = (γ, n−1). Therefore interval(right(left(ω))) = (α, n−1) for
some α and 1-interval(left(ω)) = (α, n). By Lemma 2 we have interval(G(left(ω))) =
interval(left(ω)). By Lemma 5 and Corollary 1 we have that interval(G(ω)) =
interval(ω). By Lemmas 2 and Lemma 3, we have interval(right(G(left(ω)))) =
interval(right(left(ω))), and thus 1-interval(G(left(ω))) = 1-interval(left(ω)).

The preceding case analysis computes the 1-interval for every internal node of
σ(T ) that is the image under G of some node ν in T . In order to complete the
1-intervals(σ(T )) and the proof, we add 1-interval(φ).

With these substitution rules for obtaining the intervals and 1-intervals of a
tree σ(T ) from the intervals and 1-intervals of T , we can now proceed to show
that if (S, T ) is a difficult pair, then so too is (σ(S), σ(T )). We will do so by first
showing that the pair (σ(S), σ(T )) do not have a common interval between them
and secondly that they have no one-off intervals between them either.

Lemma 7. Let (S, T ) be a difficult pair of extended ordered binary trees of size n,
let ωS be the internal node of S whose right child is the leaf with label n, and let
ωT be the internal node of T whose right child is the leaf with label n. Then the
pair of trees (σ(S), σ(T )) do not have an interval in common.
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Proof. Assume, to the contrary, that the pair (σ(S), σ(T )) have an interval in
common. Then some interval, call it t, in intervals(σ(T )) is also in intervals(σ(S)).
We consider the possible forms of t given by Lemma 5. If t = interval(ωT ), then t =
(α, n) and by Lemma 5, interval(ωS) = t which implies (S, T ) is not a difficult pair.
Otherwise, t = (α, δ), is some other interval in intervals(σ(T )). If δ = n + 1, then
the interval (α, n) is in both intervals(S) and intervals(T ) which implies (S, T ) is
not a difficult pair. Otherwise, δ < n and so (α, δ) is in intervals(S) and intervals(T )
and (S, T ) is not a difficult pair.

Lemma 8. Let (S, T ) be a difficult pair of extended ordered binary trees of size n,
let ωS be the internal node of S whose right child is the leaf with label n, and let
ωT be the internal node of T whose right child is the leaf with label n. Then the
pair of trees (σ(S), σ(T )) have no one-off intervals between them.

Proof. Assume, to the contrary, that the pair (σ(S), σ(T )) have some one-off inter-
val between them. Without loss of generality, let t be the 1-interval of σ(T ) that is
also an interval of σ(S) and consider the possible forms of t given by Lemma 6. By
construction, neither σ(S) nor σ(T ) can have the interval (n, n+1) and so t 
= (n, n+
1). If t = 1-interval(left(ωT )), then t = (�right(left(ωT ))�, n) ∈ intervals(σ(S)) but
then Lemma 5 implies t = interval(ωS) and so (S, T ) is not a difficult pair. If
t = 1-interval(φ) then t = (�π(φT )�, n) = (�π(ωT )�, n) = interval(π(ωT )) but
then Lemma 5 again implies t = interval(ωS) and so (S, T ) is not a difficult
pair. If t = (α, n + 1), then (α, n) ∈ 1-intervals(T ) and (α, n) ∈ intervals(S)
and (S, T ) is not a difficult pair. Otherwise, t = (α, δ) such that δ < n, there-
fore (α, δ) ∈ 1-intervals(T ) and (α, δ) ∈ intervals(S) and so (S, T ) is not a difficult
pair.

We have now established the fact that the pair (σ(S), σ(T )) is a difficult tree
pair which underlies the correctness of DPS.

Theorem 1. Let (S, T ) be a difficult pair of extended ordered binary trees of size
n, then the pair (σ(S), σ(T )) of extended ordered binary trees of size n + 1 is a
difficult pair.

Proof. Immediate from Lemma 7 and Lemma 8.

Theorem 2. Let n be a natural number greater or equal to 4, then the Difficult
Pair Sampling algorithm is guaranteed to return a difficult pair of trees of size n.

Proof. We proceed by induction on n the size of the trees in the difficult pair
desired. In the base case, n = 4, in which case, DPS samples one of the 4 primitive
difficult pairs of trees which have been found by easy enumeration.

Now we suppose that the Difficult Pair Sampling algorithm is guaranteed to
return a difficult pair of trees for all m < n such that m,n ∈ N, 4 < n, and let
(S, T ) be a difficult pair of trees of size n−1 sampled by DPS. By Theorem 1 there
is at least one pair of difficult trees in the set of all pairs of growth neighbors of S
and T which DPS will find by enumeration. Consequently, DPS is guaranteed to
return a difficult pair of trees of size n.
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4 Time Complexity of DPS

We now analyze the time complexity of DPS and show the following:

Theorem 3. The Difficult Pair Sampling algorithm runs in O(n4) time, where n
is the size of the desired difficult tree pair.

Proof. Line 1 can be implemented to run in constant time by using a table of
the primitive difficult pairs. By returning a pair of pointers line 9 can also be
implemented to run in constant time. Therefore the time complexity of DPS is
determined by the for loop of lines 2 through 8. We name the for loops as follows:
let f be the for loop of lines 2 through 8, g be the for loop of lines 4 through 7,
and h be the for loop of lines 5 through 7.

We consider one iteration of f with (S, T ) being the current difficult pair and
suppose we use a table, t, to hold the pairs of difficult growth neighbors of (S, T ).
Given n, we bound the maximum size of t by the space required for the maximum
number of pairs of difficult growth neighbors of size n and so preallocate the space.
The space complexity of t is O(n3). If, on each iteration of f , the candidate difficult
growth neighbor pairs are stored from the beginning of the table contiguously, then
line 3 can be implemented to run in constant time by starting again at the beginning
of the table and keeping track of how many rows have been filled. Further, with
such a scheme, line 8 can be implemented to run in O(n) time by randomly selecting
a row (in constant time) of one of the candidate difficult pairs and then copying
the selected candidates (in linear time) to the space allocated for the current pair.
The time complexity of one iteration of f is therefore O(n+ g).

The time complexity of one iteration of g is the sum of the time required to
compute one growth neighbor of S and the time complexity of h. Using the word
representation of an extended ordered binary tree, it is possible to compute a growth
neighbor, including its intervals and 1-intervals, in linear time. Thus, one iteration
of g takes O(n+ h) steps.

The time complexity of one iteration of h is the sum of the time complexity
of computing one growth neighbor of T , the time complexity of checking if the
resulting pair of growth neighbors, (U, V ), is difficult, and the time complexity
of adding (U, V ) to choices. Now suppose we allocate two, two-dimensional ta-
bles, a and b, where we use a to store intervals(S) ∪ 1-intervals(T ) and b to store
intervals(T ) ∪ 1-intervals(S). These tables will require at most O(n2) space. If we
populate these tables as we construct the growth neighbors, then we can determine
whether the pair (U, V ) is difficult as we construct V and set a flag appropriately.
Then line 6 can be implemented to run in constant time by checking the flag. As-
suming the candidate pairs are being stored in table t, then adding the pair (U, V )
to choices can be a constant time increment operation. So the time complexity of
one iteration of h is O(n).

The number of iterations of h is determined by the number of growth neighbors
of T . As previously mentioned, for a tree of size n, a straightforward upper bound
on the number of growth neighbors is 3n + 1. Hence, h will execute O(n) times
and O(h) = O(n2). The same reasoning shows that g will also execute O(n) times
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and so O(g) = O(n3). Finally, it is clear that f also executes O(n) times and so
O(f) = O(n4) = O(DPS).

5 Sampling coverage of DPS

An ideal sampling algorithm not only has the potential to produce all possible
instances of interest, but also produces such interests uniformly at random. One
of the excellent features of Remy’s algorithm for generating trees is that it selects
a given tree uniformly at random from all trees and is ideal for many purposes.
This DPS algorithm does not have such uniformity, with some difficult tree pairs
being sampled more often than others. Since the number of difficult tree pairs of
a particular size is not known exactly, the degree of non-uniformity is difficult to
calculate exactly.

From work of Cleary, Elder, Rechnitzer and Taback [2], the fraction of difficult
pairs (and in fact its superset, the set of reduced tree pairs) goes to zero expo-
nentially quickly as the size of the tree pairs increase. Calculations by Cleary and
Maio [4] show that the number of difficult pairs appear to grow exponentially with
an exponential growth rate of about 2.17975, out of the set of equivalence classes
of all pairs with an exponential growth rate of about 2.4420, giving a fraction of
difficult pairs of less than one in million by size 44 and dropping with increasing
size. This is consistent with the observation (proven by Cleary, Rechnitzer and
Wong [5]) that for large n, the chance of selecting a difficult tree pair at random is
vanishingly small.

As far as the completeness of coverage, for small n where feasible, we found that
the DPS algorithm does sample from all hard cases. We considered tens of millions
of cases and did not find any difficult instances which were not produced at least
once by the DPS algorithm. However, though this gives evidence that the coverage
might be complete, this is by no means ensured. There is the potential for there
to be difficult tree pairs of size k with no growth neighbors of size k − 1. If such
difficult pairs existed, they would not be produced by the algorithm ever. We did
not encounter any such problematic growth pairs in our computational experiments,
but those experiments are necessarily of limited scope and the question remains for
later investigation about the completeness of the sampling coverage.

The number of distinct difficult pairs for larger n appears to grow exponentially
but the growth is not known exactly and even the exponential rate of growth is
not known. The only current means of producing all difficult pairs is equivalent
in running time to exhaustive enumeration of all tree pairs and is not feasible be-
yond small values, so it is not computationally feasible to check to see if instances
of even moderate size are not produced by the DPS algorithm. For example, us-
ing some natural notions of equivalence described in Cleary and Maio [4], out of
7,152,629,313,600 tree pairs of size 14, there are 17,561,480,528 difficult tree pairs.
It is not computationally feasible to test to see if the DPS algorithm will generate
all possible instances of that size.

We note that the examples produced by DPS lie in starkly broader classes of
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difficult pairs than those specific known earlier examples of Dehornoy [8], Pournin
[11], and Cleary and Maio [3]. Those earlier examples give difficult tree pairs of
increasingly large sizes but though there are multiple possible examples of increasing
size, these numbers do not grow nearly as fast as the set of all possible difficult
pairs or as those constructed here. Those examples were constructed for different
purposes and there was no intent to get broad coverage of representative difficult
instances.

If it is the case that there is complete coverage, the question of the degree of
uniformity is of interest. By “degree of uniformity” we mean some indication of the
differences in rates of difficult pairs of the same size from being chosen at random.
This question has some complications because some of the difficult pairs have cer-
tain symmetries arising which raise questions about what exactly is meant in these
instances: uniform sampling of instances or of equivalence classes of instances with
respect to some natural symmetries arising from the dihedral symmetries of regular
polygons. In any case, as far as the degree of uniformity, computations for small n
with exhaustive coverage show essentially complete coverage of difficult instances
with factors in the range of 2 between the first and third quartiles of number of
instances and a factor of about 7 between the most commonly and least commonly
generated. There is no reason to presume that this DPS algorithm gives uniformity
and these modest experiments show that to be extremely unlikely.

We note that though it is not clear as to the coverage, the DPS algorithm
gives a range of difficult pairs. In general, there are many instances where random
instances of a problem are by no means representative and often can be attacked
with tools that do not capture the essential difficulty. For example, randomly chosen
tree pairs do not form good test cases for rotation distance algorithms since with
significant probabilities, randomly-selected tree pairs have already many common
edges– on average (16/π−5)n ∼ 0.093n as proven by Cleary, Rechnitzer, and Wong
[5]. Furthermore, randomly selected tree pairs generally have many possible one-off
edge reductions as well – also on average (16/π − 5)n ∼ 0.093n proven by Cleary,
Rechnitzer and Wong [5] after compelling numerical evidence of Chu and Cleary
[1] estimating those fractions numerically. There are two previously considered
algorithms for generating hard cases of increasing size and neither works effectively.
The “test and reject” sampling algorithm does give uniform coverage of instances,
but the number of needed iterations grows exponentially with size as the scarcity
of difficult pairs falls. The “test and reduce to the largest possible difficult sub-
problem” is not computationally efficient, may not give instances of a prescribed
size or even in a prescribed size range, and may well not have uniform coverage of
difficult instances. So the DPS algorithm does give a rich range of possible instances
in a computationally efficient manner compared to previously known algorithms.
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Strongly Possible Functional Dependencies for SQL∗

Munqath Alattarab and Attila Saliac

Abstract

Missing data is a large-scale challenge to research and investigate. It
reduces the statistical power and produces negative consequences that may
introduce selection bias on the data. Many approaches to handle this prob-
lem have been introduced. The main approaches suggested are either missing
values to be ignored (removed) or imputed (filled in) with new values [14].
This paper uses the second method. Possible worlds and possible and certain
keys were introduced in [22, 25], while certain functional dependencies (c-FD)
were introduced in [23] as a natural complement to Lien’s class of possible
functional dependencies (p-FD) by [26], and Weak and strong functional de-
pendencies were studied in [25]. The intermediate concept of strongly possible
worlds introduced in a preceding paper [3] and results in strongly possible keys
(spKey’s) and strongly possible functional dependencies (spFD’s) were stud-
ied. Also, a polynomial algorithm to verify a single spKey was given and it
was shown that it is NP-complete in general to verify an arbitrary collection
of spKeys. Furthermore, a graph-theoretical characterization was given for
validating a given spFD X →sp Y .

We show, that the complexity to verify a single strongly possible func-
tional dependency is NP-complete in general, then we introduce some cases
when verifying a single spFD can be done in polynomial time. As a step
toward axiomatization of spFD’s, the rules given for weak/strong and cer-
tain functional dependencies are checked. Appropriate weakenings of those
that are not sound for spFD’s are listed. The interaction between spFD’s
and spKey’s and certain keys is studied. Furthermore, a graph theoretical
characterization of implication between singular attribute spFD’s is given.
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1 Introduction

Incomplete data in databases are allowed in many of the modern systems. For
example, when raw data is collected from different sources in data warehousing,
some of the attributes may be available in some of the sources and may not be in
some others. For this reason, it is important to treat constraints over incomplete
tables. Aliriza et al. [12] showed that encountering up to half of the data values
missing is common. So using analysis methods that work only with complete data
tables makes mining the data more complicated.

Incompleteness occurs in database tables for different reasons. Date [10] iden-
tified seven types of NULL’s as follows: value not applicable, value unknown, value
does not exist, value undefined, value not valid, value not supplied, and value is the
empty set. We consider the second, third, and seventh types as this paper deals
with data consumption in an incomplete database table. We consider the symbol
N/A for the other types of missing data and we assume it belongs to each domain
and it is considered as a regular domain value for comparisons and analysis.

Missing values problem complicates data analysis. It also causes a loss of data ef-
ficiency and effectiveness [14]. Although some data analysis approaches get over the
problem of incomplete databases, still most approaches require complete databases.
To overcome the missing data problem, there are mainly two main methods, either
ignoring the incomplete tuples or filling them with domain values chosen by some
heuristics. [14].

Possible worlds, introduced by Köhler et al. [22], are obtained by replacing
each missing data value with a value from its attribute’s domain, which can be
infinite. For an incomplete table, every possible world is a complete table that may
contain some duplicated tuples. They defined a possible (certain) keys as a key that
are satisfied by some (every) possible world of a (non-total) database table. For
example, the table in Table 2a satisfies the possible key {Course Name} as there
is a possible world that satisfies it, and every possible world of the table satisfies
the certain key {Course Name, Y ear, Semester}. Furthermore, no possible world
of the table satisfies the key {Lecturer}. Weak (strong) functional dependencies
were defined by [25] as FD’s that are satisfied by some (every) possible world. The
table in Table 1a satisfies the strong FD �(Name mrg status → gender) because
every possible world satisfies it, and the weak FD "(mrg status → gender), as
there exist some possible worlds, but not all, satisfying the implication.

Most often, especially when the attribute’s domain is not known, there is no
reason to consider any other attribute value than the already existing values of the
table. Types of cars, diagnoses of patients, applied medications, dates of exams,
course descriptions, etc, are some examples. For that, the strongly possible world is
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Table 1: Possible and Strongly Possible Worlds

(a) Incomplete Table

Name gender mrg status age

⊥ female married 32

Sarah female ⊥ ⊥
David ⊥ divorced 38

James male single ⊥
James male widower 47

(b) Possible World

Name gender mrg status age

30 female married 32

Sarah female lawyer high

David Apple divorced 38

James male single -12

James male widower 47

(c) Strongly Possible World

Name gender mrg status age

David female married 32

Sarah female single 32

David male divorced 38

James male single 38

James male widower 47

defined as a possible world achieved by substituting each occurrence of NULL with
a value from the corresponding attribute’s existing values [3]. Strongly possible
key(FD) is a key(FD) that satisfied by a strongly possible world. Values that are
shown in each attribute of a table represent a part of that attribute’s domain.
When the attribute domain is unknown, choosing values out of its real domain to
fill in a NULL may distort the data. For example, it would be unsuitable using value
other than the ones appearing in the marriage status attribute to fill the ⊥ in the
second row in Table 1a. Other values like numbers, symbols, or any other strings
with distant meanings may cause distortion. Therefore, a more meaningful and
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semantically acceptable possible (strongly possible) world would be provided using
one of the already shown values in the attribute. As the possible world in Table 1c
is preferred to the one in Table 1b. Strongly possible worlds were introduced by
[3] where strongly possible keys (spKey’s) were studied. The natural extension to
strongly possible functional dependencies was investigated in [4].

1.1 Contributions

In the present paper, we study spFD’s that were earlier introduced in [4, 5] as a
generalized version of functional dependency constraint using the visible domain
concept and we continue the work started in [3]. We provided a graph-theoretical
condition for the spFD satisfaction in [4]. We give a list of axioms of weak/strong
and certain FD’s that are sound for spFD’s, as well and describe several possible
sound weakenings for those that are not sound. Interactions between spKeys and
strongly possible FDs/certain FDs are investigated, and also the spFD’s between
singular attributes are studied. The main contributions of this paper are as follows:

• We analysed the properties of strongly possible keys and introduced a (worst-
case exponential time) algorithm to verify a single spKey in [3]. A polynomial-
time solution for the same problem is given and we show that verifying an
arbitrary system of strongly possible keys is NP-complete, thus resolving an
open problem from [3].

• A graph-theoretical characterization was given in [4] to verify when spFD
X →sp Y holds in an SQL table T containing NULL’s. We use that here
to show that the satisfaction problem for a single spFD X →sp Y is NP-
complete.

• We give a list of the axioms of Weak/Strong and Certain FD’s that are sound
for spFD’s, with several possible weakenings or restrictions that keep sound-
ness for those that are not sound.

• An interaction between the spKeys and sp/c-FDs is studied and the weakening
and transitivity rules are introduced.

• We analyzed the case when the spFD’s are restricted to singular attributes.
A complete characterisation of the implication problem of this special case is
given based on the fact that all the possible extensions of any NULL occur-
rences are shown in the table.

1.2 Paper structure

The organization of this paper is as follows. Section 2 contains the necessary defi-
nitions. Section 3 discusses related work. Algorithmic and complexity questions of
strongly possible keys and strongly possible functional dependencies are introduced
in Section 4. In section 5, some spFD’s implication properties are studied. First
the case if one side of an spFD is fixed is treated. Then sound implication rules for
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spFD’s are listed. The proof of their correctness are given in [5]. Then the special
case of spFD’s between single attributes is treated using graph theoretical methods.
Finally, Section 6 contains concluding remarks and future research directions.

2 Definitions

In this section, we recall some basic definitions introduced in [4]. Let R =
{A1, A2, . . . An} be a relation schema. The set of all the possible values for each
attribute Ai ∈ R is called the domain of Ai and denoted by Di = dom(Ai) for i =
1,2,. . . n.

An instance T = (t1,t2, . . . ts) over R is a list of tuples that each tuple is a
function t : R → ⋃

Ai∈R dom(Ai) and t[Ai] ∈ dom(Ai) for all Ai in R. Note that
this definition of tuples emphasizes that the order of the attributes in schema R
is irrelevant and by taking a list of tuples we use the bag semantics that allows
several occurrences of the same tuple. For a tuple tr ∈ T and X ⊂ R, let tr[X] be
the restriction of tr to X.

It is assumed that ⊥ is an element of each attribute’s domain that denotes
missing information. tr is called V -total for a set V of attributes if tr[A] 
= ⊥,
∀A ∈ V . Also a tuple tr is a total tuple if it is a R-total. t1 and t2 are weakly
similar on X ⊆ R denoted as t1[X] ∼w t2[X] defined by Köhler et al. [22] if:

∀A ∈ X (t1[A] = t2[A] or t1[A] = ⊥ or t2[A] = ⊥).

Furthermore, t1 and t2 are strongly similar onX ⊆ R denoted by t1[X] ∼s t2[X]
if:

∀A ∈ X (t1[A] = t2[A] 
= ⊥).

For the sake of convenience, we write t1 ∼w t2 if t1 and t2 are weakly similar on
R and use the same convenience for strong similarity. Thus, if t1 and t2 are both
weakly similar to a NULL-free tuple t, then t1 ∼w t2. This is true because both of
the non-total tuples t1 and t2 could be extended to be equal to the total tuple t.

Let T = (t1, t2, . . . ts) be a table instance over R. T ′ = (t′1, t
′
2, . . . t

′
s) is a possible

world of T , if ti ∼w t′i for all i = 1, 2, . . . s and T ′ is completely NULL-free. That is,
we replace the occurrences of ⊥ = t[Ai] with a value from the domain Di different
from ⊥ for all tuples and all attributes.

Weak functional dependency �X → Y holds in T if there exists a possible world
T ′ such that T ′ |= X → Y in the classical sense, that is functional dependency
X → Y holds in T ′ meaning that if t′i[X] = t′j [X] then t′i[Y ] = t′j [Y ] is satisfied, for
all pairs of tuples t′i, t

′
j ∈ T ′. Strong functional dependency �X → Y holds in T if

functional dependency X → Y holds in all possible worlds T ′ of T . X is a possible
key if there exists a possible world T ′ such that X is a key in T ′, and X is a certain
key if it is a key in every possible world of T . The following was proven in [22].

Theorem 1. X ⊆ R is a certain (possible) key iff

∀t1, t2 ∈ T : t1[X] 
∼w t2[X] (t1[X] 
∼s t2[X]).
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Table 2: Complete and Incomplete Datasets

(a) Incomplete Dataset

Course Name Year Lecturer Credits Semester

Mathematics 2019 ⊥ 5 1

Datamining 2018 Sarah 7 ⊥
⊥ 2019 Sarah ⊥ 2

(b) Complete Dataset

Course Name Year Lecturer Credits Semester

Mathematics 2019 Sarah 5 1

Datamining 2018 Sarah 7 2

Datamining 2019 Sarah 7 2

2.1 Strongly possible worlds

The concepts of visible domain and strongly possible world were introduced in [3].

Definition 1. The visible domain of an attribute Ai (V Di) is the set of all distinct
values except ⊥ that are already used by tuples in T :

V Di = {t[Ai] : t ∈ T} \ {⊥} for Ai ∈ R

For example, the visible domain of the Credits attribute in Table 2a is {5, 7}.
So, for any dataset with no information about the attributes’ domains, we define
their structure and domains by the data itself. It is more reliable and realistic when
considering only what information we have in a given dataset and depending on
extracting the relationship between data to overcome the missing data problem.
Strongly possible worlds are obtained by using the visible domain values in place
of the occurrence of NULL’s.

Definition 2. A possible world T ′ of T is called strongly possible world (spWorld)
if t′[Ai] ∈ V Di for all t′ ∈ T ′ and Ai ∈ R.

We defined strongly possible keys (spKey’s) and strongly possible functional de-
pendencies (spFD’s) in [3, 4] respectively by strongly possible worlds as follows.

Definition 3. Strongly possible functional dependency X →sp Y holds in table T
over schema R if there exists an spWorld T ′ of T such that T ′ |= X → Y . X is a
strongly possible key if there exists an spWorld T ′ of T such that X is a key in T ′,
in notation sp〈X〉. Note that this is not equivalent to spFD X →sp R since we use
the bag semantics.
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In Table 2a, the spKey of the two attributes {Course Name, Year} is satisfied,
and so is the spFD CourseName →sp Semester, as the strongly possible world in
Table 2b shows it.

For a schema R, the NULL-free subschema (NFS) is a subset RS ⊆ R that
corresponds to SQL’s NOT NULL constraint. A table T over R satisfies NFS RS if
it is RS-total, that means every tuple t ∈ T is RS-total (∀A ∈ RS : t[A] 
= ⊥). If
T satisfies NFS RS , then we say T is over (R,Rs). Also, if Σ is a set of integrity
constraints (for example spFD’s), then a table T over (R,Rs) is an Armstrong
instance of Σ if

(1) T |= σ ⇐⇒ Σ |= σ for any constraint σ, and

(2) ∀A ∈ R \RS , ∃t ∈ T such that t[A] = ⊥.

This is the classical Armstrong instance extended by requiring that if an attribute
is not in the NULL-free subschema, then it certainly contains NULL’s.

3 Related work

Keys and functional dependencies are two main constraints that enforce the se-
mantics of relational databases. Database tables of real database systems usually
contain occurrences of null values and for some cases, this happens in candidate key
columns. Many studies have been done on handling the missing values problem.

Aliriza et.al. introduced a framework of imputation methods in [14] and evalu-
ated how the selection of different imputation methods affected the performance in
[12]. Experimental analyses of several algorithms for imputation of missing values
were provided by [16, 13, 2, 7]. An approach introduced by Zhang et.al. discussed
and compared different approaches that use only known values [29].

Sree [11] suggests that it is necessary to substitute the missing values with
values based on other information in the dataset to overcome the biased effects
that affect the accuracy of classification. Likewise, for each NULL in an attribute,
we use the attribute’s existing values. Cheng et.al.[8] used a clustering algorithm to
cluster data and calculate coefficient values between different attributes producing
the minimum average error.

Interactions of functional dependencies and other integrity constraints with null
values have long been studied. Early investigations focused on “fixing” the database
using the Chase procedure, such as Grahne did in [15]. Imlienski and Lipski [19]
also investigated the properties of Chase concerning NULL’s. Kiss and Márkus [21],
provided a chase procedure for functional and inclusion dependencies to provide
graph manipulation rules for dependency inference.

The two most used interpretations of NULL’s are “value unknown at present”
and “no information”. The first one leads to possible world semantics that is NULL’s
are substituted by domain values to obtain total tables. A three-valued model of
FD satisfaction is given by Vassilou [27]. It takes into account that all possible
words of a table T are considered and a functional dependency either holds, does
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not hold or may hold on T . This latter means that in some possible worlds it
holds, and in some other ones it does not hold. Fuzzyness is naturally associated
with imperfect information. For fuzzy relational databases, the truth value of FD’s
was studied by Achs and Kiss in [1] Levene and Loizou defined weak and strong
functional dependencies based on possible world concept. A weak FD holds in some
of the possible worlds and a strong FD holds in all possible worlds. A sound and
complete axiom system is given for them in [25].

Both of unknown, as well as non-existing data can be treated by the “no in-
formation” approach. Lien [26] defined functional dependencies that hold if strong
similarity on the LHS implies equality on RHS. The equality here means that when
two tuples are equal on an attribute, if the attribute value is NULL in one tuple,
then the other tuple must also be NULL in the same attribute. This dependency is
same as the possible FD (p-FD) of Köhler and Link [23]. The novelty of the latter
paper is the concept of certain functional dependencies. A c-FD holds if the weak
similarity on LHS implies equality on the RHS, and the equality here is defined
in the same way as the equality of attribute values on RHS of p-FD’s. An axiom
system for functional dependencies with NULL’s was given by Atzeni and Morfuni
[6], but the drawback was that they allowed no NULL’s on the LHS.

Levene and Loizou introduced weak and strong FD’s, where weak (strong) func-
tional dependency is satisfied if it holds in some (every) possible world [25]. We
also used the possible world semantics to introduce our strongly possible functional
dependency and it fits between weak and strong FD’s. Let suppose we have a table
instance with at least one non-NULL value is there in each attribute, then a c-FD
X w → Y satisfaction implies the satisfaction of the spFD X →sp Y . But the
satisfaction of X →sp Y does not imply the satisfaction of the p-FD X s → Y .
For example, Y ear →sp Credits is satisfied in Table2a, while Y ear s → Credits is
violated. Example 1 shows a brief comparison of the different functional dependen-
cies. This example is shown in [4], we repeat it here after fixing a typo appearing
in the conference version.

Example 1. Let T be the following SQL table.

employee dept manager salary

Knuth NULL Chomsky 100,000

Turing CS von Neumann NULL

Turing NULL Gödel NULL

In the following table, we compare the six types of FD’s shown in the SQL table:
3-valued [27], weak and strong [25], possible [26], certain [23] and strongly possible
functional dependencies (spFD’s).
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3-valued weak strong possible certain spFD

e → d unknown T F F F T

e → m F F F F F F

e → s unknown T F T T T

d → d T T T T F T

d → m unknown T F T F F

m → e T T T T T T

m → d T T T T T T

Possible and certain keys were introduced by Köhler et. al. [22], such that a
set K of attributes is a possible (certain) key if it is a key in some (every) possible
world. The ”strongly possible” concept of the present paper is in between of these
two, where a strongly possible world is a possible world also. As possible worlds
may use any value from an attribute domain to substitute a NULL it may allow
an infinite set of values. On the other hand, strongly possible worlds allow only a
finite set of values and created from finite attribute domains. Some of the results
in [22] assume that some attribute domains are infinite. In this paper, we study
the dependencies without that assumption.

Imielinski [18] introduced the construction of OR-relations which is another
closely related concept to our spFD’s. An OR-tuple over schema R(A1, A2, . . . , An)
is a mapping t : R → ∪n

i=1P0(dom(Ai)) such that t[Ai] ∈ P0(dom(Ai)), where
P0(X) is the collection of finite subsets of set X. An OR-relation r is a bag of OR-
tuples and a possible world r′ for r is a collection of tuples t′ such that t′[Ai] ∈ t[Ai]
for all t ∈ r. A wFD �X → Y is satisfied by an OR-relation r iff there is a possible
world r′ of r such that r′ |= X → Y . Hartmann and Link already noted in [17]
that Union rule does not hold for wFD’s in OR-relations. Our strongly possible
world concept can be modelled by OR-relations in such a way that if t[Ai] = ⊥ for
some tuple in an SQL table T , then t[Ai] is replaced by the OR-set V D(Ai), the
visible domain of Ai. So strongly possible worlds and spFD’s can be considered as
special cases of possible worlds of OR-relations and wFD’s in them. Our analysis
shows, that most of the classical implication rules, axioms do not hold even in this
special case.

Finally, Wei and Link [28] aim to define a solid generalization of functional
dependencies that do not rely on the interpretation of NULL’s. Also, the two papers
[23, 28] studied the databases normalization based on the appropriate functional
dependencies. It is a future research topic on how our spFD’s could be applied
for normalization, as normalization is important to eliminate redundancy that may
cause inconsistency at updates.
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4 Algorithmic and complexity questions

In this section the complexity questions connected to strongly possible keys and
strongly possible functional dependencies are studied. The main problems are NP-
complete in general, but several important special cases can be solved in polynomial
time.

4.1 Strongly possible keys

Following is the algorithmic question we study here. Let T be a SQL table and
Σ be a collection of strongly possible key constraints, does T |= Σ hold? We may
assume, without loss of generality, that there exists at least one spWorld for every
treated table. This is a reasonable assumption, as the non-existence of an spWorld
happens only if a table contains only NULL’s in an attribute.

In [3], an algorithm is given using bipartite matchings for the case when a single
spKey needs to be checked, i.e, Σ = {sp〈K〉}. If K = {A1, A2 . . . Ab}, then the
running time of that algorithm is O(|R|(|T |+ |T �|))+O((|T |+ |T �|)|E|), where T �

is the set of total tuples T � = {t� ∈ Πb
i=1V Di : ∃t ∈ T such that t[K] ∼w t�[K]}.

However, the size of T � can be an exponential function of size of T . In [4], we gave
a polynomial-time refinement of that algorithm. The refined algorithm states that
if a single spKey sp〈K〉 is to be checked, then considering T |K is enough, because
of K is a key if and only if the tuples are pairwise distinct on K. Next proposition
was introduced in [3], it gave a sufficient condition to determine the satisfaction
of a given spKey. Let us assume that T � ⊆ V D1 × V D2 × . . . × V Db is defined
by T � = {t� ∈ V D1 × V D2 × . . . × V Db : ∃t ∈ T : t[K] ∼w t�}, and define a
bipartite graph G = (T, T �;E) with {t, t�} ∈ E ⇐⇒ t[K] ∼w t�[K]. Note that we
use here the standard bipartite graph notation, T and T � are the partite classes.
Propositions 1, 2 and 3, Theorem 2, and Algorithm 1 were proven in [4]. We repeat
them here to be self-contained.

Proposition 1. T |= sp〈K〉 holds if and only if there exists a matching in G =
(T, T �;E) covering T .

We may resort to generating only part of T � to ensure that the algorithm will
run in polynomial time. Let T = {t1, t2 . . . tm} and �(ti) = |{t� ∈ V D1×V D2×. . .×
V Db : t

� ∼w ti[K]}|. Note that �(ti) =
∏

j : ti[Aj ]=⊥ |V Dj |, then these values can be
calculated by scanning T once and using appropriate search tree data structures to
hold values of visible domains of each attribute. Sort tuples of T in non-decreasing
�(ti) order, i.e. assume that �(t1) ≤ �(t2) ≤ . . . ≤ �(tp). Let j = max{i : �(ti) < i}
and Tj = {t1, t2, . . . tj}, and furthermore, T �

j = {t� : ∃t ∈ Tj : t� ∼w t[K]} ⊆
V D1 ×V D2 × . . .×V Db. Note that |T �

j | ≤ 1
2j(j− 1). If ∀i = 1, 2, . . . ,m : �(ti) ≥ i,

then define j = 0 and T �
j = ∅.

Proposition 2. T |= sp〈K〉 holds if and only if j = 0 or there exists a matching
in G′ = (Tj , T

�
j ;E|Tj×T�

j
) covering Tj.
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Proposition 2 was proven in [4] and it gives the basis of a polynomial-time
algorithm to determine whether T |= sp〈K〉 holds or not.

Algorithm 1 Verifying T |= sp〈K〉

Input: Table T over schema R, K ⊆ R
Output: Strongly possible world T � showing T |= sp〈K〉 if exists

1: procedure spKey(item T , item R, item K)
2: Calculate �(t) : t ∈ T
3: Sort Ti in non-decreasing �(ti) order
4: j ← max{i : �(ti) < i}
5: Construct bipartite graph G′ = (Tj , T

�
j ;E|Tj×T�

j
)

6: M = MaxMatching(G′)
7: if |M | < j then return T 
|= sp〈K〉
8: T � ← M ∩ T �

j

9: for k = j + 1 to |T | do
10: Generate t�k 
∈ T � such that tk ∼w t�k
11: T � ← T � ∪ {t�k}
12: end for
13: return T �

14: end if
15: end procedure

Algorithm 1 was introduced in [4] and its running time is O(|K| · |T | log |T | +
|T |5). Theorem 2 shows that the spKey problem is NP-complete in general, and its
proof is in [4]. We reduced the problem of deciding whether T |= Σ for a collection Σ
of spKey constraints to the problem of finding the maximal common independent
set of three or more matroids in [3]. This matroid intersection problem is NP-
complete, however the reduction given was not one-to-one, so it did not prove, just
hinted the NP-completeness of spKey problem. Finally, by modifying an argument
of [22], we could prove the following theorem in [4] by a Karp-reduction of 3SAT
to our problem.

Theorem 2. The strongly possible key satisfaction problem is NP-complete.

In some special cases, T |= Σ can be verified in polynomial time, where Σ is a
collection of strongly possible key constraints, as the following Proposition shows.

Proposition 3. Let us assume that T is a table over schema R, furthermore let Σ =
{sp〈K1〉, sp〈K2〉, . . . , sp〈Km〉} be a collection of spKey constraints. If Ki ∩Kj = ∅
for i 
= j, then T |= Σ can be decided in polynomial time.
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4.2 Graph theoretical characterization of strongly possible
functional dependencies

In this section, we introduce a graph-theoretical characterization that determines
when T |= X →sp Y . Recall that for a table T over Schema R T |= X →sp

Y if and only if there exists an spWorld T ′ of T such that T ′ |= X → Y . If
T = {t1, t2, . . . , tp} and T ′ = {t′1, t′2, . . . , t′p} with ti ∼w t′i, then t′i is called an
sp-extension or in short an extension of ti. Let X ⊆ R be a set of attributes and
let ti ∼w t′i such that for each A ∈ R : t′i[A] ∈ V D(A), then t′i[X] is a strongly
possible extension of ti on X. We exclude any attribute with all NULL values,
because the visible domain for such attribute is the empty set. We recall the weak
similarity graph [4], as a useful tool in investigations of strongly possible functional
dependencies (spFD’s in short).

Definition 4. Let T = {t1, t2, . . . tp} be a table (instance) over schema R. The
weak similarity graph GY with respect to Y ⊆ R is defined as GY = (T,E), where
{ti, tj} ∈ E ⇐⇒ ti[Y ] ∼w tj [Y ].

Theorem 3 characterizes using weak similarity graphs when T |= X →sp Y
holds. The theorem was proved in [4].

If T |= X →sp Y , then there exists an spWorld T ′ of T such that T ′ |= X → Y .
This latter one holds iff whenever t′1[Y ] 
= t′2[Y ] then t′1[X] 
= t′2[X] is also satisfied.
Now, if t1, t2 ∈ T are such tuples that t1[Y ] 
∼w t2[Y ], then certainly t′1[Y ] 
= t′2[Y ]
holds in any spWorld T ′. That is, in order to T |= X →sp Y hold t′1, t

′
2 must also

satisfy t′1[X] 
= t′2[X]. Recall that by Definition 4, t1[Y ] 
∼w t2[Y ] holds exactly
when {t1, t2} is an edge in the complement of the weak similarity graph GY . We
may think about t′i[X]’s as colors assigned to vertices of GY and then we obtain
that this coloring must be proper. Now colors that can be assigned to vertices come
from lists special to vertices, namely from the sets strongly possible extensions of t
on X. Let T be a table over schema R, t ∈ T and X ⊆ R. t′ is a strongly possible
extension of t on X if t[X] ∼w t′[X], t′ is X-total and ∀Xi ∈ X : t′[Xi] ∈ V DXi

.
The following theorem introduced in [4] characterizes when T |= X →sp Y holds
using weak similarity graphs. It tells us that the existence of proper coloring of GY

using the lists determined by the strongly possible extensions on X is a necessary
and sufficient condition for T |= X →sp Y to hold.

Let G(V,E) be a graph and L : V → 2N be a mapping that assigns each vertex
a list of colors L(v). A list coloring of G using lists {L(v) : v ∈ V } is a mapping
c : V → ⋃

v∈V L(v) such that c(v) ∈ L(v) and c(u) 
= c(v) if {u, v} ∈ E. We use
Theorem 3 in proofs of sound interference rules.

Theorem 3. Let T = {t1, t2 . . . tm} be a table over schema R. For X,Y ⊆ R,
T |= X →sp Y holds iff GY can be list colored using lists {t1i , t2i . . . trii } for ti ∈ T ,

where GY is the complement of the weak similarity graph on Y and tji ’s are the
strongly possible extensions of ti on X.

Table 3 illustrates that sets of tuples that are pairwise weakly similar on Y form
a weak similarity clique. Now, tuples from a given clique have a unique non-NULL
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value in each attribute of Y , unless they all contain NULL in that attribute. In both
cases, there is a way to extend each tuple that tuples in the same clique become
identical on Y . So those tuples that are in one weak similarity clique on Y can
be list colored by the same color on X so that T |= X →sp Y . Note that weak
similarity cliques of GY are independent vertex sets in GY .

Table 3: Color classes and weak similarity cliques.

X Y[
Same color

] [
Weak Similarity Clique

]

[
Same color

] [
Weak Similarity Clique

]

[
Same color

] [
Weak Similarity Clique

]

4.3 Complexity of strongly possible functional dependencies

List coloring problem is NP-complete even if all lists have length three [24]. This
suggests that deciding whether a given spFD is satisfied in an SQL table is NP-
complete even if all the tuples have a maximum of three extensions. However, it
is not obvious the ”intractable cases” of list coloring problem really correspond to
spFD-satisfaction, so we give a direct proof of NP-completeness.

Definition 5. The spFD-Satisfaction problem is defined as follows.

Input: An SQL-table T over schema R, X,Y ⊆ R.

Question: Does T |= X →sp Y hold?

Theorem 4. The spFD-Satisfaction problem is NP-complete.

Proof. spFD-Satisfaction is in NP, since an spWorld T ′ of T such that T ′ |=
X → Y is a good witness. It is clearly of polynomial size of the input and whether
T ′ |= X → Y holds can be checked in polynomial time by pairwise comparisons of
tuples.
In order to prove that spFD-Satisfaction is NP-hard a Karp-reduction from
3-Color to spFD-Satisfaction is given. Let G = (V,E) be an input of 3-
Color with V = {v1, v2, . . . , vn}. An SQL table T is constructed over schema
R = {A0, A1, . . . , An} of n+ 1 tuples and X = {A0} and Y = {A1, A2, . . . , An} is
set so that the complement GY of the weak similarity graph on Y is isomorphic
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to G plus three isolated vertices. Let t1, t2, . . . , tn be defined by induction on i as
follows. t1[A1] = 1. If t1, t2, . . . , ti are defined for A1, A2, . . . , Ai, then let

ti+1[Aj ] =

⎧⎨
⎩ ⊥ if 1 ≤ j ≤ i

1 if j = i+ 1

furthermore, for j = 1, 2, . . . , i

tj [Ai+1] =

⎧⎨
⎩ 2 if {vj , vi+1} ∈ E(G)

⊥ if {vj , vi+1} 
∈ E(G)

Finally, let tn+k be defined for k = 1, 2, 3 as tn+k[A0] = k, tn+k[Aj ] = ⊥ for
j = 1, 2, . . . , n. Obviously, T can be constructed from G in polynomial time. Our
claim is that G is 3-colorable iff T |= X →sp Y . Indeed, tn+k for k = 1, 2, 3 are
isolated vertices in GY , so GY is list-colorable with extensions of tj over X iff GY

restricted toW = {t1, t2, . . . , tn} is list-colorable. Observe that GY |W is isomorphic
to G = (V,E), Indeed, for 1 ≤ i < j ≤ n ti[Y ] 
∼w tj [Y ] if {vi, vj} ∈ E(G), because
ti[Aj ] = 2 and tj [Aj ] = 1, on the other hand if {vi, vj} 
∈ E(G), then ti[Aj ] = ⊥
and tj [Aj ] = 1, ti[Ai] = 1 and tj [Ai] = ⊥, furthermore ti[A�], tj [A�] ∈ {⊥, 2} for
� 
∈ {i, j}. Finally, V DX = {1, 2, 3}, so the list of extensions of ti on X is {1, 2, 3}
for all 1 ≤ i ≤ n+3. Thus any proper list coloring of GY with extensions of ti on X
gives a 3-coloring of G, and vice versa, any 3-coloring of G can easily be extended
to a proper list coloring of GY with extensions of ti .

However, this problem can be solved in polynomial time for some special cases.
Complete graphs can be reduced to the verifying spKey problem, as the following
proposition shows.

Proposition 4. T |= X →sp Y can be decided in polynomial time if GY is a
complete graph.

Proof. As GY is a complete graph, then the tuples are pairwise distinct by some
non-NULL value on Y , then, all the tuples in T should be pairwise distinctly colored
on X to satisfy the spFD X →sp Y . That is, T |= X →sp Y ⇐⇒ T |= sp〈X〉 that
can be checked in polynomial time using Algorithm 1.

Greedy algorithm can be applied to find a proper list coloring of a graph G =
(V,E) if for ∀v ∈ V the list size of v is at least dG(v) + 1. This can naturally be
applied in our context, as well, that is T |= X →sp Y can be decided in polynomial
time if ∀t ∈ T , number of all extensions of t on X is larger than the number of
weakly similar tuples to t on Y .
In order to apply list coloring, first the lists should be generated. However, the
number of X-extensions of t of a tuple t ∈ T may easily be exponential function of
the size of the input as it was seen in Section4.1. This obstacle can be overcome
by the following observation since it is enough to generate at most Δ(GY ) + 1
X-extensions for each tuple t.
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Proposition 5. There exists a list coloring with the lists generated for each tuple
of size less than or equal Δ(GY )+1 if and only if there exists list coloring with full
lists.

Proof. ⇒ Indeed, same list coloring can be used.
⇐ Assume there exists list coloring with full lists. And let {t1, t2, . . . , tr} be set of
tuples with number of extensions on X at most Δ(GY ) and let {tr+1, tr+2, . . . , ts}
be the set of other tuples. Take Δ(GY ) + 1 elements lists for {tr+1, tr+2, . . . , ts}.
Then, keep the coloring of {t1, t2, . . . , tr} and then color {tr+1, tr+2, . . . , ts} using
greedy algorithm.

If GY is a tree, the list coloring problem can be solved using dynamic program-
ming techniques in polynomial time [20]. Generally, list coloring problem restricted
to graphs of maximum degree two, such as cyclic graphs, is polynomially solvable
[24].

Weak similarity graphs can be used on the LHS of an spFD in a special case.
Namely, if components of weak similarity graph GX with respect to X are cycles
of length at least 4, then T |= sp〈X〉, in particular for any Y ⊆ R, T |= X →sp Y
holds.

Proposition 6. If each connected component C of the weak similarity graph GX

with respect to X is a cycle of length ≥ 4, then sp 〈X〉 holds.

Proof. Let T = {t1, t2, . . . , tp} be a table over schema R such that each component
C of the weak similarity graph GX with respect to X is a cycle of length ≥ 4. We
need NULL-free tuples from t′i ∈ V D1 × V D2 × . . .× V Dn such that ti[X] ∼w t′i[X]
and t′i[X]’s are pairwise distinct in order to sp 〈X〉 hold. Since two tuples can only
have identical extensions on X if they are weakly similar on X, it is enough to
construct t′i[X]’s for each component of GX separately. If this single component is
a circle (t1[X] ∼w t2[X] ∼w t3[X] ∼w . . . ∼w tk[X] ∼w t1[X]), then any extension
of t2 is distinct on X from any extensions of t4 . . . tk. There exist A ∈ X such that
t1[A] 
= t3[A] and both t1[A], t3[A] 
= ⊥, because t1[X] 
∼w t3[X]. We need to make
t′2 different from t′1 and t′3, so that we can set t′2[A] = t3[A] and this distinguishes
it from t′1. Applying the same idea around the cycle, ti[X] ∼w ti+1[X] ∼w ti+2[X]
will make t′i and t′i+1 distinct.

5 Implications among strongly possible functional
dependencies

This section treats the implication properties of spFD’s. The cases when one side
of the dependency is a fixed attribute set is characterized, then axioms and rules
of weak, strong, possible and certain FD’s are analysed with respect to spFD’s. In
addition to that, the interactions with different key concepts are treated. Finally,
a complete characterization of the singular attribute case is given.
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5.1 Strongly possible functional dependencies with one side
fixed

For T |= X →sp Y , fixing the left-hand side of the spFD, makes the right-hand sides
form a down-set, i.e, if Y ′ ⊂ Y , then T |= X →sp Y ′ also holds. We introduced
Proposition 7 in a proceedings paper [4], we repeat it here to fix an error in the
proof of that version. It shows that for fixed left-hand side of spFD’s, there is no
other restriction for the right-hand sides than forming a down-set.

Proposition 7. Let (R,RS) be a schema and X 
⊆ RS. Let Y be a down-set of
subsets of R\X. Then there exists a table T over (R,RS) such that T |= X →sp Y
holds iff Y ∩ (R \X) ∈ Y.

Proof. Let the maximal elements of Y be Y1, Y2, . . . , Ys, that is Y = {A : ∃i A ⊆ Yi}
and Yi 
⊆ Yj for i 
= j. Let A0 ∈ X \RS be a fixed attribute, and A1, A2, . . . An be
the other attributes of R. Table T contains tuples t0, t1, . . . ts such that

t0[Ai] =

⎧⎨
⎩ ⊥ if i = 0

0 if i > 0

and

ti[Aj ] =

⎧⎨
⎩ 0 if Aj ∈ Yi ∪X

i if Aj 
∈ Yi ∪X
for i = 1, 2, . . . , s and j = 1, 2, . . . , n

finally ti[A0] = i for i = 1, 2, . . . , s. So, the table is constructed as follows.

A0 A1 . . . An

⊥ 0 . . . 0

i 0 . . . 0 i . . . i

︸ ︷︷ ︸
Yi ∪X

Y ∈ Y ⇐⇒ ∃1 ≤ iY ≤ s : Y ⊆ YiY , so FD X → Y holds in the spWorld
obtained by replacing ⊥ in t0[A0] by iY , because only tuples t0 and tiY can agree
in X. On the other hand, if Y 
∈ Y, then for every 1 ≤ i ≤ s there exists an
attribute Aji ∈ Y \ Yi, so whichever element i ∈ V DA0 is put in place of ⊥ in
t0[A0], we get that t0[X] = ti[X], but t0[Y ] 
= ti[Y ], hence T 
|= X →sp Y .

We can characterize the case of fixed right-hand side of an spFD as well, as it
is clear that for a fixed set Y ⊂ R, the collection of attribute sets X = {X : T |=
X →sp Y } forms an up-set, where T is a table over a schema R. However, this
condition is the only one we have. This is shown in Proposition 8 and Theorem 5
proved in [4]. We repeat them here for the sake of completeness.
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Proposition 8. Let (R,RS) be a schema, Y ⊂ R be a fixed set of attributes,
furthermore let X be an upset of subsets of R \Y . Then there exists a table T over
(R,RS) such that T |= X →sp Y ⇐⇒ X ∈ X .

The proof uses the Armstrong instance construction for strongly possible keys
from [3].

Theorem 5. Suppose that Σ = {sp 〈K〉 : K ∈ K} is a collection of spKey con-
straints such that if |K| = 1, then K ⊆ RS. Then, there exists an Armstrong table
for (R,RS ,Σ).

5.2 Strongly possible functional dependencies axiomatisa-
tion

The first steps towards a possible axiomatisation of spFD’s were given in [5]. We
studied and analyzed the axioms of weak/strong FD’s given by Levene and Loizou
[25] and also the axioms of certain FD’s given by Köhler and Link [23] in context
of spFD’s. The investigation showed that some of these axioms are not sound for
spFD’s. Table 4 shows the axioms that are still sound for spFD’s and it also shows
several possible weakenings and restrictions that keep soundness for those that are
not. All proofs and counterexamples are detailed in [4, 5]. We repeat them in this
paper to be self-contained.

We may conclude from Table 4 that more than one spFD in the premise of a
rule usually cause problems in soundness. This is caused by the fact that a single
spWorld may not satisfy the different spFD’s due to the limitations of visible do-
mains. This problem must be handled for a complete axiomatization. Particularly,
the fact that composition rule is not sound in general makes usual proof methods
of completeness virtually unusable.

Table 4: spFD Axioms Soundness

Axiom spFD Soundness

Reflexivity Sound: If Y ⊆ X ⊆ R then T |= X →sp Y

Augmentation Sound: If T |= X →sp Y and W ⊆ R, then T |= XW →sp YW

Union

Not Sound: If T |= X →sp Y and T |= X →sp Z,
then T |= X →sp Y Z
Possible weakenings are:

• Strong FD Mixed-union:
If T |= �X → Y and T |= X →sp Z, then T |= X →sp Y Z
or if T |= X →sp Y and T |= �X → Z, then T |= X →sp Y Z

• Certain FD Mixed-union:
If T |= X →sp Y and T |= X w → Z, then T |= X →sp Y Z

• NULL-free union:
If T |= X →sp Y and T |= X →sp Z and X ⊆ RS ,
then T |= X →sp Y Z
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Transitivity

Not Sound: If T |= X →sp Y and T |= Y →sp Z,
then T |= X →sp Z
Possible weakenings are:

• Strong FD Mixed-transitivity:
If T |= X� → Y and T |= Y →sp Z or if T |= X →sp Y and
T |= �Y → Z, then T |= X →sp Z.

• Certain FD Mixed-transitivity:
If T |= X →sp Y and T |= Y w → Z, then T |= X →sp Z

• Sp-transitivity:
If T |= X →sp Y and T |= Y →sp Z, and Y ⊆ Rs,
then T |= X →sp Z

Pseudo-
transitivity

Not Sound: If T |= X →sp Y and T |= Y Z →sp V ,
then T |= XZ →sp V
or if T |= X →sp Y Z and T |= Y →sp V , then T |= X →sp ZV
Possible weakenings are:

• Strong FD Mixed-pseudo-transitivity: If any of the given
spFD’s is strong FD, it is sound.

• Certain FD Mixed-pseudo-transitivity I:
If T |= X →sp Y and T |= XY w → Z, then T |= X →sp Z

• Certain FD Mixed-pseudo-transitivity II:
If T |= X →sp Y and T |= Y Z w → V , then T |= XZ →sp V

• NULL-free pseudo-transitivity: If T |= X →sp Y Z and
T |= Y →sp V and Y ⊆ RS , then T |= X →sp ZV .

Composition

Not Sound: If T |= X →sp Y and T |= A →sp B,
then T |= XA →sp Y B
Possible weakenings are:

• Mixed composition: If T |= �X → Y and T |= A →sp B, or
if T |= X →sp Y and T |= �A → B, then T |= XA →sp Y B.

• NULL-free composition: If T |= X →sp Y and T |= A →sp B
and Y A ⊆ RS , then T |= XA →sp Y B.

• Disjoint composition: If T |= X →sp Y and T |= A →sp B
and X ∩A = ∅, then T |= XA →sp Y B.

Decomposition Sound: If T |= X →sp Y Z, then T |= X →sp Y and T |= X →sp Z.

5.2.1 sp-keys and sp-FD/c-FDs interaction

For a relation R, the ordinary functional dependency X → R implies that X is a
key in R, because duplicate rows are prohibited in the relational model [9]. On the
other hand, for an SQL table T , the spFD X →sp T does not imply the spKey
sp〈X〉, because duplicate rows are permitted in the bag semantics of data in SQL
tables.
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We study interaction between sp-keys, certain keys, spFD’s and c-FDs in the
following.

• sp-key/spFD Weakening: sp〈X〉
(X→spY ) ∀Y ⊆ R

Indeed, if there exists an spWorld such that all the tuples are pairwise distinct
on X, then X → R holds in that spWorld.

• certain key/spFD Transitivity:
(X→spY ) c〈XY 〉

sp〈X〉
The certain key c 〈XY 〉 implies that all the tuples are not pairwise weakly
similar on XY . Then, for every two tuples, they either have distinct and
non-NULL values on X or on Y . But we have X →sp Y , then GY can be list
colored by X extensions, and we can extend the extensions of this coloring in
any way to R. So, by using this coloring, sp 〈X〉 is satisfied.
However, the sp-key/FD Transitivity true in following form is not sound:
(X→spY ) sp〈XY 〉

sp〈X〉 . The reason is the fact that there will be a possibility of

encountering a weak similarity on X and distinctness on Y , as illustrated in
Table 5.

Table 5: sp-key/spFD Transitivity dissatisfaction

X Y

1 1 1

1 ⊥ 1

1 2 2

5.3 spFDs for singular attributes

Substituting a value from the visible domain in place of a ⊥ produces a duplication
in that attribute, since for a singular attribute, the visible domain represents all the
possible replacements for any ⊥ occurrence. For example, in Table 6, all possible
substitutions of the NULL in the second tuple on X are {1, 2, 3}, as they form V DA.
A singular attribute can only be an sp-key if there are no ⊥’s in that attribute.
However, spFD’s are possible between singular attributes with NULL’s. Any occur-
rence of a NULL in the LHS of an spFD for a singular attribute causes a duplication,
and this requires a corresponding duplication possibility on the RHS to satisfy the
spFD. In the example in Table 6, X →sp Y holds because, in the first and the third
tuples, there is a duplication possibility on Y for the NULL replacement on X in the
second tuple. On the other hand, Y 
→sp X holds, because any replacement for the
NULL in the third tuple on Y will not get a corresponding duplication possibility
on X.
In the present subsection, we study the case of singular attributes as a special case
of spFD implication. The following proposition shows a bidirectional property for
singular attributes spFD.
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Table 6: spFD for Singular Attributes

X Y

1 1

⊥ 1

2 ⊥
3 2

Proposition 9. For singular attributes X and Y , if T |= X →sp Y and |V DX | =
|V DY |, then T |= Y →sp X

Proof. We may assume without loss of generality that V DX = {1, 2, . . . �}. Since
T |= X →sp Y , for every i ∈ {1, 2, . . . �} if t ∈ T is a tuple, then t[X] = i implies
that t[Y ] = ai or t[Y ] = ⊥. Also, let {b1, b2, . . . , br} ⊂ V DY be those pairwise
distinct visible domain values that satisfy t[Y ] = bj ⇒ t[X] = ⊥. Assume that for
1 ≤ i ≤ k we have non-NULL ai such that there exists a tuple t with t[X] = i and
t[Y ] = ai, that is, for k+1 ≤ j ≤ � we have t[X] = j ⇒ t[Y ] = ⊥. Table 7 shows the
possible types of tuples on {X,Y } If ai 
= aj for i 
= j, then by |V DX | = |V DY | we
have that r = �− k and the NULL’s can easily be substituted in these two columns
so that 1 ≤ i ≤ k is matched with ai and k+1 ≤ j ≤ � is matched with bj−k so the
two columns are basically identical, that is Y →sp X holds. On the other hand,
if ai = aj for some i 
= j, then we have that r > � − k since the sizes of divisible
domains of X and Y are the same. Consider a spWorld T ′ of T that satisfies
T ′ |= X → Y functional dependency. Such a T ′ exists, since T |= X →sp Y . Now,
the NULL’s in the tuples that have value bj in Y can only be substituted by values
from {k + 1, . . . �}, because for 1 ≤ i ≤ k there are tuples with non-NULL values
t[X] = i and t[Y ] = ai. However, as r > � − k, we must have 1 ≤ u < v ≤ r and
k + 1 ≤ j ≤ � so that we have two tuples t, t′ with t[X] = t′[X] = j and t[Y ] = bu
and t′[Y ] = bv contradicting to T ′ |= X → Y .

Example 2. The table below shows an instance T with T |= X →sp Y and
|V DX | = |V DY | = 2. Value 2 in attribute X is shown only in t4 where t4[Y ] = ⊥.
Then, to have |V DX | = |V DY |, we have value a2 in attribute Y is shown only
in tuples having ⊥ on X. Then, X and Y are two singular attributes satisfy a
bidirectional implication property.

Proposition 10. For singular X and Y , if T |= X →sp Y , then|V DX | ≥ |V DY |.

Proof. Let T ′ be a spWorld of T that satisfies functional dependency X → Y that
exists by T |= X →sp Y . Observe that the set of values appearing in columnX of T ′

is V DX , while that of values appearing in column Y is V DY . Since if t
′
1[X] = t′2[X]

implies t′1[Y ] = t′2[Y ] for any t′1, t
′
2 ∈ T ′, the mapping f : V DY → V DX given by

f(v′) = v if there is a tuple t′ ∈ T ′ such that t′[X] = v, t′[Y ] = v′ is well defined
and is an injection.
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In the next proposition, we show the bidirectional implication of the spFD in
the singular attributes directed graph of spFD’s.

Proposition 11. Let T be an instance over the relation R. If the spFD’s between
singular attributes Xi ∈ R, for i = 1, 2 . . . , w, form a directed circle in the spFD
graph, that is T |= Xi →sp Xi+1 and T |= Xw →sp X1. Then the reverse direction
of the spFD circle also holds in T , i.e. T |= Xi+1 →sp Xi and T |= X1 →sp Xw.

Proof. As the spFD’s form a circle in the spFD graph, then all the attributes have
the same number of values in their visible domains. Indeed, by T |= Xi →sp

Xi+1, we have |V DXi
| ≥ |V DXi+1

| for any i, and by T |= Xw →sp X1, we have
|V DXw

| ≥ |V DX1
|. So, |V DXi

| = |V DXi+1
| for any i. Hence, by Proposition 9,

the other direction for each spFD is also satisfied by T .

The bidirectional implication of the spFD between the singular attributes does
not show that the complements of their weak similarity graphs are the same, For
example, Y →sp Z and Z →sp Y hold in the table below, but GY 
= GZ . On the

Table 7: Possible types of tuples

X Y

1 a1

1 ⊥
2 a2

2 ⊥
...

...

k ak

k ⊥
k + 1 ⊥
...

...

� ⊥
⊥ a1
...

...

⊥ ak

⊥ b1
...

...

⊥ br
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X Y

t1 1 ⊥
t2 ⊥ a2

t3 1 a1

t4 2 ⊥
t5 ⊥ a2

t6 ⊥ ⊥

other hand, X →sp Y and X →sp Z hold, but X 
→sp Y Z.

X Y Z

1 1 ⊥
⊥ 2 1

2 ⊥ 2

Propositions 9 and 11 allow us to introduce the following rule.

Digraph rule Let G = (R,E) be a directed graph If (Ai, Aj) ∈ E and Ai and
Aj are in the same strongly connected component of G, then (Aj , Ai) ∈ E
holds, as well.

Theorem 6. Let T be an SQL table over scheme R = {A1, A2, . . . , An}. If G =
(R,E) is a directed graph defined by (Ai, Aj) ∈ E ⇐⇒ T |= {Ai} →sp {Aj} for
attributes Ai, Aj ∈ R, then G = (R,E) satisfies the Digraph rule. Furthermore, for
every directed graph G = (R,E) that satisfies the Digraph rule there exists an SQL
table T such that (Ai, Aj) ∈ E ⇐⇒ T |= {Ai} →sp {Aj}.

The proof of Theorem 6 is based on a series of propositions.

Proposition 12. Let T be an SQL table over scheme R = {A1, A2, . . . , An} and let
G = (R,E) be the directed graph defined by (Ai, Aj) ∈ E ⇐⇒ T |= {Ai} →sp {Aj}
for attributes Ai, Aj ∈ R. Then G = (R,E) satisfies the Digraph rule.

Proof. Let (Ai, Aj) ∈ E be an edge of the directed graph defined by spFD’s between
singular attributes so that Ai and Aj are in the same strongly connected component
of G. This means that there exists a directed path Aj = X1, X2, . . . Xw = Ai in
G, thus together with edge (Ai, Aj) a directed cycle is obtained. So by Proposition
11, the other direction of the spFD’s hold, i.e T |= Aj →sp Ai.
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Proposition 13. Let G = (R,E) be a strongly connected graph that satisfies the
Digraph rule. Then there exists an SQL table T over schema R = {A1, A2, . . . , An}
such that (Ai, Aj) ∈ E ⇐⇒ T |= {Ai} →sp {Aj}. Furthermore, we may assume
that V D(Ai) = {1, 2} for all i = 1, 2, . . . , n in T and that if (Ai, Aj) 
∈ E, then
there exists two rows of T that agree and non-null in Ai and differ and non-null in
Aj.

Proof. Note that a strongly connected graph G = (R,E) satisfies the Digraph rule
iff (Ai, Aj) ∈ E ⇐⇒ (Aj , Ai) ∈ E. In particular, for any induced subgraph G′ =
(R′, E′) of G = (R,E) also satisfies the Digraph rule. We may assume without loss
of generality that (A1, A2) ∈ E. Let Gk = (Rk, Ek) be the subgraph of G = (R,E)
induced by Rk = {A1, A2, . . . , Ak}. We use induction on k to prove that there exists
an SQL table Tk over Rk such that (Ai, Aj) ∈ Ek ⇐⇒ Tk |= {Ai} →sp {Aj} and
if (Ai, Aj) 
∈ E, then there exists two rows of Tk that agree and non-null in Ai and
differ and non-null in Aj . The base case k = 2 is trivial

T2 =

A1 A2

1 1

2 ⊥
⊥ 2

so T2 = {t0, t1, t2} with t0[Aj ] = 1 for j ∈ {1, 2} and

ti[Aj ] =

⎧⎨
⎩ 2 if i = j

⊥ if i 
= j
.

Note that T2 has one entry 2 in each column, and these entries are in different rows,
in column Ai the 2 is in row ti. Now assume that Tk = {t0, t1, t2, . . . , tk} exists
for Gk = (Rk, Ek) such that column Ai has its only entry 2 in row ti and consider
Gk+1. We add new column Ak+1 and a new row (tuple) tk+1 to Tk as follows.

ti[Ak+1] =

⎧⎨
⎩ 1 if (Ak+1, Ai) 
∈ Ek+1

⊥ if (Ak+1, Ai) ∈ Ek+1

for i = 1, 2, . . . , k and tk+1[Ak+1] = 2.

Furthermore

tk+1[Ai] =

⎧⎨
⎩ 1 if (Ai, Ak+1) 
∈ Ek+1

⊥ if (Ai, Ak+1) ∈ Ek+1

for i = 1, 2, . . . , k
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Tk+1 =

A1 A2 . . . Ak Ak+1

1 1 1 . . . 1 1 1

2 ⊥ 1 . . . 1 1 1

⊥ 2 1 . . .⊥ 1 ⊥
1 ⊥ 2 . . . 1 ⊥ ⊥
...

...
. . .

...
...

⊥ 1 1 . . .⊥ 2 1

1 ⊥ 1 . . .⊥ 1 2

This table satisfies the requirements, since no Ai →sp Aj for 1 ≤ i, j ≤ k is
destroyed by row tk+1 by imputing 1’s in place of ⊥’s in the last row. Similarly,
if we impute a 2 in place of ⊥ in the last column in row ti and everywhere else
1’s in that column, then we get a strongly possible world showing Ak+1 →sp Ai.
Furthermore imputing 2 in place of ⊥’s in tk+1 we get Ai →sp Ak+1 exactly if
(Ai, Ak+1) ∈ Ek+1.

Proof. (of Theorem 6). We use induction on the number t of strongly connected
components of G = (R,E). The base case t = 1 is the statement of Proposition 13.
Let the strongly connected components of G = (R,E) be C1, C2, . . . , Ct, we may
assume without loss of generality, that they are in a topological sort order, that is
if (Ai, Aj) ∈ E and Ai ∈ Ci and Aj ∈ Cj , then i ≤ j. There exists an SQL table
Ti for each Ci such that {A,B} ∈ E(Ci) ⇐⇒ Ti |= A →sp B. Furthermore, by
Proposition 13 we have that entries in Ti are 1, 2,⊥, if A →sp B, 1’s in column A
match 1’s or ⊥ in B, and 2’s are not in the same row with a 1 in these 2 columns.
If A 
→sp B, then there exist two rows as following:

A B

1 1

1 2

Assume by induction, we have a table T t−1 for the subgraph induced by C1 ∪
C2 ∪ ...∪Ct−1. Construct T

t as follows. First position T t−1 and Tt on disjoint row
and column sets so that T t−1 is extended by 1’s in the columns of Ct. In the rows
of Tt put matrix M(r1, r2, . . . , rk), which has entry ri in its ith row for each column
of C1 ∪ C2 ∪ ... ∪ Ct−1, where r1, r2, . . . rk are pairwise distinct numbers, different
from anything appearing in T t−1:
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T t−1 1

M(r1, r2, . . . , rk) Tt

Then we add two rows, tA1 and tA2 for each A ∈ C1 ∪ C2 ∪ ... ∪ Ct−1 as follows,
∀B ∈ C1 ∪ C2 ∪ ... ∪ Ct−1 and for all X,Y ∈ Ct if A →sp X and A 
→sp Y .

A B X Y

tA1 rA ⊥ ⊥ 1

tA2 rA ⊥ ⊥ 2

where rA is a new value not appearing in T t−1, also rA 
= ri ∀i = 1, 2, . . . , k and if
A 
= B then rA 
= rB .

Let T t be the table obtained. We check pairs of attributes A,X that T t |=
A →sp X ⇐⇒ (A,X) ∈ E.
Case 1: Both A,X ∈ C1 ∪ C2 ∪ ... ∪ Ct−1. If (A,X) 
∈ E, then by the induction
hypothesis there exist two rows of T t−1 that are both not null in both A and X and
agree in A and differ in X, so T t 
|= A →sp X. On the other hand, if (A,X) ∈ E,
then the induction hypothesis provides an spWorld T ∗ of T t−1 that T ∗ |= A → X.
Columns A and X can be extended identically below T t−1 so that values on those
rows in A and X differ from values in T ∗, thus imputing any values in place of nulls
in the other columns we get an spWord T ′ of T t such that T ′ |= A → X.
Case 2: Both A,X ∈ Ct. If (A,X) 
∈ E, then by Proposition 13 there are two
rows of Tt that they are both 1 in A and take different values (1 and 2) in X, so
T t 
|= A →sp X. On the other hand, if (A,X) ∈ E, then there is an spWord of Tt

that has columns A and X identical. The rows above Tt are also identical in A and
X and these two columns can be extended identically below Tt, as well so that 1’s
in A match 1’s in X and the same holds for entries 2. Then other null values of T t

can be arbitrarily substituted from visible domains of the given attributes and an
spWord is obtained where A → X holds, that is T t |= A →sp X.
Case 3: A ∈ C1 ∪ C2 ∪ ... ∪ Ct−1 and X ∈ Ct. In this case (X,A) 
∈ E holds,
and there are two rows in T t−1 that have different not null values in A, but these
two rows take value 1 in X, so T t 
|= X →sp A. If If (A,X) 
∈ E, then rows tA1
and tA2 have identical values in A but different values in X, so T t 
|= A →sp X.
On the other hand, if (A,X) ∈ E, then the nulls of X in rows tA1 and tA2 can be
substituted by 1’s, similarly for any rows tB1 and tB2 that contain nulls in X. If
for some B ∈ C1 ∪ C2 ∪ ... ∪ Ct−1 the corresponding rows tB1 and tB2 contain 1
and 2 in column X (i.e. (B,X) 
∈ E ), then in tB1 we substitute 1 in column A,
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and in tB2 substitute ri in place of the null in column A, where ri is the value in
M(r1, r2, . . . , rk) that stands in the unique row of Tt which has a 2 in column X.
The rest of the nulls of T t can be imputed arbitrarily from the appropriate visible
domains, the spWord of Tt obtained satisfies functional dependency A → X.

6 Conclusions

Entering incomplete tuples are allowed into many recent systems’ databases. Sev-
eral research work studied the keys and functional dependencies constraints over
incomplete data, such as p/c-keys [22], spKeys [3], c-FDs [23], p-FDs[26], and s/w-
FDs [25].
This paper continued the research work started in [3] of strongly possible worlds of
SQL tables with NULL’s. We introduced a polynomial-time algorithm that checks
whether a given set K of attributes is a spKey or not. We also proved that it is NP-
complete to do the same for an arbitrary system of Σ = {sp〈Ki〉 : i = 1, 2, . . . n}
of spKey constraints. On the other hand, we showed that Σ can be verified in
polynomial time if the sets Ki are pairwise disjoint. Further, we studied strongly
possible functional dependencies that were introduced in [4] earlier, as a functional
dependency constraint in an SQL table containing NULL’s, using the visible do-
main concept. A graph-theoretical characterization using list coloring is given that
can be employed to check when a given spFD holds. This characterization allowed
us to prove that verifying whether a single spFD X →sp Y holds is NP-complete.
This is in sharp contrast with spKey problem, where a single key can be checked
in polynomial time.

In another paper [5] spFD properties and axioms analogous to those of weak and
strong FD’s given by Levene et.al. are introduced and suitable weakenings were
given for those axioms that are non sound for spFD’s. Here we summarize those
in a table for completeness and extend the investigation on sp-Keys and sp/c-FDs
together to obtain weakening and transitivity interaction rules.

Our study shows that the spFD’s between singular attributes have special prop-
erties, because the visible domain represents all the possible extensions for any NULL

occurrence. There is a natural correspondence between directed graphs and single
attribute spFD’s, a characterization of those directed graphs that may occur in this
context was given.

The properties of spFD’s listed form a step toward a possible axiomatization
of spFD’s. The main challenge of applying the visible domain is that different
spFD’s in the premises of rules may hold in different and incompatible strongly
possible worlds. More investigation is needed to find how to incorporate this into
the axiom system. A first step would be to resolve the following open problem.

Question 1. Let us assume that RS = ∅. Do Reflexivity, Augmentation, Decompo-
sition, Disjoint composition, and Digraph rule form a complete system of inference
rules for strongly possible functional dependencies in this case?

A further simplification that could be attacked using Theorem 3 is when we
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assume that there exist no spFD’s between singleton attributes. Our experience
shows that in that case spFD’s are mostly independent of each other, so the first
four rules of the previous question could be a complete set for inferences. Another
future research direction is defining the closures concerning spFD’s. Where the
usual definition of X+ = {A : T |= X →sp A} may result in T 
|= X →sp X+ for
spFD’s, as the union rule is not sound.
Finally, for database tables, lossless decomposition is an important application of
FD’s to eliminate redundancy and the possibilities of inconsistent updates. Köhler
and Link[23] and Wei and Link [28] show how to use c-FD’s or embedded FD’s for
that. Our future work will include a similar investigation for spFD’s.
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Verified Integration of Differential Equations

with Discrete Delay

Andreas Rauha and Ekaterina Auerb

Abstract

Many dynamic system models in population dynamics, physics and control
involve temporally delayed state information in such a way that the evolu-
tion of future state trajectories depends not only on the current state as the
initial condition but also on some previous state. In technical systems, such
phenomena result, for example, from mass transport of incompressible fluids
through finitely long pipelines, the transport of combustible material such
as coal in power plants via conveyor belts, or information processing delays.
Under the assumption of continuous dynamics, the corresponding delays can
be treated either as constant and fixed, as uncertain but bounded (fixed or
time-varying), or even as state-dependent. In this paper, we restrict the dis-
cussion to the first two classes and provide suggestions on how interval-based
verified approaches to solving ordinary differential equations can be extended
to encompass such delay differential equations. Selected close-to-life examples
illustrate the theory from the perspective of robustness analysis in engineering
applications.

Keywords: interval analysis, delay differential equations, uncertainty, dy-
namic systems, verified methods

1 Introduction

Delay differential equations arise in many areas of computational science and engi-
neering. Representative examples can be found in the area of modeling biological
processes [3], in the area of transport of incompressible substances [17], or in the
area of control engineering if signal processing or communication delays are con-
sidered [13]. The latter are especially important in the field of networked control
systems, where temporally varying communication delays are omnipresent [32].
Long-distance communications included in a closed-loop control framework belong
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to the same class of system models, with the most spectacular applications to be
found in the fields of tele-operation [1] in medical surgery (i.e., communication and
haptic device feedback between various places or even continents) or in space ex-
ploration where human operators take part as generators for reference signals or as
decision makers.

A common example of the use of delay differential equations is the representation
of the population dynamics in which species growth and mortality rates depend not
only on the current state values but also on state information that is delayed by a
certain finite time span. This helps to take into account the fact that each species
first has to reach fertility age before it takes part in the reproduction process [5,6,9].
As mentioned before, similar considerations appear not only in the mathematical
modeling of biological reproduction processes but also in epidemiological models
or in (technical) control systems. In control, delay equations are employed when
control actions depend additionally on certain previous state information due to
communication delays, non-negligible time spans for information acquisition and
processing, transport phenomena of physical substances or when control actions
are decided upon based on (averaged) previous state information.

In this paper, we restrict the discussion to the case in which the system model
has a single, finitely long, discrete delay. Then, the dynamic system model can be
stated as

ẋ (t) = f (t,x (t) ,x (t− τ∗)) , x (t) ∈ Rn , τ∗ ≥ 0 (1)

with
f : R× R2n �→ Rn . (2)

Aside from the initial condition

x (0) = x0 (3)

at the single point t = 0, knowledge about a state initialization function

x∗ (t) := x (t) (4)

for the time span −τ∗ ≤ t ≤ 0 is required to determine a unique solution. Through-
out this paper, we assume that the initialization function evaluated for t = 0 pro-
vides the same value as the point-valued initial condition x0, leading to a solution
x (t) that is continuous at t = 0. Moreover, the ∗ symbol consistently denotes exact
solutions to the simulation models under consideration and precisely known values
for the delay.

A typical floating-point solution procedure for such system models is the so-
called method of steps [33] in which the problem (1) is transformed into the non-
autonomous initial value problem

ẋ (t) = f (t,x (t) ,x∗ (t− τ∗)) , with x (0) = x∗ (0) , (5)

that is used to predict the temporal evolution of x(t) over the time interval t ∈
[0 ; τ∗] for the already known delayed state information x∗ (t− τ∗). For successive
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intervals of the length τ∗, the procedure can be continued by utilizing the result
from the previous time slice as the new initialization function.

This procedure for a floating point-based approximation of the solution to the
delay differential equation is restricted to the case in which the initial state is given
by a specific point in the state space and the delay time is known exactly. Un-
certainty in the initial system states (or in the initialization function, respectively)
could be treated by repeated simulations in a Monte-Carlo-like manner. Here, a
well-known disadvantage is a potentially large computational effort that does not
allow for determining verified outer bounds for the sets of reachable states if in-
terval bounds for the initial conditions x0 as well as for the initialization function
x∗ (t) over the time interval t ∈ [−τ∗ ; 0] are given [20]. The same also holds for
uncertain, but bounded delays τ∗ which are themselves given as intervals. Two
practice-relevant cases need to be distinguished here:

1. The delay is uncertain but constant over each time slice of a solution approach
corresponding to the above-mentioned method of steps.

2. The delay is bounded from below and above, but may vary arbitrarily within
these bounds.

Note that the second case is also strongly linked to scenarios in which only bounds
for the initialization function (4) are available but the exact temporal evolution in
the past is unknown.

From both a methodological and practical point of view, it is crucial to in-
vestigate such phenomena because increasing the delay time (for example, in the
feedback path of a closed-loop control system) may turn a system with aperiodic
dynamics into a system with oscillatory behavior. In addition, the introduction of
delay may also turn asymptotically stable systems into unstable ones. The stability
investigation of systems with delay, however, is not trivial and still a subject for
ongoing research. For possible references on this topic, see [7, 9, 18, 21].

The main contribution of this paper is the generalization of verified solution
techniques for classical, delay-free sets of ordinary differential equations to both
cases mentioned above, namely, systems with constant as well as temporally vary-
ing but bounded delays. The general solution approach is derived exemplarily for
an exponential state enclosure technique published by the authors in [29]. This
approach makes use of techniques from the field of interval analysis [11,19] to com-
pute outer bounds that rigorously enclose all possible state trajectories of uncertain
dynamic system models.

In contrast to the existing techniques with result verification for solving de-
lay differential equations [10, 35, 36] (that employ Taylor methods or radii polyno-
mial approaches), we do not focus on obtaining especially tight enclosures, which
is necessary for a computational proof of such properties as periodicity of solu-
tions. Instead, we aim at computing guaranteed outer solution enclosures by an
approach that represents state trajectories by simple (exponential) functions in a
computationally cheap way. It should be pointed out that the reduced complexity
(resulting from the simple exponential state enclosures) would allow for an easier
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reimplementation of the whole algorithm on the GPU [2]1 or for development of
online-adjustable control strategies in the frame of model-predictive control. Ad-
ditionally, our method is directly applicable to scenarios in which parameters and
the delay can vary temporally but stay bounded.

This paper is structured as follows. In Sec. 2, there is an overview of the
initial value problems for delay differential equations to be solved by the approach
suggested in this paper. Before detailed solution procedures are presented in Secs. 4
and 5, the interval-based exponential enclosure technique for classical ordinary
differential equations from [29] is summarized in Sec. 3. This is a representative
solution approach which is extended in this paper to the case of systems with a
finite delay time. In Sec. 6, various numerical examples are presented including
systems with exactly known delay times, with an uncertain but constant delay, and
with a time-varying bounded delay. Finally, conclusions and an outlook on future
work are given in Sec. 7.

2 Problem Formulation

Throughout this paper, the following variants of the delay differential equation
model (1)–(4) are considered.

DDE1 The initial conditions and the initialization function in (3), (4), respectively,
are both uncertain but bounded. The initial states are assumed to be included
in the interval2

x0 ∈ [x0 ; x0] , (6)

where the component-wise defined inequalities x0,i ≤ x0,i, i ∈ {1, . . . , n},
hold. Analogously, the initialization function (4) is supposed to be given by
the bounds3

x∗ (t) ∈ [x0] with
dx∗ (t)

dt
= 0 for all t ∈ [−τ∗ ; 0] . (7)

In contrast to considering interval bounds for the initial states and for the
initialization function, it is assumed that the delay τ∗ > 0 is precisely known4.

1Such GPU implementations, accounting for data parallelism, are especially helpful to solve
the task of an experiments-based parameter identification of dynamic systems.

2If necessary, we use the compact notation [x0] throughout this paper to abbreviate the interval
[x0 ; x0]. Bold face characters are employed to distinguish vectors (lower case) and matrices
(upper case) from scalar variables.

3The algorithms presented in the following are not restricted to temporally constant initial-
ization functions. They are chosen in this paper mainly to simplify the notation. Non-constant
initializations arise naturally at each time instant t > 0 at which the integration is restarted if
step size control strategies or multi-step simulations are performed.

4In DDE1, it is assumed that the delay time can be represented exactly by a machine number
in the software implementation of the solution approach. If this is not the case, the formulation
from DDE2 can be used instead, where the point value τ∗ is enclosed in a tight interval of
machine numbers.
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DDE2 As in DDE1, the initial system states x0 are assumed to be given by (6).
However, the delay is now considered to be uncertain but temporally constant
according to

τ∗ ∈ [τ∗ ; τ∗] with τ∗ < τ∗ . (8)

Therefore, the initialization function of DDE1, cf. (7), needs to be adapted
in such a way that interval bounds are available for all t ∈ [−τ∗ ; 0]. A special
case of this definition arises for a delay-free lower bound τ∗ = 0.

DDE3 This scenario is almost identical to DDE2 except that the delays are not
temporally constant. Now, the delay

τ∗ ∈ [τ∗ ; τ∗] with 0 ≤ τ∗ < τ∗ (9)

may vary arbitrarily between its lower and upper bounds. No information
on the temporal variation rate is available in this setting. Obviously, this is
also true for the state initialization function, where arbitrary variations of x∗

have to be accounted for within the respective interval bounds.

3 Verified Simulation Routine for Asymptotically
Stable Delay-Free Ordinary Differential Equa-
tions

Delay-free state equations can often be assumed to be asymptotically stable in con-
trol engineering applications since, if they are not, an appropriate (state) feedback
control law can be designed, in many cases with quasi-linear state-space repre-
sentations. For finding enclosures of the solutions to such problems, the authors
developed a verified exponential state enclosure technique [29] summarized briefly
in this section. In the following sections, we extend this example of a solution pro-
cedure to the case of delay differential equations since they also play an important
role in the area of control. However, any other verified approach for solving initial
value problems for ordinary differential equations (e.g., from [14, 15, 20]) can be
generalized analogously for the case of delay differential equations if the strategies
described in Secs. 4 and 5 are employed.

Definition 1 (Quasi-linear autonomous model). For a nonlinear system model

ẋ(t) = a (x(t)) , (10)

a quasi-linear dynamic system representation is given by the state-space represen-
tation

ẋ(t) = A (x(t)) · x(t) , (11)

where the reformulation from (10) to (11) is obtained by exactly factoring out the
state vector x(t) from the nonlinear right-hand side a (x(t)) so that all entries of
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A (x(t)) are well-defined and finite for all reachable states5.

Definition 2 (Exponential state enclosure). The time-dependent exponential en-
closure function (indicated by the index e)

x̌(t) ∈ [xe] (t) := exp ([Λ] · t) · [xe] (0) , [xe] (0) = [x0] (12)

with the parameter matrix

[Λ] := diag {[λi]} , i ∈ {1, . . . , n} , (13)

defines a verified exponential state enclosure for the system model (11) with x (0) ∈
[x0] if it is determined according to Theorem 1. It is then guaranteed to enclose all
possible exact state trajectories x̌(t).

Theorem 1 ( [25, 29] Iteration for exponential state enclosures). The exponential
state enclosure (12) is guaranteed to contain the set of all reachable states x̌(T ) at
the point of time t = T > 0 according to

x̌(T ) ∈ [xe] (T ) := exp ([Λ] · T ) · [xe] (0) , (14)

if the elements on the main diagonal of [Λ] are computed by the converging iteration

[λi]
〈κ+1〉

:=
ai

(
exp

(
[Λ]

〈κ〉 · [t]
)
· [xe] (0)

)
exp

(
[λi]

〈κ〉 · [t]
)
· [xe,i] (0)

, κ ∈ {0, 1, 2, . . .} , (15)

i ∈ {1, . . . , n}, with the prediction horizon [t] = [0 ; T ].

Remark 1. As discussed in [25,29], the iteration (15) is based on the application
of the Picard iteration if the type of solution representations is restricted to the
exponential expressions according to Def. 2. Therefore, the system models under
consideration need to satisfy the same requirements that are needed for applying
a Picard iteration (i.e., applicability of Banach’s fixed point theorem) for finding
verified state enclosures. Especially, we suppose differentiability of a (x) on the

intervals exp
(
[Λ]

〈κ〉 · [t]
)
· [xe] (0).

Remark 2. A typical initialization of the iteration (15) is [Λ]
〈0〉

= diag
{
[λi]

〈0〉
}
,

i ∈ {1, . . . , n}, where these intervals are centered around the eigenvalues of a lin-
earization of the nonlinear state equations for a representative point from the state
enclosure at t = 0.

Remark 3. For sufficiently smooth system models (10), this approach can be
easily extended to include a differential sensitivity analysis with respect to initial
conditions and time-invariant parameters (see [22] for details).

5Such quasi-linear reformulations are typically not defined uniquely. For example, there exist
infinitely many factorizations of the product x1 ·x2 = a1(x2) ·x1+a2(x1) ·x2, where a1(x2) = px2

and a2(x1) = (1− p) · x1 with p ∈ R.
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Corollary 1 ( [25, 29]). If quasi-linear state-space representations according to
Def. 1 are considered, the component-wise reformulation

ẋi(t) = ai (x(t)) =

n∑
j=1

aij (x(t)) · xj(t) (16)

can be used for the state equations. In this case, the interval-related dependency
problem [11], the wrapping effect [16], and the computational effort while using
formula (15) can be reduced if it is reformulated symbolically into

[λi]
〈κ+1〉

:= aii

(
[xe]

〈κ〉
([t])

)
+

n∑
j=1
j �=i

{
aij

(
[xe]

〈κ〉
([t])

)
· e(([λj ]

〈κ〉−[λi]
〈κ〉)·[t]) · [xe,j ] (0)

[xe,i] (0)

}
.

(17)

This reformulation is especially beneficial if the system matrix A (x(t)) is diagonally
dominant.

Remark 4. The exponential enclosure technique according to Theorem 1 is ap-
plicable to scenarios characterized by solution sets in which the value zero is not
contained in the domain of reachable states. This becomes obvious in Eq. (15),
where the guaranteed state enclosure appears in the denominator of the iteration
formula [25,28]. For linear systems with oscillatory dynamics and precisely known
parameters, this issue can be resolved by a suitable time-invariant change of co-
ordinates as shown in the last example from Sec. 6. For this purpose, Theorem 1
needs to be generalized using complex-valued interval techniques [28,29]. Alterna-
tively, if the value zero is only crossed a finite number of times, enclosures can be
obtained by switching to the Picard iteration based ValEncIA-IVP technique or
to a low-order Taylor series expansion over the respective time interval.

4 Delay Differential Equations with a Constant,
Precisely Known Delay

In general, delay differential equations with bounded uncertainty can be treated
by adapting the method of steps to rely on verified solvers for ordinary differential
equations instead of floating-point ones. For the case of DDE1, this method can
be employed directly after defining the time intervals

[T ]m = [mτ∗ ; (m+ 1) τ∗] , m ∈ N0 , (18)

with a length that is equal to the a-priori known constant delay τ∗. Then, an
exponential state enclosure can be introduced according to Def. 3 for each [T ]m.

Definition 3 (Exponential state enclosure for delay differential equations). The
time-dependent exponential enclosure function for the m-th time interval t ∈ [T ]m

x̌(t) ∈ [xe]m (t) := exp ([Λ]m · (t−mτ∗)) · [xe] (mτ∗) (19)
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with [xe] (0) = [x0] and the parameter matrix

[Λ]m := diag {[λi]}m , i ∈ {1, . . . , n} , (20)

defines a verified exponential state enclosure for the delay differential equation of
type DDE1 if it is determined according to Theorem 2. For compatibility with the
initialization function (7), [Λ]−1 is set to

[Λ]−1 := 0 , corresponding to [xe]−1 (t) ≡ [x0] . (21)

Theorem 2 (Iteration for delay differential equations of type DDE1). The expo-
nential state enclosure (19) is guaranteed to contain the set of all reachable states
x̌(T ) at the point of time t = T ∈ [T ]m, that is,

x̌(T ) ∈ [xe]m (T ) := exp ([Λ]m · (T −mτ∗)) · [xe] (mτ∗) , (22)

if the elements on the main diagonal of [Λ]m are computed using the converging
iteration

[λi]
〈κ+1〉
m :=

fi

(
[t] , exp

(
[Λ]

〈κ〉
m · ([t]−mτ∗)

)
· [xe] (mτ∗) , [xe]m−1 ([t]− τ∗)

)
exp

(
[λi]

〈κ〉
m · ([t]−mτ∗)

)
· [xe,i] (mτ∗)

,

(23)
i ∈ {1, . . . , n}, with the prediction horizon [t] = [mτ∗ ; T ] ⊆ [T ]m, where all fi are
defined according to Eq. (1).

Proof. Due to the restriction T ∈ [T ]m, the third argument [xe]m−1 ([t]− τ∗) of fi
in (23) depends only on solution enclosures from the previous time interval [T ]m−1

and is, therefore, completely known. A non-autonomous initial value problem can
be solved at this time step following the general idea of the method of steps (5).
Hence, the proof is the same as for Theorem 1 (originally published in [25, 29]), if
the iteration (23) is substituted for (15).

Remark 5. Overestimation in the elements [λi]
〈κ+1〉
m in (23) appearing due to

multiple dependencies on common interval variables can be reduced by exploiting
the quasi-linear structure of the problem and reformulating the iteration symbol-
ically (cf. Corollary 1). Another overestimation reduction possibility is to em-
ploy a classical subdivision strategy for range computation of interval expressions,
also used in global optimization [4]. For that, it is necessary to subdivide the
time interval [t] into multiple subintervals, carry out the procedure and, finally,
determine the convex interval hull of all resulting enclosures over the subinter-
vals. An additional advantage of subdivision strategies for delay equations is
that the time subintervals can also be used while determining the bounds for
[xe]m−1 ([t]− τ∗) = [xe]m−1 ([(m− 1) τ∗ ; T − τ∗]).

The subdivision strategy described in the remark can be used to control the
step size. For this purpose, the integration time horizon [T ]m is split into multi-
ple shorter time slices and solution parameters [λi]m,ι are computed successively
for each of the temporal subintervals [mτ∗ ; mτ∗ + τ1], [mτ∗ + τ1 ; mτ∗ + τ2], . . .,
[mτ∗ + τι−1 ; mτ∗ + τι], . . . with 0 < τ1 < τ2 < . . . < τι < . . . < τ∗.
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5 Delay Differential Equations with Uncertain De-
lay

In this section, solution procedures for delay differential equations with uncertain
delays are presented. Here, we consider two cases of bounded delays: either tem-
porally constant or arbitrarily varying within the respective interval bounds.

5.1 Delay Differential Equations with a Constant, Interval-
Bounded Delay

5.1.1 Systems with Strictly Non-Zero Delay

The approach from Sec. 4 can be extended to cover systems with a strictly non-
zero time delay in a straightforward way. For that purpose, we introduce the time
intervals

[T ]m = [tm ; tm+1] , m ∈ N0 , t0 = 0 , (24)

where the infima and suprema of [T ]m denote the temporal discretization mesh with
which the (exponential) solution enclosures for the delay differential equation of
type DDE2 are computed. In this subsection, we further assume that tm+1− tm ≤
τ∗ holds. This restriction will be removed in the following subsection, where the
case of a possibly vanishing time delay is investigated. The following definition is
a generalization of Def. 3 which allows us to represent state enclosures covering
multiple points tm of the temporal discretization mesh.

Definition 4 (Generalized exponential state enclosure for DDEs).

A generalized time-dependent exponential enclosure over a time interval t ∈ [T ]
b
a =

[ta ; tb], ta ≤ tb, ta ≥ 0, is given by

[xe]
(
[T ]

b
a

)
=

⎧⎪⎨
⎪⎩
[xe]ma

(
[T ]

b
a

)
if ma = mb ,

mb⋃
j=ma

[xe]j

(
[T ]

b
a ∩ [T ]j

)
otherwise .

(25)

Here, the indices mι, ι ∈ {a, b}, of the corresponding discretization points are
determined according to

mι = max
m∈Z

{m} with Z := {m | m ∈ N0 and 0 ≤ tma
≤ tι < tmι+1} . (26)

The individual interval enclosure functions in (25) are given by

x̌(t) ∈ [xe]m (t) := exp ([Λ]m · (t− tm)) · [xe] (tm) for t ∈ [T ]m (27)

with the diagonal parameter matrices [Λ]m computed as in Theorem 3.
In addition, the definition (25) can be extended to the case tb ≤ 0 by setting

[xe] ([ta ; tb]) ≡ [x0]; analogously, [xe] ([ta ; tb]) ≡ [x0] ∪ [xe] ([0 ; tb]) holds for
ta < 0 and tb ≥ 0.
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Remark 6. All intersections [T ]
b
a ∩ [T ]m of time intervals in Eq. (25) restrict

the domains on which the respective functions are evaluated to the domains on
which the parameter matrices [Λ]m and, hence, the corresponding solution tubes
are defined.

Theorem 3 (Iteration for delay differential equations of type DDE2).
If the discretization mesh is defined such that tm+1− tm ≤ τ∗, the exponential state
enclosure (25) is guaranteed to contain the set of all reachable states x̌(T ) at the
point of time t = T ∈ [T ]m, that is,

x̌(T ) ∈ [xe]m (T ) := exp ([Λ]m · (T −mτ∗)) · [xe] (mτ∗) , (28)

if [Λ]m is computed by the converging iteration

[λi]
〈κ+1〉
m :=

fi

(
[t] , exp

(
[Λ]

〈κ〉
m · ([t]− tm)

)
· [xe] (tm) , [xe] ([t]− [τ∗])

)
exp

(
[λi]

〈κ〉
m · ([t]− tm)

)
· [xe,i] (tm)

, (29)

i ∈ {1, . . . , n}, with the prediction horizon [t] = [tm ; T ] ⊆ [T ]m.

Proof. In the last argument of the numerator term in (29), [xe] ([t]− [τ∗]) is inde-
pendent of the parameter matrix [Λ]

〈κ〉
m for the current time interval [T ]m. This

means that this term can again be interpreted as an external input to a non-
autonomous system of ordinary differential equations. Therefore, the proof is iden-
tical to the proof of Theorem 2.

Remark 7. For the time interval [t], a subdivision strategy can be used in full
analogy to Sec. 4. In addition, the interval [τ∗] may be subdivided into multiple
time intervals, followed by determining separate solution enclosures [xe]m (T ) for
each delay subinterval when evaluating Eq. (29). In the final step, the convex
interval hull over all individual solutions can be determined to describe the set of
reachable states. This is a direct consequence of the assumption of an uncertain
but temporally constant delay.

Remark 8. Under the assumptions of this subsection, the Definitions 3 and 4
become identical.

5.1.2 Systems Involving Zero Delay

If 0 ∈ [τ∗] or if a discretization mesh with tm+1 − tm > τ∗ is employed, Theorem 3
needs to be adjusted according to the following Corollary 2.

Corollary 2 (Iteration for DDE2 with potentially zero delay). In the case of a
potentially vanishing delay, the exponential state enclosure (28) contains the set
of all reachable states x̌(T ) at the point of time t = T ∈ [T ]m if [Λ]m is set to
the outcome of the iteration (29), where the last numerator term [xe] ([t]− [τ∗]) is
evaluated according to Def. 4 with ta = inf ([t]− [τ∗]) and tb = sup ([t]− [τ∗]) as a

function of all parameters [λi]
〈κ〉
m .
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Remark 9. Splitting both intervals [t] and [τ∗] into subintervals as described in the
previous subsection remains admissible due to the time invariance of the delay τ∗.

5.2 Delay Differential Equations with Uncertain, Tempo-
rally Varying Delays

Both Theorem 3 and Corollary 2 can be applied to the case of time-varying, un-
certain, bounded delays. Note, however, that subdivision strategies suggested as a
countermeasure against overestimation in Sec. 5.1 need to be handled with more
care.

If the intervals [t] and [τ∗] are subdivided, it is necessary to compute multiple

results [λi]
〈κ+1〉
m followed by the convex hull operation unifying them for each sub-

sequent evaluation of the iterations according to Theorem 3 and Corollary 2. This
is the only admissible subdivision strategy for reducing the dependency problem
in this case. Note that this subdivision approach is equally valid for reduction of

overestimation that is caused by wide intervals [λi]
〈κ〉
m resulting from the previous

iteration step.

6 Numerical Examples

In this section, representative application scenarios are presented for the proposed
interval technique. They are linear scalar (cf. Sec. 6.1) and multi-dimensional sys-
tem models (cf. Sec. 6.5) with exactly known delay, a nonlinear process model with
exactly known and uncertain delay that is inspired by mathematical models from
the field of population dynamics (cf. Sec. 6.2 and 6.3) as well as the simulation of
Wright’s equation with an uncertain parameter (cf. Sec. 6.4). The specified values
for delay times are assumed to be represented by the closest floating point number,
where for the cases of an exactly known time delay this value is an integer multiple
of the underlying sampling time. Note that not exactly representable delay times
can easily be accounted for by the setting in DDE2.

6.1 A System Model with an Exact Analytic Solution

As the first application scenario, consider the dynamic system model [30, Chap. 12]

ẋ (t) = a · x (t− τ∗) (30)

of type DDE1 with the exactly known, non-zero delay τ∗ > 0. If the initialization
function for t ≤ 0 is equal to the constant x(t) ≡ x0 and if the identical initial
condition x(0) = x0 is considered, the exact solution xm(t) can be computed for
each time interval t ∈ [T ]m, m ∈ N0, cf. (18), by applying the method of steps in
a recursive manner. For that purpose, the system model (30) is reformulated into

xm(t)∫
xm−1(mτ∗)

dχ = a ·
t∫

mτ∗

xm−1 (η − τ∗) dη (31)
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by separating the variables t and x. This leads to the solution representation

xm(t) = xm−1(mτ∗) + a ·
t∫

mτ∗

xm−1 (η − τ∗) dη , (32)

where both formulas (31) and (32) are initialized with x−1(t) ≡ x0. Evaluating the
expression (32) at integer multiples of the delay time, i.e., for t = mτ∗, m ∈ N0,
yields the closed-form solution representation

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 for t = 0

x0 · (aτ∗ + 1) for t = τ∗

x0

2

(
(aτ∗)2 + 4aτ∗ + 2

)
for t = 2τ∗

x0

6

(
(aτ∗)3 + 12 (aτ∗)2 + 18aτ∗ + 6

)
for t = 3τ∗

x0

24

(
(aτ∗)4 + 32 (aτ∗)3 + 108 (aτ∗)2 + 96aτ∗ + 24

)
for t = 4τ∗

. . . .

(33)

The result (33) can be extended by the well-known rules of interval analysis
to outer state enclosures, if uncertainty in the initial state x0 ∈ [x0] and in the
time-invariant parameter a ∈ [a] needs to be accounted for. This interval represen-
tation (evaluated in the following in a naive way in terms of the natural interval
extension [11] in IntLab [31]) serves as one of the references to which the novel
simulation procedure according to Sec. 4 can be compared.

Fig. 1 provides a comparison of the novel iteration approach with an interval-
based evaluation of the analytic solution representation according to Eq. (33). The
first simulation result in Fig. 1(a) visualizes the influence of the integration step
size on the tightness of the solution obtained by the application of Theorem 2.
Exemplarily, the constant integration step sizes Δt = τ∗ = 0.1 (corresponding
to the direct generalization of the method of steps) and Δt = τ∗

200 = 5 · 10−4

are compared. It can be seen that the simulation for the larger step size breaks
down after t = 2.1 because overestimation leads to solutions that include the value
zero in the denominator of the iteration of Theorem 2. To some extent, this can
be avoided by reducing the step size. Hence, the other versions of the example
are investigated using this reduced step size. Alternatively, it is possible to apply a
different enclosure definition (such as the basic state enclosure of ValEncIA-IVP)
during those time spans in which the solution crosses zero.

The subplot in Fig. 1(b) shows that a naive interval extension of the analytic
solution representation leads to significantly wider interval bounds than the pro-
posed iteration procedure if a is the only uncertain parameter in the model. This
is mainly caused by multiple dependencies on the interval parameter [a] in the an-
alytic solution representation. This dependency effect can be reduced by advanced
interval evaluation techniques. In Fig. 1, enhanced enclosures are visualized which
are computed by subdividing the parameter domain into an equidistant grid with
100 subintervals for each of the parameters. The dependency is less critical if a
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(a) State enclosures for a = −1, x0 = 1, and
τ∗ = 0.1.

(b) State enclosures for a ∈ [−1 ; −0.9], x0 = 1,
and τ∗ = 0.1.

(c) State enclosures for a = −1, x0 ∈ [0.9 ; 1.0],
and τ∗ = 0.1.

(d) State enclosures for a ∈ [−1 ; −0.9],
x0 ∈ [0.9 ; 1.0], and τ∗ = 0.1.

Figure 1: State enclosures for the linear system model (16) with constant delay.

is set to a point value in Fig. 1(c), where the interval evaluation of the analytic
solution representation deteriorates rapidly if overestimation leads to the fact that
the value zero is included in the solution set. Note that the exponential enclosure
technique in this case breaks down before t = 1.5. This can be avoided by subdivid-
ing the initial state interval and by subsequently performing multiple simulations
for the respective subintervals6. For the case in Fig. 1(d), where both the initial
condition and the system parameter are set to interval quantities, the numerical
and analytic solutions are quite similar up to the point where the exponential en-
closure technique is no longer valid due to the inclusion of the value zero in the
computed state bounds.

6As already mentioned in the introduction of this paper, such subdivisions are typically em-
ployed anyway for an experiments-based parameter identification of dynamic systems. The pro-
posed solution algorithm can easily be adjusted to a GPU implementation [2] which performs a
parallelized simulation for all subintervals by exploiting the concept of data parallelism.
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Note that exponential state enclosures computed for a single parameter interval
[a] and a single box of initial conditions comprising the bounds on the initializa-
tion function [x0] are generally wider than an optimized interval evaluation of the
closed-form solution. This is caused by the fact that Theorem 2, evaluated for a
single interval box, provides state enclosures that are valid for arbitrary temporal
parameter variations within the respective box, while the analytic solution repre-
sentation assumes a time invariant parameter with vanishing time derivatives of
the initialization function for t < 0.

6.2 A Nonlinear System Model with Constant Bounded De-
lay

As the second application, consider the nonlinear system model

ẋ (t) = a · x(t) + b · x3 (t− τ∗) with x(t) ≡ x0 for t ≤ 0 , (34)

where a ∈ [a] = [−0.2 ; −0.1], b ∈ [b] = [0.01 ; 0.02], x0 ∈ [x0] = [0.9 ; 1.0], and
τ∗ ∈ [τ∗] = [0.1 ; 1.0] are temporally constant interval parameters.

This delay differential equation model reflects a simplified problem from the
field of population dynamics [3], where the state variable x represents a species
concentration, the parameter a a decay rate (i.e., due to mortality), and b the rate
of reproduction depending in a cubic manner on the delayed state information. The
parameter τ∗ describes the uncertain age of maturation after which the members
of the population participate in the reproduction process.

Since the delay parameter is uncertain, the interval-based solution to this model
is computed using the methods of Sec. 5.1. A grid-based floating point solution,
obtained with the help of the Matlab routine dde23 and a maximum step size
Δt = 0.01, is included for comparison in Fig. 2(a). It can be seen that the ex-
ponential interval technique encloses the grid-based evaluation in tight lower and
upper bounds, where the lower bound especially has almost no overestimation.
Note that the grid-based simulation consists of 104 individual system simulations
because all four uncertain parameters were independently subdivided into 10 points
each.

In contrast, the exponential state enclosure was determined without subdividing
the interval bounds [a] and [b]. For a sake of comparison with the assumption of
arbitrary varying initialization functions and delays in the interior of the respective
interval bounds (which is the subject of the following subsection), [x0] and [τ∗] were
both divided into 10 equally wide subintervals, leading to a total of 100 interval
simulations.

6.3 A Nonlinear System Model with Time-Varying Bounded
Delay

As a third example, the model in Eq. (34) is reconsidered. Now, both the time delay
and the state initialization function are assumed to be arbitrarily variable within
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their respective interval bounds. Hence, only a single interval evaluation (instead
of the 100 simulations from the previous subsection) was performed to obtain the
exponential state enclosure. It can be noticed that the temporal variability of both
of these quantities has only a minor influence on the solution enclosures because
the interval bounds obtained by the exponential enclosure technique in Fig. 2(b)
are only slightly wider than those in Fig. 2(a). However, as expected, the previous
time-invariant case represents a subset of the solution to the time-varying scenario.

For the sake of comparison, a grid-based simulation is included in Fig. 2(b). It
is based on the evaluation of the dynamic system model (34) with the help of the
Matlab routine ddesd with a maximum step size of τ∗ = 0.1. In total, 2, 000
equally distributed random sequences for the state initialization function and for
the time delay were generated to mimic the influence of the uncertain quantities.

(a) Uncertain but constant delay. (b) Time-varying bounded delay.

Figure 2: State enclosures for the linear system model (34) with uncertain delay.

For both Secs. 6.2 and 6.3, the use of the interval-based simulation approach
has the advantage of a much smaller number of required system evaluations than
in the grid-based counterpart, while further providing state enclosures that contain
all reachable state values with certainty.

In Tab. 1, a comparison of the computing times7 for the grid-based floating point
implementation using the routine ddesd and the novel exponential enclosure ap-
proach implemented with the help of the interval library IntLab [31] (version 10.2)
is given8. For identical discretization step sizes, and a grid-based simulation con-
sisting of 2,000 individual runs, the exponential enclosure technique is faster by a
factor of at least 175. Although the interval simulation has not been optimized
for speed, it is faster by a factor of 8.77 even if the grid-based simulation is car-
ried out with the largest investigated step size and the interval-based simulation
with the smallest. In addition, it can be seen from Tab. 1 that a reduction of the

7All simulations were performed in Matlab R2019b on a notebook computer under
Windows 10, 64bit, 8 GB RAM, Intel Core i7-4500U CPU (@1.80GHz).

8Prototypical implementations are available for download on https://github.com/

ValEncIA-IVP/ and www.valencia-ivp.com.
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discretization step size in the proposed approach leads to tighter interval bounds.
A meaningful reduction of the computed interval diameters can be observed until
Δt = 0.01 in the example considered in Sec. 6.3.

Table 1: Comparison of the grid-based simulation and the exponential enclosure
technique for the example of Sec. 6.3.

step size ddesd proposed approach speedup diam{[xe] (10)}
Δt = 0.1 0.1272 s 0.9811 s 259.3 0.3462
Δt = 0.01 1.2297 s 12.474 s 197.1 0.3445
Δt = 0.005 2.5573 s 29.017 s 176.2 0.3444

6.4 Simulation of Wright’s Equation with an Uncertain Pa-
rameter

A further nonlinear application scenario in this section illustrates a possible ap-
proach to circumvent cases in which the proposed simulation technique is not di-
rectly applicable due to a division by zero in the Theorems 2 and 3. We consider
Wright’s equation as published in [37]. Originally, it was formulated as

ẏ(t) = −p · y(t− 1) · (1 + y(t)) (35)

with the parameter p > 0. After the time-invariant change of coordinates

x(t) = 1 + y(t) , (36)

the equivalent formulation

ẋ(t) = −p · (x(t− 1)− 1) · x(t) (37)

is obtained, for which we assume a constant initialization function x(t) = x0 for
t ≤ 0 with the consistent initial condition x0 = 2 at the point t = 0 in the remainder
of this subsection.

The change of coordinates (36) helps to avoid that solutions cross the value
y = 0 if initialized with non-negative functions y(t) > 0 for t ≤ 0 and positive
parameters p > 0. The advantage of the exclusion of the solution y = 0 from the
solution set is that a singularity in the iterations of Theorems 2 and 3 as well as
Corollary 2 can be avoided.

For the Wright equation, this change of coordinates leads to a simplification of
the iteration formula (23) according to

[λi]
〈κ+1〉
m := −p · [xe]m−1 ([t]− τ∗) with τ∗ = 1 . (38)

For the known parameter p = 1, Fig. 3 shows a comparison of the solution
enclosures with the corresponding widths of the computed interval bounds for dif-
ferent discretization step sizes Δt. It can be seen clearly that the reduction in the



Verified Integration of Differential Equations with Discrete Delay 693

(a) State enclosure for different discretization
step sizes.

(b) Interval diameters for different discretiza-
tion step sizes.

Figure 3: Simulation of the transformed Wright equation (37) for p = 1 with exactly
known initialization function and initial condition.

interval widths is proportional to the reduction of the discretization step size, go-
ing along with a proportional increase of the computing time. It should be pointed
out additionally that the reformulated iteration in (38) has the advantage for this
specific benchmark scenario that its right-hand side is independent on the param-
eter to be computed and, hence, can be resolved explicitly by exploiting already
pre-computed solution enclosures.

Using the step size Δt = 5 · 10−4, the simulation was repeated in Fig. 4 for
the uncertain parameter interval p ∈ [0.1 ; 2] in combination with equidistantly
subdividing it into 100 subdomains. The resulting exponential enclosures tightly

(a) State enclosures: Exponential solution tech-
nique vs. grid-based approximation.

(b) Interval diameters: Exponential solution
technique vs. grid-based approximation.

Figure 4: Simulation of the transformed Wright equation (37) for p ∈ [0.1 ; 2] with
exactly known initialization function and initial condition.
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enclose a grid-based non-verified simulation performed with the routine ddesd up
to t ≈ 6. Afterwards, interval-related overestimation leads to a rapid inflation of
the computed bounds. In future work, this can be countered by extending the
complex-valued enclosure approach from [28, 29] to the case of scalar differential
equations with delay. The oscillatory behavior of Wright’s equation can then be

better represented by not choosing purely real solution parameters [λi]
〈κ+1〉
m . For

multi-dimensional systems, this approach is already implemented, see the simula-
tion results in the following subsection.

6.5 Spring-Mass-Damper System

As a final application scenario, the oscillation attenuation of a spring-mass-damper
system with the position variable x1, the velocity x2, and the actuating force x3 is
considered. The state equations

ẋ(t) =

⎡
⎣ 0 1 0
p1 · a21 p2 · a22 a23

0 0 a33

⎤
⎦ · x(t) +

⎡
⎣ 0
0
b3

⎤
⎦ · u(t)

= A (p1, p2) · x(t) + b · u(t)

(39)

with a delay-free realization of the control input u(t) were presented in [26, 27]
as a benchmark scenario for the design of a robust output feedback controller in
which the input u(t) was chosen to be proportional to the velocity x2(t). From an
engineering viewpoint, this model describes the simplest linear representation of an
actively controlled wheel suspension system with a first-order lag behavior of the
actuator. In the following, the control law is defined as

u(t) = 0.8 · x2(t− τ∗) , (40)

where the constant gain factor 0.8 guarantees asymptotic stability of the nominal
system with the parameters a21 = −200, a22 = −15, a23 = −400, a33 = −200,
b3 = 10, p1 = 1, and p2 = 1.

For the simulations in this subsection, we consider the cases of a delay-free
system (τ∗ = 0), a relatively small delay (τ∗ = 10−4) and a large delay (τ∗ = 0.1).
In all scenarios, the integration step size is constant with Δt = 10−5. Moreover, the
independent parameters pi, i ∈ {1, 2}, with their midpoints pi,m = 1 are assumed
to have the following identical bounds in the four cases shown in Figs. 5–7:

P1 pi = pi,m;

P2 pi ∈ pi,m + [−0.005 ; 0.005];

P3 pi ∈ pi,m + [−0.1 ; 0.1];

P4 pi ∈ pi,m + [−0.5 ; 0.5].
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In all cases, the system’s initial conditions (and temporally constant initializa-
tion functions for τ∗ > 0) are defined as

x0 =
[
1 0 0.5

]T
. (41)

To reduce the influence of the wrapping effect, a time invariant change of coor-
dinates is performed according to

z(t) = V−1 · x(t) , (42)

where V is the columnwise defined matrix of eigenvectors of

A (p1,m, p2,m) + b ·
[
0 0.8 0

]
(43)

in the delay-free case and the eigenvector matrix ofA (p1,m, p2,m) in the case τ∗ > 0.
For a non-zero delay, the change of coordinates leads to a complex-valued set of
state equations as introduced in [28,29].

In all simulations, it can be seen from the figures that the computed state en-
closures are tight for the cases P1 and P2. In contrast, the computed bounds
start to inflate in P4 for at least one of the state variables. To analyze this phe-
nomenon with the help of suitable Lyapunov-Krasovskii functionals [8] is our future
work. If the overall dynamics can be proven to be stable despite uncertain param-
eters and non-zero delay, Lyapunov-Krasovskii functionals can assist in excluding
parts of the state enclosures that certainly do not belong to the reachable domains.
This strategy can be interpreted as a generalization of the interval-based Lyapunov
function technique presented in [12]. Moreover, such kind of analysis might help to
distinguish the reasons for a blow-up of the computed enclosures. Possible causes
are

(a) the inflation due to excessively large discretization step sizes Δt,

(b) the inflation due to the wrapping effect that can be countered by splitting
parameter intervals or performing a change of coordinates, or

(c) the inflation of the bounds due to a destabilization of the system dynamics due
to a large delay in the feedback control law (40).

Note that a point-valued simulation of the system considered in this section shows
that the controlled model with the matrix sup (A ([p1] , [p2])) in P4 is unstable for
τ∗ ≈ 0.103 (and also further increased delays) which is only slightly larger than
the delay considered in Fig. 7. This observation explains the rapid blow-up of the
state enclosures in Figs. 7(j) and 7(k).



696 Andreas Rauh and Ekaterina Auer

(a) Scenario P1: state x1. (b) Scenario P1: state x2. (c) Scenario P1: state x3.

(d) Scenario P2: state x1. (e) Scenario P2: state x2. (f) Scenario P2: state x3.

(g) Scenario P3: state x1. (h) Scenario P3: state x2. (i) Scenario P3: state x3.

(j) Scenario P4: state x1. (k) Scenario P4: state x2. (l) Scenario P4: state x3.

Figure 5: Simulation of the system model (39) for τ∗ = 0.
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(a) Scenario P1: state x1. (b) Scenario P1: state x2. (c) Scenario P1: state x3.

(d) Scenario P2: state x1. (e) Scenario P2: state x2. (f) Scenario P2: state x3.

(g) Scenario P3: state x1. (h) Scenario P3: state x2. (i) Scenario P3: state x3.

(j) Scenario P4: state x1. (k) Scenario P4: state x2. (l) Scenario P4: state x3.

Figure 6: Simulation of the system model (39) for τ∗ = 10−4.
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(a) Scenario P1: state x1. (b) Scenario P1: state x2. (c) Scenario P1: state x3.

(d) Scenario P2: state x1. (e) Scenario P2: state x2. (f) Scenario P2: state x3.

(g) Scenario P3: state x1. (h) Scenario P3: state x2. (i) Scenario P3: state x3.

(j) Scenario P4: state x1. (k) Scenario P4: state x2. (l) Scenario P4: state x3.

Figure 7: Simulation of the system model (39) for τ∗ = 0.1.



Verified Integration of Differential Equations with Discrete Delay 699

In conclusion, we would like to point out the following fact. In many control
engineering applications, it is possible to intersect the computed bounds with in-
formation from measurements at discrete time instants. In practice, this additional
information allows us to work even with wide parameter bounds to forecast the do-
mains of reachable states in a computationally cheap manner by providing simple
enclosures between two distinct measurement points. This well-known predictor–
corrector concept can be implemented using the approach suggested in this pa-
per even within real-time capable state estimation and (model-predictive) control
frameworks. The predictor–corrector idea with continuous dynamics and discrete-
time measurements is based on the so-called hybrid Kalman filter for systems with
stochastic uncertainty [34].

7 Conclusions and Future Work

In this paper, a novel interval-based solution method for certain classes of delay
equations was presented. It extends an exponential enclosure technique that was
originally developed for delay-free systems of ordinary differential equations.

As future work, we plan to extend the exponential enclosure technique to
fractional-order differential equations by replacing the exponential terms with so-
called Mittag-Leffler functions [23, 24]. Fractional-order models have a large prac-
tical relevance in the context of control and state estimation of electrochemical
energy converters and storage elements such as fuel cells and batteries. Moreover,
extensions of the proposed technique for solving delay differential equations to sys-
tems including the value zero in the set of reachable states will be investigated. Our
goal will be to find non-trivial alternatives based on the complex-valued iteration
technique published in [29] with the focus on osciallatory dynamics.
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The Generalized Epsilon Function:

An Alternative to the Exponential Function

Tamás Jónása

Abstract

It is well known that the exponential function plays an extremely im-
portant role in many areas of science. In this study, a generator function-
based mapping, called the generalized epsilon function is presented. Next,
we demonstrate that the exponential function is an asymptotic generalized
epsilon function. Exploiting this result and the fact that this new function
is generator function-dependent, it can be utilized as a very flexible alterna-
tive to the exponential function in a wide range of applications. We should
add that if the generator is a rational function, then the generalized epsilon
function is rational as well. In this case, the generalized epsilon function
is computationally simple and it may be treated as an easy-to-compute al-
ternative to the exponential function. In this paper, we briefly present two
applications of this novel function: an approximation to the exponential prob-
ability distribution, and an alternative to the sigmoid function on a bounded
domain.

Keywords: exponential function, approximation, epsilon function, exponen-
tial distribution, sigmoid function

1 Preliminaries

In [9], Dombi et al. introduced the epsilon function and by using this mapping
the authors constructed the epsilon probability distribution that may be viewed as
an alternative to the exponential probability distribution. The epsilon function is
defined as follows.

Definition 1. The epsilon function ε
(λ)
d (x) is given by

ε
(λ)
d (x) =

(
d+ x

d− x

)λ d
2

, (1)

where λ ∈ R \ {0}, d > 0, x ∈ (−d,+d).
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In [9], we proved the following theorem, which states an important asymptotic
property of the epsilon function.

Theorem 1. For any x ∈ (−d,+d), if d → ∞, then

ε
(λ)
d (x) → eλx. (2)

It should be mentioned that this results was also utilized for constructing an effec-
tive approximation to the normal probability distribution (see [8]).

The epsilon function given in Definition 1 may be treated as an alternative
of the exponential function on the domain (−d, d). The exponential function has
an extremely wide range of applications in many areas of science including math-
ematics, physics, chemistry, computer science, economics and biology (see, e.g.,
[19, 1, 4, 15, 5]). Our motivation was to generalize the epsilon function such that
it can be used to approximate the exponential function with an even higher level
of flexibility.

In this paper, we will present the generalized epsilon function, which is a gener-
ator function-based mapping from the domain [−d, d] to the non-negative extended
real line (d > 0). We will prove that if d → ∞, then the generalized epsilon func-
tion coincides with the exponential function. This result allows us to treat the
generalized epsilon function as an alternative to exponential function on a bounded
domain. Since this new function is generator function-dependent, it is very flexible
and it can be utilized in a wide range of applications. Here, we will briefly present
two applications of the generalized epsilon function: an approximation to the ex-
ponential probability distribution, and an alternative to the sigmoid function on a
bounded domain.

We will use the common notation R for the real line and R for the extended
real line, i.e., R = [−∞,∞]. Also, R+ will denote the non-negative extended real
line, i.e., R+ = [0,∞]. We will consider the arithmetic operations on the extended
real line according to Klement et al. [13] and Grabisch et al. [10].

2 The generalized epsilon function

First, we will construct a generator function-based mapping, called the general
epsilon function, which we can use to approximate the exponential function. Then,
we will prove that the exponential function is an asymptotic generalized epsilon
function.

2.1 Construction

Let d ∈ R, d > 0 and let λ ∈ R \ {0}. Our aim is to construct a function

f
(α)
d : [−d, d] → R+ in the form

f
(α)
d (x) = c hα

d (x), (3)
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where hd : [−d, d] → R+ is a continuous and strictly monotonic mapping, c > 0

and α ∈ R \ {0}, such that f
(α)
d approximates the exponential function eλx on the

domain [−d, d]. Noting the basic properties of the exponential function eλx, we set

the following requirements for f
(α)
d :

(a) For any x ∈ [−d, d], f
(α)
d (x) ∈ R+.

(b) If λ > 0 (λ < 0, respectively), then f
(α)
d is strictly increasing (decreasing,

respectively).

(c) f
(α)
d is differentiable on (−d, d); and f

(α)
d (x) and eλx are identical to first

order at x = 0, i.e.,

(c1)

f
(α)
d (0) = 1 and

(c2)

df
(α)
d (x)

dx

∣∣∣∣∣
x=0

= λ.

As c > 0 and α 
= 0, there exists a ĉ > 0 such that c = ĉα. Using this substitution,
Eq. (3) can be written as

f
(α)
d (x) = (ĉ hd(x))

α
.

Since we wish f
(α)
d to be a generator function-based mapping from [−d, d] to R+

(see requirement (a)), let hd have the form

hd(x) = g

(
x+ d

2d

)
, x ∈ [−d, d],

where g : [0, 1] → R+ is a continuous and strictly monotonic function. This means
that

f
(α)
d (x) =

(
ĉ g

(
x+ d

2d

))α

(4)

for any x ∈ [−d, d]. We will call the function g the generator of f
(α)
d .

Taking into account requirement (b), we have that if λ > 0, then for a strictly
increasing (decreasing, respectively) generator g, α has to be positive (negative,
respectively). Similarly, noting requirement (b), we have that if λ < 0, then for
a strictly increasing (decreasing, respectively) generator g, α has to be negative
(positive, respectively).

Using Eq. (4), the requirement (c1) leads us to(
ĉ g

(
1

2

))α

= 1,
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from which

ĉ =

(
g

(
1

2

))−1

and so Eq. (4) can be written as

f
(α)
d (x) =

(
g
(
x+d
2d

)
g
(
1
2

) )α

(5)

for any x ∈ [−d, d].
Next, considering requirement (c2), we get that g has to be a differentiable

function on (0, 1) and

(
f
(α)
d (x)

)′ ∣∣∣∣∣
x=0

=

((
g
(
x+d
2d

)
g
(
1
2

) )α)′ ∣∣∣∣∣
x=0

= λ. (6)

The first derivative of f
(α)
d is

(
f
(α)
d (x)

)′
= α

(
g
(
x+d
2d

)
g
(
1
2

) )α−1
g′
(
x+d
2d

)
g
(
1
2

) 1

2d

and so from Eq. (6), we get

α = 2λd
g
(
1
2

)
g′
(
1
2

) .
Hence, using Eq. (5), f

(α)
d (x) can be written as

f
(α)
d (x) =

(
g
(
x+d
2d

)
g
(
1
2

) )2λd
g( 1

2 )
g′( 1

2 )

for any x ∈ [−d, d]. Notice that the generator function g needs to meet the criterion
g′
(
1
2

)

= 0 as well.

Remark 1. If λ > 0 and g is strictly increasing, then g′
(
1
2

)
> 0 and so α > 0,

which means that f
(α)
d is strictly increasing on [−d, d]. Similarly, if λ > 0 and g

is strictly decreasing, then g′
(
1
2

)
< 0, which implies α < 0 and so f

(α)
d is strictly

increasing on [−d, d]. Therefore, if λ > 0, then f
(α)
d is strictly increasing on [−d, d]

regardless if g is a strictly increasing or a strictly decreasing function. Based on

similar considerations, we get that if λ < 0, then f
(α)
d is strictly decreasing on

[−d, d] independently of the monotonicity of function g. Therefore, f
(α)
d satisfies

the requirement (b).

Now, using the construction presented so far, we will introduce the so-called
generalized epsilon function, which can be used to approximate the exponential
function. In this definition, we will utilize the following class of functions.
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Definition 2. Let G be the set of all functions g : [0, 1] → R+ that are strictly
monotonic and differentiable on (0, 1) with g′

(
1
2

)

= 0, where g′ denotes the first

derivative of g, and g′ is continuous on (0, 1).

For a strictly increasing g ∈ G, g(1) = ∞ will mean the limit limx→1 g(x) =
∞. Similarly, for a strictly decreasing g ∈ G, g(0) = ∞ will stand for the limit
limx→0 g(x) = ∞.

Definition 3 (Generalized epsilon function). Let g ∈ G, let λ ∈ R \ {0} and d > 0.

We say that the function ε
(λ)
d,g : [−d, d] → R+, which is given by

ε
(λ)
d,g(x) =

(
g
(
x+d
2d

)
g
(
1
2

) )2λd
g( 1

2 )
g′( 1

2 )
, (7)

is a generalized epsilon function (GEF) with the parameters λ and d induced by the
generator function g.

Later, we will show that the epsilon function, which was first introduced by

Dombi et al. in [9], is just a special case of function ε
(λ)
d,g . That is, ε

(λ)
d,g may be

viewed as a generalization of the epsilon function.

2.2 Identicality of two generalized epsilon functions

As a GEF is generator function-dependent, the question when two GEFs are iden-
tical naturally arises. The following proposition gives a sufficient condition for the
equality of two generalized epsilon functions that are induced by two generator
functions.

Proposition 1. The GEF is uniquely determined up to any transformation

t(x) = αxβ , x ∈ R+ (8)

on its generator function, if α > 0 and β ∈ R \ {0}.

Proof. Let λ ∈ R \ {0}, d > 0 and let the GEF ε
(λ)
d,g be induced by the generator

function g ∈ G. Furthermore, let α > 0 and β ∈ R \ {0}. Now, let the function
t : R+ → R+ be by given by Eq. (8), and let h(x) = t(g(x)) for any x ∈ [0, 1].
Then, h ∈ G and for any x ∈ [−d, d], the GEF induced by h can be written as

ε
(λ)
d,h(x) =

(
h
(
x+d
2d

)
h
(
1
2

) )2λd
h( 1

2 )
h′( 1

2 )
=

(
αgβ

(
x+d
2d

)
αgβ

(
1
2

) )2λd
αgβ( 1

2 )
αβgβ−1( 1

2 )g′( 1
2 )

=

=

(
g
(
x+d
2d

)
g
(
1
2

) )2λd
g( 1

2 )
g′( 1

2 )
= ε

(λ)
d,g(x).
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3 The exponential function as an asymptotic gen-
eralized epsilon function

Let ε
(λ)
d,g be a GEF induced by the generator function g ∈ G, where λ ∈ R \ {0} and

d > 0. Due to the construction of ε
(λ)
d,g , it has the following properties:

• For any x ∈ [−d, d], ε
(λ)
d,g(x) ∈ R+.

• If λ > 0 (λ < 0, respectively), then ε
(λ)
d,g is strictly increasing (decreasing,

respectively).

• ε
(λ)
d,g(x) and eλx are identical to first order at x = 0.

Here, we will demonstrate an important asymptotic property of the generalized
epsilon function.

Theorem 2. Let g ∈ G, λ ∈ R \ {0} and d > 0. Let ε
(λ)
d,g : [−d, d] → R+ be a GEF

induced by g according to Eq. (7). Then, for any x ∈ (−d,+d),

lim
d→∞

ε
(λ)
d,g(x) = eλx. (9)

Proof. Using the definition of ε
(λ)
d,g , for any x ∈ (−d,+d), Eq. (9) is equivalent to

lim
d→∞

(
2λd

g
(
1
2

)
g′
(
1
2

) ln
(
g
(
x+d
2d

)
g
(
1
2

) ))
= λx. (10)

The left hand side of Eq. (10) can be written as

2λ
g
(
1
2

)
g′
(
1
2

) lim
d→∞

⎛
⎜⎜⎝
ln

(
g( x+d

2d )
g( 1

2 )

)
1
d

⎞
⎟⎟⎠ . (11)

Notice that we can use the L’Hospital rule to compute the limit in Eq. (11). Taking
into account that g is differentiable on (0, 1) and g′ is continuous on (0, 1), after
direct calculation, we get

2λ
g
(
1
2

)
g′
(
1
2

) lim
d→∞

⎛
⎜⎜⎝
ln

(
g( x+d

2d )
g( 1

2 )

)
1
d

⎞
⎟⎟⎠ = 2λ

g
(
1
2

)
g′
(
1
2

) lim
d→∞

⎛
⎜⎜⎜⎝
(
ln

(
g( x+d

2d )
g( 1

2 )

))′
(
1
d

)′
⎞
⎟⎟⎟⎠ =

= 2λ
g
(
1
2

)
g′
(
1
2

) lim
d→∞

(
g′
(
x+d
2d

)
g
(
x+d
2d

) x

2

)
= λx.
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Example 1. Let g(x) = cos(x), where x ∈ [0, 1]. Clearly, g ∈ G, i.e., g satisfies
the requirements for a generator function of a generalized epsilon function. After
direct calculation, we get that the GEF induced by the function g is

ε
(λ)
d,g(x) = ε

(λ)
d,g(x) =

(
cos

(
x+d
2d

)
cos

(
1
2

) )− 2λd

tan( 1
2 ) ≈

(
1.14 · cos

(
x+ d

2d

))−3.66·λd
,

where d > 0 and x ∈ [−d, d]. Table 1 shows the maximum absolute relative errors,
i.e.,

max
x∈(−Δ,Δ)

∣∣∣∣∣ε
(λ)
d,g(x)− eλx

eλx

∣∣∣∣∣ ,
of this approximation for various values of d and Δ, where λ = 1.

Table 1: The maximum absolute relative errors of the approximations of eλx using

ε
(λ)
d,g(x), for λ = 1 and g(x) = cos(x).

d x ∈ (−2, 2) x ∈ (−5, 5) x ∈ (−10, 10) x ∈ (−20, 20)
100 2.42× 10−2 1.62× 10−1 8.32× 10−1 1.08× 10+1

1000 2.38× 10−3 1.50× 10−2 6.13× 10−2 2.69× 10−1

Based on Table 1, the GEF approximates the exponential function around zero

quite well, which is in line with the construction of ε
(λ)
d,g . On the other hand, if x ' 0

or x ( 0, (x ∈ [−d, d]), then the goodness of this approximation considerably
decreases. Figure 1 shows the plots of the GEF, exponential function and their
absolute relative difference for λ = 1, d = 100, g(x) = cos(x).

−5 −4 −3 −2 −1 1 2 3 4 5

50

100

150

x

eλx

ε
(λ)
d,g(x)

−5 −4 −3 −2 −1 1 2 3 4 5

0.05

0.10

0.15

0.20

x

∣∣∣∣ ε(λ)
d,g(x)−eλx

eλx

∣∣∣∣

Figure 1: Plots of the GEF, exponential function and their absolute relative differ-
ence for λ = 1, d = 100, g(x) = cos(x).
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We can achieve more effective approximations to the exponential function eλx on
the interval [−d, d], if for a strictly increasing g we require g(0) = 0 and for a strictly
decreasing g we require g(1) = 0. Table 2 summarizes the main properties of a GEF
induced by g in these cases. Note that if g is a strictly increasing function with

g(0) = 0 and λ < 0, then we interpret ε
(λ)
d,g(−d) as ε

(λ)
d,g(−d) = limx→−d+ ε

(λ)
d,g(x) =

∞. Similarly, if g is a strictly decreasing function with g(1) = 0 and λ > 0, then we

interpret ε
(λ)
d,g(d) as ε

(λ)
d,g(d) = limx→d− ε

(λ)
d,g(x) = ∞. In Table 2, < ∞ stands for a

finite value, while ↗ (↘, respectively) denotes that a function is strictly increasing
(decreasing, respectively).

Table 2: Main properties of the GEF ε
(λ)
d,g depending on the values of g(0) and g(1).

g λ g(0) g(1) ε
(λ)
d,g(−d) ε

(λ)
d,g(d) ε

(λ)
d,g

↗ > 0 0 < ∞ (∞) 0 < ∞ (∞) ↗
↗ < 0 0 < ∞ (∞) ∞ > 0 (0) ↘
↘ > 0 < ∞ (∞) 0 > 0 (0) ∞ ↗
↘ < 0 < ∞ (∞) 0 < ∞ (∞) 0 ↘

Example 2. Let g(x) = x, x ∈ [0, 1]. Then, g
(
1
2

)
= 1

2 , g
′ ( 1

2

)
= 1 and via direct

calculation, we get that the GEF induced by g is

ε
(λ)
d,g(x) =

(
1 +

x

d

)λd

,

where d > 0 and x ∈ [−d, d]. It is well known that limd→∞
(
1 + x

d

)λd
= eλx, which

is in line with the result of Theorem 2.
It should be added that ε

(λ)
d,g(x) is closely related to the cumulative distribution

function of the p-exponential distribution, which is given as

Fp(x) =

⎧⎪⎪⎨
⎪⎪⎩
0, if x ≤ 0

1−
(
1− x

p+1

)p

, if x ∈ (0, p+ 1)

1, if x ≥ p+ 1,

where p > 0 (see Sinner et al. [18]).
Table 3 shows the maximum absolute relative errors of the approximations for

various values of d and Δ (x ∈ (−Δ,Δ)), where λ = 1. Figure 2 shows the plots
of the GEF, exponential function and their absolute relative difference for λ = 1,
d = 100, g(x) = x.

Example 3. Let gα(x) =
(
1−x
x

)α
, x ∈ [0, 1] and α 
= 0. It should be added

that the function gα is known as the additive generator of the Dombi operators in
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Table 3: The maximum absolute relative errors of the approximations of eλx using

ε
(λ)
d,g(x), for λ = 1 and g(x) = x.

d x ∈ (−2, 2) x ∈ (−5, 5) x ∈ (−10, 10) x ∈ (−20, 20)
100 2.00× 10−2 1.21× 10−1 4.15× 10−1 9.01× 10−1

1000 2.00× 10−3 1.25× 10−2 4.91× 10−2 1.83× 10−1
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d,g(x)

−5 −4 −3 −2 −1 1 2 3 4 5
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x

∣∣∣∣ ε(λ)
d,g(x)−eλx

eλx

∣∣∣∣

Figure 2: Plots of the GEF, exponential function and their absolute relative differ-
ence for λ = 1, d = 100, g(x) = x.

continuous-valued logic (see [7]). Clearly, gα ∈ G, i.e., gα satisfies the requirements
for a generator of a GEF. Exploiting Proposition 1, we get that for any α 
= 0,
gα induces the same GEF independently of the value of α. Let α = 1, and let
g(x) = gα(x) = 1−x

x , x ∈ [0, 1]. Then, g
(
1
2

)
= 1, g′

(
1
2

)
= −4 and via direct

calculation, we get that the GEF induced by g is

ε
(λ)
d,g(x) =

(
d+ x

d− x

)λ d
2

, (12)

where d > 0 and x ∈ [−d, d]. Note that this generalized epsilon function is identical
to the epsilon function given in Definition 1, which was introduced in [9]. Table
4 shows the maximum absolute relative errors of the approximations for various
values of d and Δ (x ∈ (−Δ,Δ)), where λ = 1.

Figure 3 shows the plots of the GEF, exponential function and their absolute
relative difference for λ = 1, d = 100, g(x) = 1−x

x .

Notice that in Example 2, g(0) = 0 and g(1) = 1, i.e., g(1) is finite, while in
Example 3, g(0) = ∞ (more precisely, limx→0 g(x) = ∞) and g(1) = 0. We can
see that in this latter case, we obtained a much lower maximum absolute relative
approximation error. It is worth noting that based on Proposition 1, the generator
g(x) = x

1−x induces the same GEF as that in Eq. (12).
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Table 4: The maximum absolute relative errors of the approximations of eλx using

ε
(λ)
d,g(x), for λ = 1 and g(x) = 1−x

x .

d x ∈ (−2, 2) x ∈ (−5, 5) x ∈ (−10, 10) x ∈ (−20, 20)
100 2.67× 10−4 4.18× 10−3 3.41× 10−2 3.14× 10−1

1000 2.67× 10−6 4.17× 10−5 3.33× 10−4 2.67× 10−3

−5 −4 −3 −2 −1 1 2 3 4 5

50

100

150

x

eλx

ε
(λ)
d,g(x)

−5 −4 −3 −2 −1 1 2 3 4 5

2

4

6

·10−3

x

∣∣∣∣ ε(λ)
d,g(x)−eλx

eλx

∣∣∣∣

Figure 3: Plots of the GEF, exponential function and their absolute relative differ-
ence for λ = 1, d = 100, g(x) = 1−x

x .

Remark 2. It should be added that if the generator of a GEF is a rational function,
then the GEF is rational as well (see, e.g., Eq. (12)). In such a case, the generalized
epsilon function is computationally simple, it may be treated as an easy-to-compute
alternative to the exponential function.

4 Some applications of the generalized epsilon
function

Since the exponential function may be viewed as an asymptotic generalized epsilon
function, this latter may have a considerable application potential in many areas of
science. Here, we will briefly present two particular applications: the first one is an
approximation to the exponential distribution, the second one is an approximation
to the sigmoid function.
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4.1 An approximation to the exponential probability distri-
bution

The exponential probability distribution plays an important role in probability
theory and mathematical statistics (see, e.g., [6, 5, 2, 3]). Now, we will demonstrate
how the cumulative distribution function (CDF) of the random variable, which
has an exponential probability distribution with a λ > 0 parameter value, can be
approximated using the generalized epsilon function.

Proposition 2. Let g ∈ G such that g is either strictly increasing with g(0) = 0 and
g(1) = ∞, or it is strictly decreasing with g(1) = 0 and g(0) = ∞. Furthermore,

let λ > 0, d > 0 and let ε
(λ)
d,g : [−d, d] → R+ be a GEF induced by g according to Eq.

(7). Then the function F
(λ)
d,g : R → [0, 1] given by

F
(λ)
d,g (x) =

⎧⎪⎨
⎪⎩
0, if x ≤ 0

1− ε
(−λ)
d,g (x), if 0 < x ≤ d

1, if x > d

(13)

is a CDF of a continuous random variable and for any x ∈ R,

lim
d→∞

F
(λ)
d,g (x) = 1− e−λx. (14)

Proof. Clearly, F
(λ)
d,g (x) is continuous and it satisfies the requirements for a CDF,

while Eq. (14) is an immediate consequence of Theorem 2.

Remark 3. Utilizing the generator gα(x) =
(
1−x
x

)α
, x ∈ [0, 1] and α 
= 0, we get

F
(λ)
d,gα

(x) =

⎧⎪⎪⎨
⎪⎪⎩
0, if x ≤ 0

1−
(

d+x
d−x

)−λ d
2

, if 0 < x < d

1, if x ≥ d,

which is the CDF of the epsilon probability distribution (see [9]). Therefore, the
CDF given in Eq. (13) may be treated as a generator function-based generalization

of the CDF of the epsilon probability distribution. It is worth noting that F
(λ)
d,gα

approximates the exponential CDF quite well even for small values of the parameter
d. For example, for λ = 1 and d = 10, we have

max
x∈(0,10)

∣∣∣1− e−λx − F
(λ)
d,gα

(x)
∣∣∣ < 4.53× 10−3

and

max
x∈(0,10)

∣∣∣∣∣1− e−λx − F
(λ)
d,gα

(x)

1− e−λx

∣∣∣∣∣ < 2.03× 10−3.
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4.2 An approximation to the sigmoid function

It is well-known that the sigmoid function σ(λ) : R → (0, 1), which is given by

σ(λ)(x) =
1

1 + e−λx
, (15)

where λ ∈ R \ {0}, has a lot of applications in many areas including computer
science, engineering, biology and economics (see, e.g., [11, 12, 17, 14, 16]). It
should be noted that the sigmoid function is also known as the logistic function.
For example, in probability theory and mathematical statistics the logistic function
can be utilized as a cumulative distribution function (logistic distribution) or as a
regression function (logistic regression). The following proposition is an immediate
consequence of Theorem 2.

Proposition 3. Let g ∈ G such that g is either strictly increasing with g(0) = 0,
or it is strictly decreasing with g(1) = 0. Furthermore, let λ ∈ R \ {0}, d > 0 and

let ε
(λ)
d,g : [−d, d] → R+ be a GEF induced by g according to Eq. (7). Then, for any

x ∈ R,

lim
d→∞

1

1 + ε
(−λ)
d,g (x)

=
1

1 + e−λx
. (16)

Exploiting the result of Proposition 3, the function S
(λ)
d,g : [−d, d] → [0, 1], which

is given by

S
(λ)
d,g (x) =

1

1 + ε
(−λ)
d,g (x)

.

may be viewed as a viable alternative to the sigmoid function on the bounded
domain [−d, d].

Remark 4. More generally, if g is either strictly increasing with g(0) = 0 and
g(1) = ∞, or g is strictly decreasing with g(1) = 0 and g(0) = ∞, then the function

σ
(λ)
d,g (x) = g−1

⎛
⎜⎜⎝
(
g
(
x+d
2d

)
g
(
1
2

) )−2λd
g( 1

2 )
g′( 1

2 )

⎞
⎟⎟⎠ ,

may be treated as an alternative to the sigmoid function on the bounded domain

[−d, d]. Clearly, with the choice g(x) = 1−x
x , x ∈ [0, 1], σ

(λ)
d,g (x) = S

(λ)
d,g (x) for any

x ∈ [−d, d].

5 Conclusions

In this study, we presented the generalized epsilon function, which is a generator
function-based mapping from the bounded domain [−d, d] to the non-negative ex-
tended real line (d > 0). We proved that if d → ∞, then the generalized epsilon
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function coincides with the exponential function. This result allows us to treat the
generalized epsilon function as an alternative to exponential function on a bounded
domain. Since this new function is generator function-dependent, it is very flexible
and it can be utilized in a wide range of applications.
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Dense Languages and Non Primitive Words

Toshihiro Kogaab

Abstract

In this paper, we are concerned with dense languages and non primitive
words. A language L is said to be dense if any string can be found as a
substring of element of L. It is known that if a regular language R is dense,
then R contains infinitely many non-primitive words. Then it is natural to
ask whether this result can be generalized for a wider class of dense languages.
In this paper, we actually obtain such generalization.

Keywords: dense languages, primitive words, monoid

1 Introduction

1.1 Density and asymptotic density

Let Σ be a non-empty finite set of distinct symbols with |Σ| ≥ 2. A language
L ⊆ Σ∗ is said to be dense (in Σ∗) iff Σ∗sΣ∗ ∩ L 
= ∅ for any s ∈ Σ∗, and L is
said to be thin (in Σ∗) iff L is not dense in Σ∗. The concept of dense languages
is important in code theory (e.g., [1, 2]), and many classifications and properties
of dense languages are already known (e.g., [6, 8, 13]). Next, for L ⊆ Σ∗ and
n ≥ 0, let Dn(L) := |L ∩ Σn|/|Σn|. Moreover, let D∗(L) := limn(1/n)

∑n−1
i=0 Di(L)

(asymptotic density of L), provided that the limit exists. Then L is said to have
positive asymptotic density iff D∗(L) exists and D∗(L) > 0. Although D∗(L) does
not necessarily exist in general, we can easily show (by Theorem III.6.1 of [12]) that
if R is a regular language, then D∗(R) always exists. Moreover, the same Theorem
III.6.1 implies that if R is regular, then D∗(R) = 0 iff limn Dn(R) = 0. Some other
basic properties of asymptotic density can be found in Chapter 13 of [2].

1.2 Dömösi-Horváth-Ito conjecture

Let REG be the family of all regular languages over Σ and CFL be the family of
all context-free languages over Σ. Let QΣ ⊆ Σ+ be the set of all primitive words.
In formal language theory, Dömösi-Horváth-Ito conjecture states that QΣ /∈ CFL.

a#D-804 Purimasitei 4-1-1, Nagatsutaminamidai, Midori-ku, Yokohama-shi, Kanagawa-ken
226-0018, Japan

bE-mail: toshihiro1123_f_ma_mgkvv@w7.dion.ne.jp, ORCID: 0000-0001-6016-1306

DOI: 10.14232/actacyb.293457
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This conjecture was first suggested in [3], and still remains open. Some strategies
for approaching this conjecture can be found in [4]. In 2020, Ryoma Syn’ya [16]
suggested a new strategy for approaching QΣ /∈ CFL. He proved that any regular
language with positive asymptotic density always contains infinitely many non-
primitive words. Precisely, his theorem can be stated as follows:

Theorem 1.1 (Ryoma Sin’ya [16]). Let R ∈ REG satisfy D∗(R) > 0. Then there
exists z ∈ Σ+ and p ≥ 1 such that zpn+1 ∈ R (∀n ≥ 0). In particular, we cannot
have R ⊆ QΣ for such R.

This result states that QΣ does not have good lower approximations by regular
languages. Since D∗(QΣ) = 1, we obtain QΣ /∈ CFL, provide that we have:

Claim 1.1. Let L ∈ CFL satisfy D∗(L) = 1. Then there exists R ∈ REG such
that R ⊆ L and D∗(R) > 0.

If this claim is true, then in view of D∗(QΣ) = 1, we can conclude from Theorem
1.1 and Claim 1.1 thatQΣ /∈ CFL. However, in fact, the above Claim 1.1 is actually
false. A counter-example is implicitly shown in [16, Theorem 14], and directly
shown in [17]. Specifically, let Σ = {a, b} and L = {v ∈ Σ∗ | |v|a ≤ 2|v|b}. Then we
can show that this is a counter-example. Therefore, we need some generalizations
of Theorem 1.1 if we continue his strategy. Aside from this, Theorem 1.1 itself is
of independent interest, because this result states a non-trivial connection between
asymptotic density and primitive words. In this paper, we are concerned with such
connections, and we generalize Theorem 1.1 for a wider class of dense languages.

2 Main result
In this section, we state our main result. We first begin with a connection between
density and positive asymptotic density for regular languages:

Theorem 2.1 (Ryoma Sin’ya [15]). Let R ∈ REG. Then limn Dn(R) = 0 if and
only if R is thin.

A simple proof of this theorem can also be found in [7]. As we have already
mentioned in Section 1, if R is regular, then limn Dn(R) = 0 iff D∗(R) = 0.
Moreover, if R is regular, thenD∗(R) always exists. Combining these with Theorem
2.1, it follows that if R is regular, then R is dense iff R has positive asymptotic
density. Hence, we can restate Theorem 1.1 as follows:

Theorem 2.2. Let R ∈ REG be dense. Then there exists z ∈ Σ+ and p ≥ 1 such
that zpn+1 ∈ R (∀n ≥ 0).

As we have just mentioned, Theorem 2.2 is equivalent to Theorem 1.1, Now
we generalize Theorem 2.2 for a wider class of dense languages. We first introduce
some notations. Let TL := {L ⊆ Σ∗ | L is thin}, i.e., TL is the set of all thin
languages over Σ. Next, For any set X, let 2X denote the power set of X. For any



Dense Languages and Non Primitive Words 719

N ⊆ 2Σ
∗
, we define Γ(N ) ⊆ 2Σ

∗
as the regular closure of N . In other words, we

define Γ(N ) as the smallest set such that

N ⊆ Γ(N ), ∀L1, L2 ∈ Γ(N ) [ L1 ∪ L2, L1L2, L∗1 ∈ Γ(N ) ].

Then, our result can be stated as follows:

Main Theorem 2.3. Let L ∈ Γ(TL) be dense. Then we have

∀u, v ∈ Σ∗, ∃z ∈ Σ∗vΣ∗, ∃p ≥ 1, ∀n ≥ 0 [ (zu)pnz ∈ L ]. (1)

Since REG = Γ({∅} ∪ {{a} | a ∈ Σ}) and {∅} ∪ {{a} | a ∈ Σ} ⊆ TL, we have
REG ⊆ Γ(TL), and in fact REG � Γ(TL). Moreover, if L ⊆ Σ∗ satisfies the
condition (1), then there exists z ∈ Σ+ and p ≥ 1 such that zpn+1 ∈ L (∀n ≥ 0).
This implies that Theorem 2.2 is just a special case of Main Theorem 2.3. In other
words, Main Theorem 2.3 is a generalization of Theorem 2.2 (and Theorem 1.1).

The rest of this paper is structured as follows. In Section 3, we provide some
lemmas related to monoids. In Section 4, we prove Main Theorem 2.3. In Section
5, we show that Main Theorem 2.3 is a non-trivial generalization of Theorem 2.2.
In Section 6, we state some remarks. In Section 7, we state related work.

We assume that the reader is familiar with Regular languages and semigroup
theory. For basic information about these topics, see, e.g., [10].

3 Some lemmas related to monoids
In this section, we provide some lemmas related to monoids.

Definition 3.1. Let X be a monoid. Then L ⊆ X is said to be dense in X iff
XsX ∩L 
= ∅ for any s ∈ X, and L is said to be thin in X iff L is not dense in X.

Lemma 3.1. Let X be a monoid. Let n ≥ 1 and A1, · · · , An ⊆ X. If ∪n
i=1Ai is

dense in X, then Ai is dense in X for some i ∈ [1, n].

Proof. The proof is essentially the same as [4, Proposition 2.2.1].

Lemma 3.2. Let A1, A2 ⊆ Σ∗. If A1A2 is dense in Σ∗, then Ai is dense in Σ∗ for
some i ∈ {1, 2}.

Proof. Suppose that A1 and A2 are thin. Then Σ∗viΣ∗ ∩ Ai = ∅ for some vi ∈
Σ∗ (i = 1, 2). Since A1A2 is dense, we have Σ∗v1v2Σ∗ ∩ A1A2 
= ∅, so there exists
x, y ∈ Σ∗ and ai ∈ Ai (i = 1, 2) such that xv1v2y = a1a2. Then, v1 is a substring
of a1, or v2 is a substring of a2. This contradicts the definition of v1 and v2.

Lemma 3.3. Let M be a finite monoid. Then we have the following:
(i) Let t, x, y ∈ M satisfy t = xty. Then xmt = t = tym for some m ≥ 1.
(ii) Let t, u, x, y ∈ M satisfy t = xtuty. Then (tu)pt = t for some p ≥ 1. In
particular, for any n ≥ 1 we have (tu)pnt = t.
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Proof. (i): Since M is finite, we have ∃m ≥ 1, ∀z ∈ M [ zm is idempotent ] (see
[10, Proposition 6.33]). Now assume that t = xty. Then t = xty = x2ty2 = · · · =
xmtym, so xmt = (xm)2tym = xmtym = t. Similarly, tym = t.
(ii): If t = xtuty, then t = (x)t(uty), so t = t(uty)m for some m ≥ 1 by (i). Then
t = t(uty)(uty)m−1 = (tu)t(y(uty)m−1), so (tu)pt = t for some p ≥ 1 by (i).

Lemma 3.4. Let M be a finite monoid. Let X be a monoid. Let η : X → M be a
monoid homomorphism. Let S ⊆ M . Let R := η−1(S) (⊆ X). If R is dense in X,
then we have the following:

∀u, v ∈ X, ∃z ∈ XvX, ∃p ≥ 1, ∀n ≥ 0 [ (zu)pnz ∈ R ].

Proof. Since R is dense in X, we have R 
= ∅. In view of R = η−1(S), we have
S 
= ∅. Next, we have R = η−1(S) = ∪t∈Sη−1({t}). Since R is dense, ∪t∈Sη−1({t})
is also dense. Since “∪t∈S” is a non-empty finite union, we can apply Lemma 3.1,
so η−1({t}) is dense for some t ∈ S. Now let u, v ∈ X be arbitrary. Since η−1({t})
is dense in X, we have XvX ∩ η−1({t}) 
= ∅, so xvy ∈ η−1({t}) for some x, y ∈ X.
Let z := xvy. Then z ∈ XvX and η(z) = t. Next, since η−1({t}) is dense, we
have XzuzX ∩ η−1({t}) 
= ∅, so x′zuzy′ ∈ η−1({t}) for some x′, y′ ∈ X. Then
η(x′zuzy′) = t, i.e., η(x′)η(z)η(u)η(z)η(y′) = t. Keeping in mind η(z) = t, we
have η(x′)tη(u)tη(y′) = t. By assumption on M , we can apply (ii) of Lemma 3.3,
so there exists p ≥ 1 such that (tη(u))pnt = t (∀n ≥ 1). Since η(z) = t, we have
η((zu)pnz) = (tη(u))pnt = t (∀n ≥ 1), so (zu)pnz ∈ η−1({t}) ⊆ R (∀n ≥ 1). In
addition, if n = 0, then (zu)pnz = z ∈ η−1({t}) ⊆ R. In summary,

z ∈ XvX, p ≥ 1, (zu)pnz ∈ R (∀n ≥ 0).

Thus we complete the proof.

Lemma 3.5. Let X be a monoid. Let X0 ⊆ X be a submonoid. Let Q be a
non-empty finite set. Let L ⊆ X and s ∈ X. Let R : (Q×Q) → 2X . Assume that

(i) ∀n ≥ 1, ∀x1, · · · , xn ∈ X0, ∃p0, · · · , pn ∈ Q, ∀i ∈ [1, n] [ xi ∈ R(pi−1, pi) ],

(ii) ∀p, q ∈ Q, ∃t0, t1 ∈ X0 [ t0sR(p, q)st1 ⊆ L ],

(iii) ∀p, q, r ∈ Q [ R(p, q)sR(q, r) ⊆ R(p, r) ].

Then we have the following:

∀x, y ∈ X0, ∃z ∈ XyX, ∃p ≥ 1, ∀n ≥ 0 [ (zx)pnz ∈ L ]. (2)

Proof. STEP1: Let cx (∀x ∈ X0) be new distinct symbols, and let Σ0 := {cx | x ∈ X0}.
Note that Σ0 can be an infinite set (of distinct symbols). We can trivially verify

∀n ≥ 1, ∀v = v1v2 · · · vn ∈ Σn
0 , ∃x1, · · · , xn ∈ X0, ∀i ∈ [1, n] [ vi = cxi

].

Next, let M be the set of all maps from 2Q to 2Q. For any f, g ∈ M , we define
f ◦ g ∈ M as (f ◦ g)(U) := g(f(U)) (∀U ∈ 2Q). We also define id2Q ∈ M as
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id2Q(U) := U (∀U ∈ 2Q). Note that (M, ◦, id2Q) is a finite monoid. We define a
monoid homomorphism η : Σ∗0 → M as follows: Let ε ∈ Σ∗0 be the empty string.
We first define η(ε) := id2Q . Next, for x ∈ X0, we define η(cx) ∈ M as

η(cx)(U) := {q ∈ Q | ∃p ∈ U [ x ∈ R(p, q) ] } for U ∈ 2Q. (3)

Next, for n ≥ 2 and v = v1v2 · · · vn ∈ Σn
0 , we define η(v) := η(v1) ◦ η(v2) ◦ · · · η(vn).

By this definition, we can easily show that η : Σ∗0 → M is a monoid homomorphism.
Moreover, by induction on |v| ≥ 0, we can easily verify the following:

∀v ∈ Σ∗0, ∀U1, U2 ∈ 2Q [ U1 ⊆ U2 ⇒ η(v)(U1) ⊆ η(v)(U2) ]. (4)

STEP2: For any p, q ∈ Q, we define Ap,q := {v ∈ Σ∗0 | q ∈ η(v)({p})}. Note that
ε ∈ Ap,p for any p ∈ Q. Moreover, we can trivially verify that

∀v, w ∈ Σ∗0 [ η(v) = η(w) ⇒ ∀p, q ∈ Q [ v ∈ Ap,q ⇔ w ∈ Ap,q ] ]. (5)

Next, we show

∀p, q, r ∈ Q [ Ap,qAq,r ⊆ Ap,r ]. (6)

Let v ∈ Ap,q and w ∈ Aq,r be arbitrary. Then q ∈ η(v)({p}) and r ∈ η(w)({q}).
In particular, {q} ⊆ η(v)({p}). By (4), we have η(w)({q}) ⊆ η(w)(η(v)({p})) =
(η(v)◦η(w))({p}) = η(vw)({p}). In view of r ∈ η(w)({q}), we have r ∈ η(vw)({p}),
so vw ∈ Ap,r. Thus we obtain (6). Next, we show

∀v ∈ Σ∗0, ∃p, q ∈ Q [ v ∈ Ap,q ]. (7)

Since ε ∈ Ap,p for any p ∈ Q, we have only to show

∀v ∈ Σ+
0 , ∃p, q ∈ Q [ v ∈ Ap,q ].

Let n ≥ 1 and v = v1 · · · vn ∈ Σn
0 be arbitrary. There exists x1, · · · , xn ∈ X0

such that vi = cxi
(∀i ∈ [1, n]). By (i), there exists p0, · · · , pn ∈ Q such that

xi ∈ R(pi−1, pi) (∀i ∈ [1, n]). For any i ∈ [1, n], it follows from (3) that

η(cxi
)({pi−1}) = {q ∈ Q | ∃p ∈ {pi−1} [ xi ∈ R(p, q) ] }

= {q ∈ Q | xi ∈ R(pi−1, q)} + pi,

i.e., pi ∈ η(cxi
)({pi−1}), so cxi

∈ Api−1,pi
. In view of (6), we have

v = cx1
cx2

· · · cxn
∈ Ap0,p1

Ap1,p2
· · ·Apn−1,pn

⊆ Ap0,pn
.

Thus we obtain (7).
STEP3: We define g : Σ+

0 → X as follows: For any x ∈ X0, we define g(cx) := x.
For any n ≥ 2 and v = v1v2 · · · vn ∈ Σn

0 , we define g(v) := g(v1)sg(v2)s · · · sg(vn).
Note that we have g(vw) = g(v)sg(w) for any v, w ∈ Σ+

0 . Then we can easily verify

∀v, w ∈ Σ+
0 , ∀n ≥ 1 [ g(vnw) = (g(v)s)ng(w) ]. (8)
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Next, we show

∀v ∈ Σ+
0 , ∀p, q ∈ Q [ v ∈ Ap,q ⇒ g(v) ∈ R(p, q) ]. (9)

The proof is by induction on |v| ≥ 1. We first show the case |v| = 1. Let v ∈ Σ1
0

and p, q ∈ Q satisfy v ∈ Ap,q. We have v = cx for some x ∈ X0. In view of v ∈ Ap,q,
we have q ∈ η(v)({p}). In addition,

η(v)({p}) = η(cx)({p}) = {q′ ∈ Q | ∃p′ ∈ {p} [ x ∈ R(p′, q′) ] }
= {q′ ∈ Q | x ∈ R(p, q′)} ,

so q ∈ {q′ ∈ Q | x ∈ R(p, q′)}, i.e., x ∈ R(p, q). Since g(v) = g(cx) = x, we obtain
g(v) ∈ R(p, q). Thus we obtain (9) for |v| = 1. Next, let n ≥ 1 be arbitrary.
Assume that (9) holds for |v| = n. Let v ∈ Σn+1

0 and p, q ∈ Q satisfy v ∈ Ap,q. We
can write v = wcx for some w ∈ Σn

0 and x ∈ X0. In view of v ∈ Ap,q, we have

q ∈ η(v)({p}) = η(wcx)({p}) = (η(w) ◦ η(cx))({p}) = η(cx)(η(w)({p}))
= {q′ ∈ Q | ∃p′ ∈ η(w)({p}) [ x ∈ R(p′, q′) ] } ,

so there exists p′ ∈ η(w)({p}) such that x ∈ R(p′, q). In view of p′ ∈ η(w)({p}),
we have w ∈ Ap,p′ . By inductive hypothesis, we have g(w) ∈ R(p, p′). Then
g(v) = g(wcx) = g(w)sg(cx) = g(w)sx ∈ R(p, p′)sR(p′, q). By (iii), we have
R(p, p′)sR(p′, q) ⊆ R(p, q), so g(v) ∈ R(p, q). Thus we obtain (9) for |v| = n + 1.
By induction, we obtain (9).
STEP4: Let F := η(Σ∗0) ⊆ M . Then F is a non-empty finite set. Moreover, we
trivially have η : Σ∗0 → F , so Σ∗0 = ∪f∈F η−1({f}). In particular, ∪f∈F η−1({f})
is dense in Σ∗0. By Lemma 3.1, η−1({f}) is dense in Σ∗0 for some f ∈ F . At this
point, we obtain the following:

• M is a finite monoid, Σ∗0 is a monoid, η : Σ∗0 → M is a monoid homomorphism,
{f} ⊆ M , and η−1({f}) ⊆ Σ∗0 is dense in Σ∗0.

Then we can apply Lemma 3.4, and we obtain

∀u, v ∈ Σ∗0, ∃z ∈ Σ∗0vΣ
∗
0, ∃p ≥ 1, ∀n ≥ 0 [ (zu)pnz ∈ η−1 ({f}) ].

Since f ∈ F = η(Σ∗0), we have f = η(w) for some w ∈ Σ∗0. Then, for any w′ ∈
η−1({f}), we trivially have η(w′) = η(w). Thus we obtain

∀u, v ∈ Σ∗0, ∃z ∈ Σ∗0vΣ
∗
0, ∃p ≥ 1, ∀n ≥ 0 [ η((zu)pnz) = η(w) ]. (10)

Next, by (7), we have w ∈ Ap,q for some p, q ∈ Q. By (ii), we have t0sR(p, q)st1 ⊆ L
for some t0, t1 ∈ X0. Now let x′, y′ ∈ X0 be arbitrary. Let x := t1x

′t0. Since
x′, t0, t1 ∈ X0 and X0 is a monoid, we have x ∈ X0. Then cx, cy′ ∈ Σ0 ⊆ Σ∗0, so we
can apply (10), i.e., there exists z ∈ Σ∗0cy′Σ

∗
0 and p ≥ 1 such that η((zcx)

pnz) =
η(w) (∀n ≥ 0). Since w ∈ Ap,q, we obtain (zcx)

pnz ∈ Ap,q (∀n ≥ 0) by (5).
Since z ∈ Σ∗0cy′Σ

∗
0 ⊆ Σ+

0 , we have (zcx)
pnz ∈ Σ+

0 (∀n ≥ 0), so g((zcx)
pnz) ∈
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R(p, q) (∀n ≥ 0) by (9). Then t0sg((zcx)
pnz)st1 ∈ t0sR(p, q)st1 ⊆ L (∀n ≥ 0). In

short,

∀n ≥ 0 [ t0sg((zcx)
pnz)st1 ∈ L ]. (11)

Let z′ := t0sg(z)st1. We show t0sg((zcx)
pnz)st1 = (z′x′)pnz′ (∀n ≥ 0). If n = 0,

then t0sg((zcx)
pnz)st1 = t0sg(z)st1 = z′ = (z′x′)pnz′. If n ≥ 1, then keeping in

mind x = t1x
′t0 and (8), we have

g((zcx)
pnz) = (g(zcx)s)

png(z) = (g(z)sg(cx)s)
png(z)

= (g(z)sxs)png(z) = (g(z)st1x
′t0s)png(z),

so

t0sg((zcx)
pnz)st1 = t0s(g(z)st1x

′t0s)png(z)st1
= (t0sg(z)st1x

′)pnt0sg(z)st1 = (z′x′)pnz′.

Thus we obtain t0sg((zcx)
pnz)st1 = (z′x′)pnz′ (∀n ≥ 0). Combining this with (11),

we obtain (z′x′)pnz′ ∈ L (∀n ≥ 0). Moreover, since z ∈ Σ∗0cy′Σ
∗
0, we can write

z = αcy′β for some α, β ∈ Σ∗0. If α, β ∈ Σ+
0 , then g(z) = g(α)sy′sg(β) ∈ Xy′X.

Similarly, we obtain g(z) ∈ Xy′X in the case of α = ε or β = ε. Then z′ =
t0sg(z)st1 ∈ Xy′X. In summary, we obtain

∀x′, y′ ∈ X0, ∃z′ ∈ Xy′X, ∃p ≥ 1, ∀n ≥ 0 [ (z′x′)pnz′ ∈ L ].

Thus we complete the proof.

4 Proof of Main Theorem 2.3
In this section, we prove Main Theorem 2.3. For L ⊆ Σ∗, we define H1(L) as

H1(L) : ∀u, v ∈ Σ∗, ∃z ∈ Σ∗vΣ∗, ∃p ≥ 1, ∀n ≥ 0 [ (zu)pnz ∈ L ].

Note that H1(L) is exactly the same statement as (1). Next, we define

M1 := TL ∪ {L ⊆ Σ∗ | H1(L)} .

As for this M1, we can show the following Lemma:

Lemma 4.1. M1 is closed under regular operations, i.e., we have L1 ∪ L2, L1L2,
L∗1 ∈ M1 for any L1, L2 ∈ M1.

Once we have obtained this lemma, we can show Main Theorem 2.3 as follows:

Proof. We prove Main Theorem 2.3, provided that Lemma 4.1 is already proved.
First, we trivially obtain TL ⊆ M1. Moreover, M1 is closed under regular opera-
tions by Lemma 4.1. By the minimality of Γ(TL), we obtain Γ(TL) ⊆ M1. Now
let L ∈ Γ(TL) be dense. Since Γ(TL) ⊆ M1, we have L ∈ M1. Then L ∈ TL or
H1(L). Since L is dense, we must have H1(L), i.e., L satisfies (1).
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At this point, we have only to show Lemma 4.1. Therefore, the rest of this
section is devoted to showing Lemma 4.1. First, one can trivially verify the closure
of M1 under union by applying Lemma 3.1 and the following basic fact:

∀A,B ⊆ Σ∗ [ [ A ⊆ B, H1(A) ] ⇒ H1(B) ]. (12)

Next, we show the closure under concatenation:

Proof. We first show the following:

∀L1, L2 ⊆ Σ∗ [ [ H1(L1) ∨H1(L2) ] ⇒ [ L1L2 = ∅ ∨H1(L1L2) ] ]. (13)

Let L1, L2 ⊆ Σ∗ satisfy H1(L1) ∨H1(L2). If L1L2 = ∅, then we obtain (13). Now
we may assume L1L2 
= ∅. Then L1 
= ∅ and L2 
= ∅, so we can take l1 ∈ L1

and l2 ∈ L2. If H1(L1) holds, then let u, v ∈ Σ∗ be arbitrary. We apply H1(L1)
with l2u and v. Then there exists z ∈ Σ∗vΣ∗ and p ≥ 1 such that (z(l2u))

pnz ∈
L1 (∀n ≥ 0). Let z′ := zl2. Then z′ ∈ Σ∗vΣ∗. Moreover, (z′u)pnz′ = (zl2u)

pnzl2 =
((zl2u)

pnz)l2 ∈ L1l2 ⊆ L1L2 (∀n ≥ 0). Thus we obtain H1(L1L2). Next, if H1(L2)
holds, then let u, v ∈ Σ∗ be arbitrary. We apply H1(L2) with ul1 and v. Then there
exists z ∈ Σ∗vΣ∗ and p ≥ 1 such that (z(ul1))

pnz ∈ L2 (∀n ≥ 0). Let z′ := l1z.
Then z′ ∈ Σ∗vΣ∗. In general, we have (xy)nx = x(yx)n for any x, y ∈ Σ∗ and
n ≥ 0, so (z′u)pnz′ = (l1zu)

pnl1z = l1(zul1)
pnz ∈ l1L2 ⊆ L1L2 (∀n ≥ 0). Thus

we obtain H1(L1L2), and we complete the proof of (13). Now the closure of M1

under concatenation trivially follows from (13), Lemma 3.2, and ∅ ∈ TL.

Finally, we show the closure under Kleene star. For that, we need the following:

Lemma 4.2. Let A ⊆ Σ∗. If A is thin and A∗ is dense, then we have H1(A
∗).

Proof. STEP1: Let ε ∈ Σ∗ be the empty string. Let A ⊆ Σ∗. Assume that A
is thin, A∗ is dense, and ε /∈ A. We show H1(A

∗) in this case.1 If A = ∅, then
A∗ = {ε}. However, since A∗ is dense, this is a contradiction. Thus we obtain
A 
= ∅. Next, since A is thin, we have Σ∗tΣ∗ ∩ A = ∅ for some t ∈ Σ∗. If t = ε,
then Σ∗Σ∗ ∩ A = ∅, so we must have A = ∅, which is a contradiction. Thus we
obtain t 
= ε. Since A∗ is dense, we have Σ∗tΣ∗ ∩ A∗ 
= ∅, so t′tt′′ ∈ A∗ for some
t′, t′′ ∈ Σ∗. Let s := t′tt′′. Then s 
= ε and s ∈ A∗. If Σ∗sΣ∗ ∩ A 
= ∅, then in
view of Σ∗sΣ∗ ⊆ Σ∗tΣ∗, we have Σ∗tΣ∗ ∩ A 
= ∅, which is a contradiction. Thus
we obtain Σ∗sΣ∗ ∩A = ∅. Next, let Spre be the set of all prefixes of s and Ssuf be
the set of all suffixes of s. Note that we have ε ∈ Spre and ε ∈ Ssuf . Let

S′pre := {β ∈ Spre | ∃w ∈ Σ∗ [ wβ ∈ A ] } ,
S′suf := {γ ∈ Ssuf | ∃w ∈ Σ∗ [ γw ∈ A ] } .

Since A 
= ∅, it is easy to verify that ε ∈ S′pre and ε ∈ S′suf . Next, let

Q :=
{
(β, α, γ) | β ∈ S′pre, γ ∈ S′suf , α ∈ A∗, βαγ = s

}
.

1In fact, the additional assumption ε /∈ A is not essential, but we adopt this assumption for
simplicity.
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Note that Q is a finite set. In addition, since s ∈ A∗, we have (ε, s, ε) ∈ Q, so
Q 
= ∅. Next, for p = (β, α, γ) ∈ Q and q = (β′, α′, γ′) ∈ Q, we define R(p, q) :=
{x ∈ Σ∗ | γxβ′ ∈ A∗}. Let X := Σ∗, X0 := Σ∗, and L := A∗. We show (i), (ii),
and (iii) of Lemma 3.5.
(i): Let n ≥ 1 and x1, · · · , xn ∈ X0. We have to show there exists p0, · · · , pn ∈ Q
such that xi ∈ R(pi−1, pi) (∀i ∈ [1, n]). We first deal with the case n = 1. Then
x1 ∈ X0 is given, and we have to show there exists p0, p1 ∈ Q such that x1 ∈
R(p0, p1). First, since A∗ is dense, we have Σ∗sx1sΣ

∗ ∩A∗ 
= ∅, so usx1sv ∈ A∗ for
some u, v ∈ Σ∗. This implies that we can decompose the whole string usx1sv into
concatenations of strings in A. Keeping in mind Σ∗sΣ∗∩A = ∅, the decomposition
for each s (in usx1sv) is like Fig. 1. Therefore, the decomposition for usx1sv is
like Fig. 2, so p0 := (β, α, γ) ∈ Q and p1 := (β′, α′, γ′) ∈ Q in Fig. 2 satisfies
x1 ∈ R(p0, p1). See also Fig. 3.

s

� �

β

α

γ

s

� �

β

α = ε

γ

s

� �

β

α

γ

s

� �

β

α
γ = ε

s

� �

α
β = ε

γ

s

� �

α
β = γ = ε

Figure 1: Six examples of decomposition for each s in usx1sv.

u s x1 s v

� � � �

β

α

γ β′

α′

γ′

u s x1 s v

� � � �

β

α = ε

γ β′

α′ = ε

γ′

Figure 2: Two examples of decomposition for usx1sv.

u s
ε

s v

� � � �

β

α

γ β′

α′

γ′

u s
ε

s v

� �� �

β = γ = β′ = γ′ = ε
α α′

u s
ε

s v

� � � �

β

α = ε

γ β′

α′ = ε

γ′

Figure 3: Three examples of decomposition for usx1sv with x1 = ε.

In general case n ≥ 1, we have Σ∗sx1s · · · sxns ∈ Σ∗∩A∗ 
= ∅, so usx1s · · · sxnsv ∈
A∗ for some u, v ∈ Σ∗. This implies that we can decompose the whole string
usx1s · · · sxnsv into concatenations of strings in A. Keeping in mind Σ∗sΣ∗∩A = ∅,
we can easily show that there exists p0, · · · , pn ∈ Q such that xi ∈ R(pi−1, pi) (∀i ∈
[1, n]). See also Fig. 4 and Fig. 5.
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u s x1 s x2 s x3 s v

�
� � � � � � � �

β

α

γ β′

α′ = ε

γ′ β′′

α′′ γ′′ = ε

β′′′

α′′′ = ε

γ′′′

Figure 4: An example of decomposition.

u s x1 s x2 s x3 s v

Figure 5: Decomposition like above is impossible due to Σ∗sΣ∗ ∩A = ∅.

(ii): Let p = (β, α, γ) ∈ Q and q = (β′, α′, γ′) ∈ Q be arbitrary. Since β ∈ S′pre
and γ′ ∈ S′suf , we have t0β, γ

′t1 ∈ A for some t0, t1 ∈ Σ∗ (= X0). Let x ∈ R(p, q)
be arbitrary. Then γxβ′ ∈ A∗, so (t0β)α(γxβ

′)α′(γ′t1) ∈ A∗. Since βαγ = s
and β′α′γ′ = s, we obtain t0sxst1 ∈ A∗. Since x ∈ R(p, q) is arbitrary, we have
t0sR(p, q)st1 ⊆ A∗ (= L), so we obtain (ii).
(iii): Let p = (β, α, γ) ∈ Q, q = (β′, α′, γ′) ∈ Q, and r = (β′′, α′′, γ′′) ∈ Q be
arbitrary. Let x ∈ R(p, q) and y ∈ R(q, r). Then γxβ′ ∈ A∗ and γ′yβ′′ ∈ A∗.
In particular, (γxβ′)α′(γ′yβ′′) ∈ A∗. Since β′α′γ′ = s, we have γxsyβ′′ ∈ A∗, so
xsy ∈ R(p, r). This implies R(p, q)sR(q, r) ⊆ R(p, r). Thus we obtain (iii).
Consequently, we can apply Lemma 3.5, and we obtain (2). In other words,

∀x, y ∈ Σ∗, ∃z ∈ Σ∗yΣ∗, ∃p ≥ 1, ∀n ≥ 0 [ (zx)pnz ∈ A∗ ].

This implies H1(A
∗).

STEP2: Let A ⊆ Σ∗. Assume that A is thin and A∗ is dense. Let B := A − {ε}.
In general, we have (A − {ε})∗ = A∗, so B∗ = A∗. Since A∗ is dense, it follows
that B∗ is dense. If B is dense, then in view of B ⊆ A, it follows that A is dense,
which is a contradiction. Therefore, B is thin. Moreover, we have ε /∈ B. Hence,
by STEP1, we have H1(B

∗). Since B∗ = A∗, we obtain H1(A
∗).

The closure of M1 under Kleene star trivially follows from Lemma 4.2 and (12).
Hence, we complete the proof of Lemma 4.1.

5 On Theorem 2.2 and Main Theorem 2.3

In this section, we prove the following theorem:

Theorem 5.1. Let Σ = {a, b}. Then there exists a dense L ∈ Γ(TL) such that
there is no dense R ∈ REG with R ⊆ L.

In view of this theorem, we can say that Main Theorem 2.3 is a non-trivial
generalization of Theorem 2.2.



Dense Languages and Non Primitive Words 727

Proof. Let N be the set of all positive integers. Let I =
{
(pqn)4 + q | p, q, n ≥ 1

}
⊆

N. We show the following:

(i) ∀p, q ≥ 1 [ pm+ q ∈ I for infinitely many m ≥ 1 ].

(ii) ∀p, q ≥ 1 [ pm+ q ∈ N− I for infinitely many m ≥ 1 ].

(i): This is obvious.
(ii): For any t ≥ 1, we can easily show I ∩ [1, t] ⊆

{
(pqn)4 + q | 1 ≤ p, q, n ≤ t1/4

}
.

In particular, |I ∩ [1, t]| ≤ t3/4, so limt→+∞ |I ∩ [1, t]|/t = 0. Now let p, q ≥ 1. We
show pm+q ∈ N−I for infinitely many m ≥ 1. Supposing the contrary, there exists
m0 ≥ 1 such that pm+ q ∈ I (∀m ≥ m0). Let J := {pm+ q | m ≥ m0}, for short.
Then we have J ⊆ I. Combining this inclusion with limt→+∞ |I ∩ [1, t]|/t = 0, we
have limt→+∞ |J ∩ [1, t]|/t = 0. However, since J = {pm+ q | m ≥ m0}, we have
limt→+∞ |J ∩ [1, t]|/t = 1/p. This is a contradiction. Thus we obtain (ii).
Next, we define f : aΣ∗b∪{ε} → N∪{0} as follows: For any v ∈ aΣ∗b, there exists
unique k ≥ 1 and unique n1,m1, · · · , nk,mk ≥ 1 such that v = an1bm1 · · · ankbnk .
Then we define f(v) := | {i ∈ [1, k] | ni ∈ I} |. We also define f(ε) := 0. As for this
f , we can easily verify the following:

∀v, w ∈ aΣ∗b ∪ {ε} [ vw ∈ aΣ∗b ∪ {ε} , f(vw) = f(v) + f(w) ]. (14)

Next, let r ∈ {0, 1} be arbitrary. We define

Lr := {v ∈ aΣ∗b ∪ {ε} | f(v) ≡ r (mod 2)} ⊆ aΣ∗b ∪ {ε} .

We show Lr satisfies the desired property. We first show that Lr is dense in Σ∗.
Take an n1 ∈ I, and let α := an1b. Let v ∈ Σ∗ be arbitrary. Then α, avb ∈ aΣ∗b.
By (14), we have f(avbαk) = f(avb) + kf(α) = f(avb) + k (∀k ≥ 1). In particular,
we have f(avbαk1) ≡ r (mod 2) for some k1 ∈ {1, 2}. Then avbαk1 ∈ Lr, i.e.,
we have Σ∗vΣ∗ ∩ Lr 
= ∅. Hence, Lr is dense. Next, suppose that there exists a
dense R ∈ REG such that R ⊆ Lr. Let G be a deterministic finite automaton
which represents R. Let t ≥ 1 be the number of all states of G. Since R is
dense, we have Σ∗b2at+9ba2Σ∗ ∩R 
= ∅. Then we have u′b2at+9ba2v′ ∈ R for some
u′, v′ ∈ Σ∗. Let u := u′b and v := av′. Then u, v ∈ Σ+ and ubat+9bav ∈ R.
By the definition of t ≥ 1, we can apply a standard pumping argument, and we
can show that there exists p, q ≥ 1 such that ubapn+qbav ∈ R (∀n ≥ 1). Since
R ⊆ Lr, we have ubapn+qbav ∈ Lr (∀n ≥ 1). Since Lr ⊆ aΣ∗b ∪ {ε}, we have
ubapn+qbav ∈ aΣ∗b (∀n ≥ 1). Then, the first character of u must be a, and the last
character of v must be b. In particular, we have ub, av, apn+qb ∈ aΣ∗b. By (14),
we have f(ubapn+qbav) = f(ub) + f(apn+qb) + f(av). Since ubapn+qbav ∈ Lr, we
have f(ubapn+qbav) ≡ r (mod 2), so f(ub) + f(apn+qb) + f(av) ≡ r (mod 2). By
(i) and (ii), there exists m,m′ ≥ 1 such that pm + q ∈ I and pm′ + q ∈ N − I.
Then f(ub)+ 1+ f(av) ≡ r (mod 2) and f(ub)+ 0+ f(av) ≡ r (mod 2), which is a
contradiction. Hence, there is no dense R ∈ REG with R ⊆ Lr. Finally, we show
Lr ∈ Γ(TL). Let

A := {anbm | n ∈ I, m ≥ 1} , B := {anbm | n ∈ N− I, m ≥ 1} .
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Consider the following language equations:

X0 = AX1 ∪BX0 ∪ {ε} , X1 = AX0 ∪BX1. (15)

Let Y0, Y1 ⊆ Σ∗ be the least solution of (15). In fact, we can explicitly write
Y0 = (AB∗A ∪ B)∗ and Y1 = B∗A(AB∗A ∪ B)∗. Since A,B ∈ TL ⊆ Γ(TL), we
have Y0, Y1 ∈ Γ(TL). Moreover, we can easily show that L0, L1 is also the least
solution of (15). Hence, we must have L0 = Y0 and L1 = Y1, so Lr ∈ Γ(TL).

6 Some remarks

In this section, we give some remarks.

6.1 On Lemma 4.1

Let H2(L) be a statement defined as

H2(L) : ∃z ∈ Σ+, ∃p ≥ 1, ∀n ≥ 0 [ zpn+1 ∈ L ].

Let M2 := TL ∪ {L ⊆ Σ∗ | H2(L)}. It is natural to consider M2 instead of M1

in Lemma 4.1. We would like to show that M2 is closed under regular operations.
However, M2 is not closed under concatenation. For example, let Σ = {a, b},
L1 :=

{
va10|v| | v ∈ Σ+

}
, and L2 := {b}. We can show that L1, L2 ∈ M2 and

L1L2 /∈ M2. This is why we have considered H1(L) instead of H2(L).

6.2 On Main Theorem 2.3

For any L ⊆ 2Σ
∗
, consider the following claim:

Claim 6.1. Let R ∈ L be dense. Then there exists z ∈ Σ+ and p ≥ 1 such that
zpn+1 ∈ R (∀n ≥ 0).

Note that Claim 6.1 with L = REG is exactly Theorem 2.2. Moreover, Claim
6.1 with L = Γ(TL) is also true, as we have already shown. Keeping in mind
Dömösi-Horváth-Ito conjecture, it is desirable to prove Claim 6.1 for L = CFL,
because in this case we trivially obtain Dömösi-Horváth-Ito conjecture (by consid-
ering R = QΣ). However, in fact, Claim 6.1 does not hold even if L = DCFL
(deterministic context-free languages). Here we provide a counter-example. Let
Σ = { 〈 , 〉 }. Let L ⊆ Σ∗ be the Dyck language over Σ. Let R := { v〉 | v ∈ L}.
It is easy to show that R is dense, R ⊆ QΣ, and R ∈ DCFL. Therefore, this R is
a counter-example of Claim 6.1 for L = DCFL. This fact implies that extending
Theorem 2.2 is a hard problem in general. This situation is already indicated in
our proofs: we have proved non-trivial lemmas to obtain Main Theorem 2.3.
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7 Related work

In this section, we briefly state some related work. For L ⊆ Σ∗, let ∼L be the
syntactic equivalence of L, and let Σ∗/ ∼L be the syntactic monoid of L. By
Myhill-Nerode Theorem, we can easily show that L is a regular language iff Σ∗/ ∼L

is a finite monoid (see also [10, Proposition 3.18]).

7.1 Related work for dense and disjunctive language

A language L ⊆ Σ∗ is said to be disjunctive iff ∀u, v ∈ Σ∗[ u ∼L v ⇔ u = v ]. In
particular, if L is a disjunctive language, then Σ∗/ ∼L is an infinite set.

The concept of disjunctive languages is closely related to dense languages. For
example, it is shown in [11, PROPOSITION 2.5] that a language L is dense iff there
exists a disjunctive language L′ such that L′ ⊆ L. Many properties of disjunctive
languages are already known (e.g., [11, 14]). Moreover, many connections between
dense and disjunctive languages are known (e.g., [5, 6]).

7.2 Related work for Theorem 1.1, 2.2, and Main Theorem
2.3

As for Theorem 1.1, 2.2, and Main Theorem 2.3, we refer to [6, 9] as direct related
works. Theorem 2.2 is exactly the same as [9, Corollary 4.6]. Next, it is shown in
[6] that if R ⊆ Σ∗ is a dense regular language, then R ∩QΣ and R− (R ∩QΣ) are
disjunctive. Note that this result implies the following:

Proposition 7.1. If R ∈ REG is dense, then R contains infinitely many non
primitive words.

This is because of the following reasons: let R ∈ REG be dense. By [6],
L := R− (R ∩QΣ) is disjunctive. In particular, Σ∗/ ∼L is an infinite set. If L is a
finite set, then L is regular, so Σ∗/ ∼L is a finite monoid. Then Σ∗/ ∼L is a finite
set, which is a contradiction. Thus, L is an infinite set, i.e., R contains infinitely
many non primitive words, so we obtain Proposition 7.1.

Note that Proposition 7.1 is almost the same as Theorem 2.2 (and Theorem
1.1). The only difference is that Theorem 2.2 (and Theorem 1.1) tells us specific
examples of non primitive words, i.e., R contains infinitely many non primitive
words of the form zpn+1, while Proposition 7.1 does not tell us such examples. As
for Main Theorem 2.3, we have proved that if L ∈ Γ(TL) is dense, then we have
the condition (1), so there exists z ∈ Σ+ and p ≥ 1 such that zpn+1 ∈ L (∀n ≥ 0).
In addition, Main Theorem 2.3 is a non-trivial generalization of Theorem 2.2, as
we have already proved in Section 5.
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Models and Algorithms for Social Distancing in

Order to Stop the Spread of COVID-19

Alexandru Popaab

Abstract

Currently there are many attempts around the world to use computers,
smartphones, tablets and other electronic devices in order to stop the spread
of COVID-19. Most of these attempts focus on collecting information about
infected people, in order to help healthy people avoid contact with them.
However, social distancing decisions are still taken by the governments em-
pirically. That is, the authorities do not have an automated tool to recom-
mend which decisions to make in order to maximize social distancing and to
minimize the impact for the economy.

In this paper we address the aforementioned problem and we design an
algorithm that provides social distancing methods (i.e., what schools, shops,
factories, etc. to close) that are efficient (i.e., that help reduce the spread of
the virus) and have low impact on the economy.

On short: a) we propose several models (i.e., combinatorial optimization
problems); b) we show some theoretical results regarding the computational
complexity of the formulated problems; c) we give an algorithm for the most
complex of the previously formulated problems; d) we implement and test
our algorithm.

Keywords: combinatorial optimization, COVID-19, algorithm, NP-hard
problem

1 Introduction

The rapid spread of COVID-19 around the world is stunning. This novel coron-
avirus created an unprecedented lockdown in many countries which, in turn, caused
an immense economic and social impact. Thus, many researchers investigate meth-
ods to stop this epidemic as soon as possible. For example, the list of papers on
COVID-19 collected by the World Health Organization [28] contains around 10 000
publications, a huge number, given that the virus was first discovered in January
2020. The struggle involves researchers from various fields such as bioinformatics,
epidemiology, sociology, mathematics and computer science.
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One key factor to stop the spread of the virus is the social distancing (see,
e.g., [10]). Many companies and organizations try to develop applications to aid
the social distancing (see [25] for a long list of current such projects). However,
many applications seem to focus on tracking people movement. To the best of
our knowledge, we do not know any application that advises the authorities which
decisions to make. As Thomas Pueyo writes in his article published on the 19th
of March 2020 [20] (Chart 16), governments should have a chart with the effect
and the cost of various social distancing measures. As it is currently observed in
the world (and especially in Europe), many governments were afraid to take severe
social distancing measures in order to avoid a high economic loss.

In this paper we try to address this issue as follows. We first build a model (i.e.,
a combinatorial optimization problem) that captures the current setting: the risk
of the people to get COVID-19, the contact between various people and the cost
of closing various facilities such as schools, parks, cities, factories, etc.. We show
that the problem we introduce is NP-hard (as it is often the case with complex
combinatorial optimization problems). Then, since we cannot solve the problem
exactly in polynomial time, we provide a heuristic polynomial time algorithm for
this problem. To understand the performance of our algorithm, we implement and
test it in Section 5. We generate our test data using special probability distribu-
tions that simulate real world social networks as we present in Section 5.1. Our
experiments are encouraging and show that even with a 1% budget (from the total
cost of locking down the entire country), we can reduce the population risk by more
than 5 times compared with the situation in which no measures are taken. Thus,
we show that there is a possibility for a “beautiful” lockdown that is efficient in the
fight with COVID-19 and safe for the economy.

1.1 Related work

In this paragraph we present briefly the related work in the field. Since the number
of papers written on the topic is huge, it is impossible to mention all the results.
Nevertheless, we enumerate a couple of papers that we consider relevant to the
current work.

We first mention that some of the models presented in the paper are connected
to random graphs. Random graphs is an active area of research which combines
probability theory and graph theory. The subject began in 1960 with the seminal
paper of Erdös and Rényi [6]. The book by Bollobás [5] is the standard source for
the field. Other notable sources are [11, 7, 15, 2].

We now briefly mention the role of operations research in developing epidemic
response strategies. One of the main applications of operations research was health-
care, e.g. [21, 12, 30, 24, 4, 18]. However, most of the papers in the operations re-
search field are concerned with either simulation frameworks [27, 23, 16] or resource
allocation problems [22, 17, 13, 3].

A few models in the literature attempted to evaluate and devise response strate-
gies among which we mention [26, 14, 31]. For more details, we refer the reader to
the survey of Yu et al. [29], the related work section in the paper of Gillis et al. [9],
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and the survey of Adiga et al. [1].
We mention that the paper is written in a bottom-up fashion. More precisely,

in Section 2 we present a preliminary model that we designed in the early stages of
our study. Even if we do not consider the model in Section 2 further in the paper,
the motivation for introducing it is two-fold. Firstly, by presenting the model in
Section 2 we show the reader the complete path we took to design the model in
Section 3 (instead of simply presenting the final product). Secondly, researchers
who aim to study and improve the models presented in this paper may find useful
to understand the difficulty behind designing a comprehensive model.

The paper is structured as follows. At first, in Section 2 we present the first
set of problems that aim to model the problem. We also show that these problems
are NP-hard. Then, in Section 3 we present our actual framework. In Section 4
we design an algorithm for the problem presented in Section 3. Then, in Section 5
we describe our experiments. Finally, in Section 6 we discuss several directions for
future work.

2 Preliminary ideas

In this section we introduce a preliminary model (i.e., a collection of related combi-
natorial optimization problems) that helped us to derive the model from Section 3.

2.1 A tentative framework

The input consists of an undirected complete graph G = (V,
(
V
2

)
) and a function

p :
(
V
2

)
→ [0, 1]. Each node v ∈ V in the graph corresponds to a person and p(u, v)

is the probability that two people get in contact with each other. Moreover, each
vertex v ∈ V has two associated values, risk : V → [0, 1] and vulnerability : V →
[0, 1], representing how likely is a person to spread the disease (e.g., it can be 1 if a
person is tested positive with COVID-19 or close to 1 if a person was recently in a
“red area”), respectively how vulnerable is a certain person (e.g., there are studies
showing that elderly people and people with chronic diseases are more likely to be
affected).

Besides the input graph we are given k1 sets of vertices V 1 = {V 1
1 , V

1
2 , . . . , V

1
k1
}

each one having associated a value c1 : {1, 2, . . . , k1} → R+ and a value r1 :
{1, 2, . . . , k1} → [0, 1]. The cost c1(i) represents the cost of reducing the value of
all p(a, b), ∀a, b ∈ V 1

i to p(a, b) · r1(i) . Informally, the cost c1(i) represents the
cost of closing facility i (i.e., a school, a bar, restaurant, theater, etc.), which in
turn reduces the probability of interaction of people belonging to the corresponding
facility. In a simple variant, each r1(i) can be set to 0, representing that two people
who belong to that facility will have probability 0 to interact once the facility is
closed.

Then, we have k2 sets of vertices V 2 = {V 2
1 , V

2
2 , . . . , V

2
k2
} each one with a value

c2 : {1, 2, . . . , k2} → R+ and a value r2 : {1, 2, . . . , k2} → [0, 1]. The cost c2(i)
represents the cost of reducing the value of all p(a, b) to p(a, b) ·r2(i), where a ∈ V 2

i
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and b /∈ V 2
i . Informally, the cost c2(i) represents the cost of isolating the people

in the group V 2
i (for example, quarantining persons, small groups or even closing

entire cities).

2.2 Possible combinatorial optimization problems

Now we introduce a couple of objective functions and constraints that aim to model
the current scenario. The overall goal is to reduce the spread of the virus while
keeping the cost at a minimum. The first group of problems consider a simplified
variant of the framework, ignoring the vulnerability and the risk of each person.

In the first problem the goal is to optimize the economic cost of closing various
facilities and isolating various groups of people, while maximizing the number of
components created.

Problem 1. We are given a budget B ∈ R+ and a threshold P ∈ [0, 1]. The goal is

to select a set V̂ 1 ⊆ V 1 and a set V̂ 2 ⊆ V 2 such that the following two conditions
are met:

1. ∑
i∈V̂ 1

c1(i) +
∑
i∈V̂ 2

c2(i) ≤ B

2. After the sets of facilities V̂ 1 and V̂ 2 are selected and the corresponding edges
have their probabilities decreased (as described in Subsection 2.1), we remove
all the edges (a, b) ∈

(
V
2

)
such that p(a, b) ≤ P . The goal is to maximize the

number of connected components in the remaining graph.

As we stated above, the model does not consider all the information. However,
it is useful in cases where not much data is available to conduct preliminary tests.
Moreover Problem 1 is interesting to study from the theoretical point of view since
it is a novel combinatorial optimization problem.

Notice that even this oversimplified variant of the framework is NP-hard since
it is a generalization of the classical Vertex Cover problem as we show in Subsec-
tion 2.3.

The second problem that we introduce is similar to the first problem. Here the
goal is to minimize the budget, while requiring for at least a certain number of
connected components to be created.

Problem 2. We are given a number of desired connected components N and a
threshold P ∈ [0, 1]. The goal is to select a set V̂ 1 ⊆ V 1 and a set V̂ 2 ⊆ V 2

such that the following holds. After the sets of vertices V̂ 1 and V̂ 2 are selected and
the corresponding edges have their probabilities decreased, we remove all the edges
(a, b) ∈

(
V
2

)
such that p(a, b) ≤ P . The number of connected components in the

remaining graph should be at least N . The goal is to minimize∑
i∈V̂ 1

c1(i) +
∑
i∈V̂ 2

c2(i)
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If we ask to maximize only the number of connected components we might
obtain a solution that does not match the original motivation. For example, we
can obtain a solution where we have many small components and a huge component,
which is, of course, not desired in practice. Thus, we introduce the following two
problems, in which we impose a restriction on the size of the connected components
resulted after the closure of facilities.

Problem 3. The input is the same as in Problem 1. The goal is to minimize the
number of nodes of the largest connected components in the remaining graph.

Problem 4. The input is the same as in Problem 2, but N , instead of being
the number of connected components desired, is the maximum allowed size of a
connected component. Thus, the goal is to choose a set of facilities of minimum total
budget (if such a set exists) such that, after closing these facilities, each resulting
component has size less than or equal to N .

In the end of this section, we formulate two more complex problems that aim to
take into considerations all the restrictions, including the risk and the vulnerability.

Problem 5. Besides the input graph and the data associated with the facilities,
we are given a budget B, a threshold P and two real numbers W and R. We have
the following constraints associated with the connected components resulted after
closing the facilities:

1. For any connected component X we have
∑

v∈X vulnerability(v) ≤ W . Infor-
mally, this constraint aims to avoid large groups formed by vulnerable people
(such as eldery, or immunosuppressed).

2. For any connected component X we have
∑

u,v∈X(max{risk(u), risk(v)} −
min{risk(u), risk(v)}) ≤ R. Informally, this constraint aims to avoid a con-
nected component that mixes “healthy” and “ill” people. Notice that if two
people have high risk (i.e., that are very likely to have COVID-19) or if two
people have very low risk, then max{risk(u), risk(v)}−min{risk(u), risk(v)}
is very close to 0.

The goal is to select a set of facilities such that, after removing the edges with
probability less than P , minimises the number of connected components that violate
any of the two above mentioned constraints.

The final problem that we propose in this section, is very similar to Problem 5
but aims to enforce that all the components resulted obey the restrictions. Nev-
ertheless, in this variant, we are not given a constraint on the budget. Otherwise,
if we are given a constraint on the budget and on the connected components, it is
NP-hard even to decide if a feasible solution exists (we obtain an instance of the
Knapsack problem that is NP-hard [8]).

Problem 6. The input is similar to Problem 5, except that we do not have a budget
B. The goal is to select a set of facilities of minimum cost (if such a set exists)
such that, after removing the edges with probability less than P , all the connected
components do not violate any of the two constraints defined in Problem 5.
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2.3 Hardness results

In this section we show that the problems introduced in Subsection 2.2 are NP-
hard. We show a complete proof only for Problem 1, since the NP-hardness proofs
for the other problems are similar.

Theorem 1. Problem 1 is NP-hard.

Proof. We show a simple reduction from the Vertex Cover problem which is a
classical NP-hard problem [8]. In the (decision version of the) Vertex Cover problem
the input is an undirected graph G = (V,E) and an integer k and the goal is to
decide, if exists, a subset V ′ ⊆ V such that |V ′| ≤ k and for any edge (a, b) ∈ E,
either a ∈ V ′ or b ∈ V ′ or both. Thus, given an instance of Vertex Cover, that is,
a graph G = (V,E) and an integer k, we construct an instance of Problem 1 as
follows.

1. The input graph G′ of Problem 1 has the same vertex set V .

2. The edge set is constructed as follows: for every edge (a, b) ∈ E, we set
p(a, b) = 1, otherwise we set p(a, b) = 0.

3. We let V 1 = ∅.

4. We let V 2 = {{v} | ∀v ∈ V }, while the cost c2 of selecting any set from V 2 is
1 and r1 is 0 (that is, all the edges that are incident to a selected vertex are
deleted).

5. The budget B = k.

Now, we show that the graph G = (V,E) has a vertex cover of size at most k
if and only if the maximum number of connected components in the corresponding
instance of Problem 1, after removing the edges (a, b) with p(a, b) = 0, is n.

First, given a vertex cover V ′, the solution of Problem 1 that creates n connected
components selects the set V̂ 2 = {{v′} | v′ ∈ V ′}, that is, we select the sets from
V 2 corresponding to the vertices in V ′. Since V ′ is a vertex cover, any edge is
incident to at least one vertex from V ′, thus p(a, b) = 0, ∀a, b ∈ V after selecting

V̂ 2.
Conversely, given a set V̂ 2, such that |V̂ 2| ≤ k, we construct the set V ′ =

{v′ | {v′} ∈ V̂ 2}. Since n connected components are created after selecting V̂ 2, we
know that p(a, b) = 0, ∀a, b ∈ V (otherwise, we have a connected component with
at least two vertices). Since p(a, b) = 0, ∀a, b ∈ V , we know that for any edge (a, b)

that had p(a, b) = 1, either {a} ∈ V̂ 2 or {b} ∈ V̂ 2. Thus, V ′ = {v′ | {v′} ∈ V̂ 2} is
a vertex cover of G, completing the proof.

Using a similar reduction, we can show that Problems 2, 3, 4, 5 and 6 are
NP-hard. Thus, we state the following corollary.

Corollary 1. Problems 2, 3, 4, 5 and 6 are NP-hard.
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3 The framework for modeling COVID-19

The framework presented in the previous section, although promising, has the fol-
lowing problem. The closure of a facility might not have the same effect for all
the people that are connected through that facility. Consider the following sim-
ple example: two siblings (who live in the same house) study at the same school.
Then, after closing the school, in reality the two siblings still have a large probabil-
ity to get in contact with each other. Thus, we introduce the following framework
which captures the aforementioned example and is also simpler than the framework
presented in Section 2.

Problem 7. The input consists of a bipartite graph G = (U ∪ V,E). The set U
represents the people and the set V represents the facilities. For each edge we have
associated a value t : U ×V → [0, 1] that represents the percentage of the time spent
by a person in that facility in a day. For example, if t(a, b) = 0.25, then person
a spends 6 hours (0.25 × 24 hours) in facility b. Each person has an associated
probability f : U → [0, 1] of being infected. Each facility has an associated closure
cost c : V → R+. Closing a facility v is equivalent to removing the edges incident
to v. Moreover, we are given a cost c′ : U → R+ of isolating people. Isolating a
subset of people U ′ is equivalent to removing the edges incident to all the vertices
in U ′. Moreover, we are given a total budget B for closing the facilities.

The risk of a facility is informally the weighted (using the probability of a person
being infected f as the weight) sum of the time spent by the people in that facility.
More precisely, R : V → R+ is:

R(v) =
∑

u∈U :(u,v)∈E
f(u) · t(u, v)

The risk of a person r : U → R+ (not to be confused with f) is defined as the
weighted sum spent by a person in the facilities he visits (weighted using the risks
of the facility). Formally:

r(u) =
∑

v∈V :(u,v)∈E
R(v) · t(u, v)

We define r(U) the vector in R|U |, that has in each component the risk of a
person.

The goal is to select a set of facilities of total cost at most B such that a given
function F : r(U) → R is minimized. In this paper we study the case when F is the
�1 metric. In other words, we aim to optimize the total risk of the people.

We show that Problem 7 is NP-hard even in an extremely restricted version in
which there is only one person associated with each facility. Nevertheless, notice
that unlike Problem 6, Problem 7 admits a trivial feasible solution. Thus, in
Section 4 we tackle the problem via a heuristic algorithm and show that it gives
promising results.
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Theorem 2. Problem 7 is NP-hard in the case F = �1.

Proof. We prove NP-hardness of Problem 7 via a reduction from the Subset Sum
problem, defined as follows. In the Subset Sum problem the input is a set S of
integers and an integer B and the goal is to decide if there exists a subset of
integers from S whose sum is precisely B. The Subset Sum problem is a famous
NP-hard problem [8]. Given an instance of the Subset Sum problem, we create an
instance of Problem 7 as follows.

For each x ∈ S, we create a facility v of cost c(v) = x. Thus, V includes these
v vertices. The bipartite graph G = (U ∪ V,E) with vertex classes U and V is
a balanced one, that is, |U | = |V |, and the edge set of G is a perfect matching
M = E. In other words, every vertex of G has degree one.

For every u ∈ U we let f(u) = c(v)
maxw∈V c(w) and t(u, v) = 1, where v is the only

neighbor of u, that is (u, v) ∈ M . Thus, for each pair person/facility (u, v) ∈ M
we have R(v) = r(u) = f(u). Note that if a set of facilities (some subset of V ) is
closed with cost X, then the total risk is

∑
w∈V c(w)−X

maxw∈V c(w)
.

The above shows that the total risk is∑
w∈V c(w)−B

maxw∈V c(w)

if and only if there exist a subset of numbers from S that have sum precisely B.

Thus, Problem 7 is NP-hard in the case F = �1.

4 The algorithm

In this section we provide a heuristic (approximation) algorithm for Problem 7. We
test our algorithm in Section 5 and show that it gives promising results.

Our algorithm (presented in Algorithm 1) sorts the list of people and the fa-
cilities according to their efficiency (the cost of isolating/closing a person/facility
divided by the amount of risk the people/facilities have). Then, the algorithm
aims to find the optimum division of the available budget between isolating people
and closing facilities. According to our experiments (see Section 5) there is not an
obvious correlation between the optimal value of the division of the budget (i.e.,
variable Split in Algorithm 1) and the minimum total risk. Thus, we need to iterate
over all values of Split in order to find a good solution. Of course, since there are
infinitely many numbers between 0 and 1, we cannot iterate over all possible values.
Choosing a larger increment improves the running time but reduces the accuracy
of the solution.
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1. Define the efficiency of a facility v as

e(v) =
c(v)

R(v)

2. Define the efficiency of isolating a person u as

e′(u) =
c′(u)
f(u)

3. Sort the sequence of values e and e′ in increasing order.

4. MinRisk = ∞

5. For every value of Split between 1 and 100 (in increments of 1) do:

a) Isolate people in the order given by e′ until a budget of B · 1
Split

is reached.

b) Close the facilities in the order given by e until the budget B is
reached.

c) Let RSplit be the total risk of the population according to this
solution. If RSplit < MinRisk then we update the value of
MinRisk and store the current solution.

6. Output: MinRisk and the corresponding set of people and facilities
that have to be isolated/closed.

Algorithm 1: A heuristic algorithm for Problem 7.

5 Experiments

5.1 Data generation

In this subsection we describe how we generated our data.

First our data generator allows two parameters as input that determine the
number of facilities and the maximum size of a facility. The size of the facilities
(i.e., how many people visit that facility in a day) is drawn according to a power
law distribution with exponent α (in our experiments α varies between 0.8 and
1.3). We also select an average number of daily activities for a person (i.e., how
many facilities a person visits during one day). In our experiments the average
number of activities is set between 3 and 8). Then, we set the number of people
in a country to be the sum of all the facilities divided by the average number of
facilities a person visits during one day.
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In Figure 1 we show an example of the distribution of the size of the facilities
for 1000 facilities each having a size between 10 and 10000.

Figure 1: The size of 1000 facilities (i.e. daily number of people that visit that
facility). Each facility has at least 10 and at most 10000 daily visitors. The number
of visitors is drawn from a power law distribution with α = 1.1.

For each facility v we select size(v) people that will visit that facility uniformly
at random from the population, where size(v) is the size of facility v that was
generated previously using the power law distribution. The number of activities
performed daily by each person form a Poisson distribution (see Figure 2 for an
example).

We now show how we generate the weights on the edges. For each person, we
choose the time spent in each facility using an exponential distribution.

The probability that a person i carries the virus, i.e., f(i), is also drawn from
a power law distribution with exponent α2. One important thing to notice is that

Figure 2: The distribution of number of daily activities for a population of 19 573
people that have on average 5 daily activities.
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α2 influences significantly the risk of the whole population to get infected. More
precisely, if α2 is large (that is, there are few people with high risk of carrying
the virus), the risk of infection for the other people is relatively low. In Figure 3
we show the risk associated to the people (calculated as shown in Problem 7) for
the values of α2 = 4 and α2 = 2. This observation motivates us in the design of
algorithm by isolating first the persons with very high risk.

(a) The case of α2 = 2 (b) The case of α2 = 4

Figure 3: Comparison of the risk of the population to get infected for α2 = 2 and
α2 = 4

Finally, we have to set the cost of isolating people and the cost of closing facili-
ties. We choose the cost of isolating a person as a fraction of total budget available
(this fraction can also be set as an input parameter in our generator). The cost
of closing a facility of size s is sx, where x is a random variable drawn according
to a Gaussian distribution with mean μ and variance σ (in our tests we vary the
μ between 1.1 and 1.2 and σ between 0.3 and 0.5). Finally, the budget is also an
input parameter in the generator and we design it as a fraction of the total cost of
closing the facilities, generally, between 1% and 30%.

5.2 Tests

We carried out tests for a population of around 30 000 people. This population
is achieved by varying the parameters in our model as: the number of facilities
(between 100 and 1 000), the average number of daily activities (between 3 and 8)
and the size of each facility (between 4 and 10 000). For each set of parameters we
carried out 5 tests and we chose the average risk produced by our algorithm over
these 5 tests.

The dataset size is the maximum that our hardware can handle. Nevertheless,
we argue that our experiments scale to a larger population. In Figure 4 we show
how the risk changes if we change the number of facilities and the size of each
facility: the risk has a decreasing trend as the size of our population increases, thus
we believe that our algorithm is even better for larger scale instances.

Next, we show how the split of the budget between isolating people and closing
facilities influences the total risk. In our tests we have 500 facilities between 4 and
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1 000 people, each person performs on average 4 activities per day and we have
α = 1.1, α2 = 2. The cost of the exponent of the random variable that determines
the cost of closing the facilities is drawn from a normal distribution with μ = 1.1
and σ = 0.4 (Figure 5a and Figure 6a), σ = 0.5 (Figure 5b and Figure 6b). The
budget is 10% of the cost of closing all facilities in Figure 5 and 1% in Figure 6.
This budget suffices to isolate 10% of the population, respectively 1%.

Notice that with a budget of only 1% from the cost of closing all facilities, we
are able to lower the risk to less than 20% of the original risk (Figure 6b).

Finally, we tested how does the risk decrease if we take actions quickly. More
precisely, we vary α2 which is the power law exponent that determines the percent-
age of people that are likely to be already infected. However, we did not notice any
major influence of this factor in the total risk if the infection proportion is drawn
according to a power law distribution.

Our algorithm was implemented in Python and the tests were carried out on a
2013 MacBook Pro with 2.4 GHz Quad-Core Intel Core i7, and 8GB RAM. The
code used for testing and generating data is available on GitHub [19].

(a) The horizontal axis represents the num-
ber of facilities, while the vertical axis rep-
resents the risk improvement. The size of
each facility is between 4 and 1 000.

(b) The horizontal axis represents the size
of each facility, while the vertical axis repre-
sents the risk improvement. The number of
facilities is 500 and the average number of
daily activities performed by a person is 4.

Figure 4: The improvement in the population risk (i.e., the risk of the population
after our algorithm, divided by the risk before the run of our algorithm) compared
with the size of the instance. The average number of daily activities performed
by a person is 4. The budget allocated is 5% of the amount necessary to close
all facilities. With this budget we are able to quarantine 5% of the population.
Then, we have α = 1.1 and α2 = 2. Observe that the improvement is bigger as the
population increases.
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(a) A 10% of the total cost of closing the
facilities and σ = 0.4

(b) A 10% of the total cost of closing the
facilities and σ = 0.5

Figure 5: On the x axis is the percentage of the total budget allocated to isolating
people. On the y axis there is the ratio of the risks before/after running the
algorithm.

(a) A 1% of the total cost of closing the fa-
cilities and σ = 0.4

(b) A 1% of the total cost of closing the fa-
cilities and σ = 0.5

Figure 6: On the x axis is the percentage of the total budget allocated to isolating
people. On the y axis there is the ratio of the risks before/after running the
algorithm.

6 Conclusions and future work

In this paper we presented a model and an algorithm that aims to help authorities
to take more efficient decisions in the fight with COVID-19. Naturally, the most
stringent open problem is to test and validate the model and the algorithm on real
data. People have a huge mobility nowadays and it is impossible to create a model
which is fully accurate. Nevertheless, based on our tests we believe that our model
is capable of capturing the most important features of the current situation.
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Also, a natural open problem is to tune the input parameters: the probabilities
p in the input graph, the cost of closing facilities and isolating people c and c′ and
the contagion risk associated with each person.

Since the appearance of vaccines the strategy for tackling COVID has changed
significantly. Nevertheless, in some countries, restrictions are still in place. Thus,
we are hopeful that our model will give the authorities some insight in taking the
best decisions. Moreover, as we can see from our experiments, even with a very
small budget (sometimes as low as 1% of the total cost necessary to lock down
the entire economy), the risk of infection can be decreased significantly. Thus,
we strongly believe that, with wise decisions, it is possible to stop the spread of
COVID-19 and future pandemics without an economic collapse.
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Quarterly Journal of Economics, 119(2):457–488, 05 2004. DOI: 10.1162/

0033553041382157.

[25] The Governance Lab. Data collaborative in response to COVID-
19. https://docs.google.com/document/d/1JWeD1AaIGKMPry_

EN8GjIqwX4J4KLQIAqP09exZ-ENI/edit#, 2020. [Online; accessed 06-04-
2020].

[26] Toda, Alexis Akira. Susceptible-Infected-Recovered (SIR) dynamics of
COVID-19 and economic impact. arXiv preprint arXiv:2003.11221, 2020.

[27] Wang, Weixing, Li, Yanli, and Zhang, Jinjin. System dynamics modeling of
SARS transmission — a case study of Hebei Province. In 2009 International
Conference on Management and Service Science, pages 1–4, 2009. DOI: 10.

1109/ICMSS.2009.5303731.

[28] World Health Organization. Global research on coronavirus disease (COVID-
19). https://www.who.int/emergencies/diseases/novel-coronavirus-

2019/global-research-on-novel-coronavirus-2019-ncov, 2020. [Online;
accessed 28-03-2020].

[29] Yu, Shuo, Qing, Qing, Zhang, Chen, Shehzad, Ahsan, Oatley, Giles, and Xia,
Feng. Data-driven decision-making in COVID-19 response: A survey. IEEE
Transactions on Computational Social Systems, 8(4):1016–1029, 2021. DOI:
10.1109/TCSS.2021.3075955.

[30] Zaric, Gregory S. Operations Research and Health Care Policy. Springer, 2013.
DOI: 10.1007/978-1-4614-6507-2.



Models and Algorithms for Social Distancing 749

[31] Zhigljavsky, Anatoly, Fesenko, Ivan, Wynn, Henry, Whitaker, Roger, Krem-
nizer, Kobi, Noonan, Jack, and Gillard, Jonathan. A prototype for decision
support tool to help decision-makers with the strategy of handling the COVID-
19 UK epidemic. medRxiv, 2020. DOI: 10.1101/2020.04.24.20077818.

Received 20th January 2021







Contents

Uli Fahrenberg, Christian Johansen, Georg Struth, and Krzysztof Ziemiański:
Domain Semirings United . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

Gergely Szlobodnyik and Gábor Szederkényi: Computing Different Re-
alizations of Linear Dynamical Systems with Embedding Eigenvalue
Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

Tamás Jónás, Christophe Chesneau, József Dombi, and Hassan S. Bakouch:
The Inverse Epsilon Distribution as an Alternative to Inverse Exponential
Distribution with a Survival Times Data Example . . . . . . . . . . . . . 613

Sean Cleary and Roland Maio: An Efficient Sampling Algorithm for Difficult
Tree Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

Munqath Alattar and Attila Sali: Strongly Possible Functional Dependencies
for SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647

Andreas Rauh and Ekaterina Auer: Verified Integration of Differential Equa-
tions with Discrete Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 677

Tamás Jónás: The Generalized Epsilon Function: An Alternative to the
Exponential Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703

Toshihiro Koga: Dense Languages and Non Primitive Words . . . . . . . . . 717
Alexandru Popa: Models and Algorithms for Social Distancing in Order to

Stop the Spread of COVID-19 . . . . . . . . . . . . . . . . . . . . . . . . . 733

ISSN 0324—721 X (Print)
ISSN 2676—993 X (Online)

Editor-in-Chief: Tibor Csendes


