
Volume 25 Number 2

ACTA
CYBERNETICA

Editor-in-Chief: Tibor Csendes (Hungary)

Managing Editor: Boglárka G.-Tóth (Hungary)

Assistant to the Managing Editor: Attila Tanács (Hungary)

Associate Editors:

Michał Baczyński (Poland) Zoltan Kato (Hungary)
Hans L. Bodlaender (The Netherlands) Dragan Kukolj (Serbia)
Gabriela Csurka (France) László Lovász (Hungary)
János Demetrovics (Hungary) Kálmán Palágyi (Hungary)
József Dombi (Hungary) Dana Petcu (Romania)
Zoltán Fülöp (Hungary) Andreas Rauh (France)
Zoltán Gingl (Hungary) Heiko Vogler (Germany)
Tibor Gyimóthy (Hungary) Gerhard J. Woeginger (The Netherlands)

Szeged, 2021



ACTA CYBERNETICA

Information for authors. Acta Cybernetica publishes only original papers in the field
of Computer Science. Manuscripts must be written in good English. Contributions are
accepted for review with the understanding that the same work has not been published
elsewhere. Papers previously published in conference proceedings, digests, preprints are
eligible for consideration provided that the author informs the Editor at the time of
submission and that the papers have undergone substantial revision. If authors have used
their own previously published material as a basis for a new submission, they are required
to cite the previous work(s) and very clearly indicate how the new submission offers
substantively novel or different contributions beyond those of the previously published
work(s). There are no page charges. An electronic version of the published paper is
provided for the authors in PDF format.

Manuscript Formatting Requirements. All submissions must include a title page
with the following elements: title of the paper; author name(s) and affiliation; name,
address and email of the corresponding author; an abstract clearly stating the nature
and significance of the paper. Abstracts must not include mathematical expressions or
bibliographic references.

References should appear in a separate bibliography at the end of the paper, with
items in alphabetical order referred to by numerals in square brackets. Please prepare your
submission as one single PostScript or PDF file including all elements of the manuscript
(title page, main text, illustrations, bibliography, etc.).

When your paper is accepted for publication, you will be asked to upload the complete
electronic version of your manuscript. For technical reasons we can only accept files in
LaTeX format. It is advisable to prepare the manuscript following the guidelines described
in the author kit available at https://cyber.bibl.u-szeged.hu/index.php/actcybern/
about/submissions even at an early stage.

Submission and Review. Manuscripts must be submitted online using the edito-
rial management system at https://cyber.bibl.u-szeged.hu/index.php/actcybern/

submission/wizard. Each submission is peer-reviewed by at least two referees. The
length of the review process depends on many factors such as the availability of an Edi-
tor and the time it takes to locate qualified reviewers. Usually, a review process takes 6
months to be completed.

Subscription Information. Acta Cybernetica is published by the Institute of Infor-
matics, University of Szeged, Hungary. Each volume consists of four issues, two issues
are published in a calendar year. Subscription rates for one issue are as follows: 5000 Ft
within Hungary, e40 outside Hungary. Special rates for distributors and bulk orders are
available upon request from the publisher. Printed issues are delivered by surface mail
in Europe, and by air mail to overseas countries. Claims for missing issues are accepted
within six months from the publication date. Please address all requests to:

Acta Cybernetica, Institute of Informatics, University of Szeged
P.O. Box 652, H-6701 Szeged, Hungary
Tel: +36 62 546 396, Fax: +36 62 546 397, Email: acta@inf.u-szeged.hu

Web access. The above information along with the contents of past and current issues
are available at the Acta Cybernetica homepage https://cyber.bibl.u-szeged.hu/ .



EDITORIAL BOARD

Editor-in-Chief:

Tibor Csendes
Department of Computational Optimization
University of Szeged, Szeged, Hungary
csendes@inf.u-szeged.hu

Managing Editor:

Boglárka G.-Tóth
Department of Computational Optimization
University of Szeged, Szeged, Hungary
boglarka@inf.u-szeged.hu

Assistant to the Managing Editor:

Attila Tanács
Department of Image Processing
and Computer Graphics
University of Szeged, Szeged, Hungary
tanacs@inf.u-szeged.hu

Associate Editors:

Michał Baczyński
Faculty of Science and Technology
University of Silesia in Katowice
Katowice, Poland
michal.baczynski@us.edu.pl

Hans L. Bodlaender
Institute of Information and
Computing Sciences
Utrecht University
Utrect, The Netherlands
h.l.bodlaender@uu.nl

Gabriela Csurka
Naver Labs
Meylan, France
gabriela.csurka@naverlabs.com

János Demetrovics
MTA SZTAKI
Budapest, Hungary
demetrovics@sztaki.hu

József Dombi
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
dombi@inf.u-szeged.hu

Zoltán Fülöp
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
fulop@inf.u-szeged.hu



Zoltán Gingl
Department of Technical Informatics
University of Szeged
Szeged, Hungary
gingl@inf.u-szeged.hu

Tibor Gyimóthy
Department of Software Engineering
University of Szeged
Szeged, Hungary
gyimothy@inf.u-szeged.hu

Zoltan Kato
Department of Image Processing
and Computer Graphics
University of Szeged
Szeged, Hungary
kato@inf.u-szeged.hu

Dragan Kukolj
RT-RK Institute of Computer Based
Systems
Novi Sad, Serbia
dragan.kukolj@rt-rk.com

László Lovász
Department of Computer Science
Eötvös Loránd University
Budapest, Hungary
lovasz@cs.elte.hu

Kálmán Palágyi
Department of Image Processing
and Computer Graphics
University of Szeged
Szeged, Hungary
palagyi@inf.u-szeged.hu

Dana Petcu
Department of Computer Science
West University of Timisoara
Timisoara, Romania
petcu@info.uvt.ro

Andreas Rauh
ENSTA Bretagne
Brest, France
andreas.rauh@interval-methods.de

Heiko Vogler
Department of Computer Science
Dresden University of Technology
Dresden, Germany
Heiko.Vogler@tu-dresden.de

Gerhard J. Woeginger
Department of Mathematics and
Computer Science
Eindhoven University of Technology
Eindhoven, The Netherlands
gwoegi@win.tue.nl



Conference of
PhD Students

in Computer Science

Guest Editor:

Attila Kertész

University of Szeged, Hungary
keratt@inf.u-szeged.hu





Preface

The 12th Conference of PhD Students in Computer Science (CSCS) was organized
by the Institute of Informatics of the University of Szeged (SZTE) and held in
Szeged, Hungary, between June 24–26, 2020.

The members of the Scientific Committee were the following representatives
of the Hungarian doctoral schools in Computer Science: János Csirik (Co-Chair,
SZTE), Lajos Rónyai (Co-Chair, SZTAKI, BME), Péter Baranyi (SZE), András
Benczúr (ELTE), András Benczúr (SZTAKI), Hassan Charaf (BME), Tibor Csen-
des (SZTE), László Cser (BCE), Erzsébet Csuhaj-Varjú (ELTE), József Dombi
(SZTE), István Fazekas (DE), Zoltán Fülöp (SZTE), Aurél Galántai (ÓE), Zoltán
Gingl (SZTE), Tibor Gyimóthy (SZTE), Katalin Hangos (PE), Zoltán Horváth
(ELTE), Márk Jelasity (SZTE), Zoltán Kása (Sapientia EMTE), László Kóczy
(SZE), János Levendovszki (BME), Gyöngyvér Márton (Sapientia EMTE), Branko
Milosavljevic (UNS), Valerie Novitzka (TUKE), László Nyúl (SZTE), Marius Otes-
teanu (UPT), Attila Pethő (DE), Vlado Stankovski (UNILJ), Tamás Szirányi (SZ-
TAKI), Péter Szolgay (PPKE), János Sztrik (DE), János Tapolcai (BME), János
Végh (ME), and Daniela Zaharie (UVT).

The members of the Organizing Committee were: Attila Kertész, Balázs Bánhe-
lyi, Tamás Gergely, Judit Jász, and Zoltán Kincses.

There were more than 50 participants and 43 talks in several fields of computer
science and its applications (11 sessions). The talks were going in sections in
Graphs, Machine Learning, Security, Program Analysis, Healthcare, Simulation,
Privacy, Computer Graphics I., Bugs, Computer Graphics II., and Distributed
systems.

The talks of the students were completed by 2 plenary talks of leading scientists:
Tibor Gyimóthy (University of Szeged, Hungary), and Gábor Tardos (Alfréd Rényi
Institute of Mathematics, Hungary).

The open-access scientific journal Acta Cybernetica offered PhD students to
publish the paper version of their presentations after a careful selection and review
process. Altogether 29 manuscripts were submitted for review, out of which 22
were accepted for publication in the present special issue of Acta Cybernetica.

The full program of the conference, the collection of the abstracts and further
information can be found at https://www.inf.u-szeged.hu/~cscs/.

On the basis of our repeated positive experiences, the conference will be orga-
nized in the future, too. According to the present plans, the next meeting will be
held around the end of June 2022 in Szeged.

Attila Kertész
Guest Editor
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Execution Time Reduction in

Function Oriented Scientific Workflows∗

Ali Al-Haboobiab and Gabor Kecskemetiac

Abstract

Scientific workflows have been an increasingly important research area of
distributed systems (such as cloud computing). Researchers have shown an
increased interest in the automated processing scientific applications such as
workflows. Recently, Function as a Service (FaaS) has emerged as a novel dis-
tributed systems platform for processing non-interactive applications. FaaS
has limitations in resource use (e.g., CPU and RAM) as well as state manage-
ment. In spite of these, initial studies have already demonstrated using FaaS
for processing scientific workflows. DEWE v3 executes workflows in this fash-
ion, but it often suffers from duplicate data transfers while using FaaS. This
behaviour is due to the handling of intermediate data dependency files after
and before each function invocation. These data files could fill the temporary
storage of the function environment. Our approach alters the job dispatch
algorithm of DEWE v3 to reduce data transfers. The proposed algorithm
schedules jobs with precedence requirements to primarily run in the same
function invocation. We evaluate our proposed algorithm and the original
algorithm with small- and large-scale Montage workflows. Our results show
that the improved system can reduce the total workflow execution time of
scientific workflows over DEWE v3 by about 10% when using AWS Lambda.

Keywords: scientific workflows, cloud functions, serverless architectures,
makespan

1 Introduction

Over the recent years scientific workflows have been a major area of interest within
the field of complex scientific applications. Large-scale scientific workflows consist
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of a significant number of dependent jobs that rely on the output of other jobs
(i.e., precedence constraints). Each job can be executed independently when its
precedence constraints are met. Montage [11], CyberShake [10], and LIGO [1]
are examples of scientific workflow applications. Workflow Management Systems
(WMSs - such as Pegasus [8] and Kepler [2]) are used to ensure the precedence
execution order and data constraints of every job in a scientific workflow are met
during their runtime.

Cloud computing is fast becoming a key instrument in executing workflows.
FaaS is a recent development in the field of cloud computing, and it has already
incited significant interest in processing workflows. It promises a simple function-
oriented execution environment for non-interactive tasks of web applications. Just
like with other cloud computing technologies, there are commercial platforms (such
as AWS Lambda and Google Cloud Functions) that were developed to provide FaaS
functionalities. These allow functions to be executed in environments with a few
limitations. First, there are resource limits on CPU, RAM, and temporary storage
use. Second, the implemented functions are expected to have stateless behaviour:
the execution environment will newly instantiate and terminate for each function
invocation (i.e., will not remember state from previous invocations unless some
persistence technology is applied). In addition, Amazon Kinesis shard acts as an
independent queue that can send workflow tasks to its own function instance.

A number of studies [12, 18, 15] have proved the ability of cloud functions
to execute small- and large-scale workflows. In spite of the previously discussed
limitations, DEWE v3 have executed workflows even using functions. To avoid
the temporary storage use limitation, it uses Amazon S3 to store intermediate
workflow data. Therefore, the workflow data needs to be downloaded/uploaded for
each function invocation when dependent jobs rely on the output data of other jobs.
A large amount of transfer of dependent data can occur during workflow execution
between S3 and the FaaS execution environment. Consequently, this could lead to
an increased communication costs and a longer makespan.

In this paper, we propose to reduce the dependency transfers in workflows using
FaaSs by improving the scheduling algorithm of DEWE v3. Our proposed algorithm
exploits the internal queueing mechanisms of Amazon Kinesis shards that feed into
AWS Lambda function instances. We choose to move some simple WMS behaviours
inside the FaaS. Our approach schedules some dependent jobs on the same shard
where their preceding jobs were scheduled. As a result, these dependent jobs can
utilise the output files that generated from their precedence constrains in the same
invocation. As there is no need for transfers, this step reduces the total workflow
execution time as well. Due to Lambda’s limitations in terms of temporary storage,
the larger files cannot be processed in functions, these we scheduled in a sufficiently
sized VM.

We evaluated the proposed and original algorithms with small- and large-scale
Montage workflows. The large one is a 6-degree Montage workflow with over eight
thousand jobs requiring the transfer of 38 GBs of inputs and outputs. This workflow
size was chosen because the original DEWE v3 exhibits a significant amount of
re-transfer data behaviour with this workflow. To show the limitations of our
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approach, we also used a smaller workflow (0.1-degree Montage) that does not
have significant amounts of re-transfers even with the original approach.

The proposed algorithm outperforms the original in most cases. Our results
show that the proposed approach can reduce the total workflow execution time over
the original DEWE v3 approach by about 10%. Our improved scheduling algorithm
schedules jobs with precedence constraints on the same shard to be executed in
the same Lambda invocation. As a result, it can improve the execution time of
scientific workflows on the Lambda platform. In contrast, our approach does not
show significant differences in the performance when testing with smaller workflows.

The rest of this paper is organized as follows: the next section presents the
background knowledge and related works. Section 3 includes the explanation of
DEWE v3 and the proposed algorithm. Section 4 involves the evaluation of our
approach with the original algorithm of DEWE v3. Section 5 concludes the paper
and suggests some future works.

2 Background Knowledge and Related Works

This section first reviews scientific workflows for scheduling and challenging of real-
world experiments as well as simulation frameworks. Then an overview is presented
on the most popular FaaS platforms. Finally, the section concludes with a problem
statement for the current related works.

2.1 Background Knowledge

A workflow can be formulated as a Directed Acyclic Graph (DAG) that contains
a collection of atomic tasks. The nodes are a set of tasks {T1, T2, ..., Tn} while the
edges represent data dependencies among these tasks.

Workflow scheduling is an increasingly important area regarding WMSs. It
plays a critical role to achieve an optimal resource allocation for all tasks. The
problem of scheduling in distributed environments is known to be NP-hard [20].
Therefore, no algorithms can achieve an optimal solution within polynomial time
while some algorithms can provide approximate results in polynomial time.

Running real-world experiments for workflows is a challenge and especially
for execution of large-scale. Therefore, WMS simulation has been studied by
many researchers using different simulator extensions such as WorkflowSim [7] and
WRENCH [6]. WorkflowSim extends the CloudSim [3] simulator, while WRENCH
extends the SimGrid [5] framework. However, to date, FaaSs are not simulated in
these simulator extensions for running scientific workflows. As a result, we need
to restrict our experiments to smaller-scale and larger-scale with considering data
transfers, but real-world executions of workflows on commercial FaaSs like Lambda.

Lambda1 has been presented by AWS in 2014 while cloud functions (GCF2) have
introduced by Google in 2016. In [12] they stated that Google Cloud Functions, in

1https://aws.amazon.com/lambda/
2https://cloud.google.com/functions/
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its current form, is not suitable for executing scientific workflow applications due to
its limited inbound and outbound socket data quota. There are two benefits when
workflows are executed on FaaS systems. First, resource management is provided by
the platform in a scalable way. It means the number of concurrent invocations into
the infrastructure can more closely follow the actual workflow’s demands without
the burden on the WMS to deal with the infrastructure’s management. Second,
due to the nature of the lightweight functions used, the user pays for the much
less overheads on computing resource consumption in contrast to more traditional
Infrastructure as a Service systems. Lambda functions are stateless, thus their
execution environment is initialized and ended for each function invocation. In
addition, other commercial solutions also appeared on the FaaS landscape, like
Microsoft Azure Functions3 and IBM OpenWhisk Functions4.

The above mentioned four FaaS providers were evaluated in [16, 9]. The authors
proposed multiple hypotheses concerning the expected performance of cloud func-
tions and designed several benchmarks to confirm them. Their function platforms
have tested by invoking CPU, memory, and disk-intensive functions. In addition,
data transfer times were also measured for these function providers. They observed
different resource allocation policies at the providers. The execution performance
of Lambda and GCF is based on the size of memory that is allocated for the invo-
cation. They identified that at the time of writing, Amazon’s was more flexible and
performant. Moreover, they also reported that computing with cloud functions is
more cost-effective than virtual machines due to practically zero delay in booting
up new resources. They also indicated that due to the more fine grained invocation
patterns to functions virtual machines would have to sit idle in between invocations.
This behaviour results in more costs incurred by virtual machine based function
oriented solutions. Consequently, we expect more users would prefer Lambda based
workflows due to its efficiency and effectiveness comparing with other platforms.

2.2 Related Works

Nowadays, most scientific workflows have been processed in clouds, especially on
IaaSs. Only a few related works have studied the use of FaaS platforms to execute
workflows. In [17], Malawski et al. proposed five architectural alternatives to run
scientific workflows on clouds. One of them introduced a system for serverless
computing that integrated the HyperFlow engine with GCFs and AWS Lambda.
They examined the viability of running large-scale scientific workflows on cloud
functions by evaluating their implementation with a 0.25-degree and a 0.4-degree
Montage workflow. They found the approach highly promising. In addition, in [18],
they further tested the prototype a 0.6-degree Montage workflow as well. They
stopped their experiment at a 0.6-degree workflow as they had faced problems
with the temporary storage’s 500 MB limitation. However, their approach already
exhibits the deficiency of increased transfer of dependent data on these workflows.

3https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
4https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-getting-started
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In [12], Jiang et al. designed a WMS called DEWE v3 that can process scien-
tific workflows on three various modes: (i) traditional clusters, (ii) cloud functions,
and (iii) a hybrid mode that combines the two. It was tested with large-scale
Montage workflows. They have proven that cloud functions can be used in large-
scale scientific workflows with complex precedence constrains. However, their job
dispatch algorithm schedules jobs to Lambda without considering on their prece-
dence constraints to be executed in the same Lambda invocation. Consequently,
more transfer of dependent data can occur during the execution between the stor-
age service and the Lambda invocation’s execution environment. This can lead to
increased communication costs.

Next, Kijak et al. [15] summarized the challenges for running scientific work-
flows on a serverless computing platform. They presented a serverless Deadline-
Budget Workflow Scheduling (SDBWS) algorithm that was transformed to support
function platforms. It was tested with a small-scale 0.25-degree Montage workflow
on AWS Lambda. The algorithm used different memory sizes for Lambda based on
the deadline and budget constraints assigned by the user. In addition, the function
resource is selected depending on the combination of cost and time. This approach
was only tested on small scale and likely exhibits transfer of dependent data issues.

In contrast to the above works, [19] proposed an approach which utilised three
different cloud function platforms which were Lambda, GCF, and OpenWhisk.
They evaluated the platforms with a large-scale (over 5000 jobs in parallel) bag-of-
tasks style workflow. The experimental results showed that Lambda and GCF can
provide more computing power if one requests more memory, while OpenWhisk’s
performance is indifferent from this factor. Consequently, they have shown that
cloud functions can provide a high level of parallelism for workflows with a large
number of parallel tasks at the same time. However, they experimented with a
bag-of-tasks approach where they did not consider transfer of dependent data.

In [4], they built Wukong, a new serverless parallel computing framework. It’s
a cost-effective, serverless, decentralized, locality-aware parallel computing frame-
work. Its key insight is that partitioning the work of a centralized scheduler (i.e.,
tracking task completions, identifying and dispatching ready tasks, etc.) across a
large number of Lambda executors, can greatly improve performance by permitting
tasks to be scheduled in parallel, reducing resource contention during scheduling,
and making task scheduling data locality-aware, with automatic resource elasticity
and improved cost effectiveness. However, their approach already exhibits the de-
ficiency for the data transfers of the precedence constraints between the different
jobs of workflow.

3 Our DEWE v3 extension

To uncover the possibilities in dependency transfer optimisation, we have chosen
DEWE v3 as a base WMS for our work. Our choice was due to three factors:
(i) its scheduling technique was closest to our envisioned approach, (ii) it is an
open source WMS, and (iii) it already has the implementation of Lambda as our
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target execution environment. To understand our extension, we first give a general
overview of DEWE v3’s behaviour in the following few paragraphs.

DEWE v3 can execute scientific workflows on three different approaches ( tra-
ditional clusters, cloud functions, and a hybrid mode that combines the two). The
FaaS platform supports AWS Lambda and Google Cloud Functions. It has executed
large-scale workflows on a hybrid approach that combines traditional clusters with
the FaaS platform. DEWE v3 runs a workflow engine on virtual machine. When
using AWS Lambda, DEWE v3 reads the workflow definition from an XML file and
based on the information found in them loads the job binaries and input files to
the object storage Amazon S3. Given that Lambda has a temporary storage limit
of 500MBs in the execution environment, some jobs cannot be sent to Lambda
due to their large size. Jobs that are ready for execution (i.e., according to their
precedence constraints) are scheduled to Amazon Kinesis shards.

Each shard acts as an independent queue that can send tasks to its own function
instance. The number of tasks that a function can process in a single invocation
is determined by the batch size of Kinesis. This can be configured before the
workflow’s execution. Next, the Lambda function will pull a batch of tasks from its
own shard to execute them sequentially in a single function invocation. The number
of running function instances and accompanying kinesis shards are also configurable
before the workflow’s runtime and this directly influences the maximum level of
parallelism the workflow’s execution can exhibit.

When a function instance starts to process a job, DEWE v3 needs to download
its input data from Amazon S3. Similarly, when the job’s processing has finished
this must be also uploaded to S3 to make sure other jobs in the workflow can be
scheduled due to their input data being ready. This could result in a large amount
of transfer dependent data during the execution of the workflow. The transfers take
place between S3 and the FaaS environment and directly increase the workflow’s
communication costs.

To avoid these transfers, we have focused our improvement on the scheduling
algorithm of DEWE v3 which targets the Lambda platform as its execution en-
vironment. In order to reduce data transfers, during the scheduling, we not only
considered the currently ready jobs, but also their successors allowing their se-
quential execution in a single function instance given that they would not violate
Lambda’s temporary storage limitation. The next subsection discloses our changes
in details.

3.1 The Proposed Scheduling Algorithm

To enhance DEWE v3’s data transfers, we moved some workflow management sys-
tem behaviours inside Amazon’s FaaS platform. We exploited the sequencing be-
haviour of shards and Lambdas. First, some jobs and their successors are scheduled
to the same shard and function instance. The ordering of the schedule in the shard
is kept in line with the job order in the workflow as prescribed by job precedence
constraints. Additionally, we used the SequenceNumberForOrdering parameter that
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guarantees the order of jobs on a shard5. This will allow the consecutive jobs to be
executed in the same Lambda invocation avoiding the need to transfer outputs and
inputs if they are only used in between the given jobs. This behaviour is due to
Lambda pulling a batch of jobs based on the batch size of Kinesis to execute them
sequentially in an invocation. When the first job in the batch starts its processing,
it will read its input data from Amazon S3. We used Amazon S3 because it makes
data available through an Internet API that can be accessed anywhere. The in-
termediate data will be uploaded to S3 that might be needed by other jobs out of
batch jobs. Finally, the Lambda will finish processing the batch by uploading the
final datafiles to S3 as well.

We have extended the LambdaWorkflowScheduler class of DEWE v3 6. Our
proposed algorithm mainly focuses its changes to the setJobAsComplete method,
and our changes are depicted in algorithm 1. This algorithm changes the decision
on which jobs to schedule at a particular time, while it also alters the shard selection
for the jobs that have predecessors. First, we discuss these new choices through the
algorithm, then we will disclose two illustrative examples which help to clarify the
behaviours even further.

Algorithm 1 shows the pseudo-code of the proposed scheduling algorithm for
scientific workflows. We assume that before the application of this algorithm, all
jobs without predecessors were scheduled to shards already. Then, this function
is invoked by each completed job (T ) to release its successor jobs. In step 5, we
initialise jobsNum to make sure our allocations of any given shard are balanced in
step 10. In step 6, we initialise alertMax which will be used to determine if the
current shard received sufficient jobs to fill a complete Lambda invocation batch.
Next, in step 7 we initialise the array (loadBalancing) that will maintain the job
counts on each shard. This will allow us to see if a particular shard is less used and
prioritize it for future occasions to equalise the load on all of our lambda instances.
Step 9 is the basic behaviour of DEWE v3, where it forgets about jobs that have
been completed (called T in our case). This step allows us to determine what job
is available to schedule at the moment as jobs without predecessors will become
eligible to schedule. In step 10, we choose a shard that has received the minimal
number of jobs so far. In step 12, the algorithm checks if the successor job Ti has
no more predecessor jobs, then in step 13, the algorithm will schedule Ti to the
Kinesis shard determined in the previously discussed step 10. Next, we process
all successor jobs (Tj) of our just scheduled Ti. Step 16 checks if Tj has no other
predecessor job but Ti. If so, then in Step 17 the algorithm will remove Ti as a
predecessor job from Tj (to allow its premature schedule to the same shard that
we used for Ti - this is disclosed in Step 18). To ensure the balanced use of all our
function instances, step 21-24 checks if we have scheduled sufficient jobs for the
next lambda invocation (i.e., the currently selected shard is allocated a complete
batch worth of jobs). If so, we don’t pursue scheduling any further successors to Ti.
We will also remember that we exceeded the batch size of the shard, so the next

5https://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
6https://github.com/Ali-Alhaboby/DEWE.v3
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Algorithm 1 The proposed scheduling algorithm.

Function jobCompleted(T )

1: Ti = successor job, Tj = dependent job, KS = Kinesis shard
2: L = Lambda instance, batchSize = the batch size of jobs in Lambda
3: n = the number of Lambda instances equals the number of Kinesis shards
4: m = the shard number that has received the minimum number of jobs
5: jobsNum = the number of scheduled jobs to shard.
6: alertMax = alerting the number of scheduled jobs equals to batchSize
7: loadBalancing[n] := an array to count the number of sent jobs to each shard
8: for i = 1, 2, . . . , p do // p is the number of successors of T
9: Remove T as a predecessor job from Ti

10: m := find the shard number that has received the minimum number of jobs
11: jobsNum := 0
12: if Ti has no precedence constraints then
13: Schedule Ti to KSm to run in Lm

14: for j = 1, 2, . . . , q do // q represents the number of successor jobs of Ti

15: jobsNum := jobsNum+1
16: if Tj has only Ti as a precedence constraint then
17: Remove Ti as a predecessor job from Tj

18: Schedule Tj to KSm to run in Lm

19: jobsNum := jobsNum+1
20: end if
21: if jobsNum==batchSize then
22: alertMax := true
23: break
24: end if
25: if alertMax==true then
26: loadBalancing[m] := loadBalancing[m]+jobsNum
27: m := find the shard number that has received the minimum number

of jobs
28: alertMax := false
29: jobsNum := 0
30: end if
31: end for
32: end if
33: end for

shard’s schedule can be influenced according to our load balancing rules denoted
by steps 26-29. Step 26 maintains the loadBalancing array, while step 27 selects
a new shard that has received the minimum number of jobs to proceed with the
scheduling of further jobs.

To further clarify how the proposed algorithm works, we apply its steps on
two simple but carefully selected and crafted sample workflows. Although these
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Figure 1: A sample workflow

workflows are simplified, they capture well known DAG patterns that often occur
in more complex workflows. As a result, through them, we can demonstrate the
applicability of our algorithm to other more complex workflows.

3.2 First illustrative example

In this subsection, we will discuss the workflow fragment, shown in Figure 1. This
consists of seven tasks in the graph’s nodes: T1 − T7. The number inside each
task’s node represents its estimated execution time (in seconds). On the edges
between the nodes, we have also depicted the estimated data transfer time between
the storage service (Amazon S3) and the FaaS execution environment.

In the following paragraphs, we will discuss how the original and our new al-
gorithms would be applied to execute the workflow. Before we begin, we will
assume the following: (i) there are two Kinesis shards with two Lambda function
instances behind that can execute the workflow’s jobs; (ii) each invocation down-
loads/uploads data files sequentially from/to Amazon S3; (iii) Amazon S3 will be
used to store all workflow data.

First, the original algorithm would schedule T1. Once T1 completes, it will
enable the schedule of T2 and T3 using both available shards. Once they complete,
T4, T5, T6 and T7 will be scheduled on two shards as two invocations. Table 1
shows our analysis of the expected execution time with the original algorithm. The
colouring of the Table also shows concurrent invocations (i.e., steps coloured the
same execute in parallel). When we have parallel invocations, the largest execution
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Table 1: The Execution Time (ET) and Transfer Time (TT) of each Lambda
invocation of the original algorithm on the sample workflow of Figure 1.

Step Tasks ET TT S3 to FaaS TT FaaS to S3 Total Time
1 T1 6 - 5 11
2 T2 4 3 24 31
2 T3 4 2 25 31
3 T4, T5 11 17 - 28
3 T6, T7 19 32 - 51

83

time of the parallel steps will be the component to be considered for the total
workflow execution time (i.e., 11s for the white-, 31s for the yellow- and 51s for
orange-steps). Finally, for DEWE v3’s original algorithm, the Table also discloses
our estimated total execution time of 83s in bold.

Now let’s compare this approach to our improved scheduling algorithm. We
first schedule all tasks that have no predecessor tasks such as T1 which is the
same behaviour as before. The commonalities stop here though. Next, when T1
completes, T2 and T3 will become ready. Then, to reduce data transfers, our
algorithm will schedule their successor tasks (T4, T5, and T7) as well. It will
schedule T2, T4, and T5 on the same shard to be executed in the same function
invocation. Also, it will schedule T3 and T7 on the same shard to run on the same
invocation. At this time T6 is still left out of schedule because it has two predecessor
tasks and we would need both of their outputs before we could start executing T6.
Finally, when T2 and T3 complete, they will release T6 to be ready. In Table 2, we
computed the Transfer Time (TT) FaaS to S3 in Step 2 because T2 and T3 have
a child task T6 which is not scheduled. Therefore, all the data dependency files
generated from T2 and T3 need to be uploaded to Amazon S3 in order to make
them available to T6. Due to our algorithm’s load balancing behaviour, T6 will
execute in the same shard T3 and T7 did (as that shard executed the fewest jobs
thus far). Similarly to the original algorithm’s analysis Table, we have presented
our analysis for the new algorithm as well in Table 2. We have concluded that
the total workflow execution time of our improved algorithm on this workflow is
expected to be significantly better at 68s.

3.3 Second illustrative example

In this subsection, we will discuss the workflow fragment, shown in Figure 1. This
fragment has taken from a 0.1-degree Montage workflow that we used in our ex-
periment.

In our second illustrative example, we explain how the proposed algorithm relies
on the structure of workflow. We used a workflow fragment that has taken from
a 0.1-degree Montage workflow that we used in our experiment. This workflow
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Table 2: The Execution Time (ET) and Transfer Time (TT) of each Lambda
invocation of the proposed algorithm on the sample workflow of Figure 1.

Step Tasks ET TT S3 to FaaS TT FaaS to S3 Total Time
1 T1 6 - 5 11
2 T2, T4, T5 15 3 24 42
2 T3, T7 15 2 25 42
3 T6 8 7 - 15

68
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Figure 2: A workflow fragment of a 0.1-degree Montage workflow

(shown in Figure 2) consists of eleven tasks (T22 − T32). We will use the same
assumptions of the previous example, while also having a batch size of ten. Now
we apply both algorithms as follows.

Again, the original algorithm schedules T22 then waits for its completion. Af-
terwards, it will schedule T23 on one of the two shards. Next, when this task
completes, T24-31 will be scheduled on one of the two shards because the batch
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Table 3: The Execution Time (ET) and Transfer Time (TT) of each Lambda
invocation of the original algorithm on the sample workflow of Figure 2.

Step Tasks ET TT S3 to FaaS TT FaaS to S3 Total Time
1 T22 6 - 3 9
2 T23 4 3 59 66
3 T24, T25, T26,

T27, T28, T29,
T30, T31

56 59 44 159

4 T32 11 44 - 55
289

Table 4: The Execution Time (ET) and Transfer Time (TT) of each Lambda
invocation of the proposed algorithm on the sample workflow of Figure 2.

Step Tasks ET TT S3 to FaaS TT FaaS to S3 Total Time
1 T22 6 - 3 9
2 T23, T24, T25,

T26, T27, T28,
T29, T30, T31

60 3 59 122

3 T32 11 44 - 55
186

size of each Lambda instance is 10. Finally, when they complete, they will release
T32 to be ready. The total workflow execution time of the original algorithm is
estimated to be 289s based on our analysis of Table 3.

With the proposed algorithm a few steps change again. First, as T22 does not
have a predecessor, we proceed as the original algorithm. Once it completes, T23-31
will be notified of the completion of one of their predecessors. As our algorithm also
schedules successor tasks, T24-31 will also be scheduled to reduce data dependency
transfers. All the tasks will be allocated to one of the shards because the batch
size of each Lambda instance is 10. They will allocate to the same shard. Finally,
when they complete, they will release T32 to be ready. In Table 4, we estimate
the total workflow execution time of our algorithm to be 186s which is a significant
improvement over the original approach.

With these two illustrative examples we have demonstrated the potential of our
algorithm. In the following section, we will evaluate it on both smaller and larger
scale real-life workflow executions.
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4 Scheduling experiment

In our experiment, we have evaluated our proposed algorithm as well as the original
from DEWE v3 on three different approaches (with/without data dependencies on
smaller and larger scale). In all three cases, we choose to evaluate through the
well known Montage workflow as this makes our results comparable to the previous
studies in the related works. Montage is a compute-intensive astronomy workflow
for generating custom mosaics of the sky. Montage was also used for different
benchmarks and performance evaluation in the past [13]. To ensure good quality
data collection, we have repeated all experiments described in this section three
times and we reported the average measurement result for each experiment. Each
experiment was repeated three times because we obtained the relative consistency of
the results by three executions. In addition, we calculated the boxplot visualization
that displays the data distribution based on five-number summary (i.e., minimum,
first quartile, median, third quartile and maximum) on Figures 3, 4, 5 and 6.

4.1 Evaluation without processing data transfers

First, we have evaluated both algorithms with 2.0 and 4.0 degree Montage workflows
(these are medium and larger scale workflows). In this first experiment, we wanted
to demonstrate that our algorithmic changes have only negligible influences on the
execution time when data transfers play little or no role in a workflow’s makespan.
Without data transfers our approach should not be able to make its gains. As
a result, this experiment can only differ due to execution time circumstances or
due to algorithmic changes. This experiment will show the variance of the results
without any influence from data transfers. Consequently, we can use the observed
differences between the original and the new algorithm as the baseline (i.e., if we
see proportionally similar results for the later experiments then the later results
would not be significant). The configurations of the experiment are as follows:

1. The Lambda Memory sizes were 512, 1024, 1536, 2048 and 3008 MB

2. The Lambda execution duration limit was 900 seconds.

3. The batch size of the Lambda function was 30.

4. The number of Kinesis shards was set to 5.

5. The VM was t2.micro instance as a free tier with 1 vCPU 2.5 GHz, Intel
Xeon Family, and 1 GiB memory.

Figure 3 shows the total execution time of both systems with 2.0-degree work-
flow on five different memory sizes of Lambda. The differences between the original
and the new algorithms have a mean absolute percentage error (MAPE) of 9.96%.
While Figure 4 illustrates the total execution time of both systems with 4.0-degree
workflow on five different memory sizes of Lambda. In the second case, the MAPE
of the total execution time have been calculated as 2.19%. Thus we can conclude
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Figure 3: The boxplot visualization of total Execution Time (ET) of both systems
with a 2.0-degree Montage workflow without data transfers running on different
Lambda memory sizes.

that our changes could manifest in a ∼ 6% (average) MAPE. Therefore, in the
rest of our experiments results with higher average error values than 6% show that
our measurements can be considered as a significant difference. We repeated some
memory sizes on the X-axis of Figures 3 and 4 because the boxplot visualization
has similar results for both systems.

4.2 Small-scale evaluation

Next, we have evaluated both the original and the new algorithm with a 0.1-degree
Montage workflow that also processed its data transfers. We have selected the
0.1 degree one to validate that testing with smaller Montage workflows does not
show significant differences with regards to the total execution time (i.e., we show
that our approach does not introduce execution time penalties even on smaller
workflows where transfers are marginal). The 0.10-degree Montage workflow is
sufficiently small for this as it consists of 33 tasks only. The configurations of the
experiment are as follows:

1. The Lambda Memory sizes were: 512, 1024, 1536, 2048 and 3008 MB

2. The Lambda execution duration was 900 seconds.

3. The batch size of the Lambda function was 10.
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Figure 4: The boxplot visualization of total Execution Time (ET) of both systems
with a 4.0-degree Montage workflow without data transfers running on different
Lambda memory sizes.

4. The number of Kinesis shards was set to 2.

5. The VM was t2.micro instance as a free tier with 1 vCPU 2.5 GHz, Intel
Xeon Family, and 1 GiB memory.

Figure 5 shows the total execution time of both systems with five different
memory sizes of Lambda. The MAPE for this series of measurements was 13.95%.
This shows that our algorithm has some minimal positive effects already for small-
scale workflows as we have arrived to a MAPE value which is over 10% that we
have seen in our control experiment in the previous subsection. The results about
the lambda with the smallest memory configuration are inconclusive and needs
further experimentation to clarify the exact reasons, however it is likely to be
caused by the significantly weaker computing performance of those lambda memory
configurations.

4.3 Large-scale evaluation

Finally, we have concluded our experiments by evaluating both systems with a 6.0-
degree Montage workflow with processing data transfers. This workflow has over
eight thousand jobs requiring total data transfers with the size of 38GBs. We have
selected this workflow size because in our past analysis, DEWE v3 has already
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Figure 5: The boxplot visualization of total Execution Time (ET) of both sys-
tems with a 0.1-degree Montage workflow with data transfers running on different
Lambda memory sizes.

shown a large amount of re-transfer data behaviour. Ideally, our improved DEWE
v3 does not have this issue with such large-scale re-transfer-prone workflows. Due
to the large expected dependency files of some of the workflow’s jobs (namely
mAdd), this experiment also used a larger Virtual Machine (VM) alongside the
usual lambda functions (as such, all mAdd jobs were executed on the VM). The
configurations of the experiment are as follows:

1. The Lambda Memory size was 3008 MB

2. The Lambda execution duration was 900 seconds.

3. The batch size of the Lambda function was 20.

4. The number of Kinesis shards was set to 30.

5. The virtual machine was t2.xlarge that has the following features: 16 GiB of
memory and 4 vCPUs.

Figure 6 shows the total execution time of both systems. The proposed algo-
rithm has reduced the total execution time of the large-scale workflow over DEWE
v3 by approximately 10%. Thus, this experiment demonstrates that our algorithm
is beneficial to be applied for larger scale workflows where the typical data depen-
dency files are still within the 500 MB limit of the Lambda temporary storage limit
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Figure 6: The boxplot visualization of total Execution Time (ET) of both systems
with a 6.0-degree Montage workflow with data transfers running on Lambda.

(if this limit would be often breached, the virtual machine count would need to
be extended and the cost and elasticity benefits of FaaS systems would be mostly
lost). In conclusion both data transfer inducing measurements demonstrate a sig-
nificantly better result over the original algorithm when we consider the control
experiment in subsection 4.1.

5 Conclusion

In this paper, we have changed the job dispatch algorithm of DEWE v3 to reduce
its data transfers. The main issue was that DEWE v3 has duplicated data transfers
when it executes workflows on FaaSs. It was due to the uploading of intermediate
data dependency files after the completion of each function invocation to allow the
deletion of temporary files. Otherwise it would fill the Lambda temporary storage
space over time because it has an Amazon 500 MB limit. Our proposed algorithm
schedules jobs with precedence requirements on the same shard to run in the same
function invocation. As a result, the dependent jobs can use the intermediate files
that are produced from their predecessor jobs in the same function invocation. We
have evaluated our proposed- and the original algorithms with small- and large-
scale Montage workflows. Our results show that the improved system can reduce
the total workflow execution time of scientific workflows over the original DEWE
v3 approach by about 10% when targeting FaaS systems.
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In our future work, we will extend the improved system to run on heterogeneous
memory sizes of cloud functions to reduce the execution time and cost. In addi-
tion, we will study the behaviour of other scientific workflows to make the results
more generally applicable. Moreover, we will introduce a Workflow Management
System (WMS) simulation for the DISSECT-CF [14] simulator in order to enable
the simulation and the execution of scientific workflows on different, reproducible
environments. This would foster the creation of more efficient, multi target (i.e.,
cloud, FaaS, fog etc) workflow scheduling. Finally, we will consider Amazon Elastic
File System (EFS) instead of Amazon S3 for storage workflows’ data to investigate
it in terms of performance, availability, and cost.
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Abstract

In this work, symbolic regression with an evolutionary algorithm called
Cartesian Genetic Programming, has been used to derive formulas capable
to approximate the graph geodetic number, which measures the minimal-
cardinality set of nodes, such that all shortest paths between its elements
cover every node of the graph. Finding the exact value of the geodetic num-
ber is known to be NP-hard for general graphs. The obtained formulas are
tested on random and real-world graphs. It is demonstrated how various
graph properties as training data can lead to diverse formulas with different
accuracy. It is also investigated which training data are really related to each
property.

Keywords: symbolic regression, cartesian genetic programming, geodetic
number

1 Introduction

Geodetic number is the minimal-cardinality set of nodes, such that all shortest
paths between its elements cover every node of the graph [16]. Calculating the
geodetic number proved to be an NP-hard problem for general graphs [5]. The
integer linear programming (ILP) formulation of geodetic number problem was
given in [16], containing also the first computational experiments on a set of random
graphs.

The trivial upper bound for the geodetic number is g(G) ≤ n. Chartrand
et al. [10] proved that g(G) ≤ n − d + 1, where d is the diameter of G. Other
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upper bounds are also given in [6, 30, 31], but these are concerning specific graph
structures.

Chakraborty et al. [9] proposed an algorithm to approximate the geodetic num-
ber on edge color multigraph. A polynomial algorithm to compute the geodetic
number of interval graphs has been proposed in [12]. Greedy-type algorithms are
developed in [3] to find upper bound of the geodetic number on general graphs
based on shortest paths information.

There are varied applications of geodetic sets and geodetic number. Clearly,
they can be applied in computational sociology as it is hinted in [7, 31]. The defi-
nition of convexity of set of nodes in a graph [18] is a somewhat converse property
to geodetic set. Related notions are the graph hull number [14] and the domination
number [15]. All these concepts have practical applications, e.g., in public trans-
portation design [9], in achievement and avoidance games [8], in location problems
[25], in maximizing the switchboard numbers on telephone tree graphs [23], in mo-
bile ad hoc networks [26], and in design of efficient typologies for parallel computing
[24].

Graph properties are certain attributes that could make the structure of the
graph understandable. Occasionally, standard methods to calculate exact values of
graph properties cannot work properly due to their huge computational complexity,
especially for real-world graphs. In contrast, heuristics and metaheuristics are
alternatives which have proved their ability to provide sufficient solutions in a
reasonable time. However, in some cases even heuristics fail to succeed, particularly
when they need some less easily obtainable global information of the graph. The
problem thus should be dealt with in a completely different way by trying to find
features that are related to the property, and based on these data build a formula
which can approximate the graph property.

Topological representation is the simplest way to represent graphs, where the
graph is a set of nodes and edges. However, the spectral representation (e.g., ad-
jacency matrix, Laplacian matrix) can significantly help to describe the structural
and functional behavior of the graph. Adjacency matrix is a square matrix in
which a non-zero element indicates that the corresponding nodes are adjacent. Im-
plementations of well known algorithms like Dijkstra’s or Floyd–Warshall algorithm
usually use the adjacency matrix to calculate the shortest paths for a given graph.
The diameter of a graph is the length of its longest shortest path. It is known that
the diameter of a given graph is small if the absolute value of the second eigenvalue
of its adjacency matrix is small [11]. Laplacian matrix is a square matrix which
can be used to calculate, e.g., the number of spanning trees for a given graph.
The eigenvalues of the Laplacian matrix are non-negative, less than or equal to the
number of nodes, and less than or equal to twice the maximum node degree [4].
Considering these important relations between the graph properties, eigenvalues
of spectral matrices and more parameters (to be discussed in the forthcoming sec-
tions), which can be calculated easily even for complex graphs, symbolic regression
is one of the good choices to verify the connection between graph parameters and
properties, and use such parameters for approximating hard to compute network
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properties.

Symbolic regression (SR) is a mathematical model which attempts to find a
simple formula such that it fits a given output in term of accuracy based on a set
of inputs. In conventional regression techniques, a pre-specified model is proposed,
while symbolic regression avoids a particular model as a starting point to give a
formula. Instead, in SR, initial formulas are formed randomly by combining the
inputs: parameters, operators, and constants. Then, new formulas are assembled
by recombining previous formulas by using one of the evolutionary algorithms,
which is the genetic programming in our work. Symbolic regression practically
has infinite search space, hence infinite formulas to assemble. Nevertheless, this
can be considered as an advantage when symbolic regression uses an evolutionary
algorithm called genetic programming, which requires diversity to efficiently explore
the search space, ensuring a highly accurate formula.

The inputs are predefined parameters and constants. SR combines these pa-
rameters and constants by a set of given arithmetic operators (such as +,−,×,÷,
etc.) to assemble a formula. In the papers by Schmidt and Lipson, symbolic re-
gression was used to find physical laws based on experimental data [28], and then
they used it to find analytical solutions to iterated functions of an arbitrary form
[29]. Even though there are some algorithms in the literature that use symbolic
regression apart from genetic programming [21], essentially genetic programming
is considered as one of the most popular algorithms applied by symbolic regression
[19].

The rest of the paper is structured as follows. Section 2 discusses the specific
genetic programming approach we used together with the list of graph properties.
Section 3 discusses the methodology used to approximate the graph geodetic num-
ber. Section 5 reports the numerical results to show the efficiency of the formulas
we obtained. The conclusion of our work is presented in Section 6. In the Appendix,
we report all the formulas we obtained during this work.

2 Preliminaries

2.1 Cartesian Genetic Programming

One of the most famous genetic programming tools is called Cartesian Genetic Pro-
gramming (CGP) developed by Miller [22]. CGP is an iteration-based evolutionary
algorithm and works as it follows. CGP begins by creating a set of initial solutions,
from which the best solution is chosen by evaluating these solutions based on the
fitness function. Then these solutions will be used to create the next generation in
the algorithm. The next generation’s solutions will be a mixture of chosen solutions
from the previous generation’s, where the new generation’s solutions should not be
identical to the previous ones’, which can be done by mutation. Mutation is used
to change small parts of the new solutions and it usually occurs probabilistically for
CGP. The mutation rate is the probability of applying the mutation on a specific
new solution. Eventually, the algorithm must terminate. There are two cases in
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which this occurs: the algorithm has reached the maximum number of generations,
or the algorithm has reached the target fitness. At this point, a final solution is
selected and returned.

Cartesian Genetic Programming has several parameters to set up, which cer-
tainly have effects on its performance. The specific parameters used in this paper
are detailed later in Section 4.3.

2.2 Geodetic Number

A simple connected graph is denoted by G = (V,E), where V is the set of nodes
and E is the set of edges.We have N = |V | and M = |E|. Geodetic number is the
minimal-cardinality set of nodes, such that all shortest paths between its elements
cover every node of the graph [16]. The formal description is as follows. Given
i, j ∈ V , the set I[i, j] contains all k ∈ V which lies on any shortest paths between
i and j. The union of all I[i, j] for all i, j ∈ S ⊆ V is denoted by I[S], which is
called as geodetic closure of S ⊆ V . Formally,

I[S] := {x ∈ V : ∃i, j ∈ S, x ∈ I[i, j]}.

The geodetic set is a set S for which V = I[S]. The geodetic number of G is

g(G) := min{|S| : S ⊆ V and I[S] = V }.

2.3 Graph Properties

Adjacency matrix. The adjacency matrix is a square |N | × |N | matrix A such
that its element Aij is equal to one when there is an edge from node i to node
j, and zero when there is no edge.

Shortest path. The series of nodes u = u0, u1, . . . , uk = v, where ui is adjacent
to ui+1, is called a walk between the nodes u and v. If ui �= uj (∀i, j), then it
is called a path. The path’s length is k. Given all paths between nodes u and
v, a shortest path is a path with the fewest edges. Shortest paths are usually
not unique between two nodes.

Diameter. Graph diameter is the length of the longest path among all the shortest
paths in the graph.

Degree, degree-one node. The degree of a node is the number of edges linking
the node to other nodes in the graph, denoted by deg(v). If deg(v) = 1,
which means there is only one edge connecting the node, this node is called
a degree-one node. It is known from the literature that degree-one nodes are
always part of the geodetic set, see [17]. The number of degree-one nodes in
the graph is denoted by δ1.

Laplacian matrix. The Laplacian matrix is a square |N | × |N | matrix L such
that L = D−A, where A is the adjacency matrix and D is the degree matrix,
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i.e., the elements in its main diagonal are defined as Dii = deg(vi), where
vi ∈ V (i = 1, . . . , N).

Simplicial node. node v is called a simplicial node if its neighbors form a clique
(complete graph), namely, every two neighbors are adjacent. If G is a non-
trivial connected graph and v is a simplicial node of G, then v belongs to
every geodetic set of G, see [1]. The number of simplicial nodes in the graph
is denoted by σ.

Betweenness centrality. Betweenness centrality (BC) for a specific node v is the
proportion of all the shortest paths pass through this node. It is shown in [17]
that if G is a star graph with n nodes then g(G) = n − 1, where the central
node with the highest BC, that all the shortest paths passing through, will
never be in the geodetic set. Moreover, in the tree graph G with k leaves
g(G) = k, that means the leaves with low BC are geodetic nodes while the
root and the parents with higher BC are not part of the geodetic set.

3 Methodology

Although there are not many papers proposing the idea of using symbolic regres-
sion for approximating graph properties, the work by Martens et al. [20] was a good
starting point for us. They used the eigenvalues of the Laplacian matrix and of
the adjacency matrix as inputs for CGP, the experiments made on real-world net-
works to optimize the diameter and isoperimetric number. In our case, we aim at
obtaining results for the geodetic number on random and real-world graphs. Thus,
we investigated graph properties that are strongly related to the geodetic number,
which have been discussed in Section 2.3.

We have used CGP-Library which is a cross-platform Cartesian Genetic Pro-
gramming implementation developed by Andrew Turner1. The library is written
in C and it is compatible with Linux, Windows and MacOS.

In order to use CGP a set of training data is needed. Each training data will
contain instances and each instance contains two parts: (i) parameters of graph
properties and chosen constants as inputs, (ii) exact value of the graph property
as output. Thus, CGP will attempt to join the parameters and constants by using
arithmetic operators to achieve the output. The set of arithmetic operators we
have used in all the cases is {+,−,×,÷,√x, x2, x3}. For the graph properties we
have used the ones discussed in Section 2.3: eigenvalues of the adjacency matrix
and Laplacian matrix, number of degree-one nodes, number of simplicial nodes,
etc. It will be shown that these parameters strongly related to the graph geodetic
number so they can be beneficial inputs for CGP. The classification of these inputs
into categories will be shown in the following section which reports the results of
our numerical experiments.

1http://www.cgplibrary.co.uk/
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4 Parameters of the Numerical Experiments

The main goal of our experiments was to investigate the graph geodetic number for
random graphs and real-world graphs. Since the most related paper to our work of
Märtens et al. [20] contains results for the graph diameter (which is, similarly to the
geodetic number, also based on shortest paths) we report our results obtained for
the diameter and compare these values. The metrics used to measure the goodness
of a formula are mean absolute error and mean relative error.

In the following subsection we describe the graphs used for the training as well
as for the validation.

4.1 Random Graphs

Set of 120 random graphs created by using the three well-know generative models:
Erdős-Rényi [13], Watts-Strogatz [32], and Barabási-Albert [2]. Regarding the
number of nodes and edges the following approach were used:

• the number of nodes were n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and

• for the number of edges we followed the scheme as in [16]:

– for each case one can have maximum n · (n− 1)/2 edges,

– and we took 20%, 40%, 60% and 80% of this maximum number of edges.

4.2 Real-World Graphs

As a set of real-world graphs we used 10 graphs from the Network Repository2 [27].
For the training part, 120 connected sub-graphs of these networks with different
sizes (14 ≤ N ≤ 140) were created from this set by using the following simple
procedure. For a given real-world graph G(V,E), first, a random set W ⊂ V of
nodes were selected. Then, the induced sub-graph of G with node set W is taken.
This sub-graph Ĝ might not be connected, so, as a final step, the largest connected
component of Ĝ is selected.

4.3 CGP Parameters

CGP needs predefined parameters to work properly. Table 1 summarizes the values
of the parameters we have used in the experiments. The details of the parameters
used are the following.

Evolutionary Strategy The evolutionary strategy uses selection and mutation
as search operators. The usual version used by CGP is the one which we also
apply in this paper, which is called (1+4)-ES. Here, the procedure selects the
fittest individual as the parent for the next generation, from the combination
of the current parent and the four children.

2http://networkrepository.com/
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Table 1: Parameters of CGP

Parameter Value
Evolutionary Strategy (1 + 4)-ES

Node Arity 2
Mutation Type Probabilistic
Mutation Rate 0.05
Fitness Function Supervised Learning
Target Fitness 0.1

Selection Scheme Select Fittest
Reproduction scheme Mutation Random Parent
Number of generations 200, 000

Update frequency 100
Threads 1

Function Set add sub mul div sqrt sq cube

Node Arity Each node is assumed to take as many inputs as the maximum node
arity value, namely, the maximum number of inputs connected to a specific
node.

Mutation Type The mutation, as basic search operator of the evolutionary strat-
egy, is performed by adding a random vector to the current solution. In our
paper this is done probabilistically.

Mutation Rate The probability of applying mutation on a specific solution.

Fitness Function The supervised learning fitness function applies to each solu-
tion and assigns a fitness value to how closely the solution output match the
desired output. Based on that, the solutions with better fitness value will be
chosen for next generations.

Target Fitness The fitness function used in this work is the absolute differences
(absolute error) between the generated and predefined outputs, where the
best solution is the one with absolute difference less than or equal to the
given value.

Selection Scheme The applied fittest selection schemes select the best solutions
based on the closest fitness obtained by the solution.

Reproduction scheme There are two ways in which new children can be created
from their parents. In the first method the child is simply a mutated copy of
the parent. In the second method the child is a combination from both parents
with or without mutation. This latter method is referred to recombination.
Usually, CGP-Library uses the random parent reproduction scheme which
simply creates each child as a mutated version of its parents.
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Number of generations How many iterations CGP will apply before termina-
tion, unless one of the solutions obtained the target fitness.

Update frequency The frequency at which the user is updated on progress,
where the progress details shown on the terminal.

Threads The number of threads the CGP library will use internally.

Function Set the arithmetic operators used by CGP to combine the inputs.

4.4 Training data parameters

The list of parameters used as input in the training data, separated into different
sets as follows.
For random graphs:

1) N,M, λN , λi (i = 1, 2, 3)

2) N,M,μN−1, μi (i = 1, 2, 3)

3) N,M, λi, λN−i−1 (i = 1, . . . , 5)

4) N,M,μi, μN−i−1 (i = 1, . . . , 5)

5) N,M, λi, λN−i−1 (i = 1, . . . , 5) and constants 1, 2, 3, 4, 5

6) N,M,μi, μN−i−1 (i = 1, . . . , 5) and constants 1, 2, 3, 4, 5

where N is the number of nodes, M is number of edges, λi is the i-th eigenvalue of
adjacency matrix, μi is the i-th eigenvalue of Laplacian matrix.

For real-world graphs:

1) N,M, δ1, σ, and constants 1, 2, 3, 4, 5

2) N,M, δ1, σ, λi, λN−i−1 (i = 1, . . . , 5)

3) N,M, δ1, σ, μi, μN−i−1 (i = 1, . . . , 5)

4) N,M, δ1, σ, λi, λN−i−1 (i = 1, . . . , 5) and constants 1, 2, 3, 4, 5

5) N,M, δ1, σ, μi, μN−i−1 (i = 1, . . . , 5) and constants 1, 2, 3, 4, 5

where δ1 is the number of nodes with degree one in the graph, σ is the number of
simplicial nodes in the graph.

Note that in Section 2.3 the betweenness centrality was also discussed as shortest
path based graph centrality measure, which has relation to the geodetic number. In
the conducted experiments we were trying to involve the betweenness values of the
nodes by putting them into categories. However, none of the best approximating
formulas we have obtained by the symbolic regression included this information.
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5 Results

To obtain the formulas for either random graphs or real-world graphs, we have run
the CGP dozen times for each different category (see Section 4.4 for the list of
these categories). Amongst all the formulas we choose the best ones according to
its output’s absolute error and relative error compared to the exact value. Hence,
the best formulas gave the smallest error. The full list of the chosen formulas are
given in the Appendix. In the following we report and discuss the top formulas for
each case.

Both the diameter and the geodetic number are of course integers. However, the
obtained formulas by the symbolic regression usually result in non-integer number.
Hence, in the tables which report the results, first we rounded the values given by
the formulas and then the errors were calculated.

Consequently, the results are reported in two types of tables. For the random
graphs, only the summary of the approximation errors are shown. Regarding the
real-world graphs, the full details are given, i.e., the calculated values of the diam-
eter as well as the geodetic number using the best formulas are presented.

5.1 Diameter

5.1.1 Random graphs

Table 2 summarizes the results obtained for the different random graphs, where (6)
gives the best approximation:

N + λN−2 + 4√
M

.

For the investigated set of random graphs, λN−2 is in the range [−7,−1], which is,
on average,cancelled out by the constant factor +4 in formula (6). Moreover, for
these graphs we have M = O(N), which means that formula (6) is roughly O(

√
N).

The square root function, at least in the range where our experiments were done,
is close to the logarithm function. It is well know that the diameter of (random)
graphs can be estimated by log(N). The symbolic regression did not use the log

Table 2: Diameter validations on random graphs

formula (2) (3) (4) (5) (6) (7)

ER
mean absolute error 1 1.5 0.6 6.05 0.4 0.9
mean relative error 0.4 0.53 0.19 2.46 0.1 0.33

BA
mean absolute error 1.3 0.8 0.35 4.2 0.1 0.55
mean relative error 0.52 0.28 0.14 1.86 0.03 0.2

WS
mean absolute error 1.7 1.7 0.5 6.15 0.35 1.15
mean relative error 0.57 0.57 0.18 2.48 0.1 0.4
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function, as it was not in its function set, see Table 1. Nevertheless, it is interesting
to see that it found formula (6), which is close to the logarithm of the number of
nodes in the graphs.

5.1.2 Real-world graphs

For the diameter of real-world graphs, as it is shown in Table 3, the formula (15)
was the best by giving very close values to the exact diameter:

2M

λ1λ2
2

+
λ2
5 + 2(λN − λ3) + 50

λ1
+

2

λ1λ2

Closer inspection reveals that the last term in the formula usually has very small
values, below 0.1. The other parts of (15) contribute by roughly equal quantity
to the final result. The formula includes the first three, the fifth and the last
eigenvalue of the adjacency matrix, as well as the number of edges. Thus, it is
a nice demonstration of the surprising power of symbolic regression that it can
find non-trivial combination of graph features which can well approximate a graph
measure such as diameter. On the other hand, the computational cost is O(N3)
due to the need of calculating the eigenvalues. This means that it has the same
cost as directly applying an exact algorithm such as Floyd-Warshall to obtain the
diameter.

Table 3: Diameter validations on real-world graphs

network N M D [20] (8) (9) (10) (11) (12) (13) (14) (15)
ca-netscience 379 914 17 21 13 9 14 19 4 17 12 10
bio-celegans 453 2025 7 7 5 4 8 12 3 8 6 4

rt-twitter-copen 761 1029 14 16 13 14 14 19 12 17 20 11
soc-wiki-vote 889 2914 13 10 11 8 11 15 7 11 12 6
ia-email-univ 1133 5451 8 6 9 9 7 12 9 8 13 10
ia-fb-messages 1266 6451 9 7 10 8 8 12 7 9 11 6

bio-yeast 1458 1948 19 19 14 28 15 20 18 18 39 18
socfb-nips-ego 2888 2981 9 52 14 14 16 23 3 20 21 7

web-edu 3031 6474 11 36 14 11 15 22 13 19 16 8
inf-power 4941 6594 46 98 14 38 17 24 71 20 53 48

mean absolute error: 13.3 5.6 4 5.2 6.9 6.2 5.2 6.4 3.3
mean relative error: 0.92 0.28 0.27 0.27 0.53 0.37 0.31 0.48 0.27

As we can see, formulas (9) and (10) resulted the same mean relative error than
(15), however, they were worse by the mean absolute error. Formula (10) involves
some of the eigenvalues of the Laplacian matrix, and some constants. Formula (9)
uses some of the eigenvalues of the adjacency matrix, number of nodes and it also
uses the number of simplicial nodes. Thus, these formulas, although not giving
as precise approximations as (15), are built up by some other graph parameters
compared to (15).
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Note that in the 5th column of Table 3 we included the results reported in [20]
for the same set of graphs. Clearly, all the formulas we found gave smaller errors
than the best solution from [20].

5.2 Geodetic number

In order to compare the approximations given by the formulas found by symbolic
regression, the computation of the exact geodetic number of the input graphs were
needed. For that, we used the integer linear programming formulation proposed in
[16].

5.2.1 Random graphs

The results for the geodetic number of random graphs can be seen in Table 4.
Formula (16) gave the best approximations for the ER and WS graphs:√

N3/2

λ1
− λN−4N

3/2

λ2
1 +N3/2

.

In case of BA graphs formula (17) resulted in the lowest error:

μ2
4

μ2μN−3
+

√
N − μ3

Practically, both formulas need the computation of all eigenvalues, thus their com-
putational cost is O(N3). The exact computation of the geodetic number is NP-
hard, whereas formula (16) and (17) can be evaluated in polynomial time.

Note that overall, formula (16) gives the best approximation for all three types
of random graphs. Investigating the values one obtains by evaluating formula (16)
on random graphs, it turns out that the second part is roughly half of the first part.
Thus, a simpler formula would be

3

2

√
N3/2

λ1
.

Table 4: Geodetic number validations on random graphs

formula (16) (17) (18) (19)

ER
mean absolute error 0.92 1.31 1 1.07
mean relative error 0.1 0.16 0.16 0.13

BA
mean absolute error 2.15 1 1.775 2.92
mean relative error 0.18 0.08 0.17 0.26

WS
mean absolute error 0.54 1.38 0.92 0.69
mean relative error 0.04 0.19 0.12 0.08
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On average, this gives a bit more pessimistic approximation (namely, mean average
error = 1.89, and mean relative error = 0.1). However, it needs the computation
of the first dominant eigenvalue only, which costs O(N2).

5.2.2 Real-world graphs

Table 5 shows the results for the real-world graphs. It is important to emphasize
here that since the real-world graphs in Table 5 have hundreds of nodes and thou-
sands of edges, the calculation of the exact geodetic number, using the integer linear
programming formulation proposed in [16], requires enormous computational time.
For the three largest graphs (socfb-nips-ego, web-edu and inf-power) we were
unable to compute the exact geodetic numbers due to time constraints, so they are
left out from the comparison.

In this case the best approximation was obtained by the surprisingly compact
formula (27):

δ1 + σ +
√
M − 2.

The number of degree-one nodes and the number of simplicial nodes appear in
formula (27) because these nodes must be part of the geodetic set, as it was already
mentioned in Section 2.3. In fact, these two factors appear in all the best formulas
we have found, see Appendix. In the ca-netscience collaboration network and
in the bio-celegans there are lots of simplicial nodes and not many degree-one
nodes. For the other graphs it is just the other way around, i.e., the number of
simplicial nodes is not more than 10. The remaining part of the geodetic number is
approximated by

√
M −2, which contributes to the approximation on these graphs

1/3 at most. The computational cost of formula (27) is O(NM).

Table 5: Geodetic number validation on real-world graphs.

network N M g(G) (20) (21) (22) (23) (24) (25) (26) (27)
ca-netscience 379 914 253 208 151 190 198 194 206 195 200
bio-celegans 453 2025 172 213 115 119 195 188 225 203 146

rt-twitter-copen 761 1029 459 436 437 438 439 428 446 442 444
soc-wiki-vote 889 2914 275 247 212 220 222 231 247 259 245
ia-email-univ 1133 5451 244 225 182 194 181 192 208 196 233
ia-fb-messages 1266 6451 318 266 254 264 276 280 296 313 311

bio-yeast 1458 1948 784 763 761 766 761 751 775 762 773
mean absolute error: 32.7 56.1 44.9 39.9 39.0 29.7 28.1 21.9
mean relative error: 0.12 0.21 0.17 0.14 0.13 0.12 0.11 0.08

5.2.3 Improvement

We have listed the best formulas and we verified them with specific random and
real-world graphs. Our aim is to derive a general formula for the geodetic number
that can give good approximation for any real-world graph. For that we wanted to
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try and make formula (27) even sharper. One of the possible ways is to use linear
regression.

For linear regression the generalized formula containing multipliers as variables
has the form

a · δ1 + b · σ + c ·
√
M − d

The variables were initialized as a = 1, b = 1, c = 1, d = 1. The linear regression
finds the values of the variables a, b, c and d minimizing the mean absolute error of
the approximated value.

As a result, linear regression found that a = 0.99, b = 0.79, c = 0.97, d = 0.99,
so the formula can be written as

0.99 · δ1 + 0.79 · σ + 0.97 ·
√
M − 0.99. (1)

5.2.4 Validation of improved formula

For validating the quality of the formula (1), 120 sub-graphs (where 31 ≤ N ≤ 485)
from real-world graphs in Table 5 have been used. These graphs were created
by the same procedure described in Section 4.2. Then the geodetic number was
calculated twice: the exact value by using the ILP formulation [16], and then
the approximation using the formula (1) obtained by linear regression. Figure 1
shows a comparison between the two values for the sub-graphs. It is clear that
the approximations are close to the exact g(G) values. For all the 120 graphs we
obtained mean absolute error = 12.27 and mean relative error = 0.18 by using
formula (1). This is just a slight improvement though, since formula (27) gives
mean absolute error = 12.37 and the same relative error as (1).

There are two gaps in the figure indicating that for some graphs the approxima-
tion is much less than the exact value. For these graphs, the number of simplicial
nodes was zero. Since formula (1) is the summation of the number of simplicial
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Figure 1: Exact g(G) and values given by the optimized formula (1)
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nodes, the number of degree-one nodes, and the number of edges, if one of these
values is zero that will cause these gaps. For this type of graphs, where σ and δ1
are close to zero, it might be more beneficial to use one of the formulas we found for
the random graphs. For example, using formula (16) we get mean absolute error
= 39.87 and mean relative error = 0.57 for these graphs, while formula (1) on the
same graphs gives mean absolute error = 40.87 and mean relative error = 0.6.

6 Conclusion

Our work reports that symbolic regression is successfully applicable to derive opti-
mized formulas for graph geodetic number g(G). The best formula we found is very
simple and it can estimate the value of g(G) if the number of edges, the number
of degree-one nodes and the number of simplicial nodes are known. Thus, the ap-
proximation of the geodetic number can be obtained in a reasonable computational
time, even for graphs with thousands of nodes and edges, while obtaining the exact
geodetic number is an NP-hard problem. We demonstrated how different training
sets will lead to different formulas with different accuracy so that we can claim
that finding good training data is essential. Hence, finding the best parameters of
training graphs, where these parameters are highly related to the graph property
are the most important part for symbolic regression to approximate in a better
manner.
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Appendix

The best formulas, with respect to mean absolute deviation, found by CGP are
listed for the different graph types and graph properties.

Formulas for random graphs diameter. The results obtained with these for-
mulas are shown in Table 2. √
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Formulas for real-world graphs diameter. The results obtained with these
formulas are shown in Table 3.
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Quadric Tracing: A Geometric Method for

Accelerated Sphere Tracing of Implicit Surfaces∗
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Abstract

Sphere tracing is a common raytracing technique used for rendering im-
plicit surfaces defined by a signed distance function (SDF). However, these dis-
tance functions are often expensive to compute, prohibiting several real-time
applications despite recent efforts to accelerate them. This paper presents
quadric tracing, a method to precompute an augmented distance field that
significantly accelerates rendering. This novel method supports two config-
urations: (i) accelerating raytracing without losing precision, so the original
SDF is still needed; (ii) entirely replacing the SDF and tracing an interpo-
lated surface. Quadric tracing can offer 20% to 100% speedup in rendering
static scenes and thereby amortizes the slowdown caused by the complexity
of the geometry.

Keywords: computer graphics, sphere tracing, signed distance function

1 Introduction

Most implicit surface representations require conversion to a triangle list for effi-
cient, real-time visualization. Distance-based representations are such an exception
where sphere tracing [8] enables raytracing for the whole scene within milliseconds,
using the GPU. The representation supports a range of set operations, such as
union, intersection, subtraction, and real-time offsets [9]. This allows any CSG tree
to be constructed from a large set of primitives, set operations, and transforma-
tions [6]; however, the function evaluation time and convergence slow drastically
with scene complexity. This paper aims to amortize the scene complexity depen-
dence of raytracing an implicit surface defined by a signed distance function and
thereby greatly accelerate render times.
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For this, we generate a cache structure that allows the scene to be traversed with
rays more quickly, yet it can slow down near the surface for the utmost accuracy.
This structure and the accelerating algorithms must possess the following three
properties to improve on existing methods:

• The structure must be concise since three-dimensional data can quickly fill
up the available GPU memory.

• Query operations have to be efficient for significant render time reduction
during raytracing.

• The preprocessing step should be fast enough to accelerate raytracing, even
when called in every frame for dynamic scenes.

Our solution relies on special quadrics, that is, second-degree algebraic surfaces.
We define these quadrics pivoted around a given point and an arbitrary direction
in space. Each of the enclosed quadratic regions we generate will either contain
the entirety of the scene geometry or none of it, so we call these bounding and
unbounding quadrics, respectively. Our preprocessing step consists of generating
quadric parameters for a 3D grid of values, while the rendering step accelerates
raytracing by intersecting the rays with these quadrics first.

This paper focuses on presenting the quadric tracing algorithm and applying it
to accelerate sphere tracing utilizing a uniform grid of quadric parameters.

Previous work Since the first appearance of the sphere tracing algorithm [8],
several variants of accelerations and enhancements have been released. For clarity,
we refer to the sphere tracing method published in [10] as the relaxed sphere tracing
algorithm, and we call enhanced sphere tracing the algorithm presented in [3]. The
relaxed sphere tracing [10] takes larger steps determined by a scalar, and if the
radius is too large, it reverts to the basic sphere tracing size. The more recently
published enhanced sphere tracing [3] uses the radii calculated in the two previous
steps to efficiently approximate planar surfaces. These methods mainly attempt
to increase the size of the steps taken on the ray during rendering; hence, the
number of SDF evaluations are minimized. The algorithm applications include
light visibility computation such as soft shadows [5], ambient occlusion [18], and
global illumination. Various utilizations are also known, like room impulse response
estimation [11], or deep learning based implicit signed distance functions [13]. Most
of the algorithms above can be improved by quadric tracing.

2 Preliminaries

An f : R3 → R function is a signed distance function (SDF) if it is continuous and

|f(p)| = d(p, {f = 0}) (p ∈ R3) ,

as stated in [4, 15]. Where d(p, {f = 0}) = inf{‖p − x‖2 : x ∈ {f = 0}} is the
Euclidean distance from the {f = 0} = {x ∈ R3 : f(x) = 0} surface. The {f <
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Figure 1: The sphere tracing algorithm takes distance sized steps along the ray.
These distance sized steps visualized here in 2D by the red unbounding circles
surrounding each signed distance function evaluation point. This image is reused
from [4] with the permission of the authors.

0} = {p ∈ R3 : f(p) < 0} region is the inside, while the {f > 0} region is considered
the outside of the represented geometry. Set operations can be performed on objects
defined by SDFs by taking the point-wise minimum or maximum of the operand
functions for union or intersections, respectively [8].

Various sphere tracing algorithms exist for surface visualization. These raytrac-
ing techniques often start a ray through each pixel of the virtual camera and march
along the ray, taking distance sized steps [8]. This is because, for any p ∈ R3 point,
there are no surface points within f(p) distance: this is called the unbounding
sphere. Hence, sphere tracing is often visualized as a series of unbounding spheres
or circles along a ray as in Figure 1. When the point-to-surface distance becomes
negligible, the surface is reached.

However, all sphere tracing algorithms slow down near the surface regardless
of the direction taken [10, 3, 5]. The only exception is when the derivative of f
is known, and the geometry is convex, in which case huge steps can be taken [8].
This is because, instead of an unbounding sphere, we can draw a separating plane
with normal ∇f(p) and surface point p − f(p) · ∇f(p). Note that if f : R3 → R
is an exact signed distance function, then if the derivative exists at p ∈ R3, it is
of unit length: ‖∇f(p)‖2 = 1. This can often produce long steps, even when the
evaluation point is close to the surface. This method can be extended to the union
of concave objects, but the average step size will rapidly decrease, and function
evaluation time will increase.

Nonetheless, the surface is often concave, or the derivative might be undefined
or unknown. For this reason, we generalize the unbounding sphere and separating
plane approach to unbounding quadrics [12] for any SDF. Our method consists of
two steps. During precomputation, we store distance values in a regular grid. For
each cell, the normal vector ∇f(p) is stored along with a k ∈ [−1, 1] parameter
describing the shape of the quadric. Therefore, the quadric is parameterized with a
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3D direction vector and a scalar value. During the rendering step, quadric tracing
intersects the ray with the precomputed quadric to accelerate tracing convergence.

3 Conic sections of k ∈ [−1, 1]
We chose to use the revolution of conic sections for the quadratic proxy surfaces
such that a single scalar value k ∈ [−1, 1] we can encode a large variety of surfaces
around the axis defined by ∇f(p). This section details how the 2D conics are
constructed to generate both bounding and unbounding regions. Let the y-axis
denote the axis of revolution such that the symmetric curve going through the
origin has the following form:

A(k) · x2 +B(k) · y2 + C(k) · y = 0 (A,B,C : [−1, 1]→ R). (1)

The coefficients are functions of the k ∈ [−1, 1] parameter, and these control the
shape, eccentricity, and curvature of the conic [17]. We found the following three
functions to change the conic section in the desired, continuous way from a circle
centered at (0,−0.5) to another around (0, 0.5) as k increased from -1 to 1.

A := A(k) := k2 , B := B(k) := 2

(
|k| − 1

2

)
, C := C(k) := −k (2)

This choice allows the conic sections seen on Figure 2 to turn inside out at k = 0,
and describe both bounded |k| > 1

2 and unbounded |k| ≤ 1
2 regions visualized. For

brevity, we omit the function notation.

Figure 2: Conic sections with varying k ∈ [−1, 1]. For k = ±1, the conic section is
a circle; for k = ±0.5, a parabola; for k ∈ (0.5, 1) or k ∈ (−1,−0.5), an ellipse; and
for k ∈ (0, 0.5) or k ∈ (−0.5, 0), it is a branch of a byperbola.
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We obtain the polar parametrization of these conics by intersecting them with
t ∈ [−π, π) angled rays from the origin. The distance from the origin to the
intersection point will be a function of this angle, r(t); so by substituting the polar
coordinates into the implicit form in (1), we can solve for this r(t):

A · (r(t) · cos t)2 +B · (r(t) · sin t)2 + C · r(t) sin t = 0 .

Assuming that r(t) �= 0 yields the polar parametrization s : [−π, π) → R2 of the
conic section:

r(t) =
−C · sin t

A · cos2 t+B · sin2 t =⇒ s(t) :=

[
cos t · r(t)
sin t · r(t)

] (
t ∈ [−π, π)) (3)

For values of k ∈ (−1
2 ,

1
2

)
, the s(t) describes a hyperbola with an unwanted branch.

Let L := L(k) ∈ [−π, π) denote the value where r(t) has a singularity. Thus, we
can restrict s(t) to the [−L,L) interval where

L := L(k) :=

⎧⎨⎩
π
2 , if A(k) ·B(k) ≥ 0,

arctan
√
−A
B , otherwise

(k ∈ [−1, 1]) .

Note that for all of the equations above, the heuristic A(k), B(k), and C(k) func-
tions may readily be redefined if needed. We have experimented with several sets
of functions. Simplicity, numerical stability, and continuity in terms of k were the
deciding factors. Even though the parametric form has a singularity at k = 0, the
algorithms in this paper are based on the implicit equation, extending to the k = 0
line or plane.

4 Unbounding quadrics

We parameterize quadrics of revolution by rotating s(t) = [s1(t), s2(t)]
T from (3)

around the vertical axis:

P (u, v) :=

⎡⎣cos(v) · s1(u)sin(v) · s1(u)
s2(u)

⎤⎦ = r(u) ·
⎡⎣cos v · cosusin v · cosu

sinu

⎤⎦ (u ∈ [0, L(k)), v ∈ [0, 2π)).

These quadrics can be seen on Figure 3. Similarly, the implicit equation becomes

A · (x2 + y2) +B · z2 + C · z = 0.

Applying the above, we can calculate the intersection of a ray and the quadric
surface. The ray is given by a point p0 = (x0, y0, z0) ∈ R3 and a vector v =
(vx,vy,vz) ∈ R3, ‖v‖ = 1, so we can substitute any p0 + t · v (t > 0) point
on the ray and solve the resulting quadratic equation with the coefficients in the
at2 + bt+ c = 0 equation:

a =A · v2
x +A · v2

y +B · v2
z

b =2A · x0vx + 2A · y0vy + 2B · z0vz + Cvz

c =A · (x2
0 + y20) +B · z20 + C · z0
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Figure 3: Surfaces of the unbounding quadrics for k ∈ [−1, 1] separate the space into
two regions. The region that contains the (0, 0, 1) point must contain the entirety
of the surface once the quadric is transposed and rotated into the scene.[16]

If there are real roots, let them be t1 ≤ t2 and let I := [t1, t2]. If there are
no real roots, let I := [t1, t2] := [−∞,+∞] [14]. However, if 0 �= |k| < 1

2 , then
the solution corresponding to the unwanted branch of the hyperbola needs to be
omitted:

I := [t1, t2] :=

{
[−∞, t2] if (z0 + t1vz) · k < 0
[t1,+∞] if (z0 + t2vz) · k < 0

If none of the conditions apply, I left as defined before. Then, the first intersection
between the ray and the quadric may be computed by evaluating the following four
conditional assignments in order:

t := t2 if t1 = −∞
t := t1 if 0 < t2 < +∞
t :=∞ if t1 < 0
t := 0 if otherwise

(4)

The resulting t ≥ 0 is the intersection location along the p0 + t · v ray.

5 Preprocessing

The accelerator data structure consists of a single grid that stores the distance
values and the quadrics of revolutions in four 32 bit floating-point values. We
multiply the normalized axis direction n ∈ R3 (‖n‖2 = 1) with 2 + k to store the
quadric using 96 bits while the final 32 bits are reserved for the signed distance
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function values d ∈ R. The quadrics are defined relative to each grid point pc ∈ R3

which becomes the origin in Figure 3. The quadric is scaled and rotated such that
the axis of revolution points towards is n.

During the preprocessing steps, the regular grid is populated with values. The

axis we store is the − ∇f(p)
‖∇f(p)‖ gradient vector because it mostly points towards the

surface and proves to be a good heuristics. The following four steps detail the
computation of the k ∈ [−1, 1] values. These are executed for every cell in parallel
using the GPU:

1. Starting from the origin of the quadric pc, we shoot rays in uniformly sampled
directions vi (i = 1, . . . , N).

2. Each pc + tvi ray is then sphere traced until the surface or the bounding box
is reached.

3. For each ray-surface intersection (xi, yi, zi) := pc + tivi, we compute the
ki ∈ [−1, 1] value that defines the unique quadric of revolution that touches
the surface at that intersection point.

4. To obtain the unbounding quadric within the cell, we need the narrowest
candidate unbounding quadric region from all rays; therefore, k := min{ki |
i ∈ {1, . . . , N}}.

The third step warrants more explanation. Note that we only need to operate
in the plane defined by vi and the n normal vector because the quadric is sym-
metric around n. Let q = (qx, qy) ∈ R2 be the rotated projection into this plane
of the (xi, yi, zi) intersection point where n corresponds to the y-axis in 2D. We
can solve the 2D implicit equation in (1) of the conic for the k parameter after
substituting (2):

k2q2
x + 2

(
|k| − 1

2

)
q2
y − kqy = 0

Depending on the sign of k, the entirety of the conic section lies in the upper
or lower half planes, that is: sgn qy = sgn k. Substituting |k| = k sgn k, and
rearranging yields the quadratic equation

q2
x · k2 + (2 sgn qy · q2

y − qy) · k − q2
y = 0 .

The smaller solution for k is the desired parameter ki of the quadric in the third
step.

6 Quadric tracing

The benefit of quadric tracing is that it takes much larger steps along the ray, as
illustrated in Figure 4. The quadrics are stored in grid cells, so for each evaluation
point along the ray, the closest quadric is queried and intersected as seen in Sec-
tion 4. This often yields a step size that skips several grid cells and still does not
skip ray surface intersections.
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However, sometimes the quadric does not contain the whole cell that it is as-
signed to, so the acceleration is zero or negligible for some positions. In this case,
we take advantage of the stored distance values to advance the iteration by the
larger of the two proposed step size. When the computed distance value dips below
a certain threshold, our quadric tracing iteration stops. The remaining iterations
are then used for the enhanced sphere tracing method [3] that converges quickly
close to the surface.

The C++ and OpenGL implementation was developed using the Dragonfly
framework [2, 1]. The preprocessing step, the sphere tracing methods, and quadric
tracing are implemented on the GPU using compute shaders and appropriate mem-
ory barriers. The CSG trees are stored as structures on the CPU, but the shader
code for the SDF can be readily generated on-the-fly. Thus, upon the change
of parameters or desired algorithms, the implementation generated the SDF and
recompiled its shaders to preprocess and render the new surface.

(a) A sphere tracing step was
taken because it was larger

(b) Quadric tracing step is
now greater then the distance

(c) Quadric step to infinity
terminates the raytracing

Figure 4: Consecutive quadric tracing of two circles in 2D. The preprocessing step
created the pink unbounding regions to accelerate raytracing whenever the quadric
step is larger (b, c). Sometimes, the sphere tracing step is larger because the
quadrics are confined to a grid (a). However, the ray does not intersect the quadric
in the last case, meaning the algorithm halts in the third iteration.

7 Results

Our implementation featured and compared classic sphere tracing, relaxed sphere
tracing [10], enhanced sphere tracing [3], quadric tracing. For the method we call
relaxed sphere tracing from [10], the recommended 1.6 step size increase was used.
The enhanced sphere tracing had to be slowed down to accommodate smooth con-
cave surfaces, so the recommended 0.95 step size reduction was applied as detailed
in [3]. During our experiments, we implemented nine test scenes presented in Fig-
ure 5. These test models were also used in [7] for their measurements.

Measuring errors for sphere tracing algorithms can be problematic because there
are hit rays that intersect the surface, and there are miss rays that do not. In both
cases, most algorithms cannot ever reach the desired value, only converge towards
it. Thus, we have a distance-to-surface error tolerance threshold that changes
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Model 0 Model 1 Model 2 Model 3

Model 4 Model 5 Model 6 Model 7

Figure 5: Performance measurements were based on these test scenes from [7] for
which we have our own implementation.

along the ray, effectively, a cone trace. This means that the absolute error can be
arbitrarily large and still be acceptable. Also, if the algorithm takes larger steps, it
tends to overstep the error threshold by a larger amount making the error smaller
compared to another method with a smaller step size.

For our measurements, we generated a 16 × 16 × 16 quadric field by shooting
70 × 70 rays for each cell. The preprocessing took around three to four times as
long as producing a single frame.

Data for ground truth were produced by sphere tracing the scene for a thousand
iterations. This causes the error of relaxed, enhanced, and quadric tracing methods
to plateau for high iterations, while the sphere tracing will be exact compared to
itself, clearly seen above iteration 64 on Figure 6a.

We made several error metrics, such as the absolute error of divergent and
convergent rays, the ratio of rays that did not converge, and the number of SDF
evaluations. For the first one, we compared rays that missed or converged to the
surface in the ground truth data but were still converging in the test case. Error
values could not be aggregated across test scenes easily; thus, we provide in-depth
data for the run with 32 iterations on Table 1. Table 1 presents average frame render
times and the measured sum of absolute raytracing errors for each model. Quadric
tracing performed better for more complex scenes, and such a case is presented in
Figure 6. We also plotted the number of rays that did not converge before a given
iteration number on Figure 8a.

Our measurements also confirmed the results of [3]: enhanced sphere tracing
decreases the error at a higher rate than the relaxed or the original method. En-
hanced sphere tracing is most efficient at proximity to the surface, while our quadric
tracing accelerates the raytracing through the vast distances between the objects,
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(a) Error on a logarithmic scale

(b) Render time in milliseconds

Figure 6: Measured error and render time values as a function of the iteration for
Model 7 test scene. Quadric tracing has a slightly higher error for a given iteration
count but yields much higher performance across.

as exemplified by Figure 6. The average render time improvement is similar, as
demonstrated by Figure 7. Quadric tracing becomes much faster than other meth-
ods as the function evaluation time increases because the cost of memory read
operations are unaffected by scene complexity. Signed distance function evalua-
tions are decreased by 20% on average when rendering with quadric tracing, as
seen in Figure 8a.
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Table 1: Relative error and render time comparison of the novel quadric tracing
compared to the state of the art methods, each taking 32 iterations. The relative
values are divided by the error of the basic sphere tracing, taking the same number
of iterations. The enhanced method is slightly more accurate but takes longer to
execute for complex scenes.

Relative error w.r.t. sphere tracing Render time in ms

relaxed enhanced quadric basic relaxed enhanced quadric

model 0 0.0945 0.0362 0.0488 8 8 8 8

model 1 0.2920 0.1227 0.1227 15 14 10 12

model 2 0.1259 0.0347 0.0327 18 18 14 16

model 3 0.0463 0.0034 0.0034 13 13 10 11

model 4 0.0003 0.0003 0.0003 8 8 8 9

model 5 0.1883 0.0879 0.0982 71 70 59 40

model 6 0.0842 0.0142 0.0152 263 276 230 162

model 7 0.0574 0.0101 0.0137 616 695 626 363

model 8 0.0054 0.0003 0.0003 288 330 293 262

Figure 7: Average relative render time with respect to sphere tracing. Each runtime
is divided by that of sphere tracing and then the results are averaged. The time
overhead of the enhanced sphere tracing at the end of quadric tracing is included.
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(a) Average SDF evaluations per ray

(b) Percentage of rays that did not converge

Figure 8: Number of function evaluations per pixel, and the number of rays that
neither missed or hit the surface yet. About 20% of the expensive signed distance
function evaluations can be avoided with quadric tracing.
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8 Conclusion

This paper presented a novel algorithm to accelerate the raytracing of implicit
surfaces by fitting special quadratic volumes from grid points to the surface and
raytracing the precomputed proxy geometry instead. Thus, instead of a potentially
expensive function evaluation, quadric tracing mostly reads from memory when
rendering the scene. Even though our method can visualize the surface from the
precomputed data, the acceleration structure is coarse and would seriously limit the
resolution and remove surface features. Hence, we opted to continue sphere tracing
on the exact signed distance values after our quadric tracing iteration. Therefore,
the surface remains unchanged while a significant amount of function evaluations
were avoided.

Implementation of the quadric tracing idea necessitated several difficulties to be
solved. First, the unbounding volumes had to be compactly stored, efficiently com-
puted, queried, and intersected with, for which revolutions of conic sections were
designed with specific coefficient functions. Second, both the parametric and im-
plicit representations were needed in 2D and 3D to write efficient implementations
for these on the GPU. This paper focused more on the rendering part rather than
the quadric generation because raytracing efficiency determines the competitiveness
of quadric tracing. Finally, we implemented all of the presented methods in C++
and OpenGL, utilizing the massive parallelization of the GPU for preprocessing,
sphere tracing, and rendering.

Our results show that quadric tracing can efficiently mitigate the slowdown
caused by large CSG trees. In such cases, the method is up to two times faster
then enhanced sphere tracing [3] whilst being slightly less precise, as shown in
Figure 6. On average, quadric tracing was 40% faster than the current state of the
art method.

However, quadric tracing requires the accelerator data structure to be computed
and populated, taking from a few milliseconds to seconds to complete. Therefore,
every time the scene changes, every quadric in every cell needs to be updated,
which renders quadric tracing impractical for dynamic scenes. Although intuition
suggests otherwise, executing the preprocessing step and the quadric tracing in
every frame can be faster than the enhanced method, as our early experiments
suggested. However, this was not the focus of this paper, so further research is
required with a suitable data structure that can be updated efficiently.
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Geometric Distance Fields of Plane Curves∗
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Abstract

This paper introduces a geometric generalization of signed distance fields
for plane curves. We propose to store simplified geometric proxies to the
curve at every sample. These proxies are constructed based on the differ-
ential geometric quantities of the represented curve and are used for queries
such as closest point and distance calculations. We derive the theoretical
approximation order of these constructs and provide empirical comparisons
between geometric and algebraic distance fields of higher order. We validate
our theoretical results by applying them to font representation and rendering.

Keywords: computer graphics, signed distance fields, plane curves

1 Introduction

Signed distance functions (SDF) are special implicit representations of shapes.
They map a real number to every point in space and this scalar encodes two at-
tributes of the query position: (i) its distance to the boundary of the geometry
represented by the SDF and (ii) whether the query point is inside, outside, or on
the boundary of the geometry. The former is the magnitude of the scalar mapped
to the point and the latter is determined by its sign.

The construction and evaluation of the exact SDF of a complex scene is com-
putationally expensive. As such, most applications settle on using discrete samples
and various reconstruction filtering techniques to infer an approximate signed dis-
tance value for every query point in space. We refer to these as discrete signed
distance fields (DSDF) and our present work is a generalization of this approach.

In a recent work [3], we considered the algebraic generalization of a signed dis-
tance sample. We proposed the use of degree one Taylor approximations to the
signed distance function and showed that this allows considerable reductions in
storage. That is, even though the size of a single sample increased, the approxima-
tion properties of the field itself have improved enough so that in total less scalars
were needed to retain a prescribed accuracy.
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The generalization of this approach, i.e. increasing the degree of the Taylor
approximation is hindered by the coefficient explosion of Taylor polynomials. Since
a degree n polynomial in Rd is represented by

(
n+d
n

)
coefficients, a naive represen-

tation of a degree 1 and 2 Taylor polynomial in the plane requires 3 and 6 scalars
respectively. Unfortunately, exceeding the per sample storage capabilities of GPU
texture formats limits the immediate applicability of texture filtering based ap-
proaches, so even degree 2 polynomials need additional techniques to retain their
practical value in real-time use cases.

In this paper, we propose an alternative higher order sample construction for
planar DSDFs. This technique uses per sample geometric proxies of the boundary
curves. These proxies are based on the differential geometric properties of the
closest boundary point and they are a generalization of the approach presented in
[16].

The intuition comes from recognizing that in the plane, a degree 1 Taylor poly-
nomial is a line in E2 that also coincides with the tangent line at the closest bound-
ary point to the sample position.

As such, a second order geometric approximation to the boundary is an oscu-
lating circle. Clearly, this does not coincide with a second order algebraic sample,
whose zero level set determines a conic section in the plane. Moreover, a circle
can be represented by its center and radius, i.e. 3 scalars, whereas a degree two
polynomial in two variables is determined by 6 scalar coefficients.

Our main theoretical contribution is that this storage reduction does not cost
us approximation power: the signed distance function of the osculating circle is a
similarly second order approximation to the signed distance function of the original
geometry as a second degree Taylor polynomial. This is proven in Section 6.

More generally, we show that entities possessing an order n geometric contact
have equal SDF derivatives up to order n.

We validate our theoretical results by applying this representation to the storage
and rendering of vector fonts in Section 9.

2 Prior work

Discrete signed distance field constructions have found uses in many applications,
including font rendering [7], collision detection [6], and various other areas [11, 17,
5, 1].

Our focus is in the planar use cases of DSDFs, and more specifically, font and
vector art rendering. DSDF based techniques have received much attention in this
venue and they have been improved both in terms of performance and quality.

A notable work is that of Loop and Blinn [9], that takes GPU architecture
specific considerations into account and contributes in both areas of improvements.
They propose a general framework for the rendering of vector art composed of up
to cubic Bézier curves. For anti-aliasing, they approximate the signed distance to
the boundary using a first order expansion and show how these data can be stored
at the primitive vertices such that hardware bilinear interpolation yields correct
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Figure 1: The signed distance function of the unit circle (left) and a signed distance
field of the same geometry (right).

approximations.
A particular difficulty with DSDF approaches is that they cannot deal with

hard corners as bilinear interpolation tends to smooth them out. More general
approaches, such as edge-aware sampling [2] or feature based textures [13] can
improve on this, but there are font-specific solutions to this problem as well. For
example [10] replaces the Bézier segments by linear and circular arcs that also
improves performance. This latter approach is the most similar work to ours but
our argument is based on the functional approximation of the SDF and the local
differential geometry of the boundary.

Recently, results have been published about a more accurate anti-aliasing of
vector based fonts in 3D scenes [4].

3 Theoretical background

Notation We denote the n-dimensional Euclidean space by En and ‖·‖2 is the
Euclidean norm. The partial derivatives of an f : E2 → R function are ∂1f, ∂2f or
fx, fy. The scalar product of vectors a, b ∈ Rn is written as 〈a, b〉 = aT b.

Definition 1. Let α = (α1, . . . , αn) ∈ Nn be a multi-index. Then we define the
following operations:

• |α| = α1 + α2 + · · ·+ αn

• α! = α1! · α2! · . . . · αn!, where 0! = 1

• xα = xα1
1 · xα2

2 · . . . · xαn
n (x = (x1, x2, . . . , xn) ∈ En)

• ∂αf = ∂α1
1 ∂α2

2 . . . ∂αn
n f (f : En → R)
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Definition 2 (Regular curves). An r ∈ R → En parametric curve is regular iff
∀t ∈ Dr : r′(t) �= 0.

Definition 3 (Natural parametrization). r̂ ∈ R→ En is the natural or arc-length
parametrization of r ∈ R→ En, which means ∀s ∈ Dr̂ : ‖r̂′(s)‖2 = 1.

Definition 4 (Arc-length function). s : [a, b] → [0, L] is called the arc-length

function of r : [a, b]→ En, if s(t) =
∫ t

a
‖r′(x)‖2 dx and L =

∫ b

a
‖r′(x)‖2 dx.

Corollary 1 (Natural parametrization). Let r : [a, b]→ En be a regular parametric
curve, then r = r̂ ◦ s and r̂ = r ◦ s−1.

Definition 5 (Gn continuity). Two curves are Gn, n ≥ 1 at a common point x iff
there exits a regular parametrization with respect to which they are Cn at x.

Definition 6 (Signed distance function). The signed distance function f : E2 → R
of an F ⊂ E2 two dimensional shape is defined as f(x) = sgn(x) · d(x, ∂F ), where
∂F := F ∩ (E2 \ F ) is the boundary of F , d(x, G) = infy∈G ‖x− y‖2 and sgn(x)
determines if x is inside or outside of F :

sgn(x) =

{ −1 if x ∈ F,
1 if x �∈ F.

Definition 7 (Footpoint parameter relation). Let p : [a, b]→ E2 be a regular para-
metric curve. Then r ⊂ E2 × [a, b] contains all (x, t) pairs, where t is a parameter
for a closest point on the curve for x:

r =

{
(x, t) ∈ E2 × [a, b]

∣∣∣∣ ‖p(t)− x‖2 = min
u∈[a,b]

‖p(u)− x‖2
}

The above relation is usually almost a function. The points x that have multiple
parameters associated with are the ones where there is no unique closest point, such
as the center of a circle. These points lie on the cut locus of the curve.

Definition 8 (Footpoint parameter mapping). A t : E2 → [a, b] footpoint pa-
rameter mapping of a regular parametric curve is any narrowing of the footpoint
parameter relation of the curve, so that it is a function on the whole domain:
t ⊂ r : ∀x ∈ E2 |{u ∈ [a, b] : (x, u) ∈ t}| = 1.

4 Algebraic SDFs

Algebraic signed distance fields are based on the Taylor approximation theorem
[3]. Instead of simple function values, we store higher order Taylor polynomial
approximations to the shape in the samples.

Definition 9 (Taylor polynomials). Let f : Rn → R,a ∈ Df ⊂ Rn, f ∈ Ck[a].
The order k Taylor polynomial of f around a is

T
(k)
f (x) =

∑
|α|≤k

∂αf(a)

α!
(x− a)α (x ∈ Rn)
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Taylor polynomials have a good local approximation property characterized as

Theorem 1 (Taylor Approximation Theorem). Let f : Rn → R, S ⊂ Rn open and
convex, f ∈ Ck+1[S]. If a,a+ h ∈ S, then

f(a+ h) = T
(k)
f (a+ h) +Ra,k(h)

where the residual Ra,k can be expressed using an adequate c ∈ (0, 1):

Ra,k(h) =
∑

|α|=k+1

∂αf(a+ c · h)h
α

α!

or with an integral form:

Ra,k(h) = (k + 1)
∑

|α|=k+1

hα

α!

∫ 1

0

(1− t)k∂αf(a+ th)dt .

In the two dimensional case, the Taylor polynomials are written in the following
way. Let x = [x, y]T ,a = [a, b]T ∈ E2, then

T
(k)
f (x, y) =

k∑
i=0

i∑
j=0

∂j
1∂

i−j
2 f(a, b)

j!(i− j)!
(x− a)j(y − b)i−j

In algebraic signed distance fields, these local approximations are used as sam-
ples. In the simplest construction, all of the samples share a common polynomial
degree. This degree is referred to as the order of the algebraic distance field, since
it is the approximation order of the stored polynomials.

An order 1 algebraic distance field uses the distance function value and the first
partial derivatives. In the local polynomial basis, it is written as

T
(1)
f (x) = f(a) + fx(a)(x− a) + fy(a)(y − b)

Local refers to that the basis functions x − a, y − b are relative to the sample
position a = [a, b]T , and the global basis would be independent of it. Similarly, an
order 2 algebraic distance field sample is derived from the distance function value,
the first and the second order derivatives:

T
(2)
f (x) =f(a) + fx(a)(x− a) + fy(a)(y − b)+

1

2
fxx(a)(x− a)2 + fxy(a)(x− a)(y − b) +

1

2
fyy(a)(y − b)2

Note that the classical signed distance field coincides with the order 0 algebraic
signed distance field, as the degree 0 polynomial approximation of a function is

a constant function value, i.e. T
(0)
f (x) ≡ f(a). This way, the algebraic signed

distance fields can be viewed as a generalizations of the classical one.
Also note that an algebraic signed distance field sample is not necessary repre-

sented directly by the constant function value and the derivatives; see Section 5.
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5 Representation of algebraic samples

The samples in an algebraic signed distance field are polynomials. The order zero
case coincides with traditional signed distance fields, which store signed distance
values. Polynomials are usually represented with their power basis coefficients, but
any basis of representation can be chosen. The two main options are local and
global basis.

By local polynomial basis we mean that the basis is relative to the sample
position. In a global basis all of the basis functions are given in the same coordinate
system, i.e. same axes and origin. For a single sample, there is no real difference
between the two options. The practical difference appears when multiple samples
interact in some way. This is the case when querying SDFs, which is usually
done using hardware accelerated linear blending. We show that the global basis
is invariant under affine combinations, which helps leveraging this GPU texture
filtering.

To prove this, let λi(x) be an arbitrary collection of barycentric weight func-
tions, i.e. λi : En → R such that ∀x ∈ En :

∑
i λi(x) = 1. Let bj(x) be a poly-

nomial basis and Pi(x) =
∑

j aijbj(x) arbitrary polynomials. Let us now consider
the barycentric combination of these polynomials as

∑
i

λi(x)Pi(x) =
∑
i

λi(x)

⎛⎝∑
j

aijbj(x)

⎞⎠ =

=
∑
i

∑
j

λi(x)aijbj(x)

=
∑
j

(∑
i

λi(x)aij

)
︸ ︷︷ ︸

âj(x)

bj(x)

=
∑
j

âj(x)bj(x)

This means that if the polynomials are all stored in the same global basis,
we can first interpolate the coefficients of the polynomials and then evaluate one
polynomial. If the texture stores polynomial coefficients, the GPU bilinear interpo-
lation returns âj(x). This implicitly uses a linear λi weighting function, but we can
achieve different non-linear λi weights by modifying the texture lookup coordinates.

6 Geometric interpretation

The main issue with the algebraic approach is that the number of coefficients grow
quadratically with the order. For order n, the number of coefficient is

(
n+2
n

)
=

(n+2)(n+1)
2 . Thus a second order algebraic sample consists of six coefficients which

already do not fit into a single texture sample. This motivated us to investigate
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Figure 2: Error heat map of the signed distance function inferred from a first and
a second order algebraic sample – Taylor polynomial – approximating the SDF of
the unit circle. The sample position is the red x and the geometry is the red circle.

alternative approximations with a lower scalar footprint that still retain a proven
approximation order.

The geometric interpretation of the order 0 algebraic sample is already estab-
lished in the literature: a value d = f(x) sampled from the distance function is the
signed distance from the closest point to the curve (or surface in 3D) and defines
an unbounding circle (sphere) around the sample position with a radius of |d|. This
unbounding volume contains no surface point.

The first order algebraic sample is a linear polynomial with three coefficients,
which naturally describes a line with its zero level set. However, in our case, this
line has a geometric interpretation: this line is the tangent line of the curve at the
closest point to the sample point. Moreover, the polynomial is the exact signed
distance function of the represented line, since the gradient of the function is unit
length and constant for the entire domain.

A second order algebraic sample is a second order polynomial with six coeffi-
cients, which means that the level sets are quadrics or, in special cases, degenerate
quadrics. However the polynomial here – unlike in the order one case – is not the
signed distance function of the zero level set, but only a local approximation to it.
The nearest point on the curve is usually part of the zero level set of the second
degree polynomial and the close neighbourhood matches the approximated curve.

These geometric interpretations open a way to using geometric objects as ap-
proximations. To see what kind of geometries could replace the algebraic samples,
we show that two curves connecting with Gn continuity have a Cn continuous
signed distance function around the connection. For this let us first prove

Theorem 2. The signed distance function of any regular parametric curve is in-
dependent of the parametrization of the curve.
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Proof. Let us start with an arbitrary parametrization, and show that the signed
distance function is the same as for the natural parametrization. Let p : [a, b]→ E2

be a regular parametric curve, and consider one of its footpoint parameter mappings
as defined in Definition 8. A closest point function p∗ : E2 → E2 is then p∗ = p ◦ t.
This maps all points in the plane to the closest point – or one of the closest points
– on the curve. With the help of the closest point function, we can define the
(unsigned) distance function f̃ : E2 → R+

0 of the curve as f̃(x) = ‖p∗(x)− x‖2.
For the signed distance function, we also need to partition the plane into inside
and outside sets. Let F ⊂ E2 be the inside of our shape (bounded by p), then the
signed distance function f : E2 → R is

f(x) = sgn(x) · f̃(x) (x ∈ E2).

Now let p̂ : [0, L] → E2 be the natural paramteriztaion of p. As we have
noted in Corollary 1, the arc-length function s : [a, b] → [0, L] links p to the
natural parametrization: p = p̂ ◦ s. Similarly, the footpoint parameter mapping
t̂ : E2 → [0, L] of p̂ is related to t through s: t = s−1 ◦ t̂. These show that p∗ is
independent of parametrization and thus the signed distance function as well since

p∗ = p ◦ t
= p̂ ◦ s ◦ s−1 ◦ t̂
= p̂ ◦ t̂

Another interpretation of Theorem 2 is that the signed distance function is
invariant under regular reparametrizations of the represented curve. For example,
the first partial derivatives with respect to the X and Y coordinate axes are

∂kf(x) = ∂k (sgn(x) · ‖p∗(x)− x‖2)

= sgn(x) · (p
∗(x)− x)

T

||p∗(x)− x||2 ·
(
∂kp

∗(x)− ∂kx
)

(k ∈ {1, 2})

Corollary 2. If two curve segments connect Gn continuously, then the distance
fields of the curves are Cn continuous at the connection point.

This is true because Gn continuity is equivalent to the two connecting curves
having the same natural parametrization [15].

Remark 1. This continuity extends to the line segment starting from the foot point
through the sample, until the normal line intersects the cut locus. See Figure 3 for
an example.
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Figure 3: The red and green cubic Bezier-segments connect G1 continuously at
the shared yellow point. The background color encodes the gradient vector of the
unsigned distance function of the curves. The black dashed line partitions the
plane by which curve segment provides the foot point. As we note in Remark 1,
the gradient is continuous on this line segment.

7 Geometric proxies

We have seen in Corollary 2 that Gn continuous curves have Cn continuous signed
distance fields outside the cut locus. As a consequence, curves with proper connec-
tivity properties can be used to approximate the signed distance field of a shape
instead of algebraic polynomials. We have a few expectations towards the geo-
metric proxies. (i) The proxy has to be a theoretically proven approximation to
the original SDF. This is fulfilled by any Gn continuously connected curve at the
footpoint of the desired order. (ii) It has to encode the inside/outside partitioning.
This will give us the sign of the distance field, which is a binary information but it
can be often encoded naturally into the representation of the proxy. (iii) The SDF
of the proxy should be easy to evaluate. It is important since it will be used several
times when the distance field is sampled. (iv) It should have a low memory cost,
as we want a representation that is at least as memory efficient as the algebraic
distance fields are.

The order zero geometric proxy is the footpoint itself. In practice, this con-
struction is suboptimal, as the classical signed distance field uses a single scalar
value as a sample, but a 2D point is represented by two scalars and the sign needs
additional handling.

In first order, the simplest curve is the line which is in our case the tangent
line of the approximated curve at the footpoint. Note that this is equivalent to
the algebraic first order sample, however in the next chapter we will show a more
efficient encoding. As seen with the polynomial encoding, the sign is naturally
present in the linear function and the inside/outside partitioning is trivially inferred
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from a sample. For the tangent line to exist, the curve must be G1 continuous at
the footpoint. This means that the direction of the gradient of the curve changes
continuously. The length of the gradient, however, is allowed to have discontinuities.

The second order geometric proxy is the circle. The approximating circle is
again touching the curve at the footpoint and in this case it will be the osculating
circle. This differs from the algebraic order two representation, so a comparison is
necessary. The inside of the circle represents our 2D shape if the shape is locally
convex and the outside if the shape is locally concave. The criterion for the existence
of the osculating circle is that the curve is G2 continuous. This means, that it is
G1 continuous and the osculating circles change continuously. It is important to
note that the representation has to fall back to the first order case if the curvature
is zero, since that would mean an infinitely large circle, that is a straight line, that
are very common in modelling and especially vector art.

Geometric distance fields are sampled similarly to algebraic DSDFs, but this
time we cannot rely on automatic GPU-interpolation, because the stored geometric
data cannot be interpolated trivially into a new correct proxy geometry. First we
take the proxies at the corners of the sampled cell, then calculate the distance from
all four proxies and finally, bilinearly interpolate the received values.

8 Encoding of geometric samples

8.1 First order geometric sample

The first order geometric sample is a half plane – or an oriented line. We have
already seen that the first order algebraic sample describes the same line with a
first order polynomial.

With a geometric approach, we could store the footpoint and the direction vector
or normal vector of the line. If we save these, the footpoint would consume two
scalars and the line direction/normal one additional scalar. However, note that the
tangent line is always perpendicular to the footpoint vector, i.e the vector starting
at the sample point and pointing to the footpoint. Using this fact, we can discard
the direction component and only store the footpoint.

To be able to differentiate between the inside and outside, we propose to use
a modified polar coordinate system. The change is that the radial coordinate is
allowed to have a sign, encoding the insideness of the sample point. For consistency,
the angular coordinate has to be rotated 180 degrees if the radial coordinate is
negative.

A first order geometric proxy is then encoded by a pair of signed distance and
modified polar angle values (d, θ) ∈ R × [0, 2π), and the curve normal n ∈ R2 at
the footpoint and the footpoint t ∈ E3 are computed upon query as

n =

[
cos(θ)
sin(θ)

]
(1)

t = x− d · n (2)
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Figure 4: An order 2 geometric sample (d, θ, r) can represent four circles, depending
on the signs of d and r. The figure illustrates these four corresponding to the same
x sample position and t footpoint. The inside of the shape is in blue, the outside
is in white.

Note that this representation is an orthogonal extension of the ordinary signed
distance field, as the first coordinate is simply the signed distance, and the second,
angular coordinate is independent of it.

8.2 Second order geometric sample

The second order geometric proxy is the osculating circle and there are various
options for the representation of a circle.

The three parameters representing the circle proxies are (d, θ, r) ∈ R×[0, 2π)×R,
which is an orthogonal extension of d and θ, with the new signed radius parameter,
r. The footpoint t ∈ E2 can be decoded the same way as in Equation (2). And the
center c ∈ E2 is calculated as

c = t+ r · n (3)

Here, we took advantage of the special geometric setting and noted that the os-
culating circle is tangent to the tangent line at the footpoint. By displacing the
footpoint along the normal line by the signed radius, we can reconstruct the correct
osculating circle. Figure 4 shows the four cases that can correspond to an order 2
geometric sample.

The last problem to solve is when the osculating circle degenerates into the
tangent line, i.e. the case of zero curvature. We might encode this as either positive
or negative infinity in r if the number format allows it. For example most of the
floating point formats have infinities. In a uniformly quantized representation the
minimum and maximum values could be treated as such. Another way could be
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to use signed curvature κ ∈ R instead of the radius. The relation between the
two quantities is κ = 1

r . This way, the zero curvature sample has zero as a third
parameter instead of infinity. In this case, the decoder ignores the curvature and it
falls back to the first order mode and the line.

8.3 Evaluation of a sample

To query a value from a sample of the geometric distance field at a query point
p ∈ E2, first, the properties of the geometric proxy has to be calculated. Then
the signed distance is calculated at the query point to the proxy geometry. In first
order, calculate n and t using Equations (1) and (2), and the distance as

f(p) = 〈p,n〉 − 〈t,n〉. (4)

For the second order, the first step is to decode the parameters of the osculating
circle using Equations (1), (2) and (3). If the sample represents a circle – and not
a line as a fallback, i.e. κ �= 0 – then the final distance is

f(p) = − sgn(r) · (‖p− c‖2 − |r|) . (5)

Blending can be used to combine multiple samples but unlike for algebraic
samples, we cannot use hardware accelerated texture filters, as the samples first
have to be decoded from their encoded form.

9 Results

9.1 Font representations

We tested our signed distance field constructions by font rendering. We used various
TrueType fonts [8] in our tests. Distance fields were generated for each glyph, which
were combined into a single 2D texture.

A TrueType glyph consists of one or multiple outlines. The winding direction of
the outline defines if the outline is an outside border or a border of an inside hole.
Outlines consist of a closed loop of line segments and quadratic Bezier segments,
given with their control points. We used the FreeType library [14] to load the font
data.

These outlines are the input for the DSDF generation, given as a series of
segments. For simplicity, we used a brute force method for finding the closest
outline point for the samples. An analytic nearest point solution is calculated for
every relevant segment, and the closest one is selected. Then the insideness is
decided by the direction of the nearest segment, any other features needed for the
different DSDF constructions (derivatives, curvature) are extracted analytically.
We implemented the DSDF generation for the GPU, and even though it is a brute
force algorithm, the run time for the generation is negligible. Also note, that the
generation step is usually only needed to be done once.
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Figure 5: Individual rectangles are rendered for every character. The fragment
shader samples the DSDF and determines the alpha level of the pixel. The used
font is FiraCode Bold [12].

Figure 6: Visualization of a part of an algebraic first order texture atlas. The three
color components encode the gradient vector of the distance field.

The generated DSDF is saved in a 2D texture and used as an atlas for rendering.
The font characters are stored in rectangular regions in the atlas, see for example
Figure 6. At render time each character to be rendered is covered with a rectangle
(consisting of two triangles – see Figure 5), and a custom fragment shader is used
to sample and calculate the signed distance from the outline of the character. The
distance is then mapped to the alpha value of the fragment. The mapping can
be simply 1 and 0 for negative and positive values respectively, but a better anti-
aliased result is achieved by setting a 1-2 pixel wide band with a gradient between
the two values. The gradient is tuned to represent the coverage of a hard edge
passing through the pixel in the given distance.

Font rendering is a challenging test case for DSDFs, since they often operate
with corners which do not satisfy our assumed higher order continuity properties.
Nonetheless, higher order DSDFs provide a better use of memory, as it is shown in
Section 9.2.

9.2 Test results

We tested the signed distance field constructions on different fonts and vector arts.
The tests rasterized the DSDFs as high resolution classical distance fields (contain-
ing only signed distance values) and compared them to the signed distance function
values of the original vector image. On the tables and figures of this section we
refer to the zero, first and second order algebraic distance fields as A0, A1 and A2.
Similarly G1 and G2 are the first and second order geometric distance fields. A0
distance fields are the traditional distance fields.

A1 and G1 theoretically encode the same information and therefore reconstruct
the same distance values for any query position apart from a small numerical error.
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(a) original (b) A0 (c) A1/G1 (d) A2 (e) G2

(f) original (g) A0 (h) A1/G1 (i) A2 (j) G2

Figure 7: Test case for DSDF representations on a bunny silhouette. (a) shows the
original vector art, (b)-(e) are high resolution rasterizations of the tested DSDF
representations. (f)-(j) show the corresponding rasterizations at the intended dis-
play size (34x30px). The DSDFs have a four times larger sample spacing compared
to the display resolution, therefore having 16 times less samples/pixels. (c) and (h)
contain both A1 and G1 as their reconstruction always matches exactly.

The rasterized images of A1 and G1 are thus indistinguishable in practice.
The DSDFs queried at their sample positions are exact. This means that if

the pixels are aligned with the field samples, the rasterized image is the same for
all algebraic and geomertic fields. If the pixels and field samples are offset or the
pixels are sparser than the samples, the queries of the DSDFs are so close to the true
distance function value that the resulting image is stable, giving a robust rendering
method.

Our new signed distance field constructions proved to be a useful tool for font
and vector art rendering. Example renders of a bunny silhouette can be seen on
Figure 7. The shown distance fields have four times lower resolution than the in-
tended display size, meaning that they contain 16 times less samples. This extreme
setting is presented here to show that even these sparse fields – with much lower
resolution – reconstruct the original vector art closely apart form really fine details.
Rasterized at the intended display resolution, these lower resolution higher order
distance fields (excluding A0) only differ in a few pixels near the most curved parts.

Table 1 shows the results of two accuracy tests. Test case #1 was some text
similar to Figure 5 and test case #2 was calculated on renderings of the bunny
seen on Figure 7 but with twice the resolution. The first two columns show the
median and mean absolute error of the reconstructed signed distance field values.
The third column is the error ratio of the reconstructed sign, i.e. when the inferred
inside/outside partitioning is incorrect. Note that A1 and G1 are equal as stated
before. G2 usually performs at the same level or better as A2. The first order
DSDFs do not seem to lower the absolute distance error compared to the classical
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Table 1: Error metrics of the different DSDF representations.

test #1 test #2
median mean sign median mean sign

A0 0.0399 0.1053 2.14% 0.0399 0.0871 1.23%
A1 0.0411 0.1119 1.84% 0.0413 0.0861 0.98%
G1 0.0411 0.1119 1.84% 0.0413 0.0861 0.98%
A2 0.0029 0.1002 1.52% 0.0121 0.0785 0.83%
G2 0.0015 0.0869 1.39% 0.0098 0.0743 0.87%

Table 2: Average render times of full screen test texts.

A0 A1 G1 A2 G2

0.306 ms 0.325 ms 0.319 ms 0.370 ms 0.349 ms

distance field (A0), but they always improve the sign correctness metric. This can
be seen on Figure 7 as well: the average error values might be close, but visually the
first order fields perform better. Similarly, the second order fields always outperform
the first order ones. Other test cases have shown similar relative1 numbers for all
constructions.

Table 2 shows averaged render times for the different DSDF constructions from
FullHD full screen tests. The sampling of higher order distance fields always costs
more than the traditional fields, but they provide the possibility to use lower reso-
lution fields or have better precision at the same resolution. G2 rendering is faster
than A2 despite the extra calculations needed. This can be explained by the fact
that A2 needs two textures for its 6 coefficients.

10 Conclusion

We proposed a geometric generalization of higher order signed distance fields. We
have proven that these constructs have the same approximation order as their
Taylor-based algebraic counterparts. These theoretical results were also validated
by empirical measurements.

The geometric distance field representations proved to be valid and efficient
tools for font and vector art representation and rendering. Our empirical tests have
shown that the geometric signed distance fields are as good as the algebraic ones,
in fact, in most of the cases the second order geometric construction is more precise
than the second order algebraic. This comes with a performance cost of 10− 20%

1Because the error in value and sign both depend on scale



202 Róbert Bán and Gábor Valasek

in render times compared to using traditional signed distance fields, assuming the
same field resolution.

In the future, we plan to extend our geometric construction to three dimensional
signed distance fields. Three dimensional first order algebraic distance fields already
proved their applicability [3].
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Towards Version Controlling in RefactorErl∗
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Abstract

Static source code analyser tools are operating on an intermediate rep-
resentation of the source code that is usually a tree or a graph. Those rep-
resentations need to be updated according to the different versions of the
source code. However, the developers might be interested in the changes or
might need information about previous versions, therefore, keeping different
versions of the source code analysed by the tools are required. RefactorErl is
an open-source static analysis and transformation tool for Erlang that uses
a graph representation to store and manipulate the source code. The aim
of our research was to create an extension of the Semantic Program Graph
of RefactorErl that is able to store different versions of the source code in a
single graph. The new method resulted in 30% memory footprint decrease
compared to the available workaround solutions.

Keywords: Erlang, RefactorErl, graph version control, optimisation

1 Introduction

Static program analysis [3] is a method of debugging of the source code of a program
performed before the execution. It is used early in development before any other
testing. The benefits of static analysis need to be mentioned: speed (compared to
manual code reviews automated tools are way faster and the early found coding
errors are less costly to fix); depth (static code analysers can cover every possible
code execution path); accuracy (human errors can be eliminated).
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Version control [18] (also known as revision control or source control) is a com-
ponent of software configuration management. It is used for managing changes to
programs, documents and other data. The idea of storing the differences between
different versions of a document is as old as writing is but it became more important
in the last two decades when the area of computing has started. In software engi-
neering, version control is any kind of tracks that provides control over the changes
between the different version of source code. Version controlling tools make the
process easier and much faster, so it is very convenient to use them. One of the
most famous tools for that is Git [8], which is known by most software developers.

RefactorErl [4, 19] is a static source code analyzer and transformation tool for
Erlang programs. Beyond that RefactorErl does thorough static analysis on the
given source code, it has many other features to support code comprehension: it
finds the dependencies between the modules, provides a query language to gather
semantic information about the source code, performs clustering, etc. Some source
code analysers have their own built-in version controlling systems. RefactorErl does
not provide version controlling, it works on a given snapshot of a software.

The internal representation of RefactorErl gives us the opportunity to build
the version control over that. The tool represents the source code in a Semantic
Program Graph (SPG) [12] which will be explained in detail later. The graph is
stored in a database to make the results of the source code analysis permanently
available. The tool can work with different databases (i.e. the distributed, relational
Mnesia database [14], or the key-value Kyoto database [10]), but it builds the
same internal representation, the SPG, in any cases. All the analyses and the
transformations are performed on the graph layer, thus our version controlling is
defined on the top of the SPG and not on the database layer.

The main contribution of this paper are the algorithms as an extension of Refac-
torErl to handle different versions of the source code. Our first tests on open source
repositories provided a memory saving for about 30%.

In Section 2, we introduce some information about the RefactorErl tool and
the data structure used by the tool. In Section 3, the algorithm of finding the
differences between different versions is presented which is followed by Section 4,
where the algorithm of storing the found differences is discussed. Then, in Section
5, we present some usage of the version control. In Section 6 the evaluation is
explained. Section 7, contains information about the related work. Finally, Section
8 concludes the paper.

2 Background

In our work we focus on the RefactorErl framework that was designed to analyse
Erlang source code.

Erlang The Erlang [6, 1] programming language is a general-purpose, competi-
tive, dynamically typed programming language. Other important features include
being a greedily evaluated, non-purely functional and open source language. It is
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designed to develop systems with high fault tolerance and real-time robust size. Er-
lang programs run inside a virtual machine (Erlang VM or node), so programs writ-
ten in Erlang are platform-independent. Erlang’s standard library is called OTP
(Open Telecom Platform [13]), which was originally designed to write telecommu-
nications software, but can be used more widely. The Erlang runtime environment
and OTP are collectively referred to as Erlang/OTP.

RefactorErl Static source code analyser tools are heavily used in software devel-
opment and maintenance processes. RefactorErl [4, 17, 19] is an open-source static
source code analyzer and transformer tool for Erlang source codes. Despite the fact
that RefactorErl is still considered as a prototype tool, its usefulness in industrial
usage has been proved already. It was initially developed at the request of Ericsson
and it is still used by developers there. Apart from static analysis it has many
other features: it is compatible with the most famous code editors; it can find the
dependencies between the modules and it also represents this information in well
designed graphs; it gathers many different kind of information about the source
code; the found bugs can be investigated. These features manifest the significance
of RefactorErl.

Semantic Program Graph During the initial analysis, the tool builds a Se-
mantic Program Graph (SPG) [12]. In order to make the source code analysis
results available for further use, we need to save the graph. The SPG is stored in a
database. Different databases can be used to store the SPG, but all the analyses and
transformations are manipulating the SPG itself. If the source code is changed, the
tool updates the graph, so in the new graph, only the new information is available.
Any kind of backups about different versions are really expensive at the current
implementation, because we can use the backuping features of the used database
only to backup the whole SPG. Therefore we would like to design a much more
effective way of version handling on the SPG level. An adequate solution to this
problem is to save the differences in the same graph. In this way, we do not need
to store database backups and load them once an older version is needed.

The SPG is a three-layered rooted, directed, labelled graph structure that con-
tains lexical, syntactic and semantic information about the source code. The dif-
ferent kinds of data are stored in the nodes of the graph (in the attributes of the
node) that are linked through tagged edges. These edges contain structural in-
formation about the nodes. The graph has a specified structure. It starts with a
root node, which is followed by a node containing the information about the file
(the name, absolute path, etc.). They are linked with an edge tagged with the file.
The file node is linked to its forms: the function definitions and attributes. The
function definition forms are linked to its clauses, and so on. In addition, there are
module and function semantic nodes to represent the semantic information as well.
Based on the structure of the graph, we were able to define an algorithm to find the
differences between two versions of the source code by traversing the representing
syntax trees simultaneously.
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Motivation During a software development in industry, versions occur quickly
and many times the difference between them are important since the new change
could lead to some error or the previous version was more effective, etc. Storing
the versions in a static analyzer tool helps the developers to fasten the process of
debugging, not to mention the analyses of the relations between the versions that
the tool can provide.

As it was previously mentioned, any kind of backups are expensive since Refac-
torErl can store only one version of a source code at once. It is possible to manually
create backups of the different versions on database level, but a single running in-
stance of RefactorErl can handle only one version at the same time. Loading an
old version of the source code requires to start a new RefactorErl instance and load
the whole old SPG stored in the backups. That is an inconvenient, time-, memory-
and resource-consuming task.

3 Detecting differences

As it was mentioned before, RefactorErl generates an SPG for each module and it
stores the analyzed source code in this structure. When we re-analyze a module
that has already been analyzed, the tool recognizes this and replaces the subgraph
belonging to the modified source code part1 with a new subgraph, but the old and
the new version of the software have not been related to each other so far. The old
subgraph is deleted after the new subgraph is created, however, there is a point in
the analysis when the information for both graphs can still be found in the tool.
We use this point to analyze the two subgraphs, detect differences, and perform
version control.

In our version controlling, the primary goal is to somehow explore the differences
between the two graphs, and then, in some way, to represent the information stored
by the two subgraphs in a merged subgraph.

The differences can be categorised into three major groups that need to be
recognized and addressed in different ways. These three groups are:

• Update

• Deletion

• Insertion

Let us look at how to handle each case properly. For that we will use an example
seen on Figure 1. The example contains two function definitions. The first one,
foo, checks whether its argument is 0 and returns the term zero. Function op

multiplies its arguments.

1RefactorErl performs an incremental analysis on form level: once a form (e.g. function,
attribute, etc.) changed in the source code, it reanalyses only the changed form
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foo(0) -> zero.

op(A, B) -> A * B.

Figure 1: Example Erlang function

3.1 Update

We talk about an update when we had something in a version, and we changed
something in it, without inserting a new part or deleting a whole part of the source
code.

For a better understanding we make a modification on the example presented
in Figure 1. As it can be seen in Figure 2, we made an update on the return value
of the function op, the multiplication operation (*) has been changed to plus (+).

foo(0) -> zero.

op(A, B) -> A + B.

Figure 2: Example Erlang function with update

The algorithm of finding the updates is the most important, because after re-
solving those updates we will consider the remaining changes either as a deletion
or an insertion depending on where the extra elements on the graph were found.

As a first step we make all combinations of function nodes and store them in
a list2. We will go through these function pairs and check if they are the same
function in different versions. For that we check whether the name and the arity of
the functions are the same. If so, we say that these two functions are the same and
we look for the differences between those functions. This algorithms works well for
real code examples as the name of the function rarely changes after a commit3.

The recursive function of finding the differences gets two nodes, one of them is
from the SPG of the previous version and the another one is from the new version.
The algorithm can be found in Figure 3. The list of pairs that the algorithm initially
gets is the list of the investigated form nodes. The TableOfDifferences variable
refers to the ETS table [7] in which the difference nodes are stored. While analyzing
a new version of a file RefactorErl recognizes the new, deleted and modified forms
of the source code based on the hash value of the forms. At this point we save the
changed forms4 in ETS tables for further analysis. The equivalent function checks
whether the two nodes are the same in the required attributes (number and type
of attributes, number of children, etc.), and if not, we say that we found an update
at that node and we insert the node and the subgraph bellow it into the version

2We need to generate all function pairs because at this point we do not know their names yet,
as the name is stored in a lower level in the graph.

3In the current implementation, we recognise renaming of function definitions as newly inserted
and deleted functions. Some heuristics can be applied to change this behaviour.

4We save the sub-syntaxtrees representing the changed forms.
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controlled graph with insertUpdate function. If we did not find an update, we
prepare the list of pairs of the children nodes with makePairs function and check
whether the children contain updates. Each edge label has a name and a serial
number in the SPG representing the order of the syntax tree elements. Thus the
children function organizes the nodes in this way, so we are able to create the
pairs for the next step in the recursive investigation.

selectUpdate(ListOfNodePairs)

for NodePair in ListOfNodePairs do

Children1 = children(first(NodePair))

Children2 = children(second(NodePair))

if NodePair in TablesOfDifferences then

if !equivalent(Children1, Children2) then

insertUpdate(Children1, Children2)

else

ListOfChildrenPairs =

makePairs(Children1, Children2)

selectUpdate(ListOfChildrenPairs)

end if

end if

end for

return ok

Figure 3: selectUpdate function

3.2 Deletion

A deletion is when we had something in the source code in a previous version, and
we deleted it in a version after that.

For finding the deletions, we go through the nodes that have been present in
the previous version of the source code but they are not present any more. That
means that we go through the SPG and if we find a node that does not have a
version in the new graph then we conclude that a deletion is found.

In Figure 4, one can see that we made a deletion by deleting the function foo.

op(A, B) -> A * B.

Figure 4: Example Erlang function with deletion

3.3 Insertion

An insertion is, when we insert a brand new part in the source code, which did not
exist in the previous version.
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We use a similar algorithm here as for deletion, the difference is that when we
look for insertions we look for those nodes that are present in the new graph but
they had not been present in the old graph.

As an example, we made an insertion to the code seen in Figure 4, so after
making a deletion we do an insertion on that code. We add the function bar and
the result code can be seen on Figure 5.

op(A, B) -> A * B.

bar(1) -> one.

Figure 5: Example Erlang function with insertion

4 Updating the graph

After finding and identifying the different types of changes, we need to represent
them in the SPG. The basic idea is that we introduce two different types of tags for
the edges. Updates, deletions and insertions are handled in a similar way. Thanks
to RefactorErl, we can easily and efficiently insert new nodes and edges. In the
following, we will demonstrate the algorithm for each case.

Let us consider the examples used in the previous section to present the method
we used for updating the graphs. To make the differences more illustrative, first we
take a look at the non version controlled graph which is generated by the Refac-
torErl. You can find that in Figure 6.

4.1 Update

In the case presented in Figure 2, we find the difference presented in the previous
section. We insert the whole subgraph under the found difference between the
operations with a versioned edge. An edge is versioned when it has the same name
as before but it has a v at the beginning of its name. In the resulting graph
under the difference node, we can find the content of both versions in the different
subgraphs. One can see in Figure 7 the edge vbody which marks the discussed
update.

In this way, we can easily find the versioned part in the graph and we can keep
all the previous features of the tool. An obvious question may arise, whether it is
possible to store more than two versions in this way. Yes, it is possible, but we
need to make it customisable by the users.

4.2 Deletion

The handling of this difference is very similar to the algorithm from the previous
subsection. Let us consider the modified example in Figure 7 again. We can see
that the difference seen in Figure 4 discussed in the previous section is released.
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To handle this, we insert the deleted subgraph under its parent node (the original
function node) with a vform versioned edge seen on Figure 7.

4.3 Insertion

Considering the example seen on Figure 5, we have an inserted function in the code
and we want to represent that in the version controlled graph. For that, we insert
the difference in the same way but for the tag of the edge, we insert an n at the
beginning instead of the v , one can see the inserted nform edge on the Figure 7.
When we do that, we keep the nonversioned edge as well, because it does not bother
us and it is needed to have a syntactically correct graph. Now, we can easily find
the insertions since it had a different concept than the deletions and updates.

5 Gathering information

At this point we have the version controlled SPG saved in the tool. We would
like to extract information from the graph and for that we use the query language
which was already part of the tool and we extended it for the version controlled
graph.

The semantic query language [11] was designed to query information about the
analyzed Erlang code. The concepts of the query language are defined according
to the semantic units and relationships of the Erlang language, e.g. functions and
function calls, records and their usage, etc.

The elements of the language are the following entities: module, function, vari-
able, etc. Each of them has several selectors and properties. A selector selects a set
of entities that meet the given requirement. A property describes some properties
of an entity type.

One of the needed information pieces could be to define whether the modules
are version controlled or not. For that we performed the query seen in Figure 8.
The query returns whether the uploaded modules are version controlled or not,
in other words, its return value is a Boolean which is true if a module contains
information from a previous version and false otherwise.

ri:q("mods.is_versioncontrolled").

ri:q("mods.is_versioned").

Figure 8: ”Is the module version controlled” query

For a huge repository, this information might not be needed for all the modules
or we would like to know which specific functions are version controlled. For that
we realized a query found in Figure 9. It is quite similar with the first one apart
from that it defines whether the functions in the modules are version controlled or
not in the same way.
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ri:q("mods.funs.is_versioncontrolled").

ri:q("mods.funs.is_versioned").

Figure 9: ”Is the function version controlled” query

Also we might need the names of the version controlled functions and the query
presented in Figure 10. It is built on the query presented in Figure 9. The return
value of this query is a string which contains the name of the version controlled
function in case that it is version controlled and not versioncontrolled otherwise.

ri:q("mods.funs.versname").

ri:q("mods.funs.versionname").

ri:q("mods.funs.versionedname").

ri:q("mods.funs.vname").

Figure 10: ”Name of version controlled functions” query

It is possible that we are not sure about the stored version on the SGP. This
problem can be solved using the query presented in Figure 11. This query gives
the number of the included versions on graph for each module. The returned value
is an integer which is one if only the actual version is stored, two if the previous
version is also included on the graph, etc.

ri:q("mods.version_counter").

ri:q("mods.vercount").

ri:q("mods.versions_number").

ri:q("mods.vernum").

Figure 11: ”Number of stored versions” query

6 Evaluation

We made some measurement for the algorithm using a public GitHub reposi-
tory [5] and two of its versions, the used old version can be found with change-id
499de032d7c6fc294aff977bea1405e09a1a3eae and the new version can be found
with change-id 5b7363c14071abe92d4039a7fc96371bd6eee91e. The number of
lines that differ between the two versions is 646.

To investigate the measurement, we check the tool’s memory footprint5 in five
different states of the tool: when the tool is empty; when only the first version is
loaded into the tool; when only the second version is loaded to the tool; when both

5We used the erlang : memory(). function.
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Table 1: Results for version controlling a public repository

ets total
Empty 1399208 23318920

Old version 90707888 119560720
New version 94655240 123790536

Version controlled 106574824 177795384
Old- + New- version 183963920 220032336

of the version are loaded to the tool separately; when the versions are loaded to
the tool using version control.

It is important to mention that the results are strongly dependent from the
analyzed data. If there are almost no differences between the versions, we will get
almost 100% efficiency. Meanwhile, when the source code has totally changed, the
version control is not efficient at all, as both of the source codes have to be saved.

The results for the measurements presented above can be seen in Table 1 and
Figure 12. As one can see, the tool’s memory footprint is the smallest when the
tool is empty. When only the first version is loaded, it has a smaller footprint than
the second version. It is generally true as the code is developed over time. When
both of the versions are loaded separately, the memory requirements are around
twice as big as for the versions separately. When the algorithm of version control
is used we can see that the memory requirement for the tool is less than for the
case without using version control. This means that the algorithm works as it was
expected at the first place. Quantifying the results in this case 32, 52% memory
gain was achieved.

At the same time we also checked the overhead of the version controlling algo-
rithm on the runtime: we experienced 4% overhead.

7 Related work

Version control of trees [2] presents everywhere in software development; generally
it is solved by serializing the tree, not via methods operating on the tree itself.

Ralph Hinze and Ross Paterson have published a data structure called finger
tree [9], which is purely functional. It can be used to efficiently implement other
functional data structures. The finger tree, amortized, provides access to the ”fin-
gers” (leaves) of the tree where it stores the data. Depending on the size of the
given part, we can concatenate or split data in logarithmic time in the size of the
smaller piece. Internal nodes store what associative action their descendants have
performed. The data stored in internal nodes can be used to provide its function-
ality to other non-tree data structures.

In the finger tree, the finger is the part where you can access a part of the data
structure, in imperative languages this is called pointers. Fingers are structures
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Figure 12: Diagram for results version controlling a public repository

that point to the end of a series or a letter to node. The fingers are part of the
original wood, thus ensuring constant access over time. It also stores in each inter-
nal node the result of applying some associative operation to its descendants. This
”summary” data stored in the internal nodes can be used to provide the functional-
ity of data structures other than trees. Finger trees are inherently persistent which
means that older versions of the tree are always preserved. This data structure
is often used for for handling the undo/redo operation in editors because it makes
easy to find the differences in the text. The undo/redo actions can be interpreted as
version control, but there some issues that need to be mentioned. The inside repre-
sentation of RefactorErl does not make it possible to use the undo/redo method for
version control without any changes, because the SPG (Semantic Program Graph)
structure does not have the ”summary” data property, thus the finger tree change
detection mechanism cannot be adopted easily for our use case.

UML diagrams also have version control issues [15]. The logic of the version con-
trol solution for UML diagrams is very similar to the version control implemented
in RefactorErl. First, let us look at how a UML diagram is built. When design-
ing UML diagrams, we distinguish between two types of diagrams, those that are
semantically relevant and those that are not. It is important that UML diagrams
also have a tree structure. Node has a well-defined type, and there can be different
types of connections between different types of node. Some node is complex, they
can carry several different types of information, but one can also store an entire
subchart.
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Differences need to be classified into different groups, as each difference needs
to be treated differently. Let us look at what types of differences there can be
between UML diagrams. First, we divide the differences into two groups, there are
differences within node when only the content of node has changed, and there are
structural differences when there has already been a change in the structure itself.
Differences within node can be simple when only one attribute has changed, it can
be multivalued when multiple attributes have changed, or it can be a change within
an attribute reference when only the reference has changed.

In the event that there has also been a change within the structure, we must
also divide them into several groups.

• Internal design difference: when there was no change within the elements,
only the relationships between them changed.

• Shifting within a structure: when the structure remains the same as it was,
only one or more edges moved.

• Internal node shifting: when we put operations or attributes from one class
to another.

• Position shifting: when rearranging the order of attributes or operations
within a class.

As the inside representation of RefactorErl does not force us to divide the han-
dling of version control in as many different groups, it is important to know how
different data structures are version controlled.

The difference computation of the version control algorithm of the UML di-
agrams works in a very similar way as in RefactorErl. Both of the algorithms
go through the nodes in a breadth-first order and compare them to each other.
The difference is that we consider changes inside nodes and for UML diagrams the
differences are identified comparing the subgraph for each node. This would not
be effective for us as the elements can be reorganized easily without making any
significant change so we decided to compare each node pair only.

8 Conclusion

In this paper we presented how version control works in RefactorErl. After defining
the different cases of modifications between different versions we explained how
those differences can be found and represented in the tool. We also showed some
use-cases and the results of the analysis of its efficiency.

The proof of concept implementation of the algorithm is integrated within the
RefactorErl environment. In general, it has an overhead on the run-time, but it has
a smaller memory footprint. The previous graphs for previous versions do not need
to be saved, because the annotated new graph is storing all the required information



Towards Version Controlling in RefactorErl 219

about the different versions. The algorithm can be optimized for different resources
and different projects. We are investigating the possible usage of the versioned
graph now.

For treating more than one version, an extra parameter needs to be introduced
for counting the version number next to versioned edges. By this we can easily
differ the different versions from each other and it also makes possible to store all
the version in one graph.

8.1 Future work

The next step is the extension of the implementation to handle more than two
versions. For this an index could be added for the version controlled edges (i.e.
vbody1 , vbody2 , . . . ). This way we can differ the versions easily. We would like to
note here that only the representation of the changes need to be changed at this
stage, the defined algorithm for finding and categorizing the differences is the same
in all cases.

The algorithm could also we extended with some extra heuristic algorithms, so
we could find the differences in as low level as possible. The heuristic algorithms
could be defined after collecting some data from industrial usage.

The designed generic difference detection algorithm can be used in other projects
as well. It would be a nice proof of the reusability of our approach to try it on
the representation of the SSQSA [16] language independent source code analyser
framework.
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Using the Fisher Vector Approach

for Cold Identification∗

José Vicente Egas-Lópeza and Gábor Gosztolyab

Abstract

In this paper, we present a computational paralinguistic method for assess-
ing whether a person has an upper respiratory tract infection (i.e. cold) using
their speech. Having a system that can accurately assess a cold can be help-
ful for predicting its propagation. For this purpose, we utilize Mel-frequency
Cepstral Coefficients (MFCC) as audio-signal representations, extracted from
the utterances, which allowed us to fit a generative Gaussian Mixture Model
(GMM) that serves to produce an encoding based on the Fisher Vector (FV)
approach. Here, we use the URTIC dataset provided by the organizers of the
ComParE Challenge 2017 of the Interspeech Conference. The classification is
done by a linear kernel Support Vector Machines (SVM). Owing to the high
imbalance of classes on the training dataset, we opt for undersampling the
majority class, that is, to reduce the number of samples to those of the mi-
nority class. We find that applying Power Normalization (PN) and Principal
Component Analysis (PCA) on the Fisher Vector features is an effective strat-
egy for the classification performance. We get a better performance than that
of the Bag-of-Audio-Words approach reported in the paper of the challenge.

Keywords: computational paralinguistics, speech processing, machine learn-
ing, fisher vector

1 Introduction

Upper respiratory tract infection (URTI) is an infectious process for any of the
components of the upper airway. E.g., the common cold, a sinus infection, amongst

∗This study was supported by the Hungarian Artificial Intelligence National Laboratory, by
the National Research, Development and Innovation Office of Hungary via contract NKFIH FK-
124413, and by the grant NKFIH-1279-2/2020 of the Hungarian Ministry of Innovation and Tech-
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aInstitute of Informatics, University of Szeged, Hungary, E-mail: egasj@inf.u-szeged.hu,
ORCID: 0000-0002-5622-9192

bMTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary, E-mail:
ggabor@inf.u-szeged.hu, ORCID: 0000-0002-2864-6466

DOI: 10.14232/actacyb.287868
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others. Being able to automatically assess whether a subject has a cold may be
relevant when trying to prevent the spread of it by predicting its patterns of prop-
agation. The area of computational paralinguistics differs from Automatic Speech
Recognition (ASR), which focuses on the actual content of the speech of an audio
signal. Here, computational paralinguistics may provide the necessary tools for
determining the way the speech is spoken. Various studies have offered promising
results in this area: diagnosing neuro-degenerative diseases using the speech of the
patients [5, 6, 7], the classification of crying sounds and heart beats [10], estimating
the sincerity of apologies [9], determining the depression of a subject [4]. In this
study, we focus on finding specific voice patterns latent in the speech of subjects
having a cold.

Previous studies applied various approaches for classifying cold subjects using
the same corpus. For example, Gosztolya et al. employed Deep Neural Networks
for feature extraction for this purpose [8]. Huckvale and Beke utilized four types
of voice features for studying changes in health [11]. Furthermore, Kaya et al. [14]
introduced the application of a weighting scheme on instances of the corpus, mak-
ing use of a Weighted Kernel Extreme Learning Machine in order to handle the
imbalanced data that comprises the URTIC corpus. As any other computational
paralinguistic task, assessing a cold from the speech is a challenging issue. Finding
out the latent patterns that could characterize or represent a cold speech does not
only depend on the feature extraction phase but in the data itself too. This may
be attributed to different perspectives: limited amount of data, data imbalance,
quality of the recordings.

In this study, we exploit the Upper Respiratory Tract Infection Corpus (URTIC
that was the dataset of one of the Sub-Challenges in the ComParE Challenge from
Interspeech 2017) [21]. In the feature extraction phase, we selected frame-level
features. Namely, we utilize Mel-frequency Cepstral Coefficients (MFCC) as audio-
signal representations, extracted from the utterances. This allowed us to fit a
generative Gaussian Mixture Model (GMM) that can produce an encoding based
on the Fisher Vector (FV) approach. That is, the computation of low-level patch
descriptors together with their deviations from the GMM gives us an encoding (i.e.
feature) called the Fisher Vector.

Unweighted Average Recall (UAR) scoring was used to measure the performance
of the model since it is the de facto standard metric for these kinds of challenges [18].
To the best of our knowledge, this is the first study that focuses on making use of
a FV representation in order to detect a cold.

Furthermore, we find that applying Power Normalization (PN) and Principal
Component Analysis (PCA) on the Fisher Vector features is an effective strategy
for the classification performance. In the next part of our study, we employ a
late-fusion of the ComParE Bag-of-Audio-Words (BoAW) features with the Fisher
Vector representations. Mentioned fusion technique contributes to the classification
performance.
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Table 1: Upper Respiratory Tract Infection Corpus (URTIC).

Class Train Development Test Total

Cold 970 1011 895 2876
Not-Cold 8535 8585 8656 25,776
Total 9505 9596 9551 28,652

2 Data

The entire dataset consists of 382 male speakers, 248 female speakers, with a mean
age of 29.5 years; and a sampling rate of 44.1kHz downsampled to 16kHz. For
the Sub-Challenge, the corpus was provided by the Institute of Safety Technology,
University of Wuppertal, Germany. The following tasks were performed by the
participants: they had to read short stories (e.g. the well-known story in the field
of phonetics The North Wind and the Sun, to produce voice commands (such as
numbers from 1 to 40), and to narrate spontaneous speech (i.e. tell something about
their last weekend or their best vacation). Note that the number of tasks varied
for each speaker. The recordings were split into 28,652 chunks of 3 to 10 seconds
in length. Specifically, the division of the chunks was carried out in a speaker-
independent manner, each partition (i.e. train, development, and test) having 210
speakers. The training and development sets are both comprised by 37 subjects
having a cold and 173 subjects not having a cold. The reader may see more details
in [22]. The number of samples and classes for each dataset is described in Table 1.

3 Methodology

Figure 1 shows the methodology employed in this study: (1) Frame-level fea-
tures (MFCC) were extracted from the utterances; (2) A Gaussian Mixture Model
(GMM) is trained utilizing the MFCC representations; (3) Fisher Vector features
are extracted using the trained GMM; and (4) SVM performs the classification
task.

3.1 Frame-level feature extraction

The features we employed were the well-known MFCCs with a dimension of 13,
along with their first and second order derivatives, frame-length and frame-shift of
25 ms and 10 ms, respectively. We used the Kaldi Speech Recognition Toolkit [17]
for this task.
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3.2 Fisher Vector (FV)

The FV approach is an image representation that pools local image descriptors [19].
It was originally intended for image classification but here we exploit its ability to
generate a complete representation of the samples which are later characterized by
their deviation from a generative GMM. The samples can be thought of as local
patch descriptors of an image. In our case, they are the frame-level features of
an audio signal. FV is an improved version of the general case called the Fisher
Kernel (FK) [12], which measures the similarity of two objects from a parametric
generative model of the data. The FK will be explained more in detail in the next
section. FV basically assigns a local descriptor to elements in a visual dictionary.
This approach stores visual word occurrences and takes into account the difference
between dictionary elements and pooled local features, it stores their statistics as
well.

3.2.1 Fisher Kernel (FK)

It seeks to measure the similarity of two objects from a parametric generative model
of the data (X) which is defined as the gradient of the log-likelihood of X [12]:

GX
λ = �λ log υλ(X), (1)

where X = {xt, t = 1, . . . , T} is a sample of T observations xt ∈ X , υ represents
a probability density function that models the generative process of the elements
in X and λ = [λ1, . . . , λM ] ′ ∈ RM stands for the parameter vector υλ [19]. Thus,
such a gradient describes the way the parameter υλ should be changed in order to
best fit the data X. A way to measure the similarity between two points X and Y
by means of the FK can be expressed as follows [12]:

KFK(X,Y ) = GX′
λ F−1

λ GY
λ . (2)

Eq. (3) shows how the Cholesky decomposition F−1
λ = L′λLλ can be utilized to

rewrite the Eq. (2) in terms of the dot product:

KFK(X,Y ) = G X′
λ G Y

λ , (3)

where
G X
λ = LλG

X
λ = Lλ �λ log υλ(X). (4)

Such a normalized gradient vector is the so-called Fisher Vector of X [19]. Both
the FV G X

λ and the gradient vector GX
λ have the same dimension.

3.2.2 Fisher Vector for audio-signals

Let X = {Xt, t = 1 . . . T} be the set of D-dimensional local SIFT descriptors
extracted from an image and let the assumption of independent samples hold, then
Eq. (4) becomes:

G X
λ =

T∑
t=1

Lλ �λ log υλ(Xt). (5)
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Figure 1: The methodology applied in this study.

The assumption of independence permits the FV to become a sum of normalized
gradients statistics Lλ �λ log υλ(xt) calculated for each SIFT descriptor:

Xt → ϕFK(Xt) = Lλ �λ log υλ(Xt), (6)

which describes an operation that can be thought of as a higher dimensional space
embedding of the local descriptors Xt.

Hence, the FV approach extracts low-level local patch descriptors from the
audio-signals’ spectrogram. Then, with the use of a GMMwith diagonal covariances
we can model the distribution of the extracted features. The log-likelihood gradients
of the features modeled by the parameters of such GMM are encoded through the
FV [19]. This type of encoding stores the mean and covariance deviation vectors
of the components k that form the GMM together with the elements of the local
feature descriptors. The image is represented by the concatenation of all the mean
and the covariance vectors that gives a final vector of length (2D + 1)N , for N
quantization cells and D dimensional descriptors [16, 19].

The FV approach can be compared with the traditional encoding method: BoV,
and with a first order encoding method like Vector of Locally Aggregated Descrip-
tors (VLAD) [1]. In practice, BoV and VLAD are outperformed by FV due to its
second order encoding property of storing additional statistics between codewords
and local feature descriptors [23].

The FV representation, regardless of the number of local features (i.e. SIFT),
or in our case, frame-level features (MFCCs), extracts a fixed-sized feature repre-
sentation from each image (i.e. from each MFCC representation). Here, we use FV
features to encode MFCC features extracted from audio-signals of HC and PD sub-
jects. FV allows us to give a complete representation of the sample set by encoding
the count of occurrences and higher-order statistics associated with its distribution.
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3.3 Classification

Support Vector Machines (SVM) is the classification algorithm used to assess the
recordings, it is typically the standard choice for paralinguistics tasks. Moreover,
this algorithm can achieve good performances when used with FV [19, 24]. As
for the evaluation metric, Unweighted Average Recall (UAR) is the proper way to
measure the performance of these kinds of tasks; principally because it is commonly
used when there is the need to handle class imbalance situations. Furthermore, this
metric has been utilized since the very first ComParE Challenge (see [20] for more
details about the UAR evaluation metric).

4 Experimental Setup

The training dataset consists of 9505 utterances, where 8535 (89.8%) are labeled
as healthy (not-cold) and the rest, 970 (10.2%), are labeled as cold. Likewise,
the development dataset comprises 1011 cold and 8585 not-cold labels, which are
10.53% and 89.47%, respectively. Such a high class imbalance is more likely to
diminish the performance of the SVM classifier. To overcome this, we used random
undersampling which reduces the number of samples associated with all classes to
that of the minority class, i.e. cold. We relied on imbalanced-learn [15], which is a
Python package offering several resampling methods used in datasets that have a
between-class imbalance. In our first experiments we reduced the dimensions of the
features via Principal Component Analysis (PCA) [13], keeping a variance of 0.95.
Chatfield et al. demonstrate that applying PCA before classification enhances the
discrimination task with FV and reduces the memory consumption as well [3].

Moreover, the features (Fisher Vectors) were normalized with Power Normaliza-
tion (PN) and l2-Normalization. Power Normalization was found to be helpful for
FVs representations [19] as it reduced the impact of the features that become more
sparse as the number of Gaussian components increases. In the following experi-
ments, we applied these normalization techniques before reducing the dimensions
using PCA. Likewise, we found that l2-Norm. helped to alleviate the effect of hav-
ing different utterances with distinct amounts of background information projected
into the extracted features, which attempts to improve the prediction performance.

The GMM used in our experiments to compute the FVs was set to operate with
a varying number of components: Gc ranged from 2 to 128. The construction of the
Fisher Vector representations was made with the help of a Python-wrapped version
of the VLFeat library [25]. As stated before, the classification was done using a
Support Vector Machines algorithm. We employed the libSVM implementation [2]
with a linear kernel and, as suggested in [12], the C complexity parameter was set
in the range 10−5, . . ., 101. In order to search for the best complexity value (C)
of the SVM, Stratified Group k-fold Cross Validation (CV) was applied over the
training and development sets. This type of CV allowed us to avoid having the
same speaker in more than one specific fold, while simultaneously preserving the
percentage of samples for each class within each fold.
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Table 2: UAR scores obtained when SVM classified the data using Fisher Vectors.

GMM Performance (%)
Features size Cross-Val Test

ComParE (BoAW-baseline) - 64.54% 67.30%
Fisher Vectors 64 63.98% 66.12%
Fisher Vectors + PCA 64 64.72% 67.65%
Fisher Vectors + PN + PCA 64 64.92% 67.81%
ComParE + Fisher Vectors (+PN+PCA) - 63.01% 70.17%

Finally, we performed late-fusion of the best configurations. Namely, the class-
wise posterior estimates generated by the SVM algorithm could provide a simple
way of classifier combination by taking the mean of two or more posterior vectors.

5 Results

As shown in Table 2, for the baseline we utilized the ComParE functionals (i.e.
Bag-of-Audio-Words features) that were originally presented and described in [21].
According to the results outlined in Table 2, these representations achieved an UAR
score of 67.3% on the test set. This score was slightly outperformed by two of our
configurations: when PCA was applied (67.65%), and when PN was applied along
with PCA (67.81%). Table 1 shows the results obtained when using Fisher Vectors
with their complete number of features as a function of their reduced number of
features. As can be seen, when the classifier learned the raw Fisher Vector features
it achieved a UAR score of 63.98% in the CV. On the test set the performance
was higher (66.12%). PCA proved to be useful here by contributing to a better
classification performance in both CV and test phases (64.72% and 67.65%, respec-
tively). However, we found that applying PN before PCA was effective as the CV
and test UAR scores increased to 64.92% and 67.81%, respectively. Afterwards, we
used the ComParE BoAW [22] feature set posterior probabilities and we combined
them with those of the (power-normalized and reduced) Fisher Vectors, that is, we
carried out a late fusion. The UAR score rose to 70.17% of UAR score on test set,
which outperformed the BoAW baseline.

6 Conclusions

In this study, we presented the Fisher Vector approach as a method of classifying
speech from subjects having a cold. Compared with studies done by other teams
using the same dataset [11, 22], our performance is competitive. Moreover, our fea-
ture extraction approach seems to be simpler than that of the mentioned studies as
we utilized one single type of feature representation for training a model. We found
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that SVM gave better results when the feature pre-processing step was applied
before executing the training phase. Thus, we demonstrated how applying Power
Normalization along with dimension reduction via Principal Component Analysis
on the Fisher Vector features improved the classification performance. Combining
Power Normalization with PCA gave a better UAR score on test set. These results
are higher compared to those got using the Bag-of-Audio-Words approach described
in [22]. We can therefore say that PCA with the SVM allowed us to carry out a
better classification of the actual data while taking care of the memory consump-
tion. PN helped to reduce the impact of the features that increase their sparsity as
the number of Gaussian components increase. Furthermore, L2-normalization was
applied before fitting the data. This helped to alleviate the effect of having differ-
ent utterances with distinct amounts of background information projected into the
extracted features, which attempts to improve the prediction performance. In a
future study, we will try out the FV approach on bigger datasets and evaluate the
performance of a time-delay neural network when it uses them as input features.
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A Comparative Study on the Privacy Risks of

Face Recognition Libraries∗

István Fábiánab and Gábor György Gulyásac

Abstract

The rapid development of machine learning and the decreasing costs of
computational resources has led to a widespread usage of face recognition.
While this technology offers numerous benefits, it also poses new risks. We
consider risks related to the processing of face embeddings, which are float-
ing point vectors representing the human face. Previously, we showed that
even simple machine learning models are capable of inferring demographic
attributes from embeddings, leading to the possibility of re-identification at-
tacks. This paper proposes a new data protection evaluation framework for
face recognition, and examines three popular Python libraries for face recog-
nition (OpenCV, Dlib, InsightFace), comparing their face detection perfor-
mance and inspecting how much risk each library’s embeddings pose regarding
the aforementioned data leakage. Our experiments were conducted on a bal-
anced face image dataset of different sexes and races, allowing us to discover
biases. Based on our results, Dlib has a significant FNR of 4.2% on the total
dataset, and an eccentric 5.9% FNR on black people. Finally, our findings
indicate that all three libraries could enable sex or race based discrimination
in re-identification attacks.

Keywords: face recognition, machine learning, privacy

1 Introduction

With the trend of technology getting cheaper and the advance of smart technologies,
security and surveillance cameras are getting more and more widespread recently.
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According to recent news, Chongqing, a single Chinese city alone has more than
2.5 million surveillance cameras installed [19]. This problem set is not constrained
to countries similar to China, as for example London also has more than 600,000 of
such cameras [19]. These devices enable emerging artificial intelligence based face
recognition technologies in the physical world at scale. This will certainly have a
significant impact on the society as a whole, and on the personal level as well, as
these advances enable surveillance at large extent as never seen before.

In this paper, we look at the case of the large-scale storing and processing of
face imprints generated by face recognition technologies. This technology uses the
photo or a video frame containing a person’s face to extract an imprint from it. The
imprint, or the embedding, describes the face based on its unique characteristics,
thus it can be used for identification. When generated by deep learning techniques,
the embedding is usually hard for a human to interpret, as usually it is a vector of
real values. The length of this vector may vary depending on the used technique.

Identification (i.e. the recognition) works by comparing multiple embedding vec-
tors to each other by calculating similarity between them (e.g. via the Euclidean or
Manhattan distance). At the end, pairwise similarities of the embeddings indicate
whether the two faces should be considered to be of the same person. It is presumed
that the lower the distance, the higher the similarity, and the similarity of embed-
dings is proportional to the similarity of the faces. Usually if the distance is below
a certain threshold, the embeddings are considered to belong to the same person.
Or in other words, identification is effectively done by clustering embeddings.

In our research, we are concerned with the possible privacy risks related to
utilizing face recognition embeddings. This paper extends our previous work, ”On
the Privacy Risks of Large-Scale Processing of Face Imprints” [11].

In our previous work we have evaluated a re-identification attack scheme through
where we simulated the attacker precision in predicting demographics from embed-
dings (without executing any machine learning tasks). In our current work, we look
in deeper details into these attacks.

We provide a thorough comparison of three popular face recognition Python
libraries: OpenCV, Dlib, and InsightFace. We compare these libraries from two
different perspectives on people of both sexes, four different races and multiple age
groups. First, we consider the face detection performance of these libraries. Then,
we consider embedding inference, where we examine how accurately we can train a
machine learning model to infer demographic data from the embeddings generated
by the libraries.

We also build on results from our previous work in ”De-anonymizing Facial
Recognition Embeddings”[12] where we showed that re-identification attacks by
inferring demographic data from face embeddings are a valid threat (see Figure 1),
which justifies the relevance of our current research.

We consider the following setup: cameras observe some areas (for example at a
company, or in a public space) and extract facial embeddings of people passing by.
Either the cameras themselves are capable of doing the extraction, or they transfer
their footage to a capable server device that would do so. Depending on the use
case (tracking, authentication, identification, etc.), either embeddings are stored in
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< 0.34,-1.21,..., 0.98>
<-1.04,-1.31,..., 0.77>
< 0.38, 1.32,...,-1.01>

Face embedding vectors

Trained ML models

<sex:  male, age: 60-80, ...>
<sex: female, age: 20-40, ...>
<sex: female, age:  0-20, ...>

Demographics data inference

Figure 1: A possible privacy concern regarding face recognition is the inference
of sensitive demographic data from face embeddings through inference of specific
machine learning models.

a database to be used later on, or are compared in real-time to other embeddings
that are already stored in the database.

The reason why the processing may be concerning is that embeddings are con-
sidered biometric data and unlike other biometric data such as fingerprints, facial
images can be easily captured without a person’s knowledge and consent, and also at
a large scale [2]. Therefore, in this paper, we look at risks related to the processing
of embeddings, more specifically we analyze the privacy risk of demographic-based
person re-identification by using face imprints.

This paper is structured as follows. Section 2 summarizes relevant research
related to this topic, including how face recognition works and what its privacy
concerns are. Section 3 introduces a proposed new data protection evaluation
framework for face recognition. Section 4 demonstrates a theoretical attack and
evaluates its results. Section 5 compares three popular face recognition libraries
and introduces the dataset on which they were tested. Finally, Section 6 concludes
the paper with a summary of its main takeaways.

2 Related work

In this section we review facial recognition: its history, how it started, major break-
throughs, and how deep learning based state of the art face recognition systems
work. Then, we introduce and discuss the most important features of the three
Python libraries we used in our work. At the end of the section we also discuss
ethical and privacy concerns related to the application of facial recognition.

2.1 About face recognition

Historically, the dawn of facial recognition began in the 1960s, when researchers
began to use computers to recognize human faces [30]. The first trial was a man-
machine approach, where human personnel had to manually mark facial landmarks
on photographs (e.g. eyes, eyebrows, ears, nose, lips), and the coordinates of these
landmarks were then transformed by a computer to undo the effects of variations
in head rotation and tilt. Then for each person a list of these coordinates were
stored, and in the recognition phase, the distances were calculated between the
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photograph and all the stored records, and the lowest distance was supposed to
reveal the recognized person.

The next major milestone was reached in the 1980s and 1990s, when researchers
came up with the eigenfaces approach [31]. The goal of this approach was to be
able to represent faces as 1 dimensional vectors (instead of 3 dimensional RGB
images), as a combination of predetermined ”base” faces, called eigenfaces. The
basic idea was to take a facial image dataset, align and center all faces, and create
a data matrix by turning the images into vectors. This was followed by calcu-
lating the mean face (μ) by averaging the data matrix. The eigenfaces (e) were
then constructed by determining the matrix’s eigenvectors and reshaping them into
images. Afterwards, each new face X could be represented as the mean face plus
a linear combination of the eigenfaces: X = μ + w1 · e1 + w2 · e2 + ... + wn · en,
where wi represents the coefficients of the eigenfaces. In the recognition phase, the
similarities between different faces could be determined by calculating a distance
(e.g. Euclidean distance) between the coefficients of the eigenfaces belonging to
different individuals (where a lower distance meant closer similarity). The biggest
advantage of this approach was that it no longer required human manual input,
and it was completely automated so it worked even in real-time settings. However,
a significant drawback was that it was very sensitive to lightning, scale and facial
expression variations, so it could only work in highly controlled environments.

The next breakthrough, which is the current state of the art in face recognition,
was made possible by the utilization of deep learning algorithms. These algorithms
take the pixels of a photo (or frame) of a person as an input and firstly detect
the face in the image. Various techniques can be used for face detection, such
as Histogram of Oriented Gradients (HOG) [4][25], Haar-Cascades [32] or even a
neural network. Once the face is detected, certain transformations are performed to
make it frontal facing and centered, and finally a vector of floating point numbers
is generated as an output. These vectors are supposed to describe the human face’s
unique features.

To create such vectors, a special training setup is needed. Most often, a Siamese
network architecture [33] and a special loss function, such as triplet loss [26] is used,
where during each iteration of the training three identical networks (hence the name
”Siamese” networks) are fed three different face images, two of the same person (the
”anchor” and the ”positive” image) and one of a different person (the ”negative
image”). The goal of the training is to modify the weights of the network such that
the output embeddings of the anchor and positive images will be close in vector
space, while the negative image’s embedding will be farther. The advantage of this
training setup is that the network can learn to generalize and cluster the same faces
together without having to see each possible human face during training.

Then, during recognition phase, these output vectors, also known as face em-
bedding vectors, are compared according to a certain distance metric (e.g. the
Euclidean or Manhattan distance) to determine whether two embeddings belong
to the same face or not. The length of this vector may differ from implementation
to implementation, for example some libraries might generate a 128 dimensional
vector [26][21], whereas other libraries generate a 512 dimensional vector [8].
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2.2 Face recognition libraries

The three libraries we used in our work are as follows.

The OpenCV library [1] implements a deep convolutional neural network based
on the FaceNet [26] structure. Previous networks were trained on a set of known
identities and used an intermediate bottleneck-layer to learn a generalized represen-
tation of faces for recognition. This setting was inefficient and problematic, because
the bottleneck layer couldn’t always generalize to new faces, and the representation
size of faces were usually thousands of dimensions large. In contrast, FaceNet is an
end-to-end solution that directly maps images of faces into the 128-dimensional em-
bedding metric space without requiring a representational bottleneck-layer, using
the triplet-based loss function described above. FaceNet was built on two different
architectures, the Zeiler Fergus and the GoogLeNet style Inception models. While
the Zeiler Fergus model has 140 million parameters, the Inception model has only
7.5 million, making its usage possible on lower computation capacity devices, such
as mobile phones.

The Dlib library [21] is based on a ResNet-34 [15] structure deep convolutional
neural network. In theory, by increasing the network depth, performance should
improve as the model should be able to learn more features. In practice there
are, however, obstacles to increasing the depth indefinitely. One obstacle is the
problem of the vanishing/exploding gradients, which can be solved by normalized
initialization and batch normalization. Another obstacle is that researchers found
that adding more layers to a network could actually result in higher training error.
The key idea of residual networks such as ResNet-34 is the addition of residual
layers to deep convolutional nets. In these models, shortcut connections are added
that skip certain layers, performing identity mapping between two non-neighboring
layers, thereby not only solving the problem of higher training errors, but actually
producing accuracy gains in very deep networks.

The InsightFace [8] library also utilizes a deep convolutional neural network
which was based on multiple other networks (ResNet, MobilefaceNet[3], Inception-
ResNet v2 [29], DenseNet [17], etc.) and besides triplet (Euclidean/Angular) loss it
also uses multiple loss functions including Additive Angular Margin Loss (ArcFace),
which was created with the specific aim to obtain highly discriminative features for
face recognition [7]. By maximizing face class separability (i.e. clustering faces
belonging to the same person much more closely than other loss functions), this
approach enables the network to be less sensitive towards pose and age variations.

The performance of FR libraries is usually tested by benchmarking them on
various face image datasets, including the Labeled Faces in the Wild dataset [18],
which is the most common benchmarking dataset. From this perspective, Dlib
achieves 99.38%, OpenCV achieves 99.63% and InsightFace achieves the highest
99.83% accuracy on this dataset.
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2.3 Ethical concerns and privacy risks

While FR technology offers a lot of benefits to humanity and it already has a lot of
uses in our everyday lives (e.g. smartphones unlocking by recognizing their owner’s
face, automatic tagging of people on social networking sites, automated border
control gates, finding a lost person, tracking someone etc.) this technology could
also pose numerous threats to society.

One of the biggest concerns is that of discrimination. It could be caused not
only by face recognition itself, but also by the underlying face detection technology.
Some face detection algorithms (like the previously mentioned Haar-Cascades) work
by detecting edges, lines and shapes in images. Under certain circumstances (e.g.
poor lightning conditions), these techniques work better on light skinned individu-
als, and perform worse on darker skinned people. A good example of this was when
Hewlett-Packard’s motion-tracking webcams failed to detect a black person’s face
[27], but Google Photos also struggled with detecting black persons, mislabeling
them for gorillas instead [34]

To analyze the level of discrimination, the Face Recognition Vendor Test con-
ducted by the National Institute of Standards and Technology (NIST) examined
the accuracy variations and potential biases across different demographic groups
based on sex, age and race [14]. In their study, they examined the performance of
189 face recognition algorithms made by 99 different developers, on over 18 mil-
lion photographs taken of more than 8 million people. Their report examined the
variation between false positives and false negatives for the different demographics
analyzed. Overall they found that false positives were much more common than
false negatives, and the ratio of false positives was higher among West- and East-
African, East-Asian, American-Indian and African-American groups. They also
found the false positive ratio to be higher among women, and the youngest and
oldest individuals. Considering some of the use cases (e.g. law enforcement usage
to identify suspects) these high false positive rates could have a lot of negative
consequences on people’s lives, like in the case of 3 black men who were mistakenly
identified and falsely arrested [16]. Knowing about the existence of these sex and
race dependent face recognition performance variations, in our work we examined
whether similar demographic biases are also present in the inference of sensitive
details from the embeddings. Our results are discussed in Section 5.

Apart discrimination and bias issues, face recognition also poses privacy threats.
According to the General Data Protection Regulation (GDPR), face embeddings are
biometric data, as the GDPR defines biometric data as ”personal data resulting from
specific technical processing relating to the physical, physiological or behavioural
characteristics of a natural person, which allow or confirm the unique identification
of that natural person, such as facial images or dactyloscopic data” [10]. As such,
processing face embeddings are forbidden by default, and their processing requires
special conditions to be met or to have all concerned subject to consent. However,
by the nature of video surveillance, consent can be very difficult to obtain; as in
public spaces data subjects may not even be aware of being surveilled. Another
problematic aspect of processing biometric data is that while it can be in fact used
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for identification, it should not be used for authentication. Unlike a password, a
person’s biometric traits are not replaceable and not revocable, which may lead
to severe security risks (e.g. biometric data leakage in database hacks). For these
reasons, face recognition should be used as a second factor authentication at most,
which is not always the case in real world applications.

Privacy threats arise in different shapes and colors in different sectors. By gov-
ernments in the public sector, there could be misguided use cases that could even
threaten democracy as we know it (e.g. mass surveillance using FR in totalitarian
regimes, law enforcement usages discriminating certain groups). Risks concerning
individuals relate to using FR services on cloud providers that may not respect
or protect their data carefully (e.g. Facebook automatic facial recognition on up-
loaded images posing interdependent privacy risks). In the private sector there
may be irresponsible use cases where the nature of biometric face embeddings is
not treated with enough caution (e.g. face image or face embedding database leaks,
face spoofing attacks, leaking sensitive information via face embeddings, etc).

Due to the numerous privacy harms that could result from the irresponsible
usage of facial recognition, in the following Section we introduce a novel data pro-
tection evaluation framework that can be used to examine the potential risks in a
systematic way.

3 Facial Recognition Data Protection Impact As-
sessment Framework

In this Section we propose a detailed data protection evaluation framework for
facial recognition. Such framework could be a helpful guide in conducting the Data
Protection Impact Assessment (DPIA) for applications that utilize face recognition.

Under the GDPR, it could be a mandatory requirement to conduct a DPIA
for any case where sensitive data might be published or leaked (e.g. biometric
data such as face imprints) [10]. It necessitates the data processor to examine the
privacy harms resulting from a potential attack, and to make certain technical and
organizational measures so as to minimize the impact of such an attack. As part of
the DPIA, the data handler has to evaluate all plausible settings and risk scenarios,
so conducting the DPIA is non-linear, cyclic task.

Our proposed framework enables a systematic approach to conduct the DPIA
according to GDPR guidelines. To the best of our knowledge, currently no such
framework exists specifically for face recognition related data processing. The
framework is seen in Figure 2.

The first stage represents the processed data by the data processor. In our
case, the data includes face embeddings along with some extra information. This
may include sensitive, directly or non-directly identifying personal information for
individuals, depending on the concrete use case. (One example could be a camera
system at an airport, that could record the embeddings of people entering a prayer
room, posing the risk of sensitive information leakage.)
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Facial Recognition Data Protection 
Evaluation Framework

1. Protected Data

Face embeddings and
directly and non-directly
identifying information.

2. Background Knowledge
of the attacker

Public and/or private
background knowledge.

3. Technical Measures
for enforcing data protection

1. Privacy preserving             
    transformation.

2. Pseudonymisation.

3. Anonymization.

6. Repeat

Repeat the assessment with
multiple scenarios for steps
2, 3 and 4.

5. Evaluation

Quantitative and
qualitative evaluation.

4. Privacy Harm
as per Article 29 Working Party

1. Singling out.

2. Linkablity.

3. Inference.

Figure 2: Our proposed framework for helping to carry out the Data Protection
Impact Assessment of facial recognition, as required by the GDPR.

The second stage illustrates the potential background knowledge of the attacker.
Depending on the nature of the attack, the attacker might have access to only public
or both public and private auxiliary information that she could use for an attack.
In case of an outside attack, the hacker could only use publicly available data to
carry out a privacy attack (e.g. social media posts and photos, voter registration
lists, etc.). However, in case of an inside attack, the malicious actor could have
access to protected data that has high overlap with the published or leaked original
dataset, thus presents higher risk (e.g. if the attacker is a system administrator).

The third stage details the technical measures that could be taken by the data
processor to minimize the privacy harms resulting from attacks. The data processor
could apply privacy preserving transformations (e.g. mapping, hashing, data per-
turbations), pseudonymization (e.g. cryptographic or hashing techniques) and/or
anonymization (e.g. k-anonymity) in this step. The point of these measures is to
narrow down the possibilities of a malicious party to minimize the impacts of the
attack.

The fourth stage discusses the potential privacy attacks by the malicious party
as per the GDPR. The Article 29 Working Party determined three different attack
types [13]: singling out (the malicious actor successfully identifies an individual
in the dataset), linkability (connecting two records of the same individual from
different databases) and inference (finding out new information about individuals
with high probability).

The fifth stage distinguishes two approaches for evaluating the impact of an
attack: quantitative and qualitative approaches. Quantitative approaches take
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into account the success rate of an attacker, such as the percentage of individuals
re-identified, true positive rate, false positive rate, recall and other similar metrics.
On the other hand, qualitative approaches deal with the nature of the suffered
privacy harm, such as the leakage of sensitive information like sexual, political,
religious orientation, behavioral preferences or the revelation of someone’s location.
These could have moral or material impact on the degree of personal freedom of
individuals.

Finally, the sixth stage emphasises the cyclic nature of the DPIA. Namely, the
quantitative and qualitative evaluation of the attack must be completed for multi-
ple different scenarios for the assumed background knowledge, technical measures
taken, and privacy harm considered.

We believe that the above introduced general framework is a helpful starting
point for preparing the DPIA and to analyze numerous different privacy threats. In
our work, we considered inference based linkability as the privacy harm, where the
attacker uses her background knowledge combined with demographic information
inferred from the embeddings to carry out a re-identification attack. The following
Section details our work regarding the attack and the estimated risk.

4 Attack and risk level estimation

Previously, we have shown that sex, race and age can be predicted with high ac-
curacy from face embedding vectors [12], but researchers showed that even the
original face image can be reconstructed from the embeddings [22], which means
that certain types of data that can be determined by looking at a person’s face,
such as hair color, glasses, etc., are also stored in embeddings. Such traits can
be referred to as soft biometric traits [5], which define some information about an
individual, but are not distinctive enough to make them uniquely identifiable.

The problem is that personal attributes that are not personally identifiable in-
formation yet can be combined together or indirectly merged with external data
sources in order to put back the names over de-identified data (i.e. where all directly
identifying attributes are removed) [28]. We call such procedures re-identification
attacks. Consider an example where a company publishes a database with infor-
mation about its employees, de-identified by removing explicitly identifying fields
(names, email, etc.) and replacing them with unique random IDs. While this
database alone might be considered de-identified, but an attacker may link records
from this company-related dataset to a medical dataset’s corresponding records by
using demographic data.

There are several ways how an attacker can be successful at re-identification by
using face embeddings:

• By matching embeddings: e.g. the attacker has a photo, extracts an em-
bedding and looks for a match in a database containing embeddings. As
mentioned in Section 1, if the distance between the two embeddings is be-
low a threshold then the embeddings belong to the same person with some
probability.
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• If direct search of embeddings is not possible, the attacker could reconstruct
the face from the embeddings in the database [22], and run a visual search in
a face database (e.g. photos on a social network).

• Knowing that embeddings contain demographic data about the data subject,
the attacker can try reconstructing such data from the stored embedding itself
(e.g. using a machine learning model trained for this task) and using that to
do cross matching in another database.

As we know that demographic data predictions are feasible, we consider the third
class of attacks, which is an inference based linkability attack as per our proposed
framework. This is also motivated with the fact that the zip code, sexuality and date
of birth combined together provide a unique identifier for 87% of the population
based on US census data. [28] Referring back to our framework, if an attacker
combines her background knowledge with accurately predicted demographic data
from embeddings, and knows further pieces of background information such as place
of work or residence, she will be able to look up the identity of the data subject by
looking her or him up on social network sites (e.g. on LinkedIn).

Let us explain this concrete attack as follows (see Figure 3). Let us assume a
company where the employees are monitored by FR-capable smart CCTVs that
store the extracted face embeddings in a central database. If the attacker manages
to get the database, she can perform the following attack. In the 1st step the
attacker downloads a publicly available face images dataset. In the 2nd step, the
attacker labels the downloaded face images with demographic attributes such as
sex, race and age (if they are not already labeled by default) and runs FR on them
to extract the face embeddings. Afterwards, she trains a machine learning model to
classify embeddings into demographic categories according to the training labels.
In the 3rd step the attacker deploys the machine learning model, and then in the
4th step she successfully infers the demographic attributes of the people whose
embeddings are stored in the stolen database. In the final 5th step the attacker
uses this extracted demographic data to re-identify the people on a social network
site.

In this Section, we demonstrate this attack in multiple scenarios, based on
the number of people in the database and the accuracy of the demographic data
prediction algorithms. In Subsection 4.1 we explain how we generated the data for
our experiments, and in Subsection 4.2 we describe the results of our experiment.

4.1 Data generation

To determine the feasibility and threat level of the attack, we ran simulations on
the UCI Machine Learning Repository’s Adult Dataset [9]. This dataset contains
demographic information (including age, sex and race) for more than 30,000 records.
These records are not of individual people, but of types of individuals, where the
‘fnlwgt‘ column describes the number of individuals represented by the given record.

As per our attacker model, our aim with the simulations was to examine what
level of re-identification is theoretically possible in a database containing people’s
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DatabaseSmart CCTVPerson

<embi/> <embi/>

Attacker

1 2

3

4
[age, sex, race]

Social network
5

Public face datasets Training a ML model 
for inference

Figure 3: The considered attack when a malicious third party reconstructs de-
mographic data from embeddings and re-identifies the embedding by looking up
potential data subjects on social networking sites.

face embeddings. The database sizes were chosen to be reasonable assumptions
for the number of employees of a small or medium sized company. To construct
the smaller databases of size 10, 50, 100 and 300 for the simulation, we randomly
sampled the required number of entries from [9] using the values in the ‘fnlwgt‘
column as weights, which indicate the number of people represented by a given
entry.

4.2 Evaluation

We ran the experiments by assuming the accuracy for predicting age, race and sex
to vary between 60%, 75% and 90% and we assumed a machine learning model that
can predict age in 10 year intervals. After creating the smaller databases, some of
their rows were left untouched based on the prediction accuracy percentages (60%,
75% and 90%), while the remaining rows’ age attributes were randomly permuted
to simulate inaccurate predictions. This random permutation was then repeated
with the same prediction accuracy percentage for the other two attributes, too (sex
and ethnicity). This way we ended up with three derived databases for each smaller
database, where all three attributes were simulated to be predicted with either 60%,
75% or 90% accuracy. As the last step, for each predicted database we counted
what percentage of data subjects were correctly predicted to fall in an equivalence
class of size 1, 2-5, 6-10, 11-20 and 20+ (where the smaller the equivalence class,
the higher the risk of re-identification is). We then repeated this procedure 100
times and averaged out the results.

Figures 4(a)–4(d) show our findings. We can observe that there are many
records in unique or small equivalence classes both in smaller (|D| = 10, |D| = 50)
and larger (|D| = 100, |D| = 300) predicted databases, which poses privacy risks.
The attacker is the most successful at re-identification in the case of the smallest
database of 10 people, with the highest 90% prediction accuracy, when 50.1% of
people fall in a unique equivalence class, and all the others fall in an equivalence
class of size 2-5. If the accuracy is decreased to 60%, still 27.7% falls in a unique
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(a) |D| = 10 (b) |D| = 50

(c) |D| = 100 (d) |D| = 300

Figure 4: The ratio of equivalence classes (EC) in the predicted database (D) for
various database sizes and prediction accuracies.

equivalence class, and 33.9% falls in an equivalence class of size 2-5 (see Figure
4(a)). Regarding the largest database of 300 people, 3.75% of individuals are in a
unique equivalence class, and 11.79% are in an equivalence class of size 2-5. Even
in the worst case scenario for the attacker, which is 60% accuracy for a database of
300, the rate of people in unique equivalence classes does not fall below 1.38%, nor
does the rate of people in an equivalence class of size 2-5 fall below 4.64% (see Figure
4(d)). Also, it is worth noting that while the percentage of people re-identified may
be lower in the case of large databases, the expected number of people re-identified
may still be higher in these cases. So while an increase in database size and a
decrease in prediction accuracy results in a decrease in re-identification probability,
the risks are not diminished drastically.

In summary, as expected, the smaller the database size, the higher the re-
identification risk is, because smaller sized databases have a higher chance of being
reconstructed in such a way that people are correctly mapped to an equivalence
class of size 1 or 2-5. Indeed, the higher the prediction accuracy, the higher the
re-identification risk is, because the higher percentage of people are predicted to
be in the correct equivalence class. As a result, due to the privacy risk presented,
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the actual achievable prediction accuracy must be examined, which is detailed in
Subsection 5.3.

5 Comparison of the state-of-the-art face recogni-
tion libraries

5.1 Data generation

We compare three of the most popular open access FR libraries (OpenCV, Dlib and
InsightFace) from a face detection, face recognition and face embedding inference
point of view, i.e. how accurately can a machine learning model learn to predict
demographic data from the embeddings generated by each library. First, we had
to generate a dataset of face images. While there are many publicly available face
image datasets, for our purposes we needed a dataset that contained photos of a
wide diversity of people: people from both sexes, from four different races and from
multiple age groups.

To generate our own dataset, we used the publicly available UTKFace dataset
[35], which is a large-scale face dataset that met our requirements, because it con-
tains over 20,000 face images with annotations of age, sex and race. Moreover, the
images are labeled with file names formatted like [age] [gender] [race] [date&time],
where age is an integer from 0 to 116, sex is 0 for males or 1 for females, and race
is 0 for whites, 1 for blacks, 2 for asians, 3 for indians or 4 for other races.

While this dataset was a great starting point for our research, it was not perfect,
because we needed a more balanced dataset. As a result, we only used 12192 photos
from UTKFace, since there were only 1524 photos per each of the eight race-sex
pairs that we worked with (males and females paired with whites, blacks, asians and
indians). Of course, some classes (e.g.: white males) had more than 1524 photos,
but due to our need for a balanced dataset, we had to choose the number of photos
per class based on the least represented class. Even though this subset of UTKFace
was balanced regarding sex and race, it still was not balanced regarding age. For
example people aged between 20 and 40 were overrepresented, while people aged
over 50 were underrepresented, etc. (see Figure 5 for more details regarding the
age distribution of our dataset).

5.2 Face detection and recognition

To compare the three libraries, we ran their face recognition algorithms on our
dataset. We then examined how many faces each library found out of the 12192,
along with the number of false negatives (where a library mistakenly did not find
a face in an image) and false positives (where a library mistakenly found multiple
faces instead of just one). To gain a better understanding of the accuracy of each
library on different races and sexes, we also examined the races and sexes where
these false negatives or false positives occurred. Table 1 shows our findings.
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Figure 5: The age distribution of our dataset regarding both sexes and all four
examined races

In conclusion, OpenCV and InsightFace performed mostly the same on both
sexes and all four races examined, as both libraries had a negligible number of false
negatives and false positives. The only difference is the runtime, where OpenCV
was about 6 times faster. While Dlib produced zero false positives, it produced
a significant false negative rate of 4.2%, which means it is a bit less reliable at
detecting people, especially, but not exclusively, black males and females who had
a false negative rate of 7.2% and 4.6%. Also, Dlib had the longest runtime, with
4110 seconds, it was about 12 times slower than OpenCV, and 2 times slower than
InsightFace.

It is important to note that our tests were conducted on a dataset of cropped
face images as opposed to regular face datasets (e.g. ”faces in the wild” [18]). So
while these results might indicate that there is almost no difference in the false
positive rate of the libraries, but due to the nature of our dataset even a very small
false positive rate is significant (e.g. in real world conditions OpenCV produces
far more false alarms than Dlib [20]). Therefore it is future work to run these
experiments on a dataset of non-cropped images ”in the wild”, too.

In summary, the choice of the right algorithm depends on the use case where
facial recognition is applied. When having no false alerts is a significant issue,
Dlib is the right choice. When having no false negatives is important, it is better
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Table 1: The face detection performance of OpenCV, Dlib and InsightFace on
different sexes and races

Lib
Faces
de-

tected
Sex Race

False
pos.

Total
false
pos.

False
neg.

Total
false
neg.

Run
time
[s]

White 2 1
Black 1 3
Asian 0 0

Male

Indian 0

3

0

4

White 0 0
Black 0 0
Asian 1 0

Open
CV

12183

Female

Indian 1

2

0

0

322

White 0 48
Black 0 110
Asian 0 70

Male

Indian 0

0

54

282

White 0 51
Black 0 70
Asian 0 62

Dlib 11676

Female

Indian 0

0

51

234

4110

White 0 1
Black 1 3
Asian 1 0

Male

Indian 0

2

0

4

White 1 0
Black 0 0
Asian 0 0

Insight
Face

12185

Female

Indian 0

1

0

0

1858

to choose another library to avoid situations where some of the consumers could
be negatively impacted, such as the previously mentioned incident of Hewlett-
Packard’s motion-tracking webcams not working on black people [27]. In other
cases we may choose between the libraries by considering runtime or the accuracy
of additional features. For instance, InsightFace does a great job in detecting facial
landmark points, especial when the face is visible from the side profile [6].

5.3 Demographic attribute inference from embeddings

Lastly, we compared each library in terms of how accurately a machine learning
model can predict demographic data (sex, race and age) from the face embed-
dings they produce. The training data was generated by running each library’s FR
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algorithm on our dataset and collecting the face embedding vectors with their cor-
responding class labels into pandas [23] dataframes, where the labels were deduced
from the image file names. Since not all faces were detected in all images by all
libraries and since we wanted to train our models on balanced datasets, we had to
discard some images in order to always use only as many images per each class as
the least represented class permitted (i.e. the class with the lowest number of faces
detected).

In total, we built three predictive models per each library, one for sex classifica-
tion, one for race classification and one for age classification. We used Scikit-Learn’s
[24] train test split function to split our dataframes into a train and a test set, and
then used Scikit-Learn’s RandomForestClassifier module to train three random for-
est classifiers to predict the demographic attributes from the face embeddings. The
reason we used random forests was that we wanted to show that even easy to use
”off the shelf” ML models can work that do not require deep expertise in ML from
an attacker. Random forests satisfy the latter criteria by having a small number of
hyperparameters to tune. In the case of age prediction, expecting exact accuracy
is not realistic (as it is also difficult for a human to guess the age that precisely), so
instead we applied the predictions into ranges between 1-20, 21-40, 41-60 and 61-
80 years. Figures 6, 7, 8 show our findings. To evaluate our results, we calculated
the prediction F1 score, which is a descriptive metric that takes into consideration
the true positive (TP), false positive (FP) and false negative (FN) rates as well:
F1 = TP

(TP+ 1
2 ·(FP+FN))

.

Figure 6: Prediction accuracies for different demographic groups using face embed-
dings generated by OpenCV, Dlib and InsightFace: Sex prediction
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Figure 7: Prediction accuracies for different demographic groups using face embed-
dings generated by OpenCV, Dlib and InsightFace: Race prediction

Figure 8: Prediction accuracies for different demographic groups using face embed-
dings generated by OpenCV, Dlib and InsightFace: Age prediction
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In conclusion, our random forest models performed the best on the embeddings
generated by Dlib, where the sex classifier achieved over 92%, the race classifier
over 89%, and the age classifier over 75% prediction F1 score. The second best per-
formance was achieved when the models were trained and tested on the embeddings
generated by OpenCV, where the sex classifier achieved over 83%, the race classifier
78%, and the age classifier over 73% prediction F1 score. The random forest models
performed the worst when trained and tested on the embeddings of InsightFace, in
which case the sex classifier achieved only over 77%, the race classifier only over
66%, and the age classifier only 60% prediction F1 score.

To test for potential biases, we examined the prediction performance not only for
the total population of our dataset, but also on the following smaller demographic
groups: males, females, whites, blacks, asian, indians. The performance of the
classifiers on these demographic subgroups were mostly uniform, with only a few
outliers. While some of the reported differences are very slim, even these could
have notable privacy implications as discussed later.

In the case of OpenCV embeddings, the sex classifier performed considerably
worse in case of asians than any other race. The race classifier, however, performed
the best for asians, and notably worse for indians. The age classifier’s performance
was significantly worse for white people, but significantly better for asian people.
The race prediction performed slightly better for females, whereas the age predic-
tion slightly better for males.

In the case of Dlib embeddings, the sex classifier also achieved a noticeably
worse score on asians compared to all other demographic groups. While there was
only a very slight difference, but the race classifier achieved the lowest score on the
indian population. The age classifier performed the worst on white people, while
it performed by far the best on asian people. Regarding sexes, both the race and
age predictor performed notably better for females.

In case of the embeddings of InsightFace, the results were a bit different. The
sex classifier performed worse than average on whites, and better than average on
indians. The race classifier also achieved better than average score for indians,
and the lowest score on asians and whites. In the case of age prediction, the most
extreme outlier was the much lower score for white people, while the score of asians
was also significantly higher than average. In this case, the sex predictor performed
slightly better for males, however the race and age prediction was significantly
better for females.

Based on these results it seems that there could be noteworthy differences in
predicting demographic attributes for different sexes and races. While the impact of
these differences may not be significant in all applications (e.g.: targeted advertising
in retail), in other scenarios they could have a profound effect on people’s lives (e.g.:
mass surveillance, law enforcement profiling). Another important aspect to consider
is how many people will be affected by the technology in each use case. For example
applications in the public sector (e.g.: surveillance by governments) will impact far
more people than typical use cases in the private sector (e.g. employee tracking),
and in those cases even seemingly small differences of 0.5-1% can affect thousands
or tens of thousands of people, which emphasizes the importance of treating facial
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recognition technology with great caution.

6 Conclusion and future work

In this paper we have reviewed the main principles behind facial recognition al-
gorithms, introduced three popular Python libraries, and presented the potential
discriminational and privacy risks in relation to the processing of face embeddings.
We have discussed why face embeddings must be considered sensitive biometric data
and we proposed a novel data protection evaluation framework for facial recogni-
tion, which could be a general starting point for conducting the DPIA required
by the GDPR. We have also looked at various attacker models that could pose a
threat to data subjects’ privacy via inference based re-identification.

In particular, we analyzed the risks of re-identification by reverse-engineering
demographic data (age, sexuality, race) from embeddings stored in a database. We
found that the smaller the database and the higher the accuracy of prediction, the
higher the re-identification risks are. In the case of a 10 person database and 90%
accuracy, 50.1% of people are likely to be precisely re-identified, while this number
decreased to 27.7% at 60% prediction accuracy. The risks are also not negligible
even for larger databases, because for a database of 300 we showed that at 90%
accuracy 3.75% of people are in a unique equivalence class, and 11.79% are in an
equivalence class of size 2 to 5 and are likely to be de-anonymized. It must be
noted that while the re-identification percentages decrease for larger databases, the
absolute number of successful re-identification cases increase.

Afterwards, we compared the performance of three face recognition Python
libraries (OpenCV, Dlib, InsightFace) on a custom face image dataset that we have
generated. Our findings indicate that while all three libraries produce a negligible
number of false positives, Dlib produces far more false negatives than the other
two, especially for black people. Regarding run time, OpenCV is about 12 times
faster and InsightFace is about 2 times faster than Dlib.

Finally, we extracted face embeddings from our custom dataset using all three
libraries to then train random forest classifiers to predict sex, race and age from
each library’s embeddings. We then compared the prediction accuracies of our
random forest models on the total dataset and also on demographic subgroups.
Our findings indicate that those models perform the best that were trained and
tested on the embeddings of Dlib, followed by the embeddings of OpenCV and
finally InsightFace.

Based on our results, there can be differences in prediction accuracies between
different sexes and races, and the impact of these biases always has to be evaluated
in each application scenario (e.g. law enforcement profiling vs. retail profiling).

For future work, our aim is to gain better understanding and greater explainabil-
ity of the inner workings of our models in order to discover why misclassifications
happen and how demographic data is encoded in embeddings. Also, our focus is to
design a procedure that could prevent demographic data leakage from the stored
embeddings.
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While one obvious approach could be to encrypt the embeddings before stor-
age, they would necessarily have to be decrypted for the calculation of Euclidean
or Manhattan distances, so it wouldn’t permanently solve the leakage problem.
Another plausible solution would be to use homomorphic encryption, which would
allow operations to be performed on the embeddings in encrypted form, but due to
its computational complexity and slow performance its usage might not be feasible
in real-time applications.

Therefore, our research aims find a solution (e.g. adversarial search techniques)
to modify the embeddings in such a way to notably lower the prediction accuracies
by machine learning models for all demographic and sensitive attributes, with-
out compromising the usability of the face embeddings (i.e.: without significantly
changing their relative Euclidean distances). Our hope is that achieving this will
allow a much more privacy friendly way to utilize face recognition and process face
embeddings.
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Abstract

Cloud-based speech services are powerful practical tools but the privacy
of the speakers raises important legal concerns when exposed to the Internet.
We propose a deep neural network solution that removes personal character-
istics from human speech by converting it to the voice of a Text-to-Speech
(TTS) system before sending the utterance to the cloud. The network learns
to transcode sequences of vocoder parameters, delta and delta-delta features
of human speech to those of the TTS engine. We evaluated several TTS
systems, vocoders and audio alignment techniques. We measured the per-
formance of our method by (i) comparing the result of speech recognition
on the de-identified utterances with the original texts, (ii) computing the
Mel-Cepstral Distortion of the aligned TTS and the transcoded sequences,
and (iii) questioning human participants in A-not-B, 2AFC and 6AFC (Al-
ternative Forced-Choice) tasks. Our approach achieves the level required by
diverse applications.
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1 Introduction

Cloud-based speech services have improved recently due to the large amount of voice
data that is exploited by deep learning technology [1, 3], giving rise to superhuman
performance in several tasks. Consequently, it seems reasonable to use such utilities
in practice.

Unfortunately, many speech applications involve legal concerns regarding pri-
vacy. Several methods have been proposed to eliminate personal information from
samples without spoiling the linguistic content before uploading. We should also
mention, that in many cases the private information is carried by the linguistic
content and not by the voice of the speaker. For example, when a doctor dictates
medical records, the private content is the medical content and not the identity
of the doctor. But in the case of diagnostic sessions with autistic people, it is
the speaker whose identity should remain hidden. If an external ASR is used on
the transformed speech of a patient, the identity will remain concealed, and the
linguistic content can be generated safely.

Voice conversion (VC) operates by altering certain features of human speech
[31]. Voice transformation (VT) converts the signal as if it was uttered by a target
speaker [23]. De-identification is the process that intends to remove any personal
information from the data that could be associated with identity. VC and VT may
be applied to solve de-identification, but the papers in the literature suffer from
several flaws: the VC algorithm in [22] is approximately invertible and relies on a
good voice transformer, while VT [23, 29] requires data from pairs of speakers and
is unable to anonymize the target speaker.

Our contributions are as follows. For de-identification, we propose to transform
utterances to a generic voice of a Text-to-Speech (TTS) engine, by taking advan-
tage of utterance-text sample pairs. We use an end-to-end trainable Deep Neural
Network (DNN) to learn the many-to-one VT task. We suggest to learn the map-
ping at vocoder level. We show that the trained network gives rise to tolerable
distortions at utterance level by conducting two experiments: comparing the out-
puts of Google’s Automatic Speech Recognition (ASR) system for the original TTS
output and the de-identified utterance and measuring the Mel-Cepstral Distortion
(MCD) [19]. To confirm de-identification success, we further performed three kind
of perceptual listening studies with human subjects (A-not-B test: distinguishing
transformed utterances of different speakers, 2-Alternative Forced-Choice (2AFC)
test: classifying utterances from female/male speakers, and 6-Alternative Forced-
Choice (6AFC) test: estimating the number of speakers). Our proposal is irre-
versible and it requires only speech-transcript sample pairs for training, which are
readily accessible in the literature. We argue that our method performs favorably
compared to several baseline methods.
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Figure 1: Schematic diagram of our proposed method. Training [T]: vocoded human
voice is input to a Deep Neural Network (DNN) that is trained to approximate the
aligned TTS output. Inference [I]: vocoded human voice is de-identified by the
DNN and transformed back to utterances by the vocoder.

2 Related work

De-identification can be solved by either VC or VT methods. A subset of the
literature focuses on classical algorithms instead of leveraging the potential of DNN
architectures, and hence fail to produce state-of-the-art speech quality. The so-
called transterpolation VC technique gave rise to significant improvements over
diverse VC methods as reviewed in [16]. Another VC approach exploits the two-step
procedure of an ASR system followed by a TTS [17]. However, due to the method
of the conversion, the latter cannot take advantage of the superior performance of
cloud-based ASR systems. A potential problem of VT methods is that the target
speaker is not generic and hence it cannot be anonymized. Generic is meant here
as monotonic and “robotic”, which does not contain any prosody. Neural TTS
systems nowadays are realistic enough, that it may include unintended prosody,
which makes the transformation harder. The problem can be resolved by converting
to an average voice, however, we decided to go with a TTS system instead of
generating an average voice. In addition, VT methods need speech corpora of
the original speaker and the target speaker, too. To avoid the need for a parallel
corpora an approach that used a pool of pre-trained transformations between a
set of speakers was put forth in [22]. A transformation function was applied to
the source and the target speakers based on speaker similarity and dissimilarity,
respectively. By applying several sound distortion algorithms de-identification was
achieved and the transformation could be reversed, offering several advantages at
the cost of vulnerability.

In contrast, several recent works propose DNNs for many-to-one VC and VT.
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For an overview, see [24]. A VC method using Mel-Cepstral inputs for deep autoen-
coders was introduced in [23]. Speaker-dependent Conditional Restricted Boltz-
mann Machine (CRBM) was applied using Mel-Frequency Cepstral Coefficients
(MFCCs) and deltas for solving the VC task for each speaker pair in [29]. An
autoencoder-based VT approach was proposed to reduce the required size of the
data sets and to shorten conversion time in [32]. A VT method that generates
a one-to-one speaker-dependent DNN using the weights of a speaker-independent
DNN was suggested in [21]. Spectral envelope, fundamental frequency (F0), inten-
sity trajectory and phone duration were converted in [30] subject to an �1 norm
constraint during pre-training. Nevertheless, all of these methods restrict them-
selves to the case of VC and VT, without using transcript data. In this paper, we
directly tackle de-identification and propose to use textual data as well besides the
original speech for training, which are largely available online.

3 Proposed method

We describe the features set, the pre-processing steps and the DNN architectures
in detail here. The de-identification pipeline can be seen in Fig. 1. To differentiate
processes, training and inference are marked with “T” and “I”, respectively.

3.1 Measures

In speech recognition, the standard measure is the word error rate (WER), defined
as the edit distance between the true word sequence and the most probable word
sequence emitted by the transcriber. However, it is not ideal for short sequences.
In cases of 1-word sequences, where the transcriber recognizes the expected word,
but mistakes 1-2 letters, the measure is 0. This is not representative enough, that
is why the Levenshtein distance is used instead.

Levenshtein distance is a measure of the similarity between two strings, which
we will refer to as the S source string and the T target string. The distance between
two words is the minimum number of single-character edits (insertions, deletions or
substitutions) required to transform S into T . This measure is also called character
error rate (CER) or letter error rate (LER). Letter accuracy rate (LAR) will be
used in this document later on:

LAR(S, T ) = 1− LER(S, T ) (1)

3.2 Feature extraction

In order to find the best feature set, we compared multiple vocoder systems in terms
of speech synthesis quality (Ahocoder [7], MagPhase [8], PulseModel [6], WORLD
[28] and STRAIGHT [18]) using the TIMIT [35] test set. We took each sample
and extracted the vocoder parameters from them. We also experimented with
converting the spectral parameters into a mel-cepstral representation. Following
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this, we re-synthesized the samples, and measured the mean Letter Accuracy Rate
(LAR) values between the predicted transcript of Google Cloud Speech-to-Text
system and the transcripts provided with the TIMIT corpus.

During our experiments, we observed that using mel-cepstral representation
during encoding produced more favorable results.

The LAR of the test set was 97%. By applying vocoder systems the LAR was
barely affected, in every case, the relative degradation was less than 2%. In subse-
quent sections, we used the python wrapper of WORLD vocoder called PyWorld,
because of its low computational requirements, continuous support and easy usabil-
ity. The extracted features are the estimation of the fundamental frequency (F0),
spectral envelope and aperiodicity.

F0 is the fundamental frequency of the vibration of our vocal folds. We perceive
it as pitch. The F0 contour is estimated with DIO [27]. To improve the noise
robustness of DIO, we also applied StoneMask pitch refinement algorithm.

Let us introduce xn the subsampled audio signal, and Xk the frequency spec-
trum [15], which is the discrete Fourier transform (DFT) of a signal defined for
k = 0, 1, ..., N − 1.

We can compute the magnitude spectrum Mk, the phase spectrum Φk and the
power spectrum Pk using the following equations:

Mk = |Xk| (2)

Φk = arctan

∣∣∣∣Re(Xk)

Im(Xk)

∣∣∣∣ (3)

Pk = Re(Xk)
2 + Im(Xk)

2. (4)

To convert the values of k into actual frequencies we can use the following formula:

f =
k · fs
N

, (5)

where fs is the sampling frequency and N is the number of samples.
The spectral envelope [15] is the contour of the magnitude spectrum, which is es-

timated with CheapTrick [25]. The shape of this curve approximates the frequency
response of the vocal tract.

The aperiodicity is defined as the power ratio between the speech signal and
the aperiodic component of the signal. It is extracted by D4C algorithm [26].

The cepstrum is the inverse discrete Fourier transform (IDFT) of the logarithm
of the audio signal’s Pk power spectrum:

Cn = IDFT (log(Pk)), (6)

where k = 0, 1, ..., N−1. It gives us a more compact, low dimensional, decorrelated
representation.

With mel-cepstral analysis [10, 33] we can warp the frequency scale and com-
press the frequency coefficients. With the following formula we can calculate the
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M -th order mel-cepstral coefficients:

log
(
X(e−iω)

)
=

M∑
m=0

c̃me−iω̃, (7)

where X
(
e−iω

)
is the discrete Fourier transform of xn, and c̃m is the m-th order

mel-cepstral coefficients.

ω̃ = tan−1

(
1− α2

)
sinω

(1 + α2) cosω − 2α
. (8)

is the phase response of an all-pass filter. It gives us the warped frequency scale.
The α ∈ [−1, 1] is the all-pass constant, which gives the warping characteristic.
With the right α value, which is chosen to be 0.58 based on Merlin [34] suggestion,
the mel-scale becomes a good approximation to the human auditory frequency scale.

The following features are used as inputs and targets to several CNN and
ConvLSTM architectures: Mel-Cepstral Coefficients (MCEP) and band aperiod-
icity (BAP) were calculated using Eq. (7) from the spectral envelope and aperiod-
icity, respectively. Linear interpolation of logF0 was calculated from F0. We also
applied a thresholded binary voiced/unvoiced (V/UV) mask. Dynamic features
(delta and delta-delta) were determined using MCEP and BAP.

3.3 Data sets

We employed the following benchmark corpora in our voice conversion evaluations.
TIMIT [35] is used frequently for comparing different machine learning methods.

This database is attractive for verification and parameter tuning of the algorithms
since it is relatively small, but still has phonetically diverse samples. The training
set has 462 speakers, 8 utterances/speaker. The validation set consists of 50 speak-
ers, totally 400 utterances, and the test set contains 192 sentences from 24 speakers.
Each utterance is approximately 3.5 seconds long on average. The speakers also
represent 8 major dialect regions of the United States.

NTIMIT [9] is a multi-speaker speech database with phone bandwidth that is
derived from TIMIT by adding noise to the samples.

3.4 Pre-processing

The target TTS voices are generated with the Festival Speech Synthesis System
[4] using the transcripts of the datasets. The choice of Festival was motivated by
comparing several TTS systems and supported generic voices. The TTS generated
sound files were aligned to match with the corresponding sound files produced by
the speaker. We used Dynamic Time Warping (DTW) for the alignments.

In case of the TIMIT [35] and NTIMIT [9] data sets, audio normalization was
unnecessary. The train-dev-test speakers are carefully separated. We also aug-
mented data by applying speed warping factors to enlarge the TIMIT dataset.
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Vocoder features were extracted from both the original speakers’ and the TTS
voice. The interpolated logF0, the V/UV mask vector and delta and delta-delta
features are calculated. Multiple combinations of these features are tested as inputs
for different network architectures. Z-score normalization was applied to all of the
calculated features, resulting in zero mean and unit variance.

3.5 Modeling feature transformation

For feature transformation, various deep learning architectures were applied and
compared: (1) we experimented with an architecture, which we refer to as Dense,
having four 1,024 unit dense layers. (2) we used a Convolutional Neural Network
(ConvNet) with two 1D convolutional layers of 512 units and kernel width 7 and
stride 1, and two 1,024 unit dense layers. (3) tried a model, which we call C-BLSTM,
having three batch normalized 256 unit 1D convolutional layers with kernel width 3,
one 128 unit BLSTM layer and two 512 unit dense layers was also tested, where the
first dense layer was batch normalized. Finally, two state-of-the-art architectures
based on (4) Residual Networks (ResNet) [11] and (5) Wav2Letter [20] were also
evaluated.

Within all networks, we used ReLU activation functions and dropout layers with
probability between 0.2 and 0.3, in addition to adding a final dense output layer
on top with linear activation.

4 Results

Here, we present our results. We note that before training on larger data sets, a
sanity check was carried out by varying the size of TIMIT using the Dense, the
ConvNet and the C-BLSTM architectures, confirming that augmentation improves
the results.

4.1 Experimental setup

Festival 2.5 with “voice cmu us rms cg” was used to generate the target TTS utter-
ances in the experiments. We applied PyWorld [13] and SPTK 3.9 [14] for feature
extraction. We implemented the neural networks in Python using the Keras [5]
deep learning framework backed by Tensorflow [2]. We used early stopping with
patience 10 and Adam optimizer with its default parameters. The loss function is
Mean Squared Error (MSE), however, if interpolated logF0 with V/UV mask is
used as input, it is not used in loss calculation. We trained the models on TIMIT
[35] dataset.

Regardless of the model, the network took the whole sequence as input, and its
target was the DTW transformed TTS utterances.

Our implementation is available on GitHub1.

1https://github.com/lkopi/deidentification
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4.2 Objective evaluation

To show that the trained network producing quality outputs at utterance level, we
conducted two quantitative experiments.

The first experiment concerned ASR accuracy. We uploaded the de-identified
network outputs to Google Cloud Speech-to-Text system and quantified the differ-
ence between the true and the predicted transcript.

Precision values are given in Table 1. First, we measured the TTS voices (with-
out applying DTW). It reached 97% ASR accuracy. The DTW aligned TTS reached
93%. ASR accuracy, i.e., a 4% drop was found. The tested DNNs performed well
on the TIMIT data set, producing well understandable speech after synthesization.
Intriguingly, they mostly achieved 80-85% ASR accuracy, only, a relatively large
drop compared to the 93% goal.

Cloud-based ASR services improve constantly. One can expect that the perfor-
mance will increase over time. We found that the ResNet and Dense architectures
marginally outperformed the others.

In the second experiment, we evaluated Mel-Cepstral Distortion (MCD) [19]
between de-identified Dense network outputs and the aligned TTS signals. MCD
is given by the following equation:

MCD[dB] =
1

N

N∑
n=1

10

log 10

√√√√2

D∑
d=1

(cn,d − ĉn,d)2, (9)

where N is the number of frames in the analysis, D is the number of coefficients,
cn,d and ĉn,d are the dth coefficient of the nth frame of the target and the predicted
MCEP vector, respectively.

The final MCD values were obtained by averaging over all 1,680 test sample
pairs of the TIMIT corpora using the Dense architecture. The mean and standard
deviation values are presented in Fig. 2 for our method (last column) together with
values available in the literature. Our method seemingly outperformed its baselines,
however other methods listed in the figure were trained on different datasets, so

Table 1: Details of the objective evaluations on the TIMIT database. The average
and the standard deviation of the Letter Accuracy Rate (LAR) measured with
Google Cloud Speech-to-Text system is presented for the proposed architectures
and input features. Notation: “ilF0” means interpolated logF0.

Method Architecture
ASR (LAR) precision using the following features:

logF0 + MCEP +
BAP

ilF0 + MCEP +
BAP

ilF0 + MCEP +
BAP + deltas

Dense 5 dense 0.77 ±0.17 0.85 ±0.15 0.84 ±0.16
ConvNet 2 conv + 3 dense 0.76 ±0.17 0.82 ±0.17 0.82 ±0.15
C-BLSTM 3 conv + blstm + 3 dense 0.77 ±0.14 0.79 ±0.15 0.79 ±0.15
ResNet 4 residual + 3 dense 0.79 ±0.15 0.82 ±0.16 0.82 ±0.14
Wav2Letter 9 conv + 2 dense 0.76 ±0.16 0.79 ±0.17 0.77 ±0.16
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Figure 2: Mean Mel-Cepstral Distortion (MCD) values of various schemes:
Exemplar-based Nonnegative Matrix Factorizations (ENMF) [12] using 3000 ran-
domly selected source-target pair frames, VAE-pair [12], Bernoulli-Bernoulli RBM
(BB-RBM) [29], Gaussian-Bernoulli RBM (GB-RBM) [29] and our proposed
method.

a direct comparison is not possible. ENMF-3000 and VAE-pair were evaluated on
the VCC2016 Speech Corpus, and the BB-RBM and GB-RBM were ran on ATR
Japanese speech database. The figure only allows to give an impression about the
performance of our method.

4.3 Subjective evaluation

To confirm that our Dense network can properly de-identify human speech, we
conducted four qualitative experiments with human participants in an isolated en-
vironment. The synthesized outputs are intelligible and successfully de-identified.
The collection of the subjective tests is available online2.

In all four tests, the results were convincing, subjects performed like random
choice, see Table 2. Participants were unable to sense any of the relevant aspects
of the speakers. In both 6AFC tests, the task was to guess the number of speakers
(between 1 and 6). In the first 6AFC test, none of the subjects inferred accurately.
In the second 6AFC test, 4 subjects out of 22 predicted correctly, which matches
random guessing within tolerance.

5 Summary

We presented a deep neural network based speech de-identification method that
can map vocoder features of human speech to those of a generic TTS engine with
little or minimal loss of sound quality using the TIMIT data set. The novelty of
our scheme is that de-identification is based on speech-text sample pairs, which
are widely available in the speech processing community. In the resulting signal,

2https://people.inf.elte.hu/foauaai/deidentification
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Table 2: Results of the perceptual listening experiments. We report the average
and the standard deviation of the identification accuracy.

Task
# of
subj.

# of
samp.

Accuracy
mean ±std

Random
choice

A-not-B

22

20 0.56 ±0.15 0.5
Female/Male (2AFC) 15 0.51 ±0.15 0.5

# of Speakers 6 0 0.16
(6AFC) 6 0.18 0.16

the identity of the speaker is concealed, as confirmed by our perceptual listening
experiments.

A limitation of our technique is that the dynamics of the original speaker are
inherited due to the application of DTW. We hypothesize that this problem may
be alleviated by applying DTW in the loss function of the deep network. We leave
such studies to future work.

Our technique enables privacy-aware speech recognition for adults. The pro-
posed method is lightweight and can be used for collecting de-identified databases
when the privacy of the user is important, for example in cloud-based speech
services or in medical records. The fact that our method requires only speech-
transcript sample pairs is a very promising aspect for deep learning, which requires
large and high quality databases.
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Toolset for Supporting the Research of

Lattice Based Number Expansions

Péter Hudobaab and Attila Kovácsac

Abstract

The world of generalized number systems contains many challenging areas.
Computer experiments often support the theoretical research. In this paper
we introduce a toolset that helps to analyze some properties of lattice based
number expansions. The toolset is able to (1) analyze the expansions, (2)
decide the number system property, (3) classify and visualize the periodic
points.

The toolset is implemented in Python, published alongside with a database
that stores plenty of special expansions, and is able to store the custom prop-
erties like signature, operator eigenvalues, etc. Researchers can connect to
the server and request/upload data, or perform experiments on them.

We present an introductory usage of the toolset and detail some results
that has been observed by the toolset. The toolset can be downloaded from
http://numsys.info domain.

1 Introduction

The generalization of positional number representations to a wide range of digit
sets or to higher dimensions is a fascinating story. Grünwald (1885) investigated
negative-based, Kempner (1936), Knuth (1960), Khmelnik (1964), Penney (1965)
complex-based systems. From the 70’s Kátai, B. Kovács, Környei, Pethő (the
“Hungarian school”) and Gilbert examined systematically the radix extensions in
algebraic number fields. In the 90’s the topological aspects of radix representa-
tions were studied by Bandt, Indlekofer, Járai, Kátai, Lagarias, Wang, Vince, and
later by Akiyama, Thuswaldner and others. The canonical number representation
was generalized to arbitrary polynomial systems by Pethő (1989), and investigated
later extensively by many authors (incl. Akiyama, Brunotte, Kovács, Pethő, Rao,
Scheicher, Thuswaldner). The number system concept in general lattices was in-
vestigated first by Vince (1993). The algorithmic aspects of canonical (polynomial)
systems was initiated by Brunotte (2001) and for general lattices by the second
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author (2000). Recently, a special type of radix systems (SRS) studied in length
by Thuswaldner and his co-workers (the “Austrian school”).

2 Preliminaries

Let Λ be a lattice in Rn and let M : Λ → Λ be a linear operator such that
det(M) �= 0. Let furthermore 0 ∈ D ⊆ Λ be a finite subset. Lattices can be seen
as finitely generated free Abelian groups and have many significant applications
in pure mathematics (Lie algebras, number theory and group theory), in applied
mathematics (coding theory, cryptography) because of conjectured computational
hardness of several lattice problems, and are used in various ways in the physical
sciences. We note that the number system research in general lattices comprises
also the orders.

Definition 1. The triple (Λ,M,D) is called a number system (GNS) if every
element x of Λ has a unique, finite representation of the form

x =

L∑
i=0

M idi ,

where di ∈ D and L ∈ Z (L+ 1 is the length of the expansion).

Here M is called the base and D is the digit set. It is easy to see that similarity
preserves the number system property, i.e., if M1 and M2 are similar via the matrix
Q then (Λ,M1, D) is a number system if and only if (QΛ,M2, QD) is a number
system at the same time. If we change the basis in Λ a similar integer matrix can
be obtained, hence, there is no loss of generality in assuming that M is integral
acting on the lattice Zn. If two elements of Λ are in the same coset of the factor
group Λ/MΛ then they are said to be congruent modulo M . The following theorem
gives a necessary condition for the number system property.

Theorem 1. If (Λ,M,D) is a number system, then (1) D must be a full residue
system modulo M , (2) M must be expansive, and (3) det(In −M) �= ±1. (unit
condition). If a system fulfils the first two conditions then it is called a radix system.

We note that the theorem in this form was stated first in [9] but it was well-
known and used much earlier by Kátai and Vince. The full residue system property
can be decided easily using Smith normal form [8]. Algorithms, that calculate the
eigenvalues of M exactly in a finite number of steps exist only for a few special
classes of matrices. For general matrices, iterative algorithms produce approximate
solutions. In polynomial systems, where M is the companion of a monic inte-
ger polynomial f , deciding the Schur or Hurwitz stability of f is computationally
equivalent with the expansivity check. Verification of the unit condition is trivial.

Write ϕ : Λ → Λ, x
ϕ�→ M−1(x − d) for the unique d ∈ D satisfying x ≡ d

(mod M). Since M−1 is contractive and D is finite, there exists a norm ‖.‖ on Λ
and a constant C such that the orbit of every x ∈ Λ eventually enters the finite
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set S = {x ∈ Λ | ‖x‖ < C} after repeated application of ϕ. This means that the
sequence x, ϕ(x), ϕ2(x), . . . is eventually periodic for all x ∈ Λ. Clearly, (Λ,M,D)
is a number system iff for every x ∈ Λ the orbit of x eventually reaches 0. A point
p is called periodic if ϕk(p) = p for some k > 0. The orbit of a periodic point p is a
cycle. The set of all periodic points is denoted by P. The signature [l1, l2, . . . , lω]
of a radix system is a finite sequence of non-negative integers in which the periodic
structure P consists of #li cycles with period length i (1 ≤ i ≤ ω). Clearly, the
signature of a number system is Sig = [1].

The following problem classes are in the mainstream of the research.

• For a given (Λ,M,D) the decision problem asks if the triple forms a number
system or not.

• For a given (Λ,M,D) the classification problem means finding all cycles (wit-
nesses).

• The parametrization problem means finding parametrized families of number
systems.

• The construction problem aims at constructing a digit set D to M for which
(Λ,M,D) is a number system. In general, construct a digit set D to M such
that (Λ,M,D) satisfies a given signature.

We note that the algorithmic complexity of the decision and classification problems
are still unknown.

The fundamental domain or set of “fractions” in (Λ,M,D) can be defined as

H =

{ ∞∑
i=1

M−idi : di ∈ D

}
⊆ Rn .

Theorem 2. (a) H is compact. (b) x ∈ P ⇔ x ∈ −H.

The compactness was proved by many authors (see e.g. Vince [15]). The ⇒
part of (b) was proved in [9]. The other direction is obvious as well, otherwise 0
would have at least two different representations.

The theorem means that in order to determine the periodic points it is enough
to localize the lattice points in −H. There are two different approaches to overcome
this problem: the IFS-method (see [8, 10]), and the covering method (see [8, 4]),
which was optimized by the authors [6]. The idea of the latter is that we can put the
compact set −H into a box B in which the integer elements are easily enumerable.
Then, we can compute the pairs (x, ϕ(x)) for all x ∈ B, and finally, we determine
the cycles applying one of the cycle finding methods.

There are other algorithms for solving the decision/classification problems.
Based on the method of Vince [15], Brunotte [2] described a digit-propagation
algorithm for polynomial systems with canonical digits. Later, his method was gen-
eralized for arbitrary operators and digit sets [4]. The shortcoming of this method
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is the sequential nature of the digit propagation, however, there is an algorithmic
attempt to overcome this disadvantage [14].

Let f(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1 + xn be an integer (monic)
polynomial. Let us denote the factor ring Z[x]/(f) by Λf . Then Λf is a lattice
and all the problems regarding number expansions in Λf can be formulated in Zn,
where M is the companion of f . If f is irreducible then Λf is isomorphic to Z[θ]
where f(θ) = 0 in an appropriate extension of Q. Hence, if the digit set D is
restricted to be a set of non-negative numbers D = {0, 1, . . . | a0 | −1}, we get a
straightforward generalization of the traditional number systems in Z. In this case
the digit set is called canonical. If the radix system (Λf , θ,D) satisfies the unique
representation property of Definition 1 with some canonical digit set D then it is
called a canonical number system (CNS). The notion of canonical digit sets can
be extended to form a j-canonical set Dj = {0, ej , . . . , (| a0 | −1)ej} ⊂ Zn (ej
is the jth unit vector) [8]. There exists a canonical number system in OK – the
ring of integers of the algebraic number field K – if and only if there is a power
integral basis in OK [12]. We note that canonical digit sets may or may not exist in
different lattices and canonicity depends on the chosen basis. The symmetric digit
set is formed by those integer multiples of ej which are closest to the origin, and
was introduced by Kátai [7]. The adjoint digit set consists of those lattice points
which are in det(M)

[ − 1
2, ,

1
2

)
. The dense digit set — in which each digit has the

smallest norm in its residue class — were introduced and used extensively by the
second author. We note that the adjoint set is a dense one in a special basis.

3 The toolset

In order to be able to support the theoretical research we built a Python based
toolset that aid at the investigations and experiments. The toolset implements some
basic functionalities for number expansion research. It offers multiple ways to solve
the decision or classification problems from a simple brute force to probabilistic
solutions. In this section we give a short outline of the functionality of the toolset.

3.1 Construction

The toolset contains multiple classes with different purposes. The main class,
named RadixSystem, implements a Radix System that we can create with a base
and a digit set. The base matrix can be set directly, but there is a function to con-
vert a polynomial to a matrix (creating its companion) as well. The digit set can
be passed directly with a list, exactly determining the digits, or with a generator,
that generates specific types of digit sets (RadixSystemSymmetricDigits, RadixSys-
temCanonicalDigits, RadixSystemShiftedCanonicalDigits, RadixSystemAdjointDig-
its, RadixSystemDenseDigits).

An example for creating the following radix systems can be seen in the Listing 1:(
Z2,

[
0 −7
1 −7

]
,

{[
0
0

]
, · · · ,

[
6
0

]})
and

(
Z2,

[
0 −7
1 −7

]
,

{[−3
0

]
, · · · ,

[
3
0

]})
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Listing 1: Example of construction with the toolset

rs = RadixSystem([[0,-7],[1,-7]],

[[0, 0], [1, 0], [2, 0], [3, 0], [4, 0], [5, 0], [6, 0]])

#Using digit set generator

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemCanonicalDigits())

#Creates the same system with symmetric digit set

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemSymmetricDigits())

3.1.1 Necessary conditions

A radix system object can be created by the toolset, but if the necessary condi-
tions for the computations do not hold then the toolset will throw the appropriate
exception. The necessary conditions (see Section 2) mean that the base operator
has to be regular (det(M) �= 0) (otherwise the system throws a RadixSystemRegu-
larityException exception), the digit set must be a full residue system modulo the
base (otherwise the system throws the RadixSystemFullResidueSystemException)
and the base operator has to be expansive.

The RadixSytem class does not check the unit condition (third necessary con-
dition of Theorem 1) — because it is not a condition for a Radix System, only for
a Number Nystem — the class has a function, named checkUnitCondition, that
returns true if the radix system fulfils that condition.

3.2 Expansions

If the user wants to find the expansion of a lattice point in a specific system she
can apply the ϕ function which is implemented in phiFunction. Applying the
Smith Normal Form, the system performs the computation efficiently. Applying
the phiFunction iteratively the system computes the orbit of a point containing the
periodic parts (getOrbitFrom). Recall that if the orbit of a lattice point ends at
zero then it has a finite expansion (hasFiniteExpansion).

Listing 2: Example of using ϕ based functions

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemSymmetricDigits())

print(rs.phiFunction([2,3]))

print(rs.getOrbitFrom([6,3]))

# Result:

# [3, 0]

# [[6, 3], [-4, -1], [6, 1], [-6, -1], [6, 1]]
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3.3 Covers

Based on Theorem 2 (x ∈ P ⇔ x ∈ −H) the system determines a Box that
contains all the periodic points (getCoverBox ). The volume of this Box can also
be calculated (getCoverBoxVolume) and a Python generator can be obtained to
iterate through all of the points within the Box (getPointsInBox ). It is a simple
brute force algorithm for GNS decision (detailed further in Subsection 3.5).

There is a heavyweight algorithm getCycles that calculates all of the orbits from
all of the points of the Box and returns all of the cycles. Clearly, if the getCycles
returns only the zero point then the radix system is a number system.

3.4 Drawing tools

The toolset has a class for drawing different aspects of number expansions. The
user can analyze the expansions by the expansion graph. By default, it shows the
trajectory from all of the points inside the Box. In Figure 1 we can see a radix
system that does not fulfil the number system property (since it has a non-trivial
cycle [−1, 1]). In Figure 2 we can see a plot of some fraction sets.

Figure 1: An expansion graph.
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Figure 2: A fraction set of [[0,−3], [1, 2]] and [[0,−5], [1,−4]] with canonical digit
sets.

3.5 Decision techniques

In this subsection we discuss some decision methods that can be used by the toolset.

3.5.1 Naive decision

The naive decision method checks the orbits from all points of the cover Box and
if there is only one periodic point (should be the zero) then returns true.

Listing 3: Example of how to call a naive decide method of the toolset

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemCanonicalDigits())

print(rs.decideGNS())

3.5.2 Volume optimization

The naive method iterates through all of the points within the bounding Box. How-
ever, since integer similarity transformations preserve the number system property,
we can try to change the basis where the bounding box is smaller. In [4] the authors
suggested a simulated annealing genetic algorithm that finds a similarity transfor-
mation minimizing the size of the cover box. In Figure 3, we can see an example
how the algorithm decreases the volume of the possible space of periodic points.
For higher dimensions, the speedup is much higher.

Listing 4: Example of how to call start a cover box volume optimization

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemCanonicalDigits())

volumeOptimized = rs.optimize()

print(volumeOptimized.decideGNS())
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(a) Before optimization (b) After optimization

Figure 3: A fraction set of the operator [[0, -5], [1, -4]] applying the symmetric digit
set.

3.5.3 Two-step optimization

In [6] a method was suggested as an extension of the volume optimization. Besides
optimizing the volume the authors showed a method of minimizing the number of
multiplications in the function ϕ as well. The amount of multiplications is affected
by the Smith Normal Form computation and the inverse computation of the base.
If we have the two transformations we can iterate through all of the points of the
volume optimized space, transform into the ϕ optimized space and find there the
orbit.

Listing 5: Example of how to use the two-step optimization

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemCanonicalDigits())

optimizedVol, optimizeVolT = rs.optimize(returnTransformationAlso=True)

optimizedPhi, optimizePhiT = rs.optimize(

targetFunction = lambda actVal, T:

phiOptimizeTargetFunction(actVal, T,optimizeVolT.inverse()),

returnTransformationAlso=True)

transformMatrix = optimizePhiT * optimizeVolT.inverse()

print(optimizedPhi.decideGNS(startPointSource=optimizedVol,

pointTransform=transformMatrix))
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3.5.4 Length-n cycle

Based on our experiments, we observed that there are significantly larger number
of cases when the cycles are short. Therefore we try to find cycles directly based
on some digit combinations.

Considering the periodic points with length one, there is a d ∈ D for x ∈ P
where M−1(x−d) = x holds. We can reformulate this statement as x−d = Mx⇒
x −Mx = d ⇒ x = (I −M)−1d. In the algorithm we just simply iterate through
all of the digits and check whether the result is a lattice point. If so, we have found
a loop. If the digit set is small, this algorithm is really fast.

We can find length two cycles with the same technique. If there is an x ∈ P
length-two periodic point, then there are d1, d2 ∈ D, where M−1(M−1(x − d1) −
d2) = x ⇒ M−1(x − d1) = Mx + d2 ⇒ x = M2x + Md2 + d1 ⇒ x = (I −
M2)−1(Md2 + d1). If is there are d1 and d2 digits where x is a lattice point then
we have found a cycle.

In general, for an length-n periodic point ϕn(x) = x, hence there are d1, ..., dn ∈
D digits, where x = (I −Mn)−1(

∑n
i=1 M

i−1di) is a lattice point.
The weakness of this algorithm is its exponential complexity, i.e., if the digit

set is big or there is not any short cycle in the system, then the algorithm finds no
cycles (even if it exists).

Listing 6: Example of how to find the directly with fixed lengths cycles

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemCanonicalDigits())

print(rs.findNLengthCycle(1))

print(rs.findNLengthCycle(2))

# Result:

# [[0, 0], [0, 0]]

# [[[12, 2], [-12, -2], [12, 2]], [[6, 1], [-6, -1], [6, 1]], [[-18, -3],

[18, 3], [-18, -3]]]

3.5.5 Randomized method

For a given cycle we call all of the lattice points that lead to that cycle by iteration
of ϕ as the basin of the cycle. Our experiments showed that at general radix
systems most of the orbits lead to a non-zero periodic point. Hence, we can choose
random lattice points uniformly and check the orbit to find witnesses (disproving
the GNS property).

Listing 7: Example of how to run random test to find non-zero cycle

rs = RadixSystem([[0,-7],[1,-7]], RadixSystemSymmetricDigits())

print(rs.probGNSTest(numberOfTrials=100))

# Result:

# [-6, -1]
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3.5.6 Smart decide

The smart decide algorithm estimates the runtime of the different methods and
suggests the best algorithm to solve the decision problem. As we can see in Figure
4 the naive decision time increases faster than the smart decision function.

The algorithm has several steps:

1. If the cover Box is “small”, simply brute force the space with the naive
method; END.

2. Otherwise search length-n periodic points for small n directly; If it finds a
non-trivial witness, return, otherwise continue with the next step.

3. Calculate the orbit of the “close-to-zero” lattice points (maximum the ab-
solute value of det(M)); if it finds a non-trivial witness, return, otherwise
continue with the next step (the closeness is in the sense of the infinity norm)

4. Calculate orbits from uniformly chosen random lattice points; if it finds a
non-trivial witness, return, otherwise continue with the next step.

5. Volume and ϕ optimization.

Figure 4: Runtime comparison of the simple decide method and the smart one by
the size of the cover Box
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3.6 Validation

In order to validate the correct functionality of the toolset we initiated multiple
levels of testing.

Let p(x) = c0+c1x+c2x
2+ . . .+cn−1x

n−1+xn be the characteristic polynomial
of the operator M . The following theorems were applied for validation:

• If the strictly dominant condition

k∑
i=1

|ci| < |c0|

holds then thenM is expansive. This is an immediate consequence of Rouché’s
theorem.

• If there is a norm for which ‖M−1‖ < 1/2 then M can serve as a basis for a
number system with dense digits [5].

• If 1 ≤ cn−1 ≤ · · · ≤ c1 ≤ c0 then the companion of p(x) serve a basis for a
number system with canonical digits [11].

• If the strictly strong dominant condition

2

k∑
i=1

|ci| < |c0|

holds then the companion of p(x) can serve as a basis for a number system
with symmetric digits [5].

We tested the toolset with known special cases of number systems, e.g. in [1]
the 2nd theorem states that if

c2, .., cn−1,

n∑
i=1

ci ≥ 0

and the strictly strong dominant condition holds then the companion of p(x) is a
number system with canonical digits. We used listing of GNS examples in multiple
articles [13, 3], and we sampled polynomials and operators randomly for validation
as well.

4 Database

The research area has plenty of unsolved problems. Most of the problems have
solutions for a specific forms of radix systems. To state and validate various con-
jectures it is necessary to collect and filter the partial results and sample candidates.
Therefore we implemented a server-side application which is able to store various
data on number expansions. At present the database contains more than 10 000
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items. The uploaded data are about companions of expansive polynomials with
constant terms ±2,±3,±5, ±7 together with their number system status and wit-
nesses, etc. We used canonical and symmetric digit sets as well, and we calculated
many combinations of product systems.

The data server allows to read data from the server publicly via a JSON API
and the registered users with own API token can send new items/properties to the
database. The items can be filtered by any custom property.

The server already stores plenty of properties, like eigenvalues, eigenvectors,
periodic points and orbits, classification details, etc.

Listing 8: Example of how to request candidates from the public database

result = callServer(’http://numsys.info/radix-system/list’,{

’.volume’:’<1000’,

’.dimension’:’3’,

’size’:5

})

for r in result:

rs = RadixSystem(r[’base’],r[’digits’])

print(r[’base’],r[’digits’],rs.smartDecide())

# Result:

# [[0, 0, -2], [1, 0, -2], [0, 1, -2]] [[0, 0, 0], [1, 0, 0]] True

# [[0, 0, -2], [1, 0, 0], [0, 1, -1]] [[0, 0, 0], [1, 0, 0]] False

# [[0, 0, -2], [1, 0, -1], [0, 1, -1]] [[0, 0, 0], [1, 0, 0]] True

# [[0, 0, -2], [1, 0, 1], [0, 1, 0]] [[0, 0, 0], [1, 0, 0]] True

# [[0, 0, -2], [1, 0, 0], [0, 1, 0]] [[0, 0, 0], [1, 0, 0]] True

5 Experimental observations

The database helps the researchers filtering out some special data. Analysing the
uploaded data we have some observations.

• In general, the non-zero basins are significantly large on average. Based on
this observation the randomized method is a viable alternative for checking
the GNS property (more detail in Section 3.5.5).

• In general, the cycle lengths are relatively short. Therefore we suggest the
length-n cycle method for the decision, if possible (detailed in Section 3.5.4.)

• There is always at least one lattice point that leads to a non-zero periodic
point in the | det(M) | neighbourhood of the origin (in infinity norm).

• More than 700 samples in the database suggested the following theorem:
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Theorem 3. Suppose that the system (Λ,M,D) is GNS. Then (Λ,Mn, Dn) is GNS
for all n ∈ N, where

Dn = {d0 +Md1 +M2d2 + . . .+Mn−1dn−1 : di ∈ D}

taking all possible combinations for the digits di above.

Proof. Let n > 1 be fixed. Since (Λ,M,D) is GNS therefore all x ∈ Λ can be
written uniquely in the form

x = d0 +Md1 + · · ·+Mkdk , (1)

where di ∈ D. Equation (1) can be rewritten as

x = (d0 + · · ·+Mn−1dn−1) +Mn(dn + · · ·+Mn−1d2n−1) + · · ·+Mkdk .

Since the coefficients of each Mnj are digits from Dn for all j ≥ 0 therefore the
system (Λ,Mn, Dn) is GNS as well.

6 Conclusion and further work

The paper introduced a toolset for supporting lattice-based number expansion com-
putations. The toolset was implemented in Python. Besides, the authors built a
database storing different radix system parameters and offers the researchers to
upload and search in this database. In the future we plan to improve, extend
and distribute the toolset and try to find a mathematical proof for some of our
observations.
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Budapest, Hungary, 2001.
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[12] Kovács, B. Integral domains with canonical number systems. Publ. Math.
Debrecen, 36:153–156, 1989.
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Taxonomy for The Trade-off Problem in

Distributed Telemedicine Systems∗

Zoltán Richárd Jánkiab and Vilmos Bilickiac

Abstract

Web systems are facing a great challenge because of the increasing amounts
of data and demand for features. By meeting these requirements, distributed
systems have gained ground, but they bring their own problems as well. These
issues are present in telemedicine. Since telemedicine is a wide field, various
phenomena have different effects on the data. Availability and consistency
play important roles in telemedicine, but since the CAP and PACELC theo-
rems describe the trade-off problem, no one can guarantee both capabilities
simultaneously. Our study seeks to get an in-depth view of the problem
by considering real world telemedicine use-cases and we present an easily
tuneable system with a taxonomy that assists the design of telemedicine sys-
tems. Model checking verifies the correctness of our model and data quality
measurements. During the evaluation, we found interesting states and the
consequence of this is called hypothetical-zero-latency.

Keywords: taxonomy, data quality, cache, trade-off, telemedicine, distributed
system

1 Introduction

Telemedicine is one of the areas of healthcare that is developing quickly and it is
finding a place in modern medicine. The number of electronic healthcare records
(EHR) is not only growing rapidly, but it raises several Information Technology (IT)
issues as well. In the past decades, several theoretical and practical IT solutions
have eased the continuously arising problems, like standardizations, systems, tools
and cloud solutions. Naturally, new solutions should address new issues, so it is a
neverending story [8].

Installing standardization can markedly influence the behaviour of a system.
In Telemedicine, the well-known Health Level Seven’s (HL7) Fast Healthcare In-
teroperability Resources (FHIR) specification [13] is a widely accepted and used
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standard that was elaborated for exchanging healthcare information electronically.
It provides a loose data model for developers that describes the different entities of
healthcare well. In telemedicine, not just the data model can be standardized, but
also the communication among the services.

As the size of the databases - containing EHRs - is growing quickly, telemedi-
cine systems are continuously developing. Moreover, there is a significant number
of computing tasks in healthcare that require a variety of resources. Most of the
interconnected telemedicine applications are Web-based and in many cases, the
backbone is a distributed system. In most of telemedicine use-cases, data paths
between endpoints are complex, so simple client-server architectures are very un-
common today. A complex data path contains plenty of servers, caches, compu-
tational units that make aggregations on data and serve readily available services.
So, system logic and data storages are scattered and systems consist of most than
just a thin client and a monolithic server. Recent mobile end devices have unused
resources, but computing tasks are resource-intensive processes. However, there are
privacy concerns regarding data storages. In many cases, regulations do not allow
us to keep patient data in remote data centers. Thus, in telehealth, fog computing
is becoming more and more popular. In fog computing, computation tasks are
outsourced to edge devices in order to keep data as close to the source as possible.
Kraemer et al. introduced use-cases in [17], and how complex data paths can be
created.

Sometimes applying fog computing is not necessary or not feasible, but closeness
of data is essential because of huge communicational distances. Long data paths
can lead to noticeable delays. In order to minimize latency between clients and
servers, caches can be placed on data paths. Content Delivery Networks (CDN)
form the so-called transparent backbone of Internet in charge of content delivery.
As they effectively shorten physical distances, latencies are reduced. CDN stores
a cached version of content at different geographical locations in order to make it
available for many different locations far away from each other. CDNs are not only
used in industry sectors, but also in telemedecine [10].

Besides the advantages of distributed systems, there are some disadvantages as
well. Eric Brewer states that there are no distributed systems that can guarantee
at most two of the three desirable properties: consistency (C), availability (A) and
partition-tolerance (P) [6]. It is hard to find the right balance among the properties
mentioned in the CAP theorem. In our recent paper [15], we presented a system
model that provides an approach to resolving the consistency and availability trade-
off problem of distributed systems. We examined the data path of one telemedicine
use-case and checked all the possible states in order to ascertain where we can use
caches and how we must configure them in order to guarantee a strong consistency
level. This paper completes our previous work with a taxonomy that classifies
telemedicine use-cases by considering the offline status where real-world examples
and data paths are attached to the groups. Based on the strength of measured
consistency, we also calculated the quality of data and the model checking produced
an interesting phenomenon of distributed systems.
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2 Related work

There are big challenges in many countries on account of the aging population and
the rise in chronic diseases while trying to reduce costs, but maintain high-quality
care for patients. Fortunately, telemedicine can reduce the burden on nurses and
practitioners. The number and variety of telemedicine applications is continuously
increasing and finding uses. In 2020, in Hungary, the legislative options of telecon-
sultation was initiated in healthcare [14].

One of the most important requirements is integrability when designing a te-
lemedicine system. Standardized systems can readily exchange healthcare data
among themselves. HL7’s FHIR [13] is one of the most well-known standards that
improves system integrability. Although FHIR was designed for relational database
systems, it can be adapted to NoSQL database systems as well.

Choosing the most appropriate database system for a project is a big challenge.
We have to take into account the fact that cloud solutions are widespread, and they
are used not just for common data storage and computing, but also in telemedicine
[25]. Clouds have enhanced the use of distributed systems, but they may introduce
several problems in spite of increasing data and transactional throughput and plac-
ing data near clients. Eric Brewer’s CAP theorem clearly describes the limitations
of such a system, but it does not constrain the capabilities of a system. Daniel
J. Abadi introduced the so-called PACELC theorem [1], which is an extension of
CAP. PACELC states that in the case of network partitioning (P), a trade-off has
to be made between availability (A) and consistency (C), but else (E), when the
system is running normally in the absence of partitions, another trade-off has to be
made between latency (L) and consistency (C). Since telemedicine is diverse, it is
not trivial to find the proper balance between the capabilities when designing a sys-
tem. Thus, an appropriate taxonomy can help designers to develop a telemedicine
system that most effectively meets all functional and non-functional requirements.

Peter Bailis et al. presented the Probabilistically Bounded Staleness (PBS)
method [2] that shows how much time has to elapse for eventual consistency in
quorum-replicated data stores like Apache Cassandra. In their study, t-visibility
and k -staleness metrics describe the trade-off between availability and consistency,
and the WARS model represents latency. Their results were obtained by Monte
Carlo simulations and good approximations can be achieved. Although these met-
rics describe the problem very well, the results could be more accurate if a formal
system model was developed and the entire graph space was analyzed.

Furthermore, Microsoft designed Azure Cosmos DB as a tuneable database sys-
tem with 5 consistency levels starting from strong to eventual [22]. They elaborated
a system specification using the Temporal Logic of Actions (TLA) and its TLA+
formal language, and evaluated their model using TLA Checker (TLC) [18]. Ama-
zon also created TLA+ specs about their systems [23]. TLA+ and TLC together
form a valuable toolkit because instead of making approximations, they construct
a state graph from the possible states that the checked system can go into and
make a graph traversal. We used the same toolkit for finding the proper trade-off
between availability and consistency in our telemedicine systems. Also, the whole
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state space is available after the execution of TLC, so every possible state can be
analyzed separately. However, TLA+ is not the only formal language that can
model a system in action. Maude [4][21] is another specification language and tool
for modelling distributed systems. Lots of tools were implemented that can work
with Maude and can be used for specific models. Since TLA+ and its toolbox is
always kept up-to-date and contains everything in one place, we decided to use
TLA+.

These studies focus on in-system behaviour, even though there are also ex-
ternal factors that can significantly influence the availability and consistency of
distributed systems. Quality of Service (QoS) gives the overall performance of a
service. Phumzile Malindi [20] collected the demanded requirements of network pa-
rameters after taking into account different telemedicine areas. These parameters
were throughput, delay, jitter and context. It was shown via simulations how a net-
work should be configured and which data compression guarantees better quality.
These parameters can help us to perform a more accurate and realistic state graph
analysis in a system.

Lastly, many studies investigated how latency affects different telemedicine ar-
eas [3][16], but only a few of them were concerned with consistency in telehealth.
Although Nekane Larburu et al. used delay and consistency parameters for Quality
of Data (QoD) measurements in a Clinical Decision Support System (CDSS) [19],
they did not use metrics to measure the consistency of the MobiGuide system. We
made metric-based evaluations in a telemedicine system that shows how latency
affects both consistency and data quality.

3 Our results

In our paper, we explain the following results in distributed telemedicine systems.

• Here, a new methodology for modelling information critical heterogenous sys-
tems: we stated formal definitions of processes in complex distributed health-
care systems. Based on system model evaluations, we elaborate a taxonomy
that makes suggestions for particular telemedicine use-cases on how the data
path should be constructed.

• The verification of information critical systems and metrics: the implemented
system model is verified via a model checker that builts up a state graph
containing possible states of the system. We evaluate the whole state graphs
by comparing consistency among different states.

• New metrics for reliability of data: we present a distance-based metric for the
data quality measurement of numeric data portions in telemedicine systems.
Moreover, after evaluating state graphs of our system models, we will visualize
the trend of data quality during graph traversal.
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4 Challenges

Creating telemedicine system specs raised a number of questions that we listed as
challenges. In this section, we will focus on the affected areas listed in Table 1.

Table 1: List of challenges in distributed telemedicine systems.

No. Challenge
1 Consistency measurement
2 Trade-off between availability and consistency
3 Offline states
4 QoS
5 QoD

4.1 Consistency measurement

Performing a consistency measurement is not a simple problem. First of all, one
needs to find proper metrics that describe consistency well. Furthermore, consis-
tency can be measured via simulations and model checking. Eventually, consistency
may vary due to the behaviour of external components. Our system specs and ver-
ifications are fine for using metrics of the PBS model with model checking and
also for taking into account external factors. Here, k -staleness is the parameter
for finely tuning the consistency of any part of the data path. A lower k value
guarantees stronger consistency. In this context, consistency can be defined as in
Definition 1.

Definition 1. Any read on a data item x returns a value corresponding to the
result of at most a k-version older write on x.

(xn ∈ X) ∧ (xn−k → xn)⇒ (xn−k ∈ X)

4.2 A trade-off between availability and consistency

Firstly, it is difficult to choose the best database system for a project and it is
almost impossible to find one that is universally acceptable. Since there are many
different areas in telemedicine, which database system is the best choice depends on
the context. Recently, most of the telemedicine systems use some kind of cloud so-
lution and they are based on distributed systems, hence as the CAP and PACELC
theorems state, a trade-off between availability and consistency has to be made.
It is not clear which outcome of trade-off is the best, because it is always con-
text dependent, especially in telemedicine. One solution is the so-called polyglot
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persistence where we use multiple data storage technologies and they are varied ac-
cording to needs across an application. Categorizations for database systems using
the PACELC theorem [9] have been published. For this purpose, we created a Soft-
ware Development Kit (SDK) in which database systems are easily interchangeable
across an application. Furthermore, we modelled and verified a system in which
trade-off is easily tuneable with a k -staleness parameter.

4.3 Offline states

Secondly, any part of a system can go in an offline state. Offline state in telemedicine
means that the client application or the server-side is not available at a given time.
It is also possible that both of them are out of operation. The offline state and
availability are closely related, since offline status can lower availability. However, it
can be related to partitioning depending on the telemedicine use-case. In case of a
system that is designed for general practitioners for daily usage, partitioning cannot
cause problems because only one entity writes data in the system. On the other
hand, in a remote otolaryngological system, when a general practitioner and more
than one specialist can make diagnosis, partitioning can cause problems. In case
of partitioning, consistency can be eventually guaranteed, but the system operates
continuously. In order to keep availability at a high level, we recommend placing
content delivery networks (CDN) and caches on the data path. Although caches
assist availability, consistency must be abandoned. In our system model, we placed
caches on the data path and configured it with a staleness parameter in order to
get a high consistency level.

4.4 Quality of Service

QoS is a challenge in telemedicine systems that affects mainly realtime services.
Teleconsultation and telesurgery are the two most common areas of realtime te-
lemedicine. However, there are services in these categories, but they also require
realtime communication. There is a close connection between QoS parameters and
networking, and network configuration can improve QoS. These configurations can
be implemented in the patient’s home and in the clinic as well.

4.5 Quality of Data

The QoD measurement is another context dependent concept. Its application
greatly depends on the type of dataset and the goal of data usage. In teleme-
dicine systems, the most rapidly changing data portions are numeric data sets.
QoD calculations usually contain an aggregation of distance function results that
describe inconsistencies between the real-world phenomena and the data obtained
from resources. Latency can be found everywhere in a system as a variable and it
strongly affects data quality. Hinrichs’ Definition 2 describes what QoD means in
our context, in which xdb represents data stored in a database and xreal stands for
real-world data at a given t point [19]. We took measurements on the data quality
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and learned how data can be corrupted due to latency and multiple data-process
instances.

Definition 2.

Q(x) :=

⎧⎨⎩
1

d(xdb, xreal) + 1
, if xdb �= xreal

1, otherwise

5 Telemedicine use-cases

We examined data paths in active telemedicine projects to see whether the offline
status is allowed or not. Offline capability is important because it can efficiently
improve availability even when consistency worses. However, in our recent paper
[15], we showed that consistency level can also be increased if we set constraints
on the maximal staleness of the data. There, we introduced our modelling ap-
proach and constructed the first formal definitions of the core processes in a dis-
tributed telemedicine system. It was also shown how the metrics are used during
the model checking, and how the results can be evaluated. In that study, we pro-
posed what benefits and drawbacks can arise from using lower k parameter, but
in a smaller state graph. In Table 2, we list some real telemedicine scenarios with
their availability and consistency requirements. Mainly, these use-cases determine
the development of our taxonomy. Figure 1 shows a schematic illustration of these
telemedicine scenarios.

Table 2: Real telemedicine use-cases with a trade-off

Telemedicine use-case Availability Consistency
Offline status

enabled
Teleconsultation

with remote monitoring
X

Da Vinci surgery X
Remote diagnostic
in otolaryngology

X X

Remote monitoring
in ICU

X X

Remote monitoring
in CAPD

X X

Remote monitoring
in spirometry

X X
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Video

Teleconsultation
with remote monitoring

Da Vinci
surgery

Remote diagnostic
in otolaryngology

Remote
monitoring

in ICU

Remote
monitoring
in CAPD

Remote
monitoring

in spirometry

Figure 1: Data paths in real telemedicine use-cases

5.1 Teleconsultation with remote monitoring

In this use-case, a video conference is set up between a patient and doctor while
the remote monitoring of vital signs is being performed. Both video chat and
monitoring are carried out in realtime, and due to this the need for consistency
overrides availability. Since consistency is crucial here, the system does not include
caches. Sometimes raw data can be aggregated (e.g.: ECG signal processing)
and this can cause inconsistencies for a short time irrespective of the consistency
configurations.

5.2 Da Vinci surgery

Da Vinci surgery is one of the most well-known telesurgery methods that is used
in several surgical procedures. The operation is carried out by a specialist, who
controls a robot remotely while the patient’s vital signs are monitored remotely.
As a surgical procedure also occurs in realtime, consistency is preferred over avail-
ability. Caching is disabled in order not to lose a high consistency level. Some
aggregations may also occur in the cloud, and this can lead to inconsistent states
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for a certain period. QoS is very important in telesurgery, because high latency
can make a surgical procedure unstable. A stable network connection, minimized
jitter and delay are all necessary for this.

5.3 Remote diagnostic in otolaryngology

One of our telemedicine projects that was supported by the European Union (EU)
is the development of a remote diagnostic system in otolaryngology [5]. Patients
visit their general practitioner, who does not hospitalize patients, but takes photos
and records a video of body areas of patients. After uploading images and videos, a
referral is forwarded to a medical specialist who makes a diagnostic report based on
the received frames. There are no realtime communications between two doctors,
and no recent updates can be found in the data path, so availability has a higher
priority than consistency. Eventual consistency is sufficient in this system, so we
can further improve availability with caches. Also, there is no possibility of staleness
in the data.

5.4 Remote monitoring in ICU

The Intensive Care Unit (ICU) is a department of a hospital that provides intensive
care medicine to patients with life-threatening illnesses. Here, continuous remote
monitoring is essential and often decisions have to be made in seconds. Thus
consistency is more important than availability. However, availability also plays an
important role, because in an offline state, the last visible record may be decisive.
For this purpose, caches can be placed on data paths, but they have to be configured
with low k parameter values in order to get up-to-date data.

5.5 Remote monitoring in CAPD

Continuous Ambulatory Peritoneal Dialysis (CAPD) is another EU-financed tele-
medicine project [5] and its system is maintained by us. This service monitors
the patient’s dialysis fluid intake and outcome. In addition, blood pressure and
weight are measured, but the time elapsed between measurements may be several
hours. In this case, eventual consistency is also acceptable, so availability has the
highest priority. Since there are no rapid changes (rapid requests) in the data sets,
inconsistency can never really occur, so caches can be configured with the higher
k parameter values. The decision support system generates alerts if the patient’s
measured values are over or under a given threshold. Due to the offline state, a
possible alert may be missed.

5.6 Remote monitoring in spirometry

Next, spirometry remote monitoring system is a quite similar EU-financed teleme-
dicine project [5]. Patients have medical tests at home and this gives data on the
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volume of air being inhaled or exhaled as a function of time. Raw data leaves it us-
ing a spirometer and it is sent to a mobile device via a Bluetooth connection. Tests
are repeated 3 times in one measurement. The mobile device sends raw data to
the cloud that makes the following aggregations: FEV1, FVC, PEF, MMEF2575,
FEV1/FVC. A pulmonologist is interested in the best aggregated values from 3
tests. A pulmonological evaluation may take place a few hours later, so eventual
consistency is appropriate. However, QoD can present interesting phenomena, since
tests are performed in seconds, hence raw data is periodically transmitted to the
cloud frequently. Here, cloud computing works as a trigger, so due to the dis-
tribution, each event starts a new server instance. The events may be processed
simultaneously, so the cloud cannot guarantee any ordering of events [11]. This
occurrence may lead to inconsistencies that need to be resolved.

6 Our modelling approach

6.1 System model

In this section, we introduce our system spec that is suitable for measuring con-
sistency under different circumstances and it is also capable for finding rare or
near-impossible phenomena in a system. Definition 3 shows formal definitions of
basic operations and data sets that we have evaluated after executions. ClientData
is for the data set that the client started to upload to the database. DBData rep-
resents the actual status of database, while ProcData contains data obtained after
aggregation. We used a tuple data structure in order to make database instances
comparable. Definitions 4, 5 and 6 formally describes processes of our measuring
system. Client writes (CW ) raw data received from devices or sensors. CW has two
possible outcomes, namely a write action if the threshold of the allowed maximum
number of operations (MaxNumOp) is not exceeded and the system terminates.
This is a limitation in the system model used to examine a finite set of possible
states of system.

Definition 3.

ClientData := ({xm, opm}, . . . , {x1, op1}) (1)

DBData := ({yn, opn}, . . . , {y1, op1}) (2)

ProcData := ({zl, opl}, . . . , {z1, op1}) (3)

ClientWrite(x) := {xi, opi} ◦ ClientData (4)

DBWrite(y) := {yj , opj} ◦DBData (5)

ProcWrite(z) := {zk, opk} ◦ ProcData (6)
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Definition 4.

CW (x) :=

{
ClientWrite(x) if (numOp < MaxNumOp)

Termination, otherwise

Definition 5.

DBW (x) :=

{
DBWrite(x) if (len ClientData > len DBData)

Waiting, otherwise

Definition 6.

DBPROC(x) :=

{
ProcWrite(x) if (len DBData > len ProcData)

Waiting, otherwise

DBW and DBPROC processes work like triggers that are waiting for changes
in data sets, thus unnecessary process execution cannot take place. DBW describes
the process of persistence and DBPROC is responsible for data aggregation. After
the mathematical definitions, we included TLA+ spec parts as well that can be seen
in figures 2, 3 and 4. Since our model describes a distributed telemedicine system,
we can have database replicas and multiple computational units. Processes are
defined for group of instances, but in order to identify which instance is working
currently, different identifiers are assigned to the replicas and server instances. Since
only 1 client is present, it is identifed with the id 10 (pc[10]). In the DBW and
DBPROC definitions, pc[self ] means that the model checker must substitute the
proper identifier of the instance for the running process. The client just simply
pushes the data until the number of write operations does not reach the threshold.
Otherwise, the simulation terminates. If a new data is inserted to the database,
it is stored in a list (ClientRawData), and operation identifier is assigned to this
element. DBW and DBPROC processes check whether new data has arrived, and
if so, makes the persistence and the aggregation.

6.2 The consistency measurement technique

After recalling the CAP and PACELC theorems, the measuring consistency may
be the trickiest one of the measurement of 3 desirable capabilities. In order to make
a property observable, we have to find proper metrics that describe it. Peter Bailis
et al. introduced the PBS method for availability and consistency measurements.
It is based-on k and t parameters that denote staleness and visibility values. Using
these parameters, they made approximations of the availability and consistency of a
quorum-based database system. The Azure Cosmos DB TLA+ system specification
told us consistency can be measured not just under a simulation, but also with
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CW
Δ
= ∧ pc[10] = “CW”

∧ if (numOp < MaxNumOp)
then ∧ numOp′ = numOp + 1

∧ finalData ′ = finalData + 1
∧ ClientRawData ′ = 〈[d �→ finalData ′, op �→ numOp′]〉 ◦ ClientRawData
∧ pc′ = [pc except ! [10] = “CW”]

else ∧ pc′ = [pc except ! [10] = “Done”]
∧ unchanged 〈finalData, ClientRawData, numOp〉

∧ unchanged 〈readData, dbLat , calcLat , DbRawData, DbProcData,
lenClientRawData, lenDbRawData, latRead , latWrite,
latProc〉

Figure 2: The CW definition in TLA+

DB W (self )
Δ
= ∧ pc[self ] = “DB W”

∧ if (Len(ClientRawData) > lenClientRawData)
then ∧ lenClientRawData ′ = Len(ClientRawData)

∧ pc′ = [pc except ! [self ] = “DB W LAT”]
else ∧ pc′ = [pc except ! [self ] = “DB W”]

∧ unchanged lenClientRawData
∧ unchanged 〈finalData, readData, dbLat , calcLat ,

ClientRawData, DbRawData, DbProcData,
lenDbRawData, numOp, latRead , latWrite, latProc〉

Figure 3: The DBW definition in TLA+

DB PROC (self )
Δ
= ∧ pc[self ] = “DB PROC”

∧ if (Len(DbRawData) > lenDbRawData)
then ∧ lenDbRawData ′ = Len(DbRawData)

∧ pc′ = [pc except ! [self ] = “DB PROC LAT”]
else ∧ pc′ = [pc except ! [self ] = “DB PROC”]

∧ unchanged lenDbRawData
∧ unchanged 〈finalData, readData, dbLat , calcLat ,

ClientRawData, DbRawData, DbProcData,
lenClientRawData, numOp, latRead , latWrite,
latProc〉

Figure 4: The DBPROC definition in TLA+

logical modelling. Based on these techniques, we elaborated a system specification
that combines logical modelling with the k -staleness metric. In our short paper [15],
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we evaluated our model and examined how latency affects consistency. We showed
that we can have inconsistent states if latency exists, but with the k -staleness
parameter, we can configure caches on the data path and improve both availability
and consistency.

Firstly, we reworked our spec and checked how the consistency level decreases
when we have multiple server instances. Secondly, we extended our processes by
following the above-mentioned telemedicine use-cases and we were able to measure
data quality.

6.3 The QoD measurement technique

After investigating several QoD studies, we opted for a basic distance function -
shown in Equation 7 - for data quality measurements [12], and which is suitable for
numeric data sets.

d(wdb, wreal) := |wdb − wreal| (7)

We substituted the distance function into Hinrichs correctness metric formula
- stated in Equation 8 - and calculated it for each value pairs. Here, wdb stands
for the value stored in the database and wreal denotes the real-world value. This
metric is suitable for observing the correct order and it is vital for consistency.

Qcorr.(wdb, wreal) :=
1

d(wdb, wreal) + 1
(8)

7 The simulation environment

Figure 5 shows our system spec. We modelled a client that collects data from a
Bluetooth device used in telemedicine systems. The raw data obtained is uploaded
to the cloud and it remains there. Computational processes are triggered when
data is stored and it is aggregated as we did in spirometry with FEV1, PEF and
other parameters. After the evaluation is over, the computed data is stored in a
database that is needed by a doctor. This environment covers all of our scenarios
listed in Section 5.

Each instance was defined as a process in our TLA+ spec, so we created 3
process definitions like the client, database and computational unit, and various
latency values were attached to the database and computational operations. Sensor
and cache were not modelled as processes because they do not contain logic in this
specification.

In order to evaluate the state graph, the model checker must be terminated
somewhere. We limited the maximum number of client write operations (MaxNu-
mOp) to 10 because model checking produces millions of states and it is rapidly
growing when the number of operations are increasing. Latency values present the
number of states in the graph that a process must wait after starting a request
and before getting a response in case of a client or passing back data in case of a
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Client Database Computational
processSensor

dispatch(data)

send(data)
send(data)

Cache

return(data)

request() request()

return(data)return(data)

request()

return(data)

Figure 5: The simulation environment

database or a computational unit. The model checker produce a state graph about
what possible states a system has and what values the variables contain at a given
state. Latency values were chosen from the [0 − 3] interval for the client and the
servers and [0 − 1] interval for the cache. Thus, when a client has a latency value
2, after starting the request, it will wait until 2 new states are not present in the
state graph that was produced by itself. As it is presented in [24], there are huge
differences among different computer actions. During our simulation only Central
Processing Unit (CPU) and Random Access Memory (RAM) are used, and the
RAM access takes the most of the time in the calculation of a new state in the
graph. So, a new state can be generated within 100 nanoseconds. The significant
amount of latency is occurred by the network. It is also known that a network con-
nection is almost 10 000 000 times slower than accessing the RAM [7], so increasing
the latency by 1 means approximately 100 milliseconds delay in our simulation en-
vironment. A delay between 0 and 300 milliseconds can be valid for a client and a
server, but data can be retrieved faster from a cache (e.g. a CDN).

The TLC Model Checker produced more than 20 million states and our dot
graph file was about 10 GB. There is no available tool that can visualize such
huge dot files, but we implemented a transformation script that created a JSON
structured file from a raw dot file with an 50% reduction in the file size. Since the
original dot files that were produced by TLC contain all the variables and their
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values for every states, a small modification of the model or a tiny extension of the
examined variable intervals can lead to huge file size growth. Our compression script
not just transformed the dot format to JSON, but also removed those variables
and their values that were unnecessary for the analysis. Also, the lines about
transition information were removed because they do not carry information about
the variables. The generated dot state identifiers were changed to numbers starting
from 0 and incremented by 1 at each new state. Both consistency and data quality
evaluations were carried out on the same state graphs with the Python Pandas
library.

8 Evaluations

8.1 Consistency results

Earlier we observed that the k -staleness parameter works well in caches, so both
availability and consistency can be improved using this technique. Our model
checking procedure constructed state graphs that showed how latency affects the
consistency level and data set. In order to increase the availability, we tested
our environment using cache and the data retrieved from cache was compared to
the data that is present in the database. Here, the cache was configured with
k -staleness parameter. We modelled multiple database and computational unit
instances in order to have a realistic distributed system model. Table 3 shows how
latency affects the consistency while varying k values. Here, latency steps are taken
in 100 milliseconds as described in Section 7.

Table 3: Consistency evaluation in client-server interaction with given k -staleness
parameter values

Latency k = 0 k = 1 k = 2 k = 3
0 unit 92.84% 83.86% 80.47% 78.89%
1 unit 86.67% 79.69% 75.12% 72.46%

We found that if k parameter value is 0, consistency can almost get 100%, but
latency can cause drastic decline. Increasing k by one makes approximately 5%
reduction in consistency level.

8.2 Data quality results

Besides consistency measurements, we tested data quality on the whole state graph.
We learned that through graph traversal the data quality starts to decline. During
our evaluations, we found how data quality changes in client-server and server-
server interactions.
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In the case of client-server communication, we can guarantee a data quality
above 90% if we add a restriction on data staleness with k = 0 value. Of course,
increasing latency reduces QoD, but a cache with lower k value can gain not only
the availability of such a system, but also the quality (even with 10%). Lower the
k value, higher consistency and data quality can be guaranteed as shown in Table
4. Latency steps are taken in 100 milliseconds.

Table 4: QoD evaluation in client-server interaction with given k -staleness param-
eter values

Latency k = 0 k = 1 k = 2 k = 3
0 unit 95.47% 89.47% 87.52% 84.63%
1 unit 91.58% 87.13% 84.14% 81.24%

In the case of server-server interaction, we realized that latency can destroy,
and also improve data quality in server-server interactions. As the matrix in Fig-
ure 6 shows, travelling horizontally and increasing the latency of computational
processes, QoD may be reduced, but going vertically down and enlarging the la-
tency of persistence, we can see a change for the better. And, the highest data
quality level can be achieved in the 3− 3 units position. If we assume that in case
of telesurgery, an aggregated heart rate value is provided in every 5 seconds, and
every fifth calculation result differs by 1 from the correct one, the QoD value is
only 90, 08% at the end of a one-hour long term. If the difference in every fifth
aggregation is 2, the QoD is only 86, 78%. Although these are small differences in
aggregations, and they do not have significant effects from the patient’s point of
view, the QoD values are much lower than the ones that our simulations produced.
Of course, data quality can be further improved if we add more latency units to
the model.

DB\Comp 0 unit 1 unit 2 units 3 units

0 unit 98.96% 99.16% 99.16% 99.14%

1 unit 99.29% 99.44% 99.45% 99.46%

2 units 99.42% 99.55% 99.56% 99.58%

3 units 99.52% 99.64% 99.65% 99.67%

Figure 6: Consistency changes with a latency increase

While evaluating data quality values, we realized some interesting states in the
graph.

If we assume that - in a perfect world - there is no latency anywhere, we still
cannot guarantee in a distributed system that the data quality will be 100%.
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If no latency exists in a world, then raw data comes from client quasi simulta-
neously. Since there is only one client who uploads data, there is a known correct
order of data, but they arrive at the same time as the computation process. Thus,
in distributed systems perhaps more than one process will be started at the same
time, and there is no guarantee about which raw data part will be skipped by them.
We called this phenomenon hypothetical-zero-latency.

Based on these results, we constructed a taxonomy for distributed telemedicine
systems.

9 Taxonomy for the trade-off problem

During our previous studies in telemedicine, we encountered various classifications
of telemedicine services. To our knowledge, there are no categorization in teleme-
dicine that can be applied for measuring availability and consistency in distributed
telemedicine systems.

We elaborated a taxonomy that focuses on this trade-off problem and classifies
telemedicine use-cases by considering the requirements for availability and consis-
tency. Taxonomy breaks down telemedicine areas starting with offline capability
of systems and the degree of staleness in data. Based on these categories, we can
make evaluations in different use-cases and make suggestions for system developers
on how to solve the trade-off problem stated in the CAP and PACELC theorems.
Our classification scheme is presented in Table 5.

Table 5: Trade-off taxonomy

Use-case category
Possibility
of staleness

Recommendation
for system selection

Non-offline telemedicine
No PC/EL without cache
Yes PC/EC without cache

Semi-offline telemedicine
No

PC/EL with cache
higher k -staleness parameter

Yes
PC/EL with cache

lower k -staleness parameter

Offline telemedicine
No

PA/EL with cache
higher k -staleness parameter

Yes
PA/EL with cache

higher k -staleness parameter

If the offline status is not enabled but staleness of data occurs (however, this
is rare), we recommend using a PC/EL database system and avoid using caches.
Consistency is really important in such situation and teleconsultation use-cases are
mainly in this category, so availability plays an important role. As regards non-
offline telemedicine, if staleness is likely to occur, PC/EC systems are suggested,
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because strong consistency is required. Telesurgery use-cases cover this class. Going
forward, for the semi-offline category, PC/EL systems are the recommended ones
with parameterized caches. Such telemedicine services can go into an offline state
and they are occasionally realtime. An offline state is not a problem, if a high level
of availability is guaranteed. Lastly, in offline telemedicine longer offline periods
are permitted, but caches are highly recommended in order to prevent a reduction
in availability, so PA/EL systems are recommended here. Figures 7, 8, 9, 10, 11, 12
show the formal definitions of the system that applies this classification. If the data
is available, it is stored with the given system configurations. Hence, a polyglot
persistence can be performed, and telemedicine applications can be served with
the most optimal settings. NO NS and NO S denotes the non-offline telemedicine
cases with and without possible data staleness. In these classes caches are disabled
on the data path because consistency is preferred. SO NS and SO S are the semi-
offline cases when caching is allowed and k -staleness parameters are configured as
the taxonomy states because high availability is important, but a high consistency
level is also needed and it can be guaranteed with a lower k parameter value. Lastly,
O NS and O S classes permit an offline status with relatively high k -staleness
parameter values because availability is preferred to consistency.

NO NS (self )
Δ
= ∧ pc[self ] = “NO NS”

∧ if (lat db[self ] < db latency)
then ∧ lat db′ = [lat db except ! [self ] = lat db[self ] + 1]

∧ pc′ = [pc except ! [self ] = “NO NS”]
∧ unchanged 〈db type, dbData, Cache〉

else ∧ db type ′ = “PC/EL”
∧ Cache ′ = false
∧ dbData ′ = 〈[d �→ (Head(clientData).d), type �→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self ] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, K , num op, data, lat proc,
d〉

Figure 7: Formal definition of the process from the NO NS class

10 Conclusions

In our research, we found that the trade-off problem - presented in the CAP and
PACELC theorems - can have significant effects in different telemedicine use-cases.
Related works described the consequences of having an inappropriate balance be-
tween availability and consistency. Our experiences in real-world telemedicine sce-
narios helped us to demonstrate how our system can be easily tuned and adapted
under different circumstances. We introduced a new methodology for modelling
information critical heterogenous systems, and verified these systems and metrics
by constructing state graphs and evaluating them via graph traversal. Moreover,
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NO S (self )
Δ
= ∧ pc[self ] = “NO S”

∧ if (lat db[self ] < db latency)
then ∧ lat db′ = [lat db except ! [self ] = lat db[self ] + 1]

∧ pc′ = [pc except ! [self ] = “NO S”]
∧ unchanged 〈db type, dbData, Cache〉

else ∧ db type ′ = “PC/EC”
∧ Cache ′ = false
∧ dbData ′ = 〈[d �→ (Head(clientData).d), type �→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self ] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, K , num op, data, lat proc,
d〉

Figure 8: Formal definition of the process from the NO S class

SO NS (self )
Δ
= ∧ pc[self ] = “SO NS”

∧ if (lat db[self ] < db latency)
then ∧ lat db′ = [lat db except ! [self ] = lat db[self ] + 1]

∧ pc′ = [pc except ! [self ] = “SO NS”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PC/EL”
∧ Cache ′ = true
∧K ′ = 3
∧ dbData ′ = 〈[d �→ (Head(clientData).d), type �→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self ] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

Figure 9: Formal definition of the process from the SO NS class

SO S (self )
Δ
= ∧ pc[self ] = “SO S”

∧ if (lat db[self ] < db latency)
then ∧ lat db′ = [lat db except ! [self ] = lat db[self ] + 1]

∧ pc′ = [pc except ! [self ] = “SO S”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PC/EL”
∧ Cache ′ = true
∧K ′ = 0
∧ dbData ′ = 〈[d �→ (Head(clientData).d), type �→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self ] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

Figure 10: Formal definition of the process from the SO S class

we presented a distance-based metric for the data quality measurement of numeric
data portions in telemedicine systems. Since the mentioned use-cases are real tele-
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O NS (self )
Δ
= ∧ pc[self ] = “O NS”

∧ if (lat db[self ] < db latency)
then ∧ lat db′ = [lat db except ! [self ] = lat db[self ] + 1]

∧ pc′ = [pc except ! [self ] = “O NS”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PA/EL”
∧ Cache ′ = true
∧K ′ = 5
∧ dbData ′ = 〈[d �→ (Head(clientData).d), type �→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self ] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

Figure 11: Formal definition of the process from the O NS class

O S (self )
Δ
= ∧ pc[self ] = “O S”

∧ if (lat db[self ] < db latency)
then ∧ lat db′ = [lat db except ! [self ] = lat db[self ] + 1]

∧ pc′ = [pc except ! [self ] = “O S”]
∧ unchanged 〈db type, dbData, K , Cache〉

else ∧ db type ′ = “PA/EL”
∧ Cache ′ = true
∧K ′ = 3
∧ dbData ′ = 〈[d �→ (Head(clientData).d), type �→ db type ′]〉 ◦ dbData
∧ pc′ = [pc except ! [self ] = “DB”]
∧ unchanged lat db

∧ unchanged 〈db latency , proc latency , clientData, procData,
readData, cachedData, num op, data, lat proc, d〉

Figure 12: Formal definition of the process from the O S class

medicine systems as well, it is planned to make measurements during their project
pilots using event-based thechniques for tracking the applications and the servers.
System modelling and data quality measurements helped us to elaborate a tax-
onomy for distributed telemedicine systems based on the trade-off problem and
explore hypothetical-zero-latency phenomenon. In the future, we plan to extend
our current taxonomy, introduce more use-cases that can be categorized and exam-
ine hypothetical-zero-latency cases in greater detail.
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Abstract

JSON Web Tokens (JWT) provide a scalable, distributed way of user
access control for modern web-based systems. The main advantage of the
scheme is that the tokens are valid by themselves - through the use of digital
signing - also imply its greatest weakness. Once issued, there is no trivial
way to revoke a JWT token. In our work, we present a novel approach
for this revocation problem, overcoming some of the problems of currently
used solutions. To compare our solution to the established solutions, we also
introduce the mathematical framework of comparison, which we ultimately
test using real-world measurements.

Keywords: JWT, JSON Web Tokens, user access control

1 Introduction

In the field of web application security, JSON Web Tokens play an increasingly
significant role. They are very well suited for application in distributed systems, as
their validation can be done by the consuming service, without the need for central
access to a trusted source. This property, however, also means that there is no easy
way to revoke a token once it has been issued.

This paper overviews the current revocation strategies and introduces a math-
ematical framework for comparison to help system designers find the optimal solu-
tion. The mathematical framework is then validated with measurements on a real
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application. We also further elaborate on our novel solution, first introduced in
[7]. After its brief introduction, our method is compared with the other strategies
using the common mathematical framework.

The paper is structured as follows: Section 1 provides an overview of the cur-
rently used revocation schemes and their main characteristics. In Section 2, we
present a detailed description of our new approach. Section 3 deals with the formal
description of the performance characteristics of the different strategies, including
our solution. In Section 4, we verify our cost model by measuring different revo-
cation schemes in a real application. Finally, Section 5 wraps the discussion by
providing an overview of the work done.

1.1 Literature review

The main source of literature regarding JSON Web Tokens is the Request for Com-
ments (RFC) documents of the Internet Society (ISOC). For example, RFC 7519
[9] describes the basics of JSON Web Tokens (JWT) as ”URL safe means of repre-
senting claims to be transferred between two parties”.

While this definition is correct, JWTs are increasingly used in web applications
as part of different authentication and authorization schemes, such as bearer tokens
[6] in the OAuth2 framework [5] [10] or OpenID Connect [13]. The introspection
of these tokens are described in RFC 7662 [12], which briefly touches the question
of revocation without providing details on its implementation.

As the problem is more of a practical than theoretical kind, current industry
approaches for JWT revocation can be found in technical documentation of different
authentication solutions [11] [2], or technical blog posts such as [4] instead of more
traditional scientific papers.

1.2 Overview of JSON Web Token Revocation methods

A JWT used to determine access for a protected resource is called an access token in
these schemes. The token is usually digitally signed or otherwise cryptographically
secured [8]. In both cases, we simply refer to the signing key or the public key as
a secret.

In most scenarios, the access tokens are issued along with a second, more tradi-
tional, server-side token called a refresh token. This second token makes it possible
for the client to acquire a new access token in the future.

When a client logs out from the system, the refresh token is destroyed, and
existing JWT tokens are revoked. This revocation is not a trivial task, as the
validity of a JWT is determined by the cryptographic assurance, which cannot be
easily revoked.

Short-lived tokens: Each generated JWT token has a finite, usually very
short lifespan. In this scheme, a token is never directly revoked, but the means
of acquiring new tokens are made unavailable (i.e. the refresh token is destroyed).
Hence when the short lifespan runs out, no further access is possible to the system.
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Blacklist: In the case of a blacklist, revoked access tokens are placed in a
shared location (typically a database), where each consuming service can check for
invalidated tokens. The big downside of this approach is that it requires data access
for each request served - even for ones with valid tokens; thus, the token’s validity
can no longer be determined in itself.

Secret change: A rarely used solution for invalidation is the changing of the
cryptographic secret used to issue and check the validity of tokens. Changing this
secret leads to all tokens being revoked, but still logged in users can apply for new
ones using their refresh token.

2 The novel revocation algorithm

Our novel revocation strategy is based on the extension of the third option, which
is based on changing the secret. In this section, we give a quick overview of this
approach.

2.1 Basic principle

When a JWT secret is changed, all the tokens issued with it become invalid. If a
user logs out, every other user in the system must request a new token. In practice,
this method scales very poorly with the increased number of clients as the number
of revocation events, and thus new token acquisitions increase exponentially.

The basic idea of our method is to control the number of revocation events by
arranging the users in groups (for example, by hashing their usernames) and assign-
ing a different secret for each group. If a token is revoked in a group, only tokens
signed with the group secret will be revoked, instead of all the tokens. As logouts
are typically infrequent events, one can use statistical methods as described in [7]
to calculate an optimal group size, which minimizes the number of unnecessary
revocations while maintaining a manageable number of secrets.

Being able to control the group sizes, we can optimize the performance of the
strategy for our specific system. Using a larger number of client groups means
less token revocations (network and computation overhead) in exchange for more
memory usage.

A typical system using our strategy consists of 3 types of components; a secured
service providing services to clients and an auth server storing authentication in-
formation and handling token generation. The process described in the following
is demonstrated in more detail in Figure 1.

1. Initial token acquisition is very similar to other methods; the client authen-
ticates themselves e.g., by giving a username/password combination.

2. After successful authentication, they are provided with an access and a refresh
token. The access token is a JWT, used to consume the secured service, while
the refresh token is used to acquire new access tokens.
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Figure 1: Detailed call structure of our novel strategy

3. Clients use the access token to consume the secured resources. Upon such a
request, the secured service looks up the secret used for the given client group
and validates the token against it.

4. When a client wants to log out, they signal the auth server, which destroys the
refresh token, changes the group secret, and notifies the connected services.
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5. Upon receiving an access token signed with the older secret, the secured
service refuses the request. If the initiating client still has a valid refresh
token, they can acquire a new access token with the new secret and continue
using the system.

2.2 Propagating secret change events

With our proposed method, revocation is instantaneous, and the basic premise of
JWT tokens remain intact, that the tokens are valid by themselves.

This solution requires the existence of a channel for propagating the information
about the change of the JWT secret. The channel must be available between the
token issuer and each service consuming the tokens.

For cases where such a channel is unavailable, the secret change events can be
propagated by the tokens themselves, albeit with lower security guarantees. In
this approach, the JWT Secret is generated as a rolling code by a pseudo-random
number generator [3], each service keeping track of the currently active value. When
a token is revoked and the group’s secret is changed, the new tokens are issued with
the new secret. When a service, still using the old code, receives a token signed
with the new secret (the next value from the rolling code), it will also update the
secret accordingly.

This method provides eventual consistency for the system in the long run, with-
out the need for a dedicated channel for JWT secret change event prorogation. As
a trade-off, the instantaneous revocation is lost, a token is only revoked after the
code is rolled (another token, using the new secret is received).

3 Performance evaluation framework

To predict and compare the performance of different strategies, a common mathe-
matical framework must be set. In this section, we will describe the basic operations
associated with the handling of tokens, and then determine the cost function of each
revocation strategy based on these costs.

3.1 Basic operations with tokens

Regarding the token operations, we determined a set of basic operations, which
make up each approach. The costs of these operations can be parametrized for the
actual system, which can be based on measurements or estimations. The following
main costs were identified:

• Ci (Issue cost): the cost of issuing a new token.

• Cv (Validation cost): the cost of checking the validity of a token.

• Cc (Communication cost): the cost of system modules communicating
with each other.
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• Cd (Data access cost): the cost of accessing data stored in a persistent
storage.

In order to predict the performance of a strategy in a system, it is not enough to
know the cost of these atomic operations; one must also calculate how many times
they will occur. The main factor in determining the total performance cost a system
must endure is determined by the clients consuming its service. By knowing their
numbers and characterizing the client sessions, predictions can be made about their
impact on the system [1]. In order to calculate the former, the following properties
must be known about the clients. These can also be acquired by measurements or
estimations based on known properties.

• N : the number of clients in the system.

• fi(t): probability distribution of client session lengths.

• r: average number of protected resource access / client / second.

For strategies based on changing the secret, the average time between token
revocations - and hence secret changes - can be calculated for a group of clients
based on these metrics. It is basically the expected value of the time until the first
token revocation in the group, and denoted as Trvk.

Knowing both the cost and occurrences of typical operations in the system, a
cost function can be constructed which describes the average cost of a revocation
strategy.

3.2 Cost functions of the different strategies

Short-lived tokens

The short-lived approach has one parameter, Tlife, which denotes the lifetime of a
token. As for maximizing the performance of this approach, this Tlife should be
chosen as the longest tolerable time for token revocation after logout. The longer
it is set, the less secure the system is.

The overall cost function consists of two parts, the cost of validating the tokens
of the incoming requests and the cost of issuing new tokens to replace the expiring
ones.

C = (N ∗ r ∗ Cv) + (N ∗ 1

Tlife
∗ Ci)

Blacklist

In the case of a blacklist, the main cost factor comes from the necessity to check
whether a token is on the blacklist for each request, which makes this approach the
worst in terms of scaling when increasing the number of requests.
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After accounting for this factor, there are no other costs associated with this
method. Therefore the cost function can be defined as the following.

C = N ∗ r ∗ Cv ∗ Cd

Secret change

In case of a secret change, the baseload of authorizing incoming request is still
present, but it is accompanied by the load of new token generation for each client
in case of each revocation.

C = (N ∗ r ∗ Cv) + (N ∗ 1

Trvk
∗ Ci)

Notice that the formula is very similar to the short-lived cost function. This is
not a coincidence; in both cases, the number of token revocations depends heavily
on the average lifespan of a token. In the first case, it is purely determined by the
age of the token itself, while in the second case, every client logout event triggers
it.

Our novel strategy

As previously stated, our method works by dividing the clients into different groups,
letK denote the number of these groups. As our method builds on the secret change
event, the cost function is similar too, but because of the separation separation,
the Trvk calculated for the whole client population size must be recalculated to
the number of N

K clients. This value is denoted by T ′rvk. As K increases, T ′rvk
monotonously increasingly approaches the mean value of fi(t).

C = (N ∗ r ∗ Cv) + (K ∗ 1

T ′rvk
)(
N

K
∗ Ci + Cc)

4 Cost model measurement and validation

To validate our model, a test system was implemented, and different measurements
were run. This section describes the measurement setup and the results achieved.

4.1 Setup

The test setup is a set of applications written to simulate the working of a real
system. The following components were implemented.

• An Auth server, which implements the different revocation schemes, pro-
vides tokens and stores users.

• Foo service, which is an example of a service providing protected resources.
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• Bar service, which is another example of a protected service.

• Test client, which emulates the behavior of one or more clients. This com-
ponent gathers and aggregates the data during the measurement.

The source code can be found at the following link: https://github.com/

jlaci/JWT-Revocation-Test. The components were written in Java 11 (Zulu
Open JDK 11.0.5), using the Spring Framework (managed by Spring Boot 2.3.1),
the backing database was a MySQL 8. The hardware running the test was a 2019
MacBook Pro 16”(Intel Core i9-9880H, 16GB DDR4 at 2667 MHz, 1TB SSD).

The system can be run with different profiles, each corresponding to the various
revocation schemes. The length of the measurement, the number of clients, and
their characteristics can be configured, while cost values are based on the actual
system implementation.

These system costs were measured before running the simulation by executing
the associated operation 500 times and averaging the results. After that, each
revocation scheme was measured with the same characteristics, and the results
were aggregated.

4.2 Results

First, the actual values are determined for each cost. Table 1 lists the measured
values of the different cost model terms.

Table 1: Measured values of each costs

Cost Value(ms)
Ci (Issue cost) 28.13
Cv (Validation cost) 0.17
Cd (Communication cost) 0.51
Cc (Data access cost) 4.276

Comparison of the different schemes in a typical system

The first simulation was set up to represent a typical system employing the different
JWT revocation schemes. This run aims to validate the outlines of our mathemat-
ical model and give an overview of how each strategy would fare in a close-to-real
application. The simulation parameter values were chosen based on the author’s
experience with typical systems to represent a realistic application without favoring
any strategy.

This simulation was run for 300 seconds with 100 clients. Client session char-
acteristics were chosen to follow a uniform distribution with a mean value of 60
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seconds and a maximum of 120 seconds. With 100 clients, this means Trvk was cal-
culated as 1.2 seconds. Each client, on average, executed 0.5 authenticated requests
per second. Our novel algorithm used 20 client groups (K = 20).

Table 2 show the raw numerical results for the predicted and actual costs of
each revocation strategy given the same system parameters.

Table 2: Predicted and measured cost

Strategy Predicted Measured
Short-Lived 0.10 0.22
Blacklist 0.22 0.41
Secret Change 2.35 3.17
Novel 0.13 0.45

Figure 2 visualizes the predicted and measured values for better understanding.
As we can see from the results, the actual, measured costs are always higher than our
predicted ones. This difference can be attributed to factors that were not modeled
in our framework, e.g., technical overheads such as serialization and deserialization,
logging, and generic costs of serving requests in a thread-pool based model. These
costs are not primarily associated with the JWT revocation strategy itself; including
them would make the model impractically complex.

Figure 2: The comparison of results
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Our expectations regarding the scale and relative performance of each strategy
were mostly met. The largest error between measurements and prediction occurred
with our novel approach, most likely due to implementation constraints, such as
the library we used for encryption and decryption not being optimized for frequent
secret changes. Nevertheless, even with this less accurate measurement, we can
see the following general tendencies. The short-lived method provides the best
performance while offering the worst security. Blacklist and our novel approach
have roughly the same performance for r = 0.5 request / client / second with the
same level of security, while secret change has the worse performance with slightly
worse security.

Comparing blacklist and novel approach for larger load

Based on the previous data, the blacklist and our solution would appear to be the
same in terms of performance for relatively low request numbers. This changes,
however, when increasing the number of requests per second made by the clients.
As seen in Figure 3 with the increased number of requests, our solution scales much
better than the blacklist approach while providing the same level of security.

Due to processing power constraints of the test setup, we could not measure
beyond this point r = 2.5 with a reasonable number of clients. If we set the
target r higher than this, the actual measured rate of requests were not increased
accordingly, due to resource contention between the simulation threads. Based on
the calculations and previous measurements, however, we are confident that the
trend would continue, and our solution would prove to be better than any other
strategy (blacklist and secret change) with the same security level.

Figure 3: The comparison black list and novel
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5 Conclusions

In this paper, we described the main approaches of JWT revocation and introduced
our novel solution. We provided a tool-set for choosing the best revocation strategy
based on the different characteristics of the system. The basis of this tool-set is the
measurement of client population characteristics and costs associated with common
operations when dealing with JWTs.

We proved the validity of our cost model by implementing a system using the de-
scribed methods and measuring its performance for different revocation strategies.
The measured results supported that our novel revocation method is competitive
with the current solutions while offering advantages in usability, such as instan-
taneous revocation. We showed that our solution scales better for an increased
number of requests than any other strategy with the same security guarantees (in-
stantaneous revocation).

With the proven mathematical framework at hand, one can find the optimal
revocation strategy for any system by choosing the minimal cost function. In cases
where the function has additional variable parameters, traditional approaches like
linear search can be used to find the optimal solutions.

Ultimately, we hope that our work will aid the capacity planning and system
design of distributed systems, as the JWT based authentication schemes have the
highest potential in this area. We hope that our novel solution will help with
increasing the performance and efficiency of these systems, therefore conserving
energy and costs associated with providing a large-scale distributed service.
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Abstract

The resources in the Internet of Things (IoT) network are geographically
distributed among different parts of the network. Considering huge number
of IoT resources, the task of discovering them is challenging. While register-
ing them in a centralized server such as a cloud data center is one possible
solution, but due to billions of IoT resources and their limited computation
power, the centralized approach leads to some efficiency and security issues.
In this paper we proposed a location-aware and privacy preserving multi-
layer model of resource discovery (Lamred) in IoT. It allows a resource to be
registered publicly or privately, and to be discovered with different locality
levels in a decentralized scheme in the IoT network. Lamred is based on
structured peer-to-peer (P2P) scheme and follows the general system trend
of fog/edge computing. Our model proposes Region-based Distributed Hash
Table (RDHT) to create a P2P scheme of communication among fog nodes.
The resources are registered in Lamred based on their locations which results
in a low added overhead in the registration and discovery processes. Lamred
generates a single overlay and it can be generated without specific organizing
entity or location based devices. Lamred guarantees some important security
properties and it showed a lower latency comparing to the centralized and
decentralized resource discovery models.
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1 Introduction

The Internet of Things (IoT) network consists of billions of resources distributed
in different parts of the network. The huge number of resources and their different
levels of accessibility (e.g. private resources, local resources and public resources)
make the task of registering and discovering them a challenging task. Adopting a
centralized scheme such as relying on a cloud service helps organizing the resources
in an entity that has a high computation capability and can be used to discover
those registered resources. But, in systems that rely only on a centralized entity
a significant amount of traffic has to be used for the registration and discovery
processes which might affect the overall efficiency of the system. Comparing to
cloud computing infrastructure that send the traffic to a centralized cloud data
center, the fog/edge nodes in the fog and edge computing infrastructures try to
distribute the data among nodes and keep it as close as possible to the origin
source of data. Hence, fog computing extends the cloud computing to the edge of
the network, close to the point of origin of the data [3]. Processing the data locally
during the registration and discovery of resources helps to achieve scalability, at the
same time mitigates the potential privacy and security risks against single point
of attack and failure. However, there should be a unique decentralized scheme
that defines and arranges the relationship between the fog/edge nodes and their
responsibilities.

Distributed Hash Table (DHT) creates an overlay by assigning a seemingly
unique identifiers to the participating nodes. The generated overlay can be used
to organize the distributed nodes in the decentralized resource registration and
discovery processes [15]. The identifiers in DHT are generated by feeding some of
the parameters of the peer nodes (e.g. IP addresses) to a hash function, and the
output is used as the identifiers of the nodes. Depending on the identifier, each node
is resided in a specific location in the overlay with a predefined responsibilities. Due
to the random-looking behaviour of the hash functions, the output of the relatively
close parameters in the input range might not be close in the hash space. While
this property is required to ensure the random and uniform distribution of nodes
and the stored data in the overlay, but adopting the original DHT technique in fog
and edge computing infrastructures might results that two adjacent nodes reside
in two far locations in the overlay. As a result, while adopting DHT in resource
discovery [15] removes the centralized entity, but might map the geographically
close nodes to distant nodes in the resulted space. If the nodes in the resource
discovery models are distributed without considering their physical locations, an
efficiency issue might be raised. This is due to the reason that the logical path
of nodes on the underlying network could vary from the logical based path in the
overlay network that is organizing the distributed nodes. Thus the lookup latency
can be high, which in this case leads to operational inefficiency in applications
running over it [18]. During organizing nodes in the resource discovery model, the
locations of nodes have to be taken into consideration. Afterward, a resource is
registered based on its location in a close node in the distributed system which
reduces the required time to register and reach that specific node.
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Therefore, while adopting DHT as a structured Peer-to-Peer (P2P) scheme to
organizing fog and edge nodes in IoT has some advantages such as scalability and
functionality without involving any centralized entity, but DHT might cause the
data to be stored in a far node. In this paper we proposed a location-aware and
privacy preserving multi-layer model of resource discovery (Lamred) in IoT. Lamred
aims to keep the data as close as possible to the origin of the data by taking into
consideration the locations of both resources and IoT gateways and utilizing a single
DHT overlay. It can be implemented without specific location based devices, and
add no extra local overhead comparing to traditional DHT overlays. Here are the
main contributions of this paper:

• Propose Lamred, a new DHT based model as a P2P overlay for resource
discovery in the IoT Network.

• Propose a Region based Distributed Hash Table (RDHT) for location aware
resource registration and discovery. Lamred keeps the resources as close as
possible to the clients, hence reducing the required time during the registra-
tion and discovery processes.

• Propose a private tag generation method in Lamred for private resource reg-
istration and discovery.

• Use cryptographic primitives to protect the private resources in the system
and ensure the required anonymity and privacy in Lamred.

The rest of this paper is organized as follows. The next section defines some
of the preliminaries. Section 3 summarizes the efforts in current research field of
resource discovery. Section 4 describes Lamred, the proposed model of resource
discovery, and introduces its different components. In Section 5 we evaluate the
model, proof the required security properties and discuss the performance of Lam-
red. Finally, we conclude our work in Section 6.

2 Preliminaries

2.1 Cryptographic Primitives

Definition 1 (collision-resistant one-way hash function). A function H(.) that
maps an arbitrary length input M into a fixed-length digest d is called collision-
resistant one-way hash function it satisfies the following properties:

• Given M , it is easy to compute H(M).

• Given d, it is hard to find any M s.t. d = H(M).

• Given d = H(M) and M , it is hard to find M ′ s.t. M ′ �= M and H(M) =
H(M ′).
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• It is hard to find two distinct messages M ′ and M ′′ s.t. M ′ �= M ′′ and
H(M ′) = H(M ′′).

If the solution can be computed in the polynomial time, therefore it is considered
easy to compute. On the other hand, if there is no solution known to solve the
problem in polynomial time, it is considered a hard problem [7].

Definition 2 (Probabilistic Polynomial Time). An algorithm A is a PPT (Prob-
abilistic Polynomial Time) if its probabilistic and ∃c ∈ N such that ∀x,A(x) halts
in |x|c steps.

2.2 Distributed Hash Table

DHT is a distributed system that creates a structured P2P overlay in a network.
The participating nodes in the network can join and leave the DHT at any specific
time. Upon joining a new node, a new identifier is assigned to it and depending
on the assigned identifier, it will be responsible of storing a set of data in the
network. Using multiple replicas helps the DHT to be fault tolerant and improves
the availability of data in the network. Using identifiers instead of other types
of addressing (e.g. IPs) helps to balance and manage the data storage among
participating nodes without any centralized entity. In addition to load balancing,
it solves the scalability by providing the service of generating the identifiers by the
participating nodes themselves. There are several protocols to implement DHT
such as Chord [29], Kademila [20], Pastry [28], and Tapestry [33].

DHT uses a large address space of integer numbers. The size of the address
space depends on the fixed output size of the function that is used to generate
the identifiers. The size of the key space is he same as the address space, i.e. the
same function is used to generate identifiers for nodes and keys for the stored data.
To achieve the random function of identifier generation and uniform distribution
of data among all participating nodes a collision-resistant one-way hash function
(definition 1) is used in DHT.

Similar to hash tables [19], the data in DHT is stored in key/value pairs. The
value parameter includes any stored information about the data (e.g. the address of
the data) and can be retrieved from the DHT based on its associated key. The key
parameter of the key/value pair is generated by feeding specific information (e.g.
the attribute of the stored data such as its name, its type, etc.) to the collision-
resistant one-way hash function which produces a uniformly distributed randomized
hash value. The generated hash value which represents the key parameter in the
key/value pair is used to determine the responsible node in the network of storing
this specific pair. To achieve the distributed indexing, DHT defines a specific
portion in the key space that each particular node is responsible for. DHT has two
implementation interfaces for storing and lookup: Put and Get. The Put interface
takes the key/value pair and stores this pair in the DHT. The Get interface takes a
single parameter key and lookup in the DHT to retrieve the identifier of a node that
is responsible to store the corresponding value to the given key. In the DHT the
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store (i.e. put interface) and lookup (i.e. get interface) operations are guaranteed
to be done with an upper bound of O(log(n)), in which n is the number of nodes in
the DHT. This feature guarantees that any participating node in DHT can store a
pair of key/value or lookup based on a given key by routing through of maximum
log(n) nodes.

2.3 Resource Discovery

Resources in IoT can be IoT data or IoT devices. These resources are registered
in the network and can be discovered by the clients. The process of discovery is to
get the access address (e.g. URI or IP and port addresses) of IoT data, IoT devices
or a combination of them as a result of discovering (i.e. querying) the resources
in the network. The search techniques can be functional (event-based, location-
based, time-related, content-based, spatio temporal-based, context-based, real-time
and user interactive searching) or implementational (text-based, metadata-based or
ontology-based approach) [25].

The resources can be registered in different parts of the network distributed
among many nodes (Figure 1a) or in a centralised trusted entity (Figure 1b). The
resource discovery [9] is a mechanism to return the access address of a resource
based on the information provided during the lookup operation. The resource
access address can be its IP and port addresses, its URI or other metadata and
further links about the resource. The discovery process starts by issuing a query
including the attributes of the required resources to be discovered. An attribute
of a resource can be any information that describes it, such as its location, its
type, etc. The query is issued by a client and sent to the discovery system. The
query that is received by the discovery system is then processed and divided into
sub-queries. As instance, the query can be divided based on the attributes of the
required resources, and a sub-query is issued in the system for each attribute. The
discovery system then finds and communicates with the responsible nodes to get
the required information about the resources. After getting the list of resources,
they are ranked based on some scoring methods and the final result is sent back to
the requested client.

The data that are generated by the discovered resources in the system can be col-
lected in either request/response or publish/subscribe patterns. In request/response,
the data from the discovered resource is returned back to the clients based on their
requests. As instance, Constrained Application Protocol (CoAP) [4] is a document
transfer protocol that works based on a request/response approach on a client-
server architecture. In the publish/subscribe, the discovered resource publishes its
data to the clients that are already subscribed. The process can be done through
a publish/subscribe server that is the middleware between the subscribed clients
and the published resources. MQ Telemetry Transport (MQTT) [11] is a protocol
that is based on publish/subscribe approach and facilitates one to many communi-
cations through a common node (i.e. broker). Resources publish the messages by
sending them to the broker and on the other hand clients subscribe for a specific
message in the broker.
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(a) Decentralised Scheme (b) Centralized Scheme

Figure 1: Discovery and Access Mechanism

3 Related Work

Some researchers adopt the use of a centralised entity as part of their proposed mod-
els that manages some parts or all parts of the system. Cheshire and Krochmal [5]
proposed a Domain Name System (DNS) based discovery for the IoT network. It
defines a model on how the users register their resources and discover the resources
based on the DNS protocol. The proposed model does not modify the underlying
DNS protocol messages and codes and as a result is simple to implement. In this
model, a centralized authority stores the registered resources and there is no ad-
ditional security consideration to the original DNS protocol itself. Authors in [12]
have proposed a large scale resource discovery to discover the devices and sensors
in the IoT network by building a scalable architecture called Digcovery. The frame-
work enables the users to register their resources into a shared infrastructure and to
access/discover accessible resources by a mobile phone. Their proposed work is fo-
cuses on the discoverability of devices based on context-awareness and geo-location.
Digcovery allows high scalability for the discovery based on a flexible architecture.
However, it relies on a centralized point called digcoverycore for management and
discovery.

Datta and Bonnet [8] proposed a resource discovery framework for IoT. The
proposed framework includes a centralized registry that registers and indexes the
attributes of resources. The attributes of the resources are used as the parameters
during the discovery process through the search engine, that returns the access
addresses of the discovered resources. The authors in [13] proposed a discovery
model for IoT that performs the discovery based on various constraint parameters
such as input/output (IO), precondition/effect and quality of experience (QoE). In
the proposed model, a centralized directory server is used to register and discover
the services in the IoT network. The discovery is done using semantic service
description method OWL-Siot that describes both the IoT services and discovery
requests. Using the centralized scheme helps organizing the resources in an entity
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that has a high computation capability, however, this centralized entity might turn
into a single point of failure, which, if fails, the overall system will stop. This
profoundly affect the availability and reliability of the system. Additionally, the
centralized entity could turn into a bottleneck for the system affecting the overall
system performance.

Several researches utilized the P2P scheme in the IoT network as a method for
distributed resource discovery. The model in [15] removes the centralized entity
by managing the fog nodes in a P2P scheme. It divides the resources into pub-
lic resources that are discoverable by all clients and private resources that can be
discovered by a subset of clients. In addition it provides other features such as
multi-attribute discovery. However, the main drawback of this model is that by
not considering the physical location of the resources and fog nodes it fails to keep
the registration process low by using only the fog nodes that are in the same region
of the registered resource. A particular emphasis on the links and nodes locality
presents a Mesh-DHT in [30] that implemented in IEEE 802.11 wireless mesh net-
work (WMN). The authors employed the Mesh-DHT for building a scalable DHT
in WMNs. This approach enables an entirely distributed organization of informa-
tion by building a stable, location-knowledgeable overly network. Because nodes
primarily talk to physically nearby nodes, it allows minimizing the overhead in
DHT communication of WMNs, therefore requiring fewer transmissions. However,
the model can not reflect the locality of mesh routers in the overlay construction
and therefore does not able to represent the locality of keys. Wirtz et al. [31]
have been proposed an improved version of the DHT based service registration and
discovery. Their work is based on their previous model (Mesh-DHT) and focuses
to address its main drawback. Their proposed model partitions the global DHT
overlay into different scopes with different degrees of locality that are hierarchically
organized in levels. By choosing an appropriate level, a lookup can be restricted to
only consider the locally available information. The put(key, value) and get(key)
in DHT are extended to put(key, value, level) and get(key, level), respectively.

The authors in [21] proposed a single-gateway based hierarchical DHT solution
(SG-HDHT) for an efficient resource discovery in Grids (i.e. Virtual Organizations
(VO)). The model forms a tree of structured overlay and consists of a two-level
hierarchical overlay network. It defines a global DHT and number of second level
DHTs, a DHT overlay for each VO. Only one peer (called a gateway or super peer)
in a DHT overlay of a VO is attached to the global level DHT of the hierarchy. The
proposed resource discovery in this model deals with two different classes of peers:
super peers and simple nodes. The lookup is directed to the super peer of the VO
and then through the global DHT to the superpeer of the requested resource.

The authors in [1] proposed a wireless communication and computation frame-
work that sustains the scalability for a massive increase of IoT devices. The re-
searchers adopt the fog computing paradigm and therefore their proposed model en-
larges the cloud-based solution by providing computing services close to the source
of data generation. WMN nodes are used as the fog nodes in the proposed model.
The authors have employed Chord [29], to generate a DHT based P2P overlay
of fog nodes for resource discovery. This proposed model specifically targets the
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underutilized processing power of devices for computing purposes. The discovery
in this model is done by involving the fog nodes as brokers for the discovery of
the required resources. Pahl and Liebald [23] introduced a distributed modular
directory of service properties and a query federation mechanism based on virtual
state layer (VSL) [24] that allows mapping complex semantic queries on the simple
search. The presented modularaization adds little latency which makes it suitable
for time-critical operations. The proposed model supports multi attribute discov-
ery and allows adding new attributes in the system at runtime that fits the nature
of the dynamically varying IoT.

Authors in [6] proposed an architecture consists of two discovery levels, local
and global service discovery. It uses the P2P scheme for resource discovery, and
IoT gateways are the peers in the P2P overlay. This architecture uses two lay-
ers: the Distributed Location Service (DLS) and the Distributed Geographic Table
(DGT) [26]. The DLS is a DHT based architecture that works as a name resolution
service by providing any required information to access any resource in the network,
depending on its URL. The DGT builds a layer to distribute the information de-
pending on the location of nodes, which can be used to discover the resources based
on their geographic location information. The model successfully manages the reg-
istration and discovery based on the locations of the resources. Although DGT
keeps the location data of the IoT gateways, but since DGT and DLS are loosely
coupled then in order to discover the resources in a given location the system has to
retrieve the IoT gateways data from DGT overlay and then lookup the DLS overlay
for the required resources. In addition to keep the data as close as possible to the
registered resources, Lamred aims to utilize a single DHT overlay and add no extra
local overhead and low global overhead comparing to traditional DHT overlays.
Furthermore, it aims to allow the participating nodes to join Lamred without using
specific location based devices.

4 Location-Aware and Privacy Preserving Multi-
Layer Resource Discovery (Lamred)

The resource discovery in fog/edge computing has some requirements that have to
be addressed. Due to the distributed nature of the IoT gateways and the limited
computing power of the IoT resources, the resource discovery model has to depend
only on low computation processes and does not involve any centralized entity.
Lamred allows four levels of discovery: local discovery that is limited to a single IoT
gateway, intra-regional discovery that is limited to a local region (i.e. sub-region of a
region set), regional discovery that is done in a specific geographical area and public
discovery (i.e. location independent) that is done among all publicly registered
resources, regardless of their locations. In addition, Lamred distinguishes between
two types of resources, public resources that can be discovered by any client in the
system (e.g. a public temperature sensor or a resource offering a public service)
and private resources that can be discovered by a predefined subset of clients (e.g.
private resources in a smart home or a local printer in an organization).
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There are three main disjoint sets in Lamred: set of clients (C), set of objects (O)
and set of gateways (W). The finite set C consists of the IoT clients in the network.
An object o ∈ O is any device in the IoT network with proper computational
power that handles a resource u. Subsets of C and O are connected to different IoT
gateways in W. A gateway w’s responsibility may vary from handling a few nodes
(e.g. smart home) to hundreds of nodes (e.g. environmental monitoring). The
proposed model creates a region-based DHT (RDHT) [17] overlay that provides a
structured P2P method of addressing and discovery of the peers. The members
of W (i.e. IoT gateways) represent the peers in the P2P overlay. Let H(.) be a
collision resistant one-way hash function with d bits message digest, Enck(m) be
an encryption of the message m using symmetric key k and Signw(m) be a digital
signature for message m generated by w ∈ W gateway.

4.1 Lamred Properties

The Lamred has been designed to address the requirements for resource registration
and discovery in the IoT network. Table 1 shows a comparison of some of the
supported properties in the different resource discovery models. In general, Lamred
has the following properties:

• Location Aware: Lamred utilizes RDHT [17] that creates an overlay of
IoT gateways divided logically into multiple region sets and local regions (i.e.
sub-regions) in DHT overlay based on their physical locations. It generates
a single overlay that can be generated without specific organizing entity or
location based devices.

• Multi-attributes: Each resource has number of attributes. These attributes
can be its location, its type, its provided service and so on. To discover
a resource or a set of resources, in addition to their exact identifiers more
than one attribute might be needed to get the precise result of the required
resources. Lamred supports the multi-attributes discovery and the clients are
able to discover the resources based on multiple attributes. In addition to the
predefined set of attributes, participants in Lamred are able to create new
attributes in real time.

• Scalability: The scalability describes the ability of the a decentralized re-
source discovery to adjust the registration and discovery process as the sys-
tem grows in term of number of nodes. Lamred distributes the responsibility
among many nodes that can continue working efficiently as the number of
nodes grows.

• Management: Lamred provides defined interfaces for the authorized IoT
entities to be able to add, remove, update and discover resources in the net-
work.

• Discoverability: Because of the use of RDHT overlay, Distributed Address
Table (DAT) [16] can be integrated as a part of Lamred (in a specific region
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Table 1: Supported properties in Resource Discovery Models

Features Decentralized
Location

aware overlay
Multi

attributes
Security

considerations
Jara et. al. [12] � - � �

Cheshire et. al. [5] � - � �

Datta and Bonnet [8] � - � �

Jia et. al. [13] � - � �

Cirani et. al.[6] � � � �

Wirtz et. al. [30] � � � �

Wirtz et. al. [31] � � � �

Mokadem et. al. [21] � � � �

Shabir et. al. [1] � � � �

Kamel et. al. [15] � � � �

Pahl et. al. [23] � � � �

Lamred � � � �

in RDHT) to allow discoverability of all resources in the network including
as instance those behind the Network Address Translator (NAT).

• Responsibility Definition: Each node in RDHT overlay of Lamred is aware
of the range of its responsibility to registering a subset of resources. This
results that the clients that need to discover a resource in the system being
aware of the specific IoT gateway in Lamred that is responsible to store the
required information to access that specific resource, and issue a discovery
request to that specific node.

• Discoverability Range: Lamred uses a private/public architecture and
is able to keep some of the resources private and only discoverable by the
authorized clients in the IoT network.

4.2 Security model

An object o ∈ O that needs to register its private resource in Lamred has a pre-
defined set Fo ⊂ C of friend clients. The members of Fo are able to discover the
privately registered resource of object o. We assume that from the viewpoint of
any object o ∈ O in Lamred, the set of friends Fo are honest nodes. The rest of
the clients Ro = {r ∈ C \ Fo} can be assumed to be malicious. In the case of
the finite set of IoT gateways W in Lamred, we have to assume that there is no
cut containing malicious nodes only in the communication graph composed of the
clients, objects and gateways (otherwise, the malicious nodes together could make
the communication impossible). More precisely, we assume that for a given resource
u of an object o for every friend f ∈ Fo there exist a path (w1, w2, . . . , wk) in the
communication graph such that the object o is connected to w1, the friend client f
is connected to wk and all of w1, . . . , wk are semi-honest. The semi-honest entities
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are assumed to follow the protocol properly, but they might store the received data
locally in an attempt to get more information from the stored data.

Beside these properties, the nature of the communication model also regulates
the applicable security. In Lamred only the IoT gateways assumed to be able to use
public key cryptography, while the objects handling the IoT resources can encrypt
and decrypt messages using symmetric keys only because of their limited computa-
tion power. In case of IoT gateways, we suppose that every w ∈ W can generate a
digital signature Signw(p) of any transmitted packet p. The proposed construction
is supposed to achieve security requirements in the computational sense, i.e. we
assume PPT adversaries (definition 2) with negligible success probabilities when
attempt to attack the scheme. A function has a negligible success probability if the
success occurs with a probability smaller than any polynomial fraction if the size
of the input exceeds a given bound [2]. The private resources are registered and
discovered by an added private tuple (see Section 4.5). The goal of the security
model in the privately registered resources of Lamred is to allow friend clients to
securely and anonymously discover the private resources, which comes from the
following security properties:

• Resource anonymity: Every PPT adversary can learn any connection be-
tween a given private tuple and a given private resource with negligible prob-
ability only.

• Resource privacy: Every PPT adversary can learn the address of a resource
from a given private tuple with negligible probability only.

• Unforgeability: Every PPT adversary is able to generate, remove or update
a valid private tuple of a resource on behalf of a given honest object with
negligible probability only.

4.3 Location Regions in Lamred

Lamred consists of maximum 2g regions with maximum of 2d IoT gateways in
each region. The regions are grouped in 2g/2 sets, each set with one representative
region and 2g/2 − 1 local regions. Consequently, an identifier of a node in Lamred
consists of three concatenated parts: region set id, local region id and local node
id and is (g + d)-bit long. During the creation of identifiers in Lamred, two hash
functions are used. The first hash function generates g-bit output digest based on
a given information of the region set and the local region, while the second hash
function generates d-bit output digest based on the given node information. g and
d parameters can have same value and the same hash function can be used to
generate the different parts of the identifiers. There are two specific generic regions
in Lamred, namely private and public regions. Each node joins private and public
regions regardless of its physical location. In addition to that, a new node joins a
local region in the Lamred based on its location. Figure 2 illustrates the regions in
RDHT overlay of Lamred.
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Figure 2: Regions in RDHT

The regions are generated by feeding the information of the locations to the
hash function that outputs a g-bit digest. The given input information of the
locations can be represented by human readable names of regions or a specific
prefix of latitude/longitude data. Each region set has a representative region, in
which the nodes in the that region represent other nodes in the region set. To
create a region id, the information of the representative region of that region set
is fed to the hash function and the first left g/2 bits represents the first g/2 bits
of the generated region id. The local region information is then fed to the hash
function and the last g/2 bits is taken that will represent the second g/2 bits of the
generated region id. The representative region itself, will have the last g/2 bits all
set to zero. As a result, all the regions in each of the g/2 region sets in RDHT share
the same g/2 prefix bits. Because of the Avalanche effect property [32] of the hash
function algorithms, each subset of a generated digest by the hash function should
be affected equally as any other subset of the digest. Therefore, generating the
region id by taking g/2 bits from the g bits digest of representative region and g/2
bits from the g bits digest of the local region should not affect the randomness of
the generated identifier. The remaining d-bit of the identifier of a node is generated
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by hashing the information of the IoT gateway (e.g. its IP address). Figure 3 shows
the generation of the identifier of a node in Lamred.

Figure 3: Identifier generation in Lamred

A new IoT gateway w ∈ Wrg ⊂ W joins Lamred by registering in its local region,
along with other members ofWrg in the same local region. This is done by hashing
the location information of the representative region and its local region to get the
first g bits of the identifier of node w and then hashing its unique information (e.g.
IP address of w) resulted in the rest d bits of the identifier of node w. In addition
to the local region, the newly joined node w can join private and public regions as
well. This is done by first hashing its unique information (e.g. IP address of w)
to be able to generate two identifiers that are used in private and public regions.
The generated identifier in the private region starts with g zeros followed by the d
bits output of the hash function used by w. The generated identifier in the public
region starts with g − 1 zeros followed by a single bit 1 and the d bits output of
the hash function used by w. The joining process is done through an introducer
node that is already a member of Lamred. The joining process of a newly joined
node w starts by sending a look up request through the introducer node for its own
identifier (i.e. the newly generated identifiers of node w) in both private and public
regions, as well as in its own local region.

Similar to Kademlia [20] there are two general α and k parameters in Lamred
that determine the parallelism and system wide replication, respectively. Each node
in Lamred, has d lists of the k-buckets [20] that includes the access addresses to the
nodes in the same region. In addition, each node in any region of a region set should
keep g/2 lists of the k-buckets that includes access addresses to all representative
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regions in all region sets in RDHT, including the public and private regions. The
nodes in the representative region of any subset, keep g/2 lists of the k-buckets
that includes access addresses to all local regions in the region set. As a result,
the nodes in the representative regions have d + g lists and all other nodes in any
region in RDHT have d+ g/2 lists. Each of those lists has maximum of k entries.
Considering the size of the DNS domain cache in Raspberry Pi that is defaulting
to 10,000 entries1, storing the access addresses of maximum k IoT gateways in
maximum d + g lists does not require any additional storage consideration in the
Lamred peers. Figure 4 shows an example of a RDHT overlay of Lamred with 3
region sets, in addition to the public and private regions. In this tiny example the
hash function of both region and local identifiers generates a 4-bit digest, therefore,
the identifier of each node consists of 8-bits that includes 4-bits region identifier and
4-bits local identifier. As instance, initiator peer with identifier 10001110 wants to
get the access address of a resource that is stored in the destination peer 11101111.
Since the destination peer is in region id (1110), the representative region that this
peer belongs to is (1100). Therefore, the initiator peer sends the request to the
node (11001110) in the representative region which is then directed to the specific
region and finally to the destination peer in the required region.

4.4 Public Resource Registration and Discovery

A resource u in the network has its specific access address and a set of attributes
that describe its properties (e.g. its type, its provided service, etc.). When an object
o ∈ O wants to register its resource u in the network, it has to add the required
information in Lamred through a member of W that is directly connected to. This
set of information includes the tag that is generated by hashing the attribute type
of the resource, the value of the added attribute, the ownership information and
the access address to resource u as illustrated in Figure 5. After adding the tuple
(tag, value, ownership, data) of resource u to Lamred, it can be discovered by all
clients in the network. There are two options for registering a resource in the
network. The first option which is the default choice for a resource is to register
it in the local region, i.e. in the same region that it belongs to. Since registering
it locally ensures that the tuple will be stored in a node in the same geographical
region, it requires less time and overhead for registration. The resources that do not
depend on a specific location or provide services that are location-independent, can
register themselves in the public region as well. In addition to that, the directly
connected IoT gateway (i.e. the IoT gateway w that the object o is connected
to) keeps a copy of the registered resource locally in the cache for a specific time
depending on the caching expiry parameters.

The overall workflow of resource registration and discovery is shown in Fig-
ure 6. An object o ∈ O registers its resource u in the network as tuples of
(tag, value, ownership, data). The set of the attributes that describe resource u
are fed to the hash function to generate the tag parameter. The value in the added

1https://docs.pi-hole.net/ftldns/dns-cache/
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Figure 4: An example of Lamred implementation with 4 bits per region id and
local id

tuple indicates the actual value of each of the attributes of the registered resource.
During resource registration, the object o generates a random number r and adds
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Figure 5: The public tuple structure in Lamred

its hashed value as a later proof of ownership of the generated tuple. Revealing the
pre-image of the hash value (i.e. r) guarantees the ability of proving the ownership
of the tuple that is used during updating or removing it from the Lamred. The
access address (i.e. data in the tuple) parameter of the resource u might consist
of its address, URI or other metadata about the resource u. The tuple is then
stored in RDHT based on the its tags with a predefined number of replicas. The
actual number depends on the replication factor rp. Choose an appropriate rp
parameter depends on the nature of the network. As a general rule for choosing
the appropriate rp value, the probability of existence of a subset of offline nodes in
Lamred Offline ⊂ W with cardinality greater than the number of replicas has to
be negligible ε. This is shown in equation 1. In addition, the existence of replicas
increases the system performance by reducing the access load on any specific node
in Lamred.

P (‖Offline‖ ≥ rp) < ε (1)

Figure 6: Overall workflow of resource registration and discovery in Lamred
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Let Wrg ⊂ W be a subset of IoT gateways in a specific region that the resource
u has been registered in. In addition to storing the tuples locally in the directly
connected IoT gateway w ∈ Wrg ⊂ W and depending on the replication factor, the
close nodes in the same local regionWrg to tag parameter are responsible for storing
(tag, value, ownership, data) tuple. If a node with identifiers idw and a tuple with
tag tagv are close or equal, then we denote it with idw ≈ tagv. The model does
not depend on any specific distance function (dst) to compute the closeness. It can
be any particular distance function. Metrics such as bitwise exclusive or (xor) [20]
can be used to compute dst value.

Let Id be a set of all possible sequences of d-bit binary digit (i.e. identifiers) in
region rg and each peer w ∈ Wrg ⊂ W has an identifier idw ∈ Id and each resource
u has a tagu ∈ Id. Let define the following set of peers

M(u) = {w : tagu ≈ idw, �w
′ | dst(idw′ , tagu) < dst(idw, tagu)} (2)

The set M(u) links each resource u depending on its added attribute tagu to a
node w ∈ Wrg that its identifier idw ∈ Id is close or equal to tagu. The cardinality of
M(u) depends on the replication factor rp parameter. The procedure of registering
a public resource u in the network consists of three steps:

• Tuple Definition and Generation: The object o and based on the at-
tributes that describe the resource u generates the tags, i.e. hash value of
the attributes. Each of the tags is put along with their values, the ownership
parameter that is the hash value of a randomly generated number r and the
access address to the resource u and send the generated tuples to directly
connected w. In addition to that, the object o determines whether u has to
be stored in the same region or in the public region.

• Tuple Signing: In this step the appropriate set of tuples of the resource u
are signed by w ∈ W.

• Resource Registration: The gateway w registers the resource u by storing
the tuples at the corresponding nodes in Lamred.

The public resources that are registered without any restrictions in Lamred
can be discovered by all clients in the network based on their attributes and the
registered regions. Lamred allows discovery of the registered resources based on
one or more attributes. A client c ∈ C lookup for a resource by sending a lookup
request with the required set of attributes, their values and the required region to
the node w in Lamred that is directly connected to. The node w after receiving a
discovery request from a client c generates the appropriate tags for the discovery
process based on the received attributes. The discovery process contains three main
steps as follows.

• Query Generation: In the first step, the node w generates the set of tags
based on the received attributes from a client c. This is done by hashing each
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of the requested attributes in the client’s request. In addition to that, the
region id is also added to the generated tag.

• Lookup: The second step starts by issuing the lookup request by w in Lamred.
The result Ri of each of the lookup operations is a set of data parameters
that indicates the resulted resources based on the given attribute i and its
required value.

• Result Gathering: After receiving the results and verifying them based on
their attached digital signatures, the intersected members of sets R0 ∩ R1 ∩
· · ∩Rn will be returned as a result to the requested client c. In this step and
prior to returning the result to client c, some scoring methods can be applied.

The tuples of the registered resources are remained in Lamred based on the
caching expiry parameter. In addition to that, an object is able to update the data
or remove its registered resource from Lamred by issuing a request including the
pre-image of the ownership field in the added tuple. The request is signed by the
directly connected node in Lamred, w and is sent to the corresponding node in
Lamred. After checking the ownership of the tuple (i.e. H(r) = ownership), the
requested tuple is updated by a new tuple or removed from Lamred based on the
received request.

4.5 Private Resource Registration and Discovery

Every object o in the IoT network is able to keep a resource private and discoverable
only by a predefined set Fo by generating a private tuple as illustrated in Figure 7.
An object o has a set of its friends Fo = {f1,...,fn} ⊂ C that can be communicated
with in a secure and trusted way. The members of a friend set Fo of an object
o are connected through members of W but they are not part of RDHT overlay
itself. Each private resource has a private identifier idu that is chosen uniformly at
random from a given range, e.g. from bit strings of length 512. The identifier idu
is known only by the members of Fo. Additionally, each c ∈ C has also a private
identifier idc that is chosen uniformly at random from a given range. The object
o stores the private identifiers of each f ∈ Fo ⊂ C locally. In addition, for every
object o and for each f ∈ Fo, an initial value (IV of ) and a common secret key
(kof ) are generated and shared between them on a secure channel. The key kof is
used to encrypt the indirect transmitted data between them. These keys are stored
at each node locally at the setup phase and its future distribution scheme is out of
the scope of this paper.

If an object o registers its resource u privately, only the members of Fo can
discover and access this specific resource of o. To do so, an object o has to generate
a privateTaguf for a resource u and every friend client f ∈ Fo using equation
3. The access address of the private resource is then encrypted using the shared
key kof . A random number r is also generated and its hashed value is added
as a later proof of ownership of the generated private tuple. A private resource
can be registered privately in the local region or in the private region. While
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Figure 7: The private tuple structure in Lamred

registering a private resource in the private region does not guarantee the low
latency process, but it hides the actual region that the private resource belongs
to. On the other hand, registering a private resource in the local region ensures
a low latency process, but reveals its local region. The decision of whether the
private resource should be registered in the same local region or in the generic
private region is made by the object o that handles the private resource. After
generating the tuples as (privateTaguf , ownership, encryptedaccessAddress), the
corresponding node in Lamred receives the resulted tuples (a single tuple for each
f ∈ Fo) from the directly connected object and put them in the same local region
or the private region of RDHT. After registration, the members of Fo can discover
the registered private resource by computing its private tag. These private tags
are not permanent and used only once. The privateTaguf (new) parameter can be
calculated using privateTaguf (old), idu and idf values. At any given time, the
current private tag of a resource is computed as 3:

privateTaguf (new) = H(privateTaguf (old)⊕ idu ⊕ idf ) (3)

where privateTaguf (old) is the previous private tag of the resource u (i.e. the
output of the previous hash) and the initial value is privateTaguf (old) = H(IVof⊕
idu ⊕ idf ). The one-time private tag ensures that the IoT gateway w ∈ W that
idw ≈ privateTaguf is not the same during the life cycle of the resource. Similar
to publicly registered resources, the private tuple of a privately registered resource
can be updated or removed from Lamred by issuing a request and revealing the
pre-image of the ownership field in the added private tuple. Although the discovery
process of a private resource in the network resembles the public discovery, but there
are two differences. First is that in order to be able to discover a resource u that is
handled by o, a client has to be able to compute its private tag, i.e. being a valid
member of Fo. Secondly, after receiving the discovery result, the returned access
data is confidential and can be read only by knowing the secret key k corresponding
to this specific node.
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5 Evaluation

5.1 Security Analysis

Theorem 1. If H(.) is a one-way hash function then the system satisfies resource
anonymity.

Proof. Suppose that the private tuple

P = (P1|P2|P3) = (H(privateTaguf (old)⊕idu⊕idf )|H(r)|Enckof
(accessAddress))

is stored in Lamred by object o to register the resource u that can be discovered
only by its friend client f ∈ Fo. Note that, only P1 includes some information
related to the private resource u (i.e. idu), hence we can deal with this part of
the private tuple only, hence the goal of the adversary is to compute idu from the
tuple. Let assume that the adversary knows privateTaguf (old) also (e.g. from
previous communications). First suppose that a client m ∈ C \ Fo wants to learn
some information. Additionally, we can suppose that m ∈ Ff , i.e. m knows idf .
If m could find a pre-image of H(privateTaguf (old)⊕ idu ⊕ idf ), and if she could
remove privateTaguf (old) ⊕ idf then she can compute idu. However, since H() is
a one-way function, m can find any x with H(x) = P1 with negligible probability
only. The remaining nodes in Lamred outside Ff are in a much hopeless situation,
since even if they are assumed to find a pre-image of the hash, after that they
have to remove privateTaguf (old) and idf and the later is chosen randomly arising
unconditional resource anonymity in this case. This completes the proof.

Theorem 2. If Enc is a computationally secure encryption then the system satis-
fies resource privacy.

Proof. Suppose that the private tuple

P = (P1|P2|P3) = (H(privateTaguf (old)⊕idu⊕idf )|H(r)|Enckof
(accessAddress))

is stored in Lamred by object o to register the resource u that can be discovered
only by its friend client f ∈ Fo and a malicious node m ∈ W ∪ (C \ Fo) wants
to discover and learn the access address of the registered private resource. Note
that, only P3 depends on the access address of the private resource, hence we can
deal with this part of the private tuple only. This last part of the tuple is the
accessAddress encrypted with a computationally secure encryption. Therefore,
without the knowledge of the symmetric key kof the address accessAddress can
be computed with negligible probability only. This completes the proof.

Theorem 3. If H(.) is a collision-resistant one-way hash function and Enc is a
computationally secure encryption, then the system satisfies unforgeability.
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Proof. Suppose that the object o registers the resource u and the actual private
tuple

P = (P1|P2|P3) = (H(privateTaguf (old)⊕idu⊕idf )|H(r)|Enckof
(accessAddress))

is stored in Lamred. Letm ∈ W∪(C\Fo) be a malicious node and first suppose that
m wants to remove or update this tuple. Then m has to compute the pre-image of
P2, which is possible with negligible probability only since H(.) is one-way.

Next, suppose that m wants to generate a new valid private tuple. To achieve
this, the malicious node m has to first compute the new private tag (i.e. P1) and
then replace the part containing information related to accessAddress (i.e. P3).
We will show that neither part of the tuple can be computed with non-negligible
probability. First suppose that m wants to compute P ′1 = H(P1 ⊕ idu ⊕ idf ),
furthermore assume that m ∈ Ff (i.e. m knows idf ) and privateTaguf (old) is also
known by m. Then the only remaining part necessary for P ′1 is idu and only P1 and
privateTaguf (old) depends on this identifier. In both cases m has to compute the
pre-image of the hash function H(.) which can be done with negligible probability
only, since H(.) is a one-way function. Finally, suppose that m wants to compute
P ′3 = Enckof

(accessAddress′) for a fake address accessAddress′. Such fake address
can be found with negligible probability since Enc is a computationally secure
encryption. This completes the proof.

5.2 Performance Analysis

In addition to proving the security properties in Lamred, the main concern is to
keep the data of the registered public and private resources in the system as close
as possible to the point of origin to prevent the high latency of long distances. In
order to study the performance of Lamred and validate its feasibility and reliability,
several issues such as region sizes, required preparation time for registration and
discovery in constrained IoT devices, local and global discovery, and the affect
of local cache size and churn on Lamred have been investigated. The network
latency has been taken into consideration for measuring the performance of Lamred.
Table 2 shows the assumed random parameters of real-time latency2 for each of the
different network links in the system.

Table 2: Network parameters

type parameter
local connection latency 2 ms

sub-regional latency (local region) 3 - 8 ms
intra-regional latency (region set) 10 - 30 ms

long distance latency 80 - 120 ms

2https://wondernetwork.com/pings
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We should call the reader’s attention to the fact that the IoT gateways are the
peers in RDHT and not the IoT clients or IoT resources. The members of C and
O (i.e. clients and objects that handle IoT resources) are not part of RDHT itself
and are connected through the peers in RDHT. The Kademlia implementation3 of
PeerSim simulator[22] has been used for the performance experiments. The imple-
mentation has been modified to fit our proposed model. In the implementation and
as with uTorrent4, the popular implementation of Kademlia, system wide replica-
tion is set to 8 and the lookup parallelism is set to 4. The results of researches
[14][27] that focus on studying these two factors and other parameters in Kademlia
[20] implementation to improve the lookup latency in DHT based implementa-
tion can be applied on Lamred. The system performance has been tested using a
simulated Lamred network with 400 million to 2 billion IoT gateways. The IoT
gateways are distributed and grouped in 200 region sets with 200 regions per re-
gion set (i.e. overall 40,000 regions with 10,000 to 50,000 IoT gateways per region).
Table 3 shows the resource discovery latency in a local region. Figure 8 shows the
resource discovery in Lamred with different region size and discovery scope. The
sub-regional discovery is done within the same region, intra-regional discovery is
done between two regions that are within the same region set and regional discovery
(i.e. long distance discovery) is done between two regions that are in two different
region sets. Due to huge number of IoT gateways in RDHT, the intra-regioal and
regional discovery have been simulated in different stages. Without loss of gener-
ality, we assumed that no churn occurred and no cache has been used in Lamred
during these tests.

Table 3: Resource discovery in a region in Lamred

region size discovery latency
10,000 45.27 ms
20,000 47.14 ms
30,000 48.1 ms
40,000 48.9 ms
50,000 49.7 ms

To evaluate the efficiency of the Lamred for handling issues of robustness, avail-
ability, and replication, we performed a set of experiments where we introduced
churn in the network. Over 100 to 2000 milliseconds intervals and for a period of
120 seconds, we randomly either killed an existing IoT gateway or started a new
one in a region of 10,000 nodes. During the evaluation, resource discovery rate of
100 requests per second have been issued. As shown in the presented result in figure
9, there is 11 ms delay comparing to the network without churn in the discovery
time in Lamred when the churn rate is 0.1 second (i.e. every 100 millisecond either
an IoT gateway leaves or joins Lamred) and less than one millisecond delay when

3http://peersim.sourceforge.net/
4https://www.utorrent.com/
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Figure 9: Churn affect on Lamred

the churn rate is higher than 1.6 second between each occurrence.

Figure 10 shows the affect of cache on Lamred. During the evaluation in a region
of 10,000 IoT gateways and 1000 requests per second, the probability of discovering
a resource that has been already resided in the local cache has been set to 0.05 -
0.25. The analysis showed that the local cache in Lamred nodes that includes the
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Figure 10: Cache affect on Lamred

locally registered and frequently discovered resources, improves the overall delay
linearly.

As part of the evaluation, Lamred has been compared with the centralized
service discovery (CSD) [13] and the decentralized resource discovery (DRD) [15]
models. Since the DRD model [15] uses the IoT gateways without considering their
locations, during analysis and comparison we simulated this model by creating a
region set and assuming that the resources are registered in the regions without
considering the locations of the resources. The direct matching scheme that has
the minimum response time in the CSD model [13] has been used. There are 1000
IoT objects that have been distributed uniformly at random among a region in
Lamred with 5,000 - 10,000 IoT gateways. As it appears from figure 11, although
the resource discovery in centralized discovery is fixed, but the lookup process of
discovering a resource in the network of a centralized scheme is higher than the
proposed model. At the same time, as it is notable, when in the proposed model
the number of gateways in the system increases the delay of the lookup process
increases logarithmically. The reason is the use of the DHT overlay for discovery
in which the lookup time among n peers is log(n).

Lamred shows that it has a low latency that makes it suitable for IoT network
with large number of IoT resources. The latency in a region of Lamred has been
compared with the latency in some of the recent works and the result is listed in
Table 4.

The private resource registration and discovery follows a different approach than
other regions, as discussed in Section 4.5. In this case the object has to generate
the private tag of the resource to be used in the private region of Lamred and on
the other hand, the client application has to calculate the private tag in order to
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Table 4: Latency in resource discovery Models

Model Properties Latency

Datta and Bonnet [8]
Search Engine Based
Resource Discovery

450-600 ms

Jia et. al. [13]
Centralized Resource
Discovery

230 ms

Kamel et. al. [15]
Decentralized Re-
source Discovery

150 ms

Pahl et. al. [23]
4 predicates/ search
providers

80 ms

Lamred
A region with 10,000
IoT gateways

45 ms

be able to discover the private resource and get the encrypted access address of
it. The private tag generation in equation 3 has been tested on an MCU with
single-core 32-bit 80 MHz microcontroller. The SHA256 [10] is used as hashing
algorithm for tag generation and AES-128-CBC is used as encryption algorithm.
For analysis and implementation of SHA256 and AES algorithms on the MCU, the
Crypto library5 for the ESP8266 IoT devices has been used. During the test, each
of the cryptographic operations has been repeated 20 times, and their mean value
is registered. The average time required to perform the encryption, decryption,
hashing and the private tag generation and discovery are shown in Tables 5 and 6.

5https://github.com/intrbiz/arduino-crypto
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Table 5: Required operation time by the microcontroller for private resource
registration

Operation Required time
XOR operation 8 ms

RNG 5 ms
SHA256 (Private Tag and RN) 2 * 227 ms

AES-128-CBC encryption 288 ms

Tag generation (Registration) 805 ms

Table 6: Required operation time by the microcontroller for private resource
discovery

Operation Required time
XOR operation 8 ms

SHA256 (Private Tag) 227 ms
AES-128-CBC decryption 348 ms

Tag generation (Discovery) 583 ms

5.3 Complexity Analysis

Suppose that Lamred consists of 2g regions, divided into NRegionSet region sets.
Let’s suppose that the cardinality of IoT gateways in the private and public regions
are NP , and in the local regions R1, R2 and R3 of RDHT overlay are NR1, NR2

and NR3, respectively. Suppose that both R1 and R2 are in the same region set
that includes NRS1 local regions, and R3 is in a different region set. We discuss
the complexity of the proposed model in five cases:

• Sub-regional registering or discovering a resource in the same local region
(RDlocal)

• Location independent registering or discovering a resource in the private/
public regions (RDpp)

• Discovering a resource that is stored in the cache of an IoT gateway (Dcache)

• Intra-regional discovering a resource in the same region set (RDRS)

• Regional discovering of a resource in a different region set than the client
region (Dregional)

Registering or discovering a resource in the same region R1 that the object
and client belong to is done by the corresponding peer w ∈ WR1 and is equal
to RDlocal = O(log(NR1)). Registering or discovering a resource in the private
or public regions regardless of its location is done by first reaching a node in the
target private or public regions and then finding the exact node in these regions
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responsible for storing the access address of the required resource. Since each node
in Lamred has the access addresses of nodes in public and private regions, it takes
O(1) to reach each of these two regions and then perform a lookup request for the
exact required node. Therefore, registering or discovering a resource in the private
or public regions depends on the number of nodes in each of these regions and is
equal to RDPP = O(log(NP )).

Each IoT gateway in Lamred keeps a copy of the registered or previously dis-
covered resources locally for a specific time depending on the caching expiry pa-
rameters. If a client requests to discover a resource that resides in the cache (which
happens for the frequently discovered resources), then the result is returned di-
rectly to the client and is equal to Dcache = O(1). If the client and the discovered
resource are in regions R1 and R2 that are in the same region set including overall
NRS1 local regions, the discovery access time takes RDRS = O(log(NRS1NR2))
and is done in two stages. Firstly, it takes O(log(NRS1)) to reach the target re-
gion (i.e. R2) and then it takes O(log(NR2)) to discover the required resource by
reaching the specific responsible node in target region R2. Discovering a resource
in region R2 by a client belongs to region R3 that is in a different region set rakes
Dregional = O(log(NRegionSetNRS1NR2)) and is done in three stages. Firstly, ac-
cessing the representative region of the region set that the target region R2 belongs
to takes O(log(NRegionSet)) based on the number of available region sets in Lamred.
Then, reaching the region R2 takes O(log(NRS1)). Finally, it takes O(log(NR2))
to perform a lookup and discover the required resource by reaching the specific
responsible node in target region R2.

6 Conclusion

In this paper a location aware and privacy preserving multi layer model of resource
discovery (Lamred) in IoT has been proposed. It adopts the peer to peer (P2P)
scheme by utilizing Regional Distributed Hash Table (RDHT), a proposed version
of DHT. Lamred ensures that there is no single point of failure in the system and the
network can be easily scaled without any need of a reorganizing and synchronizing
authority. The RDHT overlay is generated by taking into consideration the physical
location of IoT gateways in the system. Resources are not part of RDHT overlay,
but they can be registered locally, globally or privately different regions in RDHT
through an IoT gateway. On the other hand, clients can discover the resources based
on one or more attributes of the required resources. During the discovery phase,
the client can choose a specific local region or the public region for the discovery of
the resources. The private resources that are registered privately either in the local
region or in the private region can only be discovered by a predefined set of clients
in Lamred. During the evaluation, Lamred showed a lower latency comparing to
the centralized and location-independent decentralized resource discovery models.
In addition, the required security properties of the registered resources in Lamred,
namely resource anonymity, privacy, and unforgeability have been proved.

Some open problems remain related to the proposed model. On one hand, while
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the current model supports registering private resources in Lamred, but it offers a
two-level binary policy and can not define the set of attributes of clients that are
able to discover privately registered resources. This problem has to be addressed in
future works. On the other hand, in Lamred a separate lookup in the DHT overlay
for each of the attributes is issued which will add a significant overhead to the
system, there should be a future study to improve the efficiency of the discovery
process.
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Distance-Based Skeletonization on the BCC Grid∗

Gábor Karaiab and Péter Kardosac

Abstract

Strand proposed a distance-based thinning algorithm for computing sur-
face skeletons on the body-centered cubic (BCC) grid. In this paper, we
present two modified versions of this algorithm that are faster than the orig-
inal one, and less sensitive to the visiting order of points in the sequential
thinning phase. In addition, a novel algorithm capable of producing curve
skeletons is also reported.

Keywords: BCC grid, distance transform, topology preservation, thinning

1 Introduction

Skeletons are region-based shape descriptors which summarize the general form of
(segmented) digital binary objects [17]. In 3D, surface skeletons (that may contain
2D thin surface patches) are to represent general objects, and curve skeletons (that
are stick-like 1D descriptors) are concise representations of tubular and tree-like 3D
objects. Distance-based skeletonization techniques focus on the detection of ridges
in the distance map by using a proper distance and a fast algorithm for distance
transform [2, 3]. Another strategy for skeletonization, called as thinning, is an iter-
ative object reduction in a topology preserving way [11]. Distance-based methods
are often combined with thinning. These approaches can be further classified as
follows [5]:

• Anchor-based thinning: First, the set of centres of maximal balls (CMB’s) is
detected as safe skeletal (anchor) points. Then thinning is applied to connect
CMB’s and determining the set of remaining skeletal points.

• Distance-ordered thinning: Distance mapping is followed by the thinning pro-
cess. In the k-th iteration, only object points with distance value k are taken
into consideration for possible deletion.
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• Hybrid approach: It combines anchored and distance-ordered thinning.

Most 3D skeletonization algorithms work on digital pictures sampled on the
cubic grid. An alternative structure, the body-centered cubic (BCC) grid tessellates
the space into truncated octahedra, which results in a less ambigous connectivity
structure compared to the cubic grid [21]. The importance of BCC grid shows an
upward tendency in the analysis of 3D digital images [1, 13, 14, 15, 24].

The first skeletonization algorithm for binary objects sampled on the BCC grid
was proposed by Strand [19]. His algorithm considers a fixed distance, and is only
capable of producing surface skeletons. According to our best knowledge, there
is not any other similar result in the later literature. In this paper, we present
two modified versions of Strand’s method that work for arbitrary distances, and a
further one capable of producing curve skeletons.

The rest of this work is organized as follows. Section 2 reviews the basic notions
and results of 3D digital topology. In Section 3, we discuss the original algorithm of
Strand working on the BCC grid. In Section 4, we propose the modified versions of
that algorithm for computing surface skeletons, while in Section 5, we also present a
variant to produce curve skeletons. Some experimental results are shown in Section
6, and we round off this work with some concluding remarks.

2 Definitions and Notions

In this section, we review the basic concepts of digital topology and distance trans-
form.

Let us denote by B the BCC grid, whose elements are called points. The BCC
grid is defined as the following subset of Z3:

B = {(x, y, z) ∈ Z3 | x ≡ y ≡ z (mod 2)}. (1)

We make a distinction among the following three types of neighborhood of a
point p = (px, py, pz) ∈ B (see Figure 1):

N6(p) = {(qx, qy, qz) ∈ B | |px − qx|+ |py − qy|+ |pz − qz| = 2},
N8(p) = {(qx, qy, qz) ∈ B | |px − qx|+ |py − qy|+ |pz − qz| = 3},
N14(p) = N6(p) ∪N8(p).

Two points p, q ∈ B are i-adjacent if q ∈ Ni(p) (i = 6, 8, 14). Furthermore, let
N∗

i (p) = Ni(p) \ {p}.
The lexicographical order relation “≺” between two distinct points p = (px, py,

pz) and q = (qx, qy, qz) in B is defined as follows:

p ≺ q ⇔ (pz < qz) ∨ (pz = qz ∧ py < qy) ∨ (pz = qz ∧ py = qy ∧ px < qx).

The sequence of distinct points 〈x0, x1, . . . , xs〉 in a non-empty set of points
X ⊂ B is called an i-path of length s from x0 to xs in X if xk is i-adjacent to xk−1
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•
• •• ••• p ••• •• •
•

Figure 1: Elements of N14(p) in B (left), voxel representation of these points (right).
The set N6(p) contains the central point p and the six points (voxels) marked green.
The set N8(p) contains p and the eight points (voxels) marked red.

(i ∈ {6, 8, 14}, k = 1, . . . , s). Note that a single point is an i-path of length 0. Two
points p, q ∈ B are said to be i-connected in X ⊆ B if there is an i-path from p to
q in X. The set X is i-connected in the set of points Y ⊇ X if any two points in X
are i-connected in Y .

Following the concept of digital pictures in [9], we define the (14, 14) binary
digital picture as a quadruple P = (B, 14, 14, B). Each point in B ⊆ B is called
a black point and has a value of 1 assigned to it. Picture P is finite if it contains
finitely many black points. Each point in B \ B is called a white point and has
a value of 0 assigned to it. 14-adjacency is associated with both black and white
points. A black component or an object is a maximal 14-connected set of points in
B, while a white component is a maximal 14-connected set of points in B \ B. A
black point is called a border point in a picture if it is 14-adjacent to at least one
white point. Furthermore, a border point p is called a strong border point, if N8(p)
contains at least one white point, or else p is called a weak border point. In a finite
picture, there is a unique white component that is called the background . A finite
white component is called a cavity .

A reduction transforms a binary picture only by changing some black points to
white ones (which is referred to as the deletion of 1’s). A 3D reduction does not
preserve topology [8] if

• any object in the input picture is split (into several objects) or is completely
deleted,

• any cavity in the input picture is merged with the background or another
cavity,

• a cavity is created where there was none in the input picture, or

• a hole (that e.g. doughnuts have) is eliminated or created.

A simple point is a point whose deletion is a topology preserving reduction [9].
Sequential thinning algorithms traverse the border points of a picture, and focus on
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the actually visited single point for possible deletion, hence for such algorithms, the
deletion of only simple points ensures topology preservation. The following result
states that simplicity is a local property in B which can be verified by investigating
the 14-neighborhood of points:

Theorem 1. [23] Let p be a black point in a (B, 14, 14, B) picture. Then p is a
simple point if and only if the following conditions hold:

1. Point p is 14-adjacent to just one 14-component of N∗
14(p) ∩B.

2. Point p is 14-adjacent to just one 14-component of N14(p) \B.

Figure 2 shows examples for simple and non-simple points.

◦
• •◦ ◦◦• p ◦◦• ◦• ◦
◦

◦
◦ •◦ •◦◦ p ◦◦• ◦• ◦
◦

Figure 2: Example for a simple (left) and a non-simple point p (right) on the BCC
grid. The distinct black 14-components are labeled with different colors.

Let Γ be the set of white points in a picture. The distance transform is a
function that assigns to each point p the distance between p and the closest border
point q ∈ Γ to it. The most frequently used distance functions of two points p and
q are the Euclidean distance, de(p, q) =

√
(px − qx)2 + (py − qy)2 + (pz − qz)2 and

the neighborhood distances, where di(p, q) denotes the length of the shortest i-path
between p and q [12]. In B, neighborhood distances d8(p, q) and d14(p, q) are taken
into consideration. These distances, however, do not give a good approximations
to the Euclidean distance. As a better solution for this purpose, the lengths of the
moves from a point to its neighbors can be weighted according to some criteria, and
the path of the minimal sum of weights called as Chamfer distances can be used
[4, 12]. Let 〈a, b〉 denote the general Chamfer mask for weighted distance transform
on the BCC grid, where a and b are the weights assigned to all points in N∗

8 (p) and
N∗

6 (p), respectively. Some Chamfer masks are presented in [7, 22].
Let DT be a distance map of a (14, 14) picture. Point p ∈ B is called a local

maximum if for any point q ∈ N∗
14(p), DT (p) ≥ DT (q). An inscribed ball is a sphere

that is contained within the object and tangent to at least one of the object’s faces,
and it’s called maximal if it is not covered by any other inscribed ball. A center of
maximal ball (CMB) is labeled with the radius of that ball [5]. Point p ∈ B is a
CMB if for any point q ∈ N∗

14(p), DT (q) < DT (p) +w, where w is the weight that
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corresponds to q on the Chamfer mask when placed on p. In case of d8 distance,
only N∗

8 is considered for detection of local maxima and CMB’s.

3 Strand’s algorithm

The method proposed by Strand uses d14 distance and sequential thinning, and
it can produce only surface skeletons by preserving non-simple points and surface
edge points. A point p ∈ B is called a surface edge point, if the following two
conditions hold:

• there are two points q, r ∈ N∗
14(p) ∩B such that N14(q) ∩N14(r) = {p} and

• there is no point s ∈ N∗
14(p) ∩B such that N14(p) ∩N14(s) ⊆ B.

The thinning part consists of two phases. Forward thinning reduces the input
object to a 3–4 voxel thick object, which is peeled further during backward thinning.
Note that surface edge point condition is applied only in the last phase. The unusual
in this process is that during the backward thinning phase, object points are visited
in descending order of their distance value. The sequential thinning suffers from
the disadvantage of being sensitive to the visiting order of border points with the
same distance value. As a result the final skeleton usually has some “false” skeleton
points, which causes insignificant segments. This situation is illustrated in Figure 3
and an example for its occurrence can be found in Figure 4.

•
• •• ••• p ••• •• •
◦

Figure 3: Example for unfavorable visiting order during sequential thinning. Weak
border point p becomes non-simple after deletion of its neighbor marked red.

Theorem 2. The runtime complexity of Strand’s algorithm (see Algorithm 1) is
O(|I|4/3), where |I| denotes the number of points in the image.

Proof. The first phase of the algorithm is linear since computing the d14 distance
transform requires two raster scans [22] and the sequential detection of CMB’s
takes one extra scan. Forward thinning is linear too, because the object point’s
local neighborhood is examined exactly once. In worst case, weak border points
on the original object may appear as surface or line endpoints, which means the
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Algorithm 1 Strand’s skeletonization algorithm.

Input: picture (B, 14, 14, X) with the initial objects in it
Output: picture (B, 14, 14, X) containing the surface skeleton

// Distance mapping and identifying CMB’s

1: DT ← computeDT (X)
2: H ← {p ∈ X | p is a CMB}

// Forward thinning

3: for k ← 1 to max(DT ) do
4: for each p ∈ X do
5: if DT (p) = k and p is simple and N14(p) ∩H = ∅ then
6: X ← X \ {p}
7: end if
8: end for
9: end for

// Backward thinning

10: repeat
11: changed1← false
12: for k ← max(DT ) downto 1 do
13: repeat
14: changed2← false
15: D ← {p ∈ X \H | DT (p) = k and p is simple}
16: for each p ∈ D do
17: if p is simple and p is not a surface edge point then
18: X ← X \ {p}
19: changed1← true
20: changed2← true
21: end if
22: end for
23: until changed2 = false
24: end for
25: until changed1 = false

algorithm may classify black points incorrectly during the first iteration. As a
consequence, the length of these segments is equal to half of the object’s thickness,
which we refer to as Tobj .

During the for loop from Step 12 to 24, all remaining object points are visited,
but it can peel only a one-unit layer from each segment because of the descending
visiting order of the object point’s distance value, since only simple points can be
deletable. Hence, each object point will be visited at most Tobj times until the
algorithm terminates, so the runtime complexity is O(Tobj · |I|). Tobj is maximal,
if the input image has a cubic shape, which means the image size is the same
for all dimensional axes. In this case, the original object is 3

√|I| / 2 thick, if all
points in the image are black. By inserting it into the previous formula, we get
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Original object
(20 280)

Result of forward thinning Final skeleton
(4 926)

Figure 4: Result of Strand’s algorithm on a holey cube. In the middle and right
figure anchor voxels are gray and further skeleton voxels are red. Numbers in
parentheses show the number of black points.

O( 3
√|I| / 2 · |I|) = O(|I|4/3), which is not just the third phase’s, but the whole

algorithm’s runtime complexity.

4 Our two modified algorithms to produce surface
skeletons

To construct linear time algorithms, we merge the thinning phases in Algorithm 1
and simplify the organization of the thinning iterations. Our deletion rule also
preserves non-simple points and surface edge points. We introduce a new parameter
N which gives an upper limit to the visiting number of all black points during the
thinning phase (i.e. each iteration will be repeated at most N times). Note that
setting N to ∞ means that the visiting number is not limited. This parameter
is applied in both of our improved algorithms. The motivation is to reduce the
sensitivity to the visiting order of border points. The sequential thinning part
consists of two substeps in our modified algorithms. First, we collect the deletable
points from the actual image into set D. Then we individually delete each point in
this set, if they are still simple when visited. In order to lessen the occurrence of
false skeleton points, elements of D are visited in lexicographical order.

Our first improved variant, called AB-N-visits, is an anchor-based thinning
method that considers local maxima instead of CMB’s to be anchor points be-
cause many CMB’s are proved to be “false” skeleton points on weighted distance
maps [5]. In this approach, we consider only strong border points to make sure
the strong and weak border points will be visited in different iterations. At the
end of each iteration, all visited but non-deleted points are insterted in the set S
of skeleton points (see Step 17 of Algorithm 2). This operation guarantees that no
border points will be examined during the further iterations which already have
been visited.
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Our second improved variant, called DO-N-visits, is a distance-ordered thinning
method that omits the detection of anchor points, i.e. the set H is not used in this
version. The border points are visited in ascending order of their distance value
during the thinning phase.

Algorithm 2 Anchor-based variant AB-N-visits to extract surface skeleton.

Input: picture (B, 14, 14, X) with the initial objects in it, visiting limit N
Output: picture (B, 14, 14, S) containing the surface skeleton
1: DT ← computeDT (X)
2: H ← {p ∈ X | p is a local maximum}
3: S ← ∅

// Thinning

4: repeat
5: L← {p ∈ X \ (S ∪H) | p is a strong border point}
6: D ← {p ∈ L | p is simple for X and p is not a surface edge point}
7: t← 0
8: repeat
9: t← t+ 1

10: for each p ∈ D in lexicographical order do
11: if p is simple then
12: X ← X \ {p}
13: L← L \ {p}
14: end if
15: end for
16: until t = N or no points are deleted
17: S ← S ∪ L
18: until D = ∅

Theorem 3. The runtime complexity of Algorithm 2 and Algorithm 3 is linear, if
N ∈ N.

Proof. As we mentioned in Theorem 2, d14 distance mapping has linear computa-
tional cost. Here we note that d8 and any 〈a, b〉 Chamfer distance have the same
property [7]. Moreover, there are also linear time adaptations of the Euclidean
distance transform on the BCC grid [20].

Following the indication in Theorem 2, |I| denotes the number of points in the
image. During the thinning phase, each object point is visited in exactly one it-
eration. In Algorithm 2, this is ensured by collecting all previously investigated
but not deleted border points. In Algorithm 3, the distance-ordered strategy guar-
antees this property. It is also obvious that each border point is visited up to N
times during one thinning iteration. As a consequence, all object points are visited
maximum N times during the thinning phase. Hence, the computational cost is
O(N · |I|), which means linear time complexity if N is a positive integer since it is
a fixed parameter.
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Algorithm 3 Distance-ordered variant DO-N-visits to extract surface skeleton.

Input: picture (B, 14, 14, X) with the initial objects in it, visiting limit N
Output: picture (B, 14, 14, X) containing the surface skeleton
1: DT ← computeDT (X)

// Thinning

2: for k ← 1 to max(DT ) do
3: D ← {p ∈ X | DT (p) = k and p is simple and p is not a surface edge point}
4: t← 0
5: repeat
6: t← t+ 1
7: for each p ∈ D in lexicographical order do
8: if p is simple then
9: X ← X \ {p}

10: end if
11: end for
12: until t = N or no points are deleted
13: end for

The extracted surface skeletons of the holey cube by our improved algorithms
are shown in Figure 5. It is easy to see that these surface skeletons contain less
insignificant skeleton points compared to the result in Figure 4.

AB-N-visits
(4 432)

DO-N-visits
(3 881)

Figure 5: Result of our improved algorithms on a holey cube shown in Figure 4 on
d14 distance map with N = 2. In the left figure anchor voxels are gray and further
skeleton voxels are red. Numbers in parentheses indicate the number of skeleton
points.
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5 Modified variant to produce curve skeletons

By modifying our distance-ordered variant, we can also extract the curve skeleton
directly from the original object. For this purpose, instead of surface edge points
we retain either of two types of curve endpoints. Point p ∈ B is a C1 endpoint, if
|N∗

14(p)∩B| = 1, i.e., p has only one black neighbor in N∗
14(p). Let u be this black

neighbor. Point p is a C2 endpoint, if p is a C1 endpoint and u is a line point.
Point u is a line point if there are exactly 2 black points in its 14-neighborhood and
they are not 14-adjacent to each other. We consider a border point deletable if it
is simple but not an endpoint. The corresponding algorithm is called DO-CS. We
reorganised the thinning iterations: the non-deleted black points must be visited
again during the further iterations in order to shrink the surface patches until line
branches are only left. Parameter N is not used since the sufficient number of
iterations repetition depends on the structure of the objects in the input picture.
This algorithm terminates only if there are no more deletable points. Therefore, it
is impossible to set a constant upper limit k to the visiting number of object points.
As a result, the extraction of the curve skeleton has nonlinear time complexity.

It is important to note that anchor point condition should not be used because
the detected ridge points belong to the surface skeleton, so surface segments will
probably be also generated.

According to our experiments, visiting elements of D in lexicographical order
has a relevant effect only on d8 and d14 distance maps. The reason behind this
phenomenon is the fact that on Chamfer or Euclidean distance maps the number
of considered border points in a thinning iteration are less than in d14 or d8 distance
map, so there is a lower chance of unfavorable visiting order. Furthermore, there are
much more configurations for surface edge points than for line endpoints. Hence,
the curve endpoint criteria are less sensitive to the visiting order, especially the C2
condition.

Extracted surface skeletons of the holey cube are shown in Figure 6. Notice
that d8 skeleton is much more jagged due to the unlucky visiting order of border
points.

6 Results

Our algorithms were tested on numerous objects of different shapes. Figures
7–10 show the surface skeletons and 11–13 show the curve skeletons. To make
the difference between the applied parameters more visible, some of the following
figures consist of fusioned images, where red, green and gray voxels belong to the
first, second and both skeletons extracted with the indicated parameters, respec-
tively. In the case of Strand’s method the gray and red points mean the anchor
points and further skeletal points, respectively. In case of any 〈a, b〉 weighted dis-
tances, local maxima are considered as anchor points instead of CMB’s even for
Strand’s method. Numbers in parentheses show the number of object or skeleton
points.
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Algorithm 4 Variant DO-CS to extract the curve skeleton.

Input: picture (B, 14, 14, X) with the initial objects in it, line endpoint criterion
Ci (i ∈ {1, 2})

Output: picture (B, 14, 14, X) containing the curve skeleton
1: DT ← computeDT (X)

// Thinning

2: for k ← 1 to max(DT ) do
3: repeat
4: D ← {p ∈ X | DT (p) ≤ k and p is simple and p is not a Ci endpoint}
5: repeat
6: for each p ∈ D do
7: if p is simple then
8: X ← X \ {p}
9: end if

10: end for
11: until no points are deleted
12: until D = ∅
13: end for

d14
(97)

d8
(84)

Figure 6: Produced curve skeletons of a holey cube shown in Figure 4 with different
distances. The resulting curve skeletons with C1- and C2-endpoint condition coin-
cide with each other because no C2-endpoint was detected. Numbers in parentheses
indicate the number of skeleton points.

As we discussed in Section 3, Strand’s algorithm leaves many insignificant skele-
ton segments in case of d14 distance. It’s easy to see that Strand’s method remark-
ably overshrinks the input object, when weighted distance is used. Also note that
the more accurate approximation of the Euclidean distance is used, the less anchor
points are detected. In the case of N = 1, algorithm DO-N-visits leaves one side
of the letter A almost unchanged due to the unfavorable visiting order of border
points. This phenomenon is successfully handled with setting N to 2. However, the
modified versions may overshrink the object, if N is too large, especially in d8 or
d14 distance maps (see Figure 8). Hence, options N ∈ {2, 3} are usually sufficient.
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Original object
(42 522)

d14
Strand
(8 805)

〈5, 6〉
Strand
(1 110)

〈6, 7〉, N = 1, 2
AB-N-visits

(4 365) + (4 329)

d14, N = 1
DO-N-visits

(6 162)

d14, N = 2
DO-N-visits

(3 918)

Figure 7: Produced surface skeletons of the letter A with various parameters.

d8, N = 2,∞
AB-N-visits

(4 873) + (4 852)

d14, N = 2,∞
DO-N-visits

(3 918) + (3 792)

Figure 8: Overshrinked surface skeletons of the letter A. For N = ∞, the highest
repetition number, i.e. the highest value of t in Algorithm 2 and Algorithm 3 was
14 and 12, respectively.
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Original object
(149 142)

d14
Strand
(26 305)

〈4, 5〉
Strand
(3 331)

d8, N = 1, 2
AB-N-visits

(14 612) + (14 416)

d14, N = 1, 2
DO-N-visits

(19 130) + (8 930)

Figure 9: Produced surface skeletons of a gear with various parameters.

We can also observe that the medial surface is strongly jagged due to the nature of
sequential thinning.

A similar phenomenon can be observed on the gear and the amphora. By setting
N to 2 we get a much cleaner skeleton. Note that the number and distribution of
skeletal points also depend on the thinning strategy.

It can be well observed that significantly less false line segments were produced
on the curve skeletons with condition C2 compared to C1.

7 Conclusions

The proposed algorithms AB-N-visits and DO-N-visits have linear runtime com-
plexity and are less sensitive to the visiting order of border points compared to
Strand’s method. According to our experiments, it is sufficient to set N to at most
3 to produce “clear” surface skeletons. All examined algorithms preserve topology
due to the fact that only a single simple point is deleted at a time. All the pro-
posed methods can be extended to arbitrary distances including any 〈a, b〉 weighted
distance or even the Euclidean distance. The optimal parameters (e.g. distance,
thinning strategy) depend on the shapes of the objects to be represented. We note
that, though numerous authors have proposed methods to evaluate the performance
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Cross-sectional image Original object
(566 765)

d14
Strand
(51 901)

〈3, 4〉
Strand
(25 892)

d14, N = 1, 2
AB-N-visits

(53 522) + (51 493)

de, N = 1, 2
DO-N-visits

(29 749) + (29 246)

Figure 10: Produced surface skeletons of an amphora with various parameters.

Original object
(94 031)

d8
C1 + C2

(539) + (524)

〈3, 4〉
C1 + C2

(576) + (537)

Figure 11: Extracted curve skeletons of a helicopter with various parameters.

Original object
(105 933)

〈4, 5〉
C1 + C2

(1 131) + (861)

de
C1 + C2

(1 153) + (818)

Figure 12: Extracted curve skeletons of a dragon with various parameters.
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Original object
(212 639)

d14
C1 + C2

(283) + (145)

de
C1 + C2

(121) + (121)

Figure 13: Extracted curve skeletons of an object with various parameters. In
the right figure, the C1- and C2-skeletons are coincide with each other since no
C2-endpoint was detected.

of skeletonization algorithms (see for example [6, 10, 18, 25]), due to the lack of
definition of the “true skeleton” for a discrete object, a widely accepted approach
evaluating the goodness of skeletonization algorithms is yet absent [16].

Future research should be devoted to constructing similar distance-based al-
gorithms combined with parallel thinning strategies and adapting the presented
results to the face-centered cubic grid [21].
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Abstract

IoT systems are subject to cyber attacks, including infecting embedded
IoT devices with rootkits. Rootkits are malicious software that typically run
with elevated privileges, which makes their detection challenging. In this pa-
per, we address this challenge: we propose a rootkit detection approach for
embedded IoT devices that takes advantage of a trusted execution environ-
ment (TEE), which is often supported on popular IoT platforms, such as ARM
based embedded boards. The TEE provides an isolated environment for our
rootkit detection algorithms, and prevents the rootkit from interfering with
their execution even if the rootkit has root privileges on the untrusted part of
the IoT device. Our rootkit detection algorithms identify modifications made
by the rootkit to the code of the operating system kernel, to system pro-
grams, and to data influencing the control flow (e.g., hooking system calls),
as well as inconsistencies created by the rootkit in certain kernel data struc-
tures (e.g., those responsible to handle process related information). We also
propose algorithms to detect rootkit components in the persistent storage of
the device. Besides describing our approach and algorithms in details, we also
report on a prototype implementation and on the evaluation of our design and
implementation, which is based on testing our prototype with rootkits that
we developed for this purpose.

Keywords: embedded systems, Internet of Things, security, malware

1 Introduction

The Internet has grown beyond a network of laptops, PCs, and large servers: it
also connects millions of small embedded devices. This new trend is called the
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Internet of Things, or IoT in short, and it enables many new and exciting appli-
cations such as smart homes, intelligent transportation systems, smart factories,
and personalized healthcare. At the same time, IoT also comes with a number of
risks related to information security. The lack of security, however, cannot be tol-
erated in certain applications of IoT, including those in the domains of healthcare,
transportation, and industrial automation. In such applications, security failures
may lead to substantial monetary loss, physical damage of expensive equipment,
or even loss of human life. Therefore, one of the biggest challenges today, which
hinders the application of IoT technologies in many cases, is the lack of security
guarantees.

Unfortunately, IoT systems are notoriously insecure. One of the reasons is
that they are built from cheap embedded devices that are easy to compromise
by exploiting weaknesses in the way they are operated and vulnerabilities of the
software components running on them. A consequence of this is that malware for
IoT devices has appeared [1, 16] and gaining momentum [25]. Malware designed
for IoT devices is similar to malware designed for other types of computers: it
compromises the integrity of the device by installing unwanted, and potentially
harmful, software components on it. These software components can then be used
to cause other types of compromise such as allowing the attacker to access the
device remotely by installing a backdoor, tampering with messages sent by the
device to other devices, or making data stored on the device unavailable by deleting
or encrypting them.

Sophisticated malware tries to maintain its presence on infected devices while
remaining invisible for the operators of those devices. This sort of malware is called
rootkit [5]. Typically, rootkits run with elevated (root) privileges and they modify
system commands and/or code and various data structures in the operating system
(OS) kernel such that their files and running processes do not appear in the output
of various system tools used to monitor the operation of the devices. Detecting
such a rootkit is challenging, mainly because any detection program running at the
same or lower privilege levels than the rootkit may also be compromised or may be
misled by the tricks used by the rootkit to hide itself.

In this work, we aim at rootkit detection on embedded IoT devices, and we ad-
dress the above challenge by running our rootkit detection mechanisms in a Trusted
Execution Environment (TEE), which is isolated from the main OS of the device,
and hence the rootkit – even running with root privileges on the main OS – can-
not interfere with its operation. Such a TEE is supported on many embedded
platforms, including the popular ARM platform that supports the establishment
of TEEs by its TrustZone1 technology. A TustZone enabled ARM processor can
execute in two modes: in untrusted mode (called Normal World), it runs a com-
mon OS (e.g., Linux) and applications on top of it (often referred to as the Rich
Execution Environment, or REE for short), whereas in trusted mode (called Secure
World), it runs the trusted OS and the trusted applications of the TEE. Isolation

1https://developer.arm.com/ip-products/security-ip/trustzone, Last visited: Sep 20,
2020
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between these two modes are ensured by hardware based protection mechanisms.
As a result, software components running in the Normal World cannot access some
of the resources (including a part of the system memory) of the device, whereas
trusted software components of the TEE running in the Secure World have unlim-
ited access to all resources. Thus, the TEE provides two advantages for rootkit
detection: it can protect the integrity of some trusted rootkit detection code by
keeping it inaccessible for potentially malicious software running in the REE, and
it can provide a safe execution environment for that rootkit detection code where
it can access and inspect all system resources.

However, as the same processor is shared between the trusted and the untrusted
mode, the execution of untrusted software is suspended when the processor switches
to trusted mode and starts executing trusted software. This means that our trusted
rootkit detection code cannot observe the behavior of untrusted software compo-
nents during their execution, but it can only inspect their memory images reflecting
their state at the time of their suspension. In other words, our rootkit detection
approach is based on analyzing memory snapshots of the untrusted system (OS and
applications), and it consists of identifying the anomalies caused by the rootkit in
the state of the kernel data structures representing processes, as well as computing
the hash values of the memory images of running processes and comparing them
to known good hash values stored safely in the TEE. In addition, as the rootkit
may delete all its components from the memory before our rootkit detection code
is invoked and save itself to persistent storage for later execution, we also scan and
hash files stored on the flash disk of the device from within the TEE, and compare
the computed hash values to known good hashes stored safely in the TEE.

The rest of the paper is organized as follows: In Section 2, we introduce the main
features of rootkits and explain why they are difficult to detect. In Section 3, we
give an overview of our rootkit detection approach, which is based on checking the
system memory and the persistent storage from the TEE. These two components
of our approach are described in more details in Sections 4 and 5, respectively. We
implemented our approach using OP-TEE2, an open source TEE implementation,
and Section 6 contains the details on this implementation effort. In Section 7, we
report on the evaluation of our rootkit detection mechanisms, which we performed
with custom rootkits that we developed for this specific purpose. Finally, we discuss
some limitations of the proposed rootkit detection approach and possible future
extensions in Section 8, and conclude the paper in Section 9.

2 Rootkits

The term rootkit [21] refers to malware or modules of pieces of malware whose
primary goal is to maintain stealth on infected devices while allowing continued
access to its resources. Remaining hidden is in the best interests of the attackers: if
the operators detect the infection, they will try to eliminate the responsible pieces

2https://www.op-tee.org, Last visited: Sep 20, 2020
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of malware by reinstalling the system, and they will also try to patch the exploited
vulnerability rendering the system unavailable for the attackers.

Rootkits employ a wide variety of techniques to remain hidden on infected
devices [7, 21, 22]. User-mode techniques target the user space of devices and
include techniques such as the manipulation of log files, modification of disk-resident
system files (e.g., ls, top) or hooking libraries used by executables. One well-known
user space hooking technique is the abuse of the LD PRELOAD environment variable
to load malicious libraries before benign ones, therefore overriding their provided
functionalities. This technique is used by rootkits such as Azazel3, Jynx2 [8],
BEURK4, vlany5 and bedevil6. Other rootkits, such as HORSEPILL [19], abuse
valid kernel features offered to user space programs to maintain stealth presence
on the device.

Kernel-mode techniques, on the other hand, target the internal data structures
and functionalities in the operating system’s kernel. In the past, modifying the
kernel memory image was a widely used technique to remain hidden on Linux
systems. However, recent Linux kernel versions restrict access to /dev/mem and
/dev/kmem7, mitigating this attack. Other techniques in this category are kernel-
space hooking [28] and direct kernel object manipulation. The former includes the
use of malicious device drivers and the modification of the system call and interrupt
descriptor table. Direct kernel object manipulation tampers with the integrity of
the kernel by targeting dynamic kernel data structures. This technique can be used,
for example, to hide processes from the system administrator. There exist a number
of rootkits employing these techniques, including Adore-NG8, LilyOfTheValley9,
the work presented in [14], OSOM [11], SucKIT [9] and Suterusu10.

Many proof-of-concept rootkits compromise the virtualization layer, the BIOS
and/or the firmware of hardware components [10, 15, 17, 18]. Such rootkits are
called OS-independent rootkits and their advantages are manifold. Rootkits in the
lowest-level components can survive reboots and re-installations, and they leave no
traces on the disk. Their detection is particularly challenging because they do not
make visible changes to the operating system.

In response to the rising threat of rootkits, a number of detection methods
have been proposed [24]. Signature-based methods scan the files on the disk for
byte sequences and use a signature database to detect known rootkits. Tools that
implement this method include chkrootkit11 and Rootkit Hunter12. The main lim-

3https://github.com/chokepoint/azazel, Last visited: Sep 16, 2020
4https://github.com/unix-thrust/beurk, Last visited: Sep 16, 2020
5https://github.com/mempodippy/vlany, Last visited: Sep 16, 2020
6https://github.com/wiperpaul/bdvl, Last visited: Sep 16, 2020
7https://lore.kernel.org/lkml/18778.1508769258@warthog.procyon.org.uk/, Last visited:

Sep 16, 2020
8https://github.com/yaoyumeng/adore-ng, Last visited: Sep 16, 2020
9https://github.com/En14c/LilyOfTheValley, Last visited: Sep 16, 2020

10https://poppopret.org/2013/01/07/suterusu-rootkit-inline-kernel-function-hooking-

on-x86-and-arm/, Last visited: Sep 16, 2020
11http://www.chkrootkit.org/, Last visited: Sep 17, 2020
12http://rkhunter.sourceforge.net/, Last visited: Sep 17, 2020
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itation of signature-based methods is similar to those of signature-based intrusion
detection systems and virus scanners, namely, that they cannot detect very recent
or sufficiently modified old rootkits.

Behavior-based detection methods detect deviations from “normal” patterns of
system behavior [12], e.g. timing discrepancies and irregularities in resources such
as the Translation Lookaside Buffer (TLB). Such methods, however, require a priori
measurements of the analyzed system in a controlled environment. Differences
between the real and the controlled environment can decrease the accuracy of such
approaches. The baseline measurements must also be stored securely on the device,
otherwise, malware can influence the detection method.

Cross-view-based methods assume that there is no perfect rootkit which can
perfectly emulate all aspects of the system. In order to detect compromises, they
enumerate system parameters in at least two different ways and compare the results.
However, the kernel consists of many dynamically changing structures: a change
in an enumerated structure during cross-checking can lead to false alarms. To
overcome this challenge, Carbonite13 preempts scheduling, thereby prohibiting new
processes to spawn. However, such an approach has an impact on performance.

Integrity-based detection methods compare a snapshot with a trusted baseline.
In the case of files, the trusted baseline can be the hash value of a file computed
in a controlled environment, which can be checked with tools such as Samhain14.
Kernel data structures can also be monitored for malicious changes, e.g. system
call re-maps can be detected using StMichael15, running processes can be listed
with KSTAT16, and Gibraltar [3] uses a set of automatically derived data structure
invariants for monitoring purposes. The main challenge of integrity-based detection
is the secure storage of the baseline: if the kernel is assumed to be compromised,
then no file or memory on the system is adequate for storage. Rootkits in the
kernel can modify the return value of system calls necessary for reading files and
may compromise the Virtual Memory Management unit of the operating system to
access and/or tamper with data stored in memory.

Reliable detection of rootkits requires that the detector runs with higher priv-
ileges than the rootkit itself; as a result, detectors are placed in ever lower levels
in the devices’ architecture or even into a separate hardware. Paladin [2] is an
example of the former approach. It defines protected zones for memory and files,
and performs integrity checks from the hypervisor. Copilot [20], on the other hand,
is an example of the latter: it is a coprocessor-based kernel integrity monitor imple-
mented as a PCI card which connects the monitored system to the remote detector.

Our proposed method incorporates ideas from cross-view-based and integrity-
based detection methods, including integrity checks on files similarly to other file
integrity checkers [27], and anomaly detection in kernel data structures similarly to
Strider GhostBuster [26]. We provide a more in-depth discussion of our detection
methods in Section 3. Unlike other approaches, however, our proposed method

13https://securiteam.com/tools/5jp0m1f40e/, Last visited: Sep 21, 2020
14https://www.la-samhna.de/samhain/, Last visited: Sep 17, 2020
15https://sourceforge.net/projects/stjude/, Last visited: Sep 21, 2020
16http://www.s0ftpj.org/docs/lkm.htm, Last visited: Sep 17, 2020
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does not need additional hardware: we leverage a TEE to prevent the rootkit from
interfering with our rootkit detection process. We also use the TEE to safely store
baseline values (e.g., file hashes and hash values of memory images).

3 Overview of our approach

As mentioned previously, the basic idea of our rootkit detection approach is to
leverage the TEE (Trusted Execution Environment) for running functions aiming
at detecting integrity violations and inconsistencies in the state of the untrusted
system components of the REE (Rich Execution Environment) that may have been
caused by a rootkit. The primary targets for checking integrity and consistency are
the kernel code and the kernel data structures (in particular, data structures rep-
resenting processes, as well as data structures holding function pointers) of the
untrusted OS, as rootkits typically modify those to achieve their goals. The kernel
code and data structures can be accessed from the TEE by reading the memory
snapshot of the REE that is left behind when execution is transferred to our rootkit
detection function in the TEE. In addition, besides checking code and data struc-
tures in the memory, we must be prepared for malware that tries to remove its
traces from memory before the invocation of our rootkit detection function. Be-
cause it cannot remain in memory, it may try to hide itself in persistent storage
in such a way that it can execute again later when the memory has been checked.
Hence, our rootkit detection approach also includes checking the persistent storage
for signs of malware.

To achieve our goals, we deploy two software components: a Trusted Application
(TA) running in the TEE and a client application (CA) running as a user space
process on top of the untrusted OS in the REE. Our CA should be started when
the system is booted and then it should run continuously. The main role of the
CA is to invoke the TA periodically and to pass certain data to the TA collected
from the REE (e.g., the list of running processes as seen by the ps program when
executed on the untrusted OS). The TA performs rootkit detection by executing
different integrity and consistency verification functions as described below. In
order to ensure that the TA is indeed invoked periodically, a watchdog timer can
be started during the boot process that can only be reset by the TA; therefore, if
the TA is not invoked, the timer expires and the device reboots itself. When the
TA finishes its execution, control is returned to the CA, which runs concurrently
with other applications and services in the REE.

In the sequel, we assume that the OS running in the REE is Linux. Some of our
rootkit detection functions described below are specific to Linux, because rootkits
often operate at low level in the system architecture and exploit specific features or
mechanisms of the OS kernel. Yet, the principles even behind these Linux specific
functions are sufficiently general to be applied for other operating systems as well.
Moreover, some of the detection functions we present are agnostic to the OS used.

When invoked, our rootkit detection TA performs the following verification
steps aiming at detecting inconsistencies in the data held by certain kernel data
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structures or modifications of kernel code:

• Looking for hooks in the Virtual File System (VFS): Rootkits of-
ten target the so called operation structures of the VFS and replace (hook)
function pointers there such that file operations are handled by attacker code
instead of legitimate kernel code. For instance, the rootkit may hook the
lookup function in the operation structure of the inode of the /proc direc-
tory, and ensure that certain process IDs are removed from its output, and
hence, become invisible to certain system utilities. Thus, in each operation
structure of the VFS, we check if function pointers point inside the address
space where the kernel code segment is located. Any function pointer point-
ing outside that address space is considered to be hooked. More details on
detecting hooks of the VFS file operations are provided in Subsection 4.1.

• Detecting hidden tasks: Another way of hiding certain processes is to ma-
nipulate kernel data structures (a.k.a. Direct Kernel Object Manipulation or
DKOM for short) representing them. At the kernel level, processes (threads)
are represented by tasks, and there are different data structures, such as the
task list, the task tree, and so called PID namespaces that hold information
about existing tasks. In addition, tasks also appear in queues used by the
kernel for scheduling them. Rootkits rarely modify these data structures in a
consistent manner. For instance, in order to hide itself, a rootkit may remove
its task structure from the process list or process tree, while it must keep
itself in the run queue to be scheduled and have the chance to be executed
on the CPU. Therefore, we check all those data structures that hold infor-
mation about existing tasks and we compare the list of tasks obtained from
them to each other and to the process list received from the CA running in
the REE. Any inconsistency among these lists is interpreted as an integrity
violation of the system. More details on detecting hidden tasks are provided
in Subsection 4.2.

• Integrity checks: Besides manipulating task related kernel data structures,
rootkits can also modify other important data structures in the kernel, as well
as the code of running processes. For instance, a common rootkit technique,
called system call table hooking, is to replace function pointers in the system
call table such that when certain system calls are invoked, attacker code is
executed before control is given to the legitimate function that handles those
system calls. Another technique, called inline hooking, has similar effects,
but in this case, the system call handling functions themselves are modified
by inserting a jump instruction at the beginning of the function that points
to some attacker code. Similarly, the code of any processes in the memory
may be modified by the rootkit including the kernel code segment, system
programs, and user space applications. For this reason, we perform integrity
verification of the system call table, the kernel code segment (which includes
the functions that handle system calls), system programs currently execut-
ing, and the code segment of our CA running in the untrusted execution
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environment. This integrity verification is based on accessing these pieces
of data structures and code in the REE memory from our TA, computing
the hash values of their memory image, and comparing the computed values
to known reference values stored securely within the TEE. These reference
values are computed and saved in secure storage provided by the TEE after
system installation when the system runs for the first time. More details on
the integrity checks we perform are provided in Subsection 4.3.

• Looking for persistent rootkit components: Finally, as rootkits may
remove their components from memory before our TA is invoked and our
consistency and integrity verification is executed, and hide themselves on
persistent storage, we must also look for these persistent components. For
this, our TA accesses the persistent storage of the device, recursively hashes
all files in a pre-selected set of folders, and then compares the computed
hash values to known reference values stored securely in the TEE. These
reference values are computed and saved in secure storage provided by the
TEE after system installation when the system runs for the first time. The
folders are pre-selected in such a way that they contain all the binaries and
scripts that could legitimately execute on the device. This requires a certain
organization of the files in the file system, notably to separate files (including
programs) that should not change from those that has variable content (e.g.,
files used mainly for data storage). However, this is not a serious limitation
of our approach, because this kind of separation is also useful for many other
reasons related to the maintenance and troubleshooting of the device.

An issue that we have to consider is that while our TA is waiting for I/O
operations (i.e., reading file contents) to complete, control may be given back
to the REE. When this happens, pre-scheduled jobs may be executed by the
job scheduler (e.g., cron). Hence, in theory, a rootkit can hide its persistent
component in a program file A and schedule the execution of A before remov-
ing itself from memory. Then, program A (and hence the rootkit) could be
executed by the job scheduler during the file hashing operation performed by
our TA, and when executing, the rootkit can move itself from program file
A into program file B. If this move operation happens after file B has been
hashed already and before file A being hashed, then the computed hash values
would be good, and we would not detect the rootkit, which can then be re-
installed when file B is executed. As I/O operations are usually slow, our TA
is mostly waiting during the file hashing, which means that control is mainly
at the untrusted execution environment, and hence, chances of the above de-
scribed scenario happening are not negligible. To cope with this issue, our
CA disables all file access operations (including execution of programs) be-
fore invoking our TA and re-enables them only after the TA completes its
job. More details on this are provided in Section 5.

Figure 1 gives a high level overview of our rootkit detection components (i.e.,
the CA and the TA), their interaction, and the operations they perform. As it can
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Figure 1: High level overview of our rootkit detection components, their interac-
tions, and the operations they perform.

be seen, the CA is started at boot time, it continuously runs, and it invokes the
TA at random time intervals. Before invoking the TA, the CA disables execution
type access to files, such that new programs cannot be started during the checks
of the TA. Then the TA performs the above described consistency and integrity
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checks on the kernel data structures and the code segments of the kernel, running
system programs, and our CA. If integrity violations or inconsistencies are found,
then they are reported to the operator of the device via some remote attestation
protocol, but this is out of the scope of this paper. If the verification of the memory
is successful, then the TA proceeds with hashing the files in the pre-selected folders
in the persistent storage, and comparing the computed hash values to the stored
reference values. Again, if an integrity violation is found, then it is reported.
Otherwise, control is returned to the CA, which re-enables file access, and sleeps
until the next round of all these operations.

4 Detection of rootkit components in the kernel
memory

In this section, we discuss the checks we implemented in order to detect the traces of
rootkit infections in the Linux kernel memory. These checks focus on the integrity
of and consistency between kernel objects and target common techniques applied
by rootkit. In the following subsections, we briefly introduce certain kernel objects,
describe attacks against them, and present our methods to determine whether the
system is infected by a rootkits. In Subsection 4.1, we present the Linux kernel’s
Virtual File System (VFS) and our technique to detect rootkit attacks against its
structures. In Subsection 4.2, we discuss direct kernel object manipulation (DKOM)
in details and our techniques to counter this attack. Finally, in Subsection 4.3, we
describe our proposed checks to examine the integrity of the analyzed system.

4.1 Detecting hooks in the Virtual File System

The Virtual File System (VFS) [4] is an API in the Linux kernel which hides the
differences of the various file system drivers. It uses 4 main data structures to
abstract away the details of different file system implementations, shown in Figure
2. The superblock structure represents a mounted partition and stores metadata
about the partition itself, which is usually present in the first block of the underlying
physical device. Superblocks are chained together into a doubly linked circular list,
which is accessible from the data segment of the kernel binary. Each superblock
maintains a circular, doubly linked list of the inodes stored on the disk. An inode
is the physical representation of a file or a directory stored on the device. An inode
can be used by one or more directory entries, or dentries for short. For example,
if we create a new file and a hard link pointing to it, then we will have one inode
and two dentires referencing the inode.

Open files are represented by so-called file structures in the context of a process.
Tampering with these is impractical from the rootkit authors point of view. For
example, to modify the way a process reads a file, the hook must be scheduled
between the open and the first read call, and this must be performed every time
a process opens the file. There are easier and more stable solutions to implement
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Figure 2: Relationship of VFS objects. White objects are checked, gray ones are
ignored by our checks.

this behavior, so we consider files structures out of the scope of our integrity and
consistency checks.

At code level, VFS uses so called operation structures which contain function
pointers. Each function pointer implements a functionality used by the layers above
VFS (e.g. lookup to retrieve the contained dentries in the inode of a directory or
get_inode_usage to find out how many inodes are used on a partition), where the
implementation is provided by the underlying file system drivers. These operation
structures appear in all 4 of the previously mentioned structures.

Rootkits often target the operation structures: by hooking certain function
pointers, they can alter the results returned by these functions. For example, an
attacker can create a Linux kernel module, find the inode corresponding to the
/proc directory, and hook the lookup member of its inode_operations. With
a properly designed replacement, attackers can hide their presence by excluding
certain process IDs whenever process information is retrieved from /proc.

We perform integrity checks on 7 different operation structures. They cover all
the operation structures used by superblocks, inodes, and dentries. For superblocks,
we analyze super_operations, which implement general file system operations



380 Roland Nagy, Krisztián Németh, Dorottya Papp, and Levente Buttyán

(e.g., allocating inodes); dquot_operations, which handle quota objects on disk;
quotactl_ops, which manage quotas on the file system; and export_operations,
which are operations for the nfs daemon to communicate with file systems. For
inodes, we analyze inode_operations and file_operations. The former provides
operations to manage the inode, including rename, unlink, etc. The latter one
contains the file operations assigned to a file structure when a process opens a
dentry pointing to this inode. This structure contains function pointers like read,
write, flush and many more. For dentries, we check dentry_operations, which
hold directory entry related operations. For example, delete removes the dentry,
but the inode remains intact, just in case other dentries use the inode as well.

For each operation structure, we examine the function pointers, and consider
one to be hooked if it points outside of the address space where the code segment
of the kernel is located. We perform the check recursively, i.e., we inspect every
inode of a superblock and every dentry of an inode. Unfortunately, inspecting all
superblocks is time consuming, therefore, we only focus on the /proc file system
as hooking its inode operations is a common technique to hide rootkit processes.

4.2 Detecting hidden tasks

Processes and threads are represented by tasks in the Linux kernel. A task is
approximately equivalent to a thread: single-threaded processes consist of a single
task, while multi-threaded ones are made up of several tasks sharing the same
address space. Each task is represented with the so-called task_struct structure.
In Linux 5.1, there are three data structures which contain all of the existing tasks.

Task list: All task objects are linked together into a doubly linked circular list.
In earlier versions of the kernel, this list was used to populate the /proc file
system.

Task tree: Tasks are also organized into a tree via the relation of creation. When
a task creates other tasks, they become its children and they refer to their
creator as their parent. The root of this tree is the so called init_task, the
kernel task which starts the init process (the first process in the user space).

Pid namespace, IDR and the struct pid: Pid stands for process identifier
and IDR is the rewritten version of the old ID allocation API. Linux provides
pid namespaces as an isolation feature. By default, there is only one such
namespace, the initial pid namespace. Each namespace maintains a radix
tree17, containing pointers to pid structures18 (struct pid *). Pid struc-
tures contain lists of pointers for the tasks with an equal ID, thread group
ID, process group leader or session ID. The Pid namespace is responsible for
keeping track of taken pids and for fast access to tasks via their pids19. In
recent kernel versions, this mechanism populates the /proc directory.

17https://lwn.net/Articles/175432/, Last visited: Mar 19, 2021
18https://lwn.net/Articles/195627/, Last visited: Mar 19, 2021
19https://lore.kernel.org/patchwork/patch/834401/, Last visited: Mar 19, 2021
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Direct kernel object manipulation (DKOM) is a rootkit technique which modi-
fies the data structures traversed by the kernel when asked to retrieve information
about tasks. For example, rootkits can use DKOM to hide a process by removing it
from the data structure queried for process information. Many rootkits target the
task list to hide a backdoor on older systems; the same can be achieved on mod-
ern Linux by removing a pid structure from the IDR of the initial pid namespace.
DKOM is rarely applied thoroughly, rootkits usually remove processes only from
the necessary data structures, thus leaving the kernel memory in an inconsistent
state. For example, the Reptile rootkit20 hides the kernel module implementing its
functionality by removing the module from the list used by the kernel to populate
/proc/modules. However, it is still visible under /sys/module. Another example
is the deadlands rootkit21: it is capable of removing a process from the list of tasks
and a hash table (used by older kernel versions for fast access of tasks by their
pids), but the hidden task can still be found in the task tree.

Our analysis attempts to detect these inconsistencies. We assume that a trivial
goal of an attacker is to hide a process from the output of the ps utility. First, in
the REE, we execute ps and pass its output to our TA running in the TEE in order
to compare it to pid lists we can extract from the REE kernel memory. The pid of
ps itself must be excluded from this list because it is not running when we perform
our check. Our TA, after checking /proc, iterates through the task list, saves the
pid of every task, and then looks for pids present in the list, but missing from the
output of ps. If no hidden process is found, the TA performs a depth-first search
on the task tree and compares the pid list created in this way with the sample from
ps. If no inconsistency is found, the TA performs the same check for the IDR. If
it does not find any hidden processes, it tries to determine if there is any process
present in any of the mentioned data structures, but missing from any of the others.
This is done by taking the union of the three lists and comparing each list to the
union.

The most important feature of the kernel is the capability to schedule processes.
A task is considered to be runnable, if it is not waiting for anything (usually I/O)
and is not stopped. Runnable tasks ready to be executed are collected in sepa-
rate data structures; these are called run queues. Run queues are per-CPU data
structures, i.e., each CPU has its own run queue, and every run queue wraps sub-
runqueues implementing the data structures used by the scheduling algorithms.
We assume that removing a task from a run queue would make it unschedulable
permanently, which is why we include run queues in our consistency check. Our
TA collects the pids of all of the tasks found in the data structures of the schedulers
and then compares them to the union of pids created earlier. If it finds a task in
a run queue which is not present in the union, then the kernel is considered to be
compromised.

20https://github.com/f0rb1dd3n/Reptile, Last visited: Sep 18, 2020
21https://github.com/majdi/deadlands, Last visited: Sep 18, 2020
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4.3 Integrity checks

So far, we focused on revealing hidden processes by verifying the integrity of VFS
components and by performing consistency checks on task-related data structures.
In this subsection, we leave the concept of hidden processes and instead target
common rootkit techniques; some of the checks presented here ensure the integrity
of the system itself, while others defend our solution from a possible attacker.

First, we must ensure that our CA can be trusted. To this end, the CA is
compiled as a static executable (i.e., its binary contains the code for all the used
library functions as well). This allows us to protect it against LD PRELOAD
hooks, a common rootkit technique applied in the user space. The CA passes its
own pid as a parameter to our TA, such that the TA can look for the corresponding
task in the kernel memory. Each task has a pointer to a memory map structure,
which stores information about the task’s memory mappings. From this structure,
we can determine the start and the end of the task’s code segment, and we can
use it to translate the virtual addresses of the process to physical addresses. Via
physical addresses, we can access the contents of the memory pages storing the
code of the task, and we can compute its hash to check whether the code of the
CA has changed. The address translation depends on the system’s configuration;
in our case, the kernel uses 4 Kb pages and 4 layers of translation tables22.

Next, we check the system call table. System calls are the interface between
user space and kernel space. Whenever a user space process needs to perform an
operation that is the kernel’s responsibility, it invokes the appropriate system call.
The system call table is an array of function pointers indexed by the system call
number. On the ARM64 architecture, the system call table resides in the .rodata
section of the kernel binary, which is marked read-only at boot time. If an attacker
can remove the write protection, it is possible to overwrite pointers in the array and
alter the kernel’s control flow to execute a different implementation of the system
call. This is the most popular target of kernel space rootkits. [6]

We were able to remove the write protection using the update_mapping_prot

function23, changing the last parameter from PAGE_KERNEL_RO to PAGE_KERNEL.
Re-enabling the write protection can be done with the same function.

If kernel space randomization is disabled, we are able to retrieve the location of
the system call table after the kernel is compiled. With this information and the
number of entries in the table, we can easily determine the memory area to check.
We do this by creating a hash and comparing it against the one computed on the
intact system call table.

Another common technique is inline hooking. In this case, the attacker chooses
a function to hook and replaces its first few bytes with an unconditional jump
instruction and a pointer to the implementation he wishes to execute instead of the
original one. The previously mentioned write protection is applied to the kernel’s
text segment as well, but similarly to the system call table, it can be removed by

22https://www.kernel.org/doc/html/latest/arm64/memory.html, Last visited: Mar 19, 2021
23https://elixir.bootlin.com/linux/v5.1/source/arch/arm64/mm/mmu.c\#L525, Last vis-

ited Sep 18, 2020
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calling update_mapping_prot on the text segment24. We detect inline hooking, by
hashing the kernel’s entire text segment and comparing the hash value to a reference
value. The location and size of the kernel’s text segment is determined after the
kernel is compiled. Note that this solution does not support self modifying kernel
code and kernel address space layout randomization. The very same approach is
used to verify the integrity of the text segment of the system processes and our CA
running in the REE.

The Linux kernel provides APIs for monitoring file system operations (e.g., fan-
otify and inotify, which both use the same underlying kernel mechanism, fsnotify).
We use fanotify in our CA to ensure that no executable is started while our TA
performs our checks. We do this by placing marks at every mount point to make
sure the kernel does not allow execution of any files until the CA approves it. While
our checks are performed, the CA denies all execution requests. When the checks
are completed, the marks are removed and every execution request is approved.

Since we use another kernel functionality and we assume that the kernel is
compromised, our TA needs to check if the fanotify marks placed by our CA are
intact. Therefore, the CA passes the file descriptor returned by fanotify and the
pid of the CA to the TA. The TA then locates the fsnotify group among the open
files using the received pid and the file descriptor. This group stores a list to the
marks placed. Using the list of marks, the TA checks if all file system partitions
accessible from user-space are indeed marked; if this is not the case, then an attack
is detected. In order to ensure that the TA is aware of all available partitions, the
CA discovers the partitions and saves their in-memory locations to the TA during
the init process, right after secure boot, when the system is unlikely to be already
compromised. In addition, we extend the VFS checks described in Subsection 4.1
such that the TA also checks if there exist partitions not saved previously. This
is needed, because without checking this, the rootkit could create a new partition,
which would not be among the saved ones, and hence, the TA would not check
if there is a mark on it. By checking that all existing partitions have been saved
before, we detect this potential attack too.

5 Detection of persistent rootkit components

Rootkits may try to evade our detection mechanisms discussed in Section 4 by
ceasing all malicious activities, restoring kernel objects to their clean states and
hiding on the file system using persistence mechanisms. Interested readers may
find an in-depth discussion of the topic in [23], we only discuss a few techniques
here. The most basic way of achieving persistence is using functions provided by the
host OS for task automation and scheduling. On Linux distributions, this includes
initialization scripts that execute commands automatically upon system boot or
launching the shell, and task schedulers, e.g. cron, anacron and at.

24https://elixir.bootlin.com/linux/v5.1/source/arch/arm64/mm/mmu.c\#L445, Last vis-
ited: Mar 19, 2021



384 Roland Nagy, Krisztián Németh, Dorottya Papp, and Levente Buttyán

Existing software binaries can be easily modified or replaced on the disk by
malware, resulting in the malware being executed when the infected binaries are
executed. Libraries can be placed and loaded through the dynamic linker, resulting
in the backdoored processes executing malicious code without modifying the pro-
gram binary itself. Kernel modules that load during the boot process are also pos-
sible targets for achieving persistence. These persistence mechanisms leave traces
which can be revealed by scanning the file system. We note that there are other
mechanisms as well, some of which are not detectable from the file system (e.g.,
modified boot drivers and firmware). Their detection requires different protective
measures, like a secure boot implementation.

We detect rootkits trying to evade our memory checks via persistence mecha-
nisms by scanning the file system for integrity violations. We describe the known
uninfected state in Subsection 5.1 and present the scanning process in Subsection
5.3. Our detection method assumes a specific structuring of the file system, detailed
in Subsection 5.2. The baseline state to compare hashes against is stored in the
TEE’s trusted storage, the details are discussed in Subsection 5.4.

5.1 Design decisions and hashed file system entries

Our approach for detecting the persistent parts of rootkits on the file system is to
recursively compute hash values for selected directories. To compile such a list, we
originally experimented with parsing the crontab files of the system. Our goal was
to extract all file references from the scheduled shell commands and use these results
together with scanning a selected set of important directories recursively to reduce
running time. We used a static analysis approach based on the source code of the
bash command parser and cron’s crontab entry parser. It is possible to extract the
scheduled commands from the crontab files, however, one must pay attention to
the specified environment variables and keep track of which user’s permissions and
HOME setting will be applied during execution. We built an abstract syntax tree
for each command in the crontab file, extracted the possible file paths from the
command’s parameters (including the invoked command’s own file), and expanded
all valid paths into absolute paths using the PATH and HOME variables.

However, this approach has serious issues which may result in the target list
being incomplete. For example, if the crontab file includes a program which dy-
namically loads and executes another binary, our static analysis would miss that
binary. What is more, our static analysis would need to be able to handle paths
which are constructed dynamically (e.g., using loops). In order to overcome this
challenge, either a “cron policy” is needed which limits how the users can define
scheduled commands or the analysis should be extended with dynamic tools which
run the commands in a controlled environment and extract the directories and files
accessed during execution.

Another automated approach to constructing the list of file system entries to
hash would be to identify all executable files on the file system. However, we cannot
identify such files using the x permission flag, because file permissions are easy to
change. Recognizing ELF binaries by reading the first few bytes for the magic
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value is doable but the device may contain other types of executable files (e.g.,
script files). Differentiating between script files for different interpreters, such as
Python and bash, and simple text files is challenging without executing them.

As our method is designed for embedded IoT devices, we assume a small local file
system. Thanks to the small file system, we can expect to perform a thorough scan
in a reasonably short amount of time. Therefore, we compiled a general list of file
entries to hash which consists of many of the well-known top-level Linux directories,
like /bin, /lib and /etc. There are directories with highly volatile contents, such
as /tmp, /var and /dev, which we do not include in our scanning process. We do
not rely on the common and default locations and naming schemes of the persistent
components of known rootkits. We also do not rely on any malware signature
databases, only on our own reference hashes. This way, we could potentially detect
previously undiscovered rootkits, and are prepared for ones that randomize the
names and locations of their components.

5.2 Recommended file system structuring

We now discuss a few basic structuring practices regarding the file systems mounted
on the device which serve to greatly reduce the false positive rate of the file system
scans. Our detection of persistent rootkit components on the disk was designed
with the assumption that the device adheres to these practices.

As we use hashing to detect inconsistencies, it is necessary to separate the
mounts containing static, unchanging files like program binaries and linked libraries
from the ones containing dynamic, often-changing ones, such as log files. It is
recommended to add the noexec flag to every mount apart from the root file system,
which should be the one containing all programs and scripts executed during normal
operation.

For files that change during runtime and cannot be moved from the root file
system, we provide the option to be excluded from the hashing process. We rec-
ommend to use this option only for non-executable files for the following reason.
Even if rootkits infect these files to achieve persistence, they must also stop their
execution to evade our checks. Therefore, they need another component to execute
the files in which they hide to re-infect the system. If the file in which rootkits
hide is never executed, the rootkit cannot re-infect the system using this evasion
method.

5.3 The hashing process

The hashing process is performed entirely in the Trusted Execution Environment
(TEE). We take a predefined list of directories and/or file paths to be hashed and
create a hashing context for each entry. In the case of directories, we recursively
read the contents of all files from all subdirectories, and load them into the hashing
context. We produce a single SHA-256 digest for every individual entry in the target
list, as shown in Figure 3. The list of paths to be hashed is shuffled before each
new scan to provide a degree of unpredictability to the hashing order; this serves
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Figure 3: Each entry in the list of targets consists of an absolute path, a flag
to indicate whether to traverse the subdirectories recursively or not, and a list of
files to exclude from the hashing. For each target entry, a single SHA-256 digest is
generated. If the recursive flag is set to false, only the files in the top level directory
are calculated into the hash. If it is set to true, all subdirectories are recursively
parsed until the maximum file path length of Linux, and all files not explicitly
excluded are calculated into the hash.

as a secondary hardening technique against timing window attacks, supplementing
the use of the fanotify API (see end of Subsection 4.3). This does not affect the
digests themselves, since the order in which we read files inside directories remains
unchanged.

The reference hashes to which we compare the computed ones are initialized on
first launch, based on the state of the file system at that moment, and are placed
into the TEE’s trusted storage to protect them from tampering. Ideally, this first
launch should occur before putting the target system into active use, but after the
environment has been configured and all files necessary for operation have been
written to the disk. The stored reference hashes become outdated after a system
update or reconfiguration, and have to be replaced. In this paper, we do not discuss
how this update can be solved, but an automated solution for this problem is part
of our future plans.

The reference hashes are loaded from the trusted storage and compared to
the computed hashes. Targets with mismatching hashes are noted and should be
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examined further by the operators. It is recommended to keep a full reference
hash set based on the initial state of the storage in order to find the exact cause
of the mismatch. Pin-pointing mismatching locations would require keeping a 32-
byte hash on the trusted storage for every entity present on the file system. This
approach, however, requires much storage space, which is a drawback in the case of
IoT devices, as they are often equipped with only a small flash memory for storage.
As a result, a trade-off must be made between the amount of storage available and
the precision with which mismatching locations can be identified.

5.4 Using the TEE’s trusted storage

In this subsection, we briefly discuss a few important features of the TEE’s trusted
storage API that are necessary for protecting the authenticity and integrity of our
reference hashes. It is important to mention that according to the specification of
the trusted storage API [13], a single, designated Trusted Storage Space is provided
for each trusted application. As a result, our stored reference hashes are accessible
only by authorized TAs running on the same device in the same TEE as when the
data was created.

The inner workings of the trusted storage are highly dependent on the TEE
implementation, and it may not be entirely separated from the REE file system.
Consequently, file modifications from a root privileged user account could be a valid
concern. The trusted storage is expected to provide confidentiality and authenticity
through the use of authenticated encryption. This protects our reference hashes
against targeted modification and replay attacks. For additional protection and
separation from the REE file system, the reference files can be stored on a Replay
Protected Memory Block (RPMB) partition25.

The attacker could attempt to delete the reference hashes from the trusted stor-
age, because if this file cannot be found, we assume that our detection method is
in the initialization phase and file hashes are computed. According to the specifi-
cation, the trusted storage is protected from such attacks because a stored object
should not be accessible from outside the TA that created it. How this functionality
is achieved in practice is, again, highly dependent on the TEE implementation. In
our chosen implementation (see next section), the TEE recognizes the data corrup-
tion and generates an alert.

6 Implementation details

We use the Open Portable Trusted Execution Environment26 (OP-TEE) as the
trusted execution environment. It was initially developed by ST-Ericsson and cur-
rently owned and maintained by Linaro. Our implementation uses version 3.6.

Besides the TEE itself, which is essentially a minimal OS running in the Secure
World, OP-TEE consists of Normal World components as well: Linaro has its

25https://lwn.net/Articles/682276/, Last visited: Sep 18, 2020
26https://www.op-tee.org, Last visited: Sep 20, 2020
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own fork of the Linux kernel, which includes an OP-TEE driver. This driver is
responsible for shared memory allocation between the two worlds and provides the
RPC functionality through which the CA and TA can communicate. The driver
exposes its functionality to the user space via a block device. However, in order
to increase usability, the driver also has a counterpart in the user space, a daemon
called tee-supplicant. OP-TEE-related library calls are handled by this daemon
which communicates with the driver using ioctl. This is a bidirectional channel,
meaning that the driver is also capable of requesting operations from the daemon.

There is also a method for extending the functionality of the OP-TEE kernel:
pseudo-trusted applications (PTAs). These applications must be compiled into the
OP-TEE OS and they are capable of exposing core functionality to TAs or CAs.
We used this feature to implement functionality necessary for accessing non-secure
memory, which is otherwise forbidden for TAs. We discuss how we read REE
memory and files via PTAs from the TEE in Subsections 6.1 and 6.2, respectively,
and describe the checks we implemented in order to protect the REE components
of OP-TEE in Subsection 6.3.

6.1 Normal World memory API

To be able to read the memory of the REE kernel, we had to instruct the memory
management unit of the OP-TEE OS to map the physical memory range where
the Linux kernel resides. We determined this range from the boot log and modi-
fied core_mmu.c to register it as non-secure RAM. This makes it accessible in the
context of the TEE, but TAs cannot read it due to address translation issues. The
Normal and Secure Worlds are using two distinct address spaces, which means that
if we take the address of a Linux kernel object, OP-TEE will not be able to process
it. We solved this issue by translating Normal World addresses to physical address,
and back to Secure World virtual addresses. Fortunately, OP-TEE provides us
with tools to accomplish the latter task, so we only needed to implement the for-
mer one. The Linux kernel uses a macro called __virt_to_phys_nodebug, which
can be unfolded into three other macros, which in turn are also unfolded into other
macros. All in all, we implemented 30 macros based on __virt_to_phys_nodebug

to be able to translate Normal World virtual addresses to physical addresses. The
Normal World virtual addresses are obtained from the System.map file of the com-
piled kernel, except for runqueues. Since they are not intended to be used by any
kernel module, we had to implement a patch to dump these addresses into the boot
log, and then we hard coded them into our TA.

In order to access the physical memory in which the Linux kernel resides, we
implemented a PTA. The PTA implements the following interface:

read mem This function expects two parameters, a memory region to copy data
into and a physical address to copy data from. It translates the address to a
Secure World virtual address, and after performing the necessary checks, it
populates the buffer with the requested amount of data.
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hash mem This function is used to create a hash from non-contiguous REE mem-
ory ranges. It expects an array of phys_mem_range structures (containing a
pointer to a memory region and a size), and a buffer where to store the cre-
ated hash. It initializes a hash context, iterates through the array of physical
memory ranges, translates the addresses back to virtual addresses and feeds
the specified regions to the hash function. When it is done, it copies the
produced hash into the output buffer. We chose the SHA-256 hash function
and OP-TEE OS is configured to use the libtomcrypt library27 by default.

6.2 Normal World file API

OP-TEE does not provide access to the REE file system by default. However, we
noticed that OP-TEE’s trusted storage stores encrypted data on that file system,
hence we suspected that there must be a way to access the REE file system from
OP-TEE. After digging the source code, we discovered that the tee-supplicant

daemon can be instructed via RPC calls to perform REE file operations. However,
the set of RPC functions available to perform file operations were not written for
general purposes, but they were designed specifically for the trusted storage. As a
result, to be able to pass arbitrary filenames as parameters, we had to modify the
open and opendir functions. Function readdir also had to be modified due to a
bug we discovered. Our pull request with the fix is merged already28, but it is only
included in the 3.10 release. We modified the previously mentioned functions by
making copies of them in our PTA and applying the necessary changes to the copies.
In addition, as the root of the trusted storage is /data/tee/ and filenames are
prefixed with this string in tee-supplicant, the PTA expects absolute filenames
and prefixes them with ../.. before passing them to open and opendir. The PTA
implements the following interface:

hash file This function expects a filename as a string and a buffer to store the
computed hash in. It opens the requested file (if exists), reads its content by
4096 bytes and passes these blocks to a hash function. When the end of the
file is reached, it finalizes the hash and copies it into the output buffer.

hash dir This function takes four parameters: a directory name, an output buffer,
an integer to indicate if we want to hash recursively (0 for false, 1 for true)
and a pointer to a null-terminated array of strings. It creates a hash context,
opens the specified directory (if exists) and reads its content. For every entry,
we check the blacklist first (to avoid hashing files with changing content, e.g.
/etc/random-seed). If the entry is not on the blacklist, we try to determine
if it is a regular file or a directory. Since we have no stat-like primitive, we
do this by invoking opendir. If opendir fails, we have a file, otherwise, a
directory. For files, we do the same as above: read the file by blocks and

27https://optee.readthedocs.io/en/latest/architecture/crypto.html, Last visited: Sep
18, 2020

28https://github.com/OP-TEE/optee\_os/pull/3962, Last visited: Sep 18, 2020
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feed every block to the hash function. If the entry is a directory and we hash
recursively, then the function calls itself recursively on the entry. Otherwise,
the entry is skipped. Finally, the hash is copied to the output buffer. We use
the SHA-256 hash function from the libtomcrypt library.

In order to ensure the proper functioning of the above described PTA, we had
to apply two patches to the tee-supplicant daemon. First, we had to give it
root privileges, otherwise it cannot read certain files. Second, tee-supplicant’s
readdir handles certain directories improperly: if a directory only stores hidden
files, it is considered to be empty. From the aspect of our persistence checks, this
behavior can be fatal, so we had to patch the appropriate function to only skip
., .. and .nfs* (these files are created by an NFS server, when an open file is
deleted).

6.3 Verification of OP-TEE specific components

As we do not trust software components in the REE, but our implementation relies
on using OP-TEE’s Normal World components, we needed to ensure the integrity
of them. For OP-TEE’s Linux driver, we did not need to implement any additional
checks, because it is compiled as a part of the kernel, so its integrity is verified
when our TA checks the integrity of the kernel code. The daemon tee-supplicant,
however, had to be slightly modified before we applied the same technique as we
used for checking the integrity of our CA. First, we built it as a static binary. Next,
we had to ensure that the pages containing the code of the daemon are present in
the memory, and not swapped out. We implemented a Linux driver to create an
entry under /proc. If pids are written to it, it looks for the corresponding task,
and if it is a thread of tee-supplicant, it generates a page fault for every page
of its code segment. With these preparations, we can apply the same check on
tee-supplicant as we did on the CA, except that we compute the hash of every
task, if it has the proper name (tee-supplicant). This check is executed right
after we check the code of our CA. We could extend this kind of integrity check to
other tasks as well, as described in Subsection 4.3, however, our implementation
currently verifies only the tee-supplicant daemon and the CA.

7 Evaluation

We evaluated our implemented method on different types of rootkits. Our results
in detecting kernel space rootkits are presented in Subsection 7.1. In Subsection
7.2, we present the results of detecting a custom rootkit’s persistent components.
The performance of our implementation is presented in Subsection 7.3.

7.1 Detecting different rootkits in kernel memory

In order to test our rootkit detection method, we wrote multiple kernel space rootk-
its. We also wanted to test it against real kernel space rootkits found in the wild,
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but we were unable to find any that would work in our environment (the ones we
found on github were written for older kernels or different architectures). How-
ever, we did manage to make user space rootkits work in our environment. In this
subsection, we will describe these rootkits and the way our method was capable of
detecting them.

Syscall hook: This test rootkit was implemented as a Linux kernel module. When
it is loaded, it disables the write protection of the kernel’s .rodata segment
and replaces one of the function pointers in the system call table. Finally, it re-
enables the write protection. On unload, it restores the modified pointer. We
are capable of detecting the corruption of the system call table by comparing
the freshly computed hash to one created from the intact table.

Inline hook: This rootkit is similar to the previous one: in this case, we remove
the write protection of the text segment of the kernel and tamper with the
first few bytes of a chosen function, then restore it on unload. Again, this
modification will change the hash of the text segment, and comparing it with
the original one will reveal the presence of the rootkit.

DKOM I: This rootkit creates a backdoor process and attempts to hide it via
removing it from the initial pid namespace’s IDR. For a regular ps, the back-
door process is invisible, however it is possible to connect to it. Our solution
detects the backdoor because it was not removed from the list of all the tasks,
but it was missing from the output of ps.

DKOM II: In this test, we extended the functionality of the previous rootkit: we
remove the backdoor process from the task list and the task tree as well, thus,
our solution’s only chance is to find it in any of the run queues. At this point,
detection success depends on the rootkit’s payload. In our case, it was a bind
shell, which spends little time in run queues; it mostly waits, therefore, it is
in wait queues. As currently our implemnentation does not check wait queues
(the issue of wait queues will be explained in Section 8), we did not detect
this rootkit. However, if the payload had been a computationally intensive
task, such as a cryptocurrency miner, it would probably have been detected.

A HORSEPILL variant: HORSEPILL [19] is a ramdisk-based rootkit, which
exploits namespaces. It infects klibc, a minimal library used in the early
user space. It hides a process by creating a new pid namespace and executes
systemd in this namespace. Normally, it would not be possible to see kernel
threads with this setup, but HORSEPILL has a workaround to fake these in
the freshly created namespace. Unfortunately, HORSEPILL is not compati-
ble with our test environment, as we use a different init system, we do not use
klibc, and we do not assemble ramdisks on the system like personal comput-
ers usually do. However, we were able to port the idea behind HORSEPILL
to work in our environment. In our case, the ramdisk is assembled by Buil-
droot29, and starting the init process happens as follows: First, the Linux

29https://buildroot.org/, Last visited: Sep 18, 2020
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kernel calls /init, a minimal shell script, and sets the 3 default file descrip-
tors to /dev/console. Then, it invokes /sbin/init, which is a symlink to
busybox30. We managed to start our HORSEPILL variant by replacing the
symbolic link to another binary. This binary clones two new threads and
executes the original init and our backdoor in them. Busybox is executed in
a new pid namespace to hide the backdoor from the rest of the system. Our
implementation lacks HORSEPILL’s feature of faking kernel threads, there-
fore, they appear as hidden processes to our detection solution, much like the
backdoor process. Originally, HORSEPILL fakes kernel threads by collecting
their names, creating new processes in the namespace of init, and renaming
them to the names of the kernel threads. The output of our detection mech-
anism would be the same in this case: we would find the original ones and
the backdoor.

BEURK: BEURK is a userspace rootkit, the name stands for Beurk Experimental
Unix RootKit. It exploits the linker’s capability to load a library into the
address space of a process before everything else, thus, it can hook certain
library calls. It creates a backdoor when the accept function is called and
certain conditions are met (local port matches its configuration, remote port
is in range specified in its configuration). The created process is hidden from
every other process, except its children. This is achieved by hooking the
readdir and readdir64 functions, which are wrappers around the getdents
and getdents64 system calls, respectively. When they are called on /proc,
if the next entry is the pid of the backdoor, then it is skipped. We were able
to detect the presence of the BEURK backdoor because it is missing from the
output of ps, but present in the task list.

7.2 Detecting persistent components

In order to illustrate how our solution can detect the persistent components of
rootkits, we created a proof of concept demonstration based on a potential vulner-
ability in an earlier version of our rootkit detection approach. Before we decided
to use fanotify to prevent executables from starting during our checking process
executed by our TA, we experimented with a technique that a sophisticated rootkit
could use to avoid detection and stay persistent even after both the kernel memory
and the file system checks have finished. The concept is the following:

1. Let’s assume that the system has been compromised and the rootkit process
is present in the memory. Let’s also assume that the rootkit is able to predict
when the next scan will happen and has an accurate idea of how long each
scanning phase takes to finish.

2. Right before the scan is about to launch, the rootkit places a binary on the
file system (which it has been storing on the heap), which, when executed,

30https://busybox.net/, Last visited: Sep 18, 2020



Rootkit Detection on Embedded IoT Devices 393

would load the rootkit back into memory and reinfect the system. It also
runs chmod to make the file executable.

3. The rootkit then creates a crontab entry that is scheduled to execute the
binary in the time window between the memory and the file system scan.

4. The rootkit process terminates at this point in order to avoid detection. Since
it has no process loaded into memory and made no modifications to the kernel,
the first phase of the scan finishes without finding any inconsistencies.

5. The scheduled task executes, the rootkit is loaded into memory. It immedi-
ately deletes the previously placed binary from the file system, and restores
the modified crontab file.

6. Since every modification on the file system was reverted, the second phase of
the scan finds no mismatching hashes.

This vulnerability was deemed very hard to exploit in practice due to the limited
time window available for the attack. It is important to mention that the versions of
cron based on Vixie-cron 31 were not designed to execute tasks in such an accurate
manner either, it only “wakes up” at each minute. The task’s execution could be
delayed by an arbitrary number of seconds by using the sleep instruction in the
scheduled task. Accurate timing would be hard to achieve reliably, considering
that the interval between the scans is randomized, but we still considered it an
architectural weakness, for which we needed a proper solution, not just hardening
and mitigations.

With the current architecture, this vulnerability does not exist because we place
the FAN_OPEN_EXEC_PERM fanotify mark on every file system. Fanotify would pre-
vent the malicious crontab entry from executing the rootkit binary (more accu-
rately, it would prevent the cron daemon from creating the bash session to run the
shell command executing the binary), and the file system scan would detect the
mismatches in the directory containing the rootkit binary.

As a demonstration, we prepared a small, statically linked C program which
stores its own binary’s bytes and is able to place and delete the binary on the file
system at will. To simulate the perfectly timed scenario, instead of using cron, we
used a small bash script to execute the binary on time, and disabled the memory
checks.

The results were the following: The script tried to relaunch the program after it
placed its binary in /bin and terminated, but fanotify prevented the relaunch. The
script was waiting for permission to execute the binary, but the request was put on
hold while the file system scan was running. The file system scan then detected the
mismatch in /bin. Without the fanotify marks in place, the program would have
been able to launch and delete the binary, and avoid detection.

31https://directory.fsf.org/wiki/Vixie-cron, Last visited: Sep 18, 2020
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Figure 4: Execution time in seconds depending on the number of processes

7.3 Performance measurements

Performance impact is always a concern with anti-malware solutions. In this subsec-
tion, we present the performance characteristics of each part of our implementation
and review their impact on the system. Our implementation runs in a virtualized
environment with 1057 MBs of RAM and 2 Cortex-A57 cores.

Since most of our checks are process-related, we measured the execution speed
depending on the number of currently running processes: we spawned new back-
ground processes with the less command, which did not consume relevant amount
of CPU time slices, but increased the size of the data structures we needed to check.
Figure 4 shows the execution time of the checks separately and in total as well.

RPC call stands for the communication between the CA and TA: all necessary
input is collected, the TA is invoked and the TA performs normalization of its
input. As expected, the number of running processes is irrelevant in this case.

Checking the integrity of the VFS does not scale well. This is due to the nature
of the /proc file system. For every process, approximately 300 new files are created
by the kernel. These are regular files and symbolic links, resulting in an increasing
number of inodes. Our checks scale linearly with respect to the number of inodes.

The DKOM check achieves better performance with respect to the growth in
the process count: for n processes, it traverses a list made of n elements and two
trees with n nodes each. It also sorts arrays of n pids and performs binary searches
to find differences between the collected lists of pids.

Integrity checks scale very well, the hash check of the kernel’s text segment
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and the system call table can be performed with constant time complexity, and
interaction with task-related data structures is necessary only when it is looking
for the task of the CA (for the purpose of hashing its text segment and verifying
the integrity of the fanotify marks) and the tasks of tee-supplicant. However,
extending this integrity check to other tasks would probably have an impact.

Finally, our solution performs the file system checks. These checks have no
relation to the process count, they depend on the number of files included in the
check and the overall size of those files. This part is by far the most time consuming,
since it requires RPC calls and world switches to read the bytes of the files.

While our scanning process is being executed in the TEE, it uses only one of the
cores. As a result, the REE can execute on the other core. Processes running in the
REE are not halted while we perform our checks, but significantly less resources
are available to them until the checks are completed. Until our TA reaches the
file system checks, the core it uses can only execute REE code when an interrupt
occurs that has to be handled in the REE. During the file system checks, however,
our implementation needs to wait for a lot of I/O operations, and while waiting,
control is given back to the REE, where the Linux kernel’s scheduler can execute
other tasks on the first core as well.

8 Discussion and future work

In this section, we present some known weaknesses of our approach and discuss
ideas to overcome them.

8.1 Known limitations and possible solutions

The first limitations comes from OP-TEE and the way it handles interrupts. In-
terrupts are divided into two groups, foreign and native interrupts. The former
one needs to be handled by the Normal World, and the latter one by the Secure
World. If an interrupt rises and the CPU which should handle it is not in the
appropriate world, the machine switches to the correct world, and the interrupt
handler is executed. However, OP-TEE does not have its own scheduler, but it
uses the Linux kernel’s scheduler. When a CPU is executing code in the Secure
World and a foreign interrupt occurs, the execution of the TA does not continue
immediately after the handler exits. It only resumes execution when the scheduler
gives the CPU to the thread associated with the TA.

In addition, on a system with multiple cores, it is possible for one core to execute
in the Normal World and another in the Secure World. This behavior can make our
inconsistency checks unreliable: it is possible for a new thread to start during our
checks, making them fail despite the lack of any hidden processes. This issue might
be resolved if we can disable other cores during our checks, and disable interrupts
as well to ensure the uninterrupted execution of our checks. Disabling a core is
possible from the REE, however, it has a negative impact on the performance of
the system. Disabling interrupts is a bit more complicated, although, PTAs can do
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it while they are running. It might be possible to disable and re-enable interrupts
for other Secure World threads as well, or the check itself can be implemented in a
PTA in order to use this feature.

Another, less manageable issue is the way the Linux kernel handles waiting
tasks. This is implemented via wait queues, which store the tasks waiting for the
same event. When the event occurs, it is possible to wake up all the tasks or just
one of them. The issue lies with how Linux creates wait queues: some exists as
global variables, but most of them are created on stacks or as members of other
structures. So far, we have not been able to find a way to enumerate all the
currently existing wait queues in memory, thus, we are unable to check all of them,
only those implemented as global variables.

Our current method is unable to handle self modifying features in the Linux
kernel and Address Space Layout Randomization in the kernel. These features
would break the integrity check of the kernel’s text segment.

A source of another limitation is our decision of not checking the entire VFS
layer, only the objects accessible from the superblock of /proc. As a result, the
kernel-level integrity of other file systems are not checked, but we rely only on file
hashing. A possible attack against the persistence check might be to hook the read
function in the default file operations of an inode to show the original content of
the file for every entity except for the one executing it.

Finally, a way to bypass all of our checks would be for a malware to uninstall
itself before the checks are performed. When the checks are completed, the malware
could be reinstalled by exploiting the same vulnerability it originally exploited to
infect the system. Note, however, that this can work against any rootkit detection
approach, because there remains nothing malicious to detect in the system.

8.2 Future work

There are multiple features with which our method could be extended. First, our
current implementation does not support updates. REE package updates would
modify or add new files to the file system, so they would likely break the file system
check for persistent rootkit components, and a kernel update would certainly break
the integrity checks and probably the VFS and task-related ones too. In the future,
we would like to address the former issue by recomputing reference hashes in a
secure way. The latter issue may require re-implementing certain checks, making
its automation challenging.

We discussed multiple checks for Linux kernel modules. They are the most
convenient way to execute code in kernel space [7], therefore, rootkits often use
them and try to hide their modules. Consequently, we disabled module support
in the Linux kernel configuration, making rootkit installation more challenging.
However, without module support, all necessary drivers must be compiled into the
kernel, which is a functional restriction. In addition, there are other kernel resources
worthy of being checked as well, such as components of the network stack.

We would also like to make our solution compatible with other kernel security
features. We reviewed a long list of possible configurations and our solution is
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incompatible with only two of them: structure randomization and Kernel Address
Space Layout Randomization. In case of structure randomization, the members
of selected kernel structures are randomized at compile time. We could make our
method compatible with this feature by compiling a kernel module with access
functions, for example, to get the next task in the task list, and use these functions
from a library in our TA. Kernel Address Space Layout Randomization is a tech-
nique which places the kernel’s text segment at a random location at boot time.
This feature interferes with several of our checks and we do not have a solution so
far that can support this feature.

9 Conclusions

In this paper, we addressed the problem of detecting rootkits on embedded IoT
devices. Rootkits are malicious software that typically run with elevated privileges,
which makes their detection challenging. Our solution is based on identifying signs
of a rootkit infection (i.e., modifications to the code of system programs and the
operating system kernel, as well as inconsistencies in certain kernel data struc-
tures) using a trusted application that is running in an isolated trusted execution
environment. Fortunately, such trusted execution environments are supported on
many embedded platforms used in IoT applications, and their protection measures
ensure that malicious code cannot interfere with our detection mechanisms even
when running with root privileges. We described in detail how we check both the
memory of the untrusted execution environment and the persistent storage from
our trusted application, looking for integrity violations and inconsistencies. We also
reported on a prototype implementation of our approach, including some specific
implementation level issues that we had to solve to make our prototype working
in practice. Finally, we evaluated our design and implementation by testing the
prototype with rootkits that we developed for this purpose.

Our approach has some limitations that we discussed in the paper. In sum-
mary, we can detect modifications of the kernel code and system programs, as well
as hooking attacks in the memory, and we can also detect the presence of rootkit
components in the persistent storage of the IoT device. Detection of manipulations
of process related kernel data structures is not complete, as we were not able to
analyze certain data structures (e.g., wait queues). In addition, at the time of
this writing, we do not support multi-core processors, address space layout ran-
domization, and self-modifying code in the kernel. Some of these limitations can
be addressed (e.g., the kernel can be statically compiled with all the drivers in-
cluded), while others require more work in the future. Despite all these limitations,
we believe that our work demonstrates that it is possible to protect even small
embedded devices used in IoT applications from sophisticated and powerful soft-
ware based attacks, and that IoT is not necessarily as insecure as it is commonly
perceived.
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Zero Initialized Active Learning with Spectral

Clustering using Hungarian Method∗

David Pappa

Abstract

Active learning tries to reduce the labeling cost by allowing the learning
system to iteratively select the data from which it learns. In special case of
active learning, the process starts from zero initialized scenario, where the
labeled training dataset is empty, and therefore only unsupervised methods
can be performed. In this paper a novel query strategy framework is pre-
sented for this problem, called Clustering Based Balanced Sampling Frame-
work (CBBSF), which aims to uniformly select the initial labeled training
dataset. The proposed Spectral Clustering Based Sampling (SCBS) query
strategy realizes the CBBSF framework, and therefore it is applicable in the
special zero initialized situation. This selection approach uses ClusterGAN
(Clustering using Generative Adversarial Networks) integrated in the spectral
clustering algorithm and then it selects an unlabeled instance depending on
the class membership probabilities. In order to derive class membership prob-
ablities from the clustering information SCBS uses the Hungarian algorithm.
Experimental evaluation was conducted on balanced and imbalanced MNIST
datasets, and the results showed that SCBS outperforms the state-of-the-art
zero initialized active learning query strategies in terms of accuracy.

Keywords: active learning, zero initialization, query strategy, clustering,
spectral clustering, hungarian method

1 Introduction

The main goal of classification applications is to make predictions with high accu-
racy. A crucial part of this process is the model creation, which is based on the
labeled training data (where the labels are the ground truth categories); hence the
gathering of labeled data is also an important component of supervised machine
learning. One can collect large amount of inexpensive unlabeled data through
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real-world applications [16], however labels for this data can be expensive [23],
time-consuming or difficult to obtain. For example accurate labeling of speech ut-
terances requies trained linguists [31], pose labelling in videos is extremely time
consuming [24], annotating gene and disease mentions for biomedical information
extraction usually requires PhD-level biologists [4]. Consequently, in these cases
it is recommended to limit the number of labeled data that used for training, while
attempting to achieve high accuracy.

Let U = {ui}, i = 1...m denote the total amount of (unlabeled) data available
for training; the goal is to select only a subset of this data and assign labels to them,
thereby creating the L = {lj}, j = 1...n labeled dataset. The easiest technique is
to randomly select L, this method is called passive learning, or random sampling;
although the resulting labeled training dataset has a large variance due to the ran-
domness. A more sophisticated approach would be to consider the informativeness
of the unlabeled data and then select the most informative ones. This approach is
called active learning [20], where the learning system is allowed to iteratively select
unlabeled instances and ask for their label. The key idea is that carefully picked,
informative data allow the learning algorithm to perform better with less training.
A decisive part of an active learning system is how it estimates the informativeness
of unlabeled instances; the procedure employed for this purpose is called query
strategy.

Usually, active learning query strategies assume that the selection process al-
ready started and train a classification model based on L. In special zero initialized
situation, the procedure starts with empty L, and therefore only unsupervised tech-
niques (e.g. clustering) can be used. It is often observed, especially for imbalanced
or multi-class data sets, that the active learning process does not select the same
number of items from each category during the query iterations. This happens
because traditional query strategies do not take sample distribution into account
in the resulting labeled training dataset. However, the underrepresented classes
contain small number of samples, and therefore some attributes are available to the
learning system with only an incomplete set of values, thus they lead to sub-optimal
models. In zero initialized active learning this is a critical problem, since the pro-
cess starts with empty L, so in some cases, underrepresented categories contain no
samples at all, consequently, the affected attributes are entirely missing. In other
words, it is important to query several training items into each category at the start
of a zero initialized active learning process.

The subject of this paper is the so-called pool-based unsupervised active learning
(UAL) [21], where an instance can be selected from a pool of unlabeled instances
(U), while there is not enough labeled data (L) to learn. The learning setup is
a multiclass classification problem with k classes, although, the selection and the
predictions are based on an unsupervised solution instead of a supervised machine
learning method. This paper is concerned with the beginning of the unsupervised
active learning, where the number of the labeled data not only a few but zero; i.e.
zero initialized unsupervised active learning. Active learner starting from the initial
training set selected by appropriate methods can reach higher accuracy faster than
that starting from randomly generated initial training set [10]; and therefore, the
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primary objective was to select a balanced initial training set (so the goal was to
get almost the same number of instances of each class).

The main contributions of this paper are (i) the Clustering Based Balanced Sam-
pling Framework (CBBSF) for zero initialized active learning, and (ii) the Spectral
Clustering Based Sampling (SCBS) query strategy that realizes CBBSF. SCBS
utilizes ClusterGAN (Clustering using Generative Adversarial Networks, [15]) in-
tegrated in spectral clustering [26] process to form the clusters in zero initialized
environment. After that Hungarian method [12] is employed to connect class mem-
bership probabilites to cluster membership probabilities. The rest of this paper is
structured in the following way: the next section contains the relevant related work
in the literature, Section 3 delineates the proposed CBBSF framework, then Section
4 presents the SCBS selection strategy, and after that the experimental evaluation
is presented, finally the conclusions are summarized in the last section.

2 Related work

There are some traditional query strategy frameworks in the literature, e.g. uncer-
tainty sampling [6], query-by-committee (QBC) [25], expected model change [2],
expected error reduction [14], or density-weighted method [1]. On the other hand,
there are recently proposed query strategies, like uncertainty sampling with diver-
sity maximization [29], Balanced Active Learning (BAL) method [17], extended
margin and soft balanced strategy [18], Prototype Based Active Learning (PBAC)
algorithm [3] and the hybrid, Expected Difference Change (EDC) [19]. However,
these approaches expect the L to be not empty, because all of them applies some
kind of supervised machine learning algorithm (e.g. decision tree, random forest
[22]), where L is used as training data. Hence, they are not suitable for the spe-
cial zero initialized active learning (where L is empty), moreover, in this situation
most of them are even unable to be executed. The field of active zero-shot learning
[28] [27] [7] is partially related to this subject, where the goal is to find a small
number of informative seen classes to facilitate unseen class predictions. The set-
ting of active zero-shot learning task contains seen and unseen categories, however
in this paper a different (zero initialized) starting environment is examined, where
only unseen classes are available.

Unsupervised learning techniques have been successfully used to select the intial
training set for active learning. One method is called centroid based selection
[11] [9], where unlabeled instances closest to the cluster centroids are selected as
starting dataset. In the work [11] the selection happened in one step, while the
proposed approach in this paper introduces information gain between the selection
of two consequtive items, and therefore it is mandatory to select the items step-
by-step. Another selection type is the border based selection [9] which selects the
samples with small difference between their highest and the second-highest degrees
of cluster membership confidence, i.e. the ones that are around the border between
clusters. The combination of center-based selection and border-based selection is
called by hybrid selection. Authors of [30] selected half of the instances with
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center-based, another half with border-based selection, and they achieved this by
alternating between the two methods. The centroid, border and hybrid selections
were implemented and compared to SCBS during the experiments. The aim of
CBBSF is not only to select the initial labeled training dataset, but to uniformly
select the instances among the categories to get a balanced labeled training dataset.

3 Clustering Based Balanced Sampling Framework

In this section the Clustering Based Balanced Sampling Framework (CBBSF) active
learning query strategy framework is presented. The aim of CBBSF is to select the
initial labeled dataset in the special zero initialized situation, where the initial
labeled training dataset L is empty. This condition designates a few guidlines: (i)
only an unsupervised machine learning algorithm can be used, (ii) the balance of
labeled items between the classes is important, (iii) the query strategy should select
an item whose class label the learning system is assured of. Satisfying these criteria,
CBBSF can be used as a selection strategy for both balanced and imbalanced
datasets (see Section 5). After CBBSF selects the initial L set, the active learning
could proceed by using another query strategy that is more focused on optimizing
the accuracy, but CBBSF could also be used as an end-to-end strategy.

A CBBSF query strategy first performs a clustering algorithm on the unlabeled
dataset U , then selects an unlabeled instance to be labeled by an oracle, as can be
seen in Figure 1. The selected item should maintain the balance in L; however, in
order to achieve this, the class membership probabilities are required so that an
item that presumably belongs to the most underrepresented class could be selected.
On the other hand, class membership probabilities can not be calculated explicitly
because L is empty, and thus supervised machine learning techniques can not be
performed.

The clustering algorithm used in CBBSF must return a cluster membership
matrix Q, see Equation 1, where qij is the probability for the ith item to belong to
the jth cluster.

Q = (qij) ∈ Rn×k,

0 ≤ qij ≤ 1,

k∑
j=1

qij = 1.
(1)

Let P be the class membership probability matrix, see Equation 2, where pij
is the probability for the ith item to belong to the jth class. It is important to
note that P �= Q, since cluster identifiers are not related to class identifiers. As
it was mentioned above, determining P is essential to sustain balance in L, and
the elements of P can be derived from matrix Q with an appropriate assignment
solution between clusters and classes. During the active learning process, there is
no true information about the connection scheme, but this can be estimated based
on only the labeled items.
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Figure 1: Process of the Clustering Based Balanced Sampling Framework

P = (pij) ∈ Rn×k,

0 ≤ pij ≤ 1,

k∑
j=1

pij = 1.
(2)

After P becomes available, the most informative unlabeled instance (denote it
by u∗) can be selected, and then query its label y∗ from an oracle (e.g. a human
expert or an all knowing entity). Note that, in this case, most informative means
that most likely to preserve the balance in the labeled dataset. The last step is
to refresh L by adding the {u∗, y∗} pair to it, and based on the new L refresh
the assignment pattern as well. The process of CBBSF can be seen in Figure 1,
where the datasets, sub-processes and matrices are represented by green, yellow
and blue shapes, respectively. It is worth mentioning that U is excluded from the
iterative part of this process, since the clustering algorithm is only performed at
the beginning to get Q. The reason for this is that the more data is available for
the clustering method to work with, the more accurately it can form the clusters.
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Nevertheless, a fully iterative variant of this framework could also be used (where
L influences the clustering of the remaining items in U), but in this paper such
configuration is not examined.

4 Spectral Clustering Based Sampling

In this section, the Spectral Clustering Based Sampling (SCBS) active learning
query strategy is presented, which belongs to CBBSF, and thus suitable to be
performed in the special zero initialized environment. First, the spectral clustering
[26] algorithm is briefly reviewed, and then the realization of CBBSF modules is
discussed. Furthermore, Algorithm 1 shows a concise pseudocode for the CBBSF
and SCBS based zero initialized active learning algorithm.

4.1 Clustering Module

Given a set of data points x1, ..., xm, pairwise similarities are calculated based on
Euclidean distances, and then a similarity graph G is built to model local neigh-
borhood relationship between the data points. Based on the constructed G graph,
a similarity matrix S = {sij}(i, j = 1...m) is derived, where sij corresponds to the
weight of the edge between xi and xj in G (if those points are not connected by an
edge in G, then sij = 0). Let D be a diagonal degree matrix with Dii =

∑
j sij .

The fundamental step of spectral clustering is calculating the graph Laplacian
matrix from the matrices S and D [8] For example, the unnormalized graph Lapla-
cian matrix can be computed as expressed in Eq. 3, and this is the variant used in
the SCBS algorithm. Another two popular Laplacians are the symmetric normal-
ized and left normalized [5].

Λ = D − S (3)

Let matrix V be defined as the matrix containing the first k eigenvectors
v1, ..., vk of Λ as columns. At this point, SCBS applies ClusterGAN [15] to form
clusters C1, ..., Ck. The input of ClusterGAN are the rows of V , so the spectral
representation of the m datapoints. ClusterGAN is a relatively new clustering
approach that performs clustering using generative adversarial networks (GAN).
ClusterGAN uses a mixture of distributions (combination of discrete and continu-
ous) to generate latent vectors and to identify different groups in the latent space
(the space of latent variables). Besides, it uses a specific clustering error function
to train the generator model. Once the data is transformed into latent space, they
are clustered using the k-means algorithm. One advantage of using ClusterGAN is
that it provides a probabilistic interpretation of the clustering. It outputs so-called
cluster decision vectors q1, ..., qm from which the cluster membership probability
matrix Q can be built (i.e., q1, ..., qm vectors are the rows of Q). This algorithm is
performed on the initial unlabeled dataset U , and after that, items can be selected
by the query strategy.
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Algorithm 1 Zero initialized active learning with CBBSF using SCBS

input:
U : unlabeled image set
k: number of categories / number of clusters
iter: number of active learning iterations

initialize:
C1, ..., Ck ← Spectral ClusterGAN on U with k clusters
vN : k-long zero vector
L = Ø

output: L initial labeled training dataset (|L| = iter)

for N = 1...iter do
if L �= Ø then

Build the occurrence matrix Ao (Eq. 4)
A← Hungarian algorithm based on Ao

P̂ = Q×A (Eq. 5)
h = argmax(A[:, argmin(vN )])

else
P̂ = Q
h = random(1...k)

end if
bestV alue =∞
bestIdx = 0
for ∀ui ∈ U do
Calculate the informativeness value of ui → val(ui) (Eq. 7 or Eq. 8)

if (val(ui) < bestV alue)AND (ui ∈ Ch)
†
then

bestV alue = val(ui)
bestIdx = i

end if
end for
u∗ = ubestIdx

y∗ = query(u∗)
vN [y∗] += 1
L = L ∪ {u∗, y∗}
U = U \ {u∗}

end for

Note that L-SCBS uses the condition marked with † symbol, while G-SCBS considers only the
condition before the AND operator.

4.2 Assignment Module

SCBS uses single-assignment procedure to implicitly calculate P , so that an appro-
priate unlabeled item can be selected that maintains even distribution in L.
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The class identity and the cluster identity of the labeled items are known. This
information can be structured in a table, based on which an occurrence matrix Ao

is introduced, as can be seen in Equation 4, where aij is the number of the items
that belong to class j while they are part of cluster i.

Ao = (aij) ∈ Nk×k (4)

To find the best assignment in the matrix Ao, the Hungarian algorithm [12] is
used, although in this case the sum of the entries in the assignment was maximized,
instead of the minimization (as it originally happens in the Hungarian algorithm).
The connection between Q and P̂ is characterized by this best assignment A, which
is actually a permutation matrix, thus Q is multiplied by A to get P̂ , where P̂ is
an approxiamtion of P ; see Equation 5.

P̂ = Q×A (5)

4.3 Selection Module

Let C1, ..., Ck denote the k different clusters, and Y1, ..., Yk denote the k different
classes. Furthermore, introduce the vector vN = (N1, ..., Nk) to contain the number
of labeled items in the different categories, after N active learning iterations, where
Nh is the number of items in Yh (h = 1, ..., k). The assignment module creates the
bijection between Cg and Yh (g, h = 1, ..., k); hence the number of labeled items in
the clusters are also known, at each step. Two variants of SCBS were developed:
the Global SCBS (G-SCBS) and Local SCBS (L-SCBS); both of them essentially
operates the same way. However, the former minimizes the informativeness metric
over every element of U , while the latter examines only a reduced unlabeled set
UCg , which contains the elements of a single cluster. Thus the local version of
the algorithm aims to balance L directly by investigating only UCg

, where Cg

corresponds to the most underrepresented category in L, denoted by Yh, as can be
seen in Equation 6.

Yh : h = argmin(vN ) (6)

In situations when vN has multiple minimum values, one of them was randomly
selected to designate Yh.

In order to find the most informativeness unlabeled instance (u∗), two differ-
ent techniques were used: (i) the first one maximizes the probability of the most
probable class, and (ii) the second one minimizes the information entropy over all
categories; as can be seen in Equation 7 and Equation 8, respectively.

u∗ = argmin
i

(1− p̂∗) , (7)

u∗ = argmin
i

⎛⎝− k∑
j=1

p̂ij × log p̂ij

⎞⎠ , (8)
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where p̂ij is an element of P̂ and p̂∗ represents the probability of the most prob-
able category. Despite that traditional active learning query strategies objective
is usually to pick instances with maximum variance, the purpose of CBBSF is to
evenly choose the instances from the classes. Consequently, SCBS must be confi-
dent that y∗ (∈ {Y1, ..., Yk}) is the true label of u∗ (∈ U), so that the assignment
and the balancing could be feasible. This implies that the most representative un-
labeled instance is the most informative for SCBS, i.e. the one which has minimal
uncertainty about its true class label.

Table 1: Numer of items in balanced and imbalanced MNIST datasets.

|Y1| |Y2| |Y3| |Y4| |Y5| |Y6| |Y7| |Y8| |Y9| |Y10| Sum

Balanced (B) 500 500 500 500 500 500 500 500 500 500 5000
Imbalanced1 (I1) 387 516 300 429 482 603 503 700 405 675 5000
Imbalanced2 (I2) 209 850 472 641 558 150 730 354 804 232 5000

5 Experimental evaluation

In this section the experiments are presented that were conducted on the MNIST
[13] database of handwritten digits, which consist of 60,000 train and 10,000 test
images. The train and test sets were combined into a 70K dataset, and then 5
Balanced (B), 5 Imbalanced1 (I1) and 5 Imbalanced2 (I2) subsets were randomly
selected from this dataset, each of them contained 5,000 images (see Table 1).
During the experiments, the following 4 SCBS method variants were tested:

• G-SCBS using minimal entropy (G-SCBS 1)

• G-SCBS using most confident (L-SCBS 1)

• L-SCBS using minimal entropy (G-SCBS 2)

• L-SCBS using most confident (L-SCBS 2)

Several additional methods proposed in the literature were also tested: the Cen-
troid [11], the Border [30] and the Hybrid [30] active learning query strategies;
furthermore, the Random sampling [9], which selects a random item at each iter-
ation. The results of these competitor methods are compared to the results of the
proposed SCBS based techniques.

The tests were performed in the special zero initialized situation, so at the
start of the active learning process U contained the total 5,000 images of the test
dataset and L was empty. At the testing of each dataset, the goal was to select
the initial labeled image collection with a fix size: |L| = 100; therefore, in ideal
situation each category should contain 10 labeled items. Consequently, only the
first 100 active learning iterations were investigated, and in each iteration only one
unlabeled instance was selected (i.e., the batch size was one).
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In order to evaluate the balancedness in L, two new measures are introduced in
this paper: the Average Cardinality Error (ACE, see Equation 9) and the Actual
Balancedness (AB, see Equation 10). The latter expresses the amount of balance
in L, at the actual active learning step. In case of perfect balance AB = 1, while in
the worst case (when every item belongs to the same class) AB = 0. On the other
hand, ACE can be calculated by taking the average of the deviation of actual state
from the optimal one.

ACE =

k∑
j=1

(
1

k
×

∣∣∣∣⌊Nk
⌋
−Nj

∣∣∣∣) (9)

AB =

(
1− 1

N
×

(
max

j
{Nj} −min

j
{Nj}

))
(10)

where Nj is the cardinality number of class Yj in L, and N is the number of
active learning steps. After the evaluation of AB for each individual results got
on MNIST datasets, the average of them were calculated, denoted by AAB, as can
be seen in Table 2. Furthermore, the accuracy (ACC) was also measured at each
iteration on the remaining items in U . ACC is the ratio of the correct decisions
and all decisions, where the different types of decisions come from the confusion
matrix: True Positive, False Positive, True Negative and False Negative. Note that
since at zero initialized active learning there is not enough labeled items to perform
supervised learning (i.e. classification), the predicted elements of the confusion
matrix are derived from the clustering results by the assignment solution.

In Figures 2-4 the cardinality numbers (Nj) of the classes in L are presented,
at iterations 20, 50 and 100, obtained on Balanced, Imbalanced1 and Imbalanced2
MNIST datasets, respectively. Figure 5 shows the average accuracy at each iter-
ations, where SCBS methods are represented with dark, competitor methods are
represented with gray lines; each strategy with different markers. The results show
that L-SCBS 1 and L-SCBS 2 strategies could achieve higher accuracy than every
other method, moreover, in case of balanced datasets both of them were able to
perfectly balance L after 100 active learning steps. Regarding imbalanced datasets,
L-SCBS 2 seems to perform slightly better, than L-SCBS 1. On the other hand, G-
SCBS 1 and G-SCBS 2 could not balance {Nj}, and therefore it can be concluded
that reducing U to only one cluster at a time by leveraging the assingment solution
is advantageous. Competitor methods were also unable to reach equilibrium, al-
though at balanced datasets Centroid seems to be promising, since it surpassed the
global variants of SCBS. Border technique resulted the highest deviation in {Nj},
while it gave the highest accuracy on average, after 100 iterations (see Figure 5).
This could be explained by analyzing the way it operates, Border method selects
instances on the border of clusters, and thus it eliminates uncertain choices, which
increases the accuracy. Other methods reached the same level of accuracy, L-SCBS
1 and L-SCBS 2 at around 10-11 steps, while for other approaches it took a longer
time.
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Figure 2: Distributions of the labeled instances among the categories got on one of
the Balanced MNIST dataset at iterations 20, 50 and 100.
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Figure 3: Distributions of the labeled instances among the categories got on one of
the Imbalanced1 MNIST dataset at iterations 20, 50 and 100.
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Figure 4: Distributions of the labeled instances among the categories got on one of
the Imbalanced2 MNIST dataset at iterations 20, 50 and 100.
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Figure 5: Average of accuracies got on the MNIST datasets at each active learning
iteration; different query strategies are denoted by different markers, additionally,
the darker lines correspond to the SCBS variants.

As can be seen on the figures, different datasets resulted different label distribu-
tions in L, however, taking the average of the different MNIST datasets regarding
this aspect would be highly misleading and difficult to interpret. The reason for
this is that the outcome of taking the average of low and high cardinality numbers
could be around the perfect result, even though the difference between the individ-
ual results could be colossal. Consequently, each test were evaluated separately and
deviations from the optimal cardinality number were calculated as errors. Table 2
summarizes the results, where the maximum and minimum {Nj} are shown along
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Table 2: Maximum, minimum cardinality numbers, and Average Cardinality Errors
got on each MNIST dataset, additionally, last row of each block show the Average
Actual Balancedness.

Random Centroid Border Hybrid G-SCBS 1 L-SCBS 1 G-SCBS 2 L-SCBS 2

MNIST B 1
max 16 14 29 23 15 10 15 10
min 6 8 3 7 5 10 4 10
ACE 2.2 1.4 6.6 3 2 0 2.2 0

MNIST B 2
max 14 12 22 17 13 10 14 10
min 8 8 4 6 7 10 6 10
ACE 1.6 1 3.2 3.4 1.8 0 2.2 0

MNIST B 3
max 21 14 25 18 14 10 13 10
min 4 7 4 7 6 10 7 10
ACE 3.8 2 4.6 2.2 2.2 0 1.6 0

MNIST B 4
max 13 12 16 19 14 10 20 10
min 4 9 5 5 6 10 5 10
ACE 2.2 0.8 3.6 3.4 2 0 3 0

MNIST B 5
max 14 15 28 18 15 10 16 10
min 1 8 5 7 6 10 5 10
ACE 2.8 1.2 5 3 3 0 2.4 0

AAB 0.899 0.948 0.814 0.890 0.907 1.000 0.905 1.000

MNIST I1 1
max 17 25 38 30 15 11 13 10
min 3 4 3 4 5 9 5 10
ACE 4.6 5.8 7 7 3 0.4 2 0

MNIST I1 2
max 17 24 37 31 22 11 21 11
min 5 4 2 4 5 9 5 9
ACE 2.6 5 7.4 6.8 3.6 0.2 3.2 0.2

MNIST I1 3
max 16 27 24 31 21 11 20 10
min 1 3 6 5 3 9 4 10
ACE 3.6 6.2 3.4 5.6 4.2 0.4 3.8 0

MNIST I1 4
max 17 21 23 31 18 11 16 10
min 3 5 2 3 2 9 2 10
ACE 4 4.4 5.6 5.2 4 0.4 3.4 0

MNIST I1 5
max 15 24 21 30 15 11 14 11
min 5 5 5 5 5 9 3 9
ACE 2.6 4.8 3.6 4.8 3.2 0.4 2.4 0.4

AAB 0.870 0.800 0.750 0.736 0.858 0.980 0.870 0.992

MNIST I2 1
max 16 23 15 31 16 11 17 10
min 5 4 6 5 2 9 2 10
ACE 2.8 6.2 2.8 4.8 3.6 0.2 3.8 0

MNIST I2 2
max 21 27 40 32 15 11 16 11
min 5 4 0 2 2 9 2 9
ACE 3.8 5.2 7.2 7.6 3.4 0.4 3.2 0.2

MNIST I2 3
max 20 27 22 30 17 13 23 10
min 1 4 5 3 3 9 2 10
ACE 4.8 3.8 5 6.2 4 0.6 3.6 0

MNIST I2 4
max 23 23 43 31 18 11 18 10
min 3 4 2 2 2 9 2 10
ACE 5 5.4 8.6 7.6 5.2 0.4 5 0

MNIST I2 5
max 33 21 34 29 18 12 17 10
min 3 4 3 4 4 9 3 10
ACE 5.6 5.2 6.4 6.6 3.2 0.6 3.6 0

AAB 0.808 0.798 0.724 0.726 0.858 0.974 0.840 0.996

with the ACE for each MNIST dataset (indicated in the left column, where B, I1
and I2 refers to the type of MNIST dataset). Furthermore, the AAB measure was
calculated for each query strategy, and presented in the last row of each block of
Table 2. As can be seen in the table, L-SCBS 1 and L-SCBS 2 had zero deviation
from the optimal distribution in all balanced cases, in addition, L-SCBS 2 could
achieve perfect balance, even in imbalanced situations, while L-SCBS 1 performed
marginally worse; as the values of the AAB metric shows. Therefore, L-SCBS 2 is
the best method (among the tested ones) to employ for the zero initialized active
learning task.
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6 Conclusion

A novel active learning query strategy framework and an acitve learning query strat-
egy that belongs to this framework were elaborated in this paper, the Clustering
Based Balanced Sampling Framework (CBBSF) and the Spectral Clustering Based
Sampling (SCBS), respectively. CBBSF focuses on the problem of zero initialized
active learning, hence it selects the initial labeled training dataset and balances the
items among the categories. The framework consists of three modules, (i) a cluster-
ing module, (ii) an assignment module and (iii) a selection module. SCBS realizes
this framework, it utilizes ClusterGAN integrated in spectral clustering process to
form the clusters and then Hungarian method is used during the assignment, after
that it selects unlabeled items based on the class membership probabilities. Global
and local variants of the SCBS method were developed, futhermore, two different
techniques were applied to calculate the informativeness of the unlabeled instances,
and thus four different SCBS approaches were examined. Average Cardinality Er-
ror (ACE) and Actual Balancedness (AB) new measures were introduced in the
paper. During the experimental evaluation on MNIST datasets, ACE, AB and ac-
curacy (ACC) were evaulated using each SCBS variant, moreover, state-of-the-art
zero initialized active learning query strategies were also tested and compared to
the results of SCBS, namely the Random, Centroid, Border and Hybrid approaches.
The results showed that local versions of SCBS achieve high accuracy faster than
every other method, and they are able to perfectly balance the labeled training
dataset. In future work, the proposed approach will be extended with a solution
that handles wrong clustering, i.e., when two categories are merged or one category
is splitted. With this addition, the usability of the algorithm in real world scenarios
could be improved significantly.
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[19] Papp, D., Szűcs, G., and Knoll, Zs. Difference based query strategies in ac-
tive learning. In Proceedings of the IEEE 17th International Symposium on
Intelligent Systems and Informatics (SISY 2019), pages 35–39, 2019. DOI:
10.1109/sisy47553.2019.9111587.

[20] Settles, B. Active learning literature survey. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 2009.

[21] Souza, V., Rossi, R. G., Batista, G. E., and Rezende, S. O. Unsupervised active
learning techniques for labeling training sets: an experimental evaluation on
sequential data. Intelligent Data Analysis, 21(5):1061–1095, 2017.
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Abstract

Efficient data collection is the core concept of implementing Industry4.0
on IoT platforms. This requires energy aware communication protocols for
Wireless Sensor Networks (WSNs) where different functions, like sensing and
processing on the IoT nodes is supported only by local battery power. Thus,
energy aware network protocols, such as routing, became one of the funda-
mental challenges in IoT data collection schemes. In our research, we have
developed a novel routing algorithm which aims at increasing the lifetime
of the IoT network subject to pre-defined reliability constraints. Assuming
that the data is split and transmitted in the form of packets, we seek the
optimal paths over which packets can reach the Base Station (BS) with effec-
tive energy usage subject to the condition that the probability of successful
packet arrival to the BS exceeds a pre-defined threshold (reliability parame-
ter). As far as the radio propagation is concerned we use Rayleigh-fading in
our model. The new algorithm will guarantee an increased longevity and in-
formation throughput of the network due to the efficient energy balancing in
the IoT network. The performance of the new protocol has also been studied
and confirmed by simulations.
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1 Introduction

Industry 4.0 is the newest stage of the fourth industrial revolutions, where the pri-
mary objective is digital data acquisition and performance enhancement of complex
manufacturing processes by using the concept of “digital twins”. This performance
enhancement requires a number of different sensors and communication equipments
to measure and transmit the information obtained about the underlying industrial
process.

In most of the cases, connecting each sensor to a wired network proves to be
physically infeasible, thus wireless IoT devices can provide an efficient solution
for controlling the observed industrial process. The wireless nodes transmit the
collected data in the form of packets to a Base Station (BS) where the complex
processing of data and system evaluation is carried out. This also gives flexibility
as additional sensors can easily be added to or redundant nodes can be removed
from the network as needed. We refer to this combination of the sensor and an IoT
device with wireless transceiver as a node in the forthcoming discussion.

Unfortunately, wireless devices need to be powered by built-in batteries which
need to be recharged periodically, if possible. Under these circumstances, network
longevity and energy efficiency becomes a driving force when one wants to maximize
the throughput of IoT networks.

The power consumption of these devices can be divided into two main categories:
the energy required to operate the sensor and the energy required to transmit data.
The energy consumption of the sensor depends on several parameters, such as the
consumption of the electrical components, the operation mode of the sensor and
various parameters of the controlling electronics. In contrast, the energy required
for reliable communication can be well defined and typically depends on the distance
between the communicating nodes and the environmental noise and this energy used
for communication is by far the most significant in energy consumption.

For this reason, it may often prove to be disadvantageous for a particular device
to send its message directly to the BS due to the increased energy consumption of
long distance communication. Instead, it may be useful to implement multi-hop
packet transfers from the sender node to the BS via some relay nodes, thus in this
paper, we develop a novel routing algorithm for packet transfer that ensure the
extended lifetime of the network.

The rest of the paper is organized as follows. In Section 2 the related work is
summarized. In Section 3 the model is defined. Section 4 introduces the two-hop
and k-hop algorithms with numerical performance evaluation. The results of the
algorithm are shown in Section 5. Section 6 concludes the paper and proposes
further research directions.

2 Related Work

In the literature, several different algorithms have been proposed for efficient wire-
less communication in IoT networks.
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LEACH [3] assigns nodes to be cluster heads periodically whose responsibilities
are to collect the messages in their region. After compressing the received packets
into a single message, every cluster head transmits its message to the base station,
which is considered to be farther away from the nodes. If every node were to send
their message directly to the base station, the energy required to transmit over
the longer distances would quickly deplete every node. Collecting the messages
in a region by the cluster heads have low energy requirements (because nodes
are generally closer to each other), and this allows the node heads to compress
multiple messages, decreasing the payload size. Due to these observations, the
sensor network will stay alive longer in this scenario.

While the gathering and compressing of messages was a novel idea at the time,
several new algorithms have been proposed with the aim of increasing the efficiency
of LEACH. In [11], the authors suggest two modification to the original algorithm.
In one algorithm, dubbed energy-LEACH, the cluster head selection algorithm was
changed from the original random selection to selecting the nodes with the highest
residual energy levels. Meanwhile, the other algorithm (called multihop-LEACH )
changed the cluster head message routing: instead of directly sending the com-
pressed message to the base station, the heads are allowed to send the message to
other cluster heads. When implemented in simulations, both of these modifications
showed better performance than the original LEACH algorithm.

Another modification for LEACH, called LEACH-B [9] (shortened from LEACH-
Balanced), extends the cluster head selection algorithm. The authors based their
modification on another paper [2], where it has been shown that with the original
LEACH algorithm, the highest efficiency can be reached when for every round,
around 3-5% of the nodes are selected to be cluster heads. LEACH-B introduces
another round for the cluster head selection with the aim of making the number of
cluster heads equal to this ideal number. Through simulations, the authors showed
that this modification significantly extended the lifetime of the system.

Looking at another popular WSN routing algorithm, PEGASIS [6] creates a
chain between the nodes close to each other using a greedy algorithm. In each
round, the measured values from the nodes are aggregated and sent towards one
particular node (the leader node) through the chain, which in turn transmits to
the base station. This transmitting node changes every round. This means that at
the end of the round, the base station does not receive every message sent by the
nodes, rather only an aggregation of every measured value. This makes it efficient,
but limits the use cases, and makes it harder to compare to other routing strategies.

Several improvements have been proposed for the original PEGASIS algorithm
as well. Clustering has been used to break up the single, long chain into multiple
shorter part based on the distance to the base station [4]. Through simulations,
the authors showed an improvement of 35% in energy efficiency. EEPB (Energy-
Efficient PEGASIS Based protocol) [5] and IEEPB (Improved EEPB) algorithms
modify the chain creation algorithm by imposing a constraint on the maximal link
distance between nodes, and change the leader selection algorithm to account for
the residual energy levels.

There are many other routing algorithms in the context of Wireless Sensor
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Networks, LEACH is usually preferred due to its simplicity. While other algorithms
perform better compared to LEACH, they generally introduce significant overhead
to the clustering and network maintenance stages, making them unideal for low
powered IoT devices. A survey has been conducted which compares most of the
available WSN routing algorithm [10].

The key difference between the research reported above and our work is that our
solution achieves energy-awareness and extends network lifetime subject to meeting
a pre-defined quality of service criterion.

3 The model

In our model, we consider the network as a 2D graph. Each node is stationary,
meaning that the distances between any two nodes remain constant in time, and
each node has a current residual energy level calculated as the starting energy
level minutes the energy used up forwarding the past packets. For modeling the
radio propagation, we use the Rayleigh-fading model, which gives us the connection
between the transmission energy gij and the probability of successful packet transfer
Pij for nodes i,j, based on [1] in a zero-interference network.

gij = −d2ij
θσ2

Z

lnPij
(1)

where d is the distance between the communicating nodes, θ and σ are the param-
eters of the environment and communication.

The equation above can be simplified to the following relationship, as the nodes
are stationary:

gij lnPij = ωij (2)

where ωij = −d2ijθσ2
Z , is a constant dependent on the distance between the nodes

and the parameters of the environment. Because θ and σ2
Z are positive values, ωij

will have a negative value. Each packet transmission requires this energy from the
the sending node, and in this paper we assume that the receiving node can receive
the packet without any energy consumption (in the future work the reception energy
will also be taken into account). In order to ensure a given reliability, we also define
the probability Ps as the probability with which the base station must receive the
message sent by a node.

Our proposed routing algorithm works on the principle that nodes with higher
energy levels are supposed to participate more frequently in packet forwarding by
being relay nodes. In this way low energy nodes are allowed to have short distance
communication on low energy with other nodes and there is no need to send their
packets directly to the BS. In order to achieve this, we introduce a new property
into our model, called Minimal Path Residual Energy (MPRE for short). This is
defined over a given path between nodes on which a message is transmitted. For
a given path, MPRE is the energy level of the node which has the least energy
remaining after the message transfer is successfully completed. We would like to
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develop an algorithm which maximizes MPRE. This can be accomplished if the
nodes participating in the packet transfer will have uniform remaining energies.

We prove this with a proof of contradiction: let us suppose that the energy
levels after the routing are uniform, but the MPRE value is also maximized. Take
the node with the most energy remaining. If this node was routing the message
with more energy (without reaching the MPRE), the other nodes would be able
to transmit the message with less energy usage to reach the same probability,
increasing the value of MPRE. This contradicts our initial assumption, proving our
statement.

4 The proposed algorithm

Based on the observation above, the objective of our algorithm is to make the
residual energy of the nodes participating in the packet transfer as uniform as
possible, while still satisfying the reliability constraint (guaranteeing that the packet
will reach the BS with a pre-defined probability). We investigate the following
routing strategies:

• Direct sending, i.e. the source node sends the packet directly to the base
station without using an intermediate node. This is the simplest strategy
which serves as a baseline.

• 2-hop strategy, when an intermediary node may be used for sending the mes-
sage to the base station.

• K-hop strategy, in which case at most k-1 intermediate nodes form the path
for packet transfer.

The strategies are described by the next sections.

4.1 Two-hop routing

For the sake of simplicity, let us first assume that a single packet is forwarded to
the BS over a two-hop path, and at time instant k a sender node denoted by index
s sends this packet to the BS via a relay node denoted by index l. Knowing that
after the transmission, both nodes must arrive at the same energy level, and that
the successful transfer probability is Ps is given, we can write the following equation
(where c is the common energy level after the transmission, cs is the starting energy
level of the source node and cl is starting energy level of the relay node):

ωs,l

cs − c
+

ωs,BS

cl − c
≥ ln (Ps) (3)

Arranging the equation for c will get us the following quadratic formula:

c2A+ cB + C = 0 (4)
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where
A = ln (Ps) (5)

B = ωs,l + ωl,BS − (cs + cl) ln (Ps) (6)

C = cscl ln (Ps)− ωs,lcl − ωl,BScs (7)

where ωij is defined in the following way (from Section 3): ωij = −d2ijθσ2
Z . Taking

into account the constraints on the variables (c >= 0, ω < 0), only one solution is
possible:

c =
−B +

√
B2 − 4AC

2A
(8)

If c < 0, then the needed energy for the communication is higher than the nodes
can provide, and so the packet can not be sent with the given confidence. Our
strategy requires us to find an intermediary node which maximises the common
energy level c. This can be done by calculating the resulting common energy level
c for every possible intermediary node, and using the one with the maximum value
to route the message through.

The algorithmic complexity of this strategy is O(| V |).

4.2 K-hop routing

Calculating the solution for k-hop routing requires significantly more calculations.
We have to calculate the optimal common energy level for a given set of the inter-
mediary nodes, which requires finding the roots of a k-degree complete polynomial
which satisfies the constraints, then we also have to check different paths contain-
ing k hops to find the one with the highest PMRE. Because of this computational
complexity we rather develop an approximate solution for the problem.

This approximation can be broken up into two main parts. First, for a given
node energy distribution vector c, let us find the highest probability with which a
message can be sent between a chosen source node and the base station. Formally,
this can be written in the following way:

max
g

m∑
j=0

ωj,j+1

gj,j+1
(9)

Since ω must be a negative number, we can see that for a given path, the
maximum transmission probability can be reached if glj lj+1

= cj , meaning that
every node along the path is using their remaining energy to send the message.
Since we know the energy level of every node before the transmission occurs, we
can calculate γj,j+1 ≡ ωj,j+1

gj,j+1
, making the problem:

max

m∑
j=0

γj,j+1 = min

m∑
j=0

−γj,j+1 (10)

which makes this problem equivalent to finding the shortest path in a graph with at
most k edges, in which an edge between node j and j+1 have a weight of −γj,j+1.
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This can be solved using the Bellman–Ford algorithm, and stopping after the kth
iteration, which has the worst case complexity of O(k | V |2).

With this, we can approximate the optimal common energy level for k-hop rout-
ing the following way. Instead of every node sending with its remaining energy, let
us choose a common energy level ccommon, and the aim is that every node partic-
ipating in the transmission reaches this energy level after the transmission. This
gives us the energy for every node with which they can participate in the trans-
mission: gj,j+1(k) = cj − ccommon, from which the previously presented approach
gives us the maximum transmission probability.

Looking at the relation between the chosen common energy level and the max-
imum transmission probability, we can intuitively see that if we lower the energy
level, the transmission probability rises since nodes can use more energy in the
transmission. Because of this, we can use binary search over the interval (0, cs) for
the common energy level where the maximum transmission probability reaches the
given ln (Ps). This gives us an approximate solution for the optimal common en-
ergy level with complexity O(| V |2 ln cs

δccommon
), where δccommon is the maximum

guaranteed absolute error between the optimal and approximated solution.
The presented approach will give us an approximate solution for the k-hop

routing strategy.

5 Numerical results

To evaluate the performance of our energy efficient algorithm, we used the following
simulation environment: Our wireless sensor network consists ofN stationary nodes
and a BS collecting the messages sent by the nodes. The location of the nodes are
chosen randomly in a unit square. An example of a random network can be seen
on Figure 1.

We have chosen the number of nodes to represent 3 different sizes:

1. 10 nodes for a small network

2. 100 nodes for a medium network

3. 1000 nodes for a large network

Every node starts with the same initial energy. The parameters of the Rayleigh-
fading model were chosen to mimic real-life circumstances. We have chosen the
probability value for successful message transfer to be 95%.

In every step of the simulation, the source node is selected randomly, which
transmits a message towards the base station subject to the given probability cri-
terion. We repeat this procedure until a node depletes its energy, and count the
messages received by the base station.

To make comparisons between LEACH and other strategies, the simulation
consists of separate rounds. In every round, every node in the network must send
one message to the base station. For LEACH, this is the original algorithm, meaning
no modification is needed. For our energy-efficient algorithm, the order of nodes
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Figure 1: An example of one WSN. The square is the base station, while the triangle
is a node currently sending a message.

sending their message is randomized in a given round. Like previously, we run
as many rounds as possible before one node depletes its energy, and count the
messages received by the base station.

We implemented the LEACH algorithm as discussed in the original paper [3].
We have chosen the probability for a node to become a cluster head each round to
be 15%.

The simulation environment and proposed strategies were implemented in MAT-
LAB. During our research we have not found sources for the exact values of the θ
and σ2

Z environmental parameters. However, these parameters have no impact on
the relative performance of one strategy compared to another. Looking at equation
1, we can see that increasing the product of these parameters by a ratio of x would
increase the required energy as well, meaning that on average, the sent message
count would also decrease by this ratio as well when sending with the same transfer
probability. In our simulations, we have estimated the product of θ and σ2

Z to
be 2.14 based on the transmission parameters of the nrf24l01 chip, but this will
be refined in future work. We have generated a hundred different random network
topologies, and for each topology we have run the simulation ten times. We average
the results over these runs.

For our first set of simulations, we are only comparing the 2-hop, 3-hop, 4-hop
and 5-hop strategies to each other.

As can be seen on Figure 2, under these circumstances, the two-hop routing per-
formed better than either the direct routing or the k numbered strategies (*k > 2).
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Figure 2: Result for small network

Compared with the direct routing, the two-hop strategy can make use of an inter-
mediary node, so nodes farther away or with lower energy are able to conserve their
energies. This is in contrast with the results of higher k numbered strategies, where
the extended use of more intermediary nodes leads to shorter lifetime. Examining
the energy levels after each message, we concluded that while the remaining energy
levels are indeed higher compared to the two-hop strategy, the use of multiple nodes
results in an overall higher energy usage which depletes the network faster.

To give a simple example of this effect, let us suppose that we have a network
with ten nodes, each having 4 unit of energy. After choosing a random source node,
we run the different strategies on this network, and we find that for two-hop, the
optimal solution is sending the message through one intermediary node to the base
station with 4 units of energy, while with 4-hop, the optimal solution is sending the
message through 4 nodes with 3 unit of energy. In this case, two-hop used 8 units
of energy, while 4-hop used a total of 12 energy unit. This results in higher overall
energy usage for 4-hop, draining it faster.

For the medium sized network with 100 nodes, 2-hop still performed better with
regards to the average message count seen on Figure 3. However, 3-hop is closer to
the 2-hop result, under performing only by 4%.

For our final simulation, we ran the network with 1000 nodes. In this case,
Figure 4 shows that 3-hop strategy outperformed the 2-hop routing by around 3%.

Looking at the results of different network with regards to the network size, we
can conclude that as the network size increases, higher numbered k algorithm will
become more efficient.
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For our next set of runs, we compare LEACH with the proposed strategies as
well as with direct sending.

As can be seen on Figure 5, LEACH under performs even when compared to
direct sending. This can be explained by the fact that originally, LEACH was
proposed for networks where the base station is farther away from the nodes. Also,
LEACH is typically run until every node in the network dies, while we are focusing
on the first dead node.

Looking at the energy-efficient strategies, we can see slightly higher results
compared to the previous simulations. This is because of the way we run the
simulations with LEACH: due to the presence of rounds, the selected nodes are
more evenly spread out around the network (due to the fact that in every round,
every node will be selected exactly once for message sending). This spreads out the
energy differences more evenly, increasing the longetivity of the network.

Looking at the results for medium networks in Figure 6, we can see the same
results as with the small network.

In the result for large networks seen on Figure 7, the other strategies still out-
perform LEACH by a huge margin. Another interesting point that can be seen
is that in this case, 2-hop still performed better compared to 3-hop, while in the
previous runs, 3-hop outperformed 2-hop in large networks.
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Figure 5: Result for small network with LEACH
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6 Conclusion and future works

In this paper we have developed a novel routing algorithm for energy aware IoT
data communication where the successful packet transfer from the nodes to BS
is guaranteed with a given level of reliability. As the performance analysis have
revealed, 2-hop performed well for any network size, while 3-hop outperformed
2-hop in a large network.

As can be seen, LEACH performed poor due to multiple reasons, such as in
our environment, the base station was placed near the other nodes, while LEACH
was proposed with the base station being placed farther away. Also, the original
LEACH does not take into account the current energy levels of the nodes, for a
low energy node to become cluster head instantly depletes that node. Since we are
running the simulations until the first node goes flat (i.e. runs out of battery power)
, this also results in lower performance. We also plan on making comparisons with
other, improved versions of LEACH such as E-LEACH [8] and ME-LEACH [7],
where the residual energy is taken into account for cluster head selection.

Our planned future work will take into account the network topology, as well.
The results given above were achieved with randomly placed nodes but we can
further tailor them if the network topology is known in advance. In the future, we
would like to consider special network topologies including indoor transmission, as
well as different packet sending frequencies, when optimizing the routing algorithm.
The model can be further expanded by introducing barriers between nodes (such
as buildings). We plan to apply the findings of our research in the wireless sensor
network deployed at ZalaZone (being a test environment for autonomous vehicles).
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Abstract

Atomicity, consistency, isolation, and durability are essential properties of
many distributed systems. They are often abbreviated as the ACID prop-
erties. Ensuring ACID comes with a price: it requires extra computing and
network capacity to ensure that the atomic operations are done perfectly or
they are rolled back.

When we have higher requirements on performance, we need to give up
the ACID properties entirely or settle for eventual consistency. Since the
ambiguity of the order of the events, such algorithms can get very complicated
since they have to be prepared for any possible contingencies. Traquest model
attempts to create a general concurrency model that can bring the ACID
properties without sacrificing a too significant amount of performance.

Keywords: ACID, concurrency, consistency, atomicity, concurrency model,
fault tolerance

1 Introduction

In the case of the microservices architecture [5] when we send a request, it can
initiate some modifications in the global state in a transactional way. Microser-
vices are mainly based on the request-response model. When the Request returns
with no errors, that means the modifications in the global state are done, and the
transaction is over. While if the response is an error, that means there were no
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modifications in the global state at all. Requests can make other requests, and
more complex transactions can be assembled.

In a request-response model, the ACID properties come at a high price. The
service which calculates the response has to guarantee that any write operations
arising must be synchronized, committed, and persisted before it can reply with a
response. Of course, on the other hand, if ACID is not a requirement, the service can
be very fast. In this case, the service can just read and write the state of the local
server and answer to the client immediately. Later, the server can synchronize the
writes if eventual consistency is a requirement, but this does not block or decelerate
the original process.

However, it is not just the performance that can cause a problem. It is very
challenging to ensure atomicity itself when we nest the services. Figure 1 shows a
scenario where we have service A calling two other services, B and C. The order of
the network events is marked on the figure. The client sends a request to service
A, which sends requests to service B and C. Service B responds correctly, but C
responds with an error. In this case, we can assume that C has rolled back correctly,
but B should be rolled back as well. There is no mechanism to roll back a request
in the request-response model after it has been responded. Therefore it is hard to
chain more services properly when atomicity is a requirement. We can be sure to
have a proper response if the happy path happens, but if there is an error arising
at some of the chained requests, our system can get easily stuck into an invalid
intermediate state.

It seems there is a hard dilemma between ACID properties and efficiency. The
proposed Traquest model attempts to resolve this dilemma and therefore improve
the efficiency of the ACID systems.

The phrase Traquest [28] comes from the words Request and Transaction. The
core of the idea comes from the microservices architecture, and the Traquest model

Figure 1: Nested rollback issue
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is something similar to the request-response model. We can send requests to a
Traquest, and the Traquest replies with an answer, but here the answer is not a
simple response message, but rather an established parent-child connection between
the two Traquests with a temporary response, a so-called Trasponse. When a
Traquest gets a request, it can immediately carry out read and write operations on
the local server. It can immediately reply with a Trasponse; however, of course,
that still might take time to synchronize the effects of the operations with other
servers. Therefore Trasponse is only a temporary response.

Before creating the Traquest model, we have examined many of the existing
technologies and solutions, including multitier architectures, actor model based
systems, different consistency protocols, and different papers discussing the limita-
tions of distributed ACID systems. We have found that the current systems have
the strict limitations we described above. We decided to investigate whether it is
possible to create a system based on the idea that a response can have a temporary
nature. The Traquest model was realized during this research process.

We created the concept of the Traquest model, and we also built an experimental
prototype in TypeScript. Adjustments on the model might become necessary later
as further, and more comprehensive implementations will be created in different
programming languages. However, the current results show that the general concept
of the Traquest model is viable. Traquests can provide ACID computations using
magnitudes fewer network messages in some concurrency scenarios than the current
technologies.

This paper is structured as follows. In Section 2, we give an explanation of
the Traquest model. In Section 3, we discuss some state-of-the-art solutions and
how the current technologies were used to solve problems related to the ACID
properties. We explain further the Traquest model through an exemplary case and
compare it to the current technologies. In Section 4, we will highlight the current
challenges and further research directions. Finally, this paper concludes in Section
5.

2 The Traquest model

The request-response model is used on a local level as well and not only between dif-
ferent computing nodes. Asynchronous callback functions can behave equivalently.
We can send the request content and the callback function as an argument, and
the callback function can contain the response in an argument. This mechanism
is often used to wrap network-based request responses, but for local asynchronous
operations as well.

However, callbacks can get complicated when they are heavily used, and we
want to handle exceptional scenarios. To this end in computer science, Future,
Promise, Delay, and Deferred refer to constructs used for synchronizing program
execution in some concurrent programming languages. They describe an object
that acts as a proxy for a result that is initially unknown, usually because the
computation of its value is not yet complete. The term Promise was proposed
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in 1976 by Daniel P. Friedman and David Wise [9] and Peter Hibbard called it
Eventual [16]. A somewhat similar concept Future was introduced in 1977 in a
paper by Henry Baker and Carl Hewitt [3].

Traquests behave most similarly to Promises ; therefore, we use them as a base-
line for the explanation. Traquests, just like Promises, are placeholders for a tem-
porarily unknown value. Traquests, just like Promises, can be nested and depend
on each other. However, once a Promise returns with a response, this response
is final, and it cannot be modified afterwards. On the other hand, Traquests can
be strongly bonded together to form a tree structure, a so-called Traquest tree.
A Traquest tree creates the transaction, and if any Traquest fails in the Traquest
tree, all the Traquests are failing. When the Traquests are failing, they are not just
returning an error, but they are ensuring that if they created any modification, it
would be appropriately rolled back so that the global state of the system will not
be affected by half-done transactions. To be able to achieve this, Traquests are
containing some additional mechanisms.

2.1 Structure

To understand how Traquests are working, first, we need to see the fundamental
structure of the state of art Promises.

2.1.1 Promises

Figure 2 shows the fundamental structure of Promises. Deferred describes a yet
unfinished work which is the asynchronous process that has to be done to get the

Figure 2: Promise structure
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final value of the Promise. A Promise belongs to a Deferred. When the Deferred
finishes, it can call different resolvers depending on whether the execution was
successful or some exceptions were arising. If the execution was successful, the
Deferred calls the Resolve resolver; otherwise, it calls the Reject resolver. The
Promise itself is the placeholder of the yet unknown value. It has two handlers to
handle the event when the unknown value becomes known. The Then handler is
responsible for handling the successful resolution of the Promise, and the Catch
handler is for handling the exceptions.

2.1.2 Traquests

Figure 3 show the fundamentals structure of Traquests. A Traquest also belongs
to a Deferred that, similarly to Promises, describes a yet unfinished work. Traque-
sts have handlers just as Promises to handle the event when the Deferred returns.
However, Traquests has a third significant component as well, the Binding mecha-
nism. The binding can permanently bind together Traquests in a parent-child tree
structure. This binding holds until the whole atomic transaction finishes. Like
that, a Traquest tree can act as a single entity, and it can form a complete atomic
transaction, which can be distributed to many computing nodes.

Figure 3: Traquest structure
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The Deferred has the following resolvers. The Response resolver is the same
as the Resolve resolver at the Promises. This should be executed when the asyn-
chronous Deferred process successfully finishes with the proper value. The Mistake
resolver is slightly different from the Reject resolver of the promises. The Mistake
is called when a temporary failure happens. If there is a chance that the failure has
occurred only because of the wrong order of the asynchronous operations, then Mis-
take should be triggered. Mistakes can be undone later, and the Traquests might
rerun in proper order. The Terminate resolver is used in case of final failures. This
resolver terminates the whole Traquest tree and tries to roll back all the Traquests
in the Traquest tree.

The Then handler is the same as the Then handler of the Promises. The Catch
handler is similar to the Catch handler of the Promises, but it is used explicitly for
the mistakes. It can also avoid spreading up the Mistake to parent Traquests or
let it spread further. The Finally handler is called no matter if the Traquest was
properly committing or it was terminated.

The Binding mechanism of the Traquests has the following concepts:

Parent-child binding – When a Traquest had been created, the reference to
the parent Traquest should be defined. If it is not defined, that means the created
Traquest will be the root of the Traquest tree.

Undo – A mistake happens when an exception occurs because the Traquests
are executed out of order. However, it can happen that the Traquest has already
responded with a seemingly correct response, and an out-of-order conflict turns out
only later. In this case, an undoing mechanism can be executed, which rolls back
the necessary Traquests on the affected branch of the Traquest tree and re-executes
them.

Rollback – A callback is provided for the case when the Traquest needs to
revert the changes it has made so far. If the Traquest did not create any changes
directly to the global state, just by calling other Traquests, this part could be
omitted because the rollbacks spread automatically on the Traquest tree.

Finalizing – It is a mechanism used when all the Traquest in the tree have
returned, and the result of the Traquests can be finalized. This happens completely
hidden and automatically when all the Traquests in the tree have returned.

Committing – It is a mechanism used when all the Traquests in the tree have
been finalized, and a final commit can be initiated. This happens completely hid-
den and automatically. The Committing mechanism combined with the Finalizing
mechanism gives a similar process to the two-phase commit protocol [35]; however,
there are differences because the Finalizing and Finalized states are handling the
potential rollbacking Tail Traquests as well.

2.2 States

Promises and Traquests have different states throughout their life-cycle, which de-
scribes their behaviour.
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2.2.1 Promises

Figure 4 is a state diagram that shows the possible states of a Promise. In the
case of the Promises, we have three very simple states. We have an Unfulfilled
or Pending state while the Deferred process is running, and the Promise value is
not known. From this state, the Promise can step only to Fulfilled or Rejected
state. This happens when the Deferred process finishes depending on whether an
exception was arising or not.

Figure 4: Promise state diagram

2.2.2 Traquests

Figure 5 shows the simplified state diagram of the Traquests. Traquests have to
handle more complex scenarios; therefore, they can have more different states. For
the sake of simplicity, the Terminated state and some state transitions are not

Figure 5: Simplified Traquest state diagram
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shown here, only the most relevant ones which are necessary to understand the
working mechanism of the Traquests. In Figure 5 the explanation for the state
transition prefixes are the followings:

• AC: Automatically triggered by the child Traquest

• AP: Automatically triggered by the parent Traquest

• AT: Automatically triggered by the current (”this”) Traquest

• No prefix: Manually triggered in the Deferred process

As one can see, Traquests are much more complex and have much more states
than Promises have. However, Traquests have only two main manual resolvers, just
like the Promises. When we have nested Promises, and an exception occurs, we
should ensure manually that the proper Reject resolver is called, and it is handled
at the parent Promise [31]. Furthermore, the parent Promise should manually
escalate the exception further by calling its own Reject resolver. Traquests, on
the other hand, are bound together and escalate the Mistakes automatically. A
traditional exception in the Deferred process can be automatically converted into
a Mistake, or a Mistake can automatically come from a child Traquest. In either
case, no manual intervention is needed. Most of the time, it is enough to define only
the happy path in a Deferred process and call the Resolve resolver. Interestingly
this means that even though Traquests are more complex than Promises, still using
Traquests can be even more convenient. To understand more how Taquests work,
let us investigate them state by state in more detail.

Waiting state: The Waiting state is the initialization state of the Traquest. In
this state, the Traquest gets initialized by defining the Deferred process belonging
to it. The Deferred process is not added automatically to the event-loop like in
the case of the Promises [20]; instead, it has to be manually executed. During
the execute call, we need to provide the parent Traquest optionally. If the parent
Traquest is missing, the current Traquest will be the root of the Traquest tree;
therefore, the current Traquest will represent the overall transaction.

Executing state: When the execute method is called on the Traquest, the
Traquest begins to execute the Deferred process, and it steps into the Executing
state. During this state, the Deferred process can create new child Traquests and
bind them to the current Traquest. The transaction can grow this way recursively.

During the execution, the Traquest can be interrupted by parent or child Traque-
sts. The interruption happens if a Mistake arises at the ascending or descending
Traquests. If a parent Traquest has a Mistake, that means the current Traquest
should be ignored, including its children. Therefore if the parent Traquest triggers
an undo operation on the current Traquest, it changes its state to Undoing, and
triggers an undo operation on all the descendant Traquests.

If a Mistake is coming from one of the children of the current Traquest, that
means that the Mistake is still not escalated to upper levels in the Traquest tree,
and the Traquest can try to re-execute itself. In this case, the Traqest steps into
the Restarting state.
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The Mistake can come not only from the bounded Traquests, but it can also
happen locally in the Deferred process of the current Traquest. In this case, the
Traquest should roll back its changes; therefore, it has to switch into Undoing state.

Suppose no Mistakes are coming from the bounded Traquests, and the current
Traquest is not running into a Mistake either. In that case, the Deferred process
should call the resolve operation with the proper resulting value when it finishes.
When the resolve operation is called, that means the current Traquest has com-
pleted its desired asynchronous task, and it can respond with the required value;
therefore, the Traquest should step into the Responded state.

Responded state: The Traquest can get into the Responded state only from
the Executing state by the Deferred process calling the Resolve resolver. Before
stepping to the Responded state, the Traquest sends the result value coming from
the Resolve operation to the handler of the Traquest. The handler executes the
callbacks bounded to the Traquest by the Then operation right after the Traquest
steps into the Responded state. However, there is one exception. If the current
Traquest is the root of the Traquest tree, then no handlers are called, and the
Traquest steps into the Finalizing state immediately.

Otherwise, the Traquest waits in the responded state until the parent Traquest
asks for a commit, or a Mistake is coming from any of the bounded Traquests.
Parent Traquests obviously can still be in execution when the current Traquest
responds. However, for synchronization purposes and keeping the system’s overall
consistency, children Traquests can still be in Executing state as well. We discuss
this scenario in more detail in Section 2.6. This means that a Mistake can trigger
an undo operation from any direction. When an undo operation is called on a
Traquest, which is in a Responded state, it should not be able to commit anymore.

If no Mistakes are coming from any of the bounded Traquests, then the current
Traquest waits until it gets a finalize operation from the parent Traquest. The
Traquest can and should trigger a finalize on itself only if the current Traquest is
the root Traquest.

Finalizing state: When a finalize operation is triggered on a current Traquest
by the parent Traquest and the current Traquest is in the Responded state, the
current Traquest switches to the Finalizing state and calls the finalize operation on
its child Traquests. If there are no child Traquests, the current Traquest steps into
Finalized state and sends an ackFinalize operation to the parent Traquest.

If the current Traquest is still in Executing state, it makes no action. In this
case, when the Deferred process returns, the parent Traquest calls again the finalize
operation on the current Traquest; hence the finalizing mechanism can continue.
This scenario happens with the Tail Traquests, which we will discuss later in more
detail.

An Undo operation can come from any bounded Traquests during the Finalizing
state.

Finalized state: The Traquests step to Finalized state when they get an
ackFinalize acknowledgement from all of their children. If the Traqest steps into
the Finalized state, it calls an ackFinalize operation on its parent. If it has no
parent – meaning that the current Traquest is the root of the Traquest tree – the



444 Dániel B. Rátai et al.

Traquest steps in to Committing state and sends a commit operation to all of its
child Traquests.

Undo operation can come only from a parent Traquest during the Finalized state
because this state means that no descendant Traquests are being in Executing state,
which could serve as a root for launching the undoing chain.

Committing state: When a Traquest steps into the Committing state, it
triggers a commit on its child Traquests and waits until it gets an acknowledgement
from them. When all the children have responded with an acknowledgement using
the ackCommit operation, the Traquest steps into the Committed state. If the
Traquest has no children, it immediately steps to the Committed state without
waiting for any other processes or Traquests.

Traquests cannot roll back if the Traquest has already stepped into the Com-
mitting state.

Committed state: When a Traquest gets acknowledgements from all the child
Traquests, it steps into the Committed state. The Committed state is a final state,
meaning that the life-cycle of the Traquest was finished.

At the Response state, we discussed that if the current Traquest is the root
Traquest the callbacks bounded to the handlers are not called. The root Traquest
calls any handlers only at the end of its life-cycle. Therefore, when the root Traquest
enters the Committed state, it calls the callback bounded to the Then handler,
responding the final result of the whole transaction.

Undoing state: When a Traquest enters the Undoing state, that means that all
the modifications in the global state done by the current Traquest or its descendants
should be rolled back. Traquests can enter the Undoing state from almost any
state. The exceptional states are the Waiting, Committing, Committed, Ignored,
and Terminated states. From Waiting, there would be no point in entering the
Undoing state since without executing the Deferred process, there cannot be any
modifications to be rolled back.

The Committing state is already part of the committing process. Here all the
temporary values are finalized. Suppose any errors are happening at this phase.
That means a more serious issue that can affect the consistency. Therefore rolling
back cannot be an option from the Committing state.

The Committed, Ignored, and Terminated states are the final states of the
Traqest, and they cannot be rolled back. In all the other states, except the five
states mentioned above, stepping to the Undoing state is possible.

Stepping to the Undoing state can be triggered manually in the Executing state,
during the execution of the Deferred process – we can use the mistake operation
for this purpose – or it can be triggered automatically by the bounded Traquests.
The bounded Traquests can use the undo operation for initiating a rollback and
trigger the current Traquest to step into the Undoing state. However, when the
current Traquest is still in Executing state, and an undo operation comes from its
child, the Traquest can still be re-executed, and in this case, the Traquest will step
into the Restarting state.
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Traquests can spread up the undoing chain even if they already have responded.
This is important because the undo operation means that the responded value is
not valid anymore; therefore, the parent Traquest, which already consumed this
value, should be conflicted.

Ignored state: The Traquest steps into the Ignored state from the Undoing
state when it has finished calling all the undo operations on its bounded Traquests.
The Ignored state is a final state, and it means the life-cycle of the Traquest has
ended.

Restarting state: When the current Traquest gets an undo operation from its
child Traquest while the current Traquest is still in the Executing state, the Deferred
process of the current Traquest should be re-executed. In the Restarting state, an
undo operation is called on each of the child Traquests, the rollback callback is
called for the current Traquest – if it was defined – to roll back every state change
that has been made so far. When the rollbacks are finished, a reExecute operation
is called on the current Traquest, which sets back the state of the current Traquest
to Executing, and re-executes the Deferred process.

Terminated state: The Terminated state was not discussed in depth so far,
and it is missing from Figure 5, because it implies high complexity. Figure 10
in the Appendix shows all the possible states and state transitions a Traquest
can have, including the Terminated state. The Terminate state can be initiated
by calling the terminate operation of the Traquest. The Terminated state means
that an unsolvable error has happened, and the system’s consistency cannot be
guaranteed.

When a Traquest enters the Terminated state, it tries to roll back itself and
calls the terminate operation on all its bounded Traquests.

2.3 Timestamps

Traquests contain a logical timestamp of their creation to be able to resolve con-
flicts. The timestamp of a Traquest inherits all the timestamps of the ascendant
Traqests. This means that the timestamp of a parent Traquest represents the log-
ical time of its whole branch when compared with Traquests from other branches.
The timestamp of an ascendent Traquest is always earlier than the timestamps of
descendant Traquests. The order of the sibling Traquests is decided in the order of
their creation.

To clarify how the order of the Traquests should be considered, Figure 6 shows
two Traquest trees, and on the horizontal axis, their physical time of creation is
represented. In this case, the physical order of the Traquests is the following:
T1; T2; T3; T4; T5; T6; T7; T8; T9. However, since Traquests trees represent
atomic operations, and the branches of the trees represent atomic sub-operations,
the logical order of the Traquests cannot be equivalent to the physical order. The
logical order of the Traquests in this particular case is the following: T1; T3; T6;
T8; T4; T7; T2; T5; T9.
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Figure 6: Order of Traquests

2.3.1 Current logical timestamps

There are already several solutions for creating timestamps and clocks in a dis-
tributed environment when more processes are running parallelly. The Lamport
timestamp [27] algorithm or the Vector clocks [37] algorithm are designed to handle
timing issues when more processes are existing at the same time which can interact
with each other. In the case of the Lamport timestamp, creating the timestamp
is very fast and easy but compare two timestamps is very hard and costs a lot of
computation time. For the comparison, we also must decide if there is a joining
path between the processes. It is not possible to use it for the Traquests. With
the vector clocks, the result is similar. However, at the vector clocks, creating the
timestamp is highly costly because we need as many dimensions for the clock as
many processes we have. In our case, every Traquest is a process, and there can
be millions of them or even more. Furthermore, Traquests can be created in real-
time, which means at the point where we should give a timestamp for a Traquest,
we do not even know how many processes should we consider to create a Vector
Clock based timestamp. Therefore, the Vector clock works neither for the Traquest
model.

2.3.2 Hierarchical timestamp

We need a hierarchical time stamping mechanism which is a more special case. The
naive algorithm for creating a required hierarchical timestamp would be simply
using an array with integers. All the Traquest can count how many children they
have already, and whenever a child is created, they increase the counter; therefore,
each child knows where they are in the queue of the order. The root Traquests can
get their number from a global counter, from the Unix time, or a combination of the
two. The array used as a timestamp can store all the ancestor’s order numbers and
also its own order number in the last record. Figure 7 shows the naive algorithm
timestamps for the Traquest tree example presented in Figure 6.
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Figure 7: Naive hierarchical timestamps

In the example, we supposed that all the Traquests were created very close in
physical time; therefore, they all have the same Unix time in the first record. After
the global timestamp, all the timestamps contain their ancestors’ timestamps; they
are just extending it with their own order number. For flat hierarchies, it works
well because there are only a few levels, and the length of the timestamp is short.
However, the timestamps can get very long when the hierarchy is tall.

To address this issue, we have created a new timestamp algorithm that can
reduce the necessary size of the timestamp drastically. Explaining our research on
the optimized timestamps in more detail would be complex, and it is out of the
scope of the current paper. Therefore, we rely on the naive timestamps for the
explanation of the Traquest model.

2.4 Data protectors

We introduced that Traquests are forming a tree structure. However, a tree struc-
ture by itself would never result in any conflicts, which would be the core of the
Traquest model to handle them effectively. Conflicts are happening when two dif-
ferent processes are trying to read or write the same part of the global state. To
this end, Data protectors were constructed. Data protectors are entities responsible
for managing a given segment of the global state. They protect the given global
state particle from conflicting reads and writes.

The goal of each branch of the Traquest tree is to interact somehow with the
global state. Therefore, each branch, at some point, ends up in a Data protector.
Traquests can call CRUD [33] operations on the Data Protectors. When a Traquest
calls a CRUD operation to a Data protector, the Data protector generates a new
Traquest containing the operation and replies with the generated Traquest. This
new Traquest can be bounded to the original Traquest as a child; therefore, it
becomes part of the Traquest tree.
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When more Traquests are using the same Data protector, the Data protector
can use the logical timestamps of the Traquests to decide which read or write
operation should be answered first. If a Traquest with an earlier timestamp comes
after a Traquest with a later timestamp has been already responded to, the Data
protector can call the undo mechanism of the already responded Traquest and serve
the newly requesting Traquest. Therefore, the Data protector can efficiently resolve
any conflicts.

Furthermore, because all the conflicts are recognized and resolved at the Data
protectors, most of the conflict resolving features of the Traquests are used only
by the Data protectors themselves. Data Protectors can trigger a Mistake if they
have conflicting Traquests, and they can define the callback for the Rollback. This
way, the increased complexity of the Traquests can be mostly hidden from the
developers, and they do not need to care about the failure handling parts at all,
except taking care of the Finally handler of the root Traquest. As a result, using
Traquests can be as straightforward as using Promises or even more.

Data Protectors are the only entities who can contact directly to the global
state storage. Therefore, the way we physically store the data can be abstracted
away. Data Protectors can store the state using any databases, the local storage,
the memory, or even any mixture of these solutions. Using traditional databases
can be helpful to provide compatibility with other systems; however, in this case,
we should be aware of the risk of corrupting the consistency of the global state.
The most efficient solution is to use the local storage or memory for storing the
state.

2.5 Consistency and Fault tolerance

Traquests interact with each other using serializable data constructs only. There-
fore, Traquests can be located on different computing notes as well, and they still
can interact. Fault tolerance requires the replication of the different particles of the
global state to several computing nodes. Traquests are perfect for creating replicas
of a desired global state particle and consistently managing them. It is enough to
add new Traquest tree branches to each write operation that replicates the opera-
tion on different computing nodes. Thanks to the atomic property of the Traquest
tree, the state will always remain consistent. For the read operations, we do not
need such replication since the writes are already ensuring consistency.

2.6 Tail Traquests and network buffering

Tail Traquest is not a new separate feature in the Traquest model; it is instead a
useful design pattern. Tail Traquests are simply Traquests where the Then handler
of the Traquest is not defined. This implies that the parent Traquest of a Tail
Traquest can finish its Deferred process without waiting for the current Traquest
to finish with its task. This also means that the resulting value of a Traquest is
independent of its child Tail Traquests.



Traquest Model 449

Tail Traquests are primarily helpful for synchronizing the modifications in the
global state made by the Traquest tree with other servers in a consistent way for
reaching fault tolerance. Because Tail Traquests are not blocking the execution
of the core logic of the Traquest tree, the overall Traquest tree can run very fast.
Suppose every part of the global state that needs to be used is replicated locally.
In that case, the whole logic of the Traquest tree can even execute in-memory
time, and the network messages for the synchronizations are buffered automatically.
They can be synchronized lazily in only two round trip messages for finalizing
and committing. This optimization can happen even in the case of very complex
algorithms, when there are many global state reads and writes depending on each
other.

The communication of the Traquests between different computing nodes and the
buffering can be separated and managed automatically. Therefore, the protocol
for communication is abstracted away. The background implementation can use
TCP [17], UDP [39], REST [21], WebSocket [8], WebRTC [18], long polling [19],
SSE [36] or any other technologies what the infrastructure allows. This leaves
many possibilities for optimizations. For example, if two nodes are communicating
less frequently, they can use REST calls. However, if there are two nodes with
frequent communication between them, they can switch to WebSocket. This way,
the Traquest model attempts to create a new layer on top of the OSI layers [14],
where the network communication itself can be abstracted.

2.7 A basic exemplary case

We have discussed how the basics of the Traquest model are working. To have a
deeper understanding, let us examine how we can increment a simple integer value
in the global state.

2.7.1 Basic scenario with no conflicts

To examine a basic scenario with no conflicts, let us discuss a simple incrementation
of a value in the global state. In the Appendix Figure 11 illustrates such an example
of an incrementation. The incremented global state variable is named i. The global
process creates a Traquest for the transactional incrementation. A ”T” prefix
marks the Traquests, and their postfix is their logical timestamp. ”DP i” is the
Data Protector of the i variable, and ”Storage i” is the physical location of the i
variable. The ”Storage i” can be a local storage, it can be stored directly in the
memory, or it can represent any kind of database as well. The sequence diagram
notes are marking the actual states of the Traquests. The global process creates the
”T1” Traquest, and the other two Traquests are generated by the Data Protector,
one for reading the i variable and one for updating it. The diagram shows the
operations between the entities. The initial value of the i variable is 10.
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2.7.2 Conflict resolving

To examine how Traquests behave in a conflicting scenario, let us continue with a
similar incrementation, but in this case, we have two conflicting global processes
(e.g., two threads). In the Appendix Figures 12a and 12b illustrate such an example
of a conflicting incrementation. The first global process begins an incrementation
on variable i, and the second process begins a read on the same i variable only a
little later. In this case, we have two Traquest trees with T1 and T2 Traquests at
the root. The T1 tree performs a read on variable i, next the T2 tree performs a
read, and after that, T1 performs the write with the incremented value. This is a
conflicting scenario because the T2 tree should read the value of i only after the T1
has completely finished with the incrementation.

Figures 12a and 12b in the Appendix show that despite the conflict, the global
processes get only the correct result at the end, and the correct final global state
value is persisted on the storage. Examining more the ”DP i” Data Protector, it is
also visible that the Data Protector reads and writes to the storage only once. It is
interesting if we consider that it had to serve several CRUD operations coming from
the Traquests. Data Protectors can effectively aggregate those CRUD operations
and reduce the number of CRUD operations necessary to call on the storage itself.
This has higher importance if we consider that the storage is a component that
can be located on different computing nodes; therefore, calling an operation on the
storage can be the slowest element of the overall process.

3 Related work

3.1 Current technologies

There are many technologies for providing ACID concurrent systems. Hereby we
discuss the most relevant and most widely used directions.

3.1.1 Multitier architectures

The ”Layers” architectural pattern has been described in various publications [6],
and it is the most widely used pattern in the case of enterprise web applications.
When the Business layer executes the desired algorithm, it continuously has to
access the Data access layer to read the global state and write back the changed
state. When the algorithm requires only a few iterations depending on each other
with the Data access layer, this causes no problem. On the other hand, each read
and write requires a roundtrip on the network when there are several depending
steps. Although many databases – e.g., most of the SQL databases – can easily
handle atomic transactions, the number of the necessary roundtrips implicates a
massive limitation in the overall performance. This is a strict limitation in any
architecture where we separate the location where we execute the business logic
from the location where we store the global state.
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To give an example, one might select any use cases where there are several
dependent reads or writes to any databases to compare the multitier architectures.
One of those examples is the Geographical Information System using large point
clouds. For this purpose traditional PostgreSQL [23] is often used. Using space
partitioning algorithms is a necessity to be able to manage the point cloud. Octree
[22] is such an algorithm that can let us manage the points efficiently and easily.

Figure 8 shows an example when a new point is added to an Octree. We
assumed that adding the new point requires searching down the Octree structure
for ten levels. We assumed that the whole data set is replicated to two servers.

Database servers cannot execute algorithms in multitier architectures. They are
only responsible for storing the data. The application is executed by the application
server. Therefore, each node has to be first read to the application server from one
of the database servers. Each node refers to its children; therefore, all the parents
should be read before the child can be reached, and pipelining [29] cannot be used.
Furthermore, to ensure atomicity and consistency, each node must be checked and
locked on both servers. The example showed in Figure 8 is a simplified one. In real
life, there can be much more and complex network messages between the servers.
Still, even in this simplified case, we can count up to 44 network messages between
the servers.

This example shows that any solutions built on using databases can have strict
performance limitations if the operations sent to the database are depending on
each other. If they are independent, buffering and pipelining can be used, and many
queries can be sent within a single RTT (Round Trip Time) over the network. In
this case, the number of network messages can be O(1).

Figure 8: Add point to an octree in a multitier architecture
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However, in many cases, we need to know the result of a query to be able to
send the following query to the database. In such cases, the number of network
messages grows on a O(n) scale.

3.1.2 Serverless architecture

Serverless is one of the most trending architecture types nowadays. Serverless
computing has emerged as a new compelling paradigm for the deployment of ap-
plications and services. It represents an evolution of cloud programming models,
abstractions, and platforms and is a testament to the maturity and wide adoption
of cloud technologies [4].

The serverless architecture is built on using stateless cloud functions in a man-
aged way. The developer does not need to manage any server-side infrastructures.
The number of cloud functions can scale horizontally automatically. These cloud
functions can call other managed database systems to reach out to the application’s
global state. Serverless is getting more and more traction, and all the leading cloud
providers are offering their serverless solutions: AWS Lambda [2], Google Cloud
Functions [11], or Azure Functions [24].

However, in serverless architectures, the cloud functions have strict performance
limitations thanks to the stateless nature of the cloud functions. The cloud func-
tions cannot store any part of the global state. They need to call a database, a
distributed file system, or other external services for that purpose. Therefore the
cloud functions cannot be executed in-memory time, and they need to commu-
nicate on the network to finish their task. This means that from a performance
perspective, they share the same limitations with the multitier architectures.

3.1.3 Actor model

Carl Hewitt first described the actor model in 1973 [15]. Actors can execute business
logic and store state simultaneously; therefore, they do not share the limitations
of the classical multitier architectures. Actors are excellent for solving problems
where we have many independent processes that can work in isolation and only in-
teract with other Actors through message passing. This model fits many problems.
However, unfortunately, the actor model is not a favorable model for implementing
truly shared state [34], when we need to have a consensus and a stable view of
state across many components. Actors can get information about each other only
through messages; therefore, it is hard to maintain atomicity.

The Actor model is a more general concept. Many algorithms can be imple-
mented using Actors. Therefore we cannot directly compare the Actor model itself
with the Traquest model because it depends on the algorithm that we create using
the Actor model. However, there are standardized solutions for creating atomic
transactions using the Actor model. The Akka toolkit suggests Transactors [34]
for creating transactions. Under the hood, it uses a CommitBarrier, similar to a
Java CountDownLatch [26] which is a blocking mechanism. Therefore, Transactors
also have no specific timestamping mechanism. They have to lock and await each
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change in the global state; therefore, we would not have fewer network messages
with the Transactors than what multitier architectures have.

3.1.4 Consistency protocols

The Traquest model can ensure atomicity and is also a promising way to ensure
consistency. Therefore, hereby we take the most relevant consistency protocols [32]
under investigation respective to the Traquest model.

Continuous consistency: Continuous consistency ensures that the numerical
deviation of a specific global state particle does not go above a certain threshold on
the different computing nodes. This can be applied only in the case of numerical
values, and it ensures only an approximate consistency; therefore, it is out of scope
for the Traquest model.

Primary-Based Protocols: Primary-Based protocols provide proper con-
sistency for an arbitrary type of data. To keep the data consistent, they have to
synchronize each write at least with the primary server. For instance, in such a
case, the algorithm has to be blocked until a read it depends on gets a confirma-
tion from the primary server. This requires many iterations of roundtrip messages;
therefore, Primary-Based Protocol implies a strict limitation in the performance.

Quorum-Based Protocols: Quorum-Based Protocols have very similar lim-
itations to Primary-Based Protocols. Each read and write operation must be con-
firmed by other computing nodes before the executed algorithm can rely on the op-
eration and step forward. The only exception is the Read-One, Write-All scheme.
In this case, it is enough to read the local state of the data; however, it requires
even more messages to write synchronizations. This scenario can only be suitable
in the case of very read-heavy applications.

The mentioned Primary-Based and Quorum-Based protocols share the same
problems with the Transactors and multitier solutions. Each read or write should
be crosschecked with other servers before we can rely on the locally stored data,
and the locks are blocking the process. Therefore, these protocols cannot reduce
the necessary network messages either.

3.2 Traquest model compared to the current technologies

In the following, we will discuss the exemplary GIS-octree case described in Section
3.1.1 to understand more and compare the Traquests.

With the Traquest model, we do not need a persistence layer because the Traque-
sts themselves can already ensure the ACID properties. The data protectors can
store the global state on the local storage or even in the memory. Therefore, there
is no need for network communication for the reads in the case of an optimal topol-
ogy. Moreover, write operations do not need network communication either, only
for synchronization, which can be buffered and postponed. This way, all the net-
work events can be done in only three RTTs. This results in O(1) – or even less
depending on the proportion of reads and writes – number of network messages
even for operations that depend on each other.
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Figure 9: Add point to an octree in a Traquest based architecture

Figure 9 shows the same use case that was presented in Figure 8, but it uses
the Traquest model. We do not need to use separate application and data servers
since the Traquest model has constructions for both processing and storing. We
have two servers for storing the replicated data on two different physical computing
devices, just like the multitier example. As we discussed earlier, Traquests do not
need to synchronize the read operations because if a conflict arises, the responded
value can be later undone. Furthermore, the writes can also be aggregated and
buffered and be sent in one message on the network. In this particular case, there
are only six network messages between the servers. Compared with the optimistic
estimation of 44 for the multitier architectures, this is a significant reduction. This
difference is even bigger if there are more dependent iterative operations necessary
for the database. For example, suppose we would have a graph as an example, and
we wanted to find the shortest distance between two points. In that case, there
could be thousands of dependent operations to the database, but with the Traquest
model, we would still need only six network messages.

Here we need to emphasize that this optimal scenario is valid only if the nec-
essary particles of the global state have replications locally. These numbers also
depend on the actual infrastructure topology, the used components, the concrete
use case, and many other factors.

However, even if not every data is available locally, the execution of the necessary
Traquest tree branches can be delegated to other servers since all the servers are
running the Traquest environment. Therefore the location of the processing can
move to the data location and not backwards. This means much less communication
over the network, even in this case.

Suppose we have a worst-case scenario, where the data stored over the servers
is randomly fragmented. In that case, the number of the messages in the Traquest
model can grow on a O(n) scale, which is the best-case scenario for the multitier
architectures. However, this would mean already an unrealistic and completely
randomized worst-case topology. In general, we can say that Traquests has the
potential to reduce the network load by magnitudes.
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Table 1: Comparing the Traquest model

Circumstances Response type
Case #

Concurrency Dependency Topology Operations Final Temporary
1 Optimistic Independent Ideal Read only O(1) O(0)
2 Optimistic Independent Ideal Read & Write O(1) O(1)
3 Optimistic Independent Random Read only O(n) O(n)
4 Optimistic Independent Random Read & Write O(n) O(n)
5 Optimistic Dependent Ideal Read only O(n) O(0) !
6 Optimistic Dependent Ideal Read & Write O(n) O(1)
7 Optimistic Dependent Random Read only O(n) O(n)
8 Optimistic Dependent Random Read & Write O(n) O(n)
9 Pessimistic Independent Ideal Read only O(n) O(0) !
10 Pessimistic Independent Ideal Read & Write O(n) O(n)
11 Pessimistic Independent Random Read only O(n) O(n)
12 Pessimistic Independent Random Read & Write O(n) O(n2)
13 Pessimistic Dependent Ideal Read only O(n) O(0) !
14 Pessimistic Dependent Ideal Read & Write O(n) O(n)
15 Pessimistic Dependent Random Read only O(n) O(n)
16 Pessimistic Dependent Random Read & Write O(n) O(n2)

Comparing the Traquest model with the existing technologies and models is
challenging because there can be many different distributed scenarios. Table 1
shows a more complex comparison of the Traquest model. We showed four differ-
ent kinds of circumstances that can highly influence the properties of a distributed
system. The ”Concurrency” column shows whether the examined distributed sys-
tem has an optimistic or pessimistic concurrency scenario. We consider a scenario
optimistic when there are no conflicts or the global state operations are executed in
proper order or affect different records of the global state. In a pessimistic scenario,
all the global state operations are executed in reverse order on the same global state
records; therefore, we have the highest possible amount of conflicts. Realistically,
most the distributed systems are much closer to the optimistic scenario.

The ”Dependency” column shows whether the global state operations are de-
pendent on each other. They are dependent if a global state operation has to await
a previous one to be executed. For instance, incrementing a value is a dependent
operation since the value first has to be read to increment it.

The ”Topology” column shows whether the topology of global state particles is
ideal or not. The topology is ideal if all the corresponding global state particles
are stored on the same servers; therefore, the processes can reach them at one step.
The topology is random if the global state particles are spread across the servers
without considering the probability of them being used together. For instance,
consistent hashing used for sharding by many of the most popular databases (AWS
DynamoDB [7], Redis [30], etc.) creates such a random topology.

The ”Operations” column shows whether the examined processes are write-
heavy or they only contain read operations.
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There are two ”Response type” columns in the table. The Traquest model is
built on introducing the temporary responses. As we described earlier, the Traquest
model can collect all the conflicts and resolves them lazily in a buffered way. The
column ”Final” refers basically to all the currently existing technologies (multitier,
serverless, actor, etc.) where the response to a request is final; therefore, all the
conflict resolution must be finished in advance. It is usually done by using a locking
mechanism. The ”Temporary” column refers practically to the Traquest model as
it introduces the temporary responses. However, we do not exclude the possibility
that later new models or concepts will arise and utilize this idea as well.

The limitation in the performance of a distributed system is usually coming
from the overall time needed to get network messages from one computing node to
the other. A larger amount of data can be sent over the network relatively fast in
a buffered way, but when there are more messages, each message has a roundtrip
time and an overhead. Also, in-memory calculations are magnitudes faster than
network communication. Therefore, to compare the Traquest model, we choose the
necessary number of messages compared to the number of global state operations
as the primary indicator for the performance of the distributed system.

The rows in the table describe different cases respective to the different circum-
stances. The last two columns show how the necessary number of network messages
is growing as we increase the global state operations. The cells with green back-
ground mean easier circumstances or better performance, and the red background
table cells have the opposite meaning. Table cells with white background mean
no significant difference between traditional architectures and the Traquest model.
The exclamation marks at the end of Case 5, 9, and 13 highlight that the Traquest
model performs better not only by one but also by two magnitudes.

When the global state operations come strictly in order, they are independent,
and the topology is ideal, the traditional databases can use pipelining. In this
ideal scenario, the read and write operations can be sent over one single network
message. This implies that at Case 1 and 2, the number of messages can scale on a
O(1) level ideally. In all the other cases, there is at least one network message per
global state operation necessary. When the operations come entirely out of order
and have a pessimistic concurrency scenario, traditional architectures using final
responses still need only O(n) messages. However, they also need to use locking
mechanisms actively. This slows down the execution significantly. We did not show
this effect in the table because we assumed that the servers could utilize this freed
resource for other tasks or processes.

With the Traquest model, the processing and storing of the data can be per-
formed on the same server, supposing we have read operations only and the topology
is ideal. Therefore, in Case 1, 5, 9, and 13, there is no need for messages on the
network at all. This means the number of the messages scales on a O(0) scale. In
an ideal case, when there are writes, the Traquest model can immediately process
the writes in-memory time and postpones the conflict resolving and data replica-
tion lazily to buffer them to one single message. The committing mechanism runs
in a buffered way as well, meaning that Case 2 and 6 can scale on a O(1) level. In
the worst cases, the Traquest model needs O(n) network messages, except when we
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need to consider pessimistic concurrency. When we have pessimistic concurrency,
random topology, and write-heavy global state operations, the Traquest model can
require O(n2) number of messages. There is a big difference between read and
write operations because reads do not generate conflicts thanks to the ability of the
Data protectors to store the history of the global state records and serve the read
operations, respectively.

We can conclude that the Traquest model performs better than the traditional
architectures when considering some level of topology optimization and a more
optimistic concurrency scenario. In this case, the advantage can reach several
magnitudes. The Traquest model is not ideal when there is a limited amount of
global state records getting many concurrent, and conflicting writes or the topology
of the global state records is random.

3.3 Comprehensive solutions in the literature

3.3.1 Consistency Choices in Distributed Systems

Gotsman et al. [12] give a comprehensive overview of the consistency issues and
the compromises that should be considered when designing a distributed system.
It argues that only the necessary level of consistency should be used to avoid un-
necessary loss in the performance. Using different levels of consistency in the same
distributed system in such a mixed way is called hybrid consistency. The authors
have designed a modular methodology to help developers decide the necessary level
of consistency, and they presented proof for the methodology.

Despite the comprehensiveness of the paper, the different consistency issues are
all discussed on the database level. All the consistency issues are discussed as
database-related issues. This pattern can be recognized in the literature in general
since consistency problems are associated with the consistency of the global state,
and most of the distributed systems are managing the global state in the persistence
layer. On the other hand, Traquests can ensure consistency – and atomicity – on the
data processing level, not only on the data storage level. This is a major difference
that allows a significant leap forward in the potentially reachable performance.

The authors of the paper also discuss the usefulness of hybrid consistency strate-
gies. Through the enhanced performance, the Traquest model can highly reduce
the consistency level dilemma and reduce the necessity of using hybrid strategies.
Nevertheless, the Traquest model still supports hybrid consistency implicitly. When
we wish to create strong consistency, we can build a fully bound Traquest tree as
an atomic operation, and all the state changes and replica synchronization steps
will remain strongly consistent.

However, we are not always restricted to define the parent of a Traquest. This
way, we can separate different branches from the Traquest tree, and we can create
less consistent operations to gain more performance. Although, in the Traquest
model, it can rarely have clear benefits because strong consistency can already per-
form equally fast. Separating Traquest trees can be beneficial when we need to face
highly conflicting use cases. In such a pessimistic concurrency case, the continuous
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rollbacking of the branches could slow down the execution of the Traquest tree, and
hybrid consistency can be an effective solution.

3.3.2 Performance of Transactional Distributed Systems

Eric Brewer introduced the idea that there is a fundamental tradeoff between con-
sistency, availability, and network partition tolerance. This tradeoff, known as the
CAP [10] theorem, has been widely discussed ever since. Some of the interest in
CAP derives from the fact that it illustrates a general tradeoff in distributed com-
puting: the impossibility of guaranteeing both safety and liveness in an unreliable
distributed system.

Ahsan et al. [1] discuss the CAP theorem in more depth. The authors highlight
some of the limitations in the practical usage of the CAP theorem, and they propose
a new impossibility theorem called the CAT theorem.

The paper refers to Jim Gray’s paper from 1996 [13] which showed that the
rate of transaction aborts increases at least proportional to the square of the TPS
(throughput) of the system, and the third to the fifth power of the number of
actions in the transaction.

The Traquest model cannot violate the CAP theorem either, but it can provide a
workaround. The Traquest model can inherently provide consistency and partition
tolerance. Transaction availability is also basically provided thanks to the Tail
Traquests. Availability is provided for the whole transaction as well; just the final
commit of the root Traquest has to be awaited. We will have the correct result,
and only the response time can be higher for the final commit if the writes need to
be synchronized.

The workaround nature of the Traquest model for the CAP theorem confirms
that alternative and more practical impossibility theorems can be essential. The
CAT theorem stands for Contention, Abort Rate, and Throughput. The Traquest
model tries to keep the abort rate minimal, thanks to introducing the temporary
mistakes. If an exception arises, that would typically trigger the abortion of the
whole transaction. Instead, in the Traquest model, only the affected Traquest tree
branch gets aborted, rolled back, and re-executed. Therefore the Traquest model
balances between Contention and Throughput.

In the Traquest model, resolving a conflict is relatively expensive, thanks to
the undoing mechanism. Therefore, the Traquest model shows the most significant
potential in the case of optimistic concurrency cases. This refers to cases where
we can assume that most of the operations are not conflicting. We can say that
regarding the CAT theorem, the Traquest model prefers Contention and low Abort
Rate over Throughput. However, this decision is not architecturally predefined.
When the system gets fewer conflicting concurrent operations, it automatically
achieves higher throughput.
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4 Self-reflection and further research

4.1 Current status

To be able to verify the Traquest model, we have built an experimental prototype
in TypeScript. The Traquest model itself has no language dependencies. It can
be implemented practically in almost any programming language. However, using
TypeScript gave us more benefits in the current phase of the research. The concept
of Promises is highly used in JavaScript. Typescript is a superset of JavaScript [25];
therefore, it simplified the experimentation process with Promises and Traquests.
The flexibility of JavaScript and the strong typing, the strictness, and the expres-
sivity of TypeScript made it an ideal solution. Furthermore, TypeScript compiles
to JavaScript, which can be executed on the client and server side, enabling the
experimentation with hybrid architectures balancing between cloud, edge, and peer
to peer.

Building this experimental prototype helped clarify that the general concept
of the Traquest model is feasible and viable. We could try the different state
transitions, callbacks and write unit tests and integration tests to verify whether
the Traquests behave as expected. The functional tests have worked as they were
expected, and they gave a positive result. However, the non-functional tests gave
a slower execution time than we were expecting. The complete correctness of
the final version of the model can be verified only after more tests at a larger
scale or a complete formalization of the model. This requires further research and
optimization. However, we expect no significant changes in the general concept.
Only slight modifications are expected for edge cases we could not consider in
advance. These edge cases also might vary slightly depending on the programming
language used for the implementation.

4.2 Local boilerplate

One of the main disadvantages of the Traquest model is that it increases the com-
puting power necessary on a local level. Managing all the Traquests, calculating
the timestamps, maintaining all the states can consume significant computing. The
non-functional tests of the Traquest model clearly showed this issue. When we cre-
ated only simple standalone Traquests, then 100,000 Traquests could be executed
in 460 msec. However, when we had a more complex Traquest tree where we cre-
ated a binary tree from the Traquests, we measured 990 msec to execute only 5,998
Traquests which means less than one Traquest/msec.

Thanks to the results of the non-functional tests, the current focus of our re-
search is to optimize the Traquests performance.

Some parts of this increased computing resource consumption come from the
programming language used for the prototype implementation. Namely, if we dy-
namically change the schema of an object in runtime, the V8 JavaScript engine
changes to a much slower general implementation in the background. We mea-
sured that this deceleration can be even on a 100X times slower level. We have
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built many new concepts to mitigate this issue. To describe them in detail would
be out of scope for the current paper, but we mention the most important ones.
We have created a custom Promise implementation which we measured to be 30X
times faster than the standard JavaScript Promise implementation. We also cre-
ated a custom callback mechanism which we measured to be around 14X times
faster than the standard JavaScript anonymous callbacks. We also prepared a sec-
ond prototype of the Traquest model, avoiding object schema changes. With these
optimizations, we could significantly accelerate the Traquests and execute 100,000
standalone Traquests in 54 msec.

Some parts of the increased computing resource are coming from a more general
algorithmic level. We have also conducted more research that would be out of scope
to discuss in more detail, but we mention the most significant achievements. One
of the most resource-consuming parts of the Traquest model is the hierarchical
timestamping mechanism. We highlighted this issue in Section 2.3.2. To address
this, we created a new timestamp algorithm what we named Interval Timestamp,
which uses a logical time interval to define inheriting timestamp relations instead
of arrays used by the naive algorithm.

We plan to expand the research on aggregating the Traquests that can be ex-
ecuted sequentially. If a group of Traquests is executed by one single thread, that
means there can be no conflicting operations from elsewhere; therefore, they could
be handled as one aggregated Traquest. This optimization could reduce the execu-
tion boilerplate of the Traquests almost completely. Only the Traquest communi-
cating on the network would break this aggregation and end up in physically new
Traquests.

After this research phase, we will have a final Traquest implementation, and
we will be able to test Traquests in larger quantities. This will let us create a
more rigorous validation of the Traquest model and make more definitive perfor-
mance tests comparing Traquests with architectures based on the currently existing
technologies.

The Traquest model in its current status is already a unique approach utilizing
the idea that a response to a request can contain temporary information. A general
system can be built based on this principle. This system can postpone synchro-
nization and conflict resolution phases lazily, enabling us much more buffering on
the network and in-memory time speed even in the dependent operations where
network communication is inevitable using the current technologies.

4.3 Formalizing

We tried to model every possible scenario that can happen with a Traquest tree
to be sure about the correctness of the model. However, the Traquest model is a
new concept, and in the future, building formal semantics and reasoning for the
Traquest model using tools like the Coq [38] formal proof managing system would
give us an absolute certainty about the correctness of the model.
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5 Conclusion

Providing ACID properties can be crucial for many applications, but it requires a
massive compromise in performance. The Traquest model is a proposed potential
solution for this problem. We have discussed in detail the general concept of the
Traquest model.

Traquests are unifying the location of the data storing and processing; they
are using specialized timestamps and history tracking of the global state changes
that can potentially cause conflicts. By creating temporary responses and build-
ing up a mechanism for rolling back the conflicting parts of a running distributed
algorithm, Traquests can ensure atomicity in a very efficient way. The synchro-
nization steps over the network for replication and fault tolerance do not block the
business logic executed in the Traquests, giving a massive advantage in the perfor-
mance. Furthermore, this lazy synchronization allows an effective buffering of the
network messages; therefore, the number of the necessary network messages can be
decreased by magnitudes.

In our investigated concrete use case, the classical multitier architecture required
44 messages between the servers, where the Traquest model only needed six. The
difference can grow magnitudes as the complexity of the algorithm grows. We
showed that classical architectures require at least O(n) network messages as the
number of operations grows in the case of depending operations. Simultaneously,
the Traquest model can scale with only a O(1) factor.

We showed how the Traquest model could mitigate the dilemma of choosing
between the different consistency levels and how the Traquests can provide hybrid
consistency.

We investigated the Traquest model through the CAP theorem and realized that
the Traquest model does not violate but gives a workaround for the CAP theorem.
We considered another impossibility theorem as well, called the CAT theorem, and
identified the characteristics of the Traquest model respectively.

We discussed the main current challenges and future research directions to come
over those limitations. The biggest challenge is to improve the local performance
of the Traquests, and our suggested solution is the aggregation of those Traquests
to reduce the boilerplate execution.

The presented Traquest model can be a good foundation for making distributed
ACID computation magnitudes faster and easier.
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Appendix

Figure 10: Comprehensive Traquest state diagram
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Figure 11: Sequence diagram of an incrementation
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Figure 12a: Sequence diagram of an incrementation with a conflict (Part 1/2)
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Figure 12b: Sequence diagram of an incrementation with a conflict (Part 2/2)
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Abstract

Discrete Event Simulation (DES) frameworks gained significant popular-
ity to support and evaluate cloud computing environments. They support
decision-making for complex scenarios, saving time and effort. The major-
ity of these frameworks lack parallel execution. In spite being a sequential
framework, DISSECT-CF introduced significant performance improvements
when simulating Infrastructure as a Service (IaaS) clouds. Even with these
improvements over the state of the art sequential simulators, there are sev-
eral scenarios (e.g., large scale Internet of Things or serverless computing
systems), which DISSECT-CF would not simulate in a timely fashion. To
remedy such scenarios this paper introduces parallel execution to its most
abstract subsystem: the event system. The new event subsystem detects
when multiple events occur at a specific time instance of the simulation and
decides to execute them either on a parallel or a sequential fashion. This de-
cision is mainly based on the number of independent events and the expected
workload of a particular event. In our evaluation, we focused exclusively on
time management scenarios. While we did so, we ensured that the behaviour
of the events should be equivalent to realistic, larger-scale simulation scenar-
ios. This allowed us to understand the effects of parallelism on the whole
framework, while we also shown the gains of the new system compared to the
old sequential one. With regards to scaling, we observed it to be proportional
to the number of cores in the utilised SMP host.

Keywords: cloud computing, parallel simulation, DISSECT-CF

1 Introduction

There are several obstacles that stop increasing the performance of DES frame-
works. First of all, most are designed to execute sequentially. The need of simulat-
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ing multiple events in parallel, is now essential for several scenarios. For example,
simulating Internet of Things (IoT) involving millions or more devices worldwide;
or simulating billions of service invocations and their interactions in serverless com-
puting situations. Introducing a parallel approach to the core event handling in
DESs aimed at distributed systems simulations would be the first step towards the
support of the aforementioned scenarios.

Always applying parallel execution to the simultaneously occurring events in
the simulation does not necessarily lead to a well scaling DES though. When only
a few events occur simultaneously, sequential execution is often times beneficial as
we can avoid the overheads of parallel constructs; otherwise, the parallel execution
can lead to better performance. The necessity of determining at a specific simulated
time instance, whether the events will execute sequentially or parallel manner is
crucial to increase the performance and to avoid unnecessary overhead.

Despite several DESs support simulating parallel and distributed computing,
the majority lack of parallel execution. For instance, Cloudsim [3] and Ground-
Sim [14] execute computing tasks sequentially. This raises challenges when trying
to simulate novel technologies (e.g., serverless) that require large scale simulation
to be used as a support tool. DISSECT-CF [10] is one of the frameworks capable to
simulate internal components and processes of distributed systems (ranging from
cloud and fog infrastructures to even IoT systems). Although the execution time
of DISSECT-CF is significantly faster than the most prominent simulator in the
field CloudSim [13], this performance advantage is still not sufficient for the most
demanding current research use cases (e.g., simulating millions of IoT devices and
their continuum with clouds). Its sequential execution is a significant bottleneck,
thus parallelisation is needed for scaling its performance efficiently to meet the
newest challenges in the field.

This paper introduces a parallel execution mode for the event subsystem of
DISSECT-CF. Our approach automatically switches between this new mode and
the old one based on the number of simultaneous events that occur at a given time
instance of the simulation. To avoid the overhead of applied parallel constructs
under low workloads, our approach keeps using the original sequential mode for
situations when only a few simultaneous events are detected. Otherwise, a parallel
event executor will be selected. This executor divides and distributes the simulta-
neous events equally over the available processors and balances the load across the
system. These two operations avoid idle CPUs (or cores) behind the simulator. To
avoid issues with the initial event distribution, our parallel approach also uses work
stealing to further reduce the contention among threads.

We have designed several experiments to evaluate the scalability and perfor-
mance of the new approach. These experiments focus on core functionality and time
management mechanisms of the event subsystem in DISSECT-CF. The evaluation
had independent control on the following four properties: (i) event independence
(no influence on future events); (ii) pattern of events throughout a simulation (i.e.,
how many events do we have in total and when should they happen); (iii) number of
simultaneous events (degree of parallelism) happening at an average time-simulated
instance; (iv) the single event workload (i.e., how compute heavy is a particular
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event). We instrumented and measured the behaviour of realistic simulations in
terms of these properties. Then, we implemented simple synthetic event patterns
(that are only exercising the event subsystem of DISSECT-CF) for the simulator
which we calibrated to imitate the properties of the previously measured realistic
simulations. To ensure the quality of our experiments, we collected the synthetic
event pattern’s properties with the same measurement approach that we applied for
the realistic setting to compare and analyse them. We also evaluated with random
event patterns to test the behaviour of parallel version under unforeseen conditions.

We have executed our experiments on 12 core SMP hosts. Our experiments
have been conducted with different degrees of parallelism and single event workload
size. With respect to the number of cores, evaluation results show that two factors
have affected the performance of the parallel version. First, if we have at least
two simultaneous events for more than 50% of the simulated time instances, then
the parallel version already runs two times faster than the sequential. Second,
increasing the single event workload leads to 2.4 times faster simulation execution
than sequential.

The remainder of this paper is structured as follows. In Section 2, we discuss
work related to our approach. Section 3 discusses our methodology of employing
parallelism in DISSECT-CF. Section 4 covers the evaluation of the parallel version.
Finally, Section 5 concludes the paper and identifies future work.

2 Related work

Over the last decade, several DES frameworks have been designed to offer re-
searchers an opportunity to evaluate and predict the behaviour of cloud computing
applications. Each framework was designed with a specific purpose and having
unique features that able solve some challenges.

CloudSim [3] is mostly used as general purpose cloud simulation environment.
Due to the extensible nature of CloudSim, several extensions have been developed
to integrate new features to it. DISSECT-CF [10] is a simulation framework that
improved the modelling of resource-, network utilisation, power consumption and
data centre configurations, by providing the capability of simulating IaaS internal
behaviour. GroudSim [14] is a platform mainly focused on scientific application
modelling (e.g., workflows) in cloud and grid computing. GreenCloud [11] is a
simulator specifically built for estimating the energy consumption of cloud data
centres. In addition to the above, the authors [1, 2] have conducted the detailed
survey of over 33 simulators. Each of these is built for a specific purpose and is
having unique features around cloud simulation. Although these simulators offer
several features for cloud computing, the majority were built in a sequential fashion.
Thus, they are all struggling to address recent challenges such as simulating millions
of IoT devices.

Parallel discrete event simulation (PDES) approach has been applied in various
fields such as simulation of networks, with the primary goal of performance. For ex-
ample ROSS [4] and GWT [6] are parallel discrete event simulators that execute on
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shared-memory multiprocessor systems. They mostly used in large-scale network-
ing simulation models and telecommunication networks. DaSSF [12] is also parallel
simulator targeting network simulation and it achieves high performance through
parallel processing. Unfortunately, these frameworks have limited applicability in
the research areas surrounding cloud computing. Parallelising existing systems re-
mains a challenge [7]. Moreover, the prominent language for cloud simulators [1, 2]
is Java, while current PDESs are not easily adoptable to this language. However,
one of the frameworks called Cloud2Sim [9] supports concurrent and distributed
simulations of clouds, based on the following libraries: Hazelcast, Infinispan and
Hibernate.

In [7] the author raises many challenges that researchers could face in a PDES.
One of these challenges is the complexity of using a parallel implementation cor-
rectly and simplifying code to understand it easily. Agreeing with this, our approach
aims to keep the original sequential APIs while making a parallel solution in the
background. In [8] the authors suggested the initial steps towards cloud supporting
PDESs, unfortunately these steps were not yet adopted by current simulators. In-
troducing parallel execution to simulators needs easy simulation control as well as
repeatable tests. In [5] the authors explained that sequential execution can be in-
sufficient for modelling real complex systems, and parallel execution could manage
resources efficiently. Sequential approaches are unable to fulfil many requirements,
and lead to trade-off between the cost and performance. However, there is opportu-
nity for applying parallelism to DISSECT-CF simulator to gain better performance.
Introducing parallel executions of its event system can benefit all subsystems built
on top of it. Finally, in [15] the authors showed a possibility to execute simulations
over multiple virtual machines.

The previous works show the minimal advances towards parallel execution in
cloud computing frameworks, which are needed to address the present challenges
that accompanied modern technologies in this field. Therefore, our proposed solu-
tion provides parallel execution to the event system of DISSECT-CF simulator to
speed up the simulation to foster simulating larger scale systems and technologies
(e.g., IoT). Although the techniques proposed here are likely to be applicable to
other frameworks as well, this paper is solely focused on DISSECT-CF to show our
approach’s applicability.

3 Methodology

DISSECT-CF simulator introduced substantial features to foster the rapid evalu-
ation of IaaS clouds and its extensibility lead to support for other concepts such
as IoT and fog computing. Although, DISSECT-CF reduces the execution time of
equal quality/detail simulations done compared to several other frameworks in the
field, it still does so in a sequential fashion. In the past, DISSECT-CF was shown
simulating hundreds of thousands of computing entities within a few hours. But
it has little chance to sequentially simulate recent systems within an acceptable
time frame. With this research, we aim to set the foundations to support simula-
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tions where the number of simulated computing components can easily reach over
a billion of devices (like the IoT cloud continuum, or serverless computing).

3.1 Overview of DISSECT-CF simulator

DISSECT-CF is a simulation framework that offers insight into advanced cloud con-
cepts supporting modern technologies. DISSECT-CF provides an amalgamation of
several features that hardly exist in any previous simulators such as capturing low-
level resource sharing behaviour and introducing an adequate energy consumption
model. This aims to support previously problematic IaaS simulation scenarios that
require all these advanced features to be available in the same framework.

The extensible core of the DISSECT-CF simulator consists of five major sub-
systems that mostly implement different concepts around clouds and distributed
systems in a layered fashion [10]. Generally, each layer attempts to provide a
comprehensive implementation for a particular concept without being dependent
on the rest of the framework. The lowest subsystem, event system provides an
appropriate mechanism to manage the behaviour of regular and irregular events
as well as controlling the basic state of the simulation in a given time instance
(so called tick in DISSECT-CF terminology). This subsystem is the foundation
of all layers and introducing substantial features here such as parallelism has the
highest potential impact on higher level subsystems. Next, Unified resource
sharing subsystem introduces a holistic approach to establish a central resource
provider able to share behaviour among low-level computing concepts. Then, the
Energy modelling subsystem provides a unique approach that allows monitor-
ing and analysing energy usage of all simulation resources by decoupling energy
modelling from resource simulation (i.e., allows performance gains by only offering
selective energy monitoring). On a layer above, the Infrastructure simulation
subsystem deals with modelling the behaviour of typical distributed system com-
ponents like virtual machines, physical machines, storage and networking. Finally,
the highest layer of abstraction is provided in the Infrastructure management
subsystem which contains major IaaS components such VM scheduler and PM
scheduler that simulate the management of users requests and fosters the creation
of custom internal IaaS behaviours. It also provides components such as Repository
and the IaaS service to interact with users of the simulator.

Although the subsystems of DISSECT-CF have originally been written to exe-
cute sequentially, most of them can be executed in a parallel fashion as well. As all
subsystems depend on the event subsystem, it comes as a natural point to adopt
parallelism. As most of the operations in the higher level components are driven by
events delivered from the event subsystem, these operations will be automatically
parallelised with the parallelisation of the event subsystem itself.

3.2 Prominence of recurrent events

The lowest (event) subsystem of DISSECT-CF has two main classes: (i) the Timed
class, used for recurring events; and (ii) DeferredEvent class used for irregular
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events. Recurring events are events that the simulator invoked them regularly
based on a specified frequency. Thus, recurring events can subscribe notifications,
when subscribing, an event frequency must be specified to determine how many
ticks must pass to get repeated notifications. As the other subsystems are built
on the top of mostly recurring events, our target is enhancing the performance of
this subsystem, which will reflect the outcome over the rest of the framework and
its extensions. The event sub-system had a sequential execution design. Based
on the existing API of DISSECT-CF, parallelisation could happen for executing of
simultaneously happening events (i.e., events that should happen in the same time
instance or tick of a simulation).

To understand such simultaneous events, we have provided a simple example
scenario with three event objects with various frequencies (this demonstrates events
derived from the Timed class of DISSECT-CF which allows defining events that
can happen repeatedly). Table 1 shows the basic details of our simple example
scenarios. The first three rows show the event objects and their behaviour. The
last line shows the time instances in our simple simulation. In the table, we can see
for every time instance when the events will be processed. E.g., the second event
(e2) is processed in time instances 3,6 etc. Figure 1 shows how the event queue
will look like at any particular time instance in case we execute the events defined
in the previous table.

The degree of parallelism denotes the number of events that happens at a specific
time instance (tick). Which mainly depends on the frequencies of subscribed objects

Table 1: Three events with different frequencies.

Events Freq Next events of e1, e2 and e3 based on their frequencies(Freq)
e1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
e2 3 3 3 3 6 6 6 9 9 9 12 12 12 15 15 15
e3 5 5 5 5 5 5 10 10 10 10 10 15 15 15 15 15
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Degree(%) 33 33 66 33 66 66 33 33 66 66 33 66 33 33 100

e1
e2e3

e1 e1 e1
e2 e2

e1 e1 e1 e1 e1e1 e1 e1 e1 e1 e1
e2 e2e3

e3

Time(tick)

0             1             2             3             4             5             6             7             8            9 10             11             12             13             14            15

Figure 1: Representing multiple events in Table 1 occur at a specific time
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that determine how frequently these events occur. When all subscribed events
happen at a specific time, the degree of parallelism is 100%. When half of them
occurs at one time, the degree is 50% and so on. Thus, the degree of parallelism
varies according to the occurrence of events at each tick. Therefore, the average
degree of parallelism in a single simulation run is deduced from all ticks for the
whole system. In Figure 1, there are 15 simulated time instances, out of these 7 are
having parallel events, making the example’s average degree of parallelism 50.66%.
If we execute simultaneously occurring events (e.g., e1 and e2 in time instance 3
in the Figure) in a sequential fashion, then we pay a penalty of using a sequential
simulator. This observation will guide the next the sub-section where we discuss
how we identify these kinds of events and how we execute them in parallel.

3.3 The parallelisation of simultaneous events

Figure 2 shows the basis of our extension. The diagram shows only the relevant
parts of the original Timed class, and the new Parallel class. The Parallel is
created as an inner class within Timed class, to ensure easy access to the original
data structures within the event subsystem’s main class. The user of the system
is still expected to interface with the existing methods of the Timed class (thus
all previous extensions to the simulator would benefit from our parallelisation ap-
proach). Note that inside the simulator, all higher level subsystems (e.g., those
which simulate virtual machines) are considered as users of the Timed class. As
parallelisation is automatically executed depending on the state of the event queue,
the higher level subsystems benefit from the improvement on Timed.

Figure 2: Diagram of Timed class and Parallel class

In DISSECT-CF, time is measured in ticks [10] and users of the simulator are
free to interpret ticks the way they want. The events taking place in a particular
tick are handled with the fire() method (see Figure 2). Our approach changes
the behaviour of this method by introducing Algorithm 1. Here we first collect the
list of simultaneously occurring events at each particular tick (see line 2) – note
that this list was not needed for the sequential sub-system as that would only work
with one event at a time. As a result, the collection of this list is an overhead of
the new parallel algorithm. The discussed approach below aims at minimising this
overhead.

Our new fire() method now checks the size of the list to determine if we need
to execute in sequential or parallel fashion. The old, sequential execution is shown
in the loop of line 4, this is still kept and used if we have too few simultaneous events
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Algorithm 1 Determining the need for parallelism

1: threshold = specified size
2: list = all simultaneous events
3: if list.size <= threshold then
4: while list.notEmpty do
5: event = get single event from list
6: Execute event
7: end while
8: else
9: invoke Parallel(list.lowIndex, list.upperIndex)

10: end if

in the queue. The parallel execution utilises our new Parallel class to distribute
the work over threads, that will be created implicitly according to the number of
available cores. This is done by passing the lowerIndex and upperIndex that
specify the indices of first and last elements of the list (see line 9). The threshold
(minimal size of the list which leads to parallel execution) is configurable by the
user of the simulator. To aid the user determining the threshold, an auto-tuning
approach is also going to be offered for the threshold which determines its value
when suitably long running simulations are executed. The auto-tuning approach
bases its decision on the threshold on the typical single event workload. As the
auto tuning approach also needs some compute time it is possible to disable it for
simulations where the threshold is known to the user.

Algorithm 2 Mechanism of Parallel class

1: Procedure Parallel( list.lowIndex, list.upperIndex )
2: lowerIndex = list.lowIndex
3: upperIndex = list.upperIndex
4: Funct compute ()
5: if upperIndex - lowerIndex <= threshold then
6: while list.notEmpty do
7: Execute events of list
8: end while
9: else

10: midIndex = (lowerIndex + upperIndex / 2)
11: invoke all (Parallel(lowIndex, midIndex), Parallel(midIndex, upperIndex))

12: end if
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After the decision to parallelise, the actual parallelisation is organised by the
Parallel class according to Algorithm 2. Instances of this class are executed in
their own threads. Thus, they will likely run on another CPU core compared to the
original fire() method. When a Parallel instance is instructed to compute, it
again uses our the previously discussed and determined threshold value to decide
if the workload assigned to the thread is sufficiently small or not.

If the sublist of simultaneous events is short enough (see line 5), the sublist
is executed in the current thread entirely. This sublist execution is done just like
the sequential one was discussed before (see Algorithm 1’s line 4). But instead of
going through the entire list of simultaneous events, now we have a shorter list
to process which was assigned only to the thread of this Parallel object in the
parallel invocations of Algorithms 1 and 2.

In contrast, when there are more simultaneous events than a single thread should
handle, we sub-divide the list of events based on its size in equal parts and pass
them on to further threads (see line 11). We repeat this process until the list of
events divided into sublists (sublists size become less than or equal threshold) and
all threads have sufficiently short lists, then the threads are scheduled according to
a fork-join model. This list division method ensures that we execute on all available
processors in the current machine and also offers an initial load balance. The fork-
join model uses work-stealing algorithm by allowing the thread to steal workloads
from others. Although each thread has an almost equal number of sublists, work-
stealing approach ensures that the threads workloads are almost equal to avoid
wasting time.

4 Evaluation

A private cloud at LJMU was used for the evaluation of our parallel DISSECT-CF.
For our experiments, we used a VM with the following specifications: Intel (R) Core
(TM) i7-8700 CPU @ 3.2GHz (6 cores + 6 hyper threaded cores), 64GB memory,
1T SSD, 1T HDD, Debian Linux Buster 10.4, OpenJDK 11.0.6. We have designed
several scenarios to test the performance of the parallel version by focusing on time
management while ensuring complete control over event occurrence. We also made
sure the evaluation was validating the parallel version: we used the complete API
of the Timed class to verify if the parallel version produces results matching output
from the unmodified sequential code.

4.1 Validation

To ensure that the behaviour of our evaluation is following real life simulation
patterns, we have instrumented the JobDispatchingDemo class of the dissect-cf-
examples project. This class was already validated before to produce realistic sim-
ulations e.g., comparable to CloudSim (see [10]). Our instrumentation focused on
how the realistic simulation utilises the lowest abstraction layer of DISSECT-CF.
We measured, the degree of parallelism, the typical event behaviour, the number
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of events in total and the average execution time of a single tick method call in
nanoseconds (i.e., the single event workload). To enable the comparison, we have
also instrumented our parallel Timed class in the same way allowing us to acquire
the typical workload of our synthetic tick methods.

We have set up our realistic simulation with JobDispatchingDemo as follows:
(i) maximum number of jobs that exist in parallel was set to 2; (ii) the amount of
seconds the job startup times was set to 10; (iii) minimum execution time of a single
job was set to 10s; (iv) maximum execution time of a single job was set to 90s; (v)
minimum and maximum gaps between the last and the first job submission of two
consecutive parallel batches were set to 200s; (vi) minimum number of processors
for a single job was set to 1; (vii) maximum number of processors for a single job
was set to 2; (viii) total number of processors usable by all parallel jobs was set to
4; (ix) total number of jobs was 100000; (x) the number of nodes was 5000.

To allow our evaluation to focus at the lowest abstraction layer (and our par-
allelism evaluations not to be distracted by upper layer behaviour), we set out
to capture the event workload behaviour of the above complex simulation, but
with a synthetic workload. Our synthetic tick method (implemented in the class
TimeRandomGenerator), does a busy waiting loop by calculating the following for-
mula:

SyntheticEventWorkload(size) :=

size∑
i=0

(
2ei
√
i
)

mod

∣∣∣∣⌊ i+ 5

i+ 1

⌋∣∣∣∣ , (1)

where size can control the single event workload, while the denoted operations
ensure that the distribution of the single event execution time is closely matching
the above mentioned more realistic simulation.

To ensure that the workload produced by this busy waiting loop is equivalent
to the realistic simulation, we have executed the same number of events we have
recorded in the realistic simulation and repeated the measurement 100 times. The
repetition allowed us to collect several statistical properties of the single event work-
load in both the synthetic and the realistic simulations. We present our findings
for the realistic simulation in the box plot of Fig 3a. Our best approximation of
this realistic workload was captured by our synthetic workload parametrised with
size = 49.

Fig 3b shows the behaviour of our best approximate synthetic workload. Our
median duration is within 3% of the realistic. The distribution of our workload is
a bit narrower and more even, but the upper and lower whiskers of our synthetic
experiment are within the typical range of the realistic simulation’s values. As a
result, from this point onwards, we will refer to synthetic workloads set up with
this particular parameter as the original single event workload.

Note, that later we have evaluated the system with other single workloads. For
example, changing the size to 147, leads to a threefold increase in single event
workload compared to the realistic setting. In contrast, changing it to 16, leads
to a three fold reduction in single event workload again compared to the realistic
setting. These two values will be the extremes used in Figure 5.
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(a) The execution time(ns) of single event workload using JobDispatchingDemo
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(b) The execution time(ns) of single event workload using our experiments classes

Figure 3: Boxplot diagrams for JobDispatchingDemo class and our classes

4.2 Performance

Our evaluation scenarios create 35,000 recurrent event objects. The object count
was set so the minimum execution time of the sequential version is at least 5
minutes, allowing sufficient time for the parallelisation to take effect. The recurring
events subscribe with different frequencies so we have control over the degree of
parallelism. We provided controls to these scenarios, so we can easily adjust the
degree of parallelism (through event subscription changes) and the single event
workload (through changing the size in Equation 1). The evaluation scenarios are
publicly available in the ParallelTimed package released in the dissect-cf-examples
project on GitHub1 using the GPL 3.0 license.

The invocation of Parallel class depends on the threshold value (see Algo-
rithm 1 for details) to determine the maximum length of the event list processed
by a single thread. To determine the ideal setting for the threshold, we evaluated
our solution with four different values: 8, 16, 32 and 64. We have also generated re-
curring events with four different degrees of parallelism as shown in table 2. Based
on our analysis of the execution times in the table. Even though the differences are
not big, it is recommended to use a threshold equal or exceed 32 to enhance the
performance.

With the respect to the number of cores, there are two factors that influence
the performance of the parallel version. First, the degree of parallelism plays a

1https://github.com/dilshadsallo/dissect-cf-examples
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Table 2: The execution time(s) of parallel version using four different sizes of list

Degree of Parallelism
Threshold 25% 50% 75% 100%
8 235 412 549 657
16 234 411 548 657
32 231 408 545 654
64 229 406 541 652

significant role and it is shown in Fig 4 that the parallel version can significantly
improve performance. We evaluated both the parallel and sequential versions of
the simulator with four different degrees of parallelism (25%, 50%, 75%, 100%).
Even though the evaluation of this scenario has been done with the same number
of aforementioned objects, the number of events that occur, and the number of
events that occur at the same time significantly increase. This is because we sim-
ulated for the same amount of simulation time, but with increasing subscription
frequency each object receives more event notifications. E.g., to increase the degree
of parallelism on the scenario in table 1, we can change the subscription frequency
of event 2 to 1. In this example, the degree of parallelism increases to 73%, but we
see more event notifications delivered as we will have 15 notifications for event 2 as
well.

With regards to Fig 4, in 25% of parallelism, the parallel version runs 1.72 faster
than the sequential. When the degree reaches 50%, the ratio increased to 1.74. The
parallel version executes simulations 1.84 faster than the sequential version when
75% of all subscribed events occur recurrently during a simulation time. Finally, the
parallel version reaches 2 times faster than the sequential version when the degree
of parallelism is 100%. Even with a high degree of parallelism and using multi-core,
we cannot use all cores because there is still a performance cost such as coordinating
threads that introduced by multi-thread compared to a single-threaded approach.

Now let’s analyse the effect of the size of the single event workload (as per
Equation 1). We tested both of the parallel and sequential versions with various
single event workload sizes, commenced with threefold lower than the original one
to show the behaviour of simulating very low single event workload. Then reaching
to threefold higher than the original single event workload to demonstrate the
advantage of parallel version as shown in Fig 5. When the single event workload
is threefold lower than original one, the parallel version runs 1.2 faster than the
sequential version. This ratio increases to 1.6 when the single event workload is two
times lower than the original single event workload. The parallel version even runs
2.1 faster than the sequential version using original single event workload. When
the single event workload size doubled, the parallel version executes the simulation
2.3 times faster than the sequential version. The ratio increases to 2.4 when the
single event workload size becomes threefold higher than the original one.
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Figure 4: The execution time(s) of parallel and sequential versions in four different
degrees of parallelism
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Thus, the parallel version speeds up the performance of simulation by using the
additional cores of the host. The biggest advantages of the parallel version can be
exploited when there are larger simultaneously occurring event queues and when the
single event workload is larger as well. In the realistic simulations, we have seen
that simultaneously occurring event queues are typically larger when advanced
features of the simulator are fully utilised (e.g., cloud wide energy metering or
virtual machine consolidation).

5 Conclusion and future work

Mostly DES frameworks are used to simulate and evaluate cloud computing environ-
ments. The majority executes sequentially. DISSECT-CF is one of the frameworks
that brought several features to improve the performance of IaaS simulation. It is
built to accompany the latest technology with easy extensibility. In terms of exe-
cution, DISSECT-CF was already fast and reliable but still targeted a single core.
We devised a parallel version to handle this issue focusing on the use of multi-core
when simultaneous events happen in the simulation. The parallel version scales
well and leads to significant speed up. The performance of the parallel version is
dependent on the number of simultaneous events at a particular time instance in
the simulation, as well as on the workload a single event’s processing causes. Our
introduced parallel execution mode is focused on the event subsystem, as this is the
lowest layer in DISSECT-CF all other components benefit from our improvements.

Future work will focus on the simulator’s second most heavily used component:
the unified resource sharing subsystem. As this subsystem is having high compute
complexity, its parallelisation will enable the rapid estimation of resource sharing
on even larger scale distributed systems. Applying these will lead to the seamless
transition of DISSECT-CF into simulating more communication intensive systems,
or evaluating fog computing & IoT device behaviour.
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Evaluation of EHR Access Control in a

Heterogenous Test Environment∗

Zoltán Szabóab and Vilmos Bilickiac

Abstract

Since the advent of smartphones, IoT and cloud computing, we have seen
an industry-wide demand to integrate different healthcare applications with
each other and with the cloud, connecting multiple institutions or even coun-
tries. But despite these trends, the domain of access control and security of
sensitive healthcare data still raises a serious challenge for multiple developers
and lacks the necessary definitions to create a general security framework that
addresses these issues. Taking into account newer, more special cases, such
as the popular heterogeneous infrastructures with a combination of public
and private clouds, fog computing, Internet of Things, the area has become
evermore complicated. In this paper we will introduce a categorization of the
required policies, describe an infrastructure as a possible solution to these
security challenges, and then evaluate it with a set of policies based on real-
world requirements.

Keywords: EHR, FHIR, telemedicine, cloud, access control, security

1 Introduction

In the mid-2010s with the emergence of the Fast Healthcare Interoperability Re-
sources (FHIR) standard from HL7 [1], it seemed that we finally had the necessary
tools to create e-health applications and databases that not only meet their re-
spective institutional requirements, but also conform to international standards,
making a networked health infrastructure more feasible. FHIR achieved this by
defining a set of over 90 document templates that can be implemented in both
JSON and XML formats and used to describe the entire healthcare workflow from
administration to the daily events that a general practitioner or nurse is confronted

∗This research was supported by the EU-funded Hungarian grants EFOP-3.6.1-16-2016-
00008, EFOP-3.6.3-VEKOP-16-2017-00002, 2018-1.1.1-MKI-2018-00249 and GINOP-2.2.1-15-
2017-00073

aDepartment of Software Engineering, University of Szeged, Hungary
bE-mail: szaboz@inf.u-szeged.hu, ORCID: 0000-0003-3863-7595
cE-mail: bilickiv@inf.u-szeged.hu, ORCID: 0000-0002-7793-2661

DOI: 10.14232/actacyb.290283
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with. FHIR has also made these documents customizable to meet specific require-
ments and cover specific areas. These attractive aspects have made FHIR the most
popular and widely used healthcare communications standard from HL7 to date.

However, the FHIR standard had some alarming shortcomings [7, 10]. Although
some of these have been addressed in the course of the various updates to the
standard, one of the most pressing is still an open problem - namely the lack of
clearly defined access control and security. While FHIR generally accepts custom
extensions and adaptations of its standardized document types, it provides only
a light template and some minor guidelines for security policy enforcement. This
has led to a ”free-for-all” problem in the development of e-Health applications,
with almost everyone developing their own solutions, which greatly corrupts the
original concept of interoperability. With the introduction of the GDPR [12], the
increasing integration of IoT and intelligent devices into the healthcare workflow
[18] and in some cases the decision to use a heterogeneous backend [32] for handling
accessibility and sensitive data, the complexity of this issue has increased. Another
complicating factor is that the most popular current technologies for the backend
are serverless and native cloud infrastructures. These present two main problems:
with the advent of fog/edge computing, data processing takes place much closer to
the end devices and user locations, and in these cases a large amount of sensitive
data is stored in a public cloud.

The two main approaches recommended by the official documentation of the
FHIR standard for these challenges are the attribute- or role-based policy controls,
ABAC [36] and RBAC [15], respectively. With RBAC, the developer is able to
assign specific roles to users that determine the level of access and possible oper-
ations in the system. Some typical roles in a medical system would be those of a
doctor, nurse, patient, family member, and so on. In contrast, ABAC uses specific
attributes of the user or the requested data to determine whether access should be
granted.

However, in the current network topology, which combines IoT, intelligent de-
vices, edge computing, private and public clouds, these methods in themselves are
far from sufficient. To meet these needs, it is essential to develop a hybrid ap-
proach that combines the strengths of these two classical methods. Furthermore, it
is important that these enforcement points can be placed at any part of the infras-
tructure to deal with the sensitive nature and processing requirements of the data.
For example, while fog endpoints require a complete FHIR object, the connecting
IoT devices may not be able to handle such complex data structures. In the case
of a hybrid cloud solution, the data could also pass through a public cloud between
the private cloud and end users, where naturally stricter policies and encryption
are required than for the isolated, private parts of the infrastructure, as shown in
Figure 2.

A popular concept for such enforcement points is the concept of Policy En-
forcement Point (PEP), developed by the standards organization OASIS as part of
its eXtensible Access Control Markup Language standard [14], an extension of the
classic ABAC model, also known as policy-based access control or PBAC. While
we are committed to developing a custom, fine-grained security solution that is
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Figure 1: The Policy Enforcement Flow between end users and the cloud

not subject to the strict limitations of the XACML standard, the concept of the
PEP-based architecture is well suited to our needs. In the complete model shown
in Figure 1, the responsibilities for access control and security enforcement are dis-
tributed across several components. The Policy Enforcement Point (PEP) is the
key to the model that enforces policies and allows or denies access to resources.
Administrators can define given policies at the Policy Administration Point (PAP),
which are evaluated and stored by the Policy Decision Point, based on the user’s
identity or multiple identities, and recognized by the Policy Identification Point
(PIP). The PDP’s decision is handled and enforced by a PEP. This model also
provides some room for customization, because the exact structure of these nodes
can be defined by the developers, and the nodes have the ability to fuse multiple
elements of the infrastructure into one.

The main requirements of such a PEP solution in our infrastructure are the
following:

• Transparency: It should have as little impact as possible on the performance
and latency of the system;

• Efficiency: Since several elements of the infrastructure do not have the mem-
ory and CPU capacity to perform complex transformations and an analysis of
the data, the enforcement engine should spare them from the more demanding
operations;

• Portability: It should be possible to place it at any point on the infrastruc-
ture. The main strength of edge computing is its ability to provide function-
ality even when the cloud is not available. This also means that it should
be able to work between the edge and the cloud, between the edge and end-
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Figure 2: A hybrid edge computing infrastructure with a public and a private cloud

points, in the cloud or in some scenarios even on endpoints if they have the
necessary resources;

• Adaptability: The domain of telemedicine requires strict, very specific
guidelines to protect sensitive data. The reason why ABAC and RBAC by
themselves are not enough is that the requirements for interoperability and
interchangeability demand a much more dynamic and fine-grained approach.
The PEP should support the formulation and assessment of even the most
specific needs.

Our work seeks to combine these two approaches while separating the access
control process from the backend and frontend and putting it on the path of the
data between the cloud and the end users. In our previous study [33] we introduced
the concept of a hybrid access control methodology, taking the classical roles of the
telemedicine environment and assessing its requirements based on the content of
the documents and the contextual information. Later, we described a theoretical
infrastructure [34] which, based on our assumptions, should allow us to effectively
implement this methodology in a clinical environment. In the latter case, we not
only defined the four main categories of required policies, but also selected a poten-
tial candidate as our policy enforcement point and performed various tests on FHIR
documents while monitoring CPU load and memory usage. These early evaluations
demonstrated that our concept is viable.

Since then, we have been able to develop a prototype of this infrastructure,
which integrates the chosen PEP between a small client application and a scalable
NoSQL database with over 500,000 FHIR documents.

In this paper we investigate the performance and relative latency of a PEP
engine as part of the larger infrastructure. To this end, in the Related Work section
we give an overview of several possible solutions and research projects that, with at
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least some degree of similarity to our study, also sought to combine access control
methods and define complex, interoperable security frameworks for health care. In
the next section we describe our results obtained so far in greater detail and present
the test environment and the various policies for the evaluation process. Then, in
the Results section we share and analyze the results of our tests to determine
trends in the evaluation process and possible patterns, anti-patterns for our future
work. Finally, in the Conclusions section we summarize these results and provide
an outlook on future steps and possible new directions for research.

2 Related Work

While the authors of a 2013 comparative study based on 775 reviewed articles
found that RBAC [13] was the most popular approach to manage access control in
healthcare, this trend changed significantly with FHIR, and the preference between
ABAC and RBAC became the de facto choice of the development team rather than
industry standards.

For example, the developers of the application atHealth [31] succeeded in imple-
menting a role-based methodology for their mobile application in 2017, recognising
the lack of security in FHIR. However, there also were implementations of the
ABAC model for access control to health records [21] in the same year.

To further complicate the issue of these two models, as early as 2008 [23] there
were critics who noted that access control in healthcare systems is sufficiently com-
plex to justify situation-based decisions, with the classical concept of roles and
attributes oversimplifying the issue. When we conducted our first experiments in
2018 in this area [33], we also found that neither ABAC nor RBAC as such is
sufficient to meet the needs of practitioners and clinical applications, because even
though roles are important elements of security, they cannot cover every situation
without specific, contextual information.

Although there are platforms, such as the popular SMART project [11], which
offer a solution in the form of a full OAuth2 integration into their FHIR database,
the use of such frameworks usually comes at the expense of a certain degree of
freedom in the choice of health infrastructure components. There have been several
attempts to define hybrid solutions both in healthcare [24] and more generally in
multi-modal, heterogeneous environments [9]. A key concept of the domain is the
requirement to control access not only to entire documents, but also to specific
fields and attributes in documents. The proposed architecture by Rezaeibagha, F.
et al [28] is specifically designed to move sensitive data from a secure private cloud
to a public one, while maintaining security.

In 2016, Pusselwalage H. S. G. et al. [25] published their approach for an ABAC
methodology that bases its policies not only on the attributes of the data but also on
the attributes of the user, treating the different levels of access and the classical roles
in healthcare as attributes. They combined the two models to some extent, while
also highlighting special cases such as unregistered users or registered users without
a specific role. In 2018 Joshi M. et al. [20] used a similar approach with roles treated
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as attributes, but instead of granting full access, their solution also transformed
the requested data to match the requester’s access level. The developers of the
SOCIAL platform [29] also discussed some interesting ideas about treating the
requesting device as an important component of ABAC with a combination of the
user attributes.

During our review we also found some studies that appeared to combine ele-
ments of the RBAC and ABAC models without clearly categorizing their method-
ology as a hybrid. The developers of the [26] H-Plane Framework, which follows
the terminology of the ABAC model, also apply several attributes in a way that is
almost identical to some aspects of RBAC. In their publication they also pointed
out the importance of the IoT in this domain. In 2019, Alnefaie, S. et al. [6] af-
ter reviewing the possible alternatives for access control they thought ABAC was
much better suited to the needs of healthcare in combination with edge computing,
but also suggested modifying the infrastructure of the methodology to bring the
point of evaluation closer to the edge and place more emphasis on the identity of
the IoT device itself. Tasali Q. et al. [35] extended this concept by covering not
only medical data, but also the authorization process for real-time communication
between IoT devices.

The solution proposed by the developers of the mHealth application [22] is also
quite similar to ours, the main differences being that its policy engine is deployed
as part of the cloud services and the engine is an implementation of the NIST
NGAC framework, with the evaluation process based on traversing a Neo4j graph
database. The infrastructure and principle designed by Ray, I et al. [27] also have
similar features, with policy enforcement based on the XACML format.

To summarize the state-of-the-art based on these sources:

• A modern solution should either extend the traditional access control ABAC
model or develop a custom hybrid solution to meet the needs of the domain;

• Heterogeneous storage should be taken into account and the sensitive docu-
ments must be transformed before they enter the public cloud;

• The IoT raises brand new challenges. The security solution must be able to
handle the different capabilities and requirements of these tools when evalu-
ating and converting the healthcare data.

It is clear that our approach is only one of many proposals that seek to resolve
the security issue of EHR. Our goal is to combine the best ideas and elements of
the domain - combining RBAC and ABAC, establishing the included PEP nodes
as a middle layers between the private and public clouds, public cloud and edge
network, etc. - and also to improve and extend them, to provide support for every
database and application that uses FHIR, and to provide users and developers with
a trusted, verified solution to the security problem.
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3 Our Approach

3.1 Telemedicine Security Infrastructure

The goal of our research is to create a solution that is able to support several
different storage providers and at the same time make the infrastructure shown in
Figure 3 transparent to the end users. While the use of such heterogeneous backends
is recommended in various use cases, the field of telemedicine is the prime example
of how the strengths of this model can be brought to bear. Even before the GDPR,
the storage and encryption of data was a major challenge, and while public cloud
providers proved to be very popular with telemedicine developers, the storage in
such solutions required high-level encryption and data transformation. However,
with heterogeneous storage, it is possible to store the sensitive data in a private,
more secure cloud and the less sensitive information in a public cloud or even in a
custom database to improve and optimize the efficiency of the system as a whole.
To achieve this, we needed to place our entire policy enforcement flow - the Policy
Enforcement Point, Policy Decision Point, and Policy Identity Point - between the
back-end and front-end and connect it to a proxy. We chose a Squid proxy [30]
implementation to achieve the latter and configured it to forward each request,
but upon receipt of a response containing FHIR structures, send it to the PEP for
filtering and (if necessary) transforming before forwarding it to the end user. This
provides a necessary middlelayer, unlike most solutions we discussed in the previous
section. In this way, policy enforcement can take place outside the cloud, which
allows the use of a heterogeneous storage solution (provided that it uses the FHIR
standard as the format of the stored documents), but it also relieves the burden on
the end systems. This approach is not only better optimized in terms of efficiency
and capacity, as some of the end systems may not have the required capabilities, but
it also ensures that sensitive information never reaches the end users without prior
assessment and filtering. It should be added that with such a proxy, developers are
also able to log in detail the various operations on the telemedicine records in order
to comply with the GDPR.

Figure 3: A general outline of our proposed solution
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To test our concept of policy enforcement, we chose a promising new solution
called Open Policy Agent [4], available in Go and WebAssembly, which could play
every role in the enforcement process. There is also an OPA implementation in
WebAssembly - this way, if it turns out to be an effective PDP/PEP solution, it
could be placed on any part of the infrastructure (or even in multiple locations
simultaneously) to meet another one of our requirements. OPA also permits us to
store the information necessary for decision making in JSON format and define the
various policies in its own scripting language, Rego, which can later be accessed
via a well-defined REST interface with an HTTP POST request containing the
contextual information to be filtered or evaluated (in our case, the medical records).

3.2 Test Environment

At this stage of our research, we decided to use the cleanest possible test environ-
ment. To achieve this, we created the prototype infrastructure on a local network
connected via WiFi (at 5 GHz frequency with only the elements of the prototype in-
frastructure connecting) to the various nodes hosting different actors of our model,
instead of testing with a well-known cloud provider like Google Firebase. This
means having:

• A desktop PC running Windows 10 on an AMD Ryzen 5 processor at 3.59
GHz speed and 16 GB DDR4 memory ran the client application on a Kingston
SSDNow V300 SSD with 120 GB capacity and 450 MB/s reading speed, acting
as the controller node of the environment;

• A laptop running Windows 10 on an Intel i5 processor at 2.49 GHz speed with
8 GB DDR4 and a 120 GB SSD with a reading speed of 423 MB/s memory
hosted the MongoDB v3.2.1 [2]-based backend along with a lightweight REST
API that handled the requests and query parameters;

• A secondary laptop with similar attributes hosted the Squid proxy written in
NodeJS 10.14;

• An iMac running macOS Catalina with an Intel i5 processor at 2.9 GHz speed
and 20 GB DDR3 memory hosted the OPA v0.23.2 runtime with a hard disk
of size 1 TB and reading speed of 210 MB/s.

The database was loaded with over 500,000 different FHIR Observation docu-
ments, based on properties from the MIMIC3 database [19], involving 200 patients,
30 doctors and 12 nursing teams, all signed with a different time stamp between
2015 and 2020. The template and structure of these Observations were taken from
one of our industry projects to simulate the size and complexity of healthcare doc-
uments in a real system. The measurements were performed by a monitoring host
that issued the restarts and reinitializations of each element of the architecture
between measurements. During the experiment, each component was configured so
that its output was logged in separate files that were collected and evaluated by
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the monitor at the end of a round. Each rule ran on 8 different input sizes: 10,
20, 50, 100, 200, 500, 1000 and 2000 data sets. The PEP engine received exactly
the same amount of data in each round, but of course the size of the output varied
from case to case, depending on the selected policy and the content of the input.

3.3 Evaluation Role Set

In our previous paper [34], we defined the four main categories of policies required by
the domain to evaluate health data before it reaches the external network and end-
user applications. We based this categorization on several sources and overviews
of the domain [8] [17] [16] [5], from which we were able to determine the basic and
extended safety requirements of the health sector. In accordance with the GDPR,
every user of the system must naturally have full control over their data. The
patient is the primary owner, the physician who wrote the document or assisted
in its creation is the secondary, while other practitioners and relatives can have
access to it to some extent. The system must also handle indirect access when the
applicant, as a member of a group, tries to access the file. These respective types
of access must be identified based on a combination of user roles, role groups and
the attributes of the FHIR documents.

In some cases, contextual information is also required to determine the degree of
access. For example, while a general practitioner should be able to access patient
records at any time (logging the exact time and nature of such access), a nurse
or assistant should not allowed to exceed the prescribed office hours. For some
especially sensitive information, other contextual information such as the physical
location of the requester, the ID of the device from which the request originates,
should also be used in the evaluation, and expanding this set compared to a simple
role definition is enough to justify a separate category.

A key requirement in the field of healthcare is that access does not mean full
access to every element of the given document. In many cases it is strictly forbidden
to grant access to such information from which a third party might be able to
reconstruct very sensitive events and elements. For example, if one receives a
list of a patient’s medicines from a certain period of time, it is easy to infer vital
information that would otherwise be prohibited for that particular third party. The
evaluation process in a healthcare environment should be able to determine access
at a very fine granularity, essentially at the field-by-field level, and to mark or even
remove certain fields that should not be available at that security level. This is
also the reason why the standard security solutions of several large cloud providers
and databases fails, as they can only provide this functionality by including lambda
functions, trigger functions, and the like.

The last requirement is also the most unique and difficult aspect of healthcare
security. The break-the-glass case requires an access control model that provides
immediate access to key patient information to ensure the receiving of the necessary,
possibly life-saving care. This is essentially what happens in an emergency, when
life-saving surgery is required and neither the patient nor the doctor recording
and processing their health data is available to grant access. In a break-the-glass
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situation usually only a few records are required, but in that case it is important to
use very complex transformations. Only vital information should be accessed, while
every other element of the document must be either removed or encrypted. Without
the effective implementation of break-the-glass, no healthcare security system can
be used in real-life situations.

Based on these requirements, the definitions of our policy categories are:

• Role Evaluation: The policy has to determine whether based on the user’s
role or roles in the system, partial or full access should be provided;

• Contextual Evaluation: The policy has to determine whether the combi-
nation of the user’s role, various attributes and contextual information form
the basis for partial or full access;

• Contextual Modification: Aside from providing access, the policy should
also transform the data, removing or altering specific fields;

• Break-the-Glass: A specific requirement of a healthcare application. In the
case of an emergency, the policy should provide immediate access, while also
encrypting or removing sensitive information.

Our first step during the evaluation process was to test our evaluation concept
with different policies and different pressures. During this first phase we ran our
tests on OPA without including other elements of the proposed infrastructure and
stored the FHIR documents in its database, making it essentially a temporary FHIR
database. We measured attributes such as CPU load and memory usage, while
increasing the size of the input data set by a power of ten after each iteration, up
to a data set of one million records. The results of these experiments demonstrated
that the combined PDP/PDE/PIP concept was an acceptable candidate.

These results paved the way for the next step of our research: the integration
of the combined PDP/PDE/PIP node (OPA) with a prototype infrastructure and
the further evaluation of its effectiveness and latency in this environment.

3.4 The Telemedicine Security Abstract Role Set

First and foremost we defined a formal specification of each category, with the
following notations:

• F := {f1, ..., fk} marks the telemedicine record in question, where each fx is
a valid key-value pair of the record.
For example:
F := {(′subject′,′ PAT/1′), (′systolic bloodpress′, 120), ...}

• UR := {r1, ..., rl} where UR ⊆ F is a subset containing the key-value pairs
describing various primary or secondary owners of the record
For example:
UR := {(′subject′,′ PAT/1′), (′practitioner′,′ PR/A013′), ...}
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• EX := {e1, ..., em} marks the external context of the system at the time of
the policy evaluation as key-value pairs
For example:
EX := {(′datetime′,′ 2020−09−12T12 : 20 : 33′), (′ip addr′,′ 223.134.22.1′), ...}

• CX := {c1, ..., ck} is a set of conditional functions, which take an atomic
value as an argument and transform it to a boolean value. Each function is
represented as an (op, val) pair where op is a conditional operation, op ∈ {<
,>,≤,≥,=} and ci(n) := n opi vali
For example:
c1 := (>, 12), x := 5 =⇒ c1(x) := 5 > 12 =⇒ c1(x) := false
c2 := (=,′ bloodpressure′), x :=′ bodyweight′ =⇒
c2(x) := ’bodyweight’ = ’bloodpressure’ =⇒ c2(x) := false

• P(n) is a function describing a policy to be enforced by a PEP engine, where
fx ∈ F and P(fx) = Allow|Modify|Deny produces the decision regarding
the evaluated key and P(F) := {P(f1), ...,P(fk)}

3.4.1 Formal Definition of the Role Evaluation Policy

Definition 1. P(n) describes a Role Evaluation policy, if UR �= ∅ and for a given
user identifier ∃key(key, id) ∈ UR, then P(n) := ∀fi ∈ F P(fi) := Allow, else
P(n) := ∀fi ∈ F P(fi) := Deny

3.4.2 Formal Definition of the Contextual Evaluation Policy

Definition 2. P(n) describes a Contextual Evaluation policy if G := F∪EX, CE :=
{ce1, ..., cex} is a set of contextual conditions where 0 ≤ i ≤ x, cei := (keyi, ci), ci ∈
CX and ∃x : (keyi, valuei) ∈ G and P(n) := ∀fi ∈ F P(fi) := Allow, if ∀x :
(keyi, ci) ∈ CE : ∃(keyi, valuei) ∈ G and ci(valuei) := true, else ∀fi ∈ F P(fi) :=
Deny

3.4.3 Formal Definition of the Contextual Modification Policy

Definition 3. P(n) describes a Contextual Modification policy if similarly to the
Contextual Evaluation policy, G := F ∪ EX, CE := {ce1, ..., cex} is a set of
contextual conditions where 0 ≤ i ≤ x, cei := (keyi, ci), ci ∈ CX and ∃x :
(keyi, valuei) ∈ G but there is also a FX mapping, which FX : CE =⇒ F′ ⊆
F, with ∩0≤i≤x FX(cei) := ∅. If0 ≤ i ≤ x cex(gx) := false then
∀f ′i ∈ FX(cei) P(f ′i) := Deny, else ∀f ′i ∈ FX(cei) P(f ′i) := Allow

3.4.4 Formal Definition of the Break-the-Glass Policy

Definition 4. P(n) describes a Break-the-Glass policy if P(n) satisfies the require-
ments of the Contextual Modification with the further addition of a TX mapping,
identifying the attributes which have to be encrypted or modified TX : CE =⇒
F′′ ⊆ F, with ∩0≤i≤x TX(cei) := ∅ and ∪0≤i≤x FX(cei) ∩ ∪0≤i≤xTX(cei) := ∅.
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If0 ≤ i ≤ x cex(gx) := false then ∀f ′′i ∈ FX(cei) P(f ′′i ) := Deny, else ∀f ′′i ∈
FX(cei) P(f ′′i ) := Modify

3.5 Implementation Details

To achieve this goal, we defined a new set of guidelines based on the actual needs
of a healthcare system, instead of the proof-of-concept drafts from our previous
study. We defined two rules for each of the four categories - one simpler and one
more complex, the latter containing more operations or more resource-intensive
operations, or both. All algorithms run on multiple Observations received as part
of the input, but only returned those in their original or modified state which were
allowed by the policy.

The two policies of the Role Evaluation category included in algorithms 1 and
2 both focus on the identity of the practitioner. However, while role simple only
checks to see that the specified role identifier matches the practitioner’s identifier
in the document, role complex checks the care teams responsible for the patient
and only grants access if the requester is a member of those teams.

The main difference between the policies of the Contextual Evaluation category,
shown in algorithms 3 and 4, is the nature of the contextual attribute.

In context simple we check a high-level attribute, the status of the Observation
and an external attribute, the hour. Here context complex requires the PEP iterat-
ing through the component array of each Observation, finding each medical value
based on the defined LOINC identification code, and checking to see if the exact
value is greater than the threshold.

A key aspect to be evaluated was the efficiency of the PEP when iterating and
handling arrays, since in the current version of the OPA, the developers noted in
the official documentation [3] that the performance of such an evaluation engine
is the most efficient when it works with objects, and weakest when it must iterate
through non-indexed arrays.

Algorithm 1 A Role Evaluation policy in Rego returning only the Observations
where the current user is the Practitioner
Policy role simple[shell]

1: pract := input.practitioner � We get the Practitioner id from the request
2: shell := input.observations[ ] � We create a working copy from the list of

Observations
3: observation := shell.data � We iterate through the shell array and map the

Observation inner object
4: performer := observation.performer[ ] � We map the list of Practitioners of

the current observation
5: performer.identifier.value == pract � We check if one of the Practitioners

has the same id as the input. If so, it remains in the shell array and will be
returned, if not, it will be filtered out
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Algorithm 2 A Role Evaluation policy in Rego returning only the Observations
where the current user is member of one of the CareTeams, who received access
from the Patient
Policy role complex[shell]

1: pr := input.practitioner � We get the Practitioner id from the request
2: shell := input.observations[ ] � We create a working copy from the list of

Observations
3: observation := shell.data � We iterate through the shell array and map the

Observation inner object
4: performer := observation.performer[ ] � We map the list of Practitioners of

the current observation
5: cteam == performer.identifier.value � We get the identifier of the Performer
6: contains(’CareTeams’, cteam) � We call the built-in function to check whether

the identifier belongs to a CareTeam, and only to proceed if it is true. If the
Observation has no CareTeam at all, the evaluation returns false.

7: count(practition member of careteam(pr, cteam)) > 0 � We call a simple func-
tion which checks whether the identifier of the Practitioner is listed as a member
of a the CareTeam. If there is a match for even one of the CareTeams, to access
is provided

Algorithm 3 A Contextual Evaluation policy where access is granted only if the
status of the Observation is active and the time of access takes places between 8:00
and 19:00
Policy context simple[shell]

1: timearray := time.clock([time.now ns(), ’Europe/Budapest’]) � Using the
built in functions of Rego, we generate the array containing the parts of a
time string

2: hour := timearray[0] � We retrieve the first element of the timearray which
will always be the hour from the chosen timezone

3: shell := input.observations[ ]
4: shell.data.status == ’active’
5: hour ≥ 8
6: hour ≤ 19 � These last three lines are executed at the same time, if all of them

return as true, the Observation will be part of the result set

Algorithm 4 A Contextual Evaluation policy where the internal structure of
the Observation is analyzed and only a certain type with its value above a pre-
determined limit can be accessed
Policy context complex[shell]

1: shell := input.observations[ ]
2: component := shell.data.component[ ] � We iterate through the inner at-

tributes of the Observation
3: component.code.coding[0].code == ’32419-4’
4: component.value > 5
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Algorithm 5 A Contextual Modification policy where we remove the Patient iden-
tifiers from Observation
Policy modif simple[shell]

1: observation := input.observations[ ]
2: clean := object.remove(observation, [’patient’, ’data’]) � We remove the ex-

ternal patient identifier and the entire nested data object - since in the current
version of Rego we cannot modify existing key-value pairs only remove existing
or add new ones

3: inner new := object.remove(observation.data, [’subject’]) � We create a new
nested data object without the subject fields

4: shell := object.union(clean, {’data’: inner new}) � We create the result Ob-
servation by merging the two filtered versions

Algorithm 6 A Contextual Modification policy where we remove a specific nested
component from every Observation

Policy modif complex[shell]

1: observation := input.observations[ ]
2: clean := object.remove(observation, [’data’])
3: no components := object.remove(observation.data, [’component’]) � We need

to filter the nested object as well
4: new components := [component|
5: component := observation.data.component[ ];
6: component.code.coding[0] != ’18748-4’] � We filter the nested object based

on the LOINC codes
7: new data := object.union(clean, {’component’: new components})
8: shell := object.union(’newdata’, {’data’: new data})

The majority of the documents in the FHIR standard use the array structure
very often, and if the performance of array operations is significantly worse than
in any other case, this would provide a strong argument against adapting our
concept. The modification operation in a PEP node is very demanding in itself,
since the engine treats every variable as a constant due to their non-imperative
behavior. For this reason, if we need to modify or redefine a particular field, we
must first create a copy of the original object without the value, then create a
new value, and finally create the response by adding the new value to the filtered
object copy. The Contextual Modification policies are shown in algorithms 5 and 6.
Here modif simple simply removes the patient data from the Observation and the
encapsulating shell, while modif complex must create a new component array for
each Observation that does not contain urls pointing to sensitive patient documents.

The Break-the-Glass Policies shown in algorithms 7 and 8, are the most complex.
These policies are expected to be fast, accurate, and effective, because they are most
commonly used in emergency scenarios when a doctor or nurse needs to access
limited patient information to provide the necessary care.
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Algorithm 7 A Break-the-Glass policy where we hash the identifier of the
CareTeam in the Observations
Policy break simple[shell]

1: observation := input.observations[ ]
2: clean := object.remove(observation, [’data’, ’careteam’])
3: no performer := object.remove(observation.data, [’performer’])
4: doctors := [performer| �We create a performer array without the CareTeams
5: perfomer := observation.data.performer[ ]
6: performer.type == ’http://hl7.org/fhir/practitioner.html’]
7: hash careteams := [perf | � We create an array from the hashed CareTeams
8: performer := observation.data.performer[ ]
9: not performer[′type′] � CareTeams do not have the optional type attribute

10: perf := {’identifier’: {’value’: crypto.md5(performer.identifier.value)}}]
11: new performers := array.concat(doctors, hash careteams)
12: new data := object.union(clean, {’data’: new data, ’careteam’: {’identifier’:

{’value’: crypto.md5(observation.careteam.identifier.value)}})

Algorithm 8 A Break-the-Glass policy where we hash every identifier for Patients,
Practitioners and CareTeams
Policy break complex[shell]

1: observation := input.observations[ ]
2: clean := object.remove(observation, [’data’, ’careteam’, ’practitioner’, ’pa-

tient’])
3: removed body := object.remove(observation.data, [’performer’, ’subject’])
4: new body := object.union(removed body,
5: {’subject’: {’display’: crypto.md5(observation.data.subject.display), identi-

fier: {’value’:
crypto.md5(observation.data.subject.identifier) }},

6: ’performer’: [perf |
7: performer := observation.data.performer[ ]
8: perf := {’identifier’: {’value’: crypto.md5(performer.identifier.value)}}]})

� We also tried whether a nested instruction set would increase or stabilize
resource consumption

9: shell := object.union(clean,
10: {’data’: new body, ’patient’: crypto.md5(observation.patient),
11: ’practitioner’: crypto.md5(observation.practitioner),
12: ’careteam: {’identifier’: {’value’:

crypto.md5(observation.careteam.identifier.value)}}})

In these scenarios, the system must remove or encrypt everything else that
goes beyond the most necessary attributes, and with two policies we tested how
resource consumption varies when we wish to encrypt a single attribute that is
deeply embedded in the document and requires filtering in break simple and in
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break complex when we wish to encrypt every identifier in the document that could
later be used to identify users in the system.

4 Results

4.1 PEP Performance between Categories

After evaluating the average performance of the various categories, we observed
several interesting trends, compared to what we originally expected. The most
notable of these is the relatively faster evaluation time of the Contextual Evaluation
policies compared to the Role Evaluation category, as seen in Figure 4.

Figure 4: Average Delay on PEP by Categories

While the CE policies are more complex in nature, it seems that if the contextual
information sets the result as true or false, the evaluation is significantly quicker
than the cases when an internal examination of the input documents is required.

We observed a similar trend with the average CPU load of the categories, shown
in Figure 5 with the Contextual Evaluation policies demanding slightly less percent-
age of the CPU time compared to the Role Evaluation policies, while the Break-
the-Glass policies remain the most demanding ones. However, the overall difference
between the first two and latter two categories is not as big as on the response de-
lay. Another key observation is that while the size of the input was below 1000
documents (which is already an unrealistically large query size for a real-life ap-
plication), not even the Break-the-Glass policies required more than 50% of the
CPU.
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Figure 5: Average CPU Load of OPA by Categories

The memory usage of the categories, shown in Figure 6 on the other hand,
while still showing the trends of the previous figures and requiring only manageable
amount of memory when evaluation smaller inputs (not even Break-the-Glass poli-
cies demanding more than 50-60 MB while the input size is around 50 documents),
this demand shows a sudden jump after the input size reaches 1000 documents,
with even the Role Evaluation policies requiring around 100-150 MB to evaluate
inputs between sizes 1000 and 2000.

Figure 6: Average Memory Usage of OPA by Categories
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The measurements were taken with the PEP solution restarted and reinitialized
between each measurement, since, as we have shown in our previous paper, OPA
employs a very lazy approach towards garbage collecting, cleaning the memory only
when it is required by the system or an especially large evaluation. This fact makes
these sizes even more alarming for a real-life scenario, since the size of OPA in the
memory can grow significantly during a series of evaluations.

Based on these results, while the CPU load and the response delay seem to be
manageable requirements, the memory demand, combined with the experienced lazy
garbage collecting process of OPA might requires a custom build or external process
that manages and frees the memory after the evaluations are finished to optimize
this aspect of the PEP nodes.

4.2 PEP Performance in Categories

We ran each policy with each size at least 30-50 different times to collect the raw
data for the statistics shown in the tables below, and these group the policies
belonging to the same category. For each policy, we calculated from the collected
data sets the mean value of CPU load, memory usage and response delay on the
PEP (OPA) node.

Although the question of whether to use the same constant inputs for each
evaluation, or use HTTP(S) requests that simulate a real-world application is a
complex element for this phase of our research, we decided to use dynamic inputs
to get more precise, realistic results.

4.2.1 Role Evaluation Policies

A comparison between Role Evaluation policies is shown in Figure 7. While, as we
have assumed, the complexity of role complex induces a higher latency, the total
difference between the two policies is not very significant. Even with an input of
2000 records the PEP was able to filter out the restricted ones in half a second.

The effects on CPU and memory, as shown in Figures 8 and 9, are somewhat
more demanding – when 2000 documents are sent, 70% of the processor is required
to evaluate the policy and about 140 MB of the memory – a clear indication of how
costly it is to perform subqueries in isolated structures, such as the list of careteams
and their members.

Based on these results, it is evident that the proposed solution is capable of
handling more complex Role Evaluation policies without difficulty, but it is advisable
to store the teams, groups, institutions in indexed objects rather than in arrays.

4.2.2 Contextual Evaluation Policies

A comparison of the two Context Evaluation policies also produced some interesting
results, which are presented in Figures 10, 11 and 12. Our main objective here was
to determine what kind of contextual evaluation is more demanding, and on the
basis of the data it is clear that array-based evaluations are generally more complex,
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Figure 7: Average PEP Latency in Role Evaluation category

Figure 8: Average CPU load in Role Evaluation category

but in small evaluations they are actually cheaper than collecting and comparing
external information such as dates.

This calls into question some notable architectural aspects of the infrastructure,
such as whether this context information should be collected and forwarded by the
proxy as part of the input data. Seeing that in some cases it is possible on a larger
scale that the PEP deployment can handle traffic from end nodes in different time
zones, it might be a good idea to omit such internal queries as a general design
pattern of the policies.
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Figure 9: Average Memory usage in Role Evaluation category

Figure 10: Average PEP Latency in Contextual Evaluation category
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Figure 11: Average CPU load in Contextual Evaluation category

Figure 12: Average Memory usage in Contextual Evaluation category
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Moreover, it is interesting to note that after some minor differences, besides
inputs with more than 20 documents, the metric values start to converge, since
after a certain point in the measurement set a significant portion of the documents
is rejected during the evaluation of context1 due to their inactive status, thus the
value is set false, before the engine starts evaluating the relational conditionals.

Our interpretation of these results can be summarized as follows: It is clear that
policies with contextual evaluation may be as effective as simple Role Evaluation
policies, but where possible, contextual information must be provided as part of the
input, rather than being queried on the PEP node.

4.2.3 Contextual Modification Policies

The results of the Contextual Modification policies are included in Figures 13, 14
and 15. These results showcased another important aspect of the evaluation engine
that could be one of the pillars of the design patterns for defining the policies. It
was expected that modif complex would be the more complex of the two.

Instead of this expected result, the measurements clearly indicate that neither is
significantly more demanding. In some cases modif complex consumes more CPU,
and it has slightly more latency than modif simple due to the demanding array
copy and filter mechanisms, while modif simple requires slightly more memory.

Modification policies are much more demanding than simple access evaluations.
Nevertheless, they can be implemented effectively if we take into account the in-
creased costs. We also wish to investigate the possible patterns and anti-patterns in
order to write more effective policies for this type.

Figure 13: Average PEP Latency in Contextual Modification category
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Figure 14: Average CPU load in Contextual Modification category

Figure 15: Average Memory usage in Contextual Modification category
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4.2.4 Break-the-Glass Policies

Based on the results of our previous evaluations, we assume that Break-the-Glass
policies will be the most resource-intensive portion of our evaluation set, and the
results (see Figures 16, 17 and 18) were as we thought they would be, but again
with some minor differences from our original expectations.

While the CPU load and memory usage of the two policies are almost identical, it
actually takes a little longer to evaluate break simple than break complex, although
based on the sheer number of operations (especially the number of encryption
operations) in break complex, it should have been a much more expensive policy
compared to break simple. The answer lies in the nature of operations that the
policy executes: It filters an array, then creates a new array to store an encrypted
value, and then concatenates two arrays to be embedded in an object. Apparently,
these array operations, with the emphasis on the concatenation operation, which
is unique in our evaluation set for this policy, is just as resource-demanding as its
pair.

Just as we expected, the Break-the-Glass policies are the most demanding ones
that can be evaluated on the PEP node, but even with the increased cost they can
achieve the expected results. While the essence of these policies is to transform and
encrypt the data, it is important to avoid array operations as much as possible, as
they only further increase the cost when potentially cheaper workarounds might be
available.

Figure 16: Average PEP Latency in Break-the-Glass category
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Figure 17: Average CPU load in Break-the-Glass category

Figure 18: Average Memory usage in Break-the-Glass category
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4.3 PEP Performance in Infrastructure

It is interesting to see how the latency of the PEP node affects the latency of
the entire infrastructure. From each policy pair we took the one with the greater
response delay and compared it with the system latency in Figures 19, 20, 21, and
22.

Figure 19: System Latency and PEP Latency on role complex

Figure 20: System Latency and PEP Latency on context1
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Figure 21: System Latency and PEP Latency on modif simple

Figure 22: System Latency and PEP Latency on break simple
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Based on these results, we may conclude that when the data set is increased,
the increase in system-wide latency, PEP latency and the relative latency of the
two components are all nonlinear.

The difference between the complexity of the various policy categories, on
the other hand, is not always as clear as we initially assumed. The results of
role complex and context simple, for example, are almost identical, and the care
team identifying role complex even turns out to be somewhat more demanding
than context1, which has to iterate and filter the contents of an embedded ar-
ray, and with an input of size 2000 on context simple, the PEP only provides the
21.4370% of the full system latency and 25.9672% on role complex.

However, most of our expectations were confirmed by the results we obtained.
Although it is clear that the identification of good practices, patterns and anti-
patterns is necessary in the next phase of our research to further optimize the use
of the PEP, the relative complexity and cost of the different categories were as
expected. There is an overall latency and efficiency of the prototype infrastructure
– a barely noticeable increase when we consider that the majority of healthcare
applications, including our client application in its unmodified state. This requests
100 or 200 documents in a single operation, and we found the PEP (and OPA as
its implementation) to be a very effective component of our security solution.

5 Conclusions

On the basis of our results, we conclude that the PEP (OPA) is indeed a suitable
choice for our architecture and that the concept can be further developed. In the
previous sections, we presented our proposed infrastructure and methodology, the
categorization of security policies required in the healthcare sector, and a set of
policies for different evaluations. When interpreting the results, we demonstrated
the effectiveness of our concept, with only a relatively small increase in the overall
latency in exchange for an effective healthcare security solution that is independent
of the exact back- and front-end applications. In addition, we have also identified
some good or definitely avoidable practices in the OPA policy definition that re-
quire further research to make it feasible in practice. To summarize these results
based on the requirements described in the Introduction for an appropriate policy
enforcement element in the domain of telemedicine:

• We showed that our proposed PEP can function and evaluate access in a
telemedicine infrastructure with a minimal impact on the overall latency of
the system, without any component explicitly being aware of its presence.
Even with the largest input size, the evaluation delay caused by its inclusion
was at most 35% of the total response delay;

• We showed that it can evaluate and transform the input with manageable
CPU load and memory usage even for inputs that are unrealistically large in
the healthcare workflow;
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• Since our PEP configuration only depends on the input structure and our
current selection is also available in Go and WebAssembly languages, it can
be effectively used at any point in the infrastructure. Because of its internal
database it can also work when the upper levels of the infrastructure are
unavailable.

• We shoved that every category of our policy terminology can be effectively
implemented in the script language of the OPA engine.

In the future we plan to continue our research in several directions. When
interpreting the results, we found several possible patterns and anti-patterns for
writing PEP policies. We intend to investigate these further in simulated an real-
world scenarios as well, identify the possible bottlenecks and bad practices for
deployment and provide other developers and researchers with a good guideline for
implementing healthcare policies.

Since our infrastructure prototype turned out to be successful, the next step will
be to further evaluate the capabilities of our proposed PEP integration in terms
of portability, place it at different points in the infrastructure and record their
behavior and efficiency.

If we succeed with these future steps, we hope to be a step closer to solving the
problem of security and access control in telemedicine.
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514 Zoltán Szabó and Vilmos Bilicki

[7] Altamimi, Ahmad. SecFHIR: A security specification model for fast health-
care interoperability resources. International Journal of Advanced Computer
Science and Applications, 7(6), 2016. DOI: 10.14569/IJACSA.2016.070645.

[8] Andrew, Marcus. Security in FHIR at DevDays Redmond 2019. https://

tinyurl.com/ryk9zlu, 2019. (Accessed on 07/20/2020).

[9] Attia, Hasiba Ben, Kahloul, Laid, and Benharzallah, Saber. A new hybrid
access control model for security policies in multimodal applications environ-
ments. Journal of Universal Computer Science, 24(4):392–416, 2018. DOI:
10.3217/jucs-024-04-0392.

[10] Carter, Gracie, Chevellereau, Ben, Shahriar, Hossain, and Sneha, Sweta.
OpenPharma Blockchain on FHIR: An interoperable solution for read-only
health records exchange through blockchain and biometrics. Blockchain in
Healthcare Today, 2020. DOI: 10.30953/bhty.v3.120.

[11] Chaballout, Basil Harris, Shaw, Ryan Jeffry, and Reuter-Rice, Karin. The
SMART healthcare solution. Advances in Precision Medicine, 2(1), 2017.
DOI: 10.18063/apm.v2i1.213.

[12] Conley, Ed and Pocs, Matthias. GDPR compliance challenges for interoperable
health information exchanges (HIEs) and trustworthy research environments
(TREs). European Journal of Biomedical Informatics, 14(3), 2018. DOI:
10.24105/ejbi.2018.14.3.7.
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Abstract

In this work, we propose a novel solution to the problem of inferring the
state machine of an unknown protocol. We extend and improve prior results
on inferring Mealy machines, and present a new algorithm that accesses and
interacts with a networked system that runs the unknown protocol in order
to infer the Mealy machine representing the protocol’s state machine. To
demonstrate the viability of our approach, we provide an implementation
and illustrate the operation of our algorithm on a simple example protocol,
as well as on two real-world protocols, Modbus and MQTT.
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machines

1 Introduction

In today’s world, IT systems are seldom standalone and monolithic. Each system is
comprised of up to several tens of parts or modules that somehow communicate with
each other, usually via a network. The rules of communication, i.e. the formats
of the messages and the possible valid sequences of messages are established by
protocols that are defined in specifications. Many systems use proprietary or closed
protocols whose specifications are not made publicly available. Examples typically
include industrial control systems (ICS) and in-vehicle embedded networks.
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However, it would often be largely beneficial to have at least an approximate idea
of how these closed protocols work. For instance, with this knowledge, it would be
possible to build network anomaly detection tools that detect potential cyberattacks
against industrial systems, design more specialized honeypots, detect malicious or
malfunctioning components in in-vehicle networks, or build new components that
can be more easily integrated into existing systems.

One may attempt to reconstruct the specification of an unknown protocol by
applying various protocol reverse engineering methods. The goal of such methods
is two-fold: first, the type and format of the messages used by the protocol need to
be understood, second, this information may be used to recover the state machine
of the protocol. The process of reverse engineering a protocol is often a tedious
task; therefore, some degree of automation is required to make it practical.

In a previous paper [14], we focused on the problem of determining the message
types and message formats of undocumented binary protocols. We developed a tool
that can process captured network traffic containing messages of a protocol, then
retrieve the identified message types as well as the semantics of the message fields
for the different message types. In this paper, we address the problem of inferring
the state machine of a previously unknown protocol.

Our method is based on prior work on inferring Mealy machines, in particular,
on the work of Shahbaz and Groz [20]. We take their Mealy machine inference
algorithm and extend it with elements that make it possible to use their conceptual
results in practice so as to reverse engineer the state machine of real-world protocols
in an automated fashion. This method requires access to and interaction with a
system that runs the unknown protocol. In addition, we assume that the message
types and formats have already been reverse engineered, e.g., by using our previ-
ously published method. We process and use previously recorded network traces as
well as data obtained from this system, efficiently and intelligently choosing input
for the above-mentioned Mealy machine inference algorithm.

2 Related work

The principles of protocol reverse engineering date back to the 1950s, where re-
verse engineering was typically used for fault analysis, and it involved analyzing
and understanding electrical circuits that implemented a finite state machine rep-
resenting a protocol [15]. With computers and computerized accessories becoming
more and more widespread around the turn of the century, the number of network
applications, thus the number of network protocols increased. Some of these were
proprietary with no available documentation, meaning that they had to be reverse
engineered in order to develop compatible applications.

The first well-known project that aimed at restoring the specifications of such
a protocol was the Samba Project (2003) [1] that has taken 12 years to finish. The
exact methods they used are not detailed, but it is known that they sniffed network
traffic and employed random probing to identify message types and semantics. The
Samba Project was soon followed by M. A. Beddoe’s Protocol Informatics Project
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[5] in 2004, which used bioinformatical algorithms on network traces to infer the
message types of the text-based protocol HTTP. RolePlayer (2006) [12], Discoverer
(2007) [11], Biprominer (2011) [22], ReverX (2011) [3], ProDecoder (2012) [21],
and AutoReEngine (2013) [17] soon followed, all of which relied solely on network
traffic.

The early works typically focused on message type and message format infer-
ence. They did not put much emphasis on field semantics inference, nor did they
attempt to recover the protocol state machine. Those that tried to infer field se-
mantics did not achieve significant results – Discoverer admits to achieving between
30-40% accuracy [11], and not even Netzob exceeds 50% [7]. FieldHunter (2015) [6]
was the first to achieve over 80% accuracy on semantics. In a previous paper [14],
we presented GrAMeFFSI (2020) that may achieve over 90% accuracy on binary
protocols if high-quality network captures are available.

While most algorithms aimed at reversing both text-based and binary protocols,
some specialized in one or the other, usually achieving better performance metrics
compared to the more general solutions of their time. Biprominer, as its name
suggests, targeted binary protocols, as did GrAMeFFSI, while ReverX targeted
text-based protocols. The methods employed vary – RolePlayer and Discoverer
rely on sequence alignment, Biprominer and AutoReEngine leverage data mining
approaches, ProDecoder makes use of natural language processing algorithms, while
GrAMeFFSI employs graph analysis.

An alternative to network traffic analysis based protocol inference is binary anal-
ysis based inference. Such methods often rely on dynamic taint analysis, marking
sections of code in the memory of the binary being executed that are hit when
processing or responding to a given message, then making assumptions about the
message formats and semantics based on what and how was marked. It has been
proven [19] that binary analysis based approaches can achieve better results; how-
ever, purely traffic analysis based approaches are also important as binaries may
not always be at our disposal, and legal agreements may prevent us from analyzing
or reverse engineering these.

In order to reverse engineer the protocol state machine, at least a partial under-
standing, a classification of the message types is needed. State machine inference
methods must either produce the message classes themselves, or rely on existing
message format inference methods, perhaps in a slightly modified manner. So far,
there have been fewer attempts to reconstruct protocol state machines than to de-
termine message types and semantics [13]. The majority of the network trace based
solutions are passive, meaning that only recorded traffic is used as input, and no
live systems (running original protocol implementations) are contacted.

ScriptGen (2005) [16] was the first notable method for state machine infer-
ence. It uses the Needleman-Wunsch sequence alignment algorithm (similarly to
Beddoe’s previously mentioned project) along with micro- and macroclustering to
build a protocol state machine from captured network traffic. The state machine
is then used to formulate responses for a honeypot. It was later followed by Cho
et al.’s work on reverse engineering the protocol of the MegaD botnet (2010) [8]
that leveraged and optimized Angluin’s L∗ algorithm [2] to infer a Mealy machine
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based on network traces and live queries. They reached between 96% and 99%
accuracy on various protocols. Another important result was Veritas (2011) [23]
that employs statistical analysis on captured network traffic to build probabilistic
protocol state machines that are claimed to be 92% accurate on average. There
also exist approaches that rely on program execution instead of network traces, the
most significant ones being Prospex (2009) [10] and MACE (2011) [9].

3 The LM
+ algorithm and its application for infer-

ring protocol state machines

We use Mealy machines to represent the state machine of a protocol as they can
be used to model the behaviour of protocols using requests and responses (which
are quite typical in practice) in a simpler way than finite state machines or Moore
machines. Mealy machines differ from simple finite state machines in that for every
state transition that is triggered by an input, an output is defined. The set I of
possible inputs is called the input alphabet and the set O of possible outputs is
called the output alphabet.

Angluin described an algorithm in [2] that can be used to infer minimal finite
state machines, and this algorithm can be adapted for inferring Mealy machines as
well. In this work, we adopt the techniques of Shahbaz and Groz described in [20],
and from this point forward, we refer to the Mealy machine inferring algorithm
described in [20] as LM

+.
Since we use the LM

+ algorithm as a black box, a high-level overview of its
operation is sufficient for our purposes here. The LM

+ algorithm is executed by a
learner, and it requires a teacher. The teacher knows the Mealy machine to be in-
ferred, and the task of the learner is to infer that machine. The teacher can answer
two types of queries for the learner: first, for a certain sequence of input characters,
the teacher returns the output of the machine to be inferred (input query); second,
the teacher can determine whether a certain Mealy machine conjectured by the
learner is the same as the one to be inferred (equivalence query). If the conjectured
machine differs from the real one, then the teacher returns a counterexample: a se-
quence of input characters for which the real and the conjectured machines produce
a different output.

A Mealy machine can be used to model the state machine of a client-server
protocol in a fairly straightforward manner: the input alphabet of the machine
contains the possible messages that the client may send to the server (i.e., the
requests) and the output alphabet contains the possible messages that the server
may send to the client (i.e., responses, acknowledgements, errors, etc.).

Clearly, including all possible individual messages in the input and output al-
phabets can easily lead to problems: a huge resulting Mealy machine and a very
long running time of the LM

+ algorithm. For instance, if a message contains a 4-
byte timestamp, then the alphabet would contain at least 232 elements to represent
all possible messages containing different timestamp values. To bring the size of
the alphabets to a manageable range, we represent message types by the elements
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of the input and output alphabets instead of individual messages. A message type
models a group of messages that have the same format but may differ in the specific
values in the fields of the given message type.

In order to work with message types, we use two helper functions: a message
classifier and a message generator. The message classifier function takes a particular
message as input and returns its message type. The message generator function
takes a message type as input and generates a valid message that has the specified
message type. While the message classifier function should be deterministic, the
message generator can be non-deterministic: the values of the message fields can
be randomly generated as long as the message remains well-formed (i.e., consistent
with its type). An additional function, a message updater is also useful, which takes
as input the set M of all previously sent messages and a particular message m of
this set, and returns a new message m′ of the same type as m, such that the values
of certain fields in m′ are the mutations of the corresponding values in m, and M
does not include m′ yet. The updater function takes the semantics of certain fields
into account: for instance, constant fields and identifiers are not mutated, a counter
is mutated by incrementing it, etc. Such an awareness of semantics improves the
efficiency and accuracy of our algorithm.

Recall that we aim at reverse engineering the protocol state machine of a system
under test (SUT). To achieve this goal, we use the LM

+ algorithm as the learner
that infers the unknown Mealy machine representing the protocol, and we need
to provide the teacher that answers the queries of the learner. We construct the
teacher by using the helper functions defined above, and by sending messages to
and observing the responses of the actual implementation of the protocol provided
by the SUT.

This works in the following way: we start by using the message generator helper
function to produce messages for every message type. We use these pre-generated
messages to avoid a deterministic protocol appearing to be non-deterministic due
to freshly generated random values used in the same message at different stages of
our algorithm. Then, we run the LM

+ learner and we respond to its queries. Input
queries are answered by first resetting the SUT, then sending the pre-generated mes-
sages (after running the message updater helper function on them) corresponding
to the learner’s input query to the SUT, and finally running the message classifier
helper function on the SUT’s responses to get the message types that the learner
can understand. Equivalence queries are answered by generating random input
queries, running them against both the SUT and the conjectured machine, and
comparing their outputs. The number of queries needed to decide about equiv-
alence with a given confidence level has been studied in [2], and we follow those
guidelines. Once the LM

+ learner conjectures a Mealy machine that is deemed
correct, our algorithm terminates with that machine as the output.
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4 Extending the LM
+ algorithm

The above-described version of our algorithm may return an incomplete protocol
state machine because only a single message of each type is generated, which always
triggers the same type of response, while it may be possible that other variants of
the same message would result in a different response. Consider, for example, a
request for reading the content of some memory address; the response can be the
data found at the specified address or an error if the address was invalid. The
extended version of our algorithm attempts to find these differing behaviours by
finding messages of the same type that trigger different responses from the SUT.
This further divides the set of messages that belong to a particular message type.
We will call these new sets message subtypes. Our goal is to find as many subtypes
as possible, ideally all of them. This is done by generating multiple messages of
each type for the input alphabet I, then running the simple version of our algorithm
with them. The resulting Mealy machine is analyzed, and messages that have the
same type but do not produce different behaviour are removed (we call this step
deduplication). More precisely, we say that two messages do not produce different
behaviour, if, for all states of the Mealy machine, the two inputs result in the same
output and the same new state. This means that deduplication only leaves a single
message instance from every message subtype. After deduplication, new messages
are generated and added to the set of possible inputs, and the simple algorithm is
executed again. This is repeated again and again to reach more and more complete
representations of the protocol as more subtypes are discovered (see Algorithm 1).
A straightforward criterion for stopping could be requiring a number of runs where
no new subtypes are found.

Initialization: I := ∅
Do

I := I ∪ generateNewMessages();

Mout := L+
M (I);

I,Mout := deduplicate(I,Mout);

While stopping criterion is not met ;
Result: Mout

Algorithm 1: Pseudocode of the extended algorithm

This method keeps the advantage of reducing the size of the input alphabet while
still allowing us to discover inputs that are not considered different by message
type categorization but reveal different behaviour of the protocol. In addition,
not having an absolutely perfect message format becomes less of a problem, since
message types that are not correctly separated by the used message formats will
be automatically separated into message subtypes. However, it has two possible
major pitfalls. The first problem arises if specific message subtypes only reveal
their different properties if they are used in combination. As an example, let us
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look at a message type that changes some kind of operating mode. Let there be
three modes: A, B and C, where there is a subtype for changing into each of these
modes (a, b and c respectively). All other message instances that belong to the
mode changing message type do not have any effect. Starting out, the protocol is
always in mode A, and each mode can only be changed into from a neighbouring
mode (A is only accessible from B, B is accessible from both A and C, while C is
only accessible if already in mode B). Now, suppose that only a and c is in the
input alphabet along with some other messages from the same message type (but
not b). In that case, c might be falsely discarded since it does not do anything
unless the protocol is in mode B, but there is no way to make that happen with
this collection of messages. This might be countered by increasing the number of
message instances that are added each time, but this increases the queries needed
to run the algorithm.

The second shortcoming is related to the generator function. As long as the
generator produces message instances at a uniform distribution from each subtype,
there is no problem; however, it is not trivial to write such a generator. For example,
if a generator is generating read messages that read from a specific memory address,
and fills the target address at random, the rate at which it will produce ”valid”
messages that result in a response with the read value and ”invalid” messages that
return an error because of an out of bound read depends on the memory layout
of the device that is being tested. This could lead to never discovering one of the
subtypes, or extending the runtime of the algorithm by selecting from only one
subtype for many rounds and only later finding the other.

To deal with these problems, we need to have access to previously recorded
traffic of the protocol that is being reversed – with information regarding resets. It
is not unrealistic to have access to such traffic since network captures are usually
used to reproduce the message types and semantics that are direct inputs to our
algorithm. Of course, the quality and diversity of this capture will directly affect the
results of the algorithm. We use the capture to find message instances that do not
belong to any subtypes we have previously found. To do so, after each round, we
compare the recorded communication with the predictions that the Mealy machine
of the last round would make from the inputs. We classify the messages in the
recorded traffic with the classifier, creating a sequence of message types, keeping
track of which were queries (from client to server) and which were responses (from
server to client). We feed the queries into a Mealy machine produced from the
output of the last round and compare the outputs with the responses. If there is a
difference, we know that a message in the communication up to that point is not
covered in the Mealy machine, so all the queries in the flow are added to the input
alphabet, and a new round is started. The modification is necessary because the
Mealy machines produced by the LM

+ algorithm in this setting expect message
subtypes as inputs, but the message classifier can only produce message types.

To be precise, we actually convert the output Mealy machine into a simple
Deterministic Finite Automaton (DFA) that takes inputs that are pairs of query
and response messages. The DFA accepts a sequence if it could be produced by
the Mealy machine. As a first step, we take the original machine and construct a
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machine that is the exact copy of the Mealy machine, except each transition in the
new Finite State Machine (FSM) is the pair of input and output message types in
the original Mealy machine (the subtype is stripped here and duplicate transitions
are discarded). Every state of this new machine is an accept state since every
transition that is present here is represented in the original Mealy machine. We
analyze the resulting machine to collect its alphabet. If the machine is incomplete
(i.e., there are states where there is no transition with all letters of the alphabet,
meaning there are some cases where the behaviour of the machine is not specified),
we fully specify it by inserting the missing letters as transitions to the FAIL state.
This is a new state that only has loop transitions, and is not an accept state. At
each state, a missing input-output pair means that the original Mealy machine
could not produce the given output for the given input in that state, so if this is
encountered, the sequence is not covered. While analyzing a message sequence the
first time the machine enters the FAIL state, the sequence up to that message pair
can be used as new message instances for the next round. The same is true if we
encounter a query/response pair that is not in the alphabet of the machine.

Now we have a machine that can handle the input we have, however, since we
stripped away the subtypes, it may be non-deterministic (there may be multiple
transitions from the same state with the same letter). This is not a problem,
as there are known algorithms to transform non-deterministic state machines into
deterministic ones. However, the resulting DFA may be exponentially large, which
may be a problem for big inputs. It may be useful to run a minimization algorithm
after determinization to get a minimal DFA.

One more improvement can be made by not completely stripping away the
subtype information in the first step, but rather adding a transition with only the
message type and also keeping the one with the subtype specified. The rest of the
steps of creating the DFA remain the same. This is useful because for some of the
messages, we can determine their subtype: these are the message instances that
were used in the last round of learning. If there is an exact match with one of these,
we can leverage this additional information.

5 Implementation and evaluation

We implemented the LM
+ algorithm and our algorithm in Python using the Net-

workX1 package to represent Mealy machines. We designed the implementation
to be modular, such that the different components are well separated and easy to
replace. This is important for future improvements and to be able to easily plug in
the functions that are different for each protocol (e.g., the message generator, the
message classifier, and the part of the teacher that handles communication with
the SUT).

1https://networkx.github.io/
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5.1 Evaluation on a simple test protocol

For test and illustration purposes, we constructed and used a simple protocol which
is illustrated in Figure 1. The protocol has 3 states: the starting state DISCON-
NECTED, the state BASE, where only get is a valid input, and the state WRITE,
where both get and write are valid inputs. The difference between get and bad get
is that the parameter (target address) of the get message is valid, while it is invalid
in a bad get, and likewise with write and bad write. Messages get and bad get are
of the same type, and similarly, messages write and bad write have the same type.
These two message types are used by the message generator to generate messages
with random addresses; no recorded traffic analysis was used in this test.

Figure 1: The Mealy machine of the simple test protocol

Figures 2, 3, and 4 show the inferred Mealy machine in different rounds after
deduplication. The request messages are postfixed with a number; this is a counter
showing how many times the message generator was called when the given message
was generated. The starting state is *, and every other state is labelled by the
messages that can be used in sequence to reach that state. In the first round, the
algorithm generated two instances of each message type; however, each instance
of the same message type produced the same behaviour, therefore, only one of
them was kept (see Figure 2). In the second run, a new instance was generated
from each message type, but these did not show new behaviour either, so they were
discarded too. In the third round, a variant of the write message type was generated
that resulted in an ok response, as opposed to the error response triggered by the
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Figure 2: Output of the first round

other variant of the write message, so this was kept (see Figure 3). Finally, in the
fourth round, the algorithm also finds a get message variant that results in different
response observed so far, hence it is retained (see Figure 4). After five rounds with
no new behaviour found, the algorithm stopped. As we can see in Figure 4, in
our example, the Mealy machine inferred is identical to the state machine of the
example protocol (except for the names of the states and message variants, of
course).

Figure 3: Output of the third round



Protocol State Machine Reverse Engineering 527

Figure 4: Output of the fourth round

5.2 Evaluation on Modbus

Modbus is a widely used industrial protocol that allows a client to read data from
and write data to the server, usually a Programmable Logic Controller (PLC). For
our tests, we used a custom implementation for both the client and the server.

Modbus messages begin with a fixed 8-byte header that is followed by a data
part of variable length. For the classifier, we only used the last byte of the header
as this byte determines the packet type. We constructed the generation function by
classifying messages in the recorded network traffic and selecting from them when
necessary, using the strategy described in Section 4.

In order to bridge the gap between real TCP communication and the abstract
message instances described until now, some additional artificial message types
were defined in the proxy that translates between the two. The first one is necessary
because, to some queries, the server might simply not reply. When a certain timeout
is reached without any response from the server, we conclude that it will not respond
at all and return a noresp message as the response. The other possibility is the
server terminating the connection because of some protocol violation, or because
of a DISCONNECT packet. To model the communication properly, the proxy
starts out with no open socket, and as long as there is no socket, it returns noresp
to all queries. We define the sockconn query message, which results in the proxy
opening a new TCP connection to the server and storing the socket – replacing the
previously stored socket, if there was one –, and returning sockconn.

The output of our algorithm for Modbus can be seen in Figure 5. The input
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Figure 5: Resulting Mealy machine for Modbus

letters on the Mealy machine are the various function codes of Modbus, postfixed
with a unique identifier to separate message subtypes. The output letters are the
function codes that the server replied with. The figure shows that from a protocol
state machine point of view, the Modbus protocol is very simple as it has two states:
in the starting state only the sockconn message results in any response, as there
is no connection to send or receive the other messages, and in the other state, the
server always responds to queries. For each request (function code), the response
has the same code as the query, except if an error is detected, in which case the
response code is the query code plus 0x80.

In our case, for request code 0x2a, we always get sent back an error because
it is an invalid function code, but for 0x4 there is a subtype for a correct version
of the query and one for the incorrect version. The network capture we used did
not contain invalid uses of the other function codes, so those are not present in the
produced Mealy machine.

Based on the open specification of the protocol [18], these results are 100%
accurate.
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5.3 Evaluation on MQTT

MQTT is a messaging protocol implementing a publish-subscribe model. Clients
can subscribe to channels and will receive all messages posted to these channels.
This protocol is ideal for evaluation because its simplicity and open specification
allow easy verification. There are also plenty of free implementations for servers
and client libraries, making it convenient to set up a test environment. For the
client-side, we used the Eclipse Paho™ MQTT Python Client2 library, and for the
server-side we used Eclipse Mosquitto3.

MQTT messages are comprised of a fixed header, a variable header and a pay-
load. We only used the first four bits of the fixed header for the classifier as these
bits determine the packet type according to the documentation. The second byte
was used as well, to determine the length of the message, in case more than one mes-
sage was sent in a single IP packet. For the classifier and the generation functions,
we have taken the same approach as in the case of Modbus, with the exception
that a third artificial message that is specific to MQTT was also defined. This
message, called pubtrigger, simulates other clients connected to the MQTT server,
and triggers a publish to one of the channels.

The MQTT protocol has three different Quality of Service (QoS) levels that
govern how messages are published. As the level of QoS increases, so do the num-
ber of roundtrips and the confidence of the message reaching its destination. We
used only messages with QoS 0, and in separate tests, we generated traffic that used
one, two and three channels for posting messages. We configured the MQTT server
with two different username and password combinations and forbade anonymous
connections. Then we performed randomized actions through the client library by
selecting from connecting, publishing, subscribing, unsubscribing, and disconnect-
ing from the server. The channel and the message, where applicable, were also
randomly selected. The generated network traffic was captured and used for the
construction of the generation function and to prioritize the selection of message
instances. As it can be seen on final results of the algorithm (Figures 6 and 7), at
this level of QoS, the protocol is relatively simple: one can subscribe and publish
to any channel after connecting with the correct credentials.

The outputs produced by the algorithm are correct based on the MQTT protocol
specifications [4], taking into account that we only used a subset of the possible
functions of the protocol.

We can see that membership in the various channels is entirely independent.
As the number of potential channels increases, so do the number of states needed
to keep track of how many of them the client is currently subscribed to. One state
is necessary for each combination of channels that are joined, meaning two states
when only one channel is used (the client is either subscribed or not), four with two
channels (subscribed to none, either one, or both channels), and eight if there are
three channels. Generally, the formula is 2n, where n is the number of channels that
are used. After reaching a high enough n, this is not very useful as it makes the

2https://github.com/eclipse/paho.mqtt.python
3https://github.com/eclipse/mosquitto
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Figure 6: Resulting Mealy machine for MQTT with a single channel and QoS 0

analysis of the Mealy machine difficult because of its size, and it does not provide
any new information. This is a limitation of using Mealy machines to represent the
protocol. To counteract this problem, the number of such possible combinations
should be kept to a low number. In our case, this means keeping the number of
possible channels low.

We came up with a method that may help find such independent message sub-
types. First, we define a projection of a Mealy machine on a set S of input letters.
For all input letters in the input alphabet that are not in S, we ignore the output
letter. In the practical implementation, we modify the output on the transitions
that contain these letters, we change the output letter to a fixed value, in our case
noout. After this, we run a minimization algorithm on the new Mealy machine, and
the result will be the projected machine. During the minimization, all input letters
that are not in S and do not influence the outputs of the transitions that contain
letters that are in S completely disappear. At first, we project to single letters of
the input alphabet, and then for each of these projections, we try to add another
input letter to S in addition to the original one. If the resulting Mealy machine
has the same number of states as the previous projection, we keep the letter in S;
otherwise we remove it. After repeating with all input letters, we can take all the
projections with a different set S and analyze them. These Mealy machines can
be used together to replace the original Mealy machine, giving the inputs to all of
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Figure 7: Resulting Mealy machine for MQTT with two channels and QoS 0
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Figure 8: Results of the projection generation algorithm on the Mealy machine of
MQTT with three channels with various sets of S. Each of the last three machines
corresponds to a single channel. The figure is intended to illustrate the complexity
of the resulting state machines only, the reader is not expected to be able to read
the labels of the states or transitions.
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them, and taking the output from either one which can produce it (if either Mealy
machine does not have a transition with the particular letter at its current state,
it should just do nothing). For the projections produced in this manner for QoS
level 0 and three channels, the Mealy machine can be seen in Figure 8. The three
machines in the bottom row can be grouped as implementing the same logic, only
with different subtypes, and indeed, each corresponds to a single channel.

When testing with higher QoS, the same problems come up as with using multi-
ple channels, but this time around the state of publishing is the culprit behind the
state explosion. The above-described technique did not work so well in separating
any independent parts of the machine.

6 Conclusion

In this work, we build on Shahbaz and Groz’s L+
M algorithm (an adaptation of

Angluin’s L∗ algorithm) and make use of captured network traffic as well as live
queries to a known good protocol implementation in order to infer the state ma-
chine of an unknown protocol. We assume that message types and semantics have
already been reverse engineered, and we use this information to intelligently and
efficiently choose the possible inputs to use when querying the system under test.
We demonstrate our methods on an example protocol created for this purpose,
in addition to two real-world protocols, Modbus and MQTT. We show that our
approach works by comparing the resulting automata to the original specifications.

In the future, we plan to investigate more complicated Mealy machine decom-
position algorithms to produce hierarchical Mealy machines that can represent the
protocol state machine more concisely. In addition, we aim to measure and further
optimize input selection strategies.
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[9] Cho, Chia Yuan, Babić, Domagoj, Poosankam, Pongsin, Chen, Kevin Zhijie,
Wu, Edward XueJun, and Song, Dawn. MACE: Model-inference-assisted con-
colic exploration for protocol and vulnerability discovery. SEC’11 Proceedings
of the 20th USENIX Conference on Security, pages 139–155, 2011.

[10] Comparetti, Paolo Milani, Wondracek, Gilbert, Kruegel, Christopher, and
Kirda, Engin. Prospex: Protocol specification extraction. 30th IEEE Sym-
posium on Security and Privacy, pages 110–125, 2009. DOI: 10.1109/SP.

2009.14.

[11] Cui, Weidong, Kannan, Jayanthkumar, and Wang, Helen J. Discoverer:
Automatic protocol reverse engineering from network traces. SS’07 Proceed-
ings of 16th USENIX Security Symposium on USENIX Security Symposium,
2007. https://www.usenix.org/conference/16th-usenix-security-

symposium/discoverer-automatic-protocol-reverse-engineering-

network.

[12] Cui, Weidong, Paxson, Vern, Weaver, Nicholas C., and Katz, Y H.
Protocol-independent adaptive replay of application dialog. In Network
and Distributed System Security Symposium, 2006. https://www.ndss-

symposium.org/ndss2006/protocol-independent-adaptive-replay-

application-dialog/.
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Component-Based Error Detection of P4 Programs∗

Gabriella Tótha and Máté Tejfelb

Abstract

P4 is a domain-specific language to develop the packet processing of net-
work devices. These programs can easily hide errors, therefore we give a
solution to analyze them and detect predefined errors in them. This paper
shows the idea, which works with the P4 code as a set of components and
processes them one by one, while calculating their pre- and postconditions.
This method does not only detect errors between the components and their
connections, but it is capable to reveal errors, which are hidden in the middle
of a component. The paper introduces the method and shows its calculation
in an example.

Keywords: P4, error detection, component

1 Introduction

We introduce a component-based formal method to detect errors in P4 programs.
The antecedent of the method is an error detection, which is based on a rule system
[13]. With this idea, we approach the detection from backward and process the code
from the smallest units to the biggest ones. This solution can not only check the
error possibilities but give additional information about the code for the developer.
The prototype of the tool, which is based on the method, is being implemented1.

P4 programs We work with the P4 language [5, 2, 6, 1], which is a domain-
specific programming language to develop the packet processing of network devices.
When a packet arrives at a device as a bitstream, the P4 program gets that bit-
stream as the input and starts to work with it. In Figure 1 there is an example
program. P4 programs work with the header information of a network packet. The
developers can define what kind of header information they work with (rows 1-16).
P4 programs have three main processing parts: parser, modifier, and deparser. The
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Figure 1: Example P4 code

parser (rows 18-27) gets the input and extracts the header information from the
packet. The modifier part (rows 28-49) modifies the header information – based on
match-action tables, the content of which comes from an external controller – and
after the modification, the deparser (rows 51-54) creates the new packet with the
calculated header information to forward it to the network.

Software-defined networks have two main parts: the control plane – which con-
trols the network traffic – and the data plane – which describes the process of a
network packet. As we can see from the example, P4 programs can define the
data plane. Therefore, the behavior of the programs depends on the control plane,
which cannot see from the P4 code – for example, there is a program structure, the
match-action table, which is only a frame in the code, and its content is filled by
an external controller during the execution.

2 Related Work

There are different approaches to analyze P4 programs.

There are tools, which work with the previous version of P4 – the P414 – al-
though the main concept of these projects is similar to the new version. One of
them is P4V [9], which deals with errors caused by reading or writing of invalid
headers, the arithmetic overflow, and proper accessing of header stacks. It cre-
ates an annotated program from the input source and verifies it by checking the
correctness of a first-order formula, which describes the execution of the program.

Vera [11] is another one, which works with symbolic execution, which starts with
the generation of the parsable input packet, and then checks all possible execution
path with the Symnet [12] static analysis tool. They investigate similar error cases,
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for example, header validity, implicit drops.
Assert-P4 [8] also works with P414, and uses symbolic execution too, although

they check program-specific errors, which can be described by the developer. There-
fore it can check errors, which can not be detected only from the simple P4 source,
but from an annotated P4 code. It translates the annotated P4 code to a C-model,
and then it checks the different properties, which were given in the code, with
symbolic execution.

There are other tools, which work with the actual version of P4 – the P416.
There is an approach, which does data flow analysis of P4 programs [4]. In this
research, they used an extended version of a control-flow graph, the def-use graph.
For all possible execution paths, they execute the data flow analysis, which collects
the usage of the different variables and header information. Based on this collected
data, their solution can detect errors like using an undefined field.

Although the previous projects are based on static analyzes, there are other
solutions too. P4RL [10] does runtime verification, therefore it is able to analyze
behaviors which are come from the control plane. The behavior of the network
should be described by the user, therefore it can check if all of them are correct
during the execution.

Another approach is SafeP4 [7], which is a domain-specific language, which was
created to develop correct P4 programs.

Our solution works with the new version of P4 – the P416. It is a static analyzer
method, which uses only the P4 code as an input. Based on the code, we can extract
the specification of the program, as pre- and postconditions, and we detect errors by
analyzing the pre- and postconditions of the different components of the program
and checking their relationship with the specification of the program. We detect
errors, which can be caused by the usage of invalid header and uninitialized fields.

3 Motivation

P4 gives a new possibility for the protocol-independent development of the pro-
grammable switches. However developers can create more flexible programs, it is
easier to make a mistake in them. That is the reason, why we need a tool, which
can detect errors in our code.

As it was mentioned in the Introduction, the P4 programs do not define the
whole behavior of the network, but a part of it. Therefore, some verification tools
expect annotated programs and additional information about the planned behavior
of the program, and they can check if those properties are correct or not. We would
like to detect errors based on only the raw P4 code, therefore the developers will
not have any other job besides developing the P4 program.

We would like to create a tool, based on our theoretical results, to help the
developers to write correct P4 programs. In this first version of the method, we
concentrate only on those errors to detect, which are caused by using invalid headers
and uninitialized fields. Using them can cause undefined behavior by unknown
values. However, we still work with the subset of the P4 language, but we plan to



540 Gabriella Tóth and Máté Tejfel

extend the rule system to work with a bigger language and detect more error cases.

This method is based on the precondition and postcondition of the program
units. As we see in Figure 1, there are different programming structures in P4:
actions, tables, control functions. It works with them one by one, and calculates
condition pairs for each of them, starting from the smallest ones – like actions –
finishing with the biggest ones – like control functions.

4 Method of detection

The input of the method is the source code that will be checked. The whole process
contains three main phases: the Pipeline Analyzer, the Parser/Deparser Analyzer,
and the Final Checker. The Pipeline Analyzer has two parts: the call graph, and
the Condition calculator. The Pipeline Analyzer checks all of the components –
actions, tables, and control functions – in the P4 source and calculates pre- and
postcondition pairs for them while checking their correctness. The Parser/Deparser
Analyzer works with the parser – gets the main precondition from it – and the
deparser – gets the main postcondition from it. The Final Checker works with the
calculated pieces of condition and checks that if every main precondition matches
with at least one needed precondition. If the matching is not correct then it means
that there are some errors in the code, because after the given parsing – which is
described by the main precondition – there is not any execution path, which could
work properly. However, if the matching is right in the preconditions then it checks
the same with the postconditions.

Figure 2: Model of the method
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4.1 Pipeline Analyzer

The analyzer consists of a call graph and the Condition Calculator. The call graph
contains the relationship of the call between the control functions, tables, and
actions. Based on the graph it will make an order of these components to be
processed by the Condition Calculator. The Condition Calculator goes through
all of them and creates their pairs of pre- and postcondition, which describes the
correct working of the program.

This phase processes the modifier part of the P4 code, and calculate pre- and
postconditions for the different components. The result of this phase shows the
claim – what kind of header information it needs to work well – and the offer-
ing – what kind of header information it will create after the processing – of the
component.

Call Graph The call graph handles the modifier part of the input. Its vertices
are the components of this part – the control functions, match-action tables, and
actions – and the directed edges describe a calling relation between them.

The processing of the modifier part, in this version of the method, is the simplest
packet processing path, where there is only an ingress pipeline. Therefore there is
an initial vertex, which is the main ingress control function. The forwarding steps
to process the whole control flow and whenever a component calls a component –
if that has not been added to the graph as a vertex, it will create a vertex for it –
and will give an edge from the vertex of the calling component and the vertex of
the called one.

After the processing of the code, it will create a list of the components. This list
starts with those components, which do not depend on any other components, –
they have no outgoing edges –, it continues with components, which calls the com-
ponents, which have already been added to the list, until the last two components,
which will be the main function of the ingress. In the call graph there can not be
any loop, because of the specification of the P4 language [6], which defines that
neither direct recursion nor mutual recursion can be between actions and controls.

Condition calculator The list of the components gives a hint for the Condition
Calculator in which order it should process the components, therefore whenever a
command of a component’s calling is processed, the condition of that component
will have been calculated. During the processing of the components, it uses a rule
system, which will calculate a ConditionState.

ConditionState ∈ {name : [(pre : {valid : [ids], invalid : [ids]},
post : {valid : [ids], invalid : [ids]})]}

Figure 3: Condition State Describer

The type of the ConditionState – Figure 3 – is a set of pairs, where a pair
shows the name of the component and its list of pre- and postconditions as pairs.
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Every condition consists of a valid and an invalid container, both of them contain
a list of headers’ and fields’ names. During the method, we use the valid word as
a synonym of the property of initialized fields.

�: (ConditionState×Name× Program) → ConditionState

Figure 4: Type of #

The Condition Calculator is defined by the operator #, the type of which can
be seen in Figure 4. It works with a known ConditionState, a name of a component
– the one, that is processed when it uses this rule – and the program code. The
rules are based on the structure of the program, therefore they have a deterministic
usage. In this version of our method, we only work with the main structures of the
program, therefore the rules only use a subset of the P4 language.

We define the behavior of the Condition Calculator with a rule system. It uses
rewriting rules – we have an expression in the bottom and we rewrite it to the top
of the rule. In Figure 5, there are the basic rules, which can be used for the subset
of the P4 program. The rules for the assignment, sequence, table, skip, branch,
table calling, and validity settings.

The preprocessing of the usage of the rules is to create the initial ConditionState.
It is an empty state, where all of the components are stored, but all of them have
only one condition, which says that the drop is invalid in the postcondition. The
drop is a unique name in the conditions, which shows if the packet is dropped – it
is valid, if it is dropped, and invalid if it is not dropped.

In the rules, we use some notations:

• (A ‖ B) shows a rewriting from A to B. If the rewrote element has already
been in a set, then it will be deleted from that place, and it will be only in
the new set.

• ids means the type of the identifications. For example {ipv4, ipv4.ttl} is a set
of ids i.e. {ids}.

• Ids is a function, which gives the names from an expression. For example the
Ids of the ”ipv4 .ttl−1” is a {ipv4, ipv4.ttl}, which contains the identification
of the header and the field of the expression.

• newIds is a function, which gives a subset of the Ids. These elements have
not been used in any condition state.

• oldIds is a function, which gives a subset of the Ids. These elements have
already been used in a condition state.

• fields is a set of the identification of the fields of the given expression.

• header is a set of the identification of the headers of the given expression.
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• C(conditionState, condition) calculates those pairs from the condition state,
which fit to the condition.

• H.n shows the pre- and postcondition pairs of the component named n in the
Condition State H.

• Empty(H.n) creates an empty block for the new component.

• V : {ids} → Bool; V (I) = ∀i ∈ I(H.n.post.V alid(i)). It checks if every
header, field or variable identification is valid in the postconditions of the
actual component – the examined ConditionState H and component n come
from the rule.

• A∪̇B ::= ifcond(A.post =:= B.pre,A.pre,A.post×B.post ↑) and

A %B ::= ifcond(A.pre =:=, A.pre×B.pre,A.post×B.post ↑), where
* ifcond(condition, precondition, postcondition) - it checks if the given
condition is true. If it is true, then it creates a pre- postcondition pair,
where the precondition is defined in the second and the postcondition is
defined in the third argument.

* =:= checks if two given conditions fit or not.

* × merges the given conditions. If there is an ↑ in one side of the merging
it means to use that condition as a prior one – if there is a header
information, which appears in both conditions, the condition with the ↑
will be stored.

The rules The rules are based on the structure of the program, therefore
the calculation is deterministic. On the sides of the rules, we can see two types
of possible calculations. In the rules, there is the form H,n # S, where H is a
ConditionState, n is the name of the processed component and S is the Program
that it processes. In one case, these rules can be recursively rewritten by the same
form of expression – like in Rules 2, 6 – or in the other case it can be rewritten
with a ConditionState – as in Rules 1, 3, 4, 5, 7, 8.

Rule 1 shows that the Skip does nothing, therefore the result will be the calcu-
lated condition state.

Rule 2 defines the processing of the sequence construct with composition – first,
it processes the S1 program, and from the result of this calculation it processes the
S2 program.

Rule 3 describes the assignment. Here we can see a side condition of the rule,
which says to check if the identification of the expression expr – right side – and
the header of the e – left side of the assignment – is valid. The side condition in
this usage means, it will continue the calculation with those pairs of conditions,
which are correct based on the side condition – in the pairs of conditions, where
the side-condition is false, the process shows an error case. If the condition is true
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H
1.

H,n # Skip

(H,n # S1) # S2
2.

H,n # S1;S2

H[H.n||H.n[pre→ V alid(expr.newIds, e.newIds.header),

post→ V alid(e.Ids, expr.newIds)]]
3.

H,n # e = expr

if V (expr.oldIds)&V (e.oldIds.header)

H[H.n||H.n[post→ {V alid(h), Invalid(h.fields)}]]
4.

H,n # h.setV alid()

H[H.n||H.n[post→ Invalid(h, h.fields)]]
5.

H,n # h.setInV alid()

(H[C(H.n, cond)]), n # S1 ∪ (H[C(H.n, !cond)]), n # S2
6.

H,n # if (cond) S1 else S2

H[H.n||
n⋃

i=1

(H.n[pre→ V alid(k.Ids), post→ V alid(k.Ids)] % ai)]

7.
H,n # keys : k actions :{a1, ..., an}

H[H.n||(H.n ∪̇ H.table name)]
8.

H,n # table name.apply()

Figure 5: Definition of # in a subset of the language

then it refreshes the condition state of the processed component by giving the new
identifications with a valid property to the precondition and sets them valid in the
postcondition too – because this command has not changed them – and sets the
left side of the assignment to valid too – because it has just got a new value.

Rule 4 and 5 describe the validity setting. These functions set the validity of the
header to valid or invalid – depends on the called function setValid() or setInvalid()
– and set all of the fields to uninitialized.

Rule 6 gives the calculation of the branches. It needs to work with two different
execution path – one where the condition is true, and one where it is false. If
we check the actual condition state, it may contain several pairs of pre- and post-
condition, therefore it describes both of the possible executions. In this rule, the
calculation divides into two ways, these are calculated separately and their result
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will be joint.

Rule 7 calculates the conditions for the tables. It is important for the tables
to read valid headers and initialized fields as keys. Although when this rule is
used, we process a fresh component, therefore it does not need to use any side-
condition, because this condition will be described in the precondition. First, it
creates the precondition, which contains the condition of valid keys, and then it
uses the precalculated conditions of called actions and merges them into several
pairs of conditions. It checks if the preconditions of the actions fit the precondition
of the table, and stores the merged conditions – uses the merged preconditions and
the merged postconditions, where the postconditions of the actions are the stronger.

Rule 8 describes a table calling. In this case, the conditions for of the table
has already been calculated, therefore it only needs to merge them to the actual
conditions. In this merge, it has to check if the actual postcondition and the
precondition of the table fit, and when it is correct it can merge them – uses the
actual preconditions and merge the postconditions, where the postcondition of the
table is the stronger.

4.2 Parser/Deparser Analyzer

The Parser/Deparser Analyzer is based on our previous paper [13]. It uses the
parser to describe the main preconditions and the deparser to defines the main
postconditions of the whole program. Therefore it describes the possible header
information of the input and the output packets. The result of this is not pairs of
conditions, but sets of pre- and postconditions. These conditions are not connected
– are not in pairs –, they describe that what kind of initial states we would like to
start our program and which final states are proper for the end.

There can be more main pre- and postconditions because parser and deparser
can contain branches. In the main postconditions besides the conditions from the
branches, there is another unique condition, which describes the case, when the
packet is dropped. In this case, the drop is valid, and the validity of the other
header information is irrelevant.

4.3 Final Checker

The task of the Final Checker to verify if the expected main pre- and postconditions
of the program – which come from the Parser/Deparser Analyzer – and the actual
pre- and postconditions fit well to each other. For this calculation we can generate
a formula – Figure 6 from the calculated conditions and check if the formula is
valid.

∀Pr ∈ MainPre, ∀p ∈ pipeline condition ,
∃Po ∈ MainPost : ((Pr ⊃ p.pre) ∧ (p.post ⊃ Po))

Figure 6: Formula for verification
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It checks if the program from every initial state – which are states, where the
precondition is true – there is a final state – which are states, where the postcon-
dition is true – to reach. Therefore it checks for all precondition if they have at
least one postcondition to fit based on the condition of the components. These
components describe the pre- and postconditions for the correct working of the
component. It checks, if any of the preconditions of the biggest component – in
this version, it is the main ingress control function – is correct based on the main
precondition. If there is one, then it checks the postcondition of it and checks the
correctness of the actual postcondition.

If there is an actual precondition, which does not fit the main precondition,
it means, there is an execution path, which will not work properly. If there is
an actual precondition, which fits a main precondition, but the postconditions are
not fitting, it means, during the calculation of that execution path, there will not
be any problem, but the final state will not be correct for the specification of the
program – in this case, the deparser of the program.

4.4 Error detection cases

The method can detect error cases in four different ways.

Condition Calculator It can detect errors, those are caused by the code of a
component or can detect if the components are not matching. Three examples can
be seen in Figure 7.

In the left one, act1 and act2 contains inside errors, which come from the bad
usage of the method setValid() and setInvalid(). The side-effect of both methods
is to change the uninitialized fields of the header. Therefore in the first case, when
it would like to read the right side of the assignment, it will get a valid header and
uninitialized field, so the read value is unknown. In the second case, on the left
side of the assignment, it would like to write a field of an invalid header, which is
an error case too. Both of them will be detected when it uses Rule 3, when the
side-condition will be false in the process of the assignment.

On the right side of Figure 7, there is an example of the components, which
are not matching. There are two components: the table t and a control function.
The precondition of the table t is: V alid(ipv4, ipv4.dstAddr), because it reads the
ipv4 .dstAddr field, so it need a valid header and initialized field. Although the true
case of the branch says that the ipv4 is invalid – the postcondition of the control
function stores it. Therefore when it uses Rule 8, it will not be able to merge
the conditions, because the precondition of the table and the postcondition of the
control function will not fit.

Final Checker The other case, when errors can be detected, is the process of
the Final Checker. It can detect if the specification of the program does not fit the
actual conditions i.e. starting the program from any initial state – where the main
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Figure 7: Error cases in Condition Calculation

precondition is true – it can reach one of the final states – where the postcondition
is true. In this phase, there can be two types of errors.

The first case is when the preconditions – of the main and the actual conditions
– are matching, but there is no main postcondition, which fits the actual postcon-
dition. In this case, although the program can start the execution from a good
state, it will reach a state, which is not expected by the deparser – the calculated
header information will be not correct for the program.

The second case is when there is no matching actual precondition for the main
precondition. This means that starting from that input header information, the
program will reach an error, the execution will be incorrect.

5 Case study

Figure 1 is an example P4 program which will be used to show an example usage
of the method.

Figure 8: Call graph of the example program

Pipeline Analyzer First it creates the call graph. The graph of the example can
be seen in Figure 8. There is only an ingress pipeline – MyIngress –, which calls
one table – t– , which can call one of the three actions – ipv4 create1 , ipv4 create2
and drop. Based on the graph it can create the following list to define the order of
the processing:
[ipv4 create1 , ipv4 create2 , drop, t ,MyIngress].
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{ MyIngress : [ (
pre : { va l i d : [ ] , i n v a l i d : [ ] } ,
post : { va l i d : [ ] , i n v a l i d : [ drop ] } ) ] ,

t : [ (
pre : { va l i d : [ ] , i n v a l i d : [ ] } ,
post : { va l i d : [ ] , i n v a l i d : [ drop ] } ) ] ,

i p v4 c r e a t e 1 : [ (
pre : { va l i d : [ ] , i n v a l i d : [ ] } ,
post : { va l i d : [ ] , i n v a l i d : [ drop ] } ) ] ,

i p v4 c r e a t e 2 : [ (
pre : { va l i d : [ ] , i n v a l i d : [ ] } ,
post : { va l i d : [ ] , i n v a l i d : [ drop ] } ) ] ,

drop : [ (
pre : { va l i d : [ ] , i n v a l i d : [ ] } ,
post : { va l i d : [ ] , i n v a l i d : [ drop ] } ) ] }

Figure 9: Initial ConditionState

Based on the order of the list, the Condition Calculator starts the calculation
from the expression, which is in Figure 10, where Empty is an initial ConditionState,
which can be seen in Figure 9, which is mentioned in section 4.1.

(((Empty, ”ipv4 create1” � ipv4 create1), ”ipv4 create2” � ipv4 create2),
”drop” � drop), ”t” � t), ”MyIngress” � MyIngress

Figure 10: Initial expression

Condition calculator The action ipv4 create1 consists of sequences – Rule
2 – of two assignments – Rule 3 – and one setting of validity – Rule 4. Therefore
there will be three rewritings of the conditions. When it starts the processing,
there is only one pre- and postcondition pair, where the only condition says that
the drop is invalid. The process of the first assignment – hdr .ipv4 .srcAddr =
hdr .ethernet .dstAddr – does not contain any side-condition, because it has just
started the calculation. Therefore it will add the ethernet , ethernet .dstAddr and
ipv4 to the Valid conditions in both of the pre- and postcondition – because it
would read the right side, and it can only give value to a field of a valid header in
the left side of the assignment. During the calculation, the postcondition describes
the actual state. Therefore we will try to continue the process with the second
assignment – hdr .ipv4 .dstAddr = dstAddr . The side-condition checks, if the header
of the written field is valid – ipv4 is valid in the actual state or in the postcondition
–, and if the read expression is valid – dstAddr is the parameter of the action,
therefore the side-condition is not working with it. The validity is correct, so it
adds the ipv4 .dstAddr to the Valid side of the postcondition – because after the
assignment, its value will be initialized. After the assignments, the program tries
to set the validity of the header ipv4 to valid. It changes only the postcondition by
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make all of the fields of ipv4 – ipv4 .srcAddr , ipv4 .dstAddr and ipv4 .ttl – invalid.

The calculation of the other actions similar to it, their results can be seen in
Figure 11.

i p v4 c r e a t e 1 : [ (
pre : {

va l i d : [ e thernet , e the rne t . dstAddr , ipv4 ] ,
i n v a l i d : [ ] } ,

post : {
va l i d : [ ipv4 , ethernet , e the rne t . dstAddr ] ,
i n v a l i d : [ ipv4 . t t l , ipv4 . srcAddr , ipv4 . dstAddr , drop ] } ) ] ,

i p v4 c r e a t e 2 : [ (
pre : {

va l i d : [ e thernet , e the rne t . dstAddr ] ,
i n v a l i d : [ ] } ,

post : {
va l i d : [ ipv4 , ipv4 . srcAddr , ipv4 . dstAddr ,

ethernet , e the rne t . dstAddr , drop ] ,
i n v a l i d : [ ipv4 . t t l ] } ) ] ,

drop : [ (
pre : {

va l i d : [ e thernet , e the rne t . dstAddr ] ,
i n v a l i d : [ ] } ,

post : {
va l i d : [ drop , ethernet , e the rne t . dstAddr ] ,
i n v a l i d : [ ] } ) ] ,

Figure 11: Conditions of the actions

After the actions, it processes the table t . It has one key, so first, it sets its
header ethernet and field ethernet .dstAddr to Valid, as a precondition, because the
program would like to read them – and of course, as a postcondition too, because
that shows the actual condition. Then it checks and merges its conditions and the
conditions of the actions together. Therefore there will be three pairs of conditions
– because of the three actions. The precondition of action ipv4 create1 matches
with the newly defined precondition of the table, therefore it can create the merged
pre- and postcondition, where the condition of the action is the stronger one – in
this case there is no conflict, so the condition pair of the action will be one of the
table conditions.

The process of the other actions is similar. Their preconditions fit the precon-
dition of the table, therefore it can merge their conditions. The conditions of the
ingress MyIngress are the same as the table because it just simply calls it. The
conditions of the table and ingress pipeline can be seen in Figure 12.

Parser/Deparser Analyzer The specification of the program is calculated from
the parser and deparser. Both the parser and the deparser are really simple. None
of them contains any branch, therefore there is only one possible precondition and
two postconditions – Figure 13.
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1 . [ (
2 . pre : {
3 . v a l i d : [ e thernet , e the rne t . dstAddr , ipv4 ] ,
4 . i n v a l i d : [ ] } ,
5 . post : {
6 . v a l i d : [ ipv4 , ethernet , e the rne t . dstAddr ] ,
7 . i n v a l i d : [ ipv4 . t t l , ipv4 . srcAddr , ipv4 . dstAddr , drop ] } ) , (
8 . pre : {
9 . v a l i d : [ e thernet , e the rne t . dstAddr ] ,
10 . i n v a l i d : [ ] } ,
11 . post : {
12 . v a l i d : [ ipv4 , ipv4 . srcAddr , ipv4 . dstAddr ,
13 . ethernet , e the rne t . dstAddr ] ,
14 . i n v a l i d : [ ipv4 . t t l , drop ] } ) , (
15 . pre : {
16 . v a l i d : [ e thernet , e the rne t . dstAddr ] ,
17 . i n v a l i d : [ ] } ,
18 . post : {
19 . v a l i d : [ e thernet , e the rne t . dstAddr , drop ] ,
20 . i n v a l i d : [ ] } ) ]

Figure 12: Conditions of table t and ingress pipeline MyIngress

The precondition describes the case when the parser extracts only the ethernet
header, therefore this header and all of its fields will be valid, and the other header
ipv4 and its fields will be invalid.

There can be two postconditions. One, which is defined by the deparser, where
the packet is not dropped and both of the headers ethernet and ipv4 and all of
their fields are valid – because the program will use their value for the new packet.
The other case is when the packet is dropped.

Pre : [{
Valid : [ e thernet , e the rne t . a l l F i e l d s ( ) ] ,
InVal id : [ ipv4 , ipv4 . a l l F i e l d s ( ) , drop ] } ]

Post : [{
Valid : [ e thernet , e the rne t . a l l F i e l d s ( ) , ipv4 , ipv4 . a l l F i e l d s ( ) ] ,
InVal id : [ drop ] } ,

{ Valid : [ drop ] , InVal id : [ ] } ]

Figure 13: Specification of the program

Final Checker There is only one main precondition, therefore it needs to check
if the possible actual preconditions – the preconditions of the ingress pipeline
MyIngress – fit, then their postcondition fits one of the main postconditions.

The main precondition assures only valid ethernet header information, although
the first condition pair – rows 2-7. Figure 12 – of the actual condition needs a valid
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ipv4 header too. The first part of the formula is false, therefore the method can
detect an error, which shows that this execution path of the program will not be
able to execute well, because of the invalid ipv4 header.

In the second condition pair – rows 8-14. Figure 12–, the precondition fit to the
main precondition, therefore it needs to check if the actual postcondition assures
one of the main postconditions. The actual condition describes an execution when
the packet was not dropped, therefore only the first main postcondition can be
good, but we can see that in the actual postcondition the ipv4 .ttl field is invalid,
but the main postcondition needs a valid one. It is another error case, which is
detected and it shows the case when the execution is correct, but the final header
information which is calculated does not match with the expected result by the
deparser.

In the third condition pair – rows 15-20. Figure 12, the preconditions fit, and
this is the case when the packet was dropped during the execution, therefore its
postcondition will ensure the second main postcondition. This path shows a correct
execution path.

6 Evaluation

We created a prototype for the Condition Calculator. The critical part of the
implementation is the calls of the tables because this is the step when more and
more condition states can be defined. Therefore Figure 14 shows the runtime based
on different numbers of table calls. During the measurement only one table was
used, which has 5 action calls - one NoAction, which is like a skip program; one
drop action, which only signs the package to drop it; and three others, all of them
contain sequences of simple assignments.

Figure 14: Runtime based on different number of table calls

In the graph of Figure 14, the vertical information is the number of table appli-
cations, and the horizontal data is the runtime in milliseconds. We can see three
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different lines because the implementation of the calculator is separated into two
parts: a pre-calculator, which only prepares the obtained information; and the main
condition calculator, which uses the prepared data to create the conditions. In the
graph, the three different lines show the runtime of the pre-calculator (blue), the
main calculator (orange), and the full time of them (grey). This graph shows the
worst cases when all of the calculated conditions are different, therefore the number
of the conditions is equal to the number of the actions to the power of the number
of the table applications i.e. in our table there were 5 actions, and when we applied
this table five times, then we could get 3125 conditions. However, we can see that,
when we used 10 table applications, the runtime was only 13 seconds.

This presented data only give the worst runtime of this calculation, but when
we use a normal P4 code then most of the conditions are the same, do the program
will not work with this number of conditions.

7 Summary

In this paper, we introduced a formal method to detect errors in P4 programs by
checking the pre- and postconditions. It has three main analyzers: the Parser/De-
parser Analyzer, the Pipeline Analyzer, and the Final Checker. The method only
works with the P4 source, therefore it extracts the specification of the program from
the parser and deparser of it – by the Parser/Deparser Analyzer. The Pipeline An-
alyzer checks the definition of the pipeline, and calculated condition pairs for the
different components of it – actions, match-action tables, and control functions. It
can detect four different types of errors, which can be caused by the incorrect usage
of invalid headers and uninitialized fields or components, which do not match.

Future Work The method is a base of a full solution for P4 verification. Until
this goal, we need to extend the checked subset of the P4 language, therefore we
will be able to work with more programs.
When both of our approach is ready – this, component-based and our previous
idea [13] –, then it could be an interesting work to check which one is better in the
specified error detections, and combine them for a more optimized solution.
P4 programs can use different architectures. In this approach, we only showed the
Protocol Independent Switch Architecture, which use a single pipeline, but there
are other architecture models – for example Portable Switch Architecture [3] which
can work with more pipelines. Our solution will be able to used as a part of a
research, which checks if a P4 program is correct for a given architecture, while
checking the correctness of a pipeline.
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Footvector Representation of Curves and Surfaces∗

Gábor Valasekab, Csaba Bálintac, and András Leiteregad

Abstract

This paper proposes a foot mapping-based representation of curves and
surfaces which is a geometric generalization of signed distance functions. We
present a first-order characterization of the footvector mapping in terms of
the differential geometric invariants of the represented shape and quantify the
dependence of the spatial partial derivatives of the footvector mapping with
respect to the principal curvatures at the footpoint. The practical applica-
bility of foot mapping representations is highlighted by several fast iterative
methods to compute the exact footvector mapping of the offset surface of
constructive solid geometry (CSG) trees. The set operations for footpoint
mappings are higher-order functions that map a tuple of functions to a single
function, which poses a challenge for GPU implementations. We propose a
code generation framework to overcome this that transforms CSG trees to
the GLSL shader code.

Keywords: computer graphics, constructive solid geometry, signed distance
function

1 Introduction

This paper introduces a foot mapping based representation of shapes. The footpoint
is the closest point of the shape boundary to an arbitrary query position and the
footvector is the displacement from the latter to the footpoint. The proposed
representation leverages the footvector mapping of the encoded shape and it is a
geometric generalization of signed distance functions.

We present the theoretical background of this approach in Section 3 and show
how the differential geometric invariants at the footpoint govern the development
of the footvector mapping in space. More specifically, we highlight the connection
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between the first-order behaviour of the footvector mapping and the offsets of the
shape and, as such, the principal curvatures. These results are presented for curves
in the plane and surfaces in space.

Following the theoretical discussion, we introduce a method to create CSG
models with precise offset operations using footvector mappings. In particular,
we present two iterative algorithms on foot mappings in Section 4 and Section 5
to compute the footvector function of the intersection of two shapes. We discuss
the robustness/speed trade-off between these in Section 1 where we apply these
methods to the offset of intersections.

In general, implicit surface representations (g : R3 → R) usually describe ’inside’
region as the set of negative values ({g < 0} := {x ∈ R3 : g(x) < 0), and the
’outside’ as the positive {g〉0} ⊆ R3 region of space. Set operations can be defined
with minimum and maximum operations on the argument implicit functions.

A special case of implicit representations are the signed distance functions
(SDFs) that map the signed distance from the boundary to every point in space.
They offer efficient real-time visualization with sphere tracing [7]. Unfortunately,
they are not closed under the min/max representation of set operations, that is
the minimum and maximum of SDF arguments may not be a precise SDF. Even
though the shape of the surface and the convergence of sphere tracing are invariant
under these operations, the loss of the exact SDF property is disadvantageous for
the offset operation.

We define the offset surface as the set of points that are r distance away from the
original surface. To take an offset of a surface given by a signed distance function,
one must only subtract the offset radius [2]. However, if g1 and g2 : R3 → R are
SDFs, then the r > 0 offset of their intersection is

x �→ max(g1(x), g2(x))− r ⇐⇒ x �→ max(g1(x)− r, g2(x)− r)

which is the same as taking their offsets and then their intersection. However, these
operations are not supposed to be interchangeable.

For example, the positive offsets of spheres are larger spheres, so their inter-
section is an intersection of larger spheres with a sharp edge, yet, the offset of the
original intersection set supposed to be a pill-shaped oval surface. This is a wrong
result as these operations should not be interchangeable. The reason is that the
intersection operation is imprecise near-surface edges and corners and the function
values do not increase correctly. Our algorithm solves this issue allowing real off-
set operations on set operation results. Figure 1 demonstrates this key difference
between signed distance functions and footvector mappings.

We extend the precision of analytic distance functions for foot mappings by
defining the primitives, set operations, and offset on them. The set operations,
however, do not operate on a single implicit function value, but operate on whole
functions. This means that set operations on footvector mappings are higher order
functions that also produce a function from the input functions:

∩,∪ ∈ (R3 → R4)× (R3 → R4)→ (R3 → R4) .
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(a) SDF (b) Foot mapping (c) SDF (d) Foot mapping

Figure 1: The offset of the intersection of two spheres and the offset of a cylinder
subtracted from a sphere. The offset operation should leave the surface smooth for
which the distance representation is inadequate.

Our representation maps to R4 because besides the footvector we also have to
encode whether the point is inside or outside the geometry. The footvector is
assigned to the first three coordinates, and the signed distance value is in the
fourth.

There are many other ways to compute the offset surface. Most of these operate
on parametric representations, which may not be available in our case. For implicit
representations, fast distance transforms are commonly used. These are efficient to
execute, but the visualization is not direct because a grid of values must be com-
puted and stored. Thus, these algorithms are limited in accuracy by the available
memory. Yet, the resulting distance representation is fast, and offset surfaces can
be created quickly making this a viable choice for e.g. text rendering in 2D. Three
dimensional distance fields are even more expensive to store which motivated our
grid-free approach.

Moreover, methods based on distance transform rely on a discretization of the
distance function and marching the distance values by approximating the distance
to the surface from the neighbouring values [5, 13] or use simplified proxy geometries
to infer a more precise distance value [14]. The local computations introduce errors
that can be amplified by set operations, making them worse than the min and
max SDF operations. To increase precision and reduce memory usage, we devised
iterative algorithms that compute the distance to the intersection set from any
point x ∈ R3 to the intersection object. In exchange, the presented algorithms
require a different representation of the surfaces.

To achieve real-time direct visualization of such offset surfaces, the GPU is
required. However, our set operations operate on functions, and we cannot simply
pass functions as arguments in shader code, because GPUs only support inline-
able functions. For this reason, we implemented a code generator that created the
implementation for the footvector mapping from a given CSG tree. The higher-
order set operations had to be implemented into the code generator to run our
iteration on various argument footvector mappings. These results are presented in
Section 6.
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2 Preliminaries

From any sample point x ∈ Rn a signed distance function (SDF) g : Rn → R is
a continuous function that evte aluates to the signed Euclidean distance measured
from the surface. That is∣∣g(x)∣∣ = d(x, {g = 0}) (∀x ∈ R3),

where d(x, A) is the point-to-set distance, and {g = 0} is the zero level-set. The
dimension is n = 2 for the plane and n = 3 for 3D space. The sign encodes whether
x is inside {g ≤ 0} or outside {g > 0} which allows set-operations to be defined on
SDFs. Let us take g1 and g2 signed distance functions, then according to [7],

d
(
x, {g1 ≤ 0} ∪ {g2 ≤ 0}) ≥ ∣∣min{g1(x), g2(x)}

∣∣ (∀x ∈ Rn) ,

d
(
x, {g1 ≤ 0} ∩ {g2 ≤ 0}) ≥ ∣∣max{g1(x), g2(x)}

∣∣ (∀x ∈ Rn) .
(1)

The min(g1, g2) = x �→ min {g1(x), g2(x)} function is an implicit function of the
union of {g1 ≤ 0} and {g2 ≤ 0} objects. The resulting function is a good lower-
estimate of the distance on the inside of the union, whereas it is exact on the
outside of the union. For this reason, many SDF representations use min and max
operations to combine primitive geometries into complex scenes [6, 8]. However,
the approximation is imprecise on the union for the min operation, and only exact
within the intersection for the max intersection SDF approximation.

The precision can be quantified for any g : Rn → R SDF by comparing the real
distance-to-surface value to that of the function:

qg(x) :=

∣∣g(x)∣∣
d(x, {g = 0}) (∀x ∈ Rn) (2)

Signed distance function estimates (SDFEs) are defined using the above local pre-
cision. If there exists a c > 0 global precision such that 0 < c ≤ qg(p) ≤ 1, then
g : Rn → R is a signed distance function estimate.

Distance representations can be directly ray-traced via various sphere tracing
algorithms [1, 3, 7, 10]. The precision of the SDFE measures the slowdown of the
sphere tracing algorithm; however, computing qmax(g1,g2)(x) for the intersection
operation can be expensive.

The function f : Rn → Rn is a footvector mapping if

1. x �→∥∥f(x)∥∥ (x ∈ Rn) is a distance function

2. f(x+ f(x)) = 0 for all x ∈ Rn

This means that f returns a vector pointing to one of the closest points on the
surface it defines. Thus x+ f(x) is the corresponding footpoint, but note that the
f function is not unique for a given shape. This is because some points will have
more then one closest points from the geometry, each providing an allowed return
value for the f function.
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Figure 2: Left: 2D SDFE obtained through min and max set operations using
transformations of a half-plane (line) and a circle primitive. Local precision is the
ratio of the SDFE (left) and the exact SDF (middle) is displayed on the right
signaling the slowdown of sphere tracing. Our footpoint iteration produced the
middle image.

Similarly to SDFs, the footpoint representation requres volumetric, i.e. solid
geometric information for the set-operations to be defined. Let us assume we can
decide if x is inside x ∈ G ⊆ Rn closed set or outside x ∈ Rn \ G, where the
boundary set is ∂G = {x ∈ Rn | ‖f(x)‖ = 0} ⊆ G. For example, having the
corresponding signed distance function g : Rn → R such that G = {g ≤ 0} and
{f = 0} = {g = 0} = ∂G will allow the set operations.

3 Differential geometry and footpoint mappings

In this section, we investigate the relation between the derivatives of the footpoint
mapping and the local differential geometry at the footpoint.

Let G ⊆ Rn denote a geometry of interest in either the plane or space, i.e.
n = 2, 3, and intG ⊆ G its interior points. Let us assume that its boundary, ∂G,
is a sufficiently smooth set in the sense of geometric continuity, that is, it can be
covered by local parametrizations of the desired parametric smoothness [4].

The stationary condition of distance [12] states that the vector from the query
position x to the footpoint x∗ is perpendicular to the tangent entity of the shape,
which is the tangent line in plane and the tangent plane in space. In other words,
this means that the footvector mapping f = x∗ − x is parallel to the curve or
surface normal n∗ at the footpoint x∗.

Let c(t) : R → R2 and s(u, v) : R2 → R3 be the parametric representation of
∂G in the plane and in space, respectively. In both cases, we denote any suitable
implicit representation of G by g : Rn → R (n = 2, 3). Using these notations, the
perpendicularity of the footvector to ∂G is expressed as:
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representation plane space

parametric f · c′ = 0

{
f · su = 0

f · sv = 0

implicit f ×∇g = 0 f × (su × sv) = 0

where c′ denotes differentiation with respect to the particular curve parameter t,
su = ∂us, and sv = ∂vs.

A more intuitive characterization of the footvector mapping comes from observ-
ing the behaviour of its first degree Taylor expansion. Using x = [x, y, z]T ,x0 =
[x0, y0, z0]

T , this is formally

f(x) ≈ f(x0) + (x− x0)∂1f(x0) + (y − y0)∂2f(x0) + (z − z0)∂3f(x0) .

Our goal is to quantify the interplay between the footpoint mapping and the
differential geometry at the footpoint. The most natural setting for the study of
the local differential geometry of shapes is the parametric representation. As such,
in the following two subsections we derive our results for parametric curves in the
plane and parametric surfaces in space.

3.1 Derivatives of the footpoint mapping: R2

In the case of parametric plane curves, the footvector mapping f : R2 → R2 is
decomposed as

f(x) = c(t(x))− x (3)

= c ◦ t− id ,

where c : R → R2 is a parametrization of the boundary, x = [x, y]T is the query
position, and t : R2 → R is the footparameter mapping that assigns the parameter
value corresponding to the closest curve point to x. In the second equation, id
denotes the identity mapping of Rn, i.e. ∂1id = e1, ∂2id = e2, where ei are the
canonical basis vectors of R2.

Let i ∈ {1, 2} denote an arbitrary coordinate axis and let us take the partial
derivative of f · c′ = 0 with respect to i as

0 = ∂i

((
c ◦ t− id

) · c′ ◦ t)
= ∂i

(
c ◦ t− id

)
· c′ ◦ t+

(
c ◦ t− id

)
· ∂ic′ ◦ t

=

(
c′ ◦ t · ∂it− ei

)
· c′ ◦ t+

(
c ◦ t− id

)
· c′′ ◦ t · ∂it

After rearrangement, the partial derivative of the footparameter mapping is

∂it =
c′ ◦ t · ei

c′ ◦ t · c′ ◦ t+ f · c′′ ◦ t .
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Omitting the point of evaluation, the gradient of the footparameter mapping is

∇t =
1

c′ · c′ + f · c′′ c
′

proving the simple intuition that the largest change in the footparameter happens
when the query position is displaced parallel to the tangent line at the footpoint.
More importantly, this equation also quantifies the amount of the largest change.

To give a geometric interpretation to this, let us consider the ĉ : [0, L] → R2

arc-length parametrization of the boundary. This is done without loss of generality.
The gradient of the footparameter mapping is then

∇t =
1

1 + f · κn̂ t̂ ,

where t̂, n̂ denote the Frenet frame unit tangent and normal vectors of the curve
and κ is its curvature function. Noting that f ‖ n̂ and thus can be expressed as
f = d · n̂ for some d ∈ R, the above becomes

∇t =
1

1 + dκ
t̂ (4)

that is, a unit displacement of the query position along t̂ results in a 1
1+dκ displace-

ment in the footpoint parameter.
Equation (4) is also remarkable in the sense that it shows that the change in

the footpoint parameter is the reciprocal of the change of the parametric speed of
the original boundary curve offset by d. In Kallay’s terms [9], it is a first order
pull-back onto the parametrization of the offset curve.

To translate our results on the footparameter mapping to the footpoint mapping,
let us consider the first degree Taylor expansion of Eq. (3) as

f(x) ≈f(x0) + (x− x0)∂xf(x0) + (y − y0)∂yf(x0) .

From Eq. (3), the partial derivatives of f are

∂if = c′ ◦ t · ∂it− ei ,

that is,

f(x) ≈ f(x0) + (x− x0)
(
c′(t(x0))∂1t(x0)− e1

)
+ (y − y0)

(
c′(t(x0))∂2t(x0)− e2

)
= f(x0)− (x− x0) + (x− x0)c

′(t(x0))∂1t(x0) + (y − y0)c
′(t(x0))∂2t(x0)

This is written more succinctly omitting the evaluation points, denoting f0 =
f(x0), ∇t0 = ∇t(x0), c

′
0 = c′(t(x0)), and substituting Eq. (3) as

f(x) ≈ f0 − (x− x0) +
(
(x− x0) · ∇t0

)
c′0 ,

or, using arc-length parametrization,

f(x) ≈ f0 − (x− x0) +
(x− x0) · t̂0

1 + dκ0
t̂0 .
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According to this, there is no change in the footpoint if x− x0 is perpendicular to
t̂, but this only holds as long as the footpoint mapping is a function, that is, the
footpoint is unique. As soon as we reach the cut locus, i.e. a point in the plane that
has multiple closest points, the footpoint mapping becomes discontinuous and the
footpoint can change arbitrarily along the circumference of the unbounding circle.

3.2 Derivatives of the footpoint mapping: R3

Now, let us consider the case when the geometry is a volume and s : R2 → R3 is
the parametric representation of its boundary surface. The stationary condition of
the footpoint is written as

f · su = 0 (5)

f · sv = 0 , (6)

where the footpoint mapping is decomposed as

f = s ◦ u− id , (7)

that is,
f(x, y, z) = s(u(x, y, z), v(x, y, z))

with the two footparemeter mappings u, v : R3 → R, u = (u, v).
Differentiating Eq. (5) with respect to an arbitrary coordinate axis i ∈ {1, 2, 3}

yields

∂i(f · su ◦ u) = ∂i
(
(s ◦ u− id) · su ◦ u

)
= (su ◦ u · ∂iu+ sv ◦ u · ∂iv − ei) · su ◦ u

+ f · (suu ◦ u · ∂iu+ suv ◦ u · ∂iv
)

Similarly, differentiating Eq. (6) is

∂i(f · pv ◦ u) = (su ◦ u · ∂iu+ sv ◦ u · ∂iv − ei) · sv ◦ u
+ f · (suv ◦ u · ∂iu+ svv ◦ u · ∂iv

)
As such, the partial derivatives of the footparameter mappings with respect to

the coordinate axes of R3 are found from the following system of six linear equations
in the unknowns ∂iu, ∂iv, i ∈ {1, 2, 3}:
(su ◦ u · ∂iu+ sv ◦ u · ∂iv − ei) · su ◦ u+ f · (suu ◦ u · ∂iu+ suv ◦ u · ∂iv

)
= 0

(su ◦ u · ∂iu+ sv ◦ u · ∂iv − ei) · sv ◦ u+ f · (suv ◦ u · ∂iu+ svv ◦ u · ∂iv
)
= 0

Recalling that the footvector mappings are perpendicular to the tangent plane, we
can make the substitution f = d ·m, where d ∈ R and m is the unit surface normal
of s, e.g. m = su×sv

||su×sv||2 at regular points of s. The resulting system takes its final

form as

E · ∂iu+ F · ∂iv − ei · su ◦ u+ d · L · ∂iu+ d ·M · ∂iv = 0

F · ∂iu+G · ∂iv − ei · sv ◦ u+ d ·M · ∂iu+ d · N · ∂iv = 0
(8)
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using the first and second fundamental forms of

E = su · su , F = su · sv , G = sv · sv ,

L = suu ·m , M = suv ·m , N = svv ·m .

It is possible to derive a concise solution to the system of six equations in Eq. (8)
by using a special parametrization of s that is analogous to the arc-length or natural
parametrization of curves. This parameterization takes the lines of curvature as
the u, v parameter axes where the parameter lines are also arc-length. This can
be done without loss of generality because lines of curvatures cover the surfaces
simply, without gaps [11]. Let us denote this parametrization by ŝ.

The normal curvature of a curve on the surface with tangent vector a ·su+b ·sv
is

κ(a, b) =
L · a2 + 2 ·M · a · b+ N · b2
E · a2 + 2 · F · a · b+G · b2 (9)

If the surface is parameterized as ŝ, then

E = 1 , F = 0 , G = 1 ,

L = κ1 , M = 0 , N = κ2 ,

where κ1, κ2 are the principal curvature functions, i.e. the minima and maxima of
normal section curvatures of Eq. (9) at every point on the surface.

Now, the system of equations in Eq. (8) simplifies to

∂iu · (1 + d · κ1) = ei · ŝu ◦ u
∂iv · (1 + d · κ2) = ei · ŝv ◦ u

giving us the partial derivatives of the footparameter mappings as a function of dis-
tance from the surface and the geometric invariants of the surface at the footpoint:

∂iu =
ei · ŝu ◦ u
1 + d · κ1

∂iv =
ei · ŝv ◦ u
1 + d · κ2

(10)

Let us consider the first degree Taylor expansion of the footvector mapping as

f(x) ≈ f(x0) + (x− x0)fx(x0) + (y − y0)fy(x0) + (z − z0)fz(x0) ,

where, using Eq. (7), the i ∈ {1, 2, 3} partial derivatives of f are

fi = su ◦ u · ∂iu+ sv ◦ u · ∂iv − ei .

Substituting this into the Taylor expansion, we get

f(x) ≈ f(x0) + (x− x0)

(
su ◦ u · ∂1u+ sv ◦ u · ∂1v − e1

)
+ (y − y0)

(
su ◦ u · ∂2u+ sv ◦ u · ∂2v − e2

)
+ (z − z0)

(
su ◦ u · ∂3u+ sv ◦ u · ∂3v − e3

)
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Assuming a natural parametrization of the surface, this is further developed using
Eq. (10) as

f(x) ≈ f(x0) + (x− x0)

(
ŝu ◦ u · e1 · ŝu ◦ u

1 + d · κ1
+ ŝv ◦ u · e1 · ŝv ◦ u

1 + d · κ2
− e1

)
+ (y − y0)

(
ŝu ◦ u · e2 · ŝu ◦ u

1 + d · κ1
+ ŝv ◦ u · e2 · ŝv ◦ u

1 + d · κ2
− e2

)
+ (z − z0)

(
ŝu ◦ u · e3 · ŝu ◦ u

1 + d · κ1
+ ŝv ◦ u · e3 · ŝv ◦ u

1 + d · κ2
− e3

)
or, using the notational shorthands ŝui = ŝu ◦ u · ei, ŝvi = ŝv ◦ u · ei,

f(x) ≈ f(x0)−(x−x0)+

3∑
i=1

((x− x0) ·ei)
(
ŝu◦u · ŝui

1 + d · κ1
+ ŝv ◦u · ŝvi

1 + d · κ2

)
.

The first two terms of the approximation are interpreted similarly to the curve case.
Since f(x0) = x∗ − x0, f(x0) − (x− x0) = x∗ − x, i.e. the approximation starts
from the vector pointing to the footpoint of x0 from the new position x. To distill
the geometric meaning of the sum in the above approximation, let us rewrite x−x0

in the spherical coordinate system about x0 with axes ŝu, ŝv, m̂ as

x− x0 = l ·
(
cosα sinβ · ŝu + sinα sinβ · ŝv + cosβ · m̂

)
= l ·

(
Δx · ŝu +Δy · ŝv +Δz · m̂

)
,

where l ≥ 0, α ∈ [0, 2π), β ∈ [0, π]. This yields

f(x) ≈ x∗ − x+ l ·
3∑

i=1

(Δx · ŝui +Δy · ŝvi +Δz · m̂i) · ŝui
1 + d · κ1

· ŝu ◦ u

+ l ·
3∑

i=1

(Δx · ŝui +Δy · ŝvi +Δz · m̂i) · ŝvi
1 + d · κ2

· ŝu ◦ u

= x∗ − x+

(
l

1 + d · κ1
·

3∑
i=1

(Δx · ŝ2ui +Δy · ŝviŝui +Δz · m̂iŝui) · ŝu ◦ u
)

+

(
l

1 + d · κ2
·

3∑
i=1

(Δx · ŝuiŝvi +Δy · ŝ2vi +Δz · m̂iŝvi) · ŝv ◦ u
)

= x∗ − x+
l · ŝu ◦ u
1 + d · κ1

·
(
Δx

3∑
i=1

ŝ2ui +Δy
3∑

i=1

ŝviŝui +Δz
3∑

i=1

m̂iŝui

)

+
l · ŝv ◦ u
1 + d · κ2

·
(
Δx

3∑
i=1

ŝuiŝvi +Δy

3∑
i=1

ŝ2vi +Δz

3∑
i=1

m̂iŝvi

)
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Note that ŝu, ŝv, m̂ form an orthonormal basis, that is, for example ŝu · ŝu =∑3
i=1 ŝ

2
ui = 1 and ŝu · ŝv =

∑3
i=1 ŝuiŝvi = 0. Carrying out the resulting simplifica-

tions gives us the final form of the first degree Taylor expansion of the footvector
mapping as

f(x) ≈ x∗ − x+
l ·Δx

1 + d · κ1
· ŝu ◦ u+

l ·Δx

1 + d · κ2
· ŝv ◦ u (11)

= x∗ − x+ cosα sinβ
l

1 + d · κ1
· ŝu ◦ u+ sinα sinβ

l

1 + d · κ2
· ŝv ◦ u

Changing the query position x along the footpoint surface normal m̂, i.e. when
β ∈ {0, π}, does not alter the footpoint until we pass the cut locus of the geometry.
The footvector is scaled according to the distance between x and x0.

The largest change in the footpoint mapping occurs when the query position
is displaced parallel to the tangent plane at the footpoint, in the direction of the
smaller principal curvature in magnitude. In this case β = π

2 and Eq. (11) becomes

f(x) = x∗ − x+ l ·
(

cosα

1 + d · κ1
· ŝu ◦ u+

sinα

1 + d · κ2
· ŝv ◦ u

)
Interestingly, the magnitude of the change is only equal to the change in the planar
footvector mapping of a normal section curve when we are moving x parallel to
either of the principal curvature directions. In all other cases, the two quantities
will be different since the normal section curvature is cos2 ακ1+sin2 ακ2 by Euler’s
theorem.

4 Footpoint Intersection Iteration

Let G1 ⊆ Rn and G2 ⊆ Rn be two objects with the foot mapping f1 : Rn → Rn and
f2 : Rn → Rn, respectively. Our task is to produce a foot mapping f12 : Rn → Rn

with G12 = G1∪G2 or G12 = G1∩G2 similar to Eq. (1). This paper only describes
the intersection since the complement geometry has the same foot mapping and
G12 = G1 ∪G2 = Rn \ ((Rn \G1) ∩ (Rn \G2)

)
.

If x ∈ G1 ∩G2, then the intersection approximation is precise in Eq. (1), so

f12(x) =

{
f1(x) if ‖f1(x)‖ ≤ ‖f2(x)‖
f2(x) otherwise

(x ∈ G1 ∩G2) . (12)

If the closest point to G1 from x �∈ G1 ∩G2 is inside the G2 set, then that point is
the closest point to x in the G1 ∩G2 intersection. Thus,

f12(x) =

{
f1(x) if x+ f1(x) ∈ G2

f2(x) if x+ f2(x) ∈ G1

(
x ∈ R3 \ (G1 ∩G2)

)
. (13)

However, this still leaves some f12(x) values for us to define via iterative algorithms.
The idea of this naive midpoint approach is to step closer to the intersection and
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re-evaluate f12:

f12(x) :=
f1(x) + f2(x)

2
+f12

(
x+

f1(x) + f2(x)

2

)
if not (12) or (13). (14)

One can stop evaluating the recursion when one of Eq. (12) or Eq. (13) yield a value
or after a predefined number of iterations. Figure 3 illustrates the convergence.

Since ‖f1‖ and ‖f2‖ are distance functions, there are no surface points inside
the corresponding unbounding spheres K‖fi(x)‖(x) = {y ∈ R3 : d(x,y) < ‖fi(x)‖}:

{fi = 0} ∩ K‖fi(x)‖(x) = ∅ (x ∈ R3, i = 1, 2) .

The point x is not in the intersection set G1 ∩ G2 in the recursive Eq. (14).
Therefore, (

G1 ∩G2

) ∩ (K‖f1(x)‖(x) ∪ K‖f2(x)‖(x)
)
= ∅(

G1 ∩G2

) ∩ Kmax(‖f1(x)‖,‖f2(x)‖)(x) = ∅
Which means that we can take a larger heuristic step without overstepping with
the following bisector iteration:

f12(x) :=
f1(x) + f2(x)

‖f1(x) + f2(x)‖ + f12

(
x+

f1(x) + f2(x)

‖f1(x) + f2(x)‖
)

if not (12) or (13).

(15)
Figure 3 compares Eq. (14) and Eq. (15) iterative methods, with the upcoming

deltoid iteration. This bisector iteration was sufficiently robust for 3D scenes as
well. Figure 4 demonstrates the generated surface as a function of the iteration
number.

5 Deltoid iteration

For this heuristics, we take advantage of the fact that the footvectors, f1(x) and
f2(x), are perpendicular to the surfaces. First, we look for a

v(f1(x), f2(x)) = α · f1(x) + β · f2(x)

vector which is in the same plane as the footvectors. Second, the x+v(f1(x),f2(x))
should lie on each of the tangent planes at the footpoints.

Note that this quadrilateral is not necessarily a deltoid. To be precise, the
evaluation point x, the footpoints x+ f1(x) and x+ f2(x), and the next heuristic
evaluation point x+ v(f1(x),f2(x)) forms a right angular cyclic quadrilateral.

Therefore, the desired vector v(a, b) = α · a+ β · b has to be perpendicular to
both a := f1(x) and b := f2(x), which means the following:

(v − a) · a = 0

(v − b) · b = 0
⇐⇒

[
a	

b	

]
· v =

[
a	

b	

]
· [a b

] · [α
β

]
=

[
aa
bb

]
.
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Figure 3: Comparison of the midpoint and deltoid footpoint iterations in a 2D scene
where F and G are tangential circles, and the intersection is a single point. The
midpoint method in Eq. (14) is the yellow iteration, the blue iteration is improved
version from Eq. (15), the purple is the deltoid method from Section 5. The deltoid
method converges much faster because of the surface linear approximation and the
unrestricted step size.

SDFE 0 iteration 1 iteration 2 iterations 3 iterations

6 iterations 9 iterations 12 iterations 15 iterations 18 iterations

Figure 4: Convergence of the bisector iteration for an offset of a challenging inter-
section of a sphere and a cylinder. The iteration quickly starts to bounce from one
surface to the other, resulting in similar error patterns in every second image, but
converges nevertheless.
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Where the dot products aa = a · a, bb = b · b, ab = a · b. Solving the equation for
α and β assuming d := aa · bb− ab · ab �= 0 gives:[

α
β

]
=

[
aa ab
ba bb

]−1

·
[
aa
bb

]
=

1

d

[
bb −ab
−ab aa

]
·
[
aa
bb

]
=

1

d

[
bb · (aa− ab)
aa · (bb− ab)

]
. (16)

For the deltoid footpoint iteration, we substitude v = α · a + β · b from Eq. (16)
into Eq. (14), so g12(x) := v + g12(x + v) unless Eq. (12) or Eq. (13) provide a
foot vector.

The presented algorithms are visualized in 2D on Figure 3. In 2D, the deltoid
iteration was the most efficient and was used to produce Figure 2. However, this
method diverged and produced too many artifacts in 3D to be applicable, so the
bisector iteration was used in our test scenes.

6 Shader code generation from CSG trees

To represent CSG trees in code, we first define the type of a tree node as the union
of

• some primitive shape types, like Box, Sphere or Cylinder, and

• some standard CSG operations, like Move, Rotate, Union and Intersect.

Each of these node types contains the specific parameters necessary to describe
the object (size, color) or the operation (vector, angle) as fields. Once we have
the union type (called Expr), we can build any CSG tree, where the nodes are all
Expr objects: the leaves are instances of the primitive shape types, and the internal
nodes are operations.

Now we can traverse this tree in a bottom-up or top-down manner to collect
(or distribute) information about it. For example, we can count the number of red
objects in the tree using this algorithm:

def alg(node):

if node in [Box, Sphere, Cylinder]:

return 1 if node.color is "red" else 0

elif node in [Move, Rotate]:

return alg(node.child)

elif node in [Union, Intersect]:

return alg(node.child_1) + alg(node.child_2)

Even though the algorithm is run from the root of the tree, what it actually does
is breaking down and converting the tree into a single number, starting from the
bottom. It begins with the leaf nodes because it can directly convert those. Then
for each internal node, it first recursively converts the subtrees, then combines the
obtained partial results into a single value using some node-specific logic.

We can use the same approach to derive much more complex information from
the tree, like a program code that renders the represented model. We just need to
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change the so-called carrier type – the type of the value each subtree is reduced
into, and the node-specific reduction logic. Our carrier type is a structure that
contains a block of code and the name of the register that holds the result of the
computation.

The generated block of code for the primitive shapes is simple: it’s a function
that takes a x ∈ R3 position as an argument, and returns four scalars: the footvec-
tor and the signed distance value. Code generation in internal nodes combines the
code generated for their subtrees. E.g. for a Union node this means that the re-
sulting function executes the functions corresponding to the subtrees, collects their
results, then calculates and returns the footvector and the distance for the union.

The intersection operation needs to evaluate its arguments multiple times, so
we had to generate actual functions to calculate the subtrees, couldn’t just directly
calculate the results. Since we cannot define higher order functions in GPU shader
code, each occurrence of the intersection operation had to be specialized for its
actual arguments as a separate function. Writing all these specializations all by
hand would have been tedious and error prone, this is one of the main reasons why
we decided to generate the shared code.

The code generation also made it possible to implement optimizations which
would be difficult to do manually. Such optimization is pushing down the Move
and Rotate operations to the leaf nodes. The intuitive implementation of a CSG
evaluator would first compute operand of a Move or a Rotate, and then apply the
operation on the result. However, we can render the primitive objects in the leaf
nodes with the same cost, regardless of their position or orientation, so we rather
aggregate these operations while traversing down the tree, and apply them directly
on the leaf objects.

This recursive approach to code generation is well known. What we recognized
and used to our advantage is that the CSG model representation is a much simpler
tree than usual syntax trees, we do not need any sophisticated state management
to process it, which resulted in clean and reusable code generation.

7 Exact offset surfaces

All variants of the footpoint iteration algorithm are heuristic optimization itera-
tions. For this reason, there are cases when the iteration does not converge to the
correct solution. In essence, there is a trade-off between robustness and speed. Al-
though we can visualize the above surfaces in real-time on an Nvidia 1080ti GPU,
the visualization is expensive and three to ten times slower than the signed distance
function representation.

Figure 5 demonstrates the most important advantage of our algorithm, that is,
the offset operation will be exact afterwards. With enough iterations, the surface
will be smooth because there is no voxelization. For simple surfaces such as the
intersection of two objects, the raytracing of the offset surface can be real-time.
For more complex scenes, we avoided running the iterative approach for the union
operation because the standard minimum distanced union operation yields exact
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offset = 0.0 offset = 0.25 offset = 0.5

offset = 1.0 offset = 2.0 offset =4.0

Figure 5: Different offsets of the intersection of a cylinder and a slightly larger
sphere. Our bisector algorithm does a 100 iterations for each evaluation to produce
the precise offset. The offset can be changed in real-time.

results outside the surface. Unless the result of the union is intersected with another
object, the positive offset surface is correct.

Figure 6 showcases a few example surfaces and the drawbacks of the proposed
method. Because the method is heuristic, the closest point of the intersection
surface is not always found. In such cases, the surface may present artifacts or
even appear elsewhere. Scene complexity both increases the likelihood of failure
and the evaluation speed. When there are multiple intersection operations, the
iterations are correctly inserted into each other by the code generator. This leads
to an exponential slowdown in the number of nested intersection operations.

8 Conclusion

This paper proposed a footvector based representation of shapes. Section 3 provides
a theoretical background for this, connecting the partial derivatives of the footvector
mapping with the local differential geometry at the footpoint. The practicality of
this representation, however, is provided by the iterative algorithms that make this
representation closed under set theoretic and offset operations.

Offset operation of a signed distance function is as easy as subtracting the offset
value from it, yet it is only precise on the CSG tree leafs, so-called primitives, in
practise. This is because the SDF of combined objects are only signed distance
lower bounds causing the offset surface to appear as if the offset was applied to
the arguments of the set operation instead. In this paper, we devised algorithms
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Model 1 SDF Model 2 SDF Model 3 SDFE Model 4 SDFE

Model 1 FM Model 2 FM Model 3 FM Model 4 FM

Figure 6: Several example scenes showcasing the strengths and limitations of the
proposed methods. The SDFE of Model 1 completely deletes the subtracted sphere,
yet the footpoint mapping offsets the correct surface. The improvements in smooth-
ness is visible on Model 2, with some convergence artifacts. The iterative distance
function of Model 3 and 4 introduce even more errors.

in Section 4 and 5 that iterate on input functions to produce the SDF of objects.
Footvector mapping representations extended the distance information and provide
search directions for the intersection operation iterations.

In two dimensions, the deltoid iteration outperformed the rest of the methods
by a large factor. Computing the SDF in Figure 2 with the midpoint approach was
about ten times slower compared to the deltoid method whilst achieving similar
accuracy. Note that the iterations had to be nested to produce the CSG tree of
set-operations causing exponential slowdown with CSG tree depth.

In three dimensions, our iterative methods are capable of producing high qual-
ity offset surfaces of intersection or difference of objects. The resulting footvector
mapping can be visualized in real-time as a signed distance function despite the
extra iterations within each intersection operation. Note that the expensive func-
tion evaluation time can amortized with better sphere tracing algorithms, such as
enhanced sphere tracing [1] or quadric tracing which is an unpublished algorithm
for reducing the number of function evaluations by pre-cacheing values.

For rendering purposes the SDF had to be implemented in shader code which
does not support higher order functions. Hence, a CSG code generator was designed
that created efficient implementations for our test scenes. In three dimensions, the
bisector method performed the best because the deltoid iteration often did not
converge to the right solution. Nevertheless, for most simple cases, the bisector
method converged without artifacts, producing accurate offset surfaces.
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[1] Bálint, Csaba and Valasek, Gábor. Accelerating Sphere Tracing. In Diamanti,
Olga and Vaxman, Amir, editors, EG 2018 - Short Papers. The Eurographics
Association, 2018. DOI: 10.2312/egs.20181037.
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