Volume 25 Number 4

ACTA
CYBERNETICA

Editor-in-Chief: Tibor Csendes (Hungary)
Managing Editor: Boglarka G.-Toth (Hungary)
Assistant to the Managing Editor: Attila Tanacs (Hungary)

Associate Editors:

Michal Baczynski (Poland) Zoltan Kato (Hungary)

Hans L. Bodlaender (The Netherlands) Dragan Kukolj (Serbia)

Gabriela Csurka (France) Laszlo Lovasz (Hungary)

Janos Demetrovics (Hungary) Kalméan Palagyi (Hungary)

Jozsef Dombi (Hungary) Dana Petcu (Romania)

Rudolf Ferenc (Hungary) Andreas Rauh (France)

Zoltan Filop (Hungary) Heiko Vogler (Germany)

Zoltan Gingl (Hungary) Gerhard J. Woeginger ‘ (The Netherlands)

Tibor Gyiméthy (Hungary)

Szeged, 2022

ACTA CYBERNETICA

Information for authors. Acta Cybernetica publishes only original papers in the field
of Computer Science. Manuscripts must be written in good English. Contributions are
accepted for review with the understanding that the same work has not been published
elsewhere. Papers previously published in conference proceedings, digests, preprints are
eligible for consideration provided that the author informs the Editor at the time of
submission and that the papers have undergone substantial revision. If authors have used
their own previously published material as a basis for a new submission, they are required
to cite the previous work(s) and very clearly indicate how the new submission offers
substantively novel or different contributions beyond those of the previously published
work(s). There are no page charges. An electronic version of the published paper is
provided for the authors in PDF format.

Manuscript Formatting Requirements. All submissions must include a title page
with the following elements: title of the paper; author name(s) and affiliation; name,
address and email of the corresponding author; an abstract clearly stating the nature
and significance of the paper. Abstracts must not include mathematical expressions or
bibliographic references.

References should appear in a separate bibliography at the end of the paper, with
items in alphabetical order referred to by numerals in square brackets. Please prepare your
submission as one single PostScript or PDF file including all elements of the manuscript
(title page, main text, illustrations, bibliography, etc.).

When your paper is accepted for publication, you will be asked to upload the complete
electronic version of your manuscript. For technical reasons we can only accept files in
LaTeX format. It is advisable to prepare the manuscript following the guidelines described
in the author kit available at https://cyber.bibl.u-szeged.hu/index.php/actcybern/
about/submissions even at an early stage.

Submission and Review. Manuscripts must be submitted online using the edito-
rial management system at https://cyber.bibl.u-szeged.hu/index.php/actcybern/
submission/wizard. Each submission is peer-reviewed by at least two referees. The
length of the review process depends on many factors such as the availability of an Edi-
tor and the time it takes to locate qualified reviewers. Usually, a review process takes 6
months to be completed.

Subscription Information. Acta Cybernetica is published by the Institute of Infor-
matics, University of Szeged, Hungary. Each volume consists of four issues, two issues
are published in a calendar year. Subscription rates for one issue are as follows: 5000 Ft
within Hungary, €40 outside Hungary. Special rates for distributors and bulk orders are
available upon request from the publisher. Printed issues are delivered by surface mail
in Europe, and by air mail to overseas countries. Claims for missing issues are accepted
within six months from the publication date. Please address all requests to:

Acta Cybernetica, Institute of Informatics, University of Szeged
P.O. Box 652, H-6701 Szeged, Hungary
Tel: +36 62 546 396, Fax: +36 62 546 397, Email: acta@inf.u-szeged.hu

Web access. The above information along with the contents of past and current issues
are available at the Acta Cybernetica homepage https://cyber.bibl.u-szeged.hu/ .

EDITORIAL BOARD

FEditor-in-Chief:

Tibor Csendes

Department of Computational Optimization
University of Szeged, Hungary
csendes@inf.u-szeged.hu

Managing Editor:

Boglarka G.-Té6th

Department of Computational Optimization
University of Szeged, Hungary
boglarka@inf.u-szeged.hu

Assistant to the Managing Editor:

Attila Tanacs

Department of Image Processing
and Computer Graphics
University of Szeged, Hungary
tanacs@inf.u-szeged.hu

Associate Editors:

Michat Baczynski

Faculty of Science and Technology,
University of Silesia in Katowice,
Poland

michal.baczynski@us.edu.pl

Hans L. Bodlaender
Institute of Information and
Computing Sciences, Utrecht
University, The Netherlands
h.l.bodlaender@uu.nl

Gabriela Csurka
Naver Labs, Meylan, France
gabriela.csurka@naverlabs.com

Janos Demetrovics
MTA SZTAKI, Budapest, Hungary
demetrovics@sztaki.hu

Jozsef Dombi
Department of Computer Algorithms

and Artificial Intelligence, University of

Szeged, Hungary
dombi@inf.u-szeged.hu

Rudolf Ferenc

Department of Software Engineering,
University of Szeged, Hungary
ferenc@inf.u-szeged.hu

Zoltan Fiilop

Department of Foundations of
Computer Science, University of
Szeged, Hungary
fulop@inf.u-szeged.hu

Zoltan Gingl

Department of Technical Informatics,
University of Szeged, Hungary
ginglQinf.u-szeged.hu

Tibor Gyimoéthy

Department of Software Engineering,
University of Szeged, Hungary
gyimothy@inf.u-szeged.hu

Zoltan Kato

Department of Image Processing and
Computer Graphics, University of
Szeged, Hungary
kato@inf.u-szeged.hu

Dragan Kukolj

RT-RK Institute of Computer Based
Systems, Novi Sad, Serbia
dragan.kukolj@rt-rk.com

Laszl6 Lovasz

Department of Computer Science,
Eo6tvos Lorand University, Budapest,
Hungary

lovasz@cs.elte.hu

Kalman Palagyi

Department of Image Processing and
Computer Graphics, University of
Szeged, Hungary
palagyi@inf.u-szeged.hu

Dana Petcu

Department of Computer Science, West
University of Timisoara, Romania
petcu@info.uvt.ro

Andreas Rauh

School IT — Department of Computing
Science, Group Distributed Control in
Interconnected Systems, Carl von
Ossietzky Universitat Oldenburg,
Germany
andreas.rauh@uni-oldenburg.de

Heiko Vogler

Department of Computer Science,
Dresden University of Technology,
Germany
Heiko.Vogler@tu-dresden.de

’ Gerhard J. Woeginger ‘

Department of Mathematics and
Computer Science, Eindhoven
University of Technology, The
Netherlands

SPECIAL ISSUE OF THE
CONFERENCE ON
SOFTWARE TECHNOLOGY AND
CYBER SECURITY

Guest Editors

Tamas Kozsik

Department of Programming Languages and Compilers,
Faculty of Informatics, E6tvos Lorand University,
Budapest, Hungary

ktoQelte.hu

Simon Thompson

School of Computing, University of Kent,
Canterbury, Kent, United Kingdom

s.j.thompson@kent.ac.uk
Department of Programming Languages and Compilers,
Faculty of Informatics, E6tvés Lordand University,
Budapest, Hungary
thompson@inf.elte.hu

Acta Cybernetica 25 (2022) 753-779.

Towards a Generic Framework
for Trustworthy Program Refactoring®

Déniel Horpacsi®¢, Judit Készegi®®, and David J. Németh®®

Abstract

Refactoring has to preserve the dynamics of the transformed program with
respect to a particular definition of semantics and behavioural equivalence.
In general, it is rather challenging to relate executable refactoring implemen-
tations with the formal semantics of the transformed language. However, in
order to make refactoring tools trustworthy, we may need to provide formal
guarantees on correctness. In this paper, we propose high-level abstractions
for refactoring definition and we outline a generic framework which is capable
of verifying and executing refactoring specifications. By separating the var-
ious concerns in the transformation process, our approach enables modular
and language-parametric implementation.

Keywords: refactoring, domain-specific language, refactoring methodology,
formal verification

1 Introduction

The idea of refactoring is as old as high-level programming. A program refac-
toring [7] is typically meant to improve non-functional properties, such as the in-
ternal structure or the appearance, of a program without changing its observable
behaviour. Tool support is necessary for refactoring in large-scale: it has to be en-
sured that program changes are complete and sound, the behaviour is intact and no
bugs are introduced or eliminated by the transformations. Refactoring tools may

*The research has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collaborations Grounding
Innovation in Informatics and Infocommunications).

“Project no. ED_18-1-2019-0030 (Application domain specific highly reliable I'T solutions sub-
programme) has been implemented with the support provided from the National Research, De-
velopment and Innovation Fund of Hungary, financed under the Thematic Excellence Programme
funding scheme.

YELTE Eotvos Lorand University, Budapest, Hungary, and Faculty of Informatics, 3in Research
Group, Martonvasdr, Hungary

¢E-mail: daniel-h@elte.hu, ORCID: 0000-0003-0261-0091

dE-mail: koszegijudit@elte.hu, ORCID: 0000-0003-1915-4176

€E-mail: ndj@inf.elte.hu, ORCID: 0000-0002-1503-812X

DOI: 10.14232/actacyb. 284349

754 D. Horpécsi, J. Készegi, and D. J. Németh

carry out extensive modifications in large projects, which are hard to be performed
or comprehended by humans.

Generally speaking, the primary goal of a refactoring framework is to provide
automatic tool support for behaviour-preserving (semantics-preserving) program
rewriting. Additional general design goals may include support for interactive
execution, multiple target languages or extensibility via user-defined transforma-
tions. Trustworthiness of refactoring implementations is usually backed by excessive
amounts of testing, but research keeps looking for possibilities of formally specifying
and verifying the correctness of program transformations. Whether a refactoring
tool gets widely adopted highly depends on the extensibility and the trustworthiness
of the solution.

Refactoring, from the programmer point of view, is an editor or dedicated tool
function that helps modify the program in a well-understood way, increasing code
quality. From the tool designer point of view, it is a complex process of creating and
analysing a program model, locating elements of interest, and rewriting of the model
to an equivalent model. In the typical case, these aspects of the process are mixed
up, resulting in a hardly extensible, language-specific tool, which is unreasonably
difficult to formally verify.

Our aim with this paper is to outline a generic design for a refactoring framework
that has all the above-mentioned features: it uses executable and extensible defini-
tions, supports multiple languages and enables semi-automatic formal verification.
In particular, we present abstractions for program representation and refactoring
definition, and we describe a language-parametric architecture that can be tailored
to programming languages of different paradigms by supplying the formal defini-
tion of the language along with some refactoring schemes. The main contributions
of this paper are:

e Design of a generic refactoring approach that supports executable and semi-
automatically verifiable transformations via language-specific semantic pred-
icates and refactoring schemes;

e Description of a language-parametric framework with language-specific arte-
facts and language-independent components, with a guideline on how the
framework is tailored for a particular language;

e Testimonials of applying the above-mentioned framework to languages of two
different programming paradigms.

We structure the rest of the paper as follows. First, we survey related work in
Section 2, focusing on language-agnostic approaches and proven-correct refactoring.
Then, we present high-level abstractions for defining transformations, which enable
language-parametric implementation and formal verification (Section 3); this sec-
tion is partly based on our previous work [11]. It is followed by the demonstration
of the generic refactoring framework and its components in Section 4, and then
we outline the main concerns with instantiating the framework for functional and
object-oriented languages (Section 5). Finally, we conclude the paper after a brief
discussion of our results.

Towards a Generic Framework for Trustworthy Program Refactoring 755

2 Related work

There are various approaches to specifying and implementing refactoring, which
vary in terms of the model they use for representing programs, in the abstraction
level they use for specifying program semantics and program transformations, as
well as in the level of guarantees they can provide on correctness. In this section,
we overview the most important and influencing related work.

Preliminaries. In this paper, we use the terms object language or target language
when referring to the programming language we aim to refactor. By static seman-
tics, we mean the context-dependent part of the syntax (e.g. name binding and type
information), as well as additional (possibly dynamic) semantic properties that can
be statically extracted from, or approximated based on, the source code (such as
purity, control flow and data flow). Dynamic semantics is the formal definition of
program run-time behaviour, presumably given in small-step operational style or
in reachability logic [24]. By refactoring correctness we mean that the transforma-
tion turns any program into a semantically equivalent program. This correctness
property could be checked after each application of the refactoring (i.e. whether a
particular execution of a transformation was correct), but in our research we aim
at verifying the definition itself, i.e. formally reasoning about the transformation
being correct applied to any program.

Compositional definition of refactoring. Although the abstractions for defin-
ing refactoring are varying from approach to approach, almost all solutions incorpo-
rate the fundamental work of Opdyke [21] that suggests refactorings be composed
of basic steps called micro-refactorings. Simpler transformations are easier to read,
write and to verify; on the other hand, decomposition of extensive refactorings
to simple steps may require experience and considerable effort. Having said that,
the compositional approach enables modularity both in definition, execution and
in verification, and is therefore inevitable in designs where generality and formal
verification are among the design goals.

Refactoring framework. Roberts [22] designed one of the first dedicated frame-
works for implementing refactoring transformations. He states that refactoring
tools should a) be completely automated; b) be provably correct and c) offer com-
plex refactorings composed from primitive ones. We strongly share these funda-
mental design goals in our own approach, and in addition, we believe that even the
primitive refactorings should be user-definable.

Widely used general-purpose programming languages have all gained their own
language processor environments which support analysis and transformations on a
model of the program, even functional programming languages, such as Haskell or
Erlang. In fact, our approach born as a generalization of a refactoring framework [2]
and its API designed for the Erlang programming language. The Erlang-specific
solution was summarized along with a case study in [11].

756 D. Horpécsi, J. Készegi, and D. J. Németh

Language-agnostic approaches. Language-independent specification of refac-
torings is an idea that pops up regularly, addressing the problem of semantics-
preserving program transformation with generic program representations, analysis
and traversal functionality. L#ammel [14] proposes a generic refactoring system
based on Strafunski-style generic functional programming. It states that a refac-
toring can be described by a number of steps of the following kind: a) identification
of fragments of a certain type and location; b) destruction, analysis, and construc-
tion; ¢) checking for pre- and postconditions and d) placing, removing or replacing
a focus. Just like with work by Roberts, we strongly agree with Lammel’s thoughts
about separation of concerns. In particular, we suggest that refactoring should
be phrased as a composition of analysis and transformation, where transformation
consists of pre-condition checks and actual rephrasing of the program model by
using language-agnostic strategies.

Another branch of language-independent transformation specification is based
on an XML-based program representation. RefaX [20] brings the premise of a fully
language- and model-independent refactoring tool by using XML, while Jrbx [19]
generalizes this idea by adding fairly generic static semantic analysis. We share the
aim of these approaches, but we add verifiability of transformations at reasonable
cost as an additional primary requirement.

Specific languages for refactoring. Designing domain specific languages for
refactoring programming is also an established idea, there are related results for
different object languages with different representations. Some of these define the
entire code transformation logic including term-level rewriting, while some only
offer a formalism for composing atomic steps in a convenient way.

In the former case, when the refactoring operates on the level of the program
model, the actual program representation highly determines the abstraction level
of the patterns and the transformation primitives. Gémez et al. [10] introduce a
generic model for representing programs and their history, pushing the boundaries
of regular program representations in order to support a wide variety of language
processing methods.

Rewrite-based transformation languages use different kinds of patterns to match
and construct program models. Leitao [16] gives an executable, rewrite-based refac-
toring language with expressive patterns, Verbaere et al. [28] propose a compact,
representation-level formalism for executable definitions. These formalisms are ex-
pressive and language-independent, but at this level of generality, correctness checks
for refactoring definitions would become practically unfeasible. Rich and high-level
program patterns are presented by Gil et al. [9] in their language for defining pro-
gramming idioms in Java.

Languages for composing already existing transformations exist as well: Kniesel
and Koch [12] put the emphasis on ensuring correct composition of transformations,
and for Erlang, Li and Thompson [17] define an API for describing prime refactor-
ings and a feature-rich language for interaction-aware composition.

Towards a Generic Framework for Trustworthy Program Refactoring 757

Proven-correct refactoring. For the object-oriented paradigm, Schaefer and de
Moor introduce a system [26] in which they reason about semi-formal definitions
of a set of basic refactorings. This is a very influencing piece of work, but they
focus on preserving static semantic properties, not dynamics. Roberts [23] applies
a different definition style, with an emphasis on the side-conditions and proper
composition of the base refactorings. Neither of them provides formally verified
and executable definitions.

There are some results [27] in defining provably correct refactorings for simple
languages, and also some mechanised proofs exist even for modern laguages and
real-world use cases [6, 25]; on the other hand, these are specific to one particular
transformation, and do not allow for defining custom transformations or provide
verification for those. [8] presents a preliminary work on defining verifiable and
executable refactoring in Maude, with a similar approach to ours as to rewriting-
based definitions, but their definitions are very low-level and hardly readable, out
of reach for the average programmer to specify their own transformations.

3 Refactoring definition

Before describing the refactoring framework itself, we elaborate on the abstractions
to be used for defining refactoring program transformations. We start by separating
concerns. Analysis, condition checking and transformation are seemingly interde-
pendent phases of the refactoring process, but by careful separation we can make
the definition less error-prone [18] and enable a more modular implementation.
Then, we introduce the refactoring definition abstractions that allow us to define
transformations in a high-level and compositional way and enable semi-automatic
formal verification for consistency. We end this section by exploring the conse-
quences of defining the transformation with the proposed abstractions, and analyse
how it loosens and simplifies the dependencies among the various components of
the refactoring framework. This refined dependency structure lets the language-
independent components be parametrised with language-specific artefacts and will
lead us to a language-parametric framework.

3.1 The refactoring business logic

Refactoring implementations define their input and output as program text in con-
crete language syntax; however, under the hood, the text is usually turned into
an intermediate representation (model) which is further analysed and transformed,
and finally, the model is printed back to text. If we properly separate these phases,
we can define the refactoring as a composition of analysis, transformation and
synthesis.

analysis

Text —— Model

transformation synthesis

Model ————— Text

758 D. Horpécsi, J. Készegi, and D. J. Németh

The model we talk about here is a high-level program representation, such as an
abstract syntax tree (AST), a higher-order abstract syntax tree or an abstract
semantic graph (ASG). In this model, we do not suppose the program logic or
high-level architecture to be present (like a UML model) — it is more like a graph
that captures the grammatical structure and possibly the static semantic properties
of the transformed program. The level of detail in this graph model may vary, we
address this question in the next section.
Let us define what we mean by the phases of refactoring:

e Analysis is the process of extracting the information from the textual format
that is necessary for checking the refactoring side-conditions and locating
program elements to be changed by the transformation.

Analysis can be further divided into two steps: syntactic analysis (parsing)
and semantic analysis. Parsing yields a structure tree for the text, then
static semantic analysis computes an approximation of fundamental seman-
tic properties of program entities, such as binding relations, data-flow and
control-flow.

e The model transformation is the actual business logic of the refactoring. It
takes place in the middle of the process, given as a (deterministic) relation
that maps program models to equivalent program models.

Transformation : Model — Model

Typically, this function is defined as the semantics of an algorithm written
in a programming language or a description in a domain specific language,
which does traversals on the model to gather semantic information and carry
out rewriting.

e Synthesis turns the model back to textual format and obtains the result of
the refactoring. We suppose that the model contains the original layout and
names of the program and it can be pretty-printed to concrete syntax, but we
note that for some higher-level models it may be necessary for the synthesis
to incorporate the original text as well.

The strict separation of analysis, model transformation and synthesis simplifies
the definition and verification of refactoring transformations, yet the composition
of these steps can precisely define the original text transformation. Refactorings
may have context-sensitive side-conditions requiring thorough inspection of static
semantic properties and therefore complex semantic analysis, but in the rest of the
paper, we focus on the model transformation phase.

In particular, from now on by refactoring we mean the model transformation
and not the text transformation. In the refactoring definition we omit the collection
or extraction of static semantic information, and the formal verification of our
refactoring definition only proves the model transformation correct, not the text
transformation — analysis and synthesis are trusted components in the system.

Towards a Generic Framework for Trustworthy Program Refactoring 759

Level of model abstraction

The complexity of the refactoring definition highly depends on the program model,
and the abstraction level of the model affects the complexity of the analysis as well.
As it will be demonstrated, the boundary between analysis and transformation is
movable by adjusting the level of detail in the model. In this sense, analysis is not
the process of building the program model but the extraction of static semantics,
which may happen alongside the transformation. Apparently, the more detailed
the model is, the less analysis-related traversal takes place during transformation.

Simple model. If the model does not contain details on the static semantics of
the program, the transformation gets more complex as it has to carry out analysis
tasks. In a corner case, the analysis only does parsing; thus, the program model is
a syntax tree and the transformation has to conduct semantic analysis (syntax tree
traversals) for checking the side-conditions of the refactoring (see Figure 1). In this
case, transformation definitions are overly complex and they are out of reach when it
comes to formal verification of semantics-preservation, or even to check termination
properties of analysis and transformation. For instance, in the optimisation steps
discussed in [3], traversal strategies carry out behaviour-preserving transformations
by linking analysis and term rewriting, and the drawbacks of this approach are
discussed in [18].

parsing analysis+transform. analysis+transform. deparsing
Text AST . AST Text

Figure 1: Refactoring with tree rewriting

Detailed model. A complex enough static analysis can build a model detailed
enough that enables the transformation to check the side conditions by simple
queries in the model. This is a trade-off: a more complex static semantic analysis
may be harder to reason about, but cuts the complexity from the transformation,
making both of them tractable. In the corner case, the model can be so detailed so
that predicates in side-conditions are one-to-one mappings to model elements and
no analysis-related operations take place during transformation (see Figure 2).

Text parsing AST analysis ASG transform. . transform. ASG synthesis Text

Figure 2: Refactoring with graph rewriting

Since our main goal with this refactoring framework is to make definitions generic
and trustworthy, we aim at using a high-level and detailed program model. This
model extends the syntax tree with information on binding, types, data-flow and

760 D. Horpécsi, J. Készegi, and D. J. Németh

control-flow, and even on purity and non-functional properties, so that the refac-
toring definition side-conditions can be expressed in terms of concepts of the pro-
gramming language we refactor, and more importantly, analysis and transformation
concerns are fully separated. In the case of the Erlang prototype implementation of
the proposed framework (see Section 5.2), we rely on the semantic program model
introduced in [2].

Tree rewriting in the graph. According to Figure 2, the refactoring trans-
formation is a mapping from semantic graphs to semantic graphs, which suggests
that it is easiest defined with a graph rewrite system. Nonetheless, the figure also
suggests that any AST can be mapped to the corresponding ASG with static se-
mantic analysis. In practice, the ASG is a proper extension of the AST, containing
additional edges and nodes that represent static semantic information.

In our approach we divide the model into its syntactic and semantic parts and
work with the model like this: we carry out a transformation on the syntax tree
whilst using the semantic layer for checking transformation validity. The result of
the transformation is semantic graph containing no semantic elements, so it is re-
analysed to obtain the semantic graph prior to further transformation. Since both
the AST and the ASG are understood as properly formed models, we can refine the
previous signature for transformations discussed in the beginning of this section:

Transformation : ASG — AST

Note that although this approach alternates analysis and transformation (see Fig-
ure 3), it keeps these phases completely separated (unlike in Figure 1), so still realise
separation of concerns . Implementing the transformation as a function from graphs
to trees provides a good strategy towards defining trustworthy refactoring in terms
of semantics-constrained term rewrite rules for which we introduce abstractions in
the following section.

analysis transformation analysis transformation
AST Lnlves, g g trens AST Lnlusts, y g tran

Figure 3: Refactoring with semantics-constrained tree rewriting

Summary of assumptions on the model. In the rest of the paper, we assume
that the refactoring is defined on a high-level model that captures program syntax
and static semantics. The transformation on this model maps the tree along with
the static semantic properties into a transformed tree. We will also assume that the
model’s semantic layer captures all program properties that may be needed to tell
side-conditions of refactorings (e.g. name references, data-flow relations or purity of
expressions). These target language-level concepts are defined by a set of so-called
semantic predicates, which will be used in the side-conditions of refactorings.

Towards a Generic Framework for Trustworthy Program Refactoring 761

3.2 Abstractions for defining transformations

This section surveys how refactorings in the proposed framework are defined such
that they provide trustworthiness and enable genericity. These goals are mainly
achieved by keeping the refactoring definition high-level (independent of the repre-
sentation and the target language), declarative (expressing what to do rather than
how to do) and compositional (small definitions combined into bigger ones). We
review the refactoring definition abstractions proposed in our previous work [11],
and at the same time, we investigate how these abstractions allows for a generic
and modular implementation of interpretation and verification.

First of all, higher abstraction level in the definition means less details men-
tioned explicitly, which reduces the complexity of the definition and the potential
for making mistakes. This may come with a performance penalty, but assuming
that trustworthiness is more important than efficiency, it is reasonable to opt for
higher-level abstractions (as opposed to low-level transformation primitives). For
instance, in the context of refactoring, using term rewriting is clearly safer than
direct manipulation of the syntax tree as it excludes the risk of constructing struc-
turally invalid subtrees and therefore creating an invalid model.

Careful selection of the transformation abstractions can also make the defini-
tions more amenable to formal verification, further increasing trustworthiness: for
instance, refactoring schemes allow us to argue about the correctness of the pro-
gram transformations in terms of verifying a set of program patterns for semantics
equivalence instead of proving imperative term rewrite algorithms correct. This is
similar to composing imperative programs with algorithmic skeletons that correctly
implement compound control patterns and enable programmers to write complex
programs without mentioning the low-level details. Again, this comes with a rea-
sonable penalty: not all program transformations will be expressible with this set
of abstractions, but the goal is to be able to define meaningful refactorings in a way
that allows for semi-automatic formal verification.

Last but not least, the high-level definitions can be given in a language that does
not depend on the representation of programs nor on the particularities of the tar-
get programming language, enabling a fairly generic implementation parametrised
with language-specific components. The resulting modular framework showcases
reusable, language-independent components, as well as it provides trustworthiness
by reducing the complexity of individual components (see details in Section 4).

Strategic term rewriting with semantic predicates

The transformation function over models could be defined imperatively, but we
aim at defining it as declaratively as possible — as mentioned above, declarative
programs contain less details as to how the execution takes place and thus they
tend to be more reliable. As one of the building blocks, we employ conditional
term rewrite rules to define local tree transformations. This formalism abstracts
over the imperative steps of term traversal, pattern matching and replacement
construction, serving as a declarative description of simple rewrite steps.

762 D. Horpécsi, J. Készegi, and D. J. Németh

Conditional term rewrite rules consist of two patterns and a condition expres-
sion:

matching pattern

replacement pattern conditions
In such a rule, the matching and replacement patterns are first-order terms: they
can contain metavariables to extract subterms and use those to construct new terms.
In the typical formalisation, the condition is a statement on the rewrite relation
itself, potentially referring to the metavariables bound via pattern matching. The
set of rules can be interpreted as a normalising term rewrite system by assuming
exhaustive application of rules.

Strategic term rewriting improves on ordinary systems by introducing explicit
control and context for rewrite rule applications, which is more suitable for defining
refactoring transformations. We will use a generalised variant of strategic term
rewriting to define transformations over the syntactic part of the semantic program
model. In order to accommodate the principle of separation of concerns explained
in the previous section, we generalise strategic term rewriting in several aspects:
we define conditions in terms of a logic formula using language-specific semantic
predicates (metatheory), as well as we introduce strategies that use static semantic
properties to control the term rewrite rule application. This latter idea of semantics-
driven strategies, so-called refactoring schemes, provides fully declarative definition
for extensive program transformations as it hides the rule application control under
generic control schemes.

Semantic conditions. As mentioned already, [18] gives in-depth explanation
of how difficult it may be to reason about side-conditions expressed in terms of
reachability statements. To overcome this issue, unlike traditional term rewriting,
we do not refer to the rewrite relation in the condition; instead, the conditions
are logic formulae over a predicate set characterising the abstractions of the object
language. With this design decision, we fully detach analysis and transformation
in the refactoring definition, which will allow for a generic implementation in the
framework.

Semantic predicates in our approach have two interpretations: they can be eval-
uated over a particular program model, or can be mapped to a set of axioms in the
dynamic semantics of the target language. This latter is of great importance from
the verification point of view. For instance, the predicate pure can be evaluated by
checking the expression for any side-effects, while the axiomatic specification tells
that such an expression can be moved in the control chain while preserving control
and data flow (for example usage, see Listing 3).

Refactoring schemes. In general, single conditional rewrite rules can only define
local changes, so-called local refactorings. On the other hand, many refactorings
span over entire projects and are inherently extensive: they affect many locations
in the program, which have to be modified consistently. Strategic term rewrit-
ing offers simple operations [29] for combining simple (or local) transformations

Towards a Generic Framework for Trustworthy Program Refactoring 763

with e.g. sequential composition, branching or fixed-point operation, but from the
trustworthiness point of view, these combinators are too permissive and tedious
to formally tackle. Refactoring is a very special case of program transformation,
which gives rise to the idea of strategies specific to program refactoring. We call
these refactoring schemes.

Schemes are special strategies that combine conditional rewrite rules, and are
defined using ordinary control strategies as well as target modifying strategies com-
bined with semantic predicates. They provide a high-level notation for extensive
changes, hiding the control primitives and providing a surface language for defining
consistent program transformations in a declarative way. Again, schemes pose a
restriction on the sorts of expressible transformations, but dividing the definition
to multiple levels will allow us to implement the execution modularly and carry out
semi-automatic formal verification.

Consistency. The key concept behind schemes is dependency: extensive trans-
formations have to follow dependency chains in the program, visit and change those
program elements consistently that are interdependent. Schemes can be driven by
dependencies induced by data flow or name binding. Correctness proof for a scheme
is as hard as proving an imperative strategy correct; however, the method divides
the proof in half: verification of the scheme and the verification of the instantia-
tion. In our design, the second half can be carried out semi-automatically as it
boils down to machine-checkable expression pattern equivalences.

Dependencies vary from language to language; hence, our method supposes
that the set of pre-verified refactoring schemes are defined for each object language
the framework is instantiated for, based on the static semantics of the language.
Consequently, although the idea of schemes is language-independent, the concrete
schemes we define the transformations with are specific to the object language. In
the following section, schemes will be identified as artefacts attached to the object
language definition.

Refactoring compositionality

The abstractions for defining local and scheme-based extensive refactorings are
supposed to be micro-refactorings: they carry out the least possible amount of
transformation steps which form a consistent change in the program. The smaller
the steps, the more trustworthy and more easily verifiable they are. Once such
a micro-step is proven to be semantics-preserving, it can be combined with other
refactoring steps, and the result will be another, compound refactoring.

Our specification language facilitates a sub-language specific to combining refac-
toring transformations. The steps can be combined by means of basic imperative
control: sequencing, branching and (bounded) iteration. These combinators are
compositional: if the steps they combine are behaviour-preserving, the resulting
transformation will be behaviour-preserving as well. In the end, complex refactor-
ings are defined by decomposition to smaller refactoring steps that are defined as
instances of refactoring schemes.

764 D. Horpécsi, J. Készegi, and D. J. Németh

Examples of refactoring definitions

To facilitate the refactoring definition abstractions introduced in this section, we
propose a domain-specific language (DSL) [13] for refactoring. Definitions in the
refactoring specification language are both executable (can be mapped to a com-
putable model transformation function) and are semi-automatically verifiable (be-
haviour preservation can be formally checked by verification of automatically syn-
thesized formulae).

Syntax rewrite rules are written in the inference rule notation, patterns are ex-
pressed in the concrete syntax of the object language. In the patterns, metavariables
are distinguished from ordinary variables by using a kind of quotation syntax (e.g.
#varname) or extra predicates (e.g. is_var(VarName)). In the Erlang prototype, the
normal variable syntax is used for metavariables and target language variables are
matched with conditions. Metavariables followed by double-dot match consecutive
syntactic elements. Schemes are instantiated with rewrite rules, and refactorings
are combined in simple scripts. We showcase some examples borrowed from [11],
defined for Erlang [4] as the object language.

Local refactoring. Simple, local changes are expressed with conditional term
rewrite rules, where conditions are first-order logic formulae constructed with se-
mantic predicates defined by the language metatheory. Listing 1 defines a transfor-
mation that encloses an expression into a lambda-abstraction, supposing that the
expression does not bind any variables that are referred to by its context (predicate
non_bind). This definition also demonstrates the usage of matching conditions [29]:
the list of free variables (free_vars) is bound to a metavariable (Vars..) and is being
used in the replacement pattern.

local refactoring wrap()

(fun(Vars..) -> E end) (Vars..)
when
Vars.. = free_vars(E) and non_bind(E)

Listing 1: Wrap expression refactoring

Extensive refactoring. Extensive changes are defined as reductions to refac-
toring schemes. For instance, a scheme for Erlang is function refactoring, which
takes two rewrite rules and visits the definition and the references of the function.
References may include intra-module and inter-module function applications, both
first-order and higher-order. The patterns given in the parameter rewrite rules de-
fine the way the dependent program parts are changed. For the scheme instance
to be correct, the two parameter rewrite rules have to be consistent.

The function refactoring scheme can be used for implementing various refactor-
ing steps: renaming a function (Listing 2), reordering and grouping its arguments.

Towards a Generic Framework for Trustworthy Program Refactoring 765

function refactoring rename_function(NewName)
definition

Name (Args..) =-> Body..

NewName (Args..) -> Body..
reference

Name (Args2..)

NewName (Args2..)

Listing 2: Rename function refactoring

Interestingly enough, the very same scheme can be used to move a binding from
the function body to its signature, introducing a new parameter to the function. In
this latter case (see Listing 3), the scheme instantiation contains an extra condition
expressing that the expression moved from the body to the call site is pure (does
not cause any side effects) and closed (does not contain any free variables).

function refactoring var_to_param(X)
definition
Name (Args..) =-> X = E, Body..
Name (Args.., X) =-> Body..
reference
Name (Args2..)
Name (Args2.., E)
when pure(E) and closed(E)

Listing 3: Top-level local variable to function parameter refactoring

Composite refactoring. Let us consider a simple refactoring that lifts a local
variable from the function body to the function scope, as a new parameter. This
transformation can be decomposed to 1) iteratively lifting the variable to outer
scopes (outer_variable) and 2) adding it as a parameter (var_to_param) once it is
a top-level variable. This composition of refactorings can be expressed by itera-
tion and sequential composition, as scripted on Listing 4 (the pseudovariable This
refers to the object language variable that was selected as the target of the trans-
formation). Note that in these composite refactorings, transformations are applied
to program elements determined by so-called selector functions; in this example,
function selects the enclosing function of the variable originally chosen as refactor-
ing target.
refactoring to_function_parameter ()
do
iterate This.outer_variable()
function(This).var_to_param(This)

Listing 4: Local variable to function parameter refactoring

766 D. Horpécsi, J. Készegi, and D. J. Németh

Dependencies untangled

A refactoring framework is said to be language-generic if it is either language-
parametric or easily adapted to different programming languages. This aim is highly
supported by the abstractions with which we express the implemented refactorings.
In this section, we have explained the assumptions we make on the refactoring
definition and the abstractions we use for specifying transformations. In particular,
term rewriting lets us abstract over tree manipulation, semantic predicates and
conditions let us separate analysis from transformation, whilst refactoring schemes
serve as another parameter to a generic yet trustworthy implementation.

The refactoring specification formalism, apart from the syntax of the patterns
in the rewrite rules, is independent of the object language (we note that although
predicates are language-dependent, the condition language over predicate symbols
is language-independent). We achieve this language-independence by untangling
the dependencies among parsing, semantic analysis, condition checking, transfor-
mation and synthesis, and by incorporating the idea of algorithmic skeletons into
refactoring. With this, we can decouple the language-independent parts from the
language-specific elements, and we can define the latter as plug-in components. In
particular, the object language is injected into the framework in terms of defini-
tions for syntax (context-free grammar with metavariable format), static semantics
(axiomatic semantic predicates), dynamic semantics (small-step rules) and schemes
(semantics-directed strategies).

4 Refactoring framework

The previous section described the abstractions we can use for specifying refactor-
ing transformations in a rather generic way. The proposed specification language is
independent of the object language!, and it can be interpreted in a generic frame-
work parametrized by the definition of the object language. In this section, first we
overview the artefacts that parametrise the framework for a particular program-
ming language, then we introduce the components that implement execution and
verification of refactoring definitions.

4.1 The object language definition

The following artefacts define the programming language whose sentences are to
be refactored. FEssentially, they provide a formal definition of the language in
question, as well as they define the refactoring idioms that transform program
entities according to their control and data dependencies in the object language.

L Although if we use concrete syntax in term rewrite rules, the syntax definition of the object
language is needed for parsing first-order terms.

Towards a Generic Framework for Trustworthy Program Refactoring 767

Context-free syntax

Parsing and deparsing of both input programs and program patterns in rewrite rules
can be driven by a single context-free grammar definition, with pattern parsing
also guided by the definition of metavariable format [15]. The definition of the
object language syntax can be given in the usual BNF-like notation, and bottom-
up parsers can be generated from it. In addition, it has to contain the abstract
syntax description since the internal representation of both programs and program
patterns is based on the AST.

Static semantics (metatheory)

The metatheory is defined in terms of a set of decidable semantic predicates supplied
with two different interpretations (or semantics if you like):

e Evaluation of the predicate on a given model, yielding true or false. This part
of the definition is used in the execution components of the framework, in
particular the condition evaluation directly refers to the predicate evaluation
defined in the metatheory.

e Axiomatic specification in terms of semantic rules which can be used when
arguing about semantic equivalence. This part of the definition is used by the
verification component in the framework: when proving conditional pattern
equivalence, the semantic conditions are mapped to a set of hypotheses in
terms of small-step semantic rules.

It is apparent that these two interpretations of the predicates need to be consistent:
every time a predicate evaluates to true, the hypotheses on the dynamic semantic
have to be valid. This can be checked with respect to the dynamic semantics
definition of the language, but the details of this problem are out of the scope of
this paper.

Dynamic semantics

The semantics artefact for the object language contains two definitions: the speci-
fication of program behaviour and the characterisation of semantic equivalence be-
tween programs, program fragments or program configurations.

The framework is designed to facilitate a small-step operational-style definition
of semantics. During verification, the semantics rules can be used for symbolic
rewriting of program patterns checked for semantic equivalence [5]. Recall that
neither the semantics nor the behavioural equivalence is incorporated in the refac-
toring side-condition specification; thus, the execution part of the framework is
independent of the dynamic semantics of the object language.

768 D. Horpécsi, J. Készegi, and D. J. Németh

Refactoring Definition Syntax Input program

DSL Parser Input AST

‘, Verifier \%— Refactoring IR }{/ Refactorer ’
\ ¢ J \)
Correctness Formula Output AST
Semantics Metatheory Schemes Output program

Figure 4: Components and artefacts in the refactoring framework

Refactoring schemes

Schemes are language-specific refactoring idioms (or transformation templates),
which are parametrised by conditional term rewrite rules. Like for semantic pred-
icates, for schemes we need to provide two interpretations (or semantics) in their
definition:

e From the operational point of view, schemes are transformation skeletons,
which can be expanded to strategic term rewritings. Thus, it has to be
defined how the declaratively specified scheme is expressed in an imperative
strategy that applies rewrite rules at appropriate locations in the program
model.

e From the verification point of view, schemes need to be mapped to logic formu-
lae that express the correctness property of the extensive refactoring described
with them. Our proof-of-concept implementation translates scheme instances
to a set of conditional equivalence formulas over the dynamic semantics of
the language.

4.2 Framework components

As discussed above, the framework (see Figure 4) is parametrised by the definition
of the object language given with carefully designed abstractions. Once the frame-
work is tailored to a language, language-specific transformations can be checked
for correctness or can be run. In particular, the refactoring definition (given as

Towards a Generic Framework for Trustworthy Program Refactoring 769

a specification in the formalism discussed in Section 3.2) determines a semantics-
constrained term rewriting relation, which can either be checked for correctness, or
it can be executed on a particular input program by the framework implementation.
The framework accommodates a frontend and two backends for the two pur-
poses. The frontend, using a lightweight analysis of the refactoring definition,
creates the intermediate representation (IR) of the refactoring specification, whilst
the two backends implement the two different sorts of semantics for the refactoring
specification. In principle, the two backends can be used independently: one can
verify refactoring definitions without execution, and the other way around, execute
a definition without verification. Nevertheless, this latter brings the risk of alter-
ing the program behaviour during transformation, but it is not prohibited for the
sake of situations where the formal verification of the refactoring is practically not
feasible in a certain time limit, but the refactoring has to be executed anyway.

Frontend

The refactoring definition enters the framework via the frontend component. It
parses and analyses the definition, and yields an intermediate representation for
the transformation specification which can be fed into either the execution or the
verification backend. The refactoring specification language, originated from the
Erlang prototype, features no static or strong typing; thus, the frontend only does
simple sanity checks on the definitions before passing them to one of the backends.

Since the rewrite rules are composed of first-order terms (syntax patterns) writ-
ten in the concrete syntax of the object language, parsing of the refactoring def-
inition requires parsing of object language syntax patterns. For this, we use the
context-free syntax definition of the object language, generalize it to allow metavari-
ables in place of subexpressions and parse the patterns with it into an AST with
metavariables. As a result, we obtain a refactoring definition IR in which we embed
object language ASTs.

Execution

One way the refactoring IR can be interpreted is application on a given input
program. This is implemented by the compound execution backend, which utilises
all object language artefacts except dynamic semantics, and consists of the following
components (with the last four grouped into 'Refactorer’ in Figure 4):

e Parser / Deparser (uses: Syntax)
The input to the refactoring interpreter is program source code, which has to
be parsed into a syntax tree before transformation, and needs to be turned
back into text following the model transformation. Thus, the context-free
syntax definition of the object language is fed into the parser/deparser com-
ponents which implement the text-to-AST and the AST-to-text conversions,
respectively.

770

D. Horpécsi, J. Készegi, and D. J. Németh

e Scheme expander (uses: Schemes)

As it was discussed in Section 4.1, schemes have two interpretations, one of
which is a translation to lower-level strategies. In this sense, the scheme is
a program template for refactoring with holes to be filled with rewrite rules.
This component instantiates it with the supplied rewrite rule arguments and
yields an imperative term rewrite program.

Strategy interpreter

This component implements the basic strategies such as composition, left-
choice, all-top-down and congruence. Furthermore, we support a number of
strategies that rely on the applied program model (abstract semantic graph
with references, see [2]), such as applying a rewrite rule on a node, or all
of its subtrees, by reference. This component also implements metavariable
environments: the metavariables bound with pattern matching are shared
with subsequent rewrite rules, thus providing per scheme instance namespaces
of metavariables.

Condition evaluator (uses: Metatheory)

The semantic conditions of term rewrite rules are given in terms of object
language level predicates combined with simple first-order logic operators.
This condition language is interpreted by the condition evaluator component,
which relies on the evaluation of predicates over the semantic model of the
program. The metavariables used in these formulae are stored in an envi-
ronment, which is populated by pattern matching executed by the rewrite
engine.

Term rewrite engine

The term rewrite engine carries out the program model transformation (in
fact, syntax term transformation) based on the matching and replacement
patterns present in the rewrite rules. The current prototypes support expres-
sive syntactic patterns, such as metavariables for matching multiple consec-
utive nodes in the AST and non-linear patterns, but semantic patterns are
not available yet. In addition, in some cases we make use of simple abstract
syntax patterns that allow for matching seemingly different concrete syntactic
terms.

The rewrite rules are interpreted in the usual match-and-build semantics:
the pattern is matched against the target AST node, creates a substitution
(binds the metavariables), builds the replacement subtree, and finally the
original node is replaced by the newly created one. Between matching and
replacement, the condition evaluator component checks the side-conditions,
and the semantics of term rewriting is failure-aware: unsuccessful matching
or falsified conditions result in failure of the rewrite rule, which indicates that
the rewrite rule was not applicable. Failure is propagated in rule combinators.

Towards a Generic Framework for Trustworthy Program Refactoring 771

Verification

Complementing the execution backend, the verifier implements the other semantics
to refactoring definitions: statically check their correctness. Ideally, this happens
prior-execution, but as discussed before, the framework does not enforce correct-
ness within the execution backend. The verification backend takes the refactoring
specification IR, turns it into correctness formulas and verifies their validity. It is
implemented in terms of the following two main components:

e Verifier (uses: Schemes)
Correctness of refactoring definitions (the property of semantics-preservation)
is defined by the validity of a set of logic formulae expressing conditional se-
mantic equivalence of program patterns. The verifier component is responsi-
ble for associating the refactoring definition with this set of formulae.

In our system, refactoring steps are all phrased as a composition of in-
stances of parametrically verified transformation schemes, and these pre-
verified schemes determine how the correctness formula is synthesized for
the transformation. For a transformation to be correct, its scheme has to
be correct as well as the instantiation has to be correct. The formulae that
this component synthesises express the correctness of the instantiation. The
latter formulae in many cases can be automatically proven with respect to
the definition of dynamic semantics and semantic equivalence [11].

e Prover (uses: Semantics, Metatheory)

This component checks the validity of the formulae synthesized by the veri-
fier. The prover builds on the metatheory definition by utilizing the axiomatic
definition of the semantic predicates, the pattern equivalence is proven upon
the definition of dynamic semantics and the definition of semantic equiva-
lence. Once the prover has validated the formulae produced by the verifier
component, the transformation is guaranteed to preserve the semantics of any
program when applied to by the execution backend.

5 Proof of concept

In order to demonstrate the applicability of this generic framework architecture, we
investigated instantiating it for two highly different languages: Erlang and Java.
This means that we prepared the artefacts detailed in the previous section, i.e. with
the appropriate formalism we defined the syntax, static and dynamic semantics for
these object languages, as well as we determined some language-specific refactoring
schemes with which we can express meaningful refactoring transformations. In this
section, we overview the challenges of instantiating the framework for programming
languages in general, and for Erlang and Java in particular.

772 D. Horpécsi, J. Készegi, and D. J. Németh

5.1 Parametrising the framework

Beside providing a formal definition of the object programming language from syn-
tax to semantics, instantiation needs the identification of recurring transformation
patterns and understanding of dependencies induced among program elements. Ide-
ally, when parametrising the framework for yet another language, the formal defini-
tion already exists (syntax, operational semantics, static semantic analysis), yet it
is challenging to find those reusable and verifiable schemes for transformations. In
the following sections we discuss our framework and its prototype implementations
from this perspective.

Defining the metatheory

The semantic predicates provide a high-level interface for embedding static seman-
tic information about the target language into both schemes and scheme instances.
Most notably, the metatheory defines what predicates refactoring preconditions
should be built from. Constructing the right metatheory for a specific target lan-
guage is about finding a characterization of its abstractions suitable for both the
execution and verification backend.

Naturally, the chosen characterization must be expressive enough to make the
preconditions of schemes and scheme instances specifiable. In addition, its elements
should also be computable from the underlying program model while executing a
concrete refactoring. When composed correctly, the identified functions and pred-
icates must carry enough information to make verification possible.

A starting point towards an appropriate metatheory can be based on the ab-
stractions of the target language, which, of course, are highly influenced by its
paradigm(s). Then, the chosen semantic predicates can be iteratively refined in
accordance with the requirements above.

Defining semantic equivalence

The underlying notion of semantic equivalence is probably the most determining
aspect of a refactoring. Indeed, it is the basis of both intuitional and formal correct-
ness. An oversimplified definition of equivalence can be as abstract as demanding
observed programs to produce the same output for the same input. The problem
with this, however, is that it is not concrete enough to be conveniently expressible
using a proper metatheory. Therefore we propose to replace the aforementioned
definition of equivalence with one of its — more easily specifiable — characterizations,
e.g. the conformity of data flow, control flow and binding.

We also have to consider that a refactoring usually transforms only some parts of
a program instead of its entirety. Generally, a transformation scope specifying the
extent of the modified code can be attached to each refactoring. Our assumption
is that rather than using a general notion of equivalence — or one of its charac-
terizations —, it is more intuitive to introduce a stricter, but localized variant for
each possible transformation scope. In our framework, transformation scope, and
therefore equivalence level, can be matched with refactoring schemes.

Towards a Generic Framework for Trustworthy Program Refactoring 773

Designing language-specific schemes

As mentioned earlier, designing refactoring schemes can be the most challeng-
ing part of the framework specialization process. There are several key aspects
which should be taken into consideration, e.g. generality, usability, verifiability,
etc. Schemes must be general enough to be reusable, but not too general, as that
would make their instantiation undesirably difficult. On the other hand, we must
aim for schemes which optimally split the verification problem, that is checking the
general correctness of a scheme wrt. to a contract concerning the rewrite rules it is
parameterized by, and checking whether scheme instances satisfy these contracts.

We propose two iterative methods for scheme construction: top-down and
bottom-up. The top-down approach starts from a higher level of abstraction, e.g.
the level of language elements, and tries to identify schemes based on possible de-
pendencies between the discussed entities. The basis of the bottom-up direction is
a number of complex, desirably representative refactorings of the target language,
which are then decomposed to microsteps, from which schemes are obtained by
appropriate generalization.

Both methods have their advantages and disadvantages. With the top-down
method, schemes are inherently general, but not necessarily usable. On the con-
trary, schemes obtained with the bottom-up method are usable by definition, but
their generality is not guaranteed. In both cases, further refinement iterations are
required to mitigate these weaknesses. In the former case, more high-level concepts
can be added to the dependency analysis; in the latter, more refactorings can be
considered during the generalization.

5.2 Erlang

The first implementation of our refactoring framework was made for the Erlang
programming language, via generalization of an analysis and transformation tool [2]
implemented in Erlang. This preliminary work had a high influence on how we
model the program, split syntax and semantics, and even on the separation principle
of analysis and transformation. The analysis and transformation system the Erlang
implementation of the framework is built on uses automatic, incremental static
analysis to keep the semantic layer consistent with the AST; in fact, our framework
implementation makes heavy use of the underlying original transformation system.

Erlang has a fairly simple syntax. The static semantics is mainly about language
abstractions (modules, functions, variables, types) and their static semantic prop-
erties (such as scopes or purity). Basic schemes for Erlang were constructed upon
primary sources of data and control dependencies in the language: function calls,
variable binding, data-flow have been identified as schemes of extensive changes.
Some case studies have been formalized already in the refactoring specification
language with the Erlang-specific schemes, one of those is available in detail in [11].

774 D. Horpécsi, J. Készegi, and D. J. Németh

5.3 Java

The metatheory we constructed for the Java prototype characterizes abstractions
from the object-oriented paradigm, most notably inheritance, polymorphism and
dynamic binding. Here we used the bottom-up approach to obtain schemes by
choosing the lift segment? refactoring as the base transformation. Its decomposition
and generalization resulted in four schemes — local, block, lambda and class — and
three equivalence levels — local, block and class. For the verification backend, we
used K-Java [1] as operational semantics.

The implementation is built on top of a DSL-engineering framework called
Xtext, which comes with Xbase, a reusable, Java-like expression language. By mod-
ifying its grammar to resemble Java more closely and to accommodate metavari-
ables, a parser for refactoring definitions could be generated automatically. These
definitions are compiled on-the-fly to Java code which uses the refactoring API of
the Eclipse IDE. Finally, the translated code is dynamically loaded into the under-
lying JVM instance and made available from an Eclipse plugin. Our approximation
of the metatheory is implemented with the Java Development Tools (JDT).

6 Discussion

The ideas discussed in this paper were inspired by a study on high-level, declarative
refactoring definitions for Erlang [11]. The concepts of semantic predicates, refac-
toring idioms and composition operators all seemed to be language-independent,
so we adapted the original idea to Java by re-implementing the entire project with
JDT and Xtext. After that, we were certain that the two solutions should share a
couple of elements that are fairly language-independent.

Apparently, the existing concepts and implementations had to be redesigned
in order to expose and extract those language-independent portions, but we man-
aged to obtain a generic design. Although Section 4 presented a fully language-
parametric architecture, the proof of concept implementations for Erlang and Java
do not share all these language-independent components yet. Nevertheless, realisa-
tion of the generic framework for these two substantially different languages justifies
that the concept is viable; it is our long-term plan to implement the Erlang and
Java tools as proper instances of the language-generic framework.

Before concluding the paper, we briefly evaluate how, and to what extent, the
proposed approach allows for generic and trustworthy implementation of refactor-
ing. We also address the idea of language-independent schemes and discuss work
in progress on changing the way verification is built into the process.

6.1 Genericity

The proposed design is language-generic: the refactoring specification language is
independent of the object language, as well as the implementation framework is

2Refactoring lift segment lifts a code segment into the superclass as a newly introduced method.

Towards a Generic Framework for Trustworthy Program Refactoring 775

language-parametric. Namely, when a new language needs to be supported, the
framework is instantiated for the particular programming language by providing a
formal definition of the language (syntax, static and dynamic semantics) along with
refactoring schemes (transformation idioms). The main components of execution
and verification are shared between instances for different languages.

How do we achieve this? We sort of rephrase and restructure the usual way of
defining and implementing a refactoring, and this rephrasing allows us to cut out
and abstract away some language-specific elements. In particular, the high-level
program model lets term rewrite rules incorporate semantic predicate conditions,
and it allows strategies to control term traversal based on semantic dependen-
cies. This separation of transformation concerns leads to a clear separation of the
so-called refactoring business logic, which, on the other hand, can be defined in
a declarative and language-independent way. The language-independence of the
refactoring specification directly implies that the interpretation of specifications
can rely on components parametrised with language-specific artefacts.

Language-independence of refactoring schemes. Language-level refactoring
schemes enable high-level description of transformations that respect lower-level de-
pendencies. Parametric verification of schemes involves definition of specific equiv-
alence classes of programs, which in turn imply full semantic equivalence under cer-
tain circumstances. Even though schemes seem to be totally language-dependent,
we have identified some schemes of schemes: for instance, in many programming
languages the abstraction of subroutines exists in some way. Function refactoring
in Erlang and method refactoring in Java may be understood as specialisations of
a language-independent scheme. Schemes may stem from concepts that are shared
among different languages, and in the long term, we plan to investigate the possibil-
ity of implementing a set of schemes that are defined in terms of concepts common
in various languages.

6.2 Trustworthiness

Trustworthiness comes in many forms, ranging from simplicity, modular implemen-
tation or open-source code base with excessive testing. In our paper, we focused
on enabling semi-automatic formal verification for behaviour-preservation in se-
mantic program model transformations. We managed to split the transformation
definition to traversal control and actual term rewriting in a semantics-driven way,
which in turn allows these two parts be verified separately, with the latter done
semi-automatically.

How do we prove transformations correct? Local refactorings are fairly
simple to check. Since these are composed of one single rewrite rule, the correctness
is expressed as one conditional equivalence statement of two program or expression
patterns. If, under the side-conditions, the rewriting preserves the semantics, the
transformation is correct.

776 D. Horpécsi, J. Készegi, and D. J. Németh

For changes that span over multiple expressions, subroutines or even modules, a
notion of “completeness” and “consistency” is needed. Namely, the rewriting has to
visit all interdependent elements in the program and carry out consistent modifica-
tions to preserve the semantics of the entire program. These properties are ensured
by the schemes, which provide a declarative means to express complex refactorings.
For these extensive changes, we synthesise a set of equivalence formulas that are
checked for validity by using the dynamic semantics of the language.

With schemes, we reduce the global equivalence problem to multiple local equiv-
alence problems. This is enabled by decoupling traversal control and actual rewrit-
ing. Schemes are verified with respect to some conditions on the rewrite rules they
are parametrized with. Verification of schemes requires manual proving; however,
having the pre-verified schemes, the instantiation conditions may be automatically
checked, making the scheme-based refactoring definitions automatically verifiable.
The conditions are equivalence statements on term patterns. Verification of pat-
tern equivalence is not decidable, but in a lot of cases, advanced, problem-specific
proof tactics can lead to equivalence proofs. If we express the equivalence for-
mula in reachability logic, there is an algorithm [5] that can be used to determine
whether the two patterns can be rewritten to the same form by using rules in the
the operational semantics of the language.

Although automatic verification of scheme instances would be a convenient fea-
ture from the user’s perspective, due to the undecidability of pattern equivalences,
in most cases the proving requires some human assistance. We started to redesign
the framework such that the object language semantics is formalised in a proof
assistant and the pattern equivalence proofs are written by hand. This is funda-
mentally different from the K framework based solution, but gives more control
and opportunities to the user of our system.

7 Conclusion

Refactoring program transformations are essential in large-scale software develop-
ment for maintaining code quality. Tools that carry out such transformations need
to be trustworthy: there has to be an evidence that the program after the refac-
toring still behaves the same as before. Correctness of the transformation can be
checked for each and every application instance, but the ultimate guarantee on
correctness is obtained by the static verification of the refactoring definition.

In our previous work, we have investigated refactoring definition abstractions
for different object languages, which allow for semi-automatic verification for cor-
rectness. In this paper, we have advanced these previous results by generalising
our approach over different object languages and designing a unifying refactoring
framework. We have shown that the high abstraction level of the definition enables
a fine-grained separation of the various components in a refactoring tool, which in
turn allows the recognition and extraction of language-dependent elements, leading
to a language-generic implementation. Our proposed solution facilitates execution
and static verification of refactoring definitions for different object languages.

Towards a Generic Framework for Trustworthy Program Refactoring T

References

1]

[10]

Bogdéanag, Denis and Rogu, Grigore. K-Java: A Complete Semantics of Java. In
Proceedings of the 42nd Symposium on Principles of Programming Languages
(POPL’15), pages 445-456. ACM, January 2015. DOI: 10.1145/2676726.
2676982.

Bozo, Istvan, Horpécsi, Daniel, Horvath, Zoltan, Kitlei, Rébert, Koszegi, Ju-
dit, Tejfel, Maté, and Téth, Melinda. RefactorErl — Source Code Analysis and
Refactoring in Erlang. In Proceedings of SPLST’11, pages 138-148, Tallin, Es-
tonia, 2011. URL: https://www.researchgate.net/publication/289641474.

Bravenboer, Martin, van Dam, Arthur, Olmos, Karina, and Visser, Eelco.
Program Transformation with Scoped Dynamic Rewrite Rules. Fundam. Inf.,
69(1-2):123-178, July 2005. ISSN: 0169-2968.

Cesarini, Francesco and Thompson, Simon. FRLANG Programming. O’Reilly
Media, Inc., 1st edition, 2009. ISBN: 0-596-51818-8.

Ciobaca, Stefan, Lucanu, Dorel, Rusu, Vlad, and Rosu, Grigore. A Language-
Independent Proof System for Full Program Equivalence. Formal Aspects of
Computing, 28(3):469-497, May 2016. DOI: 10.1007/s00165-016-0361-7.

Cohen, Julien. Renaming Global Variables in C Mechanically Proved Correct.
In Hamilton, Geoff, Lisitsa, Alexei, and Nemytykh, Andrei P., editors, Pro-
ceedings of the Fourth International Workshop on Verification and Program
Transformation, Eindhoven, The Netherlands, 2nd April 2016, Volume 216 of
Electronic Proceedings in Theoretical Computer Science, pages 50—64. Open
Publishing Association, 2016. DOI: 10.4204/EPTCS.216.3.

Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA, 1999. ISBN: 0-201-48567-2.

Garrido, A. and Meseguer, J. Formal Specification and Verification of Java
Refactorings. In 2006 Sixth IEEE International Workshop on Source Code
Analysis and Manipulation, pages 165—174, Sept 2006. DOI: 10.1109/SCAM.
2006.16.

Gil, Yossi, Marcovitch, Ori, and Orrd, Matteo. A nano-pattern language for
java. Journal of Computer Languages, 54:100905, 2019. DOI: 10.1016/j.
co0la.2019.100905.

Goémez, Verdnica Uquillas, Ducasse, Stéphane, and D’Hondt, Theo. Ring:
A unifying meta-model and infrastructure for smalltalk source code analysis
tools. Computer Languages, Systems & Structures, 38(1):44 — 60, 2012. DOL:
10.1016/3j.c1.2011.11.001, SMALLTALKS 2010.

778

[11]

[13]

[14]

[16]

[17]

[18]

[19]

D. Horpécsi, J. Készegi, and D. J. Németh

Horpécsi, Daniel, Készegi, Judit, and Horvath, Zoltdan. Trustworthy Refac-
toring via Decomposition and Schemes: A Complex Case Study. In Lisitsa,
Alexei, Nemytykh, Andrei P., and Proietti, Maurizio, editors, Proceedings
Fifth International Workshop on Verification and Program Transformation,
Uppsala, Sweden, 29th April 2017, Volume 253 of Electronic Proceedings in
Theoretical Computer Science, pages 92-108. Open Publishing Association,
2017. DOI: 10.4204/EPTCS.253.8.

Kniesel, Gunter and Koch, Helge. Static Composition of Refactorings. Sci.
Comput. Program., 52(1-3):9-51, August 2004. DOI: 10.1016/j.scico.2004.
03.002.

Kosar, Tomaz, Bohra, Sudev, and Mernik, Marjan. Domain-Specific Lan-
guages: A Systematic Mapping Study. Information and Software Technology,
71:77-91, 2016. DOI: 10.1016/j.infsof.2015.11.001.

Lammel, Ralf. Towards Generic Refactoring. In Proceedings of the 2002 ACM
SIGPLAN Workshop on Rule-based Programming, RULE 02, pages 15-28,
New York, NY, USA, 2002. ACM. DOL: 10.1145/570186.570188.

Lecerf, Jason, Brant, John, Goubier, Thierry, and Ducasse, Stéphane. A
Reflexive and Automated Approach to Syntactic Pattern Matching in Code
Transformations. In 2018 IEEE International Conference on Software Main-
tenance and Evolution, ICSME 2018, Madrid, Spain, September 23-29, 2018,
pages 426-436, 2018. DOI: 10.1109/ICSME.2018.00052.

Leitao, Anténio Menezes. A Formal Pattern Language for Refactoring of Lisp
Programs. In Proceedings of CSMR 02, pages 186-192, Washington, DC,
USA, 2002. IEEE Computer Society. DOI: 10.1109/CSMR.2002.995803.

Li, Huiging and Thompson, Simon. A Domain-Specific Language for Scripting
Refactorings in Erlang. In Proceedings of FASE’12, pages 501-515, Berlin,
Heidelberg, 2012. Springer-Verlag. DOI: 10.1007/978-3-642-28872-2_34.

Lammel, Ralf, Thompson, Simon, and Kaiser, Markus. Programming errors in
traversal programs over structured data. Science of Computer Programming,
78(10):1770 — 1808, 2013. DOI: 10.1016/j.scico.2011.11.006.

Maruyama, Katsuhisa and Yamamoto, Shinichiro. Design and Implementation
of an Extensible and Modifiable Refactoring Tool. In 13th International Work-
shop on Program Comprehension (IWPC’05), pages 195-204. IEEE, 2005.
DOI: 10.1109/WPC.2005.17.

Mendonca, Nabor C., Maia, Paulo Henrique M., Fonseca, Leonardo A., and
Andrade, Rossana M. C. RefaX: A Refactoring Framework Based on XML.
In Proceedings of the 20th IEEE International Conference on Software Main-
tenance, ICSM ’04, pages 147-156, Washington, DC, USA, 2004. IEEE Com-
puter Society. DOI: 10.1109/ICSM.2004.1357799.

Towards a Generic Framework for Trustworthy Program Refactoring 779

[21]

[26]

[27]

Opdyke, William F. Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1992. UMI
Order No. GAX93-05645. URI: http://hdl.handle.net/2142/72072.

Roberts, Don, Brant, John, and Johnson, Ralph. A Refactoring Tool for
Smalltalk. Theor. Pract. Object Syst., 3(4):253-263, October 1997. DOI:
10.1002/(SICI)1096-9942(1997)3:4(253: :AID—TAP03>3.3.CO; 2-1.

Roberts, Donald Bradley. Practical Analysis for Refactoring. PhD thesis,
University of Illinois, 1999. URI: http://hdl.handle.net/2142/81948.

Rosu, Grigore, Stefanescu, Andrei, Ciobaca, Stefan, and Moore, Brandon M.
One-Path Reachability Logic. In Proceedings of the 28th Symposium on Logic
in Computer Science (LICS’13), pages 358-367. IEEE, June 2013. DOL
10.1109/LICS.2013.42.

Rowe, Reuben N. S., Férée, Hugo, Thompson, Simon J., and Owens, Scott.
Characterising renaming within OCaml’s module system: theory and imple-
mentation. In McKinley, Kathryn S. and Fisher, Kathleen, editors, Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, Phoeniz, AZ, USA, June 22-26, 2019, pages
950-965. ACM, 2019. DOI: 10.1145/3314221.3314600.

Schaefer, Max and de Moor, Oege. Specifying and Implementing Refactor-
ings. SIGPLAN Not., 45(10):286-301, October 2010. DOI: 10.1145/1932682.
1869485.

Sultana, Nik and Thompson, Simon. Mechanical Verification of Refactorings.
In Proceedings of PEPM 08, pages 51-60, New York, NY, USA, 2008. ACM.
DOI: 10.1145/1328408.1328417.

Verbaere, Mathieu, Ettinger, Ran, and de Moor, Oege. JunGL: A Scripting
Language for Refactoring. In Proceedings of ICSE 06, pages 172-181, New
York, NY, USA, 2006. ACM. DOI: 10.1145/1134285.1134311.

Visser, Eelco and Benaissa, Zine-El-Abidine. A core language for rewriting.
Electr. Notes Theor. Comput. Sci., 15:422-441, 1998. DOI: 10.1016/S1571-
0661(05)80027-1.

Acta Cybernetica 25 (2022) 781-795.

Report on the Differential Testing of
Static Analyzers*

Géabor Horvath®, Réka Kovacs®, and Péter Szécsi®

Abstract

Program faults, best known as bugs, are practically unavoidable in today’s
ever growing software systems. One increasingly popular way of eliminating
them, besides tests, dynamic analysis, and fuzzing, is using static analysis
based bug-finding tools. Such tools are capable of finding surprisingly sophis-
ticated bugs automatically by inspecting the source code. Their analysis is
usually both unsound and incomplete, but still very useful in practice, as they
can find non-trivial problems in a reasonable time (e.g. within hours, for an
industrial project) without human intervention.

Because the problems that static analyzers try to solve are hard, usually
intractable, they use various approximations that need to be fine-tuned in
order to grant a good user experience (i.e. as many interesting bugs with as
few distracting false alarms as possible). For each newly introduced heuristic,
this normally happens by performing differential testing of the analyzer on
a lot of widely used open source software projects that are known to use
related language constructs extensively. In practice, this process is ad hoc,
error-prone, poorly reproducible and its results are hard to share.

We present a set of tools that aim to support the work of static ana-
lyzer developers by making differential testing easier. Our framework includes
tools for automatic test suite selection, automated differential experiments,
coverage information of increased granularity, statistics collection, metric cal-
culations, and visualizations, all resulting in a convenient, shareable HTML
report.

Keywords: static analysis, symbolic execution, Clang, testing

*The project has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.3-VEKOP-16-2017-00002)

®Department of Programming Languages and Compilers, E6tvos Lordnd University, Budapest,
Hungary

bE-mail: xazax@caesar.elte.hu, ORCID: 0000-0002-0834-0996

¢E-mail: rekanikolett@caesar.elte.hu, ORCID: 0000-0001-6275-8552

4E-mail: ps95@caesar.elte.hu, ORCID: 0000-0001-9156-1337

DOI: 10.14232/actacyb. 282831

782 Gabor Horvath, Réka Kovacs, and Péter Szécsi

1 Introduction

Any significant change to an open-source static analysis tool (also simply called
an analyzer) is preceded by a discussion about its possible effects. The minimum
typical requirement is the comparison of analysis results and performance on a few
software projects before and after applying the changes.

Fulfilling this requirement is hard for various reasons. Developers often have a
bias towards a set of projects they are familiar with, which might tempt them to
avoid the challenge of finding a set of test projects that most effectively exercise
the changed parts of the analyzer. In case of a long-lasting open-source review
process [16] (developers often have to wait half a year before their contributions get
accepted), changes need to be re-based on top of the latest version of a continuously
evolving code base, and the analysis of all test projects needs to be re-run to ensure
that the feature still works correctly. Analysis results also have to be processed
and summarized to be easily understandable for the reviewers.

Note that, for our explanations throughout the paper, we use the term author
to refer to the person who implements a change to the open-source application
(this comes from being the author of the patch, a textual form of the set of actual
modifications to the source code). This person has to justify the changes and prove
to reviewers that there will be no unwanted regressions in the software’s behavior.
By reviewers we mean those fellow developers who audit and approve the changes.

Ideally, reproducing an analysis should be painless, and it should be possible
to present results in an easily shareable and digestible format. This format should
be simple to archive or embed in documentation, so that major design decisions
can be easily re-evaluated later. This is important, since the decisions that make
perfect sense today might be less adequate tomorrow.

In this paper, we present our toolchain that we call the Clang Static Analyzer
Testbench (or CSA Testbench)', designed for the Clang Static Analyzer [1] and
Clang-Tidy [2], two open-source static analysis tools built on top of the Clang [11]
compiler for C family languages. The Clang Static Analyzer uses symbolic execu-
tion [10] to find bugs, while Clang-Tidy is a collection of syntactic checks. We are
long-term contributors to these tools, and would like to share the principles of the
differential testing infrastructure we have built with a wider community.

Our framework aims to enhance the open-source review process by supporting
reviewers and authors (as defined earlier) in the following ways:

help authors select a set of relevant projects for testing,

help authors run static analysis on the selected projects,

e aggregate statistics about the analysis (e.g.: how often a cut heuristic is
triggered while building the symbolic execution graph),

aggregate the results of the analysis, i.e. the reported warnings,

help authors and reviewers evaluate and share the results,

1The code is open-source, licensed under the MIT License, and can be downloaded from https:
//github.com/Xazax-hun/csa-testbench.

Report on the Differential Testing of Static Analyzers 783

e help reviewers reproduce the results and suggest changes to the test setup,

e help authors maintain the tests.

The input of the toolset is a single and easy-to-interpret configuration file in
JSON format. Since the format is textual, reviewers can comment on the test setup
using conventional review tools and it can also be embedded in documentation.
Moreover, it is convenient to store such files in version control systems. The output
is a customizable HTML report with useful information, various plots, and a record
of the input configuration, including the version numbers, to ensure reproducibility.
The goal is to store all the information required to repeat the experiment.

Our principles can be reused by developers of other static analyzers, and we
also describe some alternative use cases for our framework.

The paper is structured as follows. Section 1 gives an overview of the difficul-
ties faced during an open-source review process that requires differential testing.
Section 2 introduces the principles behind the framework we built to tackle these
problems.

2 The CSA Testbench Toolchain

2.1 Semi-automatic test suite generation

Problem After implementing a missing feature or tweaking an existing part of
a static analyzer, testing the robustness of the change and checking whether a
regression occured is a natural requirement towards the author. One conventional
approach is to run the analyzer tool on a number of real-world software projects
and artificial regression tests.

Finding a sufficient number of relevant real-world projects can be challenging.
Ideal projects should be open-source and easy to set up, so that reviewers have
a better chance of reproducing the results. Additionally, projects should exercise
the right parts of the analyzer. For example, if the change is related to dynamic
type information modeling, only projects using dynamic type information should
be included.

One option is to use a trial-and-error approach and check a random sample of
open-source projects, hoping to find enough that display the required traits. A
slightly better approach is to use code searching and indexing services and look
for projects with interesting code snippets. These services, however, are optimized
to present the individual snippets and suboptimal to retrieve the most relevant
projects according to some criteria.

Solution We present a script that harvests the results of an existing code search
service, and recommends projects to be included in the test suite based on the
results. This script can spare a significant amount of development time and help
authors find relevant projects on which their changes can be verified.

784 Gabor Horvath, Réka Kovacs, and Péter Szécsi

Our script uses the SeachCode [5] service for its backend. For example, in order
to test a new static analysis check written to detect pthread mutex_t abuse, we
might be interested in projects that use pthread extensively. Using the syntax on
Listing 1, we can specify the keywords to search for, the languages we are interested
in, the desired number of projects and optionally a filename for the output:

1 $./gen_project_list.py ’pthread_mutex_t’ ’C C++’ 3 -o pthread.json

Listing 1: A sample invocation of the project list generator tool.

This call creates a configuration file with the suggested projects in the following
format:

1 {

2 "projects": [

3 {

4 "url":"github.com/itkovian/torque.git",
5 "name": "torque"

6 1,

7 {

8 "url":"github.com/snktagarwal/openafs.git",
9 "name": "openafs"
10 },
11 {
12 "url":"github.com/cfenoy/slurm.git",
13 "name": "slurm"
14 }
15]
16 }

Listing 2: A fraction of a configuration file generated by the project list generator
tool invocation showed on Listing 1.

This configuration file can be directly used as input to the main driver script of the
testing infrastructure as detailed in Section 2.2.

Sometimes we only want to do a stress test to ensure that the analysis engine
behaves gracefully for all projects and does not crash. We created an alternative
tool to create a configuration file based on a Debian FTP mirror for package sources.
The resulting file will contain more than 20 000 projects.

1 $./project_list_from_debian.py \
2 --url ftp://ftp.se.debian.org/debian/ --output debian.json

Listing 3: Sample call of an alternative project list generator tool that lists all
packages available at the specified Debian mirror.

Report on the Differential Testing of Static Analyzers 785

2.2 Easy analysis reproduction and sharing

Problem A regular pattern is that the developer sharing text files that contain
static analysis results on a set of projects. This makes evaluation considerably dif-
ficult for reviewers. First of all, they might not be familiar with the test projects
at all. Text dumps of static analysis results are hard to interpret and the mea-
surements are hard to reproduce. Further questions that might arise: How did
the author compile the project? Which version of the analyzed project was used?
How did the author invoke the analyzer? Which configuration options were used?
Which revision (commit) of the analyzer was used?

Solution Our tools use a concise configuration format that contains all the rele-
vant information about the analyzed projects: repository, tag/commit, configura-
tion options for the analysis, etc. Obtaining this configuration file enables reviewers
to reproduce the exact same measurements, with the help of our driver script. They
can also easily suggest modifications to the conducted experiment.

The scripts aggregate useful information about the analysis into an easy-to-
share HTML format (as seen in Figure 1). Analysis results are not mere text dumps
anymore, but are presented on a convenient web user interface that also displays the
path associated with the report (showed in Figure 2). Other information such as the
number of code lines in the project, version of the analyzer, analysis time, analysis
coverage (Figures 3 and 4), and statistics from the analysis engine is recorded and
charts are generated automatically (Figure 5). The web user interface also has
permanent links to each individual error report in order to make it easier to refer
to them in discussions. These pages are hosted by the person sharing the results,
code reviewers do not need to install anything to browse the results.

The configuration file showed in Section 2.1 is almost enough to run the analysis
on its own. The only extra information needed to be specified is the URL of
the CodeChecker server where analysis results are intended to be stored for later
inspection (Listing 4).

1 {

2 "projects" : ...

3 "CodeChecker": {

4 "url" : "localhost:15010/Default",
5 }

6 }

Listing 4: A segment of the configuration file specifying the address of the
CodeChecker server.

CodeChecker [3] is a tool we designed to integrate the Clang Static Analyzer and
Clang-Tidy into C/C++ build systems. It also acts as a mature bug management
system that supports commenting on static analysis reports and suppressing false
positives. It has a convenient user interface to visualize path-sensitive bug reports
(see Figure 2) and to support differential analysis. We can compare two analysis

786 Gabor Horvath, Réka Kovécs, and Péter Szécsi

Detailed Static Analyzer Statistics

Curl SQLite FFMPEG Memchached OpenSSL PostgreSQL Redis TinyXML2 Vim LLVM libWebM libpng
tmux Bitcoin Xerces protobuf Charts

Statistic Name CTU_unexplored first unexplored first dfs CTU_dfs
The # of times we inlined a call 9971832 301006 262454 10945670
The # of times RemoveDeadBindings is called 172729900 12981090 12605468 194032072
Failed to analyze 72 0 0 41
CodeChecker link CodeChecker CodeChecker CodeChecker CodeChecker
The # of paths explored by the analyzer. 4959014 561888 563539 5552125
The # of getCTUDefinition NoUnit 8938696 = = 11184008
The # of getCTUDefinition called but the function is not in 8938696 = = 11184008
other TU

The # of times we reached inline count maximum 592450 57073 49512 687016
Result count 566 130 126 426
Compiler errors 144 0 0 82
Number of assertions 72 0 0 M

Figure 1: A section of the automatically produced HTML report containing in-
formation about analysis runs with different analyzer configurations. The table
contains links to the corresponding analysis runs in a web user interface (see Fig-
ure 2), and links to detailed line-based coverage reports (Figures 3 and 4). A similar
table for each analyzed project can be found under appropriately labeled tabs in
the header of the report. The Charts tab hides a number of interactive charts
generated from the results (for an example, see Figure 5).

runs using CodeChecker to differentiate between common reports and those present
only in a specific analysis run. CodeChecker’s web GUI allows sharing the results
with the rest of the world without needing to repeat the experiment. It can be used
to share not only bug reports, but also classifications and comments explaining why
some findings are considered false positives or true positives.

After adding this detail to the configuration file, we are ready to run the analysis
on the previously selected set of projects (Listing 5).

1 | $./run_experiments.py --config pthread.json

Listing 5: Sample invocation of the main driver script of the experiment.

The script checks out each project, attempts to infer their build system, builds
them, runs the analysis, and finally collects the results. At the time of writing this
paper autotools, CMake, and make are supported out of the box.

Report on the Differential Testing of Static Analyzers 787

{#) CodeChecker 6.7.1 Default =

® Runs 130 | & Checker statistics | = All reports New features * | = tmux_2.3_unexplored_first_clangs_SCAM2018 *

3= Bug Overview | ¥® Run history | ¥ reallocarray.c >

gl Medium

=] L39 — optin.portability. UnixAP| [4]
© Call to realloc’ has an allocation size of 0 bytes . Also found in: tmux_2.3_unexplored_first_clangb_SCAM2018:reallocarray.c:L39 [[4]

Show documentation | @ Unreviewed| - | [/ Show amows | Comments (0) |

22 @) L34 — Assuming the condition is false 1

o 18 #include <sys/types.h>
22) L34 - Assuming the condition is true 9 #include <errno.h»
: 9L35—Assum\ng‘nmemb‘ is<=0 26 #include <stdint.h>

</> @ L39 = Cali fo 'realloc’ has an allocation size of 0 bytes #includes<stdlibihy

include "tmux.h"

*
* This is sqrt(SIZE MAX+1), as sl*s2 <= SIZE MAX
* if both s1 < MUL_NO_OVERFLOW and s2 < MUL_NO_OVERFLOW

*/
define MUL_NO_OVERFLOW ((size_t)l << (sizeof(size_t) * 4))

oid *
reallocarray(void *optr, size t nmemb, size t size)

£/ (rERb 5= MUL_NO_OVERFLOW T{hsize »= MUL_NO_OVERFLOW) 8&

| €) Assuming the condition is false |

[@ Assuming the condition is true |
nmemb' > © && SIZE_MAX / nmemb < size) {
suming ‘nmemb’ is <= @ |
no = ENOMEM;
3 eturn NULL;

returi¥realloc(optr, size * nmemb);

o[all to "realloc’ has an allocation size of @ bytes

Figure 2: The CodeChecker web user interface. Path-sensitive reports guide the
user along the execution path leading to the bug. On the web user interface,
different runs can be compared against each other, and bug reports can be filtered
by many criteria, e.g. by severity, by review status, by detection status, by detection
date, by checker name, by checker message, etc. Bug reports can also be marked
false positive, with the possibility of leaving an explaining note for the record.

However, the script will not download and install all the dependencies required
to compile the projects. It is the user’s responsibility to ensure that the host
machine is able to compile the projects, which turned out to be a big burden for
the authors. For this reason, we introduced support for the two emerging C++
package managers, Conan [4] and Vepkg [6]. Relying on these package managers
instead of repository URLs ensures that the analysis will not fail due to a missing
dependency. In Listing 6, we can see how easy it is to test on a project which is
available in one of the package managers.

{
"projects": [
{
"name": "zlibconan",
"package": "zlib/1.2.11@conan/stable",
"package_type": "conan",

1,
{

"name": "zlibvcpkg",
"package": "zlib",

O © 00O U W

—

788 Gabor Horvath, Réka Kovacs, and Péter Szécsi

11 "package_type": "vcpkg",
12 }

13]

14 }

Listing 6: A sample configuration file that will instruct the framework to download
projects using the Conan and Vepkg package managers.

In case a special build command is required, or the build system is not yet
supported, the user can specify the build command and the configuration command.
Building a specific version of the project determined by a tag, a commit hash, or a
URL to a source tarball instead of top of tree is also possible and highly encouraged,
in order to get consistent results in subsequent experiments.

Finally, differential analysis can currently be conducted by running the same
projects multiple times with different options passed to the analyzer or using dif-
ferent versions of the analyzer (Listing 7).

1 {
2 "projects": [
3 {
4 "url": "github.com/itkovian/torque.git",
5 "name": "torque",
6 "tag": "tag name",
7 "build_command": "special build command"
8 oo
9]
10 "configurations": [
11 {
12 "name": "original",
13 "clang_sa_args": "",
14 },
15 {
16 "name": "variant A",
17 "clang_sa_args": "argument to enable feature A",
18 "clang_path": "path to clang variant"
19 }
20 1, ...
21 }

Listing 7: Differential testing can be achieved by running many analysises on the
same projects with different options passed to the analyzer.

2.3 A more precise differential analysis

Problem Currently, coverage measurements provided by the Clang Static Ana-
lyzer are limited. The engine can only record the percentage of basic blocks reached
during the analysis of a translation unit, which is not sufficiently precise for mul-
tiple reasons. First, the analysis can stop in the middle of a basic block due to
running out of the analysis budget for that specific execution path. Secondly, there

Report on the Differential Testing of Static Analyzers 789

is no precise way of merging information from different translation units. Finally,
inline functions or templates in header files might appear in multiple translation
units and their contribution will be counted multiple times upon attempting to
aggregate information over translation units.

Solution We implemented line-based coverage measurement based on the gcov [7]
format. We do not calculate coverage as an overall percentage value, but record
it separately for each line. This makes it possible to precisely aggregate coverage
information over translation units, and to do differential analysis on the coverage
itself. Our toolset includes scripts to aid that kind of analysis.

GCC Code Coverage Report

Directory: . Exec Total Coverage
Date: 2018-03-23 Lines: 15412 16870 91.4%
Legend: low: < 75.0 % medium: >= 75.0 % high: >= 90.0 % Branches: o o 0.0 %
| e | Llne | Branches |
;_\mr%s, m—) 81.5% 97 /119 100.0 % o/0
arguments.c 100.0 % 66 /66 100.0 % o/0
attributes.c = __ | 93.3 % 42/45 100.0% o/0
cfg.c . | 94.3 % 50/53 100.0 % o/0
client.c 98.4 % 180/183 100.0 % o/0
cnd-attach-session.c ——— 87.5 % 42/48 1000% 0/0
cnd-bind-key.c 100.0 % 19/19 100.0% o/0
cmd-break-pane.c 100.0 % 39/39 100.0 % o/0
cmd-capture-pane.c 100.0 % 80/80 100.0 % o/0

Figure 3: A sample report summarizing coverage percentages over the analyzed
files. Line-based coverage information can be browsed by clicking on filenames.

In some cases, we are interested in the reason behind a specific bug report
disappearing when running the analysis with different parameters. Performing
differential analysis on the coverage, we are able to determine whether the analyzer
actually examined the code in question during both runs.

The Clang Static Analyzer can output different kinds of statistics such as the
number of paths examined, the number of times a specific cut heuristic was used
etc. Instead of having a fixed set of statistics to collect, we used some text mining
to process the output of the analyzer, in which we are able to automatically detect
newly added custom statistics without any additional configuration, and aggregate
them over translation units.

As mentioned in Section 2.2, the final report of our toolset includes figures
like charts and histograms. The list of figures can be set in the configuration file.
After adding a new statistic to the analyzer engine, the author only needs to add a
single entry in the configuration file to make the toolset generate a figure based on
that statistic. One sample use-case is producing a histogram of analysis times per
translation unit. This can help us track down performance regressions in outliers.

We cannot emphasize the importance of automatically generated figures enough.
The statistics about a run of the symbolic execution engine is not easy to interpret.
For example, an increase in the number of generated symbolic states can be both
a good and bad news depending on how the rest of the statistics are changed. Not
requiring the author to create the figures from the numbers manually is a great
productivity boost.

790 Gabor Horvath, Réka Kovacs, and Péter Szécsi

106 1 struct winlink *wl;

1607

108 325 RB_FOREACH(wl, winlinks, &s->windows)

109 10 alerts check_all(wl->window);

110 }

111

112 static int

113 alerts_enabled(struct window *w, int flags)

114 {

115 4 if (flags & WINDOW BELL) {

116 if (options_get number(w->options, "monitor-bell"))
117 | I return (1);

118 1]

119 4 if (flags & WINDOW_ACTIVITY) {

120 if (options_get number(w->options, "monitor-activity"))
121 return (1);

122 }

123 4 if (flags & WINDOW SILENCE) {

124 4 if (options_get number(w->options, "monitor-silence") != 0)
125 4 return (1);

126 }

127 4 return (0);

128 1

129

130 void

131 alerts_reset_all(void)

132 i

133 1 struct window *w;

1

Figure 4: Our amended version of the Clang Static Analyzer can provide coverage
information for each executed line of each analyzed file. In Figure 3, lines covered
by the analysis are shown in a green color, while lines not covered are shown in red.
White lines contain no executable code.

C-Reduce [15] is a tool that takes a large C, C++, or OpenCL file that has a
property of interest (such as triggering a compiler bug) and automatically produces
a much smaller C/C++ file that has the same property. We also use C-Reduce to
get minimal examples that showcase differences between two versions of the static
analysis engine. First, we need a file on which analysis engine versions produce
different results. This can be a different set of warnings or other statistics emitted
by the engine. These minimal examples can greatly aid our understanding of the
effects of a change. The main shortcoming of C-Reduce is the lack of support for
reducing multiple translation units at once. We do plan to add this feature in the
future.

2.4 Recommended workflow, how to use the toolchain

Using our toolset the recommended workflow is shown in Figure 6. The author of
the patch uses some of our scripts to select the project to test the changes on. After
running the experiments she makes sure all the data support the hypothesis. Then
she uploads tha patch for review and provides reviewers with a link to the test
results which includes the configuration. Reviewers can choose to either merely
look at the results or repeat the whole experiment based on the configuration,
depending on the verification effort required for the change. They can also suggest

Report on the Differential Testing of Static Analyzers 791

.
Duration Q = i
20k PAREILY CTU dfs B CTU_unexplored_first
B unexplored_first
W dfs
FEEYEA CTU unexplor.. W cTu_dfs
15k
10k 10163k el
5k
S Y, A + in Re, O, o, b Ly,) G, S,)
Q{,fe %%ec,’ "‘36‘6‘ ooy M'@*%; 7 &y, SS,: e ' N p,,g by <o, !4/%/1’

S

Figure 5: One of the many interactive charts generated based on statistics collected
during analysis, this figure shows duration times for different analyzer configura-
tions for different open-source projects. Precise numbers are shown when hovering
over the block of columns corresponding to a project.

changes to the configuration to gather more insight about the changes. After such
suggestions it is as easy to re-run the whole experiment as pushing a button.

2.5 Alternative applications

The tools we introduced in the previous section can be generalized beyond sup-
porting only static analysis engines. First, obtaining a set of projects with certain
properties (e.g. projects using runtime type information) can be valuable for the
testing of any language tool. Secondly, the ability to check out and analyze any
number of past tags of a project and perform differential analysis on them enables
the collection of historical data about the evolution of the project’s coding conven-
tions. We can also track the number of findings over time for a certain project.

We also found that these scripts are great to build CI loops. Running the
analysis on a set of projects for each commit is a great way to find regressions.
We introduced a flag to break the CI loop each time the analysis of a project fails
for some reason. The reported HTML will contain useful information about the
analysis failures as well as assertion messages.

Finally, one of the most interesting applications of our scripts is automatic
parameter tuning. Some static analysis engines have a great number of adjustable
parameters. Our tools are not only suitable for running the analysis, but also
for setting its parameters and measuring time, coverage, engine statistics, and the
number of reported bugs. Using this information, a machine learning algorithm can
attempt to optimize the parameters in order to improve the quality of the analysis.

792 Gabor Horvath, Réka Kovécs, and Péter Szécsi

Generate project list Run experiment,
Start Develop a change from scripts examine report

Does result support
hypothesis?

Submit (updated)
patch for review
along with the reports

Experiment
changes
requested

Is submission accepted?

Source
changes
requested

Figure 6: A flowchart describing the recommended workflow when using the CSA
Testbench to do differential testing of an analyzer change.

2.6 Future work

Unfortunately, using textual queries to get a set of interesting projects is not suffi-
cient. There are certain language constructs that are hard to query this way, such
as implicit casts or structured bindings. Likewise, using code search services is also
an imperfect solution, a semantic indexer would probably be more suitable.

We intend to introduce more (optional) measurements into the scripts such as
memory profiling during analysis. We also plan to perform a more detailed analysis
of how the proposed process can improve the quality of the static analysis engine.

These set of tools are the result of optimizing the productivity of our team
while working on some static analysis tools. While each added feature helped to
improve our work-flow, it is hard to quantify the improvements. We plan to conduct
some surveys in the future to verify the usefulness of our framework among a wider
community of researchers and developers.

3 Related Work

The difficulty of performing static analysis varies among programming languages,
due to differences in the number and maturity of tools written for them. Two
languages on the worse end of the spectrum are C and C++, as no widely used
build system or package repository exists in their fragmented ecosystem. Having
tools to deal with software repositories directly can be a step towards overcoming
this problem and helping researchers perform more rigorous evaluations for their
tools targeting these languages. Since C++ is a language of enormous size, most

Report on the Differential Testing of Static Analyzers 793

projects use a relatively small subset of it. For this reason, finding a good set of
test projects is even more critical.

This problem is less likely to surface during the analysis of other languages.
Some of them, like Java, armed with Maven repositories, are in a convenient posi-
tion for experimentation. Software packages can be easily downloaded, built and
analyzed. Fortunately, the C++ community realized the value of having package
managers, and now two of them named Conan [4] and vepkg [6] started to gain
popularity, but have not reached wide adoption yet.

In the following paragraphs, we describe tools that play a similar role for other
programming languages than our framework for C++.

VISUFLOW [9] is a tool to help debug static analysis software. While it is great
for debugging problems on small reproducers, it is not suitable to debug problems
that only manifest on large projects, such as cut heuristics and exploration strategy
related issues in symbolic execution. The same author conducted a survey with
115 analysis writers [8]. They concluded that the state-of-the-art tools were not
sufficient to fulfil the needs of static analysis software authors. The participants of
the survey identified graph visuals, access to the intermediate representation and
intermediate result count as very important features, and our framework excels at
visualizing intermediate counters (statistics) over a large corpus of test projects.

Using static analysis together with mining is not a new idea. Macedo et. al. [12]
used the mining of malware and static analysis together to extract behavioral pat-
terns aiming to identify malware. The difference from our work is that we are
mining repositories in order to improve the quality of a static analysis tool.

Covrig [13] is a tool to run dynamic and static analysis on several projects
and aggregate the results. It is supporting a different use-case than our tool. Its
emphasis is on collecting metrics about the analyzed projects and not on collecting
metrics about the analyzers.

Ray et. al. [14] used entropy as a measure for comparing static analysis findings
in order to correct code. They found that search-based bug-fixing methods may
benefit from using entropy both for fault-localization and for the searching for
fixes. Our presented toolset might help conduct similar studies in the future for C
family languages, as it supports comparing a patched and unpatched (or differently
configured) version of the static analysis engine.

4 Conclusions

We find the traditional practice of static analysis tool testing cumbersome and in-
sufficient. One of the greatest problems is that a fixed set of test projects might not
stress the newly introduced code paths of the analysis engine. The other concern
is reproducibility, which is not only essential for reviewers, but for any subsequent
re-evaluation of the changes. As the analyzer evolves, some of its distinct parts in-
teract with each other. Consequently, some of the changes that seemed sensible in
the past might become irrational in the future. Having a record of experiments from
the past facilitates the re-evaluation of those decisions in the light of new circum-

794 Gabor Horvath, Réka Kovacs, and Péter Szécsi

stances. Finally, the current practice of presenting the measurement results does
not aid the interpretation of the raw data. Using an easier-to-digest representation
of measurements would reduce the effort needed to evaluate the changes.

In order to mitigate these issues, we suggested a particular analysis workflow and
developed a toolchain supporting the Clang Static Analyzer and Clang-Tidy. These
tools not only help collect relevant candidate projects for testing, but also perform
differential analysis on the test projects, and generate easy-to-interpret figures for
reviewers. We also added a new line-based coverage measurement mechanism to
the Clang Static Analyzer that improved the precision of differential testing.

References

[1] Clang Static Analyzer, a source code analysis tool for C, C++, and
Objective-C programs. URL: https://clang-analyzer.llvm.org/ (Re-
trieved: 23/03/2019).

[2] Clang-Tidy, a static analysis and code refactoring tool. URL: http://clang.
1lvm.org/extra/clang-tidy/ (Retrieved: 23/03/2019).

[3] CodeChecker, a defect database and viewer extension for Clang-Tidy and the
Clang Static Analyzer. URL: https://github.com/Ericsson/codechecker
(Retrieved: 23/03/2019).

[4] Conan, an open-source C/C++ package manager. URL: https://conan.io/
(Retrieved: 23/03/2019).

[5] SearchCode, a free source code search engine. URL: https://searchcode.
com/ (Retrieved: 23/03/2019).

[6] Vepkg, a C/C++ library manager for Windows, Linux, and MacOS. URL:
https://docs.microsoft.com/en-us/cpp/vcpkg (Retrieved: 23/03/2019).

[7] Bhushan, Ram Chandra and Yadav, Dharmendra Kumar. Number of test
cases required in achieving statement, branch and path coverage using ’gcov’:
An analysis. In 2017 the 7th International Workshop on Computer Science
and Engineering, pages 176-180, 2017. DOI: 10.18178/wcse.2017.06.031.

[8] Do, Lisa Nguyen Quang, Kriiger, Stefan, Hill, Patrick, Ali, Karim, and Bod-
den, Eric. Debugging static analysis. CoRR, abs/1801.04894, 2018.

[9] Do, Lisa Nguyen Quang, Kriiger, Stefan, Hill, Patrick, Ali, Karim, and Bod-
den, Eric. Visuflow: a debugging environment for static analyses. In Proceed-
ings of the 40th International Conference on Software Engineering: Compan-
ion Proceeedings, pages 89-92. ACM, 2018. DOI: 10.1145/3183440.3183470.

[10] Hampapuram, Hari, Yang, Yue, and Das, Manuvir. Symbolic path simulation
in path-sensitive dataflow analysis. SIGSOFT Softw. Eng. Notes, 31(1):52-58,
September 2005. DOI: 10.1145/1108768.1108808.

Report on the Differential Testing of Static Analyzers 795

[11]

[12]

[15

[16]

Lattner, Chris. LLVM and Clang: Next generation compiler technology. Lec-
ture at BSD Conference 2008, 2008.

Macedo, Hugo Daniel and Touili, Tayssir. Mining malware specifications
through static reachability analysis. In Crampton, Jason, Jajodia, Sushil, and
Mayes, Keith, editors, Computer Security — ESORICS 2013, pages 517535,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. DOI: 10.1007/978-3-
642-40203-6_29.

Marinescu, Paul, Hosek, Petr, and Cadar, Cristian. Covrig: A framework
for the analysis of code, test, and coverage evolution in real software. In
Proceedings of the 2014 International Symposium on Software Testing and
Analysis, ISSTA 2014, pages 93—-104, New York, NY, USA, 2014. ACM. DOLI:
10.1145/2610384.2610419

Ray, Baishakhi, Hellendoorn, Vincent, Godhane, Saheel, Tu, Zhaopeng, Bac-
chelli, Alberto, and Devanbu, Premkumar. On the “naturalness” of buggy
code. In Proceedings of the 38th International Conference on Software Engi-
neering, ICSE 16, pages 428-439, New York, NY, USA, 2016. ACM. DOI:
10.1145/2884781.2884848.

Regehr, John, Chen, Yang, Cuoq, Pascal, Eide, Eric, Ellison, Chucky, and
Yang, Xuejun. Test-case reduction for ¢ compiler bugs. In ACM SIGPLAN
Notices, Volume 47, pages 335-346. ACM, 2012. DOI: 10.1145/2345156.
2254104.

Rigby, Peter C and Storey, Margaret-Anne. Understanding broadcast based
peer review on open source software projects. In 2011 33rd International Con-
ference on Software Engineering (ICSE), pages 541-550. IEEE, 2011. DOL:
10.1145/1985793.1985867.

Acta Cybernetica 25 (2022) 797-815.

Type Inference of Simple Recursive
Functions in Scala

Gergely Nagy®, Gabor Olah®, and Zoltan Porkolab®

Abstract

Scala is a well-established multi-paradigm programming language known
for its terseness that includes advanced type inference features. Unfortunately
this type inferring algorithm does not support typing of recursive functions.
This is both against the original design philosophies of Scala and puts an
unnecessary burden on the programmer. In this paper we propose a method
to compute the return types for simple recursive functions in Scala. We
make a heuristic assumption on the return type based on the non-recursive
execution branches and provide a proof of the correctness of this method. We
implemented our method as an extension prototype in the Scala compiler and
used it to successfully test our method on various examples. The algorithm
does not have a significant effect on the compilation speed. The compiler
extension prototype is available for further tests.

Keywords: Scala, type inference, recursion

1 Introduction

Scala is a well-established programming language providing both object-oriented
and functional programming language elements. As a consequence, the language
syntax needs to reflect both paradigms that results in a high level of expressive-
ness. Most of the new language properties are targeting the extensibility, safety
and flexibility of the language. Examples for such features include advanced pat-
tern matching, lambda expressions, by-name parameter passing and case classes.
Improving the readability of the source code was a primary goal of language design;
including the ability to avoid unnecessary boilerplate, repetitive code elements.
Terseness is important not only to make software code cleaner, but also to ac-
centuate key parts of the solution expressed by the existing elements. Furthermore,

®Faculty of Informatics, E6tvos Lorand University, Budapest, Hungary
YE-mail: njeasus@caesar.elte.hu, ORCID: 0000-0002-0736-8903
¢E-mail: olikas@caesar.elte.hu, ORCID: 0000-0001-5804-6448
4B-mail: gsd@caesar.elte.hu, ORCID: 0000-0001-6819-0224

DOI: 10.14232/actacyb.282762

798 Gergely Nagy, Gabor Oléh, and Zoltan Porkolab

the more automatically computed information the compiler can provide, the less
possibly erroneous code snippets the developer writes.

The Scala programming language is well-known for its terseness that includes
advanced type inference features. These range from automatic deduction of variable
types based on their initializations, to infer type parameters of generic functions
based on call-side information.

Function return types are inferred for most trivial cases as well: the type of the
lastly evaluated expression provides the return type of the function. In cases when
multiple return statements are present the least upper bound (LU B) type of these
will be used.

Since the subtyping relation (<:) is reflexive (4 <: A), transitive (A <: BAB <:
C = A <: () and antisymmetric (A <: BA B <: A= A = B), it defines a partial
ordering on the set of the types and thus this set has the least upper bound property.
Scala supports all three kinds of variance, so it is up to the programmer to define
how the type arguments affect the subtyping in case of generics.

However, if any of the lastly evaluated expressions in a function include a refer-
ence to the containing function, this algorithm cannot provide a meaningful result.
This causes recursive functions without explicitly provided return types (such as
on Figure 1) to fail the compilation process.

1 def factorial(n: Int) = n match {
2 case 0 => 1

3 case _ => n x fact(n—1)
4}

Figure 1: A recursive function with no defined return type.

For any developer it is obvious that the factorial function will return an Int.
Such similar simple recursive functions (see formal definition on Def. 3.1) occur
frequently in most functional codebases. Not inferring their return type is both
against the original design philosophies of Scala and puts an unnecessary burden
on the programmer even in these simple cases.

Consider the example on Figure 2 that does not compile under current Scala type
inference rules. In such situations the programmer may choose an unnecessarily
wide type, such as the top type Any, corrupting the highly praised type system of
Scala.

In this paper we propose a method to compute the return types for simple recur-
sive functions. Similarly to the intentions of the developer, our heuristic assumption
on the return type is based on the non-recursive execution branches. Assuming that
the recursive functions will always end up in a non-recursive execution branch, we
argue that the LUB of these branches provides a sufficient return type for the
function. If this assumption is not met, our method reports the same error as the
current Scala compiler.

To create a prototype implementation we have extended the typer not to im-

Type Inference of Simple Recursive Functions in Scala 799

abstract class Base

class Derivedl extends Base
class Derived2 extends Base
class Derived3 extends Base

def lousyType(d: Base, m: Double) = d match {
case : Derivedl if m > 3 => new Derived3
case x: Derived2 if m < 2 => lousyType(x, m)

© 00 O Ui W

Figure 2: A recursive function with return types of a hierarchy.

mediately fail on recursive functions but use the proposed method to calculate the
missing type. The extension does not have a significant effect on the compilation
speed. We implemented our method as an extension prototype for the Scala com-
piler version 2.12.4 and used it to successfully test our method on various examples.
The compiler extension prototype is publicly available for further tests.

This paper is structured as follows. In Section 2 we further evaluate the prob-
lem space with more examples and real-world issues. We provide the theoretical
foundations of our mechanism in Section 3. We overview our results in Section 4
while also describing implementation details. Related works in Section 5 discusses
similar problems in C+-+. Our paper concludes in Section 6.

2 Motivation

One of the main focuses of software development methodologies and practices nowa-
days is trying to lift off work and complexity of programmers as much as possible.
This is achieved by various methods ranging from tooling and programming meth-
ods to language design. This trend is sensible with the spread of multiparadigm
and especially functional languages which are usually tightly bound by their type
systems. These type systems are mathematically proven to be correct and well-
known algorithms were developed that can be used to prove if programs meet these
bounds. The algorithms in question are built into compilers, so any programmer
can easily check the correctness of their program. Being peer-reviewed and fully
proven, one can trust that if the compiler finishes work on a piece of code it meets
certain criteria. This should lead to fewer bugs and runtime errors in production
software.

Scala is one of the more recent multiparadigm languages, that tries to solve a
lot of complex problems before a developer meets them. The presence of this idea
can be found in many of Scala’s design goals, for example having as clean of a
syntax and being as terse as possible [13]. This is achieved by introducing a fairly
complex type inference system in the compiler, so programmers do not have to take
time and effort to annotate their programs with types that can be deducted by an

800 Gergely Nagy, Gabor Olah, and Zoltan Porkoldb

algorithm.

The type inference algorithm of Scala is far from complete though. It does not
support any recursion, let it either be a simple recursive function, a recursive chain
or a recursive type declaration. This can be surprising and frustrating to anyone
writing Scala code, furthermore it can lead to non-trivial issues in one’s code and
later, a software product.

In the following we show a few examples where the lack of type inference on
recursive functions may lead to possible runtime application errors.

1 defmap|C, A <: C, B <: C|(y: Seq[A], f: A => C) /x: Seq[Cx/ = {
2 y match {

3 case Nil => Seq|BJ()

4 case x :: X8 => map(xs,) :+ f(x)

5 }

6}

Figure 3: A recursive map implementation with explicit type annotation.

In our first example we start off with a higher-order function, map with our own
interpretation. In the version that can be seen on Fig. 3, we leverage generic types
as well as functions as first-class entities in Scala. We would always like to get the
minimum type of the collection from this function, hence we are providing informa-
tion on the relationships of the types. Unfortunately the Scala compiler is not much
of a help here: it will throw an error when we try to call map with the remainder
list. This becomes even more annoying when we provide an incorrect return type:
the compiler will be able to recognize the error at the place of concatenating the
computed element to the list. One can spend minutes on trying to find the type
that makes the type system satisfied by recompiling several times, but it would
be much more convenient if the compiler were able to find it for us at the very
beginning.

class Levell

case object ClasslLevell extends Levell
case object Class2Levell extends Levell
class Level2 extends Levell

case object ClasslLevel2 extends Level2
case object Class2Level2 extends Level2

SO W N

Figure 4: A multi-level class hierarchy.

Let us consider another recursive method that computes its result that has one of
the types of a multi-level class hierarchy, as seen on Fig. 4. An example method
using these types can be found on Fig. 5. The Scala compiler will fail to infer
the correct return type Levell, and will require the developer to define it for the

Type Inference of Simple Recursive Functions in Scala 801

1 def deepRec(n: Int): Levell = {
2 if(n==0) {
3 Class1Level2
4
5 elseif(h==1||n==2||n==3){
6 n match {
7 case 3 => Class2Level2
8 case => {
9 if(n!=1){
10 deepRec(n — 1)
11 } else {
12 Class2Levell
13 }
14 }
15 }
16 } else if (n == 4) {
17 Class1Level2
18 } else {
19 Class1Levell
20 }
o1}

Figure 5: A recursive function using type hierarchy on Fig. 4. with explicit type
annotations.

function explicitly. Determining Levell as the return type is trivial in this case as
we have listed all the types involved near the function definition in one place, but
recognizing it when for example, class definitions are scattered in a fairly large and
complicated framework can be challenging and time consuming even for seasoned
developers.

Unfortunately, there is a pretty easy shortcut to make compile errors disappear
in this case: define the return type as Any (the base type of all classes in Scala),
making the type system and the compiler temporarily happy. As we all know,
marking objects by the widest type is simply neglecting the type system, thus we
are not using one of the main services offered by Scala.

3 Theoretical foundations

In this section we present the details of the theoretical background for our solution.
We focus only on typing recursive functions, thus we do not detail typing e.g.
objects.

Scala is a statically typed language, thus type checks happen at compile time.
Type declarations can be omitted in the source in many places, and the compiler

802 Gergely Nagy, Gabor Olah, and Zoltan Porkoldb

runs static type analysis to infer the types of variables, functions and other language
elements. Scala compilation is designed as multi-staged process. In the first step
an AST of the program is constructed. Our main focus in this paper, typing, is ex-
ecuted as the third phase. Upon successful type inference, the abstract syntax tree
is enriched with type information in this stage. Scala’s type system contains such
features that are not compatible with the Hindley-Milner type inference algorithm
so it relies on one-directional, context-unaware local type inference.

3.1 Related works on type systems

Most statically typed languages such as C++ or Java require explicit type declara-
tions (for later advances in C++, see Section 5). Other statically typed languages
like Haskell or ML use static type inference to calculate types for functions. Some
unification-based type inference [11] can be used to calculate types for functions
in these languages. Another unification-based type inference is Hindley-Milner
method [5], supposing that the return type of a function has a well defined type.
Scala on the other hand is less restrictive on return types, branching expressions
like the match construct allow that the return values on different branches have
different types [4]. (E.g. a function can return either an integer or a string. In this
case the return type of the function will be the LUB — type of integer and string
which is the top type, Any.)

Dynamically typed languages like Erlang [2] also allow to return values of differ-
ent types. These kinds of polymorphic return types are extensively used in Erlang.
Since types are not first-class citizens, external tools were developed to check for
discrepancies in software [6], incorporating a type system called success typing [7].
The major difference between success typing and other type inference algorithms is
that the aim of success typing is not to prove the type correctness of the program,
but rather to discover cases where there would most certainly be a type error at
runtime. It uses least upper bound types to enable the constraint solving algorithm
to reach a fixed point.

Success typing uses union types to express coupling between types that are
not in subtype relation. It is very useful for languages like Erlang where types
are not an integral part of the language. It has a major drawback though when
both the input parameter and the return type of a function are union types. The
connection between the input and output is not expressed by the inferred type, and
that decreases the number of discoverable errors. A possible improvement can be
the use of conditional types similarly to the work of Aiken et al.[1]. This soft-type
system (also using union types) includes conditional types where the constraints
between type variables are built into the type. This type is more accurate in the
above sense of finding discrepancies, but the size and complexity of inferred types
makes it comprehensible for humans. If the human-readable criterion is ignored
then the precision of inferred types can be increased without the need to calculate
a fixed point [10]. These types are also very complex but can be used for specific
tasks, e.g. automatic test data generation.

Success typing inspired us to type recursive functions. Since Scala is statically

Type Inference of Simple Recursive Functions in Scala 803

e = z|cler,....en)|erea]| f]
let x =e; in eg |
letrec x = f in €|
case ¢ of

(p1 if g1 = b1);

ey

(pn if gy = by)

end
f o= Az)=e
= xlclp,..-,pn)
g == ¢ and g2 | g1 Or g2 | X1 = a2 | true|ex

Figure 6: The)\, language.

typed and types are inserted into the AST, using union types is not suitable for our
needs. Unions would introduce new types to our program, that we do not intend to
do since it would be hidden to the programmer and might cause unforeseen errors.
Instead, we use the type hierarchy already present in the language. Scala already
has a solid type system for nested classes, abstract types, path dependent types,
etc [4, 9]. Since type inferring is solidly working in Scala, we do not want to replace
or improve these theories.

3.2 The)\; Language

We propose a small language and the corresponding calculus to demonstrate the
theoretical soundness of our approach to type simple recursive functions. Let us
call the language A\g and be defined in Fig. 6. We would like to emphasize that this
small language is not intended to be either generic-purpose or a full representation
of Scala, rather to be the minimal language that can help us describe our proposed
method formally.

The language contains variables (x) that are immutable. Data constructors (c)
can be used to construct any kind of data, including constants, objects, etc. Ag
contains only single-argument function application. We assume that all Scala func-
tions with at least one parameter can be curried, that is, they can be transformed to
a function with multiple parameter lists containing only one parameter. It contains
the standard polymorphic let expression. The recursive let expression has only one
function component (z = f) since in this paper we deal with only self-recursive
function. We define a branching expression (case). In the head of the case expres-
sion, e is matched against the patterns (p) sequentially. The first matched pattern
will invoke the evaluation of the body (b) for the pattern. If no patterns match,

804 Gergely Nagy, Gabor Olah, and Zoltan Porkoldb

then an exception is raised. Each branch has a pattern and a guard. A pattern
can be a variable or a construct of patterns. Guards, that are always present in the
syntax, can be type check or other value checks. Using true as a guard, we can
express the the case when we actually do not need any guards.

Our main focus will be on combining recursive let and case expressions. Re-
cursive functions can be typed if they have a branch that is not recursive. Having
this branch fulfills the termination criteria. If a function does not contain any
terminating branches, then the function is divergent, and it cannot be typed.

E := letrec z=A(a)=
case a of
(p1 if g1 = b1);
(pn if gn = bn)
end in e

Figure 7: The syntax of simple recursive functions

Definition 3.1 (Simple recursive function). The expression E in Fig. 7 is con-
sidered a simple recursive function, iff there exists ¢ € [1..n] that b; symbolically
contains = and there exists j € [1..n] that b; does not contain x.

Simple recursive functions do exist and provide an abstract pattern over re-
cursive functions that are not in recursive call chain.

3.3 Derivation rules

We provide type derivation rules for the syntactic constructs of Ag. We assume that
the type of objects, member functions and other language constructs not covered
in this paper can be computed.

We present type derivation rules (Fig. 8) in the following form of statements:
I'tke: 7, read as “supposing I' the type of the expression e is 7. T is the context
of mappings from variables to types. The U operator is used to denote that a
particular mapping is present in the context.

The derivation rules describe a standard way to type our language. A variable
can be typed (RULE (VAR)), if its type is present in the variable context. The type
of a data constructor (RULE (CONS)) is composed of the types of the components.
A type is considered a subtype of another type (RULE(SUB) if an expression of the
subtype can also be typed to the wider type. A function application can be typed if
the argument expression (e3) is a subtype of the parameter type (71) of arrow type.
In our case the arrow type is calculated via the existing type inferring algorithm of
Scala. The type of a function (RULE (FUN)) and the let (RULE (LET)) expression

Type Inference of Simple Recursive Functions in Scala 805

_ VAR
Tux:tkx:7 ()
Fkei:m (Vi € [1..n]) (Cons)
L'kcler,...,en) (1, ..y Tn)
I'Fe:Tm 7<:7
SUB
I'ke:7’ ()
I'kFei:mm—1m TlFe:7 7 <im
APPL
I'Feles:m ()
Tux:mFe:m
Fun
FEXz)=e:m =1 ()
T <iT| To <:T)
- : 7 (S-Fun)
T = T2 <ITp — Ty
ke :mm TUz:11Fey:m (LET)
I'Hlet x=¢€; in ex: 7y
I'ke:m,
FTu{z:)z e Var(p:)} -
bi : Toyy Di * Tpiy 9 T2 (Vi € [1..n)])
Te < LIy T,
= CASE
' case :| |7, ()
I'kFe:r,
Tu{z: 1|z € Var(p;)} +
bi t To, s Di & Tpyy Gi 2 00 (Vi € [1..n])
o < L
Te <t Lizy 7, (LETREC)

T+ case : L]?Zl FIXm,

Figure 8: Derivation rules for Ag.

806 Gergely Nagy, Gabor Olah, and Zoltan Porkoldb

follow standard definitions. With the derivation rule of subtyping of functions
(RULE (S-FuN)) we would like to express that it is safe to allow a function of one
type 71 — T2 to be used in a context where another type 71 — 74 is expected as
long as none of the arguments that may be passed to the function in this context
will surprise it (73 <: 71) and none of the results that it returns will surprise the
context (12 <: 73).

To type a case expression, first we type the head expression (e, which has the
form defined in the case branch on Figure 6). For each branch we extend the
context with types for free variables of patterns (Var) and calculate types for the
patterns and the body of the function. The guards must evaluate to the boolean
type. We denote the least upper bound type by the operator 71 U 75. The head of
the expression has to be the subtype of the LU B of the types of the patterns (7,,).
The return type is the LU B of the types of the bodies of the branches.

Letrec(RULE (LETREC-C)) is similar to case, but it uses the fixed point of the
return types of the branches (FIX f = f(FIXf)).

The recursive let expression can be typed in our scope only if it consists of a
simple recursion function. We provide the constructive algorithm in the following
theorem:

Theorem 3.2 (Constructive derivation rule of letrec). Suppose the notation of
Fig. 7. Let us denote J := {i|b; does not contain x}. Then the following construc-
tive derivation rule holds:

I'te:r.
Fu{y:myly € Var(p:)} +
bi Ty, Di t Tpis Gi : rbool (Wi €)
n n
TU{y:ryly € Var(py)} U{z: I_I Tpi — |_| T, +

=1 i=1
bk © Toy, Pk © Tpys Gk rbool (k€ [1.n]\ J)

n
Te <t |_| Tpi
i=1

F}—E:[lTbi

i=1

(LETREC-C)

where E is the letrec expression defined on Figure 7.

Proof. Let us first divide the case expression into two parts: the ones that do not
contain recursive calls and the others that do. For the non-recursive branches we
use the regular case typing derivation rule, hence I' U{y : 7|y € Vaar(p;)} F

bi To,sDi ¢ Tpir 0i : T0° (Vi € J) holds. This expression has the type of |_| Th,

vieJ
as per the case derivation rule. Let us later refer to this as the non-recursive type.
For the recursive branches, we have two cases:

1. Tail-recursion, as in by = xb). The expression in this case holds the type
of the previously mentioned non-recursive type. We extend the type context

Type Inference of Simple Recursive Functions in Scala 807

n

with = : 7, — 7, where 7,, <: |_| Tp, and 1y, = |_| Tb;, 1.6. not changing
i=1 vieJ

the non-recursive type.

2. Non-tail recursion. We type the body by applying the intermediate type that
has been calculated so far to the recursive expression, then calculate z : 7,, —
T, - This will be then added to the type context thus the intermediate type

of the expression will be extended by 73, to |_| To, U Tp,, -
ieJ
With the above considerations we can type all branches of letrec, turning it into
a regular case expression that has the type of | |I"_, 7,, resulting in the following
type: letrec :|]’ ;.
O

4 Results

In this section we will discuss how the previously described algorithm works in
practice. First we apply the algorithm to the two examples shown in section 2 then
we will show how this is implemented as an extension in the Scala compiler.

4.1 Typing simple recursive functions

Our first example is an unusual version of the map function on Fig. 9. Its purpose
is to return the mapped results in a list of the smallest type possible. As one can
see in the listing, the main body of the function is a match with two possible case
branches. This instruction flow is very similar to the extended Ag language. Each
branch has a return type, namely the first one returns a Seq[B] and the second one a
Seq[C]. The type of the second case is defined by the result of the concatenation(: +)
method. This part can be rewritten in a form of map(xs, £).:+(f(x)). If we
consider this function call, the appended element is of type C, as we have declared
f to be a function of A => C. Since A is a subtype of C, the result of the map function
is a subtype of C, making the result of the append call be a type of Seq[C]. This
leads us to two calculated types for the branches: Seq[B] and Seq[C]. The typing
mechanism we propose would now calculate the least upper bound for these types
that would be Seq[C], and typing our special map function with Seq[C].

The next example is more involved. First we start off with declaring a multi-
level type hierarchy as seen on Fig. 4. This hierarchy declares 3 levels with leaf
nodes being case classes. The recursive function using these classes is defined on
Fig. 10. The control flow graph created by the predicates in the function has several
branches, unlike the straight tree of the match and cases in the first example.
This will cause no problems to our typing algorithm, as it can be applied to all
leaf branches, and then going upwards in the tree using the previously calculated
types. This calculation starts with the if-else on line 9. The first branch contains
a recursive call, so we cannot type this branch. We need to start with the else

808 Gergely Nagy, Gabor Olah, and Zoltan Porkoldb

1 defmap|[C, A <: C, B <: C|(y: Seq[A], f: A => C) = {
2 y match {

3 case Nil => Seq|B|()

4 case x :: xs => map(xs, f) :+ {(x)

5 }

6}

Figure 9: A recursive map implementation with type inference.

branch first, making the calculated type Class2Levell. The case branch on line
8 then would be typed the same. We have a trivially typed case on line 7, with
Class2Level2. The least upper bound for these types is Level2, so the else branch
will be typed Level2. We have arrived at the top-most level of predicates, that has
types of ClassiLevel2, Level2, ClassilLevel2 and ClassliLevell, in respective
order. The least upper bound defined by the hierarchy is therefore Levell. This
will be the final type of the deepRec function.

1 def deepRec(n: Int) = {
2 if(mn==0){
3 Class1Level2
4 telseif(mn==1|n==2|n==23){
5 n match {
6 case 3 => Class2Level2
7 case => {
8 if(n!=1){
9 deepRec(n — 1)
10 } else {
11 Class2Levell
12 }
13 }
14 }
15 }else if (n == 4) {
16 Class1Level2
17 } else {
18 ClasslLevell
19 }
20 }

Figure 10: A recursive function using type hierarchy on Fig. 4. with type inference.

The A\ language was only defined for single-parameter functions. The reason
we can still use it to calculate types for these functions is that by currying multi-
parameter functions, we can always transform them to a chain of function appli-

Type Inference of Simple Recursive Functions in Scala 809

cations having only one parameter. Since Scala supports currying by default —
by denoting a function call with the _ (underscore symbol) —, we assume that all
functions in question can be transformed to this kind.

4.2 Typing recursive functions with multiple branches

In the previous examples we discussed functions with a single recursive branch. In
the following we show that similar solution exists for simple functions with multiple
recursive branches.

1 class A{

2 def toC: C = ...

3 def toD: D = ...

4}

5

6 class B extends A

7 class C extends A

8 class D extends A

9
10 def multi(n: Int) = n match {
11 case) => new B
12 case n > 0 => foo(n — 1).toC
13 case n < 0 => foo(n + 1).toD
14 }

Figure 11: A function with multiple recursive branches.

In the example shown on Fig. 11 there are two recursive branches resulting in two
different but related types. Our algorithm finds the non-recursive branch on line
11 and calculates type B. Typing the second branch will use this information as
the return type of the foo call. Using B as a placeholder type, the default type
inference algorithm of Scala will calculate type C as the return type of the branch
on line 12. Similarly, type D will be calculated for the branch on line 13. Finally,
the LUB of types B, C and D will be determined as A. Therefore, the return type of
function multi will be A. This result complies with the expected result type of our
algorithm and meets the intention of the developer.

4.3 Extending the Scala compiler to handle simple recursive
functions

The fundamental design and structure of the Scala compiler makes it an excellent
candidate to be extended. The features of the compiler that makes this possible are
high separation of compiler phases, the support for macros and fully independent
compiler plugins and the compiler being an open source project[14]. The phases of

810 Gergely Nagy, Gabor Olah, and Zoltan Porkoldb

the compiler start by parsing the source files and generating an AST; later phases
transform this AST. The current version of compiler is written in Scala, using Scala
objects to describe the nodes of the AST. The compiler also acts as a library to
analyze and compile Scala source code, providing a programmatic API that can be
accessed from applications.

As the first step, we had to find a way to circumvent the type error generated
for recursive functions. In the default version of the compiler, when the typer
starts calculating the type of a (recursive) function and it meets an entity that has
been defined previously, but the type of it is yet to be determined, it will throw
a CyclicReference exception that is collected and handled by the generic error
handling infrastructure of the compiler. This does not stop the typing phase from
continuing with typing other entities. We leverage this property, as it collects all
the erroneous recursive calls, but types all other to-us trivial cases.

Our main approach of extending the compiler has focused on creating a sep-
arate codebase, as modifying the main branch directly was found to be too time
consuming and difficult. Fortunately, we were helped in this effort by the various
API calls provided by the package scala.tools.nsc._ (nsc stands for New Scala
Compiler).

The extended scala.tools.nsc.typechecker.Analyzer contains methods
overridden that handle control flow ASTs —namely ifs and cases— and method
definitions, so we can annotate these methods with our calculated type. We of
course use the original typer to first type these entities and only interrupt cases
that are of interest to us. Finding the least upper bound of types is another key
point in our algorithm, but we were very fortunate in this regard: we use the
function lub on scala.tools.nsc.TypeChecker.Typer.

The last remaining piece to have a working compiler was inserting the newly
created typer into the chain of compile phases and invoking it from the first step,
the parser. We have achieved this with our own entry point to an application that
simply passes a path to the compiler and invokes it. We only use regular console
reporting by scala.tools.nsc.reporters.ConsoleReporter and global settings
by scala.tools.nsc.{Global, Settings}.

We have measured how our extension affects compile speeds by calculating the
total time spent in the main method of our application. The results are shown
in Table 1. For simplicity, we have listed measured microseconds with the default
version of the compiler —i.e. invoking it without setting the extended typer— and
with the extension in place. As it can be seen in change percentage, the extension
has no significant impact on performance. Examplel and Example2 refer to the
examples seen in the previous subsection, while Multiple methods contains several
other test cases.

The prototype can be downloaded and can be used for further tests from [15].

4.4 Restrictions

Scala supports defining recursive types using explicit type annotations. Soundly
calculating all recursive types would require extending our inference method with a

Type Inference of Simple Recursive Functions in Scala 811

Table 1: Compile times (us) with and without using our extension

Code snippets \ Default \ Extended \ % change
Examplel 2440166 | 2479896 101.62
Example2 3390745 | 3422435 100.93
Multiple methods | 5691124 | 5712335 100.37

fixed point calculation. Henceforth, our proposed method in its current form does
not support recursive types.

We implemented and tested our compiler extension only on Scala compiler ver-
sion 2.12.4. It is not guaranteed to work with any other version than 2.12.4.

4.5 Future work

When we created the Scala compiler extension to infer types of simple recursive
functions, our main intentions were focused on prototyping the theoretical back-
ground we have described in this paper, not developing an industry-standard, com-
plete implementation. This leaves great space for future improvements. Firstly,
we can provide a better integration to the compiler by disabling CyclicReference
exceptions for our cases, then properly type AST nodes "in-place". Then we can
merge our changes back to the main line of the compiler.

Besides creating a more robust implementation, we also plan to work on ex-
tending the theory by finding methods to analyze recursive chains then proving the
soundness of these methods. This would require extending our A-language and also
the way it handles types. As another step, we are looking into providing a clean,
correct and complete theoretical background and implementation for inferring types
of recursive type definitions.

5 Related works: type inference in C+-+

The C++ programming language is one of the current mainstream general purpose
languages [12]. Its popularity is originated to its suitability in almost all applica-
tion areas from high performance computing and telecommunication to embedded
systems. C++ provides language tools for the programmer to implement com-
plex systems from gradually specified and implemented building blocks without
compromising run-time efficiency. C++- is often described as a multiparadigm pro-
gramming language [3], as it has imperative, object-oriented, generic and functional
programming features.

C++ is a strongly typed programming language in the sense, that the type of
every (sub)expression is determined in compilation time. However, templates use
duck-typing,i.e. no constrained generics exist in current C++. There are plans to
improve the template mechanism with constraints.

812 Gergely Nagy, Gabor Oléh, and Zoltan Porkolab

Earlier C++ codebase was known about notoriously long type notations. To
unburden programmers’ task and make source more readable, the C++11 standard
introduced the auto keyword as a placeholder for types [16]. Its primary usage is
to avoid needlessly verbose type declarations, like those are used with connection
in STL algorithms:

1 // C++03
2 typename std::vector<T>::iterator i = v.begin();

This can be replaced by usage of keyword auto. The type of the i variable will be
inferred from the initialization expression: v.begin()

1 //C++11
2 auto i = v.begin()

The keyword auto to replace the return type for functions but only with a new
trailing type syntax introduced in C++11:

1 template <typename T, typename S>

2 auto max(T a, S b) —> decltype(a+b) // C++11
3 {

4 if(a>Db)

5 return a;

6 else

7 return b;

8

}

Notice, that this usage of auto syntax does not imply type inference, the return
type is explicitly expressed in the trailing syntax. The role of auto here is only
a placeholder: since the language elements used in the trailing syntax (a and b
parameters in the decltype expression are not in scope before the function name).

In the C++14 standard, however, there is automatic type inference available
for function return types in the most simple cases [8].

1 auto {(); // return type is unknown
auto () // return type is int

{
}

auto f(); // redeclaration
int {(); // error, declares a different function

return 42;

N O Uk W N

A function with auto return type can have multiply return statements. However,
there is a strict restriction here, that each return statement should return the same
single type, otherwise the compiler reports error. That is different to Scala, where
in case of multiple return statements the return type is inferred as the least upper
bound of the return types.

Recursion is allowed by the proposed C++14 inference rules in a very restricted
way. The recursive return branch should be preceded by at least one non-recursive

Type Inference of Simple Recursive Functions in Scala 813

return, from which the return type of the function is inferred. Subsequent return
statements are checked against this type. Therefore the following code will be
accepted by the proposal:

1 auto fib(int n)

2
3 if (0 ==n) return 1;
4 else return nxfib(n—1);

5}
While the variation, where we have changed the recursive and non-recursive branches
will be rejected:

1 auto fib(int n)

2
3 if (n > 0) return nxfib(n—1);
4 else return 1;

5}
The authors have the opinion that these rules are unnecessary restrictive and can
be relaxed without compromising compile-time efficiency.

6 Conclusions

In this paper we have analyzed Scala inference rules for function return types. We
stated that with certain types of simple recursive functions, automatic calculation
of the return type can be done with some effort. Such an additional feature is in
parallel with the original design philosophies of Scala that try to lift unnecessary
burden off the programmer.

We have proposed a new method to compute the return types for simple recur-
sive functions. We have defined a small language to demonstrate the theoretical
soundness of our approach. Our heuristic assumption on the return type is based
on the non-recursive execution branches and we have also provided a proof of its
correctness. Furthermore, we have assumed that the recursive functions will always
end up in a non-recursive execution branch. The least upper bound type of these
branches provide sufficient information allows the default Scala type inference al-
gorithm to infer the return type of recursive branches. Finally, by taking the least
upper bound type of all branches we can define the return type of the function.

A prototype implementation has been created by extending the Typer not to
immediately fail on recursive functions, but use the proposed method to calculate
the return type. We have implemented our method as an extension prototype for
the Scala compiler v2.12.4 and have used it to successfully test our method on
various examples. In case type discrepancies already exist in the program, our
compiler extension will report the same error as the current Scala compiler.

The extension is proved to be effective in the sense that it does not significantly
affect compilation speed. The compiler extension prototype is publicly available
for further tests.

814 Gergely Nagy, Gabor Oléh, and Zoltan Porkolab
References
[1] Aiken, Alexander, Wimmers, Edward L, and Lakshman, TK. Soft typing with

2]

13l

4]

[5]

6]

7]

18]

19]

[10]

[11]

conditional types. In Proceedings of the 21st ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 163-173, 1994. DOI:
10.1145/174675.177847.

Armstrong, Joe, Virding, Robert, Wikstrom, Claes, and Williams, Mike. Con-
current programming in ERLANG. Prentice Hall, 1993.

Coplien, James O. Multi-paradigm design for C++. Addison-Wesley Longman
Publishing Co., Inc., 1998.

Cremet, Vincent, Garillot, Francois, Lenglet, Serguei, and Odersky, Martin. A
core calculus for Scala type checking. In International Symposium on Mathe-
matical Foundations of Computer Science, pages 1-23. Springer, 2006. DOI:
10.1007/11821069_1.

Hindley, Roger. The principal type-scheme of an object in combinatory logic.
Transactions of the american mathematical society, 146:29-60, 1969. DOI:
10.1090/S0002-9947-1969-0253905-6.

Lindahl, Tobias and Sagonas, Konstantinos. Typer: A type annotator of Er-
lang code. In Proceedings of the 2005 ACM SIGPLAN workshop on Erlang,
pages 17-25, 2005. DOI: 10.1145/1088361.1088366.

Lindahl, Tobias and Sagonas, Konstantinos. Practical type inference based
on success typings. In Proceedings of the 8th ACM SIGPLAN international
conference on Principles and practice of declarative programming, pages 167—
178, 2006. DOI: 10.1145/1140335.1140356.

Merill, J. Return type deduction for normal functions, 2013. Revision
5. N3638, 2013.04.17. http://www.open-std.org/jtcl/sc22/wg21/docs/
papers/~2013/n3638.html.

Odersky, Martin, Cremet, Vincent, Rockl, Christine, and Zenger, Matthias.
A nominal theory of objects with dependent types. In Furopean Conference
on Object-Oriented Programming, pages 201-224. Springer, 2003. DOI: 10.
1007/978-3-540-45070-2_10.

Olah, G., Horpacsi, D., Kozsik, T., and Toth, M. Type interface for core
Erlang to support test data generation. Studia Universitatis Babes-Bolyai
Informatica, LIX(2014/1):201-215, 2014.

Peyton Jones, Simon, Vytiniotis, Dimitrios, Weirich, Stephanie, and Wash-
burn, Geoffrey. Simple unification-based type inference for GADTs. ACM
SIGPLAN Notices, 41(9):50-61, 2006. DOI: 10.1145/1159803.1159811.

Type Inference of Simple Recursive Functions in Scala 815

[12] Stroustrup, Bjarne. The C++ programming language (special 3rd edition),
2000.

[13] Venners, Bill and Sommers, Frank. The goals of Scala’s design. A conversation
with Martin Odersky, Part II. In Artima developer’s web site, 2009. http:
//www.artima.com/scalazine/articles/goals_of_scala.html.

[14] The GitHub home of the Scala compiler. https://github.com/scala/scala.

[15] The GitHub home of the Scala compiler extension for simple recursive func-
tions. https://github.com/njeasus/ScalaRecTyper.

[16] The ISO C++11 standard, ISO/IEC 14882:2011(E) — Information technol-
ogy — Programming languages — C++, 2011. http://www.iso.org/iso/
catalogue_detail.htm?csnumber=50372.

Acta Cybernetica 25 (2022) 817-846.

Adaptation of a Refactoring DSL
for the Object-Oriented Paradigm*

Déavid J. Németh®, Daniel Horpacsi®?, and Maté Tejfel®

Abstract

Many development environments offer refactorings to improve specific
properties of software, but we have no guarantees that these transforma-
tions indeed preserve the functionality of the source code they are applied on.
An existing domain-specific language, currently specialized for Erlang, makes
it possible to formalize automatically verifiable refactorings via instantiating
predefined transformation schemes with conditional term rewrite rules.

We present a proposal for adapting this language from the functional to
the object-oriented programming paradigm, using Java in place of Erlang as a
representative. The behavior-preserving property of discussed refactorings is
characterized with a multilayered definition of equivalence for Java programs,
including the conformity relation of class hierarchies. Based on the decompo-
sition of a complex refactoring rule, we show how new transformation schemes
can be identified, along with modifications and extensions of the description
language required to accommodate them. Finally, we formally define the
chosen base refactoring as a composition of scheme instances.

Keywords: verifiable refactoring, scheme-based refactoring, microrefactor-
ing, program equivalence

1 Introduction

Software development in practice is usually an iterative process. That is, the end
product is not the result of a single step, instead it is constructed by iteratively

*The research has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Research Collaborations Grounding
Innovation in Informatics and Infocommunications).

¢ELTE Eo6tvos Lorand University, Budapest, Hungary, and Faculty of Informatics, 3in Research
Group, Martonvasar, Hungary

bE-mail: ndje@inf.elte.hu, ORCID: 0000-0002-1503-812X

¢E-mail: daniel-h@elte.hu, ORCID: 0000-0003-0261-0091

4Project no. ED18-1-2019-0030 (Application Domain Specific Highly Reliable IT Solutions
subprogramme) has been implemented with the support provided from the National Research,
Development and Innovation Fund of Hungary, financed under the Thematic Excellence Pro-
gramme funding scheme.

€E-mail: matej@inf.elte.hu, ORCID: 0000-0001-8982-1398

DOI: 10.14232/actacyb. 284280

818 D. J. Németh, D. Horpacsi, and M. Tejtel

refining an initial prototype. The longest phase in the development lifecycle, main-
tenance [17], also requires the modification and extension of existing code. Changes
made between two iterations can be seen as source-level transformations.

If such a modification preserves the functional behavior of software, it is called a
refactoring. These behavior-preserving transformations are mainly used to improve
non-functional properties (e.g. maintainability) without altering the meaning of
the program [6]. Many development environments offer refactorings, but we have
no guarantees that these transformations indeed preserve the functionality of the
source code they are applied on. Moreover, in case of safety-critical systems, formal
verification of refactorings can also be deemed desirable.

An existing domain-specific language, explained in Section 3, makes it possi-
ble to formalize automatically verifiable refactorings via instantiating predefined
transformation schemes with conditional term rewrite rules [9, 8]. This language
was constructed for refactorings mainly on Erlang and the functional programming
paradigm. The goal of our research was to investigate whether this method could
be applied to other paradigms and languages. Since one of today’s most popu-
lar paradigm is OOP, we have chosen it as our target, and selected Java as its
representative due to its high-level nature and widespread support.

The main contributions of this paper are the following:

e A multilayered definition of equivalence for Java programs, used to charac-
terize the behavior-preserving property of discussed refactorings.

e A case study which shows how new transformation schemes can be identified
from a complex refactoring rule, along with modifications and extensions of
the description language required to accommodate them.

e Semantic functions and predicates related to abstractions of the target para-
digm, which we use to describe transformation preconditions.

The rest of the paper is structured as follows. As an introduction, Section 2
presents the foundations of our work and also summarizes results related to it. Sec-
tion 3 gives a brief overview of the adapted refactoring language. In Section 4 we
discuss general decision concerns of the adaptation process, including the choice of
target language; refinement of equivalence; and methods to synthesize new refac-
toring schemes. Section 5 presents a case study where we identify new schemes
based on the decomposition of a complex refactoring rule; modify and extend the
description language to accommodate the new schemes; formally define the chosen
base refactoring as a composition of scheme instances; and provide a step-by-step
example of their application to a concrete program. Finally, Section 6 lists further
research directions and Section 7 concludes.

2 Foundations and Related Work

In this section, we give an overview on our method’s foundations by citing publi-
cations that described them, and also present related work on approaches aimed

Adaptation of a Refactoring DSL for OOP 819

at specifying and/or verifying refactorings. Please note that the direct base of this
paper, the scheme-based methodology, is discussed separately in Section 3.

2.1 Foundations

Strategic term rewriting. In his dissertation [10], Kalleberg discusses language
agnostic methods for source code analysis and transformation using data and func-
tion abstraction techniques. From the latter he emphasizes strategic term rewriting,
which serves as a basis for program transformations defined with the combination of
traversal strategies and rewrite rules. He mentions Systern S [20] as an underlying
formal model, and also a possible implementation in the form of the Stratego [3]
language.

Microrefactorings. The concept of microrefactorings, grounded by Opdyke in
his fundamental work [13], is widely incorporated to discussions addressing verified
program transformations. The main idea of this method is to decompose complex
refactorings in order to obtain small, atomic transformations which are easier to
write, understand and verify. Then, the original refactoring can be reconstructed
using these microsteps as its building blocks, potentially resulting in a pre-verified
transformation. Note that in this case, the composite correctness is a consequence
of the microsteps being refactorings themselves.

Object-oriented refactorings. In his previously cited publication [13], Opdyke
also presents refactorings characteristic of object-oriented systems. Based on the
method of microsteps, he gives decompositions for three complex transformations,
discussing both breakdown strategy and target language metatheory in detail. He
also provides informal correctness proofs along with the described refactorings.

Characterization of program equivalence. Schéfer et al. enhance the concept
of microrefactorings in two novel aspects [15]. In order to eliminate the need for
complex and fragile preconditions, they chose to dynamically check whether the
application of a transformation results in an equivalent program. In the cited
paper equivalence is characterized with the preservation of data flow, control flow
and binding. Additionally, intermediate steps in a composite refactoring are allowed
to consume and produce code over an extension of the target language, potentially
increasing the expressiveness of transformations.

2.2 Related Work

Verbaere et al. present a scripting language for refactoring in [19]. It is a hybrid-
paradigm DSL with a functional part for defining transformations and sublanguages
based on logic and path queries to describe complex relations between program ele-
ments. Compared to our approach, transformations are expressed not declaratively
with syntactic patterns, but with imperative commands to modify code at the level

820 D. J. Németh, D. Horpécsi, and M. Tejfel

of its internal representation. In addition, neither scheme-like language elements,
nor verifiability is addressed in the work.

In [11], Leitao proposes a pattern language for refactoring Lisp programs. Like
ours, it is a high-level DSL utilizing code patterns with metavariables, therefore
transformations are specifiable in it without the knowledge of internal represen-
tations. The DSL itself is expressed within Lisp, resulting in an embedding that
makes its language elements more easily executable, but at the cost of them con-
taining more syntactic noise. Again, possible transformations are not outlined with
generalized strategies, and verifiability is not discussed.

Li and Thompson describe the refactoring DSL of Wrangler, a tool for the in-
teractive and extensible analysis and transformation of Erlang programs in [12].
Like us, they also distinguish primitive and composite refactorings, providing two
high-level sublanguages with templates (code patterns) and combinators. The pre-
defined strategies they offer for composite transformations make their descriptions
more concise, but they do not apply this methodology to primitive refactorings.
Moreover, as the proposed DSL follows the syntax of Erlang closely, definitions
contain much syntactic noise.

In [16], Schéfer and de Moor present a high-level yet precise specification lan-
guage for refactoring definitions. As already mentioned while discussing [15] in
the previous section, they still aim for dynamic correctness guarantees instead of
relying on overly complex preconditions. The language itself is built upon the ab-
stractions of the target language, but its definitions are still imperative and lack
syntactic patterns as well as general strategies.

Garrido and Meseguer present a mathematically rigorous framework for the
formal specification and implementation of Java refactorings in [7], which they
demonstrate by several verified refactorings. Although the proposed language con-
tains reusable constructs akin to transformation schemes, in general it is defined
on a lower level of abstraction than ours: refactorings are specified imperatively in
the realm of the underlying formal semantics.

That is, neither of the above-mentioned related works offer a standalone refac-
toring language that enables users to describe executable transformations declara-
tively by high-level code patterns, while aiding usability and potential verifiability
with general refactoring schemes for pragmatically composable microrefactorings.

3 Scheme-Based Refactoring

The basis of our work is an existing domain-specific language which makes it pos-
sible to define executable and verifiable refactorings using syntactic code patterns
over the to-be-refactored language [9]. This allows to specify transformations with-
out knowing any internal representations. The main idea of this existing method is
to provide pre-verified refactoring skeletons, called schemes, which can be instanti-
ated with conditional term rewrite rules, resulting in composable microrefactorings
that serve as building blocks for complex transformations. In the following we give
a brief overview of its description language and the verification technique it uses.

Adaptation of a Refactoring DSL for OOP 821

3.1 Description Language

The core of the description language is conditional term rewriting — a powerful
tool for specifying program transformations based on syntactic patterns. As an
illustration of this existing description language, we present a rewrite rule embedded
in it. Note how the example resembles Erlang, the original target language of the
method we aim to adapt to Java, and OOP in general.

1 [#Head | #Taill

2 ________________________
3 #X = #Head, [#X | #Taill]
4 || when

5 fresh(#X)

In this example, the part before the when keyword defines the actual transforma-
tion in the form of a matching (above the line) and a replacement (below the line)
pattern. During pattern matching, corresponding code segments are assigned to
matching metavariables (indicated by a hashmark-prefix in the example). The sec-
ond part (after the when keyword) specifies the precondition of the transformation,
that is rewriting takes place only if the precondition holds.

The problem with term rewriting, however, is that it is a low-level approach
which makes definitions of complex refactorings complicated and error prone, es-
pecially in the case of extensive transformations with many compensational mod-
ifications (e.g. a refactoring renaming a function has to modify the original call
sites as well). To make refactoring definitions safer and even verifiable, the dis-
cussed method restricts the set of possible transformations by introducing high-
level, reusable refactoring schemes. The provided schemes already contain the
necessary control logic, and only have to be parameterized by term rewrite rules to
yield concrete microrefactorings.

1 || function signature refactoring swapFirstTwoParameters()
2 #F (#A, #B, #Ps..)
3 _________________
4 #F(#B, #A, #Ps..)

The example above, also taken from the original, to-be-adapted language, pre-
sents an instance of one of its schemes, namely function signature refactoring. The
resulting refactoring swaps the first two parameters of the selected function not
only in its definition but in its applications as well.

Microrefactorings defined as scheme instances can then be composed to obtain
more complex transformations. In the following example, we show how two refac-
torings can be applied sequentially.

1 || composite refactoring f()
2 || do

3 g0

4 function().h()

822 D. J. Németh, D. Horpacsi, and M. Tejtel

Note that in addition to (here not explicitly present) combinators controlling the
order of application, selectors are also provided to dynamically change the target
to be modified. For example, here h is executed on the enclosing function of the
original target.

3.2 Verification

In this section, we briefly specify the ideas behind, and requirements of, the to-be-
adapted method’s verification process, which we need to take into account during
the adaptation. For a more detailed description, please refer to the original publi-
cation [9].

By restricting the set of specifiable transformations, automatic verification be-
comes feasible. Naturally, the verified property in this case is behavior-preservation
with regards to an appropriately constructed definition of equivalence. The chosen
formal model is the operational semantics of the target language, which makes it
possible to mathematically reason about the execution of programs, e.g. by sym-
bolically computing the possible outputs and side effects of a given function.

The verification process is two-fold. At first, the provided refactoring schemes
are manually verified based on assertions concerning their rewrite rule parameters,
collectively called the contract of the scheme. Then, scheme instances are examined
whether the concrete rewrite rules used in them satisfy the contract of the instan-
tiated scheme. Given schemes are appropriately identified, conformity to contracts
becomes automatically verifiable.

Generally, in order to achieve this, contracts should demand no more than equiv-
alences of specific rewrite rule patterns. The reason behind is that in this case, the
formal method presented by Ciobaca et al. [4] can be applied to carry out the veri-
fication automatically with the correct tooling. The cited work reduces equivalence
to the correctness property of a uniquely constructed, aggregated program which
becomes verifiable with the formal proof system discussed by Stefanescu et al. [18].
The basis of this method is the operational semantics of the target language, which
is embedded into reachability logic [14]. The proposed proof system is sound, but
not necessarily complete, however, as neither the to-be-adapted refactoring lan-
guage, nor our adaptation aims for completeness, the soundness of the verification
backend can be considered adequate in both cases.

4 Adapting the Framework

Even though aiming for language independence, the refactoring framework briefly
introduced in Section 3 [8] was developed having Erlang as its target language.
The main motivation behind this paper is to recreate the existing framework for
a significantly different target language, ultimately achieving another step towards
making it more language-agnostic. In the following sections we discuss general
aspects of the adaptation process.

Adaptation of a Refactoring DSL for OOP 823

4.1 Choosing the Target Language

Erlang is a functional and dynamically typed programming language. While select-
ing the alternative target language, our main concern was to choose a candidate
belonging to another paradigm. In this way, we can possibly reason about how the
framework should be adapted not only to a different language, but also to a differ-
ent paradigm. Considering this, it becomes important that the selected language
must be as high-level as possible, that is, it should be an appropriate representative
of the chosen paradigm without much syntactic or semantic noise.

Due to its popularity, we chose the object-oriented paradigm. As for the repre-
sentative, we considered classroom-variants of Java, namely COOL [1] and Bantam
Java [5] but in the end we decided on Java. The reasoning behind this decision is
based on the fact that unlike alternatives listed above, tool support required for
executability and formal semantics needed for verification are only available for
Java. However, as the main goal of our work is not complete language support, we
had to restrict the target language substantially. Moreover, the formal semantics
we plan to use defines Java 1.4 [2], therefore we cannot support e.g. generics or
lambda functions.

More precisely, our currently supported target language is Java 1.4 — as de-
scribed by its formal syntax and semantics in [2] — but with the exclusion of the
following features:

e non-structured control statements, but with the exception of return
(e.g. no continue, break, etc.),

e exception handling (e.g. no throw, catch, etc.),

e modifiers apart from visibility keywords (e.g. no static, final, etc.),

e field initializer expressions (e.g. no class A { int x = @; }, etc.),

e class initializer blocks (e.g. no class A { { /x ... */ } }, etc.),

e local class definitions (e.g. no class A { class B {} }, etc.),
e packages, but with the exception of the default one
(e.g. no package a.b;, etc.),
e reflection (e.g. no A.class, etc.),
e concurrency (e.g. no Thread.start(), etc.),
e JVM manipulation (e.g. no ClassLoader.loadClass("A"), etc.)

e and, naturally, language elements that were introduced in later versions of
Java, e.g. generics, lambda functions, annotations, etc.
(e.g. no List<T>, (c) -> ¢ + 1, @Resource, etc.).

A number of these restrictions could be bypassed, for example by using anony-
mous classes instead of lambda functions. Some of them, however, like the loss
of generics, indeed limit the current usability of our framework, but we hope to
incrementally extend the list of supported language elements in the future.

824 D. J. Németh, D. Horpacsi, and M. Tejtel

4.2 Refining Program Equivalence

What transformations we consider refactorings is mainly determined by the under-
lying notion of semantic equivalence. Indeed, both intuitional and formal correct-
ness is based on its chosen definition, which is also an important parameter of the
verification backend discussed in Section 3.2. An oversimplified version of the clas-
sic characterization of program equivalence demands observed programs to produce
the same output for the same input. The problem with this notion, however, is
that it is not close enough to abstractions of the target language for a refactoring
programmer to being reasoned about on the level of source code. To overcome this
issue, we propose to replace the aforementioned definition of equivalence with one
of its — more easily specifiable — characterizations, e.g. the preservation of data
flow, control flow and binding, as suggested by Schéfer et al. [15].

In addition, individual refactorings are mainly designed not to modify a whole
program, but rather specific parts of it — we call the actual extent of a transfor-
mation its scope. We claim that as a result, it is more natural to think and reason
about the correctness of a refactoring concerning only its scope. To support this
assumption, instead of using a global definition of program equivalence, we intro-
duce several, generally stricter variants of it, specialized for the possible types of
transformation scopes. Ideally, it must be separately proven that each local equiv-
alence implies the chosen global one. In the discussed framework, transformation
scope, and therefore equivalence level, can be matched with refactoring schemes.

The following example shows — possibly in its simplest form — how ambiguous
it could be to reason about program equivalence in case of partial code fragments,
typically seen in rewrite rules.

int x = 0; int x = 1;

Deciding whether the specific code transformation of rewriting the first variable
declaration to the second one should be considered a refactoring is not straightfor-
ward. In fact, the answer depends on the wider context: if the modified statement
is located in an unused private method, the behavior of the enclosing program is
guaranteed to remain the same. However, a situation where the behavior truly
changes can easily be imagined. This ambiguity is why we reason about a scope-
dependent equivalence definition: we do not want the developer of the refactoring
to think about conditions which reach out of the current transformation scope.

Another interesting observation arises from the examination of the following
pair of class definitions:

class A {
public int f() { return 6; }
3

class A {
public int f() { return 3 x g(); }
public int g() { return 2; }

Adaptation of a Refactoring DSL for OOP 825

In this case, the first question is that how do we characterize the meaning of
a class definition? Based on intuition, our proposal is to reduce their equivalence
to the equivalence of their public interfaces. On the other hand, adding a new
method to a public API while preserving the semantics of its existing methods
surely does not alter the previously accessible functionality of the examined library.
Therefore, this example shows that the mathematical relation we are looking for is
not necessarily an equivalence (=, i.e. a relation which is reflexive, transitive and
symmetric): exchanging the property of symmetry for antisymmetry, the resulting
partial ordering (<) can model the asymmetric nature of program transformations
better than an equivalence.

In conclusion, we summarize three types of equivalence levels:

e Local. In the lowest level of abstraction, i.e. in case of a refactoring de-
fined over expressions and statements, we cannot leverage any information
about the environment of the target. Therefore, here we expect syntactic
equivalence.

e Block. One abstraction level higher, in case of refactorings concerning code
blocks, we can assume that the overall behavior does not depend on block-
local variables as long as the blocks themselves are equivalent. We can extend
this level to methods if we consider their bodies blocks and their formal
parameters block-local variables.

e Class. As mentioned above, in case of refactorings modifying classes we
only want to ensure that the transformed class hierarchy provides at least
the public interface of the original library, but also in a semantically block-
equivalent way.

4.3 Synthesizing Schemes

When trying to tackle the task of constructing new refactoring schemes, we have to
take three main design goals into account: generality, usability and verifiability. The
first two of them are interconnected, as schemes possessing a high level of generality
tend to be more difficult to instantiate; and conversely, schemes usable with minimal
effort usually show a lack of generality. The additional requirement of verifiability
demands schemes to appropriately split the two-fold correctness-checking problem
between proving their parametric validity wrt. their contract, and checking whether
concrete rewrite rules in scheme instances satisfy these assumptions.

With the aim of invoking an intuitional understanding in the reader, we present
the main ideas behind two possible iterative techniques for scheme construction.

e Top-down. The top-down approach starts from a higher level of abstrac-
tion and tries to identify new schemes, or concretize (break down) existing
ones based on general categorization possibilities. Two recommended initial
categorization dimensions could be the elements of the target language and
aspects of program equivalence. For example, if our target language offers

826 D. J. Németh, D. Horpacsi, and M. Tejtel

only fields and methods, and we characterize program equivalence with data
flow and binding, the top-down method would yield 4 initial schemes: data
flow refactoring of fields, data flow refactoring of methods, binding refactoring
of fields, binding refactoring of methods.

e Bottom-up. The basis of the bottom-up direction is a number of complex,
desirably representative refactorings of the target language. Firstly, these
complex refactorings have to be decomposed in order to obtain microsteps
from them. Then, the resulting refactorings are generalized until they become
schemes. Finally, the results can be validated by reconstructing the original
base refactorings from scheme instances. Instead of providing a concrete
example here, we refer the reader to Section 5, where we discuss this approach
in detail.

Both methods have their advantages and disadvantages. The top-down tech-
nique yields general schemes by definition, but usually the results are too abstract
to be practically usable. On the contrary, schemes constructed with the bottom-up
method are inherently usable, but not necessarily general. We can overcome these
weaknesses by refining the obtained schemes iteratively. In the former case this
means the consideration of additional categorization possibilities, while in the lat-
ter more concrete refactorings can be added as a base of the generalization process.

5 Case Study

In this section, we present a case study where we identify new schemes based on
the bottom-up method. That is, we select and decompose a complex refactoring;
modify and extend the description language to accommodate the newly generalized
schemes; formally define the chosen base refactoring as a composition of scheme
instances; and finally illustrate the usage of the described transformations with
their step-by-step application to a concrete example.

Please note that we do not consider the chosen refactoring and the resulting
scheme instances as main contributions of this paper. They rather provide only a
base for the presented adaptation process of the language discussed in [9] and [§]
to OOP. Constructing a refined and widely usable scheme library for Java is still a
future work of ours — see Section 6 for details.

5.1 The Base Refactoring

As the result of the bottom-up scheme synthesis process highly depends on the
chosen base refactoring, it is crucial to select one which can be considered a suit-
able representative of program transformations defined over the target language.
Related work offer numerous candidates. For example, we could pick generalize
function from (8] or extract method from [15]. Although on these we could il-
lustrate the concept of decomposition, none of them depend heavily enough on

Adaptation of a Refactoring DSL for OOP 827

object-oriented abstractions. On the other hand, refactorings from Opdyke [13] are
too general and complicated for our purposes.

To overcome this problem, we specifically construct a refactoring capable of
demonstrating both decomposition and object-oriented concepts. For the former,
we reuse extract method from Schéfer, which we extend with lift method found in
Opdyke’s dissertation to address the latter. We call this construction lift segment
and informally specify its semantics as follows. This refactoring, when applied to
a consequent region of statements (code segment), lifts its target to the superclass
in a separate method. The arguments of the transformation are the visibility and
name of the method to be introduced. See Figure 1 for a concrete example.

1 || class A {3} 1 || class A {
2 || class B extends A { 2 int a, b;
3 int a, b; 3 voidg() { a=b=20; }
4 void f() { 4 void h(int x) { a = x; g0; 2}
5 int x = 1; 512
6 a = x; 6 || class B extends A {
7 g0; 7 void f) {
8 int y; 8 int y;
9 a=y; 9 int x = 1;
10 } 10 h(x);
1 void g() { a=b=0; } 1 a=y;
12|} 12 }
13 (|}

Figure 1: Program code before and after lift segment. The refactoring was applied
to the segment marked in blue on the left, with the package visibility modifier
and h as function name. Parts of the code changed by the transformation are also
highlighted in blue on the right.

5.2 Decomposition of the Base Refactoring

To advance towards new schemes, we present the decomposition of the base refac-
toring step-by-step. We start by dividing the base refactoring itself, and then we
continue breaking down the resulting subtransformations recursively, until we get
refactorings which are sufficiently simple. For each decomposition step, we provide
both an informal reasoning and also a concise list of the derived subtasks. Please
note that these descriptions are only meant to invoke a high-level insight in the
reader. The presented microrefactorings will be explained in detail in Section 5.7.

As mentioned, first we need to decompose the base refactoring. The joining
point between the two main components of our custom construction seems natural
to choose for its division.

Lift segment:
1. extract segment,

2. lift method.

828 D. J. Németh, D. Horpacsi, and M. Tejtel

The decomposition of extract segment has already been presented by Schéfer et
al. [15]. Their process consists of three iterative steps, where each of them refines
the result of the previous one. This decomposition is specifically defined in a way
that separates transformations which together would potentially modify more than
one of the three equivalence aspects, namely control flow, data flow and binding.

Extract segment:
1. move segment to block,
2. extract block to lambda,

3. refine and extract lambda.

To preserve name binding, statements of the selected segment is moved in reverse
order, one by one to a new block. In this way, variable declarations can be handled
separately — this is indeed required, as extracting a referenced declaration might
change bindings, and therefore behavior.

Move segment to block:
1. insert new block,

2. move selected statements in the block one by one, in reverse order, han-
dling variable declarations separately.

After the initial segment has been extracted to a new block, it can be trans-
formed into a lambda without the fear of modifying binding during the process.
At this point, however, control flow becomes fragile because of the potential jump
statements located inside the segment. If value returns are present, the return type
of the new method can also be calculated here.

Extract block to lambda:
1. inspect jump statements,

2. inspect external assignments (due to limitations of Java).

In the next step, transformations modifying the data flow are used to make
data dependencies related to the lambda (and thus to the initial segment) explicit
in the form of parameters and a possible return value. Finally, the now binding-
and data/control flow independent lambda can be extracted.

Refine and extract lambda:
1. make data dependencies explicit,
2. extract lambda to method.

As the last step, based on the decomposition of Opdyke [13], we define how a
method should be lifted to its superclass.

Adaptation of a Refactoring DSL for OOP 829

Lift method:
1. lift referenced local fields,
2. lift referenced local methods!,

3. lift independent method.

In the following subsections we show how microrefactorings listed above can be
defined with the adapted framework.

5.3 Extending the Description Language

In this section we discuss modifications and extensions of the description language
required to accommodate the new refactoring schemes. As part of the process, not
only do we introduce new scheme clauses related to the object-oriented paradigm,
but we also mention new language elements meant to make even existing refactoring
definitions more concise.

In the base language, pseudovariable this represents the target of the current
refactoring. Because this identifier has a different meaning in the object-oriented
paradigm, we replace ours with target to avoid confusion. Additionally, we make
syntactic patterns more expressive by the flexible handling of the ; delimiter in
them: instead of a concrete syntactic element, we interpret it as an abstract se-
quencing symbol with multiple possible manifestations. For example, pattern #S;#s’
matches both {}{} and {3};{3.

Finally, we introduce the following scheme clauses:

e target: A clause dedicated to match the target of the refactoring. On the
one hand, this can eliminate pattern duplications in the original matching
pattern. Moreover, referring to the context of the target in the matching
pattern also becomes possible. The following examples respectively present
the above-mentioned interpretations of the target clause:

1 target 1 target ; #S’
21 - 21—
3 { target } 3 #S’ ; target
4 || target 4 || target
5 #S ; #S’ 5 #S

Concrete usage analogous with the previous examples can be found, respec-
tively, in scheme instances moveIntoNextBlock and moveToTop, see Section 5.6.
The first one eliminates duplication from the description of a move transfor-
mation by using the target expression in its rewrite-pattern-pair. The second
one uses the target expression to make the selected code’s environment ac-
cessible for a precondition.

1Note the recursion.

830 D. J. Németh, D. Horpécsi, and M. Tejfel

e shadowed references: Clause for specifying a compensational transformation
for changes in binding induced by moving code. For example, this is where
we can restore binding to a field by using the this qualifier after shadowing it
with a local declaration — as seen in the description of the block refactoring
scheme in Section 5.5.

e top level definition: Clause to define or modify a file-level program entity
(e.g. class or interface). For example, the second variant of the lambda
scheme uses this clause to modify an interface, as seen in Section 5.5.

e definition in class: Clause for defining a new member (e.g. field or method)
inside the enclosing class of the refactoring target. A concrete example can
be found in scheme instance extract in Section 5.6, where the clause is used
to introduce a new method.

e definition in super: Clause for defining a new member inside the superclass
of the refactoring target’s enclosing class. This is, for example, how we lift a
method in the second variant of the class refactoring scheme by removing it
from the base class and reintroducing it in the superclass by the definition in
super clause, see in Section 5.5.

5.4 Constructing the Metatheory

By metatheory we denote the semantic functions and predicates that capture, and
provide a high-level interface for, various static semantic information about the
target language. In particular, the metatheory defines what predicates the precon-
ditions of schemes and scheme instances can be built from. To make the metatheory
intuitively usable, we define these functions and predicates over a high-level model
that closely resembles the abstractions of the target language. The basis of this
model is the AST metamodel, therefore we will implicitly use operations commonly
defined on it.

In the following we group elements of our metatheory by the semantic property
they provide information about, separately listing the ones which are closely related
to the object-oriented paradigm.

Data flow. Information about data flow can be used to check variables and fields
before and during a transformation, or even while verifying a scheme or an instance.
Here we declare functions for obtaining variables and fields through a given entity:
variableReads, variableWrites and accessedFields.

Control flow. One of the main notions of control flow analysis is the concept of
the path of execution, describing a possible ordering of statements for a given lan-
guage entity. Here we reuse the definition of controlSuccessor and exitNode from
Schifer et al. [15], referring to possible control flow successors and the symbolic
exit point of a method, respectively. We also introduce the callGraph of a method

Adaptation of a Refactoring DSL for OOP 831

definition, which is the maximal, directed, vertex-labeled graph of method defini-
tions containing all possible (see dynamic binding) call relations starting from the
selected method definition.

Binding. One of our most important semantic functions is definitionScope.

Definition 1. The scope of method definition d is the set which contains exactly
the classes whose instances resolve method calls with d’s signature to d.

As a demonstration, consider the following example:

class A {

public void f() { /* ... */ }
}
class B extends A {

public void f() { /* ... */ }
}
class C extends B {

public void f() { /* ... */ }
}
class D extends B {}

S W o NO Ul A~ WN =

_

Here the scope of A::f() consists of A, the scope of B::f() consist of B and D,
and the scope of C::f() consist of C.

Paradigm. Statically reasoning about the behavior of object-oriented software is
made difficult by dynamic aspects of the paradigm, namely polymorphism and dy-
namic binding. Apart from trivial query functions (e.g. isSubType, superHierarchy,
subHierarchy), our main concern here is to find a proper approximation of behavioral
properties which may influence our class-conformity relation (see Section 4.2).

Considering the microrefactorings we identified in Section 5.2, a number of
them requires a new method definition to be added into a class. In the following,
we will call such to-be-added definitions predefinitions. Our goal regarding the
metatheory is to provide a safe approximation for deciding whether a predefinition
could potentially change how a method reachable from public API behaves. For
the sake of simplicity, we do not statically check whether two method definitions
are equivalent — we simply assume that they are not. In conclusion, we propose the
following definitions about the so-called intra- and interhierarchy-reachability of a
predefinition.

Please note that the following definitions are meant as readable alternatives to
the underlying logic formulae.

Definition 2. We say that predefinition p is reachable if it

e overrides a method,
e and is inter- or intrahierarchy-reachable.

832 D. J. Németh, D. Horpacsi, and M. Tejtel

Definition 3. We say that predefinition p is interhierarchy-reachable if there exists
a definition which

e is located outside the class hierarchy of p
e and refers to a signature of p that

— is qualified with either one of the superclasses of p’s enclosing class,
— or with a class belonging to the definition scope of p,

e and which is non-constrained intrahierarchy-reachable.
Definition 4. We say that predefinition p is intrahierarchy-reachable if

e it overrides a public method,
e or there exists a definition which

— refers to the unqualified signature of p
— and is Dp-constrained intrahierarchy-reachable where

* D, is the definition scope of p.
Definition 5. Definition d is D-constrained intrahierarchy-reachable if

e D, is not empty, and
— either the visibility of d is public,
— or there exists a definition d' that
x refers to the unqualified signature of d,
* and is D;-constrained intrahierarchy-reachable
— where D; is the intersection of D and D4 where
x Dy is the definition scope of d.

Definition 6. Definition d is non-constrained intrahierarchy-reachable if it is

e D,-constrained intrahierarchy-reachable where

— Dy is the definition scope of d.

In short, interhierarchy-reachability denotes whether a predefinition could be
called from an external public API, while intrahierarchy-reachability indicates if a
predefinition could be resolved from a public API inside its class hierarchy. The
reason why the latter is slightly more complex is the fact that in that case, there
is a possibility for specific call-chains, starting from a public method and almost
reaching a predefinition, to be broken due to disjoint definition scopes.

We illustrate these reachability-definitions with the following three examples.
In the first one, the essence of interhierarchy-reachability is shown.

11| class A {

2 protected void f() { /* ... */ }

33

4 || class B extends A {

5 /* protected void f() { /* ... *x/ } %/
612}

Adaptation of a Refactoring DSL for OOP 833

7 || class C extends B {}

8 || class D extends C {

9 protected void f() { /x ... */ }
10 || }

11 || class X {

12 public void g(A a, Cc, D d) {
13 a.fQ; c.fQ; d.fQ;

14 }

15 (| }

Here, the now commented-out B::f() denotes the to-be-added definition. Its
enclosing hierarchy consists of classes A, B, C and D, where B and C form its definition
scope. Class X lies outside of this hierarchy. In definition X::g(A, C, D), which is
obviously reachable because of its public visibility, signatures A::f(), C::f() and
D::f() are called. In this method, the d.f() call is safe, as the dynamic type of
d can only be D, and D is not in the scope of predefinition B::f() — therefore, the
newly added method could not possibly be called. However, the other two calls
are unsafe, because for both of them there exists a compatible class from the scope
of the predefinition. For example, in both cases the dynamic type of the called
object can be C, which would result in signatures A::f() and C::f() being resolved
to predefinition B::f() — therefore, it is interhierarchy-reachable.

The second example demonstrates an intrahierarchy-reachable predefinition.

class A {
protected void f() { /* ... *x/ }
public void g() { fO; }

}

class B extends A {
/* protected void f() { /x ... %/ } %/

N o o bk w N =

b

Once again, the commented-out B::f() denotes the predefinition. The publicly
defined, and therefore intrahierarchy-reachable A::g() in its superclass calls A:: f()
without qualifiers. Generally, this would not necessarily be problematic — see the
next example. This call, however, is still unsafe, because the definition scopes of
A::g() —ie. {A, B} —and B::f() —i.e. {B} — are not disjoint. Indeed, as a result,
on instances of B, the publicly accessible signature B::g() is resolved to definition
A::g(), which then calls predefinition B::f() in place of signature A::f().

The last example shows how disjoint definition scopes can prevent a predefinition
from being intrahierarchy-reachable.

class A {
protected void f() { /* ... *x/ }
public void g() { fO; }

}

class B extends A {
/* protected void f() { /x ... %/ } %/
public void g() {3}

o NOY Ul W N —

834 D. J. Németh, D. Horpacsi, and M. Tejtel

Compared to the previous example, definitions A::f() and A::g(), as well as
predefinition B::f() remain the same. The only difference is the introduction of
definition B::g(), which reduces the definition scope of A::g() to just {A}. As a
result, the scopes of A::g() and B::g() become disjoint, thus there are no classes
where A::g() could call B::f(). Because there are no other references to signature
f() inside this hierarchy, the predefinition here is not intrahierarchy-reachable.

5.5 Identifying Refactoring Schemes

During the discussion in previous sections, we introduced all concepts and tools nec-
essary for constructing our own schemes, based on a generalization of microstreps
that were presented in the form of the chosen base refactoring’s decomposition. To
define a scheme, we have to provide its name, potential clauses, rewrite control
logic, preconditions and contracts. We also assign a level of equivalence to each
scheme in accordance with its transformation scope. In the following we briefly
show the four scheme(families) we specified: local, block, lambda and class.

Local refactoring scheme. The local scheme can be used to define simple,
block-local refactorings on the level of single expressions and statements. It has no
special preconditions or control logic.

local refactoring <name>
<matching pattern>
<replacement pattern>
target
<optional target pattern>
when
isInsideBlock(target)
and <optional preconditions>

O 00 NO Ul A WN =

In fact, the local scheme can be considered as a way to purely embed conditional
term rewrite rules into the language. The sole precondition requires its target to
be inside a block (line 8). Naturally, the assigned equivalence level is local and
the contract of the scheme demands the matching and replacement patterns to be
locally equivalent when preconditions hold.

Block refactoring scheme. The block scheme can be seen as an extension to
the local one. It can be used to refactor entire code blocks and even contains some
simple control logic.

1 || block refactoring <name>

2 <matching block-pattern>

3 ___________________________
4 <replacement block-pattern>
5 || target

6 <optional target pattern>

Adaptation of a Refactoring DSL for OOP 835

7 || shadowed references

8 #reference

9 ______________

10 #qualifiedName

11 || when

12 #qualifiedName = #reference.qualifiedName()
13 and <optional preconditions>

Inside the matching and replacement patterns we allow a special type of pat-
tern matching. If keyword target is explicitly referenced there in a way that its
context is unboundedly matched (this is achievable with multipatterns (e.g. #S..)
at the beginning and/or end of mentioned pattern holes), bounding multipatterns
will be matched until the boundary of the enclosing code block. See instance
moveIntoNextBlock in the next section for an example.

If we move statements in a block, it is possible to introduce unwanted variable
shadowings, therefore to alter the original binding. The control logic of the scheme,
as can be seen in its shadowed references clause, automatically compensates this by
appending the original name qualification (line 12) to the shadowed reference.

This scheme was designed with the block equivalence level in mind. Its contract
requires the block-equivalence of matching and replacement patterns considering
preconditions and automatic name qualification.

Lambda refactoring scheme. As Schifer et al. [15] suggest in their work,
lambda functions are practical because of their ability to act either as data or
as code, making it possible to destruct error-prone refactorings which modify both
data and control flow at once into multiple smaller, cleaner transformations. Unfor-
tunately, the formal semantics we plan to base the verification on does not support
lambda functions, therefore we have to use interfaces and anonymous class instances
instead.

We have identified two variants of the lambda scheme: one for introducing new
and one for modifying existing lambda interfaces and instances. Here we present
the latter.

lambda refactoring <name>
<matching lambda-pattern>
<replacement lambda-pattern>
top level definition
<interface definition (#F) for the matching lambda-pattern>

o NOY Ul W N =

<interface definition for the replacement lambda-pattern>
when

#F.references().size() =1

and #F.references().contains(target)

and <optional preconditions>

_ a
N = © WO

836 D. J. Németh, D. Horpacsi, and M. Tejtel

The main task here is to automatically update underlying interface definitions.
For example, we expect the framework to propagate changes between the match-
ing and replacement lambda applications to the corresponding interface, denoted
by metavariable #F in the description of the scheme. As we want to keep the
transformation scope local (we are only discussing special method calls), in the
preconditions we verify that the lambda interface is not used anywhere else, i.e. it
is only referenced once (line 10) and that one reference is the target of the refac-
toring (line 11). In accordance with this, the scheme is based on the local level of
equivalence and its contract demands the matching and replacement patterns to be
locally equivalent considering preconditions and interface versions.

Class refactoring scheme. The class scheme was designed for refactorings that
modify classes and class members. We constructed three variants in this category:
one for introducing new methods, one for lifting methods and one for lifting fields.
The reason behind excessive concretization was mainly the complexity of precon-
ditions: we wanted to hide them from users inside the scheme. In the following we
discuss the variant intended to add new methods into the enclosing class.

class refactoring <name>
<matching pattern>
#name (#args..)
target
<optional target pattern>
definition in class
#visibility #type #name(#params..) #body
when
/* omitted for the sake of readability =*/
and <optional preconditions>

= O W oK NO U~ WN =

—_

Structurally, the scheme looks quite simple: a new method is introduced into the
enclosing class, and the matching pattern is replaced with a corresponding function
call. Missing arguments (e.g. #name, #body, etc.) must be inferred from concrete
instances. However, the scheme’s true complexity is encoded into its preconditions
which we omitted here for the sake of readability. In short, we have to guarantee
that the new definition will not cause compiler errors (names are unique, in case
of overrides visibility and types are correct, etc.) and also want to check that the
predefinition is not reachable (see Section 5.4).

Naturally, this scheme uses the class level of equivalence (which, in this case, is
technically a partial ordering (<), see Section 4.2). However, due to the exhaustive
preconditions, its contract only requires the matching and replacement patterns to
be locally equivalent. Of course when checking this we assume that the precondi-
tions hold and that the new method definition — which is called in the replacement
pattern — has been inserted to the enclosing class.

Adaptation of a Refactoring DSL for OOP 837

5.6 Defining Scheme Instances

Using the schemes introduced in the previous section, we can define the decomposed
microrefactorings as scheme instances. At the end of this part, we also demonstrate
how the base refactoring can be rebuilt from microsteps in a composite specification.

Local refactorings. The only local refactoring is the one which appends a new,
empty code block after its target statement.

1 || local refactoring introduceEmptyBlockAfter()
2 #s

3 _______

4 #s ; {3

Block refactorings. There are two block instances: one for moving a statement
into its subsequent block (moveIntoNextBlock) and one for handling declarations
differently during the process (moveToTop). Here we show only the first one, but the
latter could be easily constructed as well.

and (isVariableDeclaration(target) ->
not isReferencedIn(target.declaredvVariable(), #S’..))

1 || block refactoring moveIntoNextBlock()
2 target ; { #S.. } ; #S’..

3 _________________________

4 { target ; #S.. } ; #S’..

5 || when

6 isSingle(target)

7

8

Note how the transformation is expressed using only pattern matching. As
we can see from the precondition, the block-matching feature helps to obtain the
surrounding context without the use of semantic functions. Here we require the
target to be a single statement (line 6) — as we want to move only one statement at
a time, see Section 5.2 —, and also if it is a declaration (line 7), its declared variable
should not be referenced in the remainder of the block (line 8) — since for these
references, the original declaration would become invisible if we moved it into the
sub-block.

Lambda refactorings. In total, we have defined three lambda refactorings. One
introduces a void (wrapInVoidLambda), the other one constructs a value-returning

lambda (wrapInValueLambda). Now we present the third one (extractInvariables),
which makes data dependencies of an existing lambda explicit.

lambda refactoring extractInVariables()
new #F() { public #type #name() #body }.#name()
new #F() { public #type #name(#inVars..) #body }.#name(#inVars..)
when
#inVars.. = #body.variableReads().filter(#read :
isBefore(#read.variable().declaration(), target))
.map(#read : #read.variable()).reduce()

o NOY Ul W N —

838 D. J. Németh, D. Horpacsi, and M. Tejtel

In the first pattern, metavariable #F will be matched to the underlying interface
of the targeted “lambda™application. Here you can also see that metavariables
might even be assigned in preconditions. In this particular example, variables read
in the body of the target lambda (#body.variableReads()), but declared before (not
inside) it (line 7), are collected into and later used through metavariable #invars. ..
We also take advantage of the fact that the collected variable names can be used
both as formal and actual parameters. (The last line of the precondition is a
technicality: we have to convert the filtered variable reads to the read variables,
and also eliminate duplications (reduce()) from the resulting collection, as it will
be used as a parameter/argument list.)

Class refactorings. Out of the three class refactoring instances, we show the
most interesting one, that is which extracts a lambda to a new method (extract).
The other two (one for lifting methods and one for lifting fields, both named 1ift)
can be mechanically specified without significant extra content.

class refactoring extract(#visibility, #newName)
new #F() { public #type #name(#params..) #body }.#name(#args..)
#newName (#args. .)
definition in class
#visibility #type #newName(#params..) #body
when
isSubsetOf (#body.dataAccesses() .map(#access : #access.target()),
union(#params. ., target.enclosingClass().fields(),
#body.localVariables()))

S W o N Ul WN =

—_

Similarly to the previous example, metavariable #F in the first pattern will be
matched to the underlying interface of the targeted “lambda’application. The dif-
ference here is that we have to check whether the lambda to be extracted is truly
independent from its surroundings, that is, it does not reference variable-like entities
from outside its parameters, body and accessible fields. In other words, the refer-
enced variables (#access. target()) of its body’s data accesses (#body . dataAccesses())
should form a subset of the union of its parameters, local variables and accessible
fields of the enclosing class (line 9-10). This instance also has two parameters, the
name and visibility of the new method.

Composite refactorings Finally, we can reconstruct the initial lift segment
refactoring in the composite definition of lift.

composite refactoring lift(#visibility, #name)
do
extract(#visibility, #name)
#extractedMethod = target.enclosingMethod()
#extractedMethod. cascadedLift()
when
isSegment(target)

~N O O A w N =

Adaptation of a Refactoring DSL for OOP 839

Note that here, extract and cascadedLift are further composite refactorings built
from scheme instances mentioned above. In this specification it is also shown how
selectors and combinators can be used to imperatively control the application of
transformations: in line 4, we store a reference to the method extracted in the
previous line in a metavariable, then in the next line we lift it together with its
dependencies by applying cascadedLift through the referencing metavariable.

5.7 Example

In this section, the previously discussed scheme instances and composite refactor-
ings are demonstrated by the stepwise transformation of a concrete Java program
(see Figure 1). Each step is presented by a code fragment pair showing the before-
after state, followed by a short explaination of the applied transformation. Code
highlighted in blue denotes the target of the refactoring on the left, and the cur-
rently modified parts on the right.

The first step is to apply instance 1ift with the package visibility and function
name h as parameters. Refactoring 1ift is composite — within it, extract is called,
which is also composite, and its first step is introduceEmptyBlockAfter.

1 || class A {}
1||class A {3 2 || class B extends A {
2 || class B extends A { .
. 3 int a, b;
3 int a, b; 4 void fO) {
4 void f() { .
. 5 int x = 1;
5 int x = 1;
6 2= x: 6 a = x;
7 g0 7 20;
N 8 int y;
8 int y;
9 i 9 0
a=y;
10 a=y,;
10 b ")
n X void g0 {a=b=20; } 12 void g0 {a=b=10; }
13 (3
After that, moveIntoNextBlock is applied, but it does not succeed, because the

scope of a declaration that is used in the enclosing block cannot be reduced. The
moveToTop rule is tried next, which will be performed successfully.

1 || class A {} 1 || class A {}

2 || class B extends A { 2 || class B extends A {
3 int a, b; 3 int a, b;

4 void f() { 4 void f() {

5 int x = 1; 5 int y;

6 a = x; 6 int x = 1;
7 g0; 7 a = x;

8 int y; 8 g0;

9 {3 9 {3

10 a=y; 10 a=y;

1 3} 1 }

12 void g() { a=b=20; } 12 void g() { a=b =20; }
13 |} 13 (|}

The next statement is moved to the target block using moveIntoNextBlock.

840 D. J. Németh, D. Horpécsi, and M. Tejfel

1 || class A {}
1 || class A
0 2 || class B extends A {
2 || class B extends A { .
X 3 int a, b;
3 int a, b; 4 void fO) {
4 void f() { .
. 5 int y;
5 int y; .
. 6 int x = 1;
6 int x = 1;
7 a = x;
7 a = X; 8 {
8 ;
g0 9 g0;
9 {3
10 3
10 a=y;
1 a=y;
11 3 12 }
12 void g0 {a=b=20; } 13 void g) { a = b = 0; }
1313 14 1|}

We move the first statement of the originally selected segment to a block using
moveIntoNextBlock as well.

1|l class A {3} 1|l class A {}

2 || class B extends A { 2 || class B extends A {
3 int a, b; 3 int a, b;

4 void f() { 4 void f() {

5 int y; 5 int y;

6 int x = 1; 6 int x = 1;
7 a = x; 7 {

8 { 8 a = Xx;
9 gQ); 9 g0;
10 3} 10 3}

m a=y; 11 a=y;

12 3} 12 }

13 void g() { a=b=20; } 13 void g() { a=b=29; }
14 || 3 14 || }

Since the resulting block does not contain a return statement, we can use the
wrapInVoidLambda rule to convert it to a lambda. Note that this also creates the
corresponding interface.

1 || class A {}
1] class A {3 2 || class B extends A {
2 || class B extends A { .
K 3 int a, b;
3 int a, b; .
. 4 void f() {
4 void f() { . . _
5 int y; int x = 1; > Int y; int x = 1;
’ ! 6 new F() { public void apply() {
° { 7 a=x; g0;
7 a = x; ; . ’
25 8 } }.applyO;
8 }
9 a=y;
9 a=y;
10 } 10)
11 void g() { a=b =20; } 1; } void g0 {a=b=20;}
1203 13 || interface F { void apply(); 3

In the next step, the input parameters of the generated lambda are extracted
by refactoring extractInVariables. x is one such parameter, as it is a local variable
declared outside of the lambda, but field a can be accessed inside the class even
with the current unqualified reference.

Adaptation of a Refactoring DSL for OOP

0 N U wWwN =

o

10
1
12
13

841

class A {} 1 || class A {}
class B extends A { 2 || class B extends A {
int a, b; 3 int a, b;
void f() { 4 void f() {
int y; int x = 1; 5 int y; int x = 1;
new F() { void apply() { 6 new F() { void apply(int x) {
a=x; g0; 7 a=x; g0;
} }-applyQ; 8 } Y.apply(x);
a=y; 9 a=y;
} 10 }
void g() { a=b=0; } 1 void g() { a=b=90; }
} 12 || 3
interface F { void apply(); } 13 || interface F { void apply(int x); }

The last step in extract segment is to convert the lambda to a method with the
extract rule. Although removing the interface that is no longer used is formally
not a part of this rule, such a refactoring could be easily defined, thus we omit it
from the example code to improve readability.

0 ~NO U wWwN =

o

10
1
12
13
14
15

class A {3}
class B extends A {
int a, b;
void f() {
int y; int x = 1;
new FO) {
public void apply(int x) {
a=x; g0;
}
}.apply(x);
a=y,
}
void g() { a

— ®© W o ~NO U A~ WN =

RN

b=29; 3}
}
interface F { void apply(int x); }

class A {}
class B extends A {
int a, b;
void () {
int y; int x = 1;
h(x);
a=y,
3
void g() { a=b=290; }
void h(int x) { a = x; g(); }

Since the first part of 1ift, which is responsible for segment extraction, has
been completed, we now proceed to the second subtransformation. This is the —
also composite — cascadedLift that lifts the method created in the previous phase
to the superclass. First, field a used in h is lifted using the lift rule.

0 N W=

- a
w N = o W

class A {3} ;
class B extends A { 3
int a; 4

int b; 5
void f() { 6

int y; 7

int x = 1; 8

h(x); 9

a=y, 10

T 1
void g() { a=b =20; } 12
void h(int x) { a =x; g0; } ;3

3 14

class A {
int a;
3
class B extends A {
int b;
void f() {
int y;
int x = 1;
h(x);
a=y;
}
void g() { a=b=20; }
void h(int x) { a = x; g(); }

842

D. J. Németh, D. Horpacsi, and M. Tejtel

In the next step, method g — referenced in h — is targeted, on which we recursively
call the composite cascadedLift refactoring. Its first step is to select field b used in
g and lift it with the 1ift rule.

0 ~NO U WwWwN =

o

10
11
12
13
14

class A {
int a;
}
class B extends A {
int b;
void f() {
int y;
int x = 1;
h(x);
a=y;
}
void g() { a=b=20; }
void h(int x) { a = x; g(0; 2
}

00 NO O wWwN =

el

10
"
12
13
14

class A {
int a;
int b;
}
class B extends A {
void f() {
int y;
int x = 1;
h(x);
a=y;
}
void g() { a=b=20; }
void h(int x) { a = x; 8(); }
}

Since g has no more dependencies from its enclosing class, we can lift it to the
superclass with the 1ift rule.

0 N U wWwN =

e

10
1
12
13

class A {
int a, b;
}
class B extends A {
void f() {
int y;
int x = 1;
h(x);
a=y,
}
void g() { a=b=290; }
void h(int x) { a = x; gO; }
}

00N O wWwN =

el

10
1"
12
13

class A {
int a, b;
void g() { a=b =20; }
}
class B extends A {
void f() {
int y;
int x = 1;
h(x);
a=y;
}
void h(int x) { a = x; g(); }
}

With the previous step, we completed the transformations needed to lift the
dependencies of h, so now we can lift h itself using the 1ift rule. Thus we performed
the second, method-lifting part of our initial refactoring. Since this was the last
one, in this step the whole transformation terminates successfully.

0 N Ul WN =

—_ a4
w N = W

class A {
int a, b;
void g() { a=b=0; }
}
class B extends A {
void () {
int y;
int x = 1;
h(x);
a=y,
}
void h(int x) { a = x; g(); }

0N wWwN =

RN
- o ©

12

w

class A {
int a, b;
void g() { a=b=0; }
void h(int x) { a = x; g0); }

}
class B extends A {
void f() {
int y;
int x = 1;
h(x);
a=y,
}
}

Adaptation of a Refactoring DSL for OOP 843

6 Future Work

In previous sections we presented a general outline for the adaptation process. Al-
though we aimed to make the case study as constructive as possible, comprehensive
support for the object-oriented paradigm is yet to be realized. Here we share two
natural continuations of our research which may improve upon this aspect.

6.1 More Schemes and Case Studies

The main concept behind the discussed framework is the notion of refactoring
schemes. Therefore it would be beneficial to examine the scheme construction
method in finer detail. For example, it would be interesting to conduct more case
studies and to compare the different schemes obtained from them. Moreover, the
relationship between the top-down and bottom-up approaches also raise additional
questions. For example, could results from the two be unified?

6.2 Verification

After an established set of refactoring schemes is constructed, research could pro-
ceed with formal verification. Considering the current verification backend, this
would mean that almost all language artifacts, including schemes, levels of equiv-
alence and metatheory would need to be formalized in a model compatible with
the chosen operational semantics of the target language. Ideally, schemes could
be verified manually by structural induction, while scheme instantiation, that is,
conformity to scheme contracts would become automatically verifiable.

7 Conclusion

In this paper we presented a proposal for adapting a domain-specific refactoring
language from the functional to the object-oriented programming paradigm, using
Java instead of Erlang as a representative.

As part of this task, we briefly introduced the original refactoring framework
and discussed its description language as well as its verification technique. We also
gave an overview of related research.

Then we approached the problem from a high-level perspective, presenting our
reasoning about how the adaptation process shall be carried out. We showed how
and why the choice of target language and paradigm arose, then discussed how
a multilayered definition of equivalence, or even a partial ordering can help to
characterize the behavior-preserving property of refactorings in a more intuitive
way. We also presented two iterative methods for synthesizing new transformation
schemes in the form of the top-down and bottom-up approaches.

Using the latter, we conducted a complex case study where we showed the
decomposition of a compound refactoring rule called lift segment. With the goal
of reconstructing this transformation inside the adapted framework, we began to
discuss how different parts of the system should be extended to achieve this target.

844 D. J. Németh, D. Horpacsi, and M. Tejtel

In this process, we added new elements to the description language, identified
suitable semantic functions and predicates for the target language metatheory (in-
cluding the notion of inter- and intrahierarchy-reachability) and proposed a set of
generalized refactoring schemes. To conclude the case study, we presented formal,
scheme-based definitions for decomposed building blocks of the original refactor-
ing, and demonstrated them by the stepwise transformation of a concrete program.
Finally, we listed future research directions.

Based on the case study, we conclude that the first steps towards adapting the
scheme-based refactoring approach to OOP have been successful: we were able to
express a complex Java refactoring in the modified language. As part of this, we
found a suitable decomposition for this transformation, and then we were able to
generalize schemes from the resulting microsteps. By constructing an appropriate
program equivalence, a description language and a metatheory, we managed to
make the identified schemes definable. We have seen that these schemes are already
suitable for expressing the initial base refactoring. Their generality obviously still
falls short, but we hope that a more comprehensive scheme library can be built
with the presented technique in the future.

References

[1] Aiken, Alexander. Cool: A Portable Project for Teaching Compiler Construc-
tion. SIGPLAN Not., 31(7):19-24, July 1996. DOIL: 10.1145/381841.381847.

[2] Bogdanas, Denis and Rosu, Grigore. K-Java: A Complete Semantics of Java.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 15, pages 445-456, New York,
NY, USA, 2015. ACM. DOI: 10.1145/2676726.2676982.

[3] Bravenboer, Martin, Kalleberg, Karl Trygve, Vermaas, Rob, and Visser, Eelco.
Stratego/XT 0.17. A language and toolset for program transformation. Science
of Computer Programming, 72:52-70, 2008. DOI: 10.1016/j.scico.2007.11.
003.

[4] Ciobaci, Stefan, Lucanu, Dorel, Rusu, Vlad, and Rogu, Grigore. A Language-
Independent Proof System for Full Program Equivalence. Formal Aspects of
Computing, 28(3):469-497, mar 2016. DOI: 10.1007/s00165-016-0361-7.

[5] Corliss, Marc L., Furcy, David, Davis, Joshua, and Pietraszek, Lori. Ban-
tam Java Compiler Project: Experiences and Extensions. J. Comput. Sci.
Coll., 25(6):159-166, June 2010. URI: http://dl.acm.org/citation.cfm?id=
1791129.1791160.

[6] Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., USA, 1999. ISBN: 0201485672.

[7] Garrido, Alejandra and Meseguer, Jose. Formal Specification and Verification
of Java Refactorings. Proceedings - Sizth IEEE International Workshop on

Adaptation of a Refactoring DSL for OOP 845

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

Source Code Analysis and Manipulation, SCAM 2006, pages 165-174, 2006.
DOI: 10.1109/SCAM. 2006.16.

Horpécsi, Déniel, Készegi, Judit, and Horvath, Zoltan. Trustworthy Refac-
toring via Decomposition and Schemes: A Complex Case Study. In Lisitsa,
Alexei, Nemytykh, Andrei P., and Proietti, Maurizio, editors, Proceedings of
the Fifth International Workshop on Verification and Program Transforma-
tion, Uppsala, Sweden, 29th April 2017, Volume 253 of Electronic Proceedings
in Theoretical Computer Science, pages 92—108. Open Publishing Association,
2017. DOI: 10.4204/EPTCS.253.8.

Horpéacsi, Daniel, K&szegi, Judit, and Thompson, Simon. Towards Trust-
worthy Refactoring in Erlang. In Hamilton, Geoff, Lisitsa, Alexei, and Ne-
mytykh, Andrei P., editors, Proceedings of the Fourth International Work-
shop on Verification and Program Transformation, Eindhoven, The Nether-
lands, 2nd April 2016, Volume 216 of Electronic Proceedings in Theoretical
Computer Science, pages 83-103. Open Publishing Association, 2016. DOI:
10.4204/EPTCS.216.5.

Kalleberg, Karl Trygve. Abstractions for Language-Independent Program
Transformations. PhD thesis, University of Bergen, Bergen, Norway, 2007.
URI: http://hdl.handle.net/1956/3287.

Leitao, Antonio. A Formal Pattern Language for Refactoring of Lisp Programs.
In Proceedings of the Sizth Furopean Conference on Software Maintenance and
Reengineering, pages 186-192, 2002. DOI: 10.1109/CSMR.2002.995803.

Li, Huiqing and Thompson, Simon. A Domain-Specific Language for Scripting
Refactorings in Erlang. In Fundamental Approaches to Software Engineering,
pages 501-515, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. DOI:
10.1007/978-3-642-28872-2_34.

Opdyke, William F. Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1992. UMI
Order No. GAX93-05645. URI: http://hdl.handle.net/2142/72072.

Rosu, Grigore and Stefanescu, Andrei. From Hoare Logic to Matching Logic
Reachability. In Proceedings of the 18th International Symposium on Formal
Methods (FM’12), Volume 7436 of LNCS, pages 387-402. Springer, Aug 2012.
DOI: 10.1007/978-3-642-32759-9_32.

Schéfer, Max, Verbaere, Mathieu, Ekman, Torbjérn, and de Moor, Oege. Step-
ping Stones over the Refactoring Rubicon. In Proceedings of the 23rd European
Conference on ECOOP 2009 — Object-Oriented Programming, Genoa, pages
369-393, Berlin, Heidelberg, 2009. Springer-Verlag. DOI: 10.1007/978-3-
642-03013-0_17.

846

[16]

[17]

[18]

[19]

[20]

D. J. Németh, D. Horpacsi, and M. Tejtel

Schifer, Max and de Moor, Oege. Specifying and Implementing Refactorings.
In Proceedings of the ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA ’10, page 286301,
New York, NY, USA, 2010. Association for Computing Machinery. DOI:
10.1145/1869459.1869485.

Sommerville, Ian. Software Engineering. Addison-Wesley Publishing Com-
pany, USA, 9th edition, 2010. ISBN: 0137035152.

Stefanescu, Andrei, Park, Daejun, Yuwen, Shijiao, Li, Yilong, and Rosu, Grig-
ore. Semantics-Based Program Verifiers for All Languages. In Proceedings of
the 2016 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2016, pages 74—
91, New York, NY, USA, 2016. ACM. DOI: 10.1145/2983990.2984027.

Verbaere, Mathieu, Ettinger, Ran, and Moor, Oege. JunGL: a Scripting Lan-
guage for Refactoring. In Proceedings — International Conference on Software
Engineering, Volume 2006, pages 172-181, 01 2006. DOI: 10.1145/1134311.

Visser, Eelco and Benaisse, Zine-el-Abidine. A Core Language for Rewriting.
Electronic Notes in Theoretical Computer Science, 15:422-441, 1998. DOI:
10.1016/s1571-0661(05)80027-1.

Acta Cybernetica 25 (2020) 847-876.

A Modern Look at GRIN, an Optimizing
Functional Language Back End*

Péter David Podlovics®, Csaba Hruska®, and Andor Pénzes?

Abstract

GRIN is short for Graph Reduction Intermediate Notation, a modern back
end for lazy functional languages. Most of the currently available compilers
for such languages share a common flaw: they can only optimize programs on
a per-module basis. The GRIN framework allows for interprocedural whole
program analysis, enabling optimizing code transformations across functions
and modules as well.

Some implementations of GRIN already exist, but most of them were
developed only for experimentation purposes. Thus, they either compromise
on low level efficiency or contain ad hoc modifications compared to the original
specification.

Our goal is to provide a full-fledged implementation of GRIN by com-
bining the currently available best technologies like LLVM, and evaluate the
framework’s effectiveness by measuring how the optimizer improves the per-
formance of certain programs. We also present some improvements to already
existing components of the framework. Some of these improvements include
a typed representation for the intermediate language and an interprocedural
program optimization, the dead data elimination.

Keywords: GRIN, compiler, whole program optimization, intermediate rep-
resentation, dead code elimination

1 Introduction

Over the last few years, the functional programming paradigm has become more
popular and prominent than it was before. More and more industrial applications
emerge, the paradigm itself keeps evolving, existing functional languages are being
refined day by day, and even completely new languages appear. Yet, it seems the
corresponding compiler technology lags behind a bit.

*The project has been supported by the European Union, co-financed by the European Social
Fund (EFOP-3.6.3-VEKOP-16-2017-00002)

2Eo6tvos Lorand University, Budapest, Hungary

YE-mail: peter.d.podlovics@gmail.com, ORCID: 0000-0002-4848-883X

¢E-mail: csaba.hruska@gmail.com, ORCID: 0000-0002-6168-1570

9E-mail: andor.penzes@gmail.com, ORCID: 0000-0002-6221-4579

DOI: 10.14232/actacyb. 282969

848 P. Podlovics, Cs. Hruska, and A. Pénzes

Functional languages come with a multitude of interesting features that al-
low us to write programs on higher abstraction levels. Some of these features
include higher-order functions, laziness and sophisticated type systems based on
SystemFC [29], some even supporting dependent types. Although these features
make writing code more convenient, they also complicate the compilation process.

Compiler front ends usually handle these problems very well, but the back
ends often struggle to produce efficient low level code. The reason for this is that
back ends have a hard time optimizing code containing functional artifacts. These
functional artifacts are the by-products of high-level language features mentioned
earlier. For example, higher-order functions can introduce unknown function calls
and laziness can result in implicit value evaluation which can prove to be very
hard to optimize. As a consequence, compilers generally compromise on low level
efficiency for high-level language features.

Moreover, the paradigm itself also encourages a certain programming style
which further complicates the situation. Functional code usually consists of many
smaller functions, rather than fewer big ones. This style of coding results in more
composable programs, but also presents more difficulties for compilation, since op-
timizing individual functions only is no longer sufficient.

In order to resolve these problems, we need a compiler back end that can op-
timize across functions as well as allow the optimization of laziness in some way.
Also, it would be beneficial if the back end could theoretically handle any suitable
front end language.

In this paper we present a modern look at the GRIN framework. We explain
some of its core concepts, and also provide a number of improvements to it. The
results are demonstrated through a modernized implementation of the framework!.
The main contributions presented in the paper are the following.

1. Extension of the heap points-to analysis with more accurate basic value track-
ing

2. Specification of a type inference algorithm for GRIN using the extended heap

points-to analysis

Implementation of an LLVM back end for the GRIN framework

4. Extension of the dead data elimination transformation with typed dummifica-
tion and an overview of an alternative transformation for producer-consumer
groups

5. Implementation of an Idris front end for the GRIN framework

b

2 Graph Reduction Intermediate Notation

GRIN is short for Graph Reduction Intermediate Notation. GRIN consists of an
intermediate representation language (IR in the following) as well as the entire

1Almost the entire GRIN framework has been reimplemented. The only exceptions are the
simplfyifing transformations which are no longer needed by the new code generator that uses
LLVM as its target language.

A Modern Look at GRIN 849

compiler back end framework built around it. GRIN tries to resolve the issues
highlighted in Section 1 by using interprocedural whole program optimization.

2.1 General overview

Interprocedural program analysis is a type of data-flow analysis that propagates
information about certain program elements through function calls. Using inter-
procedural analyses instead of intraprocedural ones, allows for optimizations across
functions. This means the framework can handle the issue of large sets of small
interconnecting functions presented by the composable programming style.

Whole program analysis enables optimizations across modules. This type of
data-flow analysis has all the available information about the program at once. As
a consequence, it is possible to analyze and optimize global functions. Furthermore,
with the help of whole program analysis, laziness can be made explicit. In fact,
the evaluation of suspended computations in GRIN is done by an ordinary function
called eval. This is a global function uniquely generated for each program, meaning
it can be optimized just like any other function by using whole program analysis.

Finally, since the analyses and optimizations are implemented on a general
intermediate representation, many other languages can benefit from the features
provided by the GRIN back end. The intermediate layer of GRIN between the
front end language and the low level machine code serves the purpose of eliminating
functional artifacts from programs such as closures, higher-order functions and even
laziness. This is achieved by using optimizing program transformations specific to
the GRIN IR and functional languages in general. The simplified programs can
then be optimized further by using conventional techniques already available. For
example, it is possible to compile GRIN to LLVM and take advantage of an entire
compiler framework providing a huge array of very powerful tools and features.

2.2 A small example

As a brief introduction to the GRIN language, we will show how a small functional
program can be encoded in GRIN. We will use the following example program:
(add 1) (add 2 3). The add function simply takes two integers, and adds them
together. This means, that the program only makes sense in a language that
supports partial function application, due to add being applied only to a single
argument. We will also assume, that the language has lazy semantics. We can see
the GRIN code generated from the above program in Program code 2.1.

The first thing we can notice is that GRIN has a monadic structure, and syn-
tactically it is very similar to low-level Haskell. The second one, is that it has
data constructors (CInt, Fadd, etc). We will refer to them as nodes. Thirdly, we
can see four function definitions: grinMain, the main entry point of our program;
add, the function adding two integers together; and two other functions called eval
and apply. Lastly, we can see _prim_int_add and the store, fetch and update
operations, which do not have definitions. The first one is a primitive operation,
and the last three are intrinsic operations responsible for graph reduction. We can

850 P. Podlovics, Cs. Hruska, and A. Pénzes

12 eval p =
1 grinMain = 13 v <- fetch p
2 a <- store (CInt 1) 14 case v of
3 b <- store (CInt 2) 15 (CInt _n) -> pure v
4 c <- store (CInt 3) 16 (P2_add) -> pure v
5 17 (P1_add _x) -> pure v
6 r <- store (Fadd b c) 18 (Fadd x2 y2) ->
7 suc <- pure (P1_add a) 19 r_add <- add x2 y2
8 apply suc r 20 update p r_add
9 21 pure r_add
10 add x y = 22
11 (CInt x1) <- eval x 23 apply f u =
12 (CInt y1) <- eval y 24 case f of
13 r <- _prim_int_add x1 y1 25 (P2_add) ->
14 pure (CInt r) 26 pure (P1_add u)
27 (P1_add z) -> add z u

Program code 2.1: GRIN code generated from (add 1) (add 2 3)

also view store, fetch and update as simple heap operations: store puts values
onto the heap, fetch reads values from the heap, and update modifies values on
the heap.

The GRIN program is always a first order, strict, defunctionalized version of the
original program, where laziness and partial application are expressed explicitly by
eval and apply. A lazy function call can be expressed by wrapping its arguments
into an F node. As can be seen, the add 2 3 expression is compiled into the Fadd 2
3 node. Whenever a lazy value needs to be evaluated, the GRIN program will call
the eval function, which will force the given computation and update the stored
value (so that it is not computed twice), or it will just return the value if it is
already in weak head normal form. For a partial function call, the GRIN program
will construct a P node, and call the apply function. The number in the P node’s
tag indicates how many arguments are still missing to the given function call. The
apply function will take a partially applied function (a P node), and will apply it
to a given argument. The result can be either another partially applied function,
or the result of a saturated function call.

The definitions of eval and apply are uniquely generated for each program
by the GRIN back end. As we can see, they are just ordinary GRIN functions,
which means the compiler can analyze and optimize them. For a more detailed
description, the reader can refer to [5,6].

A Modern Look at GRIN 851

3 Related Work

This section will introduce the reader to the state-of-the-art concerning functional
language compiler technologies and whole program optimization. It will compare
these systems’ main goals, advantages, drawbacks and the techniques they use.

3.1 The Glasgow Haskell Compiler

GHC [13] is the de facto Haskell compiler. It is an industrial strength compiler
supporting Haskell2010 with a multitude of language extensions. It has full support
for multi-threading, asynchronous exception handling, incremental compilation and
software transactional memory.

GHC is the most feature-rich stable Haskell compiler. However, its optimizer
part is lacking in two respects. Firstly, neither of its intermediate representations
(STG and Core) can express laziness explicitly using the syntax of the language.
This means, in order to generate optimal machine code, the code generator cannot
use only the AST of the program, but also has to rely on the previously calculated
strictness analysis result. This makes the code generation phase more complicated.
Secondly, GHC only supports optimization on a per-module basis by default, and
only optimizes across modules after inlining certain specific functions. This can
drastically limit the information available for the optimization passes, hence de-
creasing their efficiency. The following sections will show alternative compilation
techniques to resolve the issues presented above.

3.2 Clean compiler

The Clean compiler [25] is also an industrial-grade compiler, supporting concur-
rency and a multitude of platforms. It uses the abstract ABC machine as it’s
evaluation model. The ABC machine is a stack machine which uses three different
stacks: the Argument stack, the Basic value stack and the Code stack. The Clean
compiler performs no optimizations on the ABC machine level, since defining code
transformations on a stack-based representation would be quite inconvenient. In-
stead, the driving design principle behind the ABC machine is that it should be
easy to generate native machine code from it. In the present days, this task is often
accomplished by LLVM, which not only guarantees performance, but also provides
a higher level intermediate representation. Nonetheless, the Clean compiler gener-
ates performant code for most major platforms.

The main difference between Clean and Haskell lies in the type systems. Clean
uses uniqueness typing, a concept similar to linear typing. A function argument
can be marked unique, which means that it will be used only a single time in the
function definition. This allows the compiler to generate destructive updates on
that argument after it has been used. The efficiency of Clean programs is largely not
attributed to code optimizations, but rather to the fact that the programmer writes
mutable code to begin with. Uniqueness typing introduces controlled mutability
which can highly increase the efficiency of Clean programs.

852 P. Podlovics, Cs. Hruska, and A. Pénzes

3.3 GRIN

Graph Reduction Intermediate Notation is an intermediate representation for lazy'
functional languages. Due to its simplicity and high expressive power, it was utilized
by several compiler back ends.

3.3.1 Boquist

The original GRIN framework was developed by U. Boquist, and first described in
the article [6], then in his PhD thesis [5]. This version of GRIN used the Chalmers
Haskell-B Compiler [2] as its front end and RISC as its back end. The main focus
of the entire framework is to produce highly efficient machine code from high-level
lazy functional programs through a series of optimizing code transformations. At
that time, Boquist’s implementation of GRIN already compared favorably to the
existing Glasgow Haskell Compiler of version 4.01.

The language itself has very simple syntax and semantics, and is capable of
explicitly expressing laziness. It only has very few built-in instructions (store,
fetch and update) which can be interpreted in two ways. Firstly, they can be
seen as simple heap operations; secondly, they can represent graph reduction se-
mantics [24]. For example, we can imagine store creating a new node, and update
reducing those nodes.

GRIN also supports whole program optimization. Whole program optimization
is a compiler optimization technique that uses information regarding the entire
program instead of localizing the optimizations to functions or translation units.
One of the most important whole program analyses used by the framework is the
heap-points-to analysis, a variation of Andersen’s pointer analysis [1].

3.3.2 UHC

The Utrecht Haskell Compiler [10] is a completely standalone Haskell compiler with
its own front end. The main idea behind UHC is to use attribute grammars to han-
dle the ever-growing complexity of compiler construction in an easily manageable
way. Mainly, the compiler is being used for education, since utilizing a custom
system, the programming environment can be fine-tuned for the students, and the
error messages can be made more understandable.

UHC also uses GRIN as its IR for its back-end part, however the main focus
has diverted from low level efficiency, and broadened to the spectrum of the entire
compiler framework. It also extended the original IR with synchronous exception
handling by introducing new syntactic constructs for try/catch blocks [11]. Also,
UHC can generate code for many different targets including LLVM [17], .Net, JVM
and JavaScript.

1Strict semantics can be expressed as well.

A Modern Look at GRIN 853

3.3.3 JHC

JHC [15] is another complete compiler framework for Haskell, developed by John
Meacham. JHC’s goal is to generate not only efficient, but also very compact code
without the need of any runtime. The generated code only has to rely on certain
system calls. JHC also has its own front end and back end just like UHC, but they
serve different purposes.

The front end of JHC uses a very elaborate type system called the pure type
system [4,30]. In theory, the pure type system can be seen as a generalization of the
lambda cube [3], in practice it behaves similarly to the Glasgow Haskell Compiler’s
Core representation. For example, similar transformations can be implemented on
them.

For its intermediate representation, JHC uses an alternate version of GRIN.
Meacham made several modifications to the original specification of GRIN. Some
of the most relevant additions are mutable variables, memory regions (heap and
stack) and throw-only 10 exceptions. JHC’s exceptions are rather simple compared
to those of UHC, since they can only be thrown, but never caught.

JHC generates completely portable ISO C, which for instance was used to im-
plement a NetBSD sound driver in high-level Haskell [21].

3.3.4 LHC

The LLVM Haskell Compiler [9] is a Haskell compiler made from reusable libraries
using JHC-style GRIN as its intermediate representation. As its name suggests, it
generates LLVM IR code from the intermediate GRIN.

3.4 Other Intermediate Representations

GRIN is not the only IR available for functional languages. In fact, it is not even
the most advanced one. Other representations can either be structurally different
or can have different expressive power. For example GRIN and LLVM are both
structurally and expressively different representations, because GRIN has monadic
structure, while LLVM uses basic blocks, and while GRIN has sum types, LLVM
has vector instructions. In general, different design choices can open up different
optimization opportunities.

3.4.1 MlLton

MLton [32] is a widely used Standard ML compiler. It also uses whole program
optimization, and focuses on efficiency.

MLton has a wide array of distinct intermediate representations, each serv-
ing a different purpose. Each IR can express a certain aspect of the language
more precisely than the others, allowing for more convenient implementation of
the respective analyses and transformations. They use a technique similar to de-
functionalization called OCFA, a higher-order control flow analysis. This method

854 P. Podlovics, Cs. Hruska, and A. Pénzes

serves a very similar purpose to defunctionalization, but instead of following func-
tion tags, it tracks function closures. Also, OCFA can be generalized to k-CFA,
where k represents the number of different contexts the analysis distinguishes. The
variant used by MLton distinguishes zero different contexts, meaning it is a context
insensitive analysis. The main advantage of this technique is that it can be applied
to higher-order languages as well.

Furthermore, MLton supports contification [12], a control flow based transfor-
mation, which turns function calls into continuations. This can expose a lot of
additional control flow information, allowing for a broad range of optimizations
such as tail recursive function call optimization.

As for its back end, MLton has its own native code generator, but it can also
generate LLVM IR code [18].

3.4.2 Intel Research Compiler

The Intel Labs Haskell Research Compiler [19] was a result of a long running
research project of Intel focusing on functional language compilation. The project’s
main goal was to generate very efficient code for numerical computations utilizing
whole program optimization.

The compiler reused the front end part of GHC, and worked with the external
Core representation provided by it. Its optimizer part was written in MLton and
was a general purpose compiler back end for strict functional languages. Differ-
ently from GRIN, it used basic blocks which can open up a whole spectrum of new
optimization opportunities. Furthermore, instead of whole program defunctional-
ization (the generation of global eval), their compiler used function pointers and
data-flow analysis techniques to globally analyze the program. They also supported
synchronous exceptions and multi-threading.

One of their most relevant optimizations was the SIMD vectorization pass [23].
Using this optimization, they could transform sequential programs into vectorized
ones. In conjunction with their other optimizations, they achieved performance
metrics comparable to native C [22].

4 Compiling to LLVM

LLVM is a collection of compiler technologies consisting of an intermediate repre-
sentation called the LLVM IR, a modularly built compiler framework and many
other tools built on these technologies. This section discusses the benefits and
challenges of compiling GRIN to LLVM.

4.1 Benefits and Challenges

The main advantage LLVM has over other CISC and RISC based languages lies
in its modular design and library based structure. The compiler framework built
around LLVM is entirely customizable and can generate highly optimized low level
machine code for most architectures. Furthermore, it offers a vast range of tools

A Modern Look at GRIN 855

and features out of the box, such as different debugging tools or compilation to
WebAssembly.

However, compiling unrefined functional code to LLVM does not yield the results
one would expect. Since LLVM was mainly designed for imperative languages,
functional programs may prove to be difficult to optimize. The reason for this is
that functional artifacts or even just the general structuring of functional programs
can render conventional optimization techniques useless.

While LLVM acts as a transitional layer between architecture independent, and
architecture specific domains, GRIN serves the same purpose for the functional and
imperative domains. Figure 4.1 illustrates this domain separation. The purpose of
GRIN is to eliminate functional artifacts and restructure functional programs in a
way so that they can be efficiently optimized by conventional techniques.

Idris| |Haskell| | Agda

4

LLVM

Figure 4.1: Possible representations of different functional languages

The main challenge of compiling GRIN to LLVM has to do with the discrepancy
between the respective type systems of these languages: GRIN is untyped, while
LLVM has static typing. In order to make compilation to LLVM possible!, we
need a typed representation for GRIN as well. Fortunately, this problem can be
circumvented by implementing a type inference algorithm for the language. To
achieve this, we can extend an already existing component of the framework, the
heap points-to data-flow analysis.

4.2 Heap points-to Analysis

Heap points-to analysis (HPT in the following), or pointer analysis is a commonly
used data-flow analysis in the context of imperative languages. The result of the
analysis contains information about the possible variables or heap locations a given
pointer can point to. In the context of GRIN, it is used to determine the type of
data constructors (or nodes) a given variable could have been constructed with.
The result is a mapping of variables and abstract heap locations to sets of data
constructors.

1As a matter of fact, compiling untyped GRIN to LLVM is possible, since only the registers
are statically typed in LLVM, the memory is not. So in principle, if all variables were stored in
memory, generating LLVM code from untyped GRIN would be plausible. However, this approach
would prove to be very inefficient.

856 P. Podlovics, Cs. Hruska, and A. Pénzes

The original version of the analysis presented in [5] and further detailed in [6]
only supports node level granularity. This means, that the types of literals are
not differentiated, they are unified under a common ”basic value” type. Therefore,
the analysis cannot be used for type inference as it is. In order to facilitate type
inference, HPT has to be extended, so that it propagates type information about
literals as well. This can be easily achieved by defining primitive types for the
literal values. Using the result of the modified algorithm, we can generate LLVM
IR code from GRIN.

However, in some cases the monomorphic type inference algorithm presented
above is not sufficient. For example, the Glasgow Haskell Compiler has polymor-
phic primitive operations. This means, that despite GRIN being a monomorphic
language, certain compiler front ends can introduce external polymorphic functions
to GRIN programs. To resolve this problem, we have to further extend the heap
points-to analysis. The algorithm now needs a table of external functions with
their respective type information. These functions can be polymorphic, hence they
need special treatment during the analysis. When encountering external function
applications, the algorithm has to determine the concrete type of the return value
based on the possible types of the function arguments'. Essentially, it has to fill
all the type variables present in the type of the return value with concrete types.
This can be achieved by unification. Fortunately, the unification algorithm can be
expressed in terms of the same data-flow operations HPT already uses.

4.3 Type Information from the Surface Language

Another option would be to use type information provided by the surface language.
This approach might seem convenient, but it has three major disadvantages. The
first one is that this solution would need to address each front end language sep-
arately, since they might have different type systems. Secondly, requiring type in-
formation from the front end would rule out dynamically typed languages. Lastly,
the surface language’s type system tells us about the semantics of the program,
however we need information about the data representation to efficiently analyze,
optimize, and generate machine code from GRIN programs. The two concepts
might seem familiar at first, but the type-based control flow analysis yields a lot
less precise result than the heap-points-to analysis (slightly modified 0-CFA) [27].

In object oriented languages, type-based control flow analysis is sometimes used
to make the general pointer analysis more precise. In certain cases, type information
can help to filter out impossible cases calculated by the pointer analysis (e.g.: when
using interfaces). For functional languages, this approach only works for strict
data structures. For example, if we have a strict list, we know that it has been
constructed with either Nil or Cons. However, if the list is lazy, it still might
be a thunk referring to any function that returns a list. This means, that in the
defunctionalized GRIN program, the list can not only have a CNil or a CCons tag,
but also any F tag belonging to a function that returns a list. Consequently, the

IThis concrete type always exists, since all inputs to the program have concrete types (which
are propagated through the program), and we know the entire program at compile time.

A Modern Look at GRIN 857

set of possible tags for a given lazy type would have to include all those F tags as
well. This would hinder the type-based analysis considerably inaccurate.

5 Dead Code Elimination

Dead code elimination is one of the most well-known compiler optimization tech-
niques. The aim of dead code elimination is to remove certain parts of the program
that neither affect its final result nor its side effects. This includes code that can
never be executed, and also code which only consists of irrelevant operations on
dead variables. Dead code elimination can reduce the size of the input program, as
well as increase its execution speed. Furthermore, it can facilitate other optimizing
transformation by restructuring the code.

5.1 Dead Code Elmination in GRIN

The original GRIN framework has three different type of dead code eliminating
transformations. These are dead function elimination, dead variable elimination
and dead function paramater elimination. In general, the effectiveness of most
optimizations solely depends on the accuracy of the information it has about the
program. The more precise information it has, the more agressive it can be. Fur-
thermore, running the same transformation but with additional information avail-
able, can often yield more efficient code.

In the original framework, the dead code eliminating transformations were pro-
vided only a very rough approximation of the liveness of variables and function
parameters. In fact, a variable was deemed dead only if it was never used in the
program. As a consequence, the required analyses were really fast, but the trans-
formations themselves were very limited.

5.2 Interprocedural Liveness Analysis

In order to improve the effectiveness of dead code elimination, we need more so-
phisticated data-flow analyses. Liveness analysis is a standard data-flow analysis
that determines which variables are live in the program and which ones are not.
It is important to note, that even if a variable is used in the program, it does not
necessarily mean it is live. See Program code 5.1.

In the first example, we can see a program where the variable n is used, it is put
into a CInt node, but despite this, it is obvious to see that n is still dead. Moreover,
the liveness analysis can determine this fact just by examining the function body
locally. It does not need to analyze any function calls. However, in the second
example, we can see a very similar situation, but here n is an argument to a function
call. To calculate the liveness of n, the analysis either has to assume that the
arguments of foo are always live, or it has to analyze the body of the function.
The former decision yields a faster, but less precise intraprocedural analysis, the
latter results in a bit more costly, but also more accurate interprocedural analysis.

858 P. Podlovics, Cs. Hruska, and A. Pénzes

1 main = 1 main =

2 n <- pure 5 2 n <- pure 5

3 y <- pure (CInt n) 3 foo n

4 pure O 4 foo x = pure O

(a) Put into a data constructor (b) Argument to a function call

Program code 5.1: Examples demonstrating that a used variable can still be dead

By extending the analysis with interprocedural elements, we can obtain quite
a good estimate of the live variables in the program, while minimizing the cost of
the algorithm. Using the information gathered by the liveness analysis, the original
optimizations can remove even more dead code segments.

6 Dead Data Elimination

Conventional dead code eliminating optimizations usually only remove statements
or expressions from programs; however, dead data elimination can transform the
underlying data structures themselves. Essentially, it can specialize a certain data
structure for a given use-site by removing or transforming unnecessary parts of it.
It is a powerful optimization technique that — given the right circumstances —
can significantly decrease memory usage and reduce the number of executed heap
operations.

Within the framework of GRIN, it was Remi Turk, who presented the initial
version of dead data elimination in his master’s thesis [31]. His original implemen-
tation used intraprocedural analyses and an untyped representation of GRIN. We
extended the algorithm with interprocedural analyses, and improved the “dummi-
fication” process (see Sections 6.4 and 6.5). In the following we present a high level
overview of the original dead data elimination algorithm, as well as detail some of
our modifications.

6.1 Dead Data Elimination in GRIN

In the context of GRIN, dead data elimination removes dead fields of data con-
structors (or nodes) for both definition- and use-sites. In the following, we will
refer to definition-sites as producers and to use-sites as consumers. Producers and
consumers are in a many-to-many relationship with each other. A producer can
define a variable used by many consumers, and a consumer can use a variable possi-
bly defined by many producers. It only depends on the control flow of the program.
Program code 6.1 illustrates dead data elimination on a very simple example with
a single producer and a single consumer.

As we can see, the first component of the pair is never used, so the optimiza-
tion can safely eliminate the first field of the node. It is important to note, that

A Modern Look at GRIN 859

1 main = 1 main =
2 x <- pure (CPair 0 1) 2 x <- pure (CPair' 1)
3 y <- snd x 3 y <- snd x
4 pure y 4 pure y
= a is dead 5
6 snd p = 6 snd p =
7 (CPair a b) <- pure p 7 (CPair' b) <- pure p
8 pure b 8 pure b
\ \ 7
(a) Before the transformation (b) After the transformation

Program code 6.1: A simple example for dead data elimination

the transformation has to remove the dead field for both the producer and the
consumer. Furthermore, the name of the node also has to be changed to preserve
type correctness, since the transformation is specific to each producer-consumer
group. This means, the data constructor CPair still exists, and it can be used by
other parts of the program, but a new, specialized version is introduced for any
optimizable producer-consumer group’.

Dead data elimination requires a considerable amount of data-flow analyses and
possibly multiple transformation passes. First of all, it has to identify potentially
removable dead fields of a node. This information can be acquired by running
liveness analysis on the program (see Section 5.2). After that, it has to connect
producers with consumers by running the created-by data-flow analysis. Then it
has to group producers together sharing at least one common consumer, and de-
termine whether a given field for a given producer can be removed globally, or
just dummified locally. Finally, it has to transform both the producers and the
consumers.

6.2 Created-by Analysis

The created-by analysis, as its name suggests is responsible for determining the
set of producers a given variable-was possibly created by. For our purposes, it is
sufficient to track only node valued variables, since these are the only potential
candidates for dead data elimination. Analysis example 6.1 demonstrates how the
algorithm works on a simple program.

The result of the analysis is a mapping from variable names to set of producers
grouped by their tags. For example, we could say that ”variable y was created by the
producer a given it was constructed with the CTrue tag”’. Naturally, a variable can
be constructed with many different tags, and each tag can have multiple producers.
Also, it is important to note that some variables are their own producers. This is

IStrictly speaking, a new version is only introduced for each different set of live fields used by
producer-consumer groups.

860 P. Podlovics, Cs. Hruska, and A. Pénzes

1 null xs =

2 y <- case xs of [Var ‘ Producers

5 (CNil) -> . -

. a <- pure (CTrue) xs | {CNil[...],CCons]...]}

5 pure a a {CTruelal}

6 (CCons z zs) —> b {CFalse[b]}

7 b <- pure (CFalse)

’ o |y {CTruela], CFalse[b]} |
2 pure y (b) Anyalsis result

(a) Input program

Analysis example 6.1: An example demonstrating the created-by analysis

because producers are basically definitions-sites or bindings, identified by the name
of the variable on their left-hand sides. However, not all bindings have variables on
their left-hand side, and some values may not be bound to variables. Fortunately,
this problem can be easily solved by a simple program transformation.

6.3 Grouping Producers

On a higher abstraction level, the result of the created-by analysis can be interpreted
as a bipartite directed graph between producers and consumers. One group of nodes
represents the producers and the other one represents the consumers. A producer
is connected to a consumer if and only if the value created by the producer can be
consumed by the consumer. Furthermore, each component of the graph corresponds
to one producer-consumer group. Each producer inside the group can only create
values consumed by the consumers inside the same group, and a similar statement
holds for the consumers as well.

6.4 Transforming Producers and Consumers

As mentioned earlier, the transformation applied by dead data elimination can
be specific for each producer-consumer group, and both the producers and the
consumers have to be transformed. Also, the transformation can not always simply
remove the dead field of a producer. Take a look at Figure 6.1.

As we can see, producers P; and P, share a common consumer C5. Let’s assume,
that the shared value is a CPair node with two fields, and neither C7, nor Csy uses
the first field of that node. This means, the first field of the CPair node is locally
dead for producer P;. Also, suppose that C3 does use the first field of that node,
meaning it is live for P, hence it cannot be removed. In this situation, if the
transformation were to remove the locally dead field from P;, then it would lead

1For the sake of simplicity, we will assume that xs was constructed with the CNil and CCons
tags. Also its producers are irrelevant in this example.

A Modern Look at GRIN 861

Figure 6.1: Producer-consumer group

to a type mismatch at Cy, since Cs would receive two CPair nodes with different
number of arguments, with possibly different types for their first fields. In order
to resolve this issue the transformation has to rename the tag at P; to CPair’,
and create new patterns for CPair’ at C; and Cs by duplicating and renaming the
existing ones for CPair. This way, we can avoid potential memory operations at
the cost of code duplication.

In fact, even the code duplication can be circumvented by introducing the no-
tion of basic blocks to the intermediate representation. Basic blocks allow us to
transfer control between different code segments meanwhile maintaining the same
local environment (local variables). This means, we can share code between the
different alternatives of a case expression. We still need to generate new alterna-
tives (new patterns), but their right-hand sides will be simple jump instructions to
the basic blocks of the original alternative’s right-hand side.

6.5 The undefined value

Another option would be to only dummify the locally dead fields. In other words,
instead of removing the field at the producer and restructuring the consumers, the
transformation could simply introduce a dummy value for that field. The dummy
value could be any placeholder with the same type as the locally dead field. For
instance, it could be any literal of that type. A more sophisticated solution would
be to introduce an undefined value. The undefined value is a placeholder as well,
but it carries much more information. By marking certain values undefined instead
of just introducing placeholder literals, we can facilitate other optimizations down
the pipeline. However, each undefined value has to be explicitly type annotated
for the heap points-to analysis to work correctly. Just like the other approach
mentioned earlier, this alternative also solves the problem of code duplication at
the cost of some modifications to the intermediate representation. Previously we
needed structural extensions facilitating code sharing (basic blocks), now we had
to introduce a new basic value (typed undefined).

862 P. Podlovics, Cs. Hruska, and A. Pénzes

7 Idris Front End

Currently, our compiler uses the Idris compiler as its front end. The infrastructure
can be divided into three components: the front end, that is responsible for generat-
ing GRIN IR from the Idris byte code; the optimizer, that applies GRIN-to-GRIN
transformations to the GRIN program, possibly improving its performance; and
the back end, that compiles the optimized GRIN code into an executable.

7.1 Front end

The front end uses the bytecode produced by the Idris compiler to generate the
GRIN intermediate representation. The Idris bytecode is generated without any
optimizations by the Idris compiler. The code generation from Idris to GRIN is
really simple, the difficult part of refining the original program is handled by the
optimizer.

7.2 Optimizer

The optimization pipeline consists of three stages, as can be seen in Figure 7.1.
In the first stage, the optimizer iteratively runs the so-called regular optimizations.
These are the program transformations described in Urban Boquist’s PhD the-
sis [5]. A given pipeline of these transformations are run until the code reaches a
fixed-point, and cannot be optimized any further. This set of transformation are
not formally proven to be confluent, so theoretically different pipelines can result
in different fixed-points'. Furthermore, some of these transformations can work
against each other, so a fixed-point may not always exist. In this case, the pipeline
can be caught in a loop, where the program returns to the same state over and over
again. Fortunately, these loops can be detected, and the transformation pipeline
can be terminated.

/ Regular opts.
GRIN code gen. Binary generation

iteratively

Regular opts.

Figure 7.1: Idris compilation pipeline

L Although, experiments suggest that these transformations are confluent.

A Modern Look at GRIN 863

Following that, in the second stage, the optimizer runs the dead data elimina-
tion pass. This pass can be quite demanding on both the memory usage and the
execution time due to the several data-flow analyses it requires, and the unrefined
implementation. As a consequence, the dead data elimination pass is executed only
a single time during the entire optimization process. Since the dead data elimination
pass can enable other optimizations, the optimizer runs the regular optimizations
a second time right after the DDE pass. This also means, that the liveness analysis
could collect more precise information about certain variables, which implies that
another pass of DDE could optimize the GRIN program even further. However, in
order to run the DDE pass multiple times its implementation has to be improved
(see section 9).

7.3 Back end

After the optimization process, the optimized GRIN code is passed onto the back
end, which then generates an executable using the LLVM compiler framework.
The input of the back end consists of the optimized GRIN code, the primitive
operations of Idris and a minimal runtime (the latter two are both implemented in
C). Currently, the runtime is only responsible for allocating heap memory for the
program, and at this point it does not include a garbage collector.

The first task of the back end is to compile the GRIN code into LLVM IR
code which is then optimized further by the LLVM Modular Optimizer [34]. Cur-
rently, the back end uses the default LLVM optimization pipeline. After that, the
optimized LLVM code is compiled into an object file by the LLVM Static Com-
piler [33]. Finally, Clang links together the object file with the C-implemented
primitive operations and the runtime, and generates an executable binary.

8 Results

In this section, we present the initial results of our implementation of the GRIN
framework. The measurements presented here can only be considered preliminary,
given the compiler needs further work to be comparable to systems like the Glasgow
Haskell Compiler or the Idris compiler [7]. Nevertheless, these statistics are still
relevant, since they provide valuable information about the effectiveness of the
optimizer.

8.1 Measured programs

The measurements were taken using the Idris front end and LLVM back end of
the compiler. Each test program — besides “Length” — was adopted from the
book Type-driven development with Idris [8] by Edwin Brady. These are small
Idris programs demonstrating a certain aspect of the language.

“Length” is an Idris program, calculating the length of a list containing the
natural numbers from 1 to 100. This example was mainly constructed to test how

864 P. Podlovics, Cs. Hruska, and A. Pénzes

the dead data elimination pass can transform the inner structure of a list into a
simple natural number (see Section 6).

8.2 Measured metrics

Each test program went through the compilation pipeline described in Section 7,
and measurements were taken at certain points during the compilation. The pro-
grams were subject to three different types of measurements.

e Static, compile time measurements of the GRIN code.
e Dynamic, runtime measurements of the interpreted GRIN code.
e Dynamic, runtime measurements of the executed binaries.

The compile time measurements were taken during the GRIN optimization
passes, after each transformation. The measured metrics were the number of
stores, fetches and function definitions. These measurements ought to illus-
trate how the GRIN code becomes more and more efficient during the optimiza-
tion process. The corresponding diagrams for the static measurements are Dia-
grams 8.0b to 8.0b. On the horizontal axis, we can see the indices of the trans-
formations in the pipeline, and on the vertical axis, we can see the number of the
corresponding syntax tree nodes. Reading these diagram from left to right, we can
observe the continuous evolution of the GRIN program throughout the optimization
process.

The runtime measurements of the interpreted GRIN programs were taken at
three points during the compilation process. First, right after the GRIN code is
generated from the Idris byte code; second, after the regular optimization passes;
and finally, at the end of the entire optimization pipeline. As can be seen on
Figure 7.1, the regular optimizations are run a second time right after the dead data
elimination pass. This is because the DDE pass can enable further optimizations.
To clarify, the third runtime measurement of the interpreted GRIN program was
taken after the second set of regular optimizations. The measured metrics were the
number of executed function calls, case pattern matches, stores and fetches. The
goal of these measurements is to compare the GRIN programs at the beginning and
at the end of the optimization pipeline, as well as to evaluate the efficiency of the
dead data elimination pass. The corresponding diagrams for these measurement
are Diagrams 8.0a to 8.0a.

The runtime measurements of the binaries were taken at the exact same points
as the runtime measurements of the interpreted GRIN code. Their goal is simi-
lar as well, however they ought to compare the generated binaries instead of the
GRIN programs. The measured metrics were the size of the binary, the number of
executed user-space instructions, stores, loads, total heap memory usage (in bytes)
and execution speed (in milliseconds)®. The binaries were generated by the LLVM
back end described in Section 7.3 with varying optimization levels for the LLVM
Optimizer. The optimization levels are indicated in the corresponding tables: Ta-

1The execution speed was measured by averaging the result of 1000 measurements.

A Modern Look at GRIN 865

bles 8.1 to 8.4. Where the optimization level is not specified, the default, 00 level
was used. As for the LLVM Static Compiler and Clang, the most aggressive, 03
level was set for all the measurements.

There are also measurements for the binaries generated by the Idris compiler.
These were compiled using the highest (03) optimization level and the C back end.
For these executables, the size is not included, because Idris compiles a full-fledged
runtime system into the binary. Since our Idris back end only has a mnimal runtime
yet, the sizes of the binaries are not comparable. However, all other metrics are,
because during these measurements, Idris’ garbage collector was never triggered.
This can be accomplished by configuring the initial size of the heap memory through
the runtime system of Idris. This allows us to compare Idris and GRIN binaries
despite the yet non-implemented garbage collector for GRIN.

8.3 Measurement setup

All the measurements were performed on a machine with Intel(R) Core(TM)
i7-4710HQ CPU @ 2.50GHz processor and Ubuntu 18.04 bionic operating sys-
tem with 4.15.0-46-generic kernel. The Idris compiler used by the front-end is
of version 1.3.1, and the LLVM used by the back end is of version 7.

The actual commands for the binary generation are detailed in Program code 8.1.
That script has two parameters: N and 11vm-in. N is the optimization level for the
LLVM Optimizer, and 11vm-in is the LLVM program generated from the optimized
GRIN code.

1 opt-7 -ON <1llvm-in> -o <llvm-out>
2 1lc-7 -03 -relocation-model=pic -filetype=obj -o <object-file>
3 clang-7 -03 prim_ops.c runtime.c <object-file> -s -o <executable>

Program code 8.1: Commands for binary generation

As for the runtime measurements of the binary, we used the perf tool, the
runtime of Idris and the minimal runtime of GRIN. The perf command can be
seen in Program code 8.2 which was used to count the number of executed user
space instructions, stores, loads and to measure the execution speeds. The runtimes
were used to determine the memory usage, and to make sure that Idris’ garbage
collector is never triggered.

1 perf stat -e cpu/mem-stores/u -e "r81d0:u" -e instructions:u
— <executable>

Program code 8.2: Command for runtime measurements of the binary

866 P. Podlovics, Cs. Hruska, and A. Pénzes

8.4 Length

The first thing we can notice on the runtime statistics of the GRIN code, is that
the GRIN optimizer significantly reduced the number of heap operations, as well
as the number of function calls and case pattern matches. Moreover, the DDE pass
could further improve the program’s performance by removing additional heap
operations.

The compile time statistics demonstrate an interesting phenomena. The number
of stores and function definitions continuously keep decreasing, but at a certain
point, the number of fetches suddenly increase by a relatively huge margin. This
is due to the fact that the optimizer usually performs some preliminary transfor-
mations on the GRIN program before inlining function definitions. This explains
the sudden rise in the number of fetches during the early stages of the optimiza-
tion process. Following that spike, the number of heap operations and function
definitions gradually decrease until the program cannot be optimized any further.

Diagram 8.1: Length - GRIN statistics

(a) Runtime (b) Compile time
100000 300
250
10000 200
Py
.°_°| E:J m 150
- -
1000 = o o
100
100
From Idris After regular opts. After DDE 0

YO OLA D p PR DA RS DS S
® Function calls = Cases
m Stores ® Fetches —— Stores — Fetches — Definitions

The runtime statistics for the executed binary are particularly interesting. First,
observing the 00 statistics, we can see that the regular optimizations substantially
reduced the number of executed instructions and memory operations, just as we
saw with the interpreted GRIN code. Also, it is interesting to see that the DDE
optimized binary did not perform any better than the regularly optimized one;
however, its size decreased by more than 20%.

We can also notice the huge memory usage difference between the Idris program
and the GRIN programs that were only optimized by LLVM but not by GRIN. This
because the rather simple code generation scheme of the Idris front end as discussed
in 7.1. However, after running the optimizations, the optimized GRIN programs
consume considerably less memory, and have better execution times as well.

It is worth noting that the Idris binary executed significantly more instructions,
and performed a lot more stores and loads than the unoptimized GRIN binary, yet

A Modern Look at GRIN 867

it had a better execution time. The excessive number of memeory operations can be
explained by Idris’ calling convention. The function arguments are always psuhed
onto the stack by the caller, and popped by the callee. This results in a lot of stack
memory stores and loads which are reflected in the measurements. However, since
the stack memory operations are quite fast, they have no significant impact on the
execution times.

As for the high number of executed instructions, we can only hypothesize that
it’s caused by the Idris runtime system. Idris uses the runtime system to allocate
memory through multiple function calls. In GRIN, the memory operations are kind
of ”inlined” into the generated LLVM code. This might mean that the binaries
generated by the Idris compiler could execute a lot more instructions for every
memory operation.

Table 8.1: Length - CPU binary statistics

[Stage H Size ‘ Instructions | Stores Loads | Memory | Time |
idris - 2822725 | 366880 | 1064977 9440 | 0.838
normal-00 23928 769588 | 212567 | 233305 | 674080 | 1.993
normal-03 23928 550065 | 160252 | 170202 | 674080 | 1.056
regular-opt || 19832 257397 | 14848 45499 8200 | 0.463
dde-00 15736 256062 | 14243 45083 5776 | 0.525
dde-03 15736 284970 | 33929 54555 5776 | 0.461

Also, it should be pointed out that the aggressively optimized DDE binary
performed much worse than the 00 version. This is because the default optimization
pipeline of LLVM is designed for the C and C++ languages. As a consequence, in
certain scenarios it may perform poorly for other languages. In the future, we plan
to construct a better LLVM optimization pipeline for GRIN.

8.5 Exact length

For the GRIN statistics of “Exact length”, we can draw very similar conclusions as
for “Length“. However, closely observing the statistics, we can see, that the DDE
pass completely eliminated all heap operations from the program. In principle, this
means, that all the variables can be put into registers during the execution of the
program. In practice, some variables will be spilled onto stack, but the heap will
never be used.

The binary statistics show that the optimized GRIN programs really do not use
any heap memory. As for the other measured metrics, we do not see any major
improvements.

868 P. Podlovics, Cs. Hruska, and A. Pénzes

Diagram 8.1: Exact length - GRIN statistics

(a) Runtime (b) Compile time
350 160
300 140
250 120
200 100
150 80
o 60
100
~
g 3 @
50 = =
20
0 = ﬁ—L
From Idris After regular opts. After DDE 0

. Yool PP LD DRSS
¥ Function calls = Cases

W Stores W Fetches —— Stores — Fetches — Definitions

Table 8.2: Exact length - CPU binary statistics

Stage H Size ‘ Instructions ‘ Stores ‘ Loads ‘ Memory | Time
idris - 260393 | 23320 | 68334 1888 | 0.516
normal-00 18800 188469 | 14852 | 46566 4112 | 0.464
normal-03 14704 187380 | 14621 | 46233 4112 | 0.455
regular-opt || 10608 183560 | 13462 | 45214 112 | 0.451
dde-00 10608 183413 | 13431 | 45189 0 | 0.453
dde-03 10608 183322 | 13430 | 44226 0 | 0.448

8.6 Type level functions

The GRIN statistics for this program may not be particularly interesting, but they
demonstrate that the GRIN optimizations work for programs with many type level
computations as well.

The binary statistics look promising for “Type level functions”. Almost all
measured performance metrics are strictly decreasing, which suggests that even
the default LLVM optimization pipeline can work for GRIN. Also, the optimized
GRIN programs use almost half as much memory as the Idris program.

A Modern Look at GRIN

Diagram 8.1: Type level functions - GRIN statistics

(a) Runtime

3000

2500

2000

1500

1000

1940

500

1183

From Idris After regular opts.

M Function calls = Cases

W Stores

Table 8.3: Type level functions - CPU binary statistics

M Fetches

1183

After DDE

1400

1200

1000

800

600

400

200

- T —

0

(b) Compile time

869

YEPPXPPEPRRARD ORI SO

—— Stores — Fetches — Definitions

f Stage H Size ‘ Instructions ‘ Stores ‘ Loads | Memory | Time
idris - 525596 | 70841 | 158363 29816 | 0.637
normal-00 65128 383012 | 49191 | 86754 44212 | 0.581
normal-03 69224 377165 | 47556 | 84156 44212 | 0.536
regular-opt || 36456 312122 | 34340 | 71162 15412 | 0.516
dde-00 32360 312075 | 34331 | 70530 15236 | 0.532
dde-03 28264 309822 | 33943 | 70386 15236 | 0.513

8.7 Reverse

Unlike, the previous programs, “Reverse” could not have been optimized by the
dead data elimination pass. The pass had no effect on it. Fortunately, the regular
optimizations alone could considerably improve both the runtime and compile time
metrics of the GRIN code.

The binary statistics are rather promising. The binary size decreased by a
substantial margin and the number of executed memory operations has also been
reduced by quite a lot. Furthermore, the optimized GRIN programs use less than
one third of the memory that the Idris program uses.

870 P. Podlovics, Cs. Hruska, and A. Pénzes

Diagram 8.1: Reverse - GRIN statistics

(a) Runtime (b) Compile time
1400 350

1200 300

1000 250

800 200

600
150

" o —

From Idris After regular opts.

400

200

&

] N O
W Function calls ' Cases A A A A

W Stores ¥ Fetches ——Stores — Fetches — Definitions

Table 8.4: Reverse - CPU binary statistics

[Stage H Size ‘ Instructions ‘ Stores ‘ Loads | Memory | Speed |
idris - 350215 | 37893 | 101040 7656 | 0.576
normal-00 27112 240983 | 25018 | 58253 18640 | 0.498
normal-03 31208 236570 | 23808 | 56617 18640 | 0.481
regular-opt-00 || 14824 222085 | 19757 | 53125 2384 | 0.467

| regular-opt-03 || 14824 220837 | 19599 | 52827 2384 | 0.454 |

8.8 General conclusions

In general, the measurements demonstrate that the GRIN optimizer can consid-
erably improve the performance metrics of a given GRIN program. The regular
optimizations themselves can usually produce highly efficient programs, however,
in certain cases the dead data elimination pass can facilitate additional optimiza-
tions, and can further improve the performance.

The results of the binary measurements indicate that the GRIN optimizer per-
forms optimizations orthogonal to the LLVM optimizations. This supports the
motivation behind the framework, which is to transform functional programs into
a more manageable format for LLVM by eliminating the functional artifacts. This
is backed up by the fact, that none of the fully optimized normal programs could
perform as well as the regularly or DDE optimized ones. Also, it is interesting to
see, that there is not much difference between the 00 and 03 default LLVM opti-
mization pipelines for GRIN. This motivates further research to find an optimal
pipeline for GRIN.

Finally, it is rather surprising to see, that the dead data elimination pass did not
really impact the performance metrics of the executed binaries, but it significantly

A Modern Look at GRIN 871

reduced their size. Firstly, it might be unorthodox to expect speedup from dead
code elimination; however, dead data elimination does not only remove unused
code, but it transforms the underlying data representations that the program uses.
For instance, it could reduce the size of nodes such that they fit into fewer registers,
which could help the register allocator, and thus improve the performance of the
program. Also, it could remove the elements of a list, leaving only its spine, thus
reducing the initial number of heap operations required to allocate the list. Finally,
it could help the garbage collector by not allocating unused heap objects as well as
reducing the size of the memory map it has to traverse.

Not seeing any performance gains can be explained by the fact, that most of
these programs are quite simple, and do not contain any compound data structures.
Dead data elimination can shine when a data structure is used in a specific way, so
that it can be locally restructured for each use site. However, when applying it to
simple programs, we can obtain sub par results.

Nevertheless, the binary size reduction is still notable, and demonstrates that
even for simple programs, dead data elimination can still have a significant impact.

9 Future Work

Currently, the framework only supports the compilation of Idris, but we are working
on supporting Haskell by integrating the Glasgow Haskell Compiler as a new front
end. As of right now, the framework can generate GRIN IR code from GHC’s STG
representation, but the generated programs still contain unimplemented primitive
operations. The main challenge is to somehow handle these primitive operations.
In fact, there is only a small set of primitive operations that cannot be trivially
incorporated into the framework, but these might even require extending the GRIN
IR with additional built-in instructions.

Besides the addition of built-in instructions, the GRIN intermediate represen-
tation can be improved further by introducing the notion of function pointers and
basic blocks. Firstly, the original specification of GRIN does not support modular
compilation. However, extending the IR with function pointers can help to achieve
incremental compilation. Each module could be compiled separately with indirect
calls to other modules through function pointers, then by using different data-flow
analyses and program transformations, all modules could be optimized together
incrementally. In theory, if the entire program is available for analysis at compile
time, incremental compilation could produce the same result as whole program
compilation. In practice, the LLVM compiler already uses link-time optimizations
which implement a very similar idea.

Secondly, the original GRIN IR has a monadic structure which can make it
difficult to analyze and transform the control flow of the program. In certain
cases it would be beneficial to explicitly transfer control from one program point
to another. There two main use cases for this: code sharing (see section 6.4) and
explicit tail recursion. Fortunately, replacing the monadic structure of GRIN with
basic blocks can resolve both of these issues.

872 P. Podlovics, Cs. Hruska, and A. Pénzes

Whole program analysis is a powerful tool for optimizing compilers, but it can
be quite demanding on execution time. This being said, there are certain techniques
to speed up these analyses. The core of the GRIN optimizer is the heap points-to
analysis, an Andersen-style inclusion based pointer analysis [1]. This type of data-
flow analysis is very well researched, and there are several ways to improve the
algorithm’s performance. Firstly, cyclic references could be detected and eliminated
between data-flow nodes at runtime. This optimization allows the algorithm to
analyze millions of lines of code within seconds [14]. Secondly, the algorithm itself
could be parallelized for both CPU and GPU [20], achieving considerable speedups.
Furthermore, some alternative algorithms could also be considered. For example,
Steengaard’s unification based algorithm [28] is a less precise analysis, but it runs
in almost linear time. It could be used as a preliminary analysis for some simple
transformations at the beginning of the pipeline. Finally, Shapiro’s algorithm [26]
could act as a compromise between Steengaard’s and Andersen’s algorithm. In
a way, Shapiro’s analysis lies somewhere between the other two analyses. It is
slower than Steengaard’s, but also much more precise; and it is less precise than
Andersen’s, but also much faster.

Another way to improve on the execution time of the analyses is to drastically
improve their implementations. Currently, the analyses are implemented manually
as abstract interpretations, and are not optimized further in any way. However,
they could reimplemented in well-established, industrial-strength program analysis
frameworks. One option would be the Soufflé Datalog compiler [16]. It uses Datalog
to define logic-based program analyses, then compiles them to highly-parallelized
C++ code. Soufflé facilitates implementing highly scalable data-flow analyses for
whole program compilation.

10 Conclusions

In this paper we presented a modern look at GRIN, an optimizing functional lan-
guage back end originally published by Urban Bouquist.

We gave an overview of the GRIN framework, and introduced the reader to
the related research on compilers utilizing GRIN and whole program optimization.
Then we gave an extension for the heap points-to analysis with more accurate basic
value tracking. This allowed for defining a type inference algorithm for the GRIN
intermediate representation, which then was used in the implementation of the
LLVM back end. Following that, we detailed the dead data elimination pass and the
required data-flow analyses, originally published by Remi Turk. We also presented
an extension of the dummification transformation which is compatible with the
typed representation of GRIN by extending the IR with the undefined value.
Furthermore, we gave an alternative method for transforming producer-consumer
groups by using basic blocks. Our last contribution was the implementation of the
Idris front end.

We evaluated our implementation of GRIN using simple Idris programs taken
from the book Type-driven development with Idris [8] by Edwin Brady. We mea-

A Modern Look at GRIN 873

sured the optimized GRIN programs, as well as the generated binaries. It is impor-
tant to note, that the measurements presented in this paper can only be considered
preliminary, given the compiler needs further work to be comparable to other sys-
tems. Nevertheless, these statistics are still relevant, since they provide valuable
information about the effectiveness of the optimizer. The results demonstrate that
the GRIN optimizer can significantly improve the performance of GRIN programs.
Furthermore, they indicate that the GRIN optimizer performs optimizations or-
thogonal to the LLVM optimizations, which supports the motivation behind the
framework. As for dead data elimination, we found that it can facilitate other trans-
formations during the optimization pipeline, and that it can considerably reduce
the size of the generated binaries.

All things considered, the current implementation of GRIN brought adequate
results. However, there are still many promising ideas left to research.

References

[1] Andersen, Lars Ole. Program analysis and specialization for the C program-
ming language. PhD thesis, University of Cophenhagen, 1994.

[2] Augustsson, Lennart. Haskell B. User Manual, 1992. Programming Method-
ology Group Report, Dept. of Comp. Sci, Chalmers Univ. of Technology,
Goteborg, Sweden.

[3] Barendregt, Henk P. Lambda calculi with types. In Handbook of logic in com-
puter science, Volume 2, pages 117-309. Oxford: Clarendon Press, 1992.

[4] Berardi, Stefano. Towards a mathematical analysis of the Coquand-Huet cal-
culus of constructions and the other systems in Barendregt’s cube. Technical
report, Carnegie-Mellon University (USA) and Universita di Torino (Italy),
1988.

[5] Boquist, Urban. Code Optimisation Techniques for Lazy Functional Lan-
guages. PhD thesis, Chalmers University of Technology and Goéteborg Uni-
versity, 1999.

[6] Boquist, Urban and Johnsson, Thomas. The GRIN project: A highly op-
timising back end for lazy functional languages. In Selected Papers from
the 8th International Workshop on Implementation of Functional Languages,
IFL 96, pages 58-84, Berlin, Heidelberg, 1997. Springer-Verlag. URL: http:
//dl.acm.org/citation.cfm?id=647975.743083.

[7] Brady, Edwin. Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation. Journal of Functional Programming,
23(5):552-593, 2013. DOI: 10.1017/S095679681300018X.

[8] Brady, Edwin. Type-driven development with Idris. Manning Publications
Company, 2017.

874

(9]

[10]

[15]
[16]

[17]

[18]

[19]

[20]

P. Podlovics, Cs. Hruska, and A. Pénzes

David Himmelstrup. LLVM Haskell Compiler. URL: http://1lhc-compiler.
blogspot.com/.

Dijkstra, Atze, Fokker, Jeroen, and Swierstra, S. Doaitse. The architecture
of the Utrecht Haskell Compiler. In Proceedings of the 2Nd ACM SIGPLAN
Symposium on Haskell, Haskell '09, pages 93-104, New York, NY, USA, 2009.
ACM. DOI: 10.1145/1596638.1596650.

Douma, Christof. Exceptional GRIN. Master’s thesis, Utrecht University,
Institute of Information and Computing, 2006.

Fluet, Matthew and Weeks, Stephen. Contification Using Dominators. SIG-
PLAN Not., 36(10):2-13, 2001. DOI: 10.1145/507669.507639.

Hall, Cordelia V., Hammond, Kevin, Partain, Will, Peyton Jones, Simon L.,
and Wadler, Philip. The Glasgow Haskell Compiler: A Retrospective. In Pro-
ceedings of the 1992 Glasgow Workshop on Functional Programming, pages
62-71, London, UK, 1993. Springer-Verlag. URL: http://dl.acm.org/
citation.cfm?id=647557.729914.

Hardekopf, Ben and Lin, Calvin. The ant and the grasshopper: fast and
accurate pointer analysis for millions of lines of code. ACM SIGPLAN Notices,
42(6):290-299, 2007. DOI: 10.1145/1273442.1250767.

John Meacham. Jhc. URL: http://repetae.net/computer/jhc/jhc.shtml.

Jordan, Herbert, Scholz, Bernhard, and Suboti¢, Pavle. Soufflé: On synthe-
sis of program analyzers. In Chaudhuri, Swarat and Farzan, Azadeh, editors,
Computer Aided Verification, pages 422-430, Cham, 2016. Springer Interna-
tional Publishing.

Lattner, Chris and Adve, Vikram. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. In CGO, pages 7588, San
Jose, CA, USA, 2004.

Leibig, Brian Andrew. An LLVM Back-end for MLton. Technical report, De-
partment of Computer Science, B. Thomas Golisano College of Computing and
Information Sciences, 2013. URL: https://www.cs.rit.edu/~mtf/student-
resources/20124_leibig_msproject.pdf.

Liu, Hai, Glew, Neal, Petersen, Leaf, and Anderson, Todd A. The Intel Labs
Haskell Research Compiler. SIGPLAN Not., 48(12):105-116, 2013. DOI:
10.1145/2578854.2503779.

Mendez-Lojo, Mario and Burtscher, Martin and Pingali, Keshav. A GPU
implementation of inclusion-based points-to analysis. In Proceedings of the
17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP’12), pages 107-116. ACM, 2012. DOI: 10.1145/2145816.
2145831.

A Modern Look at GRIN 875

[21]

[30]

[31]

[32]

Okabe, Kiwamu and Muranushi, Takayuki. Systems Demonstration: Writing
NetBSD Sound Drivers in Haskell. SIGPLAN Not., 49(12):77-78, 2014. DOI:
10.1145/2775050.2633370.

Petersen, Leaf, Anderson, Todd A., Liu, Hai, and Glew, Neal. Measuring the
Haskell Gap. In Proceedings of the 25th Symposium on Implementation and
Application of Functional Languages, IFL ’13, pages 61:61-61:72, New York,
NY, USA, 2014. ACM. DOI: 10.1145/2620678.2620685.

Petersen, Leaf, Orchard, Dominic, and Glew, Neal. Automatic SIMD Vec-
torization for Haskell. SIGPLAN Not., 48(9):25-36, September 2013. DOI:
10.1145/2544174.2500605.

Peyton Jones, Simon. The Implementation of Functional Programming Lan-
guages. Prentice Hall, 1987. URL: https://www.microsoft.com/en-
us/research/publication/the-implementation-of-functional-
programming-languages/.

Plasmeijer, Rinus and Eekelen, Marko Van. Functional Programming and Par-
allel Graph Rewriting. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1st edition, 1993.

Shapiro, Marc and Horwitz, Susan. Fast and accurate flow-insensitive points-
to analysis. In Proceedings of the 2/th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 1-14. ACM, 1997. DOI: 10.
1145/263699.263703.

Shea, Ryan. Alternate control-flow analyses for defunctionalization in the
MLton Compiler, 2016.

Steensgaard, Bjarne. Points-to analysis in almost linear time. In Proceedings of
the 28rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 32—41. ACM, 1996. DOI: 10.1145/237721.237727.

Sulzmann, Martin, Chakravarty, Manuel MT, Jones, Simon Peyton, and Don-
nelly, Kevin. System F with type equality coercions. In Proceedings of the 2007
ACM SIGPLAN international workshop on Types in languages design and im-
plementation, pages 53-66. ACM, 2007. DOI: 10.1145/1190315.1190324.

Terlouw, Jan. FEen nadere bewijstheoretische analyse van GSTT’s, 1989.
Manuscript (in Dutch).

Turk, Remi. A modern back-end for a dependently typed language. Master’s
thesis, Universiteit van Amsterdam, 2010.

Weeks, Stephen. Whole-program Compilation in MLton. In Proceedings of the
2006 Workshop on ML, ML 06, pages 1-1, New York, NY, USA, 2006. ACM.
DOI: 10.1145/1159876.1159877.

876 P. Podlovics, Cs. Hruska, and A. Pénzes

[33] LLVM Static Compiler. URL: https://11lvm.org/docs/CommandGuide/1lc.
html.

[34] Modular LLVM Analyzer and Optimizer. http://1lvm.org/docs/
CommandGuide/opt.html.

Acta Cybernetica 25 (2022) 877-895.

Visualisation of Jenkins Pipelines

Adém Révész® and Norbert Pataki®

Abstract

Continuous Integration (CI) is an essential approach in modern software
engineering. CI tools help merging the recent commits from the developers,
thus the bugs can be realized in an early phase of development and integration
hell can be avoided. Jenkins is the most well-known and most widely-used CI
tool.

Pipelines become first-class citizen in Jenkins 2. Pipelines consist of
stages, such as compiling, building Docker image, integration testing, etc.
However, comprehensive Jenkins pipelines are hard to see through and under-
stand. In this paper, we argue for a modern visualisation of Jenkins pipelines.
We present our solution for making Jenkins pipelines comprehensible on the
dashboard.

Keywords: Jenkins, pipeline, visualisation, CI

1 Introduction

We think most of us still remember those excuses from the dark ages on failing
production releases which sounded like “It has been working on my workstation”.
Maybe fresh starters also facing these nowadays before getting introduced to the
magical realms of continuous integration and continuous delivery tools, the heroes
of the software development lifecycle, the saviours of software quality.

As the time being developer community is transforming into DevOps commu-
nity [10]. A community where developers and administrators live together, learning
from each-other and devote themselves to the whole software development lifecycle
from the very first stages where design changes being introduced to the production
release and monitoring. The common focus is on software quality and productivity.
These collaborations made developers and systems engineers to think together on
patterns, solutions and tools to streamline development, testing, delivery, logging
and monitoring. Mentioning a few of their finest productions are infrastructure as
code which enables us to create declarative scripts for infrastructure creation, ini-
tialisation and management, able to take under version control. Containerisation

?Department of Programming Languages and Compilers, E6tvos Lorand University, Hungary
YE-mail: adamrevesz@gmail.com, ORCID: 0000-0002-8375-7767
¢E-mail: patakino@elte.hu, ORCID: 0000-0002-7519-3367

DOI: 10.14232/actacyb.284211

878 Addm Révész and Norbert Pataki

and orchestration platforms enable us to compactly pack applications and define
runtime interfaces between them [1]. Remote execution and configuration manage-
ment systems like Ansible which gives us the ability to declare deployments, config-
uration upgrades and so on [5]. Logging and monitoring systems like Prometheus
and Grafana to for metrics export and visualisation. Elasticsearch, Logstash and
Kibana stack for application and system log gathering and analysing [7]. Both of
them including alarm systems for multiple level of events to notify teams when a
future failure is predicted or in worse case a failure has happened. Remote trig-
gered, most of the time VCS change triggered static analyser tools like SonarCube
and CodeChecker to detect code vulnerabilities, smells, anti-patterns, showing test
coverage for each version of the product and more. Code community platforms
like GitHub where open source developers can work together, share their code and
experiences [3].

We could continue this list with so much more excellent tools make our daily
work productive, developments well trackable and leverage quality [16]. All the
tools listed are very important in the SDLC of services and microservices the most
of the industry works with nowadays. All linked by one important type of tools,
the CI/CD tools [12].

Continuous Integration (CI) and Continuous Delivery (CD) systems get trig-
gered on version control system changes, run compilation and builds, run tests,
passes to static analysers then tag and publishes artifacts with results attached,
deploy environments and artifacts into them. Delivers the product to every en-
vironment, let it be integration or manual testing, even production servers, app
stores, etc. [15]

Jenkins is one of the most popular CI tools of choice [6]. Even though it has
recently added pipeline view in the reimagined UI called Blue Ocean, it still misses
some points when it comes down to intuition compared to e.g. Microsoft Azure
DevOps pipeline view. We think such tool is aimed to both tech members and
management ones of a software team. A more intuitive UI could ease the discussions
over processes with clients and even inside the team.

In this paper, we are talking about visualisation of CI/CD automated workflows
— so called pipelines, discussing visual elements, inspecting and comparing existing
solutions of multiple vendors, introducing our take on Jenkins pipeline visualisation
concept through our proof of concept implementation.

The rest of this paper is organized as follows. In Section 2, we present the
approach of CI and CD. We consider how the CI/CD tools can be utilized by
non-tech members in Section 3. The existing solutions are discussed in Section 4.
We present our approach in Section 5. We demonstrate our design and legend in
Section 6. Finally, this paper concludes in Section 7.

Visualisation of Jenkins Pipelines 879

2 Continuous Integration and Continuous Deliv-
ery

2.1 Continuous Integration

Continuous Integration itself is a group of tools and workflows allowing multiple
developers/teams to work on multiple features or fixes concurrently on the same
product without violating product global quality contracts [14].

The mentioned contracts could be defined by sets semantic rules, test plans,
automated tests including unit, property, regression and UI tests, code quality
metrics [13].

The evaluation of these compliances takes longer time as the complexity of the
product grows. The complexity is a multidimensional measure including (but not
limited to)

e number of components (could be separated into artifacts)
e number of features and their tests

e number of supported platforms - environments

e number of concurrent work in progress versions

e number of build, test, analysis (...) tools used for artifact creation validation
and verification

Most of the cases, the human resource cost is the largest factor of a software
project budget. Making every team member locally run integration tests before
commiting changes to the source is inefficient, not mentioning the decrease of de-
veloper experience (DX) which causes decreasing productivity of each individual
developer, which again shows inefliciency [4].

A continuous integration tool or system satisfies the following requirements:

e isolated workspace
e programmable with one or more scripting language
e has secure storage to store credentials for- and has access to

— source code repositories
— artifactory repositories
— integration environments
— auto testing systems

— static analysers
e build and environments matching the supported env(s)

— build tools

880 Addm Révész and Norbert Pataki

— platform

— third party resources

e interface exposing progress

has logs available for each run

publishes results
e cnsures transparency
e has configurable notification system

In modern terms of continuous integration systems, a workflow executed by CI
systems is called pipeline [8].

Pipelines can be defined using user interfaces provided by the CI tool, or editing
the pipeline definition itself as code.

Pipelines can be written in script or builder languages e.g. Bash, Maven or
Gradle or CI specific languages (mainly domain specific languages over existing
languages). Modern CI tools support declarative pipeline definitions which are
cleaner, more expressive (e.g. Jenkinsfile). Strategies on where to store pipeline
definitions may vary depending on software project size.

2.2 Continuous Delivery

Continuous delivery is — nomen est omen — about delivering the product of software
project(s) to multiple environments [9]. Continuous delivery is often seen along
continuous integration since both of them serving the automation purpose and
work with the same exact projects.

In most cases, CI and CD tasks are executed by the same system. The CD
often picks up the workflow where CI left but in the majority of the cases there is
no clean cut between CI and CD since e.g. in the web service development fields
the integration test executed on separate — integration — environment(s), but the
deployment of the product to the particular system is the job of CD systems [2].

A continuous delivery tool or system satisfies the same requirements as CI tools
excluding the following:

e ability and tools for building the product
e has access and credentials for

— auto testing systems

— static analysers
In the same time, has additional requirements:
e has access and credentials for:

— integration environment

Visualisation of Jenkins Pipelines 881

— all other target environments and artifact repositories

Continuous integration and continuous delivery systems are making daily work
more effective, give team members flow experience by enabling them to focus better
on their tasks instead of manually doing all the work described above or waiting
for the results between all the iterations made.

3 Further Potentials in CI/CD Tools

Inspecting the core capabilities of the CI tools what can be observed is the tar-
get audience is the tech members of software project teams. Tech members are
testers, developers, administrators, architects, anyone who’s field of work is related
to computer science or software engineering.

Having a further consideration these tools could be useful for non-tech members
also. There should be a method, an interface of communicating the useful infor-
mation of the pipelines. This kind of information could be shared on as natural
interface as it can be, so the ideal choice is a graphical user interface (GUI), a
visualisation of the pipelines.

Of course, we are not inventing the idea of GUIs nor the visualisation of pipelines
since there are already popular implementations in the industry but we are propos-
ing a general concept of this kind of visuals, and of course creating a proof of
concept implementation for the widely applied open source CI/CD tool, Jenkins.

3.1 Essential Definitions on Pipelines

Observing pipelines, let them be either CI or CD pipelines the pipeline means
a sequence of processes triggered by source code changes in VCS repositories or
manually. These processes can be executed on multiple systems — build or release
tools — yielding state changes and artifacts if any.

A pipeline script is a piece of code interpreted by the observed pipeline executor
system — build system. Each step of the pipeline is represented as commands in
the pipeline script, optionally broken into stage.

A stage is a named sequence of commands. Mostly used for leveraging asso-
ciation between its commands, representing the stage as a single step in a higher
abstraction layer. Stage as a meta-information can and should be used by visualisa-
tion tools. Progress of each stage could be represented on a dynamic visualisation
as the ratio between finished and yet to be completed commands of the actual
stage.

A command can be a pipeline variable declaration and definition (functions
included), function and shell invocation.

A job marks an execution instance of a pipeline, most commonly identified by
the pipeline identifier () and an incremented integer (n), representing the nth run
of x pipeline.

882 Addm Révész and Norbert Pataki

3.2 Useful Information

Let us consider the following team members as non-tech users are interested in
pipelines:

e project managers
e delivery managers
e SCRUM masters

e business analysts

e product owners

The assumption regarding the above listed members have been introduced to flow
charts, business process management visualisations come natural.

Based on the assumed knowledge of the non-tech members their common re-
quirements against a pipeline visualization could be the display of the following
aspects:

e static elements:

— stages of execution

count of steps in each stage

average time of each stage execution

— indicators of manual approval on stages

indicators of (quality) gates if any on each stage

— indicator of relation between stages (defining order)
e dynamic elements:

— progress of each stage

— indicators of active stages

— actual time of execution

— indicator of successful stages

— indicators of failed stages

— indicators of satisfied quality gates

— indicators of unsatisfied quality gates

— indicators of manually approved stages

— indicators of manually disapproved stages
— indicator of manual abortion

— indicator of termination

Visualisation of Jenkins Pipelines 883

4 Existing Solutions

4.1 GitLab CI

GitLab is a popular Git server implementation which evolved in the years and now
contains multiple collaboration and flow tools. GitLab can be self hosted and offers
hosting solution also [17]. It is a popular choice for small projects.

GitLab introduced its own CI tool called GitLab CI. Each project can define
declarative pipelines in their source code repository written in YAML.

GitLab CI can define conditions as gates for stages but as the time being this

paper written it has not developed manual approval of stages yet.
GitLab CI visual dashboard shows:

e stages

all steps in stages
e indicators of progress

e indicators of success or failure of steps

This dashboard shows too much detail for a non-tech user even though those
tasks can be groupped. Most of them are not interested in this level of details
rather just stage level.

4.2 Microsoft Azure DevOps Pipelines

Microsoft Azure DevOps Pipelines is a great tool for creating CI/CD pipelines. This
product is Azure hosted and has limited resources in free tier. The main reason of
being listed discussed this section is the intuitive, well-designed, elegant Ul it has.
Microsoft clearly shows its experience in making business and development tools.
The UI (Figure 1) shows:

e artifacts being deployed

e source revision being used

e all stages

e progress of running stage (Ring 1c, circle progress on the bottom)

e succeeded stage (Ring la, green tick and label)

e partly succeeded stage (Ring 1b, red warning icon and label)

o failed stage (Ring 1b - Test, red x and label)

e manual pre-approved stage (Ring la, human siluette with tick on the left)
o satisfied precondition of stage (Ring la, green gate on the left)

e pending manual approval (Ring la Test, blue action button with tick)

Note the UI applies colors on the top of each stage ’cards’ indicating the state.

-

Adam Révész and Norbert Pataki

884

P

PP ION @~
ez buy \ 9)

—]

dRH @

pako|dap 10N @
153 -2 Bury

Ef5EL

1 - 3
b sso® o

#EDAN Podd
£/7 350U
Joug | 1| IeUY
wy oy ssauboud u) <
2|, Bury

* WY LOELL BLOZ/ZZIG uo

PRIE) ¥iEL 51591 POdd uny
o | pajes X
-4 153 - | Bury
,._.,

WY 0L L §10T/TL/5 vo
PRHIT, 5D |

papascons Ajeed
q| Buy

anouddy .~

SEUNUIL 7 Sa)

£y @ uo

[eacudde buipuad <
@ 153] B Bury

WY LOFLL §L02/22/5 ve

papaamIng A
el Bury

sidmnw saouddy’

SJUBIUOIAUT

o

~ fojdag

~ §-3583)3Y ¢ =jepdn pold - Isea3y 4

Rsew A
SEISIE00
25e2I OSA™

&

emew g
L'22E0BL0Z RIS
-35E3130 OSA
12-85€3(84 OSA™

T

speyy

MY 8501 BLOZ/ZZ/S
cysw @ fg

passb6Ul Ajlenuepy

asea|ay

MosiH s3|qeusy sunsdid

Figure 1: Pipeline visualisation of Microsoft Azure DevOps Pipelines

Visualisation of Jenkins Pipelines 885

4.3 Jenkins — Blue Ocean

Jenkins is one of the most favourite CI/CD systems, it is available for on premise
hosting, has powerful plugin collection and configuration system, battle tested.
Blue Ocean is an installable plugin for Jenkins with a reimagined, modern UI.
Blue Ocean also has a web GUI for creating and editing pipelines which results in
declarative Jenkins pipeline files.
Blue Ocean has a clear visualisation (Figure 2) of pipelines [11].

e stages

e item count of stages (only in details view)

e indicator of active stages (not shown on image, spinning refresh icon)
e indicator of success-failure of stage (Build)

e indicator of unsatisfied preconditions of stage (Promote-release)

e indicator of manually disapproved stage (UAT)

Note that the indicator of satisfied preconditions and manual approves are miss-
ing due to APT limitations (discussed in section 5.3.1) e.g., manual testing stage is
controlled by our manual approval.

5 Our Solution

Our proof of concept implementation is an in-browser application, relying on Jenk-
ins REST API and Jenkins Workflow API. For rendering UI objects, the imple-
mentation applies scalable vector graphics (SVG).

5.1 Chosing Grounds

In the beginning, we decided between three ways of collecting data of the workflows.

The approach of parsing scripted pipelines has not been used since scripted
pipelines have free form, a really flexible structure, hard to evaluate the order of
domain-specific language (DSL) calls.

Parsing declarative Jenkins pipelines seemed to be easier due to the strict form,
but would be a bigger task to integrate with the DSL. With this solution we would
have to depend directly on the pipeline script which is a design flaw for a ui appli-
cation, or we would have to implement a separate service. The other option is to
create a Jenkins plugin which also has to use the DSL lib, but has access to pipeline
scripts. Making the plugin would be a big task, itself since we have to persist the
metadata somehow, but Jenkins still does not have (or we have not found) notifi-
cations on pipeline script updates (maybe SVC triggered pipelines could do it, but
that would be real meta pipelining).

The approach chosen is to rely on the Jenkins REST APIs since this approach
can have the lightest implementation, allowing us to create an in-browser POC.

-

Adam Révész and Norbert Pataki

886

ST> g — speypue Suiysignd < [P

ST> 3 Juld — speye Buidse) ¢

T) ssesprejowoig ey @ ST > - 95E9[21 A)OWOI

—®] @ @ @ —o

puj aseajas ajowold n 8unsay |enuepy 5159} uonessaju| §159) JlUN pliing uels
pue sisAjeue J13e35

ulwpy wepy Jasn Aq paueis osedepe ©

sasueyd oN YT ©

s1oeJIuy sadueyd auljadid

150Y|e20)|

Figure 2: Pipeline visualisation of Jenkins - Blue Ocean

887

Visualisation of Jenkins Pipelines

ST>
ST>

ST>

T 7 rmgvess @

X A RCHE -

— o\

pu3

@

L] @ @ @ @—

2seajal ajowold

spejIY

wn 8unsa) jlenuepy 5159} uonessaju| $3593 UNn pling
pue sisAjeue J13e35

ulwpy wepy Jasn Aq paueis osedepe ©

sasueyd oN S0z ©

sadueyd aulpdid

150y[e20)|

yeis

speye Sulysignd < (B8
A JuLd — Sudwo) ¢
sadunos Suuayien ¢ 8

ST> - piing

Figure 3: Pipeline visualisation of Jenkins - Blue Ocean

-

Adam Révész and Norbert Pataki

888

sp Indul aARdEIRIUL 10) JIEAN € n

T 7 e @ sp-1VN

— 0@ —0—06—06—06—

puz asesjas ajowold 1n Sunsa) [enuey 53593 uoijesSay| 5159} Un ping uers
pue sisAjeue d1e3s

ulwpy Wepy Jasn Aq payeis odedepe ©
saueyd oN €z ©

m o 0 sPeIUY $359] saduey) aulpdid

150y[e20)|

Figure 4: Pipeline visualisation of Jenkins - Blue Ocean

Visualisation of Jenkins Pipelines 889

Jenkins REST API itself gives the ability of creating and triggering builds,
Jenkins Workflow Plugin (on its new name Pipeline Plugin) introduces the Pipeline
interpreter and runtime.

Scalable vector graphics (SVG) is chosen because it has document object model,
so easily editable with in-browser technologies like JavaScript dynamically. The
format is also a well known image format, suitable for dropping into presentations
and printed documents.

5.2 Applied Pipeline Script

pipeline {
agent any
stages {
stage(’Build’) {
steps {
echo ’Gathering sources’
echo ’Compiling’
echo ’Publishing artifacts’
X
¥
stage(’Code analysis’) {
steps {
echo ’Running code analysis’
echo ’Running unit tests’
echo ’Tagging artifacts’
echo ’Publishing results’
¥
3
stage(’Integration tests’) {
steps {
echo ’Deploying artifacts to integration env’
echo ’Running regression tests’
echo ’Running UI tests’
X
3
stage(’Manual testing’) {
input {
message ’Should we deploy?’
ok ’Yes, go ahead’
3
steps {
echo ’Deploying artifacts to QA environment’
echo ’Running regression tests’
echo ’Running UI tests’
echo ’Manual testing in progress’

890 Addm Révész and Norbert Pataki

X
X
stage (’UAT Deploy’) {
input {
message ’Should we deploy?’
ok ’Yes, go ahead’
submitter "admin"
X
steps {
echo ’Deploying artifacts to UAT environment’
echo ’Running smoke tests’
echo ’Manual testing in progress’
b
X
stage (’Release Promotion’) {
when {
not {
tag ’release—x’
¥
X
steps {
echo ’Tagging artifacts’
echo ’Publishing artifacts’
¥
X
}
X

This pipeline represents a common CI/CD pipeline. Since the build and deploy-
ment themselves are not relevant in this paper, the execution of tasks are mocked
by echo commands.

The subject has three types of stages and their combinations:

e simple stage
e stage with manual approval

e stage with precondition

5.3 Exploring Jenkins REST API

Using the original Jenkins UTI or Blue Ocean the following important behaviour can
be observed:

e Pipeline visualisations do not get updated until a successful build run.

Visualisation of Jenkins Pipelines 891

e Failed build runs can apply partial updates.

The static structure of the pipeline is not persisted. Only the runtime yielded
metadata gets captured.

5.3.1 Limitations

This conclusion is reflected in the API endpoints also. The build pipeline structure
is not exposed. Only the results of actual build run and their stages, steps, etc.
The missing indication of satisfied preconditions of stages and manual approves
gives reason to inspect the meta data could be obtained about such gates.
Inspecting simple stages in the corresponding REST API call results following
found (simplified, omitting identifiers and other strictly implementation and object
relation related data):

e Stage name

e FElapsed time
e Status

e Current step
e Previous steps

Inspecting manual approved stages in the corresponding REST API call results
following found (simplified, omitting identifiers and other strictly implementation
and object relation related data):

e Stage name

e Elapsed time

e The first step is the “Wait for interactive input” step
e Rest of the steps

Inspecting manual disapproved stages (Figure 4) in the corresponding REST
APT call results following found (simplified, omitting identifiers and other strictly
implementation and object relation related data):

e Stage name
e Elapsed time
e The first and only step is the “Wait for interactive input” step

e Status successful

892 Addm Révész and Norbert Pataki

Conclusion of manual approval required stages is the state of the approval — in
case of at least one step is defined in the stage — that the status of the approval
can be determined from the API response.

Inspecting stages with satisfied precondition in the corresponding REST API
call results following found (simplified, omitting identifiers and other strictly im-
plementation and object relation related data):

e Stage name

Elapsed time
e Status
e Current step

e Previous steps

Inspecting stages with unsatisfied precondition in the corresponding REST API
call results following found (simplified, omitting identifiers and other strictly im-
plementation and object relation related data):

e Stage name
e Elapsed time
e Status is “NOT_EXECUTED”

Conclusion with satisfied preconditions there is no difference from a simple stage
(Figure 2) in the result of the API call. With unsatisfied there is a difference in
status (Figure 3) but the reason cannot be retrieved from the response nor the
logs. Based on this we have found no point to explicitly mark preconditioned
stages because between two runs we cannot determine whether a precondition is
removed or satisfied. We have chosen no information over false information. We
plan to mark unsatisfied stages with “avoiding” the stage with the line representing
the execution.

6 User Interface Design

The main goal of the User Interface (Figure 5) is to give a high-level overview of the
pipeline (and the progress) at the first glance. The visualisation has to be static,
readable without interaction (no clicks for detailed view).

This enables the user to grab the image to documentations, serve as test /
deployment evidence.

The card design enables us to attach more information to a stage than those a
name and an icon can tell. Attaching the information of corresponding data into a
single shape leverages the natural association than a detail view on a different part
of the screen or document.

Since the visuals can be dynamically changed during execution, we wanted
to add an exclusive start and end point. The first success or failed status stage
connected directly to the start point is always the first stage of the execution.

Visualisation of Jenkins Pipelines 893

6.1 Legend

In the proof of concept implementation, we did not want to introduce third party
iconsets, and using characters is way easier. Emojis are part of the Unicode charset
handy enough to use.

Legend of the icons (Figure 5):

e Thumbs up (Manual test, in the left circle) indicates manually approved stage

e Thumbs up (Not shown, its place is the same as Thumbs up icon) indicates
manually disapproved stage

e Heavy check mark (Manual test, under the stage name) indicates completed
stage

e Cross mark (Not shown, its place is the same as Heavy check icon) indicates
failed stage

e Raised hand, AKA Stop (Release promotion, under the stage name) indicates
pending manual approval

e Hourglass not done (Release promotion, under the stage name) indicates in
progress stage

Build Code analysis Integration test Manual test UAT Deploy Release promotion
3/3 v 44 v 33 v 5/5 v 44 v 0/3 : —@

Figure 5: Pipeline visualisation of our POC

7 Conclusion

In this article, we have stated general requirements against pipeline visualisations,
compared to state of the art implementations.

With our POC implementation, we have discussed approaches of a possible
Jenkins pipeline visualisation tool implementations, pointed out reliability issues
of runtime evaluated pipeline, and lack of expressiveness of the current APIs (and
stored metadata).

This paper is intended to be constructive. We both admit the incredible work
of the communities of all the pieces of software we have discussed.

The POC implementation left places to improve:

o using different colors for cards (stages) in different state

e apply design language e.g. flat, material or Blue Ocean

894

Addm Révész and Norbert Pataki

e develop Jenkins plugin, since that is the official way of creating handy Jenkins
extensions

e maybe try to add to Blue Ocean as alternative visualisation
e try out SDL level integration

We recommend this paper to CI/CD tool developers, especially the Blue Ocean

developer team, we hope they can find useful thoughts in this paper.

References

(1]

2]

Bernstein, David. Containers and cloud: From LXC to Docker to Kubernetes.
IEEFE Cloud Computing, 1(3):81-84, Sept 2014. DOI: 10.1109/MCC.2014.51.

Chen, Lianping. Continuous delivery: Huge benefits, but challenges too. IEEE
Software, 32(2):50-54, Mar 2015. DOI: 10.1109/MS.2015.27.

Dabbish, Laura, Stuart, Colleen, Tsay, Jason, and Herbsleb, Jim. Social coding
in GitHub: Transparency and collaboration in an open software repository. In
Proceedings of the ACM 2012 Conference on Computer Supported Cooperative
Work, CSCW 12, pages 1277-1286, New York, NY, USA, 2012. ACM. DOI:
10.1145/2145204.2145396.

Fagerholm, Fabian and Miinch, Jiirgen. Developer experience: Concept and
definition. In Proceedings of the International Conference on Software and
System Process, ICSSP ’12, pages 73—77, Piscataway, NJ, USA, 2012. IEEE
Press. DOI: 10.1109/ICSSP.2012.6225984.

Hochstein, Lorin and Moser, Rene. Ansible: Up and Running Automating
Configuration Management and Deployment the Fasy Way. O’Reilly Media,
Inc., 2nd edition, 2017.

Jenkins. https://jenkins.io/.

Lahmadi, Abdelkader and Beck, Frédéric. Powering Monitoring Analytics with
ELK stack. In 9th International Conference on Autonomous Infrastructure,
Management and Security (AIMS 2015), 2015. URL: https://hal.inria.
fr/hal-01212015/file/slides-ELK.pdf.

Lehtonen, Timo, Suonsyrja, Sampo, Kilamo, Terhi, and Mikkonen, Tommi.
Defining metrics for continuous delivery and deployment pipeline. In Nummed-
nmaa, Jyrki, Sievi-Korte, Outi, and Makinen, Erkki, editors, Proceedings of
the 14th Symposium on Programming Languages and Software Tools (SPLST),
number 1525 in CEUR Workshop Proceedings, pages 16-30, Aachen, 2015.
URL: http://ceur-ws.org/Vol-1525/paper-02.

Visualisation of Jenkins Pipelines 895

(9]

[15]

[16]

[17]

Leppéanen, Marko, Makinen, Simo, Pagels, Max, Eloranta, Veli-Pekka, Itkonen,
Juha, Mantyla, Mika V., and Mannisto, Tomi. The highways and country roads
to continuous deployment. IEEE Software, 32(2):64-72, Mar 2015. DOI:
10.1109/MS.2015.50.

Lwakatare, Lucy Ellen, Kuvaja, Pasi, and Oivo, Markku. Dimensions of
DevOps. In Lassenius, Casper, Dingsgyr, Torgeir, and Paasivaara, Maria,
editors, Agile Processes in Software Engineering and Extreme Programming:
16th International Conference, XP 2015, Helsinki, Finland, May 25-29, 2015,
Proceedings, pages 212-217. Springer International Publishing, Cham, 2015.
DOI: 10.1007/978-3-319-18612-2_19.

Pathania, Nikhil. Declarative Pipeline Development Tools. In Beginning Jenk-
ins Blue Ocean: Create Elegant Pipelines With Fase, pages 191-209. Apress,
Berkeley, CA, 2019. DOI: 10.1007/978-1-4842-4158-5_5.

Révész, Adém and Pataki, Norbert. Integration heaven of nanoser-
vices. In Proceedings of the 21 th International Multi-Conference IN-
FORMATION SOCIETY, 1572018, Volume Volume G: Collaboration,
Software and Services in Information Society, pages 43-46, 2018. URL:
http://library.ijs.si/Stacks/Proceedings/InformationSociety/
2018/152018_Volume_G%20-%20CSS.pdf.

Roche, James. Adopting DevOps practices in quality assurance. Commun.
ACM, 56(11):38-43, November 2013. DOI: 10.1145/2524713.2524721.

Schaefer, Andreas, Reichenbach, Marc, and Fey, Dietmar. Continuous inte-
gration and automation for DevOps. In Kim, Kon Haeng, Ao, Sio-Iong, and
Rieger, B. Burghard, editors, JAENG Transactions on Engineering Technolo-
gies: Special Edition of the World Congress on Engineering and Computer
Science 2011, pages 345-358. Springer Netherlands, Dordrecht, 2013. DOLI:
10.1007/978-94-007-4786-9_28.

Soltesz, Stephen, Po6tzl, Herbert, Fiuczynski, Marc E., Bavier, Andy, and
Peterson, Larry. Container-based operating system virtualization: A scal-
able, high-performance alternative to hypervisors. SIGOPS Oper. Syst. Rev.,
41(3):275-287, March 2007. DOIL: 10.1145/1272998.1273025.

Steingartner, William, Perha¢, Jan, and Bilinski, Alexander. A visualizing
tool for graduate course: Semantics of programming languages. IPSI BgD
Transactions on Internet Research, 15(2):52-58, 2019.

van Baarsen, Jeroen. GitLab Cookbook. Packt Publishing, 2014.

Acta Cybernetica 25 (2022) 897-908.

Instantiation of Java Generics

Péter Soha® and Norbert Pataki®

Abstract

Type parametrization is an essential construct in modern programming
languages. On one hand, Java offers generics, on the other hand, C++ pro-
vides templates for highly reusable code. The mechanism between these con-
structs differs and affects usage and runtime performance, as well. Java uses
type erasure, C++ deals with instantiations.

In this paper, we argue for an approach in Java which is similar to C++
template construct. We evaluate the runtime performance of instantiated
code and we present our tool which is able to use Java generics as templates.
This tool generates Java source code. We present how this approach improves
the usage of Java generics.

Keywords: Java, generic, instantiation, template

1 Introduction

Nowadays we can choose from many different programming paradigms and lan-
guages and all have unique advantages and disadvantages. We have to think dif-
ferent when programming in Java or Clean, when we use the object-oriented or the
functional paradigm. Sometimes we wish that some elements of a language would
be supported by another language though. One of these useful tools is the construct
of reusable and parametrizable code which significantly reduces the repetition of
the code. For this, the Java offers the generics that uses a runtime polymorphic
solution with some transformations at compilation time. On the other hand, the
C++ language provides the templates.

Java is considered as a verbose language, therefore Java source typically con-
tains boilerplate code [10]. To overcode the boilerplate, many libraries have been
developed, such as Project Lombok [1]. Lombok decreases the quantity of boiler-
plate code by generating Java code from annotations. However, this solution is not
able to generate similar new classes from templates.

®Department of Programming Languages and Compilers, E6tvos Lordnd University, Budapest,
Hungary

bE-mail: sohaur@inf.elte.hu, ORCID: 0000-0003-1556-8267

¢E-mail: patakino@inf.elte.hu, ORCID: 0000-0002-7519-3367

DOI: 10.14232/actacyb.284073

898 Péter Soha and Norbert Pataki

The generics in Java fit into the object-oriented realm, but they have runtime
overhead that can be reduced with compile-time instantiation. The required infor-
mation can be found in the source, therefore performance can be improved without
any limitation.

In this paper, we analyze how the template mechanism can be attempered in the
Java programming language. We take into consideration how different languages
provide type parametrization. Earlier, we have proposed an alternative syntax for
instantiable templates for improved runtime performance [12]. At this time, we
deal with standard Java code. For keeping the improved runtime performance, we
developed a tool which aims at the instantiation of Java generics. Our tool works
in the Java realm, therefore no external dependency is taken advantage of. We
present our tools and evaluate this approach.

The rest of this paper is organized as follows. In Section 2, we present the
different approaches related to type parametrization. After, we briefly present our
existing solution in Section 3. In Section 4, we present our new approach for the
instantiation of generics. Further options are presented in Section 5. In Section 6,
we evaluate the performance of our method. In Section 7, we briefly present our
further aims. Finally, this paper is concluded in Section 8.

2 Theoretical Background

2.1 About Java Generics

The constructs of generic programming paradigm were introduced in Java 1.5 in
2004 [2]. The main idea behind this step was the support of Java programmers
with a tool to avoid duplications, and help to write type safe code which is abstract
enough to fit as many situations as possible without any modifications [6]. To
reach this, all generic code has to contain a type variable section named parameter
list where the programmer can declare the usable types. This construct has a
considerable merit. Since Generics applies dynamically typed, a class or function
can be used with totally different types without recompile the code but keep type
safety. To reach that, Java offers the runtime polymorphism, which means the
following:
If X is a subtype of T, every occurance of T can be replaced with the objects of X.
This makes the usage Generics versatile but it has its own cost [5].

Restrictions on the type parameters require bounded generic type parameters.
If one defines an upper bound for a generic parameter, only its subclasses can be
used as generic argument type.

Because of the type erasure, we have to deal with the some factors which can
affect the performance:

e At compile time, all type parameters will be deleted and replaced with their
first bound or Object if it is unbounded [15].

e To ensure type safety, JVM will generate type casts.

Instantiation of Java Generics 899

e To preserve polymorphism, bridge methods will be generated as well.

And exactly here is the weakness of the generics. The Java compiler has to
modify the written code and insert runtime parts which can significally decrease the
speed and effectiveness and may increase the heap memory consumption. Because
of the dynamic typing, the construction must be as abstract as possible even if it
is not necessary at all. As we showed, sometimes a quazi-statically typed solution
can be faster. Moreover, subtype checking is quite difficult in Java [7].

Listing 1: Java generics example

public class Generic<T> {
private T element;

public Generic(T value) {
element=value;

public T get() {

return element;
1
1

1
2
3
4
5
6 }
7
8
9
0 }
1

3

2.2 Templates in C++

C++ provides templates for efficient type parametrization [4]. A template is a
code snippet that is parametrized and the C+4 compiler instantiates with different
arguments at compilation time. Let us consider the following example that is quite
similar to the previous one:

Listing 2: C++4 template example

template <class T>
class Template {
private:

T element;

public:
Template(const T& t): element(t) { 2

const T& get() const { return element; }

O © 00O U= WwWwN

—_

};

The compiler cannot instantiate the template and cannot generate correspond-
ing low-level code unless the template argument is known, thus the template itself is
not compilable code from the view of typical C++ compilers (e.g. g+, clang++).

900 Péter Soha and Norbert Pataki

The compiler generates specific code when the template is instantiated. For in-
stance, in case of Template<int>, the compiler generates code from the template
by substituted T with int. This construct enables to instantiate templates with ar-
bitrary, previously unknown classes. The compiler is aware of the called functions
related to the template parameter, so it can optimize many calls [9]. Moreover,
type safety is an essential aspect of templates. On the other hand, code bloat of
binary code may appear and template instantiation increases compilation time.

C++ provides function templates and class templates [13]. However, a template
can be parametrized not only types but integral constant values, pointers, pointer-
to-members, etc. If the compiler does know what the argument is, it is able to
generate code. However, string literals are not supported to be template arguments
[14].

C++ templates offer an interesting approach. In case of class templates, one
can write special implementation for specific class parameters with partial and full
specializations. Utilization of this possibility leads us to C++’s template metapro-
gramming feature that is a Turing-complete subset of C++ [11]. Metaprograms are
beneficial since they can speed-up the execution time, enable the development of
active libraries that make decisions at compilation time and evaluate compile-time
asserts.

3 Previous Works

To create templates in Java, we investigated two different ways to instantiate a
generic class. In our previous paper, we offered a new keyword and a different
class structure to transform a generic class to a template one called Java Template
[12]. This constructed originated from the C++ templates. It was quite useful
and comfortable but already had limitations. In this case, we had to manually
rewrite the existing code and declare the template variables. The work was getting
more complex when we tried to transform some of the standard containers, and
that was the inspiration to try a totally different way and instead of transforming
code just create a tool which can work with pure Generics without any structural
modification (later we will see that it is impossible because of the context-sensitive
parts).

First of all we summarize the results of the Java Templates and after all we
show how can we instantiate the generic classes directly.

3.1 Templates and Packages

The Java Template is a very similar class construct to C++ templates, but mixing
the benefits of the Generics. At the beginning of the class definition, there is the
template keyword followed by the identifiers of type parameters. To insure the
instantiation, we restricted the following:

o If T is primitive type or literal of primitive types (String literals inclusive)
there is no limitation.

Instantiation of Java Generics 901

e If T is an object type, we recommend to use the fully qualified name to avoid
any importing issue.

At this point, we have some other requirements by Java that we have to meet.
Every Java class has its own and unique identifier called fully qualified name. This
is a composition of the name of the class and its place of the package hierarchy. The
Java compiler does not allow the programmer to create two different classes in the
same package with the same name. And well, if we use generics, we have to create
only one class to many types, but with templates (since it is statically typed) every
single type needs its own instance. To solve this issue, we decided that the package
which contains the template instance will build up from the actual parameter types.
For this, we made some restrictions:

e If T is a primitive type, or a literal of primitve types (String literals included)
we add a prefix to it.

e If T is an object type, we use the fully qualified name, by escaping the sepa-
rators with backslash.

e All package names must be able to generate with only of the previous two
rules.

To avoid any OS specific issue with package names, the maximum length should
not exceed 260 characters.

3.2 Instantiation

The Java Templates have a special way to instantiation since this construct is not
the part of Java. For this, we developed a tool, which can tokenize the source and
turn it into a standard C++ macro. Considering that the macro is a low-level
language feature, to guarantee the success, need some restrictions:

e The number of declared type parameters at most the number of given param-
eters.

e For object types, the fully qualified name is preferred.

e A formal variable name can be replaced with a given literal if, and only if the
specific variable name is only occurs at right hand side of an expression or
where literals are allowed by Java.

4 New Results

Since the transformation and templatize not really decent when the class structure
getting more complex, we had to have find another way. The new idea was that
instead of creating a new language feature, and depend on external tools (especially
g++ compiler for the Java Templates) we shall use only what Java gives us. In our

902 Péter Soha and Norbert Pataki

new tool, we totally left the g++ and other external dependecies and build up the
preprocessing with pure Java. In this version, we introduced a typetable in the lexer
tool, which acts as a field memory and store the formal and actual parameters in
an associative container (list of key-value pairs). This makes the identification and
replace lot easier and let us use this information in the future. The main steps now
are the following:

e Load the source and localize the generic type declarations.

e Parse the type placeholders and store them in the typetable. To ensure correct
run, we made a check to determine that the tool get enough arguments,
because as we discussed, the number of actual types must be greater than
or equal to the placeholders. In this step, the generic bounds are irrelevant
because they will be replaced with an exact type, which will be an upper
bound of the acceptable object at that point (this can be possible because of
the Liskov substitution principle).

e Assemble the package of the class. This step is the first which clearly gains
advantage by using the typetable. To create the package, we read the values
one-by-one, and concatenate to the package name. To meet the rules of pack-
age name declared in Java, we have to replace the dot character to backslash
when the current type is an object. For this step, we implement a minor
feature as the support of generic type arguments. To reach this, we treat the
characters of the diamond operator as dot, and also escape it with backslash.

With these three steps, we get the same result as with Java Templates which
needed six steps for this. In the next sections, we show small examples to both
methods and compare them.

4.1 Examples

First, we create a basic implementation of a Stack with the Java Templates. To
give information to the lexer tool, we had to use the template keyword to declare
the formal parameters. Since we are not restricted by the Java grammatic rules,
we can use arrays typed by placeholders because the final type will be known at
last before compile time.

Listing 3: Java template example

public T pop() { return elements[--c]; }

1 template(T)

2 class Stack {

3 private T[] elements = new T[10];

4 private int c¢ = 0;

5

6 public void push(T item) { elements[c++] = item; }
7

8

Instantiation of Java Generics 903

Now, the same stack implemented with the toolkit of Java Generics. Since our
improved tool can work with standardized generic classes, we do not need any spe-
cial keyword or language feature, because we can extract all necessary information
right from the source. However (as we discussed this problem in the next section)
this is a special example. In this case, we have only one Object array (which the
only possibility because the grammatic rules), but we could prepare our tool to
handle this, since there are no ambiguous types. Note, if we want to declare an-
other Object array, we may run into anomalies because all these will be replaced
with a specific type which given as argument.

Listing 4: Java generic class example

public T pop() { return (T)elements[--c]l; }

1 class Stack<T> {

2 private Object[] elements = new Object [10];

3 private int c = 0;

4

5 public void push(T item) { elements[c++] = item; I}
6

7

3

Finally, both versions of our tool will produce the exactly same Java class. This
class is now statically typed (as much as Java allows it), and as one may see in
section 6, in some cases, the speed-up is considerable.

Listing 5: Generated Java class

class Stack {
private int[] elements = new int [10];
private int c = O0;

public void push(int item) { elements[c++]=item; }

1
2
3
4
5
6 public int pop() { return elements[--c]; }
7

3

4.2 Compilation with our Tool

We demonstrate the precompiling process of the generic with our tool. A straight-
forward generic class is Pair that we use for presentation.

In this example, the two generic parameters are K and V which denote the key
and value types. For instantiation, the tool requires the following arguments in
order:

e Tha Java source file contains the implementation of Pair generic class.

e Restriction for this step that the file may contain only one top level class
which has to match the name of type.

904 Péter Soha and Norbert Pataki

e The actual type of K which if it is an object type then it must be the fully
qualified name.

e The actual type of V that has the same condition as K.

Listing 6: Java Pair generic class example

1 public class Pair<K, V> {

2 private K key;

3 private V value;

4

5) public K getKey() { return key; 1}

6 public V getValue() { return value; }
7

8 public void setKey(K _key) { key = _key; 1}
9 public void setValue(V _value) {

10 value = _value;

11 }

12}

Now let the actual parameters are int and boolean, therefore we use the here-
inafter command for the instantiation:
$java Tool Pair.java int boolean

After compilation, we have the instantiated Pair class in a unique path which
ensures to avoid the ambiguous references. This class contains the following:

Listing 7: Generated class example

1 public class Pair {

2 private int key;

3 private boolean value;

4

) public int getKey() { return key; }

6 public boolean getValue() { return value; }
7

8 public void setKey(int _key) { key = _key; }
9 public void setValue(boolean _value) {

10 value = _value;

11 }

12}

This tool is now a standalone component of the building process right before
the compilation. We are working on an improved integration of compilation task.
This tool at the moment has two major deficiencies. The first one is the require-
ment of explicit enumeration of all actual types, although if we want to replace for
example the T extends Number parameter, it shall be guessed and replace T with
Number. This feature is useful every time when the bound is a class/typename, so

Instantiation of Java Generics 905

giving command line arguments is necessary only when we want to use primitives
or the bound is an interface. The second one is a more serious limitation, since only
one class can be given to the tool but in enterprise environment there are hundreds
of classes in every single project and instantiate one by one requires countless hours.
So we want to introduce a JSON-like format which contains cases of every single
preprocessing task. A task describes the name of the file which will be instantiated
and the actual type parameters.

5 Improvements

Although the new methods are really beneficial, we find some questions which still
waiting for to being aswered. One of them is the problem of the ambiguous field
typing. Let us suppose that we created a generic container class that uses an
Object array to store elements. Now we declare another Object array for reasons.
If we use the new tool, the clear way is to replace the storage array’s type from
Object to the given one (let it be now int). But we also have the other array
named otherarray which has a different (but not less important) functionality,
and it must remain Object. In this case, we have the following possible solutions:

1. Replace Object with int: In this case, the functionality of otherarray will
be damaged, since the role of the Object array is context-sensitive.

2. Train the tool to identify the possible fields: This way is significantly more
complex because of the context-sensitive grammar rules and the chance of
mistakes even more higher than the previous solution.

3. Pass the chosen identifiers as tool arguments: Now, we can decide in every
case whether the current field is modifiable. Although from the point of the
input this is one of the best choice, with the extra arguments can make the
usage of the tool more complicated.

4. In Java, one can use annotations for the member declarations. Members can
be distinguished by their annotations.

6 Measurements

In this section, we present the performance of our solution. We focus on the run-
time performance because this property is more important than the duration of
compilation time. The preprocessor has I/O-intensive tasks, so its performance
depends on the storage device [3]. Moreover, a compiler support approach would
be more effective in which the instantiation is executed on constructed abstract
syntax tree.

We have evaluated how the proposed approach affects the runtime. We have
started a cloud-based virtual machine with Ubuntu 16.04 LTS operating system

906 Péter Soha and Norbert Pataki

image and Java 8 JVM installed. We evaluate two different scenarios with high
number of test cases. We use our stack data structure implementations.

The first scenario is using stack that contains integers. The generic implemen-
tation must be used with Integers, the instantiated generic version can be instan-
tiated with int. This approach avoids the autoboxing between int and Integer
and overhead of many memory allocations can be eliminated.

We have instantiated the stack with Integer in the second scenario. In this case,
the template and generic parameter is exactly the same. However, the template
stack itself knows that it contains Integer, not Object, so less runtime validations
are needed in this case, as well.

Our approach performed better in both scenarios. The performance is improved
significantly in the first scenario. The average running time of the long-term perfor-
mance test has beeen reduced to 2.63% of the generic approach with our template
mechanism. We measure this speed-up when the size of stack was 8000000. We
fulfilled the stack with 8000000 push operations and after we used pop functions
until the stack becomes empty. High amount of dynamic memory allocation and
autoboxing conversion can be avoided with instantiated generic in this case. The
results were rather balanced when both stacks contain Integer objects. In the
second scenario, the average running time has been reduced to 82.645% with the
proposed approach. This means more than 20% speed-up in the execution with-
out any special instantiation and special ones are able to speed-up the execution
significantly. However, more effective code can be generated with more specific
approaches [8].

The speed-up is significant, therefore we should realize what are the main rea-
sons behind this effect, cache consistency or other JVM runtime optimazations. As
future work, we evaluate the proposed approach with more generics and explore
how the instantion can be utilized much more effectively.

7 Future Work

As we discussed earlier, the most difficult issue that waiting for solution is the
problem of context-sensitive code parts. Of course not just the ambiguous fields,
but in Java Standard especially, since the container classes take advantage of the
toolkit of the Generics. First of all, we have to explore and classify the parts which
can lead to anomalies or errors if we directly transform them. Comprehensive
evalutaion is necessary, as well. In the future, we want to implement an integrated
development environment (IDE) plugin which wraps our solutions and provides
wide support to the users. All in all, our most ambitious goal is to become part of
the Java language.

8 Conclusion

Type parametrization is an essential construct in modern programming languages
with different backgrounds. For instance, C++ provides templates that are instan-

Instantiation of Java Generics 907

tiated by the compiler during compilation. Java offers generics that are based on
type erasure. According to the measurements, the runtime performance can be
significantly better when templates are in-use.

Previously, we created Java templates and a tool that instantiates them. A
new syntax was offered that was not compatible with existing code bases. There-
fore, our aim became the instantiation of Java generics: standard Java generics to
instantiate with a new tool. In this paper, we introduced the background of our
proof-of-concept tool and we have measured and evaluated the runtime efficiency
of the proposed approach. The instantiated generic performs significantly better
compared to the standard solution.

References
[1] Project Lombok. https://projectlombok.org/.

[2] Arnold, Ken, Gosling, James, and Holmes, David. Java(TM) Programming
Language, The (4th Edition). Addison-Wesley Professional, 2005.

[3] Babati, Bence, Pataki, Norbert, and Porkoldb, Zoltdn. C/C++ preprocess-
ing with modern data storage devices. In Proceedings of the 13th IEEE In-
ternational Scientific Conference on Informatics, pages 36—40. IEEE, 2015.
DOI: 10.1109/Informatics.2015.7377804.

[4] Burrus, Nicolas, Duret-Lutz, Alexandre, Duret-Lutz, Re, Geraud, Thierry,
Lesage, David, and Poss, Raphael. A static C++ object-oriented program-
ming (SCOOP) paradigm mixing benefits of traditional OOP and generic
programming. In Proceedings of the Workshop on Multiple Paradigm with
0O Languages (MPOOL), 2003. URL: https://www.lrde.epita.fr/wiki/
Publications/burrus.03.mpool.

[5] Dragan, Laurentiu and Watt, Stephen M. Performance analysis of generics
in scientific computing. In Proceedigs of the Seventh International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’05),
pages 93-100, 2005. DOI: 10.1109/SYNASC.2005.56.

[6] Ghosh, Debasish. Generics in Java and C++: A comparative model. ACM
SIGPLAN Notes, 39(5):40-47, 2004. DOI: 10.1145/997140.997144.

[7] Grigore, Radu. Java generics are turing complete. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, pages 73-85, New York, NY, USA, 2017. ACM. DOI: 10.1145/
3009837.3009871.

[8] Horvéth, Gébor, Pataki, Norbert, and Balassi, Marton. Code generation in se-
rializers and comparators of Apache Flink. In Proceedings of the 12th Workshop
on Implementation, Compilation, Optimization of Object-Oriented Languages,

908

[13]

[14]

Péter Soha and Norbert Pataki

Programs and Systems, ICOOOLPS’17, pages 5:1-5:6, New York, NY, USA,
2017. ACM. DOI: 10.1145/3098572.3098579.

Meyers, Scott. Effective STL. Addison-Wesley, 2001.

Nam, Daye, Horvath, Amber, Macvean, Andrew, Myers, Brad, and Vasilescu,
Bogdan. MARBLE: Mining for boilerplate code to identify API usability
problems. In Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 615-627, 2019. DOI:

10.1109/ASE.2019.00063.

Porkoldb, Zoltan. Functional programming with C+4 template metapro-
grams. In Horvath, Zoltan, Plasmeijer, Rinus, and Zsék, Viktéria, editors,
Central FEuropean Functional Programming School: Third Summer School,
CEFP 2009, Budapest, Hungary, May 21-23, 2009 and Komdrno, Slovakia,
May 25-30, 2009, Revised Selected Lectures, pages 306-353, Berlin, Heidel-
berg, 2010. Springer. DOI: 10.1007/978-3-642-17685-2_9.

Soha, Péter and Pataki, Norbert. Effective type parametrization in Java. AIP
Conference Proceedings, 2116(1):350007, 2019. DOI: 10.1063/1.5114360.

Stroustrup, Bjarne. The C++ Programming Language (special edition).
Addison-Wesley, 2000.

Szligyi, Zalan, Sinkovics, Abel, Pataki, Norbert, and Porkoldb, Zoltan. C++
Metastring Library and Its Applications. In Generative and Transforma-
tional Techniques in Software Engineering III: International Summer School,
GTTSE 2009, Braga, Portugal, July 6-11, 2009. Revised Papers, pages 461—
480. Springer, Berlin, Heidelberg, 2011. DOI: 10.1007/978-3-642-18023-
1_15.

Torgersen, Mads, Hansen, Christian Plesner, Ernst, Erik, von der Ahé, Peter,
Bracha, Gilad, and Gafter, Neal. Adding wildcards to the Java programming
language. In Proceedings of the 2004 ACM Symposium on Applied Computing,
SAC ’04, pages 1289-1296, New York, NY, USA, 2004. ACM. DOI: 10.1145/
967900.968162

Acta Cybernetica 25 (2022) 909-921.

Improved Loop Execution Modeling
in the Clang Static Analyzer*

Péter Szécsi??, Gabor Horvath®, and Zoltan Porkolab®

Abstract

The LLVM Clang Static Analyzer is a source code analysis tool which aims
to find bugs in C, C++, and Objective-C programs using symbolic execution,
i.e. it simulates the possible execution paths of the code. Currently the
simulation of the loops is somewhat naive (but efficient), unrolling the loops
a predefined constant number of times. However, this approach can result in
a loss of coverage in various cases.

This study aims to introduce two alternative approaches which can extend
the current method and can be applied simultaneously: (1) determining loops
worth to fully unroll with applied heuristics, and (2) using a widening mecha-
nism to simulate an arbitrary number of iteration steps. These methods were
evaluated on numerous open source projects, and proved to increase coverage
in most of the cases. This work also laid the infrastructure for future loop
modeling improvements.

Keywords: static analysis, symbolic execution, loop modeling

1 Introduction

During software development it is natural to make mistakes. Consequently, writing
various test cases is required in order to validate the behavior of the program. In
addition to the costs of test writing, it is possible that the developers fail to cover all
possible critical cases. Furthermore, test writing and running often happens later
than code development, but the costs of error correction increases proportionally
to elapsed time [2]. This proves that testing alone is not necessarily sufficient to
ensure code quality.

The static analysis tools offer a different approach for code validation [6, 1].
Moreover, they can potentially check for some characteristics of the code — which

*This study was supported by the UNKP-17-2 New National Excellence Program of the Hun-
garian Ministry of Human Capacities and by the EFOP-3.6.2-16-2017-00013

®Department of Programming Languages and Compilers, E6tvos Lorand University, Budapest,
Hungary

YE-mail: ps95@caesar.elte.hu, ORCID: 0000-0001-9156-1337

¢E-mail: xazax@caesar.elte.hu, ORCID: 0000-0002-0834-0996

4B-mail: gsd@caesar.elte.hu, ORCID: 0000-0001-6819-0224

DOI: 10.14232/actacyb.283176

910 Péter Szécsi, Gabor Horvath, and Zoltan Porkolab

cannot be verified by testing — e.g. the adherence to conventions. Unfortunately, it
is impossible to detect every bug using static analysis [8] without a large number
of spurious warnings. Static analyzer tools might not be able to discover some
bugs (these are called false negatives) or report correct code snippets as incorrect
(false positives). As the developer’s time is one of the most valuable resource in
the industry and reports of the automated tools are evaluated manually, industrial
tools aim to keep the ratio of the false positive reports low while still be able to
find real bugs.

The purpose of the Clang Static Analyzer is to find bugs by performing a sym-
bolic execution [4, 3] on the code. During symbolic execution, the program is being
interpreted, on a function-by-function basis, without any knowledge about the run-
time environment. It builds up and traverses an inner model of the execution paths,
called EzplodedGraph, for each analyzed function.

The Static Analyzer — as it is indicated by its name — build around the Clang
compiler [5]. An important technical note is that the building of the ExplodedGraph
is based on the Control Flow Graph (CFG) of the functions. The CFG represents a
source-level, intra-procedural control flow of a statement. This statement can po-
tentially be an entire function body, or just a single expression. The CFG consists of
CFGBlocks which are simply containers of statements. The CFGBlockss essentially
represent the basic blocks of the code but can contain some extra custom informa-
tion. Although basic blocks and CFGBlocks are technically different, in the rest of
the article the term basic blocks will be used for CFGBlocks as well for the sake of
easier understanding and better illustration.

Thus during the analysis — based on the function CFGs — an ExplodedGraph
is built up. A node of this graph (called ExplodedNode) contains a ProgramPoint
(which determines the location) and a State (which contains any known informa-
tion at that point). Its paths from the root to the leaves are modeling the differ-
ent execution paths of the analyzed function. Whenever the execution encounters
a branch, a corresponding branch will be created in the ExplodedGraph during
the simulated interpretation. Hence, branches lead to an exponential number of
ExplodedNodes. This combinatorial explosion is handled in the Static Analyzer by
stopping the analysis when given conditions are fulfilled. Terminating the analysis
process may cause loss of potential true positive results, but it is indispensable for
maintaining a reasonable resource consumption regarding the memory and CPU
usage.

These conditions are modeled by the concept of budget. The budget is a col-
lection of constraints on the shape of the ExplodedGraph including:

1. The maximum number of traversed nodes in the ExplodedGraph. If this
number is reached then the analysis of the simulated function stops.

2. The size of the simulated call stack. When a function call is reached then
the analysis continues in its body as if it was inlined to the place of call
(interprocedural). There are several heuristics that may control the behavior
of inlining process. For example the too large functions are not inlined at all,
and the really short functions are not counted in the size of call stack.

Improved Loop Execution Modeling in the Clang Static Analyzer 911

3. The number of times a function is inlined. The idea behind this constraint
is that the more a function is analyzed, the less likely it is that a bug will
appear in it. If this number is reached then that function will not be inlined
again in this ExplodedGraph.

4. The number of times a basic block is processed during the analysis. This
constraint limits the number of loop iterations. When this threshold is reached
the currently analyzed execution path is aborted. The budget expression can
be used in two ways. Sometimes it means the collection of the limitations
above, sometimes it refers to one of these limitations. This will always be
distinguishable from the context.

2 DMotivation

Currently, the analyzer handles loops quite simply. It unrolls them 4 times by
default and then cuts the analysis of the path where the loop would have been
unrolled more than 4 times. This behavior is enforced by the above presented basic
block visiting budget.

One of the problems with this approach to loop modeling is the loss of coverage.
Specifically, in cases where the loop is statically known to make more than 4 steps,
the analyzer do not analyze the code following the loop. Thus, the naive loop
handling (described above) could lead to entirely unchecked code. Listing 1 shows
a small example exercising this behavior.

1 void foo() {
2 int arr[6];
3 for (int i = 0; i < 6; i++) {
A arr[i] = i;
5

}

6 /*rest of the functionx/

7}
Listing 1: Since the loop condition is known at every iteration, the analyzer will
not check the ’rest of the function’ part in the current state.

According to the budget rule concerning the basic block visit count, the analysis
of the loop stops in the fourth iteration even if the loop condition is simple enough
to see that unrolling the whole loop would not be too much extra work relatively.
Running out of the budget implies (in this case) that the rest of the function
body remains unanalyzed, which may lead to not finding potential bugs. Another
problem can be seen on Listing 2:

912 Péter Szécsi, Gabor Horvath, and Zoltan Porkolab

int num() ;
void foo () {
int n = 0;
for (int i = 0; i < num(); ++i) {
+—n;
6 }
7 /xrest of the function, n < 4 %/
8}

Listing 2: The loop condition is unknown but the analyzer will not generate a
simulation path where n > 4 (which can result coverage loss).

W N =

CNS

This code fragment results in an analysis which keeps track of the values of n
and i variables (this information is stored in the State). In every iteration of the
loop the values are updated accordingly. Note that updating the State means that
a new node is inserted into the ExplodedGraph with the new values. Since the body
of the num() function is unknown, the analyzer can not find out its return value.
Thus it is considered as unknown. This circumstance makes the graph to split into
two branches. The first one belongs to the symbolic execution of the loop body
assuming that the loop condition is true. The other one simulates the case where
the condition is false and the execution continues after the loop. This process is
done for every loop iteration, however, at the 4th time, assuming the condition is
true, the path will be cut according to the budget rule. Even though the analyzer
generates paths to simulate the code after the loop in the above described case, the
value of variable n will always be less than 4 on these paths and the rest of the
function will only be checked with this assumption. This can result in coverage loss
as well, since the analyzer will ignore the paths where n is more than 4.

3 Proposed Solution

In this section two solutions are presented to resolve the above mentioned limita-
tions on symbolic execution of loops in the Clang Static Analyzer. It is important
to note that these enhancements are incremental in the sense that the analyzer falls
back to the original method on examples which are too complex to handle at the
moment. For the sake of simplicity we will use a "division by zero" bug to illustrate
the analyzer’s behavior in the following examples.

3.1 Loop Unrolling Heuristics

We have identified heuristics and patterns (such as loops with small number of
branches and small known static bound) in order to find specific loops which are
worth to be completely unrolled. This idea is inspired by the following example:

1 void foo() {

2 for (int i = 0; i < 6; i++) {
3 /+*simple loop which does not

Improved Loop Execution Modeling in the Clang Static Analyzer 913

wt

[§

7

5)

change ’i’ or split the statex/

}
int k = 0;
int 1 = 2/k; // Division by zero

Listing 3: Complete unrolling of the loop makes it possible to find the division by
Zero error.

Currently, a loop has to fulfill the following conditions in order to be unrolled:

1.

5.

The loop condition should arithmetically compare a variable — which is known
at the beginning of the loop — to a literal (like: 1 < 6 or 6 > 1i)

. The loop should modify the loop variable only once per iteration in its body

and the difference needs to be constant. (This way the maximum number of
steps can be estimated.)

There is no alias created to the loop variable.

The estimated number of steps should be less than 128. (Simulating loops
which takes thousands of steps because they could single handedly exhaust
the budget.)

The loop must not generate new branches or use goto statements.

By using this method, the bug on the Listing 3 example is found successfully.

3.2

Loop Widening

The final aim of widening is quite the same as the unrolling, to increase the cov-
erage of the analysis. However, it achieves its goal in a very different way. During
widening the analyzer simulates the execution of an arbitrary number of iterations.
The analyzer already had a widening algorithm which reaches this behavior by
discarding all of the known information before the last step of the loop. So the
analyzer creates the paths for the first 3 steps and simulate them as usual, but in
order to avoid losing the first precise simulation branches, the widening (i.e. the
invalidating) happens before the 4th step. This way the coverage will be increased,
however, this method is disabled by default, since it can easily result in too much
false positives. Consider the example on Listing 4.

1
2
3
4
5

int num() ;
void foo () {

bool b = true;
for (int i = 0; i < num(); ++i) {
/*xdoes not change ’'b’x/

}

int n = 0;

914 Péter Szécsi, Gabor Horvath, and Zoltan Porkolab

8 if (b)

9 n-+-+;

10 =n = 1/n; // False positive:
11 // Division by zero
12 }

Listing 4: Invalidating every known information (even those which are not modified
by the loop) can easily result in false positives.

In this case the analyzer will check that unfeasible path where the variable b
is false, so n is not incremented and lead into a division by zero error. Since this
execution path would never be performed while running the analyzed program,
it is considered a false positive. Our aim was to give a more precise approach
for widening. There was already conversation within the community about some
possible enhancements [7].

One of the main principles is that the analysis should still continue after the
block visiting budget is exhausted and the information of only those variables should
be invalidated which are possibly modified by the loop, e.g. a statement, like arr [i]
= i where i is the loop variable, means that we discard the data on the whole arr
array but nothing else. For this reason we developed a solution which checks every
possible way in which a variable can be modified in the loop. Then these cases are
evaluated and if it encounters a modified variable which cannot be handled by the
invalidation process (e.g.: a pointer variable), then the loop will not be widened
and we return to the conservative method. This mechanism ensures that we do
not create nodes that contain invalid states. This approach helps us to cover cases
and find bugs like the one illustrated on Listing 5 without reporting false positives
presented on Listing 4.

3 int n 0;

A for (int i = 0; i < num(); ++i) {

5 +n;

6 }

7 if (n> 4) {

8 int k = 0

9 k = 1/k; // Division by zero error
10 }

Listing 5: Invalidating the information on only the possible changed variables can
result higher coverage (while limiting the number of the found false positives).

The bug is found by invalidating the known information on variable n (and i
as well). This makes the analyzer to create a branch where it checks the body of
the if statement and finds the bug. However, this solution has its own limitations
when dealing with nested loops. Consider the case on Listing 6.

Improved Loop Execution Modeling in the Clang Static Analyzer 915

1 int num() ;

2 void foo () {

3 int n = 0;

4 for (int i = 0; i < num(); ++i) {
5 +tn;

6 for (int j = 0; j < 4; ++j) {

7 /*body that does not change nx/
s}

9 1}

10 /xrest of the function, n <= 1 %/
11}

Listing 6: The naive widening method does not handle well the nested loops. In
this example the outer loop will not be widened.

In this scenario, when the analyzer first step into the outer loop (so it assumes
that i < num() is true) and encounter the inner loop, it consumes its (own) block
visiting budget. (This implies that it will be widened, although in this case it means
that only the inner loop counter (j) information is discarded.) After moving on to
the next iteration, we may assume that we are on the path where the outer loop
condition is true again. Due to the fact that the budget was already exhausted
in the previous iteration, the next visit of the first basic block of the inner loop
(the condition) means that this path will be completely cut off and not analyzed.
This results in the outer loop not reaching the step number where it would been
widened. Furthermore, the outer loop will not even reach the 3rd step, even the
2nd is stopped at in its body (as described above). This causes the problem that
even though the loop widening method is used, the rest of the function will be
analyzed by the assumption n <= 1.

In order to deal with the above described nested loop problem, we have imple-
mented a replay mechanism. This means that whenever we encounter an inner loop
which already consumed its budget, we replay the analysis process of the current
step of the outer loop after performing a widening first. This ensures the creation
of a path which assumes that the condition is false and simulates the execution
after the loop while the possibly changed information are discarded. This way the
analyzer will not exclude some feasible path because of the simple loop handling
which solves the problem.

An additional note to the widening process is that it makes sense to analyze the
branch where the condition is true with the widened State as well. The example
on Listing 7 shows a case where this is useful.

I int num();

2 void foo () {

3 int n = 0;

4 int 1i;

5 for (i = 0; i <
if (1 =7) {

916 Péter Szécsi, Gabor Horvath, and Zoltan Porkolab

8 }

9 for (int j = 0; j < 4; ++j) {/* =/}
0}

11 int n =1/ (7 — 1);

12 // = Possible division by zero
13 }

Listing 7: The replay mechanism successfully helps us to find the possible error the
outer loop.

This way the analyzer will produce a path where the value of i is known to be
7, so it will be able find the possible division by zero error.

4 Evaluation

The effect of the described loop modeling approaches was measured on various
popular C/C++ open source projects. These are the following:

Project LoC | Language

TinyXML 20k C++
Curl 21k C
Redis 40k C

Xerces 228k C++
Vim 540k C
OpenSSL 550k C
PostgreSQL | 950k C
FFmpeg 1080k C

4.1 Coverage and the number of explored paths

Keeping track of these statisics are already part of the analyzer. The coverage
percentage is based on the ratio of the visited and the total number of basic blocks in
the analyzed functions (instead of the number of visited statements), which results
in a small imprecision. It is important to note that the introduced loop modeling
methods require having additional loop entrance and exit point information in the
CFG. This can lead to having more basic blocks in the CFG and it can affect the
statistics. As a result, even statistics produced by using the current loop modeling
approach were measured with this information added to the CFG.

The coverage and the number of explored paths are generated for every trans-
lation unit and then summarized. This means that header files which are included
in more than one translation unit can influence more statistics. However, by using
this summarization process consistently for every measurement the results reflect
the reality.

Improved Loop Execution Modeling in the Clang Static Analyzer 917

The tables presented in this section summarize measurement results using dif-
ferent loop modeling approaches: the current practice (denoted by Normal) and
the hereby introduced loop unrolling (Unroll) and loop widening (Widen) methods
separately and simultaneously (U+W).

Table 1 shows the coverage difference using the introduced approaches. On most
of the projects, analysis coverage was strictly increased by using any of the proposed
approaches. The widening method had a stronger influence on the coverage in the
average case. However, the complete unroll of specific loops could result in a higher
coverage as well (e.g. Curl, Redis). In general, enabling both of them was the most
beneficial with respect to the coverage.

Table 2 presents the numbers of analyzed execution paths. As expected, both
introduced loop modeling methods resulted in a higher number of simulated paths
on (almost) all of the projects. The only exception is the unrolling approach on
the FFmpeg project, which caused the budget limiting the number of traversed

Table 1: The code coverage of the analysis on the evaluated projects expressed in
percentage

’ Project H Normal \ Unroll \ Widen \ U+w ‘
TinyXML 84.2 84.2 85.1 85.1

Curl 76.2 76.9 7.7 77.2
Redis 68.5 69.1 68.5 71.3
Xerces 92.3 92.4 92.7 92.7
Vim 60.4 60.6 60.6 60.7

OpenSSL 97.4 97.5 97.7 97.7
PostgreSQL 76.9 77.0 76.9 76.9
FFmpeg 86.1 86.3 87.0 86.8

Table 2: The numbers of explored execution paths using different loop modeling
approaches

’ Project H Normal \ Unrolling | Widening \ U+W ‘

TinyXML 14452 15460 14765 15773
Curl 18272 18577 28835 | 24279
Redis 69 857 70097 98446 | 100929

Xerces 395615 398077 430989 | 433358
Vim 155451 157266 188136 | 173121

OpenSSL 687175 687932 700464 | 701013
PostgreSQL || 382660 383874 453188 | 419118
FFmpeg 466 613 458 480 571399 | 521725

918 Péter Szécsi, Gabor Horvath, and Zoltan Porkolab

ExplodedNodes to exhaust earlier, slightly decreasing the number of checked paths.
Enabling both of the features resulted in similar or fewer number of explored paths
than the runs using only widening. This effect can be explained in two ways: (1) the
analyzer prefers to completely unroll loops rather than widen them, which results
in a more precise modeling of the state and can exclude unfeasible paths, (2) the
simultaneous use of the methods can lead to exhausting the budget on earlier paths,
where the analysis will be terminated.

4.2 Found bugs

The number of bug reports using the different loop modeling methods can be seen
in Table 3. The increase in analysis coverage and in the number of checked paths
usually implies an increased number of found bugs, which indeed can be observed
on the numbers. However, it is important to note that the upsurge of the number of
explored execution paths described in Table 2 considerably outweighs the moderate
rise in the number of bug reports. In some cases enabling a proposed feature could
result in less results due to two important factors: (1) the more information we
collect by precisely analyzing the execution paths does not result in false conclusion,
(2) the global budget is exceeded for exploring new paths and some of the earlier
checked will be skipped. Unfortunately, case (2) is a possible scenario, however, the
increased coverage using the described features shows that this way we still explore
more interesting cases. Since the loop widening method creates more new paths
by discarding information on the values of variables, it could introduce the risk of
analyzing paths that lead to false positives. However, from the results it seems
that this was not a problem in practice: relative to the increase in the number
of analyzed paths, the number of reports hardly increased. Moreover, based on
studying the environment of the found bugs, the ratio of false positive findings was
low (beside some clear true positive) among the newly detected bugs.

Table 3: The number of bug reports produced by the analyzer.

’ Project H Normal \ Unrolling \ Widening \ U+WwW ‘

Tiny XML 1 1 3 3 (1200%)
Cul 16 16 16 16 (0%)
Redis 55 53 55 59 (1 7.27%)
Xerces 62 62 61 61 (-1.61%)
Vim 74 74 76 78 (+5.4%)

OpenSSL 152 152 153 153 (+0.66%)

PostgreSQL || 323 323 327 | 331 (12.48%)

FFmpeg 425 420 423 454 (+6.82%)

Improved Loop Execution Modeling in the Clang Static Analyzer 919

4.3 Analysis time

The running time on different projects is showed in Table 4. Although the widening
method lead into more analyzed execution paths, the analysis time increase was
more intense after enabling the unrolling process. This is possible due to the fact
that unrolling leads to long paths where the State usually contains more informa-
tion (constraints on variable values), which is very expensive in respect of running
time. In general there was a manageable increase in the analysis time at all exam-
ined projects which suggests a good scalability of the proposed improvements.

Table 4: Average measured time of the analysis expressed in minutes. (Average of
5 runs.)

’ Project H Normal \ Unrolling | Widening \ U+W ‘

TinyXML 0:51 0:51 0:52 0:52 (+2%)
Curl 0:50 1:06 0:55 1:05 (+30%)
Redis 2:06 211 2:98 2:10 (13%)
Xerces 3:38 3:34 3:37 3:39 (+0.5%)
Vim 3:11 3:26 3:18 3:27 (+3%)

OpenSSL 2:04 2:22 2:13 2:19 (+8.3%)

PostereSQL || 7:03 8:32 748 | 759 (-13%)

FFupeg 9:40 10:22 10:14 | 11:20 (1 17%)

5 Future work

The heuristic patterns for completely unrolled loops could be extended to involve
loops whose bound is a known variable which is not changed in the body. Further-
more, even more general rules would be beneficial: consider loops where the value
variables are known at the beginning and they are affected by a known constant
change by every iteration. These improvements have not been implemented yet
due to some technical and framework limitations.

During the widening process we invalidate any possibly changed information.
However, a change made on a pointer could mean that we need to invalidate all
variables due to the lack of advanced pointer analysis. Therefore, introducing
pointer analysis algorithms to the analyzer could help to develop a more precise
invalidation process.

The infrastructural improvements enable the analyzer to provide entry points for
bug finding modules (checkers) on loop entrances/exits and identify the currently
simulated loop for every ExplodedNode. On top of these entry points new checkers
can be implemented.

920 Péter Szécsi, Gabor Horvath, and Zoltan Porkolab

6 Conclusion

Two alternative approaches was introduced for improving the simulation of loops
during symbolic execution. These were implemented and subsequently evaluated on
various open source projects, with a clear improvement of code coverage in general.
The new methods make it possible to explore previously skipped, feasible execution
paths, especially when both of them are used in conjunction.

The required changes done to the underlying infrastructure should also ease the
implementation of future enhancements. In particular, information tracked by the
analysis about location contexts were expanded with additional fields. While code
coverage was measured to have increased by an average of 0.8% and the number of
explored execution paths by an average of 16%, there was a noticeable performance
penalty as well. A general increase in the execution time was observed, with an
average of 9.5%. The number of simulated paths also increased proportionally with
the time taken, suggesting this time was well spent. In conclusion, if the user does
not mind taking ~10% more time for a more comprehensive analysis, then it is
beneficial to enable the proposed feature set by default.

7 Acknowledgment

We would like to thank to the members of the CodeChecker team at Ericsson for
their valuable and helpful suggestions on the paper.

References

[1] Bessey, Al, Block, Ken, Chelf, Ben, Chou, Andy, Fulton, Bryan, Hallem, Seth,
Henri-Gros, Charles, Kamsky, Asya, McPeak, Scott, and Engler, Dawson. A
few billion lines of code later: Using static analysis to find bugs in the real
world. Commun. ACM, 53(2):66-75, February 2010. DOI: 10.1145/1646353.
1646374.

[2] Boehm, Barry and Basili, Victor R. Software defect reduction top 10 list.
Computer, 34(1):135-137, January 2001. DOI: 10.1109/2.962984.

[3] Hampapuram, Hari, Yang, Yue, and Das, Manuvir. Symbolic path simulation
in path-sensitive dataflow analysis. SIGSOFT Softw. Eng. Notes, 31(1):52-58,
September 2005. DOI: 10.1145/1108768.1108808.

[4] King, James C. A new approach to program testing. In Proceedings of the
international conference on Reliable software, 1975.

[5] Lattner, Chris. LLVM and Clang: Next generation compiler technology. URL:
https://1lvm.org/pubs/2008-05-17-BSDCan-LLVMIntro.html, 2008. Lec-
ture at BSD Conference.

Improved Loop Execution Modeling in the Clang Static Analyzer 921

[6] Michael, Zhivich and Robert, K. Cunningham. The real cost of software errors.
IEEE Security & Privacy, 7(2):87-90, 2009. DOI: 10.1109/MSP.2009.56.

[7] Phabricator. Community conversion about loop widening. URL: https://
reviews.llvm.org/D12358, 2015.

[8] Rice, Henry G. Classes of recursively enumerable sets and their decision prob-
lems. Trans. Amer. Math. Soc., 74:358-366, 1953.

Acta Cybernetica 25 (2022) 923-940.

Detecting Uninitialized Variables in C++
with the Clang Static Analyzer®

Kristof Umann® and Zoltan Porkolabh®

Abstract

Uninitialized variables have been a source of errors since the beginning of
software engineering. Some programming languages (e.g. Java and Python)
will automatically zero-initialize such variables, but others, like C and C++,
leave their state undefined. While laying aside initialization in C and C++
might be a performance advantage if an initial value cannot be supplied,
working with variables is an undefined behaviour, and is a common source
of instabilities and crashes. To avoid such errors, whenever meaningful ini-
tialization is possible, it should be applied. Tools for detecting these errors
run time have existed for decades, but those require the problematic code to
be executed. Since in many cases, the number of possible execution paths is
combinatoric, static analysis techniques emerged as an alternative to achieve
greater code coverage. In this paper, we overview the technique for detecting
uninitialized C++ variables using the Clang Static Analyzer, and describe
various heuristics to guess whether a specific variable was left in an undefined
state intentionally. We implemented and published a prototype tool based
on our idea and successfully tested it on large open-source projects. This
so-called “checker” has been a part of LLVM/Clang releases since 9.0.0 under
the name optin.cplusplus.UninitializedObject.

Keywords: C+-+, static analysis, uninitialized variables

1 Introduction

When declaring a variable in program code, we might not be able to come up with a
meaningful default value thus leaving the variable uninitialized. This is not an issue
if one later assigns said variable before reading it, but such errors can be introduced
through, for example, code maintenance. Different languages approach this problem
in different ways: Java, Python (and many others) zero- initialize variables by

*This work is supported by the European Union, co-financed by the European Social Fund
(EFOP-3.6.3-VEKOP-16-2017-00002)

®Department of Programming Languages and Compilers, Faculty of Informatics, E6tvos Lorand
University, Budapest, Hungary

bE-mail: szelethus@inf.elte.hu, ORCID: 0000-0002-6679-5614

¢E-mail: gsd@inf.elte.hu, ORCID: 0000-0001-6819-0224

DOI: 10.14232/actacyb. 282900

924 Kristéf Umann and Zoltan Porkolab

default, while others, like C and C++, leave their values in an undefined state, and
working with such variables leads to undefined behaviour at runtime.

Undefined behaviour in C/C++ is any behaviour the standard does not specity.
It may occur, among many other sources, when a null pointer is dereferenced, the
division is made by zero, or an array is indexed out of its bounds. The real danger
of undefined behaviour is that in some cases, the program might behave seemingly
correctly, but other times run into runtime errors, e.g. crashing, corrupting opened
files or memory regions allocated by other programs. Also, even the same kind
of undefined behaviours might manifest in different runtime errors on different
executions.

This makes catching undefined behaviour often very hard — in the case of
uninitialized variables, zero initialization might occur with a particular compiler, on
a particular platform, in a particular build mode, but might also leave the variable
hold whatever value that was stored in the memory region to which the variable
was assigned (so-called “garbage value”). However, the use of this behaviour could
result in some performance enhancement, tempting programmers to not initialize
variables, even though this is often a bad approach.

This paper investigates how such variables can be detected using static analysis.
Unlike many other available tools, we will focus on non-idiomatic C+-+ initializa-
tion rather then uninitialized value misuse. In Section 2, we will discuss related
initialization rules in C++. In Section 3, we overview runtime and static tools
that are available for the same problem and sample several techniques of the latter
in Section 4 with a highlight on symbolic execution. We will detail the actual
implementation of our prototype in Section 5 along with the heuristics we use to
emit only reports that will most likely result in incorrect program behaviour, and
what other heuristics could be implemented. We evaluate our prototype solution
on various large open-source codebases in Section 6 and discuss future works in
Section 7. Our paper concludes in Section 8.

2 C-++ Initialization Rules

The way variables are initialized in C/C++ depends on the variables’ type. They
can be categorized by whether they are records, arrays, or else. For this paper, we
will refer to the latter category as primitive. The C++ standard specifies two types
of initialization that may result in an indeterministic value [13, p. 221][25], but zero
initialization is also relevant in this context. When creating an uninitialized object
of type T

o default initialization occurs

— if T is a class: default constructor is called, or
— if T is an array, each element is default initialized, or

— otherwise, no initialization occurs resulting in an indeterminate value,

Detecting Uninitialized Variables in C++ with the Clang Static Analyzer 925

Variable declaration i’s initialization
T i; default initialization
T i{}; value initialization (C++11)
Ti=TQO; value initialization
Ti=T{}; value initialization (C++11)
. function declaration (no

T i(); . e

variable initialization occurs)

Figure 1: Initialization rules for instatiation of local variables

A::AQ)’s definition A: :t’s initialization
struct A { T t; AQ : t(O {F }; value initialization
struct A { T t; AQ : t{} {3 }; value initialization (C++11)
struct A { T t; AQ {}; }; default initialization
struct A { T t; A() = default; }; value initialization

Figure 2: Initialization rules for data member A::t upon instantiating a local A
typed variable with the default constructor.

e value initialization occurs
— if T is a class, the object is default initialized after zero initialization if
T’s default constructor is not user-defined/deleted, or
— if T is an array, each element is value initialized, or

— otherwise the object is zero initialized,
e zero-initialization occurs, before any other initialization

— if the object is static or thread-local, or
— if T scalar (number, pointer, enum) set to 0, or

— if T is a class, all subobjects are zero-initialized.

We summarize these rules in Figure 1. and 2. While we did not discuss
initialization in great depth in this section, it shows that this issue is not only
context-sensitive, it is also confusing, since it can be intertwined with other C+-+
rules, such as those related to inheritance. Even telling when the compiler will
generate a constructor can be difficult [30].

3 Related work

When approaching the issue of uninitialized variables, we can sort the already
existing solutions into two categories: runtime and static. An ideal solution is both
correct and complete, where none of our reports is incorrect (false positive), and we

926 Kristéf Umann and Zoltan Porkolab

identify all uninitialized objects. Different techniques tend to emphasize different
parts of the requirements mentioned above — Runtime techniques are inherently
less prone to report false positives, but lack completeness [14]. Static analysis tools
cover far more of the code and offer a more complete but less precise solution [18].

In the context of this paper, we are looking for a solution to detect error-prone
lack of initialization and not uninitialized value misuses. Despite this, both due
to the scarcity of tools that focus on the former rather than the latter, and the
strong relevance of the two problems, we feel it is important to take a short survey
of analyzers and techniques that implement rules for either.

3.1 Runtime analysis tools

Several papers survey the detection of uninitialized value misuses in runtime ana-
lyzers [14, 20, 6]. A common characteristic of said tools is to inspect the program
during execution, with a given input. This means that in any given analysis, these
tools will only observe a single path of execution. However, this simplification makes
these tools far more precise, improving, on that particular path of execution, both
the true positive and the true negative findings.

Valgrind is a general dynamic binary instrumentation (DBI) framework [23]. Tt
inspects the executable binary, rather than the source code of a program, which
might not even be available. Valgrind offers several tools (also referred to as plugins)
that can find bugs. It is implemented by its core disassembling a given code block
from the binary into an intermediate representation, which is instrumented with
analysis code by the plugin, and then converted back into machine code. The
resulting translation is stored in a code cache to be rerun as necessary. One of
these plugins, MemCheck [27], can find uninitialized value misuses using shadow
bits [22] for every byte in the application memory: one a bit indicates whether it is
addressable, and a bit indicates whether it has a defined value.

Dr. Memory [4] works similarly to MemCheck but is more modern, better
optimized and multi-threaded. Its two times faster then MemCheck, but due to
concurrent updates of adjacent shadow bits, is more prone to emit false positive
and false negative reports [28].

MemorySanitizer [28] offers a different approach to runtime analysis by only
solving the problem of uninitialized variable misuses. It generates a modified bi-
nary during compilation, skipping disassembly and reassembly entirely. Running the
generated binary is far faster and consumes less memory then the solution Valgrind
with MemCheck or Dr. Memory offers, but this requires the source code to be
available.

3.2 Static analysis tools

Static analyzers do not execute the program under analysis, but rather inspect
either the source code or the generated binary code. This results in far greater code
coverage as they are not restricted to a single path of execution. However, this
generality comes at the cost of the analyzer tool having little knowledge about input

Detecting Uninitialized Variables in C++ with the Clang Static Analyzer 927

values. In parts of the code where such information is crucial, the given analyzer
might have to conservatively suppress its reports, or simulate the execution of parts
of the code, making assumptions on values. This, considering the complexity of
some of the C++ language features (as discussed in Section 2.) can result in a
higher number of false positives and false negatives. We will discuss some of the
more popular techniques in Section 4. For the remainder of this section, we will
sample some of the widely used C/C++ static analyzers.

CppCheck [21] is among the earliest open-source tools with support for C++. It
uses AST matching and dataflow analysis! to find bugs and code smells. Contrary
to many open-source tools for C-++ analysis, CppCheck implements its own pre-
processor, parser and abstract syntax tree (AST). It defines two rules on incorrect
initialization in constructors, separately for private and non-private fields.

Infer [5] is a relatively new tool, focusing on scalability and fast execution. It has
a unique approach to static analysis, using bi-abduction to perform interprocedural
analysis. Infer also runs with cross translation unit analysis enabled by default, and
scales significantly better with the number of translation units to analyze compared
to other tools such as the Clang Static Analyzer [10]. While it has several checkers to
detect uninitialized value misuse, it does not have any that focuses on non-idiomatic
C++ object initialization.

The Clang Static Analyzer [18], similarly to CppCheck, is among the more
mature static analyzers for C++. Having the benefit of being implemented directly
in the Clang compiler and transitively LLVM itself, it can take advantage of several
well-tested algorithms and data structures. The Clang Static Analyzer (or analyzer
for short) was ultimately our choice of project to implement our prototype in and
will be discussed in greater detail in Section 5.1.

There are also several commercial static analyzers such as CodeSodar [§8], Cover-
ity [29], Klocwork [15], but due to licencing issues we will not compare our results
to them.

4 An introduction to symbolic execution

Several static analysis techniques may be considered for finding uninitialized vari-
ables, each having different strengths and weaknesses in terms of analysis speed,
memory or persistent storage consumption. In this section, we introduce symbolic
execution through two other approaches, and demonstrate why it is more appropriate
for our purpose.

4.1 Text-based matching

A possible, though a primitive approach would be to use textual pattern match-
ers. Let us see through a couple of examples whether we can tackle the problem
initialization with regular expressions:

IThe authors of CppCheck refer to this technique as “valueflow”, rather then dataflow.

928 Kristéf Umann and Zoltan Porkolab

int 1i;

With the regular expression rule int [A-Za-z]+[A-Za-z0-9]%; we can catch this
error. We can even enhance this regular expression by handling other fundamental
types, ignoring whitespaces, C-style comments and the like. By inspecting the
preprocessed code, rather than the original source code, we can also handle cases
where the preprocessor would generate parts of the expression. However, in Figure 3,
we demonstrate that non-trivial cases require a context-sensitive grammar. On
that code snippet, a.i will be initialized by the of the constructor call, but a.j
will not be. Having multiple constructors, potentially after instantiating the class,
inheritance, virtual inheritance, constructor delegation, aggregate initialization make
solving even smaller parts of this problem practically impossible with text-based
pattern matching.

1 struct A {

2 int 1i;

3 int j;

4 AO : i(0) {3
5 };

6

7 A a;

Figure 3: Text-based pattern matching is unable to identify a.j as uninitialized.

4.2 AST matching

A more sophisticated approach is to utilize the abstract syntax tree (AST), which
provides far more C++ specific information, especially when coupled with semantic
information, such as type information and an identifier table.

For the code snippet on Figure 4a, according to the rules detailed in Section 2,
b1, b2 are value initialized while b3 is default initialized, leaving b3.data in an
indeterministic state. As discussed earlier, we cannot tell this with regular expres-
sions.

On Figure 4c, we can inspect how Clang constructs the AST for Figure 4a. Using
Clang’s AST matcher library, we can match the line on which b3 is defined with
the following matcher:

declStmt (unless (hasDescendant (
stmt (any0f (cxxConstructExpr (requiresZeroInitialization()),
implicitValueInitExpr())))));

This approach is clearly superior to text-based matching because it is context-
sensitive and allows us to express C-++ specific properties easily. AST matching
can be complemented with the retrieval of the matched expression, enabling us to
do additional compile-time analysis, such as inspecting the inheritance tree of a

Detecting Uninitialized Variables in C++ with the Clang Static Analyzer 929

1 struct RealSqrt { 1 struct RealSqrt {
2 int data; 2 int data;

3 3 RealSqrt(int i) {
4 4 if (i >= 0)

5 5 data = 1i;

6 6 }

7T} 70}

8 8

9 int main() { 9 int main() {

10 RealSqrt bl = RealSqrt(); 10 int i = rand();
11 RealSqrt b2{}; 11 if (i >= 0)

12 RealSqrt b3; 12 RealSqrt b(i);
13} 13}

(a) (b)

CXXRecordDecl line:1:8 referenced struct A definition
| -DefinitionData

| |-DefaultConstructor trivial

| |-CopyConstructor trivial

| |-MoveConstructor trivial

| |-CopyAssignment trivial

| |-MoveAssignment trivial

| ¢-Destructor irrelevant trivial

| -FieldDecl col:7 referenced a

FunctionDecl line:5:5 main

¢ -CompoundStmt
| -DeclStmt
| ‘-VarDecl col:5 bl cinit
| ¢-ExprWithCleanups
| ¢-CXXConstructExpr
| ¢-MaterializeTemporaryExpr xvalue
| ¢ -CXXTemporaryObjectExpr zeroing
| -DeclStmt
| ¢-VarDecl col:5 b2 listinit
| ‘-InitListExpr
| ‘-ImplicitValueInitExpr
| -DeclStmt
| ¢-VarDecl col:5 b3 callinit
| ¢-CXXConstructExpr

(c) Simplified AST generated by Clang for Figure Figure 4a.

Figure 4: Code snippets demonstrating the internal representation and analysis
techniques used by Clang.

930 Kristéf Umann and Zoltan Porkolab

type, gathering all direct (inherited and in-class) fields and checking whether the
called constructor is compiler-generated.

While the techniques mentioned above can be used to reduce the number of false
positives drastically, not even AST based matching can effectively deal problems
requiring path sensitive information.

It is clear that on Figure 4b, b.data will not be uninitialized, but we cannot
reliably detect that with AST matchers. Even if we do additional compile-time
analysis, we cannot reason about runtime values, branches, loops and the like
without path sensitive analysis. However, AST-based pattern matching is relatively
fast and can be used as a supplement to a better approach.

4.3 Symbolic Execution

Symbolic execution [9] is a powerful static analysis technique: it essentially simulates
the execution of the program. The implementing tool follows the control flow graph
(CFG@), and evaluates statements within a basic block. Each expression is represented
with a symbolic expression that is assigned a value (e.g. assigning i + 1 with the
value 11), which itself could be symbolic if the value is unknown (e.g. supplied from
a file or the command line, randomly generated or received from a translation unit
we cannot analyze).

Upon encountering branch statements (when a basic block has more than one
outgoing edge), the tool will use a constraint solver to evaluate the condition [16]. If
the condition can be proven to be false or true in the given program state, the tool
can ignore all but one of the outgoing edges. Otherwise, the analyzer will explore
both paths, one on which the condition of it is true, and one where it is false. This
introduces the possibility to impose constraints upon symbolic values, such as a
pointer check could tell that the pointer value is non-null on a path, even if the
precise value is still unknown, and null on the other.

With this technique, we can theoretically explore all execution paths and reason
about the values of variables. For Figure 4b, we will note that A::A() will only be
called if the supplied parameter has a value of 5, and there is no uninitialized value
problem made in the program.

Since we can inspect the values in any given program state, handling complex
C++ code, such as inheritances, virtual inheritances, constructor delegations come
naturally: we could inspect an object after the end of a constructor call.

Clearly, symbolic execution is a far more powerful tool than text- or AST- based
pattern matching, hence our decision to use it in our implementation. It is worth
noting though that such an analysis is several times slower than compilation.

5 Implementation
In this section, we will detail how we implemented our prototype in the Clang

Static Analyzer, and some of the heuristics used to guess whether the discovered
uninitialized objects were left as such intentionally.

Detecting Uninitialized Variables in C++ with the Clang Static Analyzer 931

5.1 Clang Static Analyzer

Clang is the C/C++ frontend of the LLVM optimizer and code generator and houses
the Clang Static Analyzer (analyzer). The Clang Static Analyzer implements all
three analyses detailed in Section 4. In this project, symbolic execution is divided
into two main components: a core that explores paths of execution and evaluates
statements, and so-called checkers that define bugs or code smells. Our prototype
is also a checker.

During symbolic execution, the core will simultaneously build an exploded
graph [12]. This graph describes the entire analysis — nodes could represent new
information the analyzer learned while evaluating a statement, such as a new
constraint on a symbolic expression, the end of a code block, call to a function,
end of a function call, or even checker-specific information (e.g. our prototype
creates a new node to note already reported fields). Control statements like if and
while could correlate to several exploded nodes, depending on how many times the
condition was evaluated. We call the event when the analyzer constructs multiple
child nodes state splitting, and it may be introduced by checkers as well. For instance,
a dynamic memory modelling checker may split the state when modelling a call to
the malloc function, creating a path of execution where the result of the function
call is NULL, and one where the allocation was successful. This implies that the
exploded graph grows exponentially, hence the naming.

The exploded graph is not isomorphic with the CFG, but it does have a natural
projection to it: each exploded node can be mapped to a statement or an edge in
the CFG.

The analyzer categorizes many modelling steps into events. Checkers can
subscribe to one or several of these, and are notified by the core should they occur.
InnerPointerChecker [17], for instance, is subscribed to the “end of a function call”
event to mark the return values of method calls like std::string::c_str() as
pointers to internal data, and to the “dead symbols” event to mark such data as
released after going out of scope.

5.2 Representing an object

In C++, the proper initialization of objects of a record type is the responsibility of
the special member function called the constructor. The constructor could be user-
provided when the programmer specifies it or compiler provided if it is automatically
generated. The improper implementation of the user-provided constructor is the
primary source of uninitialized value misuse. Therefore, in this research, we are
concentrating on validating the construction.

Naturally, any representation must respect fields and fields of fields (subobjects),
which we will call direct containment. Inherited fields are also directly contained.
However, non-null valid pointer objects refer to objects that may be uninitialized
themselves. We will refer to pointees of pointer fields as indirectly contained objects.

932 Kristéf Umann and Zoltan Porkolab

1 struct A {

2 struct B {

3 int x; i o

; e = o ptr }» (int value)
5 3}

6 y

T Bh Fai o 1

8 int *iptr = new int ”

9 B*x bptr;

10 AO {3 bptr
N E=

11

Figure 5: How an object is represented by the checker. Red nodes are uninitialized
objects.

With that in mind, our proposed representation is a directed graph, where
e The root of this graph is the object we are analyzing,

e Every other node is also an object that is a union, a non-union record,
dereferenceable, an array or of a primitive type,

e The parent of each node is the object that contains it.

It is easy to show that this representation is not always a directed tree: circular
linked lists and pointers pointing to themselves are all directed cycles. However, by
keeping track of the objects we already analyzed, we can disallow these con- structs,
turning this representation into a directed tree.

We can also realize that in this directed tree every leaf is either a null pointer, an
undefined pointer, an array, a primitive object, or a pointer that that points to an
already analyzed object, meaning that they can be represented as numerical values.
This is important, as the analyzer may only mark such objects as uninitialized.

By subscribing our checker to the end of a function call event, we can inspect
every object after the end of a constructor call. By traversing the above graph, we
can detect all directly and indirectly contained objects, and emit reports for each of
them.

Our prototype traverses this graph recursively in a depth-first manner, and after
each descent to a child node, constructs an informative object to keep track of the
path leading to the current node. By the time it reaches a leaf, it has constructed an
informative list that contains every information needed to reach it. Should that leaf
be in an indeterministic state, a report is emitted, and a helpful warning message
is constructed from the informative list. For Figure 5, our prototype would report
that this->b.x, this->iptr’s pointee and this->bptr is left uninitialized after
the constructor call. However, since the analyzer keeps track of the dynamic type of

Detecting Uninitialized Variables in C++ with the Clang Static Analyzer 933

the pointers during symbolic execution, the warning message could be incorrect, if
we report a derived class’ field as uninitialized through its base class’ typed pointer.
To solve this problem, the checker stores dynamic type information as well in the
constructed informative list, so the constructed warning message could contain casts
the actual dynamic type.

As constructors are called for fields during construction, we will only run our
checker when function call stack does not contain other constructor calls.

5.3 Heuristics

In static analysis, we can classify results as true positive, if the analyzer correctly
identified a programming error, true negative if the analyzer correctly identified the
lack of a programming error, false positives if the analyzer reported a programming
error despite the code being correct, and false negatives when the analyzer did
not report incorrect code. These definitions, however, describe uninitialized object
related reports rather poorly. While correctly identified and reported uninitialized
objects are by definition true positives, these objects may have been left as such
intentionally. An essential aspect of this problem is that not initializing a variable is
not an error, only the reading of an uninitialized value. In fact, when the programmer
cannot supply a meaningful default value (e.g. declaring a variable as a buffer),
initialization could result in a performance loss.

For this reason, one of the main goals of our research is to identify which
uninitialized variables are most likely to result in misuse and undefined behaviour.
This implies that we have to reason about the intention of the programmer and
suppress some reports, turning them into false negatives. The following section will
detail how we try to find an optimal true positive/false negative ratio.

We made our checker configurable, allowing us to enable, disable or fine-tune
some of our heuristics for a particular project.

5.3.1 Arrays

Before C++11, elements of dynamically allocated arrays could not be initialized.
Even stack-allocated arrays are often used as buffers, which was consistent with the
results of our findings, so our prototype ignores arrays.

5.3.2 No initialized field

Through testing our prototype, we concluded that objects that do not initialize
a single one of their fields are often created intentionally. However, this heuristic
can result in a higher amount of false negatives than maybe desired, so we made it
toggleable.

5.3.3 Pointer chasing

Indirect containment raises a philosophical question: Is an object responsible for
leaving its pointee object in a fully deterministic state? One perspective we could

934 Kristéf Umann and Zoltan Porkolab

1 struct PhysicalProperty {

2 int volume, area;

3 enum Kind { VOL, AREA } kind;

4

5 PhysicalProperty(Kind k) : kind(k)
{

6 switch(k) {

7 case VOL:

8 volume = O;

9 break;

10 case AREA:

11 area = 0;

12 break;

13 }

14 }

15

16 int getVolume() const {

17 assert(kind == VOL);

18 return volume;

19 }

20

21 int getArea() const {

22 assert(kind == AREA);

23 return area;

24 }

25 };

Figure 6: PhysicalProperty doesn’t initialize all data members, but ,guards”

against uninitialized value misuse.

take is to guess whether the objects owns the pointee. However, ownership is a
conceptually popular, but non-standardized concept within C++ [11]. This, and
the current faults in the analyzer lead to us to not analyze pointees (or chasing
pointers) by default.

5.3.4 Guarded field analysis

Consider the code snippet in Figure 6. Although PhysicalProperty will leave
one of its fields uninitialized on every instantiation, we cannot encounter an unini-
tialized object related error runtime. Similar constructs within the LLVM codebase
is very popular and will trigger a report from our checker, despite the lack of a
programier error.

Detecting Uninitialized Variables in C++ with the Clang Static Analyzer 935

We will call any statement that could prevent the execution from reaching and
reading an uninitialized field a guard. We call a field guarded if every read of it
control depends on a guard.

Unfortunately, it is hard to guess compile-time whether a field is guarded, as the
argument of if statements might not be correlated to whether the field is initialized.
We implemented a primitive heuristic to solve this problem using AST matchers
on the object’s record definition, analyzing whether the field is public, and is read
before a guard in the code. Due to the reasons mentioned above, this is a very
rough estimate, and this analysis is disabled by default.

5.3.5 Known to be safely uninitialized fields

In some instances, we might want to ignore particular objects of a particular type
intentionally, or if they have a specific variable name. For this reason, our prototype
is configurable with a regular expression, and if it matches a variable’s name or it’s
type, we ignore it.

6 Evaluation

We evaluated our prototype on several large, open-source C++ projects, such as
Rtags [3], LLVM [19], Xerces [1], CppCheck [21], Bitcoin [31] with a variety of
configurations. We used the open-source program csa-testbench [24], which helped
us compare the results of different configurations of our checker with ease. We used
CodeChecker [7] to visualize our results. We also ran CppCheck on said projects
and compared its results with the one our solution generated.

We purposely chose projects with diverse design patterns. For example, the
LLVM project relies almost purely on its own libraries, and being a compiler, it is
very performance-critical. The C++ indexer Rtags uses several third-party libraries
and houses a variety of coding styles, some more performance-critical then others.
We found that the more performance-critical a project is, the more likely it is that
the code takes advantage of not initializing every variable.

As mentioned in Section 5.3, it can be challenging to find good metrics on the
quality of the reports. While the authors were researching an algorithm which
enforces the idiom of initializing every variable, there are several reports (especially
in the code generation libraries of LLVM) that we feel justifies going against it.
This implies that judging whether a report is meaningful or not is debatable. For
this reason, we categorized the results into three categories: we say a report useful
if the lack of initialization had probably little to no effect on performance and is
error-prone, questionable if judging from the code context the lack of initialization
is appropriate, and false positive if the report was incorrect. We summarized our
results in Table 1.

According to the C++ initialization rules, we found only a single false positive
where the analyzer disregarded an in-class initialization, though this is a fault
of the analyzer’s core. We found that the reports from our prototype with the

936 Kristéf Umann and Zoltan Porkolab

Table 1: Reports from our prototype in the first 4 columns, and from CppCheck in the
last on large, open source projects. Reports are shown in the format “all/useful /false
positive/ 7,

Default Pointer chasing Pedantic Gue%rded fields CppCheck
ignored
Rtags 1/1/0/ 6/1/0/ 1/1/0/ 1/1/0/ 5/1/0/
LLVM 46/18/1/ 88/18/1/ 48/20/1/ 43/18/1/ 4/1/0/
Xerces 1/1/0/ 1/1/0/ 1/1/0/ 1/1/0/ 7/4/0/
CppCheck | 0/0/0/ 0/0/0/ 0/0/0/ 0/0/0/ 0/0/0/
Bitcoin 5/5/0/ 5/5/0/ 5/5/0/ 5/5/0/ 12/5/0/

default configuration were overwhelmingly useful except for LLVM. Despite most
uninitialized variable finds in that project were of little value, even there we were
able to find and patch error-prone code.

We found code pattens in nearly all projects that clearly go against idiomatic
C++ code. Such code patterns include not letting the compiler generate constructors
by defaulting them with = default, not initializing variables that are removed in
non-debug builds, leaving uninitialized fields of non-POD classes public, or storing
auxiliary data such as counters that would be more appropriate as function-local
variables.

Contrary to our expectations, both reports that are present with the Pedantic
option enabled but not with default configurations were useful, showing constructors
that should have been defaulted. Though the number of reports increased signifi-
cantly after enabling pointer chasing, it mostly lead us to find pointers to buffers
that were handled correctly in the class, making them uninteresting in all reports
found in LLVM and Rtags. LLVM uses guarded fields extensively, but we were only
able to suppress reports based on this information in 3 cases.

Comparatively, CppCheck had the least amount of reports on LLVM except for
its own codebase, significantly less than our prototype both in terms of count and
useful finds, but had more on Rtags, Xerces and Bitcoin. Shockingly, there was
only a single report found by both CppCheck and out prototype in Xerces. This
supports the conclusion of other findings on static analyses that to find more bugs,
it is better to use multiple tools [2, 33].

It should be noted that unlike our prototype, CppCheck constructs a warning
message per uninitialized field, rather than per constructor call, so we regarded
multiple warnings originating from the same constructor as one.

This checker, under the name of optin.cplusplus.UninitializedObject has
been a part of the analyzer since it’s 9.0.0 release [32], and has been used by various

industrial parties, such as Firefox?, Apple?, Google* and Ericsson®.

%https://reviews.1llvm.org/D45532#1145512
Shttp://lists.1lvm.org/pipermail/cfe-dev/2018-August/058905.html
4https://reviews.1lvm.org/D58573#1477581
Shttps://reviews.1llvm.org/D58573#1425837

Detecting Uninitialized Variables in C++ with the Clang Static Analyzer 937

7 Future works

It is hard to find an ideal true positive/false negative ratio to make our reports
meaningful enough without suppressing too many of them. More research into new
heuristics and improving existing ones is where most of our future projects lay.

Guarded field analysis could benefit from being implemented using dataflow
analysis instead of AST matching. While finding a correlation in between the guard
statement and whether the field is initialized is theoretically impossible, clever
heuristics could help on this matter.

Pointer chasing suffers from some poor modelling techniques within the analyzer’s
core, which is not directly related to our implementation. Also, heap allocated
objects are not yet modelled at all. Improving these within the core and better
defining in which cases we want to report uninitialized pointees could eventually
enable us to enable pointer chasing by default.

While there are no constructors in C, it is worth investigating whether our C++
prototype could be used for analyzing C code. One approach would be to note when
an object of a great enough size is created, and when the function call in which its
created ends, analyze that object with our proposed technique.

A popular technique in C++ programming is the pimpl idiom [26], where the
part of the class’ definition is implemented through an opaque pointer. The Clang
Static Analyzer, by default, can only analyze a single translation unit at a time,
so it may be unable to reason about opaque pointers if the definition of a function
or a class lies a translation unit different than what is being analyzed. Cross
translation unit (CTU) analysis [10] can be used to acquire the definition. It should
be investigated whether our prototype is conformant with CTU.

8 Conclusion

Static analysis of C/C++ code can be used to detect uninitialized variables, which are
a common source of undefined behaviour. While more prone to false positives, static
analysis has a far greater code coverage compared to dynamic analysis. We argued
against analyzing only fundamental objects and proposed an accurate representation
of record objects in the form of a directed tree. Our prototype, implemented in the
Clang Static Analyzer, can traverse this graph to detect uninitialized variables for
each object after the end of its constructor call. We proposed a variety of heuristics
to reduce the number of reports emitted by this prototype, focusing on uninitialized
variables most likely to be read. Evaluation of large open-source projects lead
us to discover several records that are likely to leave some fields uninitialized
unintentionally and are prone to misuse. While we generally found the results of our
prototype meaningful, we plan to add new heuristics and enhance existing ones to
reduce the further number of uninteresting reports on performance-critical projects.

This checker, under the name of optin.cplusplus.UninitializedObject has
been a part of the analyzer since it’s 9.0.0 release [32], and has been used by various
industrial parties, such as Firefox, Apple, Google and Ericsson.

938 Kristéf Umann and Zoltan Porkolab
References
[1] Apache Software Foundation. Apache Xerces. https://xerces.apache.org/.

2]

131
4]

[5]

[6]

7]
18]

19]

[10]

[11]

Arusoaie, Andrei, Ciobaca, Stefan, Craciun, Vlad, Gavrilut, Dragos, and Lu-
canu, Dorel. A comparison of open-source static analysis tools for vulnerability
detection in C/C++ code. In 2017 19th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC), pages 161-168.
IEEE, 2017. DOI: 10.1109/SYNASC.2017.00035.

Bakken, Anders. Rtags. http://www.rtags.net.

Bruening, Derek and Zhao, Qin. Practical memory checking with Dr. Memory.
In Proceedings of the 9th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, pages 213—223. IEEE Computer Society,
2011. DOI: 10.1109/CG0.2011.5764689.

Calcagno, Cristiano, Distefano, Dino, Dubreil, Jérémy, Gabi, Dominik, Hooimei-
jer, Pieter, Luca, Martino, O’Hearn, Peter, Papakonstantinou, Irene, Pur-
brick, Jim, and Rodriguez, Dulma. Moving fast with software verification.
In NASA Formal Methods Symposium, pages 3—11. Springer, 2015. DOI:
10.4204/eptcs.188.2.

Cifuentes, Cristina, Hoermann, Christian, Keynes, Nathan, Li, Lian, Long,
Simon, Mealy, Erica, Mounteney, Michael, and Scholz, Bernhard. Begbunch:
Benchmarking for ¢ bug detection tools. In Proceedings of the 2nd International
Workshop on Defects in Large Software Systems: Held in conjunction with the
ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2009), pages 16-20, 2009. DOI: 10.1145/1555860.1555866.

Ericsson. CodeChecker. https://github.com/Ericsson/codechecker.

GrammaTech. Codesonar. https://www.grammatech.com/products/
codesonar.
Hampapuram, Hari, Yang, Yue, and Das, Manuvir. Symbolic path simulation

in path-sensitive dataflow analysis. ACM SIGSOFT Software Engineering
Notes, 31(1):52-58, 2005. DOI: 10.1145/1108768.1108808.

Horvath, Gabor, Gera, Zoltan, Krupp, Déniel, Porkolab, Zoltan, and Szécsi,
Péter. Cross translational unit analysis in Clang static analyzer: Prototype and
measurements. URL: https://11vm.org/devmtg/2017-03//assets/slides/
cross_translation_unit_analysis_in_clang_static_analyzer.pdf,
2017. European LLVM Developers Meeting, Saarbriicken.

Horvath, Gabor and Pataki, Norbert. Categorization of C++ classes for
static lifetime analysis. In Eleftherakis, George, Lazarova, Milena, Aleksieva-
Petrova, Adelina, and Tasheva, Antoniya, editors, Proceedings of the 9th Balkan

Detecting Uninitialized Variables in C++ with the Clang Static Analyzer 939

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

22]

Conference on Informatics, BCI 2019, Sofia, Bulgaria, September 26-28, 2019,
pages 21:1-21:7. ACM, 2019. DOI: 10.1145/3351556.3351559.

Horvath, Gabor, Szécsi, Péter, Gera, Zoltan, Krupp, Daniel, and Pataki,
Norbert. Implementation and evaluation of cross translation unit symbolic
execution for ¢ family languages. In Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings, pages 428—428.
ACM, 2018. DOI: 10.1145/3183440.3195041.

Programming languages — C++. Standard, International Organization for
Standardization, Geneva, Switzerland, December 2017.

Jana, Anushri and Naik, Ravindra. Precise detection of uninitialized variables
using dynamic analysis-extending to aggregate and vector types. In 2012
19th Working Conference on Reverse Engineering, pages 197-201. IEEE, 2012.
DOI: 10.1109/WCRE.2012.29.

Klocwork. Klocwork. https://www.roguewave.com/products-services/
klocwork.

Kovacs, Réka and Horvath, Gabor. An initial prototype of tiered constraint solv-
ing in the clang static analyzer. Studia Universitatis Babes-Bolyai, Informatica,
63(2), 2018. DOI: 10.24193/subbi.2018.2.06.

Kovacs, Réka, Horvath, Gabor, and Porkolab, Zoltan. Detecting C++ lifetime
errors with symbolic execution. In Proceedings of the 9th Balkan Conference
on Informatics, pages 1-6, 2019. DOI: 10.1145/3351556.3351585.

Kremenek, Ted. Finding software bugs with the Clang static analyzer. https:
//11vm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf. LLVM Devel-
opers’ Meeting, 2008.

Lattner, Chris and Adve, Vikram. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings of the interna-
tional symposium on Code generation and optimization: feedback-directed
and runtime optimization, page 75. IEEE Computer Society, 2004. DOI:
10.1109/CG0.2004.1281665.

Lu, Shan, Li, Zhenmin, Qin, Feng, Tan, Lin, Zhou, Pin, and Zhou, Yuanyuan.
Bugbench: Benchmarks for evaluating bug detection tools. In Workshop on
the evaluation of software defect detection tools, Volume 5, 2005.

Marjaméki, Daniel. Cppcheck: A tool for static C/C++ code analysis. URL:
https://cppcheck.sourceforge.io/, 2013.

Marton, Gabor and Porkolab, Zoltan. Compile-time function call interception
for testing in C/C++. Studia Universitatis Babes-Bolyai, Informatica, 63(1),
2018. DOI: 10.24193/subbi.2018.1.02.

940

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]
[32]

[33]

Kristéf Umann and Zoltan Porkolab

Nethercote, Nicholas and Seward, Julian. Valgrind: A framework for heavy-
weight dynamic binary instrumentation. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’07), pages 89-100. ACM, 2007. DOI: 10.1145/1250734.1250746.

Nikolett Kovéacs, Réka, Horvath, Gabor, and Szécsi, Péter. Towards proper
differential analysis of static analysis engine changes. In The 11th Conference
of PhD Students in Computer Science, 2018.

Porkolab, Zoltan. Multiparadigm programming: Constructors, destruc-
tors, operators, 2019. http://gsd.web.elte.hu/lectures/multi/slides/
constructor.pdf.

Reddy, Martin. API Design for C++. Elsevier, 2011. DOI: 10.1016/c2010-
0-65832-9.

Seward, Julian and Nethercote, Nicholas. Using Valgrind to de-
tect undefined value errors with bit-precision. In USENIX An-
nual Technical Conference, General Track, pages 17-30, 2005. URL:
https://www.usenix.org/conference/2005-usenix-annual-technical-
conference/using-valgrind-detect-undefined-value-errors-bit.

Stepanov, Evgeniy and Serebryany, Konstantin. Memorysanitizer: fast de-
tector of uninitialized memory use in C++. In Proceedings of the 13th An-
nual IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, pages 46-55. IEEE Computer Society, 2015. DOI: 10.1109/CG0.2015.
7054186.

Synopsys, Inc. Coverity. https://scan.coverity.com/.

Szalay, Richard and Porkolab, Zoltan. Visualising compiler-generated special
member functions of C++ types. In Proceedings of Collaboration, Software
and Services in Information Society, pages 55-58, 2018.

The Bitcoin Core. Bitcoin Core. https://bitcoincore.org/.

The LLVM Foundation. Clang 9.0.0 release notes, 2019. https:
//releases.1llvm.org/9.0.0/tools/clang/docs/ReleaseNotes.html#
static-analyzer.

Zitser, Misha, Lippmann, Richard, and Leek, Tim. Testing static analysis tools
using exploitable buffer overflows from open source code. In Proceedings of
the 12th ACM SIGSOFT twelfth international symposium on Foundations of
software engineering, pages 97-106, 2004. DOI: 10.1145/1029894.1029911.

CONTENTS

Special Issue of the Conference on Software Technology and Cyber

Security
Ddaniel Horpdcsi, Judit Kdszegi, and Ddvid J. Németh: Towards a Generic
Framework for Trustworthy Program Refactoring 753
Gabor Horvdth, Réka Kovdcs, and Péter Szécsi: Report on the Differential
Testing of Static Analyzers 781
Gergely Nagy, Gdbor Oldh, and Zoltin Porkoldb: Type Inference of Simple
Recursive Functions in Scala L. 797
Ddvid J. Németh, Ddaniel Horpdcsi, and Mdté Tejfel: Adaptation of a Refac-
toring DSL for the Object-Oriented Paradigm 817
Péter Ddvid Podlovics, Csaba Hruska, and Andor Pénzes: A Modern Look
at GRIN, an Optimizing Functional Language Back End 847
Addam Révész and Norbert Pataki: Visualisation of Jenkins Pipelines 877
Péter Soha and Norbert Pataki: Instantiation of Java Generics 897
Péter Szécsi, Gabor Horvdth, and Zoltdn Porkoldb: Improved Loop Execution
Modeling in the Clang Static Analyzer 909
Kristof Umann and Zoltdn Porkoldb: Detecting Uninitialized Variables in
C-++ with the Clang Static Analyzer 923

ISSN 0324—721 X (Print)
ISSN 2676—993 X (Online)

Editor-in-Chief: Tibor Csendes

