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Preface

The 19th International Symposium on Scientific Computing, Computer Arithmetic
and Verified Numerical Computation (SCAN) was originally planned to be orga-
nized by the Institute of Informatics of the University of Szeged (SZTE) in Szeged,
Hungary, in the year 2020. Due to the pandemic situation, the Scientific Commit-
tee of SCAN decided to postpone the meeting to September 13–15, 2021 and to
have it in a fully online format.

The members of the Scientific Committee were the following representatives of
the topics of the conference: G. Alefeld (Karlsruhe, Germany), A. Bauer (Ljubl-
jana, Slovenia), J. B. van den Berg (Amsterdam, the Netherlands), G.F. Corliss
(Milwaukee, USA), T. Csendes (Szeged, Hungary), R.B. Kearfott (Lafayette, USA),
V. Kreinovich (El Paso, USA), J.-P. Lessard (Montreal, Canada), W. Luther (Duis-
burg, Germany), S. Markov (Sofia, Bulgaria), G. Mayer (Rostock, Germany), J.-
M. Muller (Lyon, France), M. Nakao (Tokyo, Japan), T. Ogita (Tokyo, Japan), S.
Oishi (Tokyo, Japan), K. Ozaki (Tokyo, Japan), M. Plum (Karlsruhe, Germany),
A. Rauh (Brest, France), N. Revol (Lyon, France), J. Rohn (Prague, Czech Repub-
lic), S. Rump (Hamburg, Germany/Tokyo, Japan), S. Shary (Novosibirsk, Russia),
W. Tucker (Uppsala, Sweden), W. Walter (Dresden, Germany), J. Wolff von Gu-
denberg (Würzburg, Germany), and N. Yamamoto (Tokyo, Japan). The members
of the Organizing Committee were: Balázs Bánhelyi, Tibor Csendes, Boglárka G.-
Tóth, Viktor Homolya, Tamás Vinkó, and Dániel Zombori.

During SCAN, more than 50 participants were present and 48 talks in several
fields of reliable computation and its applications were given, and organized in
18 thematic sessions. The plenary speakers were Fabienne Jézéquel (Sorbonne
University, France), Marko Lange (Hamburg University of Technology, Germany),
J.D. Mireles James (Florida Atlantic University, USA), together with the Moore
Prize winners Marko Lange and Siegfried Rump (Waseda University, Japan).

The open-access scientific journal Acta Cybernetica offered to publish paper
versions of selected presentations after a careful peer review process. Altogether, 7
papers were accepted for publication in the present special issue of Acta Cybernet-
ica. The full program of the conference, the collection of all abstracts, and further
information can be found at https://www.inf.u-szeged.hu/scan2020/.

Andreas Rauh and Balázs Bánhelyi
Guest Editors
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Proving the Stability of the Rolling Navigation

Auguste Bourgoisa, Amine Chaabounib,
Andreas Rauhc, and Luc Jaulind

Abstract

In this paper, we propose to study the stability of a navigation method
that allows a robot to move in an unstructured environment without compass
by measuring a scalar function ϕ which only depends on the position. The
principle is to ask the robot to roll along an isovalue of ϕ. Using an interval
method, we prove the stability of our closed loop system in the special case
where ϕ is linear.

Keywords: interval analysis, hybrid systems, stability

1 Introduction

The rolling navigation has first been presented in [34] in the context of a small
flying drone following the border of a cloud. The only exteroceptive information
the robot has is if it is inside or outside the cloud. Experimentally, the control
strategy has been proved to be very robust even if we do not know the prior shape
of the cloud. The closed loop system corresponds to a nonlinear hybrid system and
the theoretical analysis of the stability is considered as difficult.

The goal of this paper is to show that interval-based methods [22] can be used
to provide a rigorous stability analysis of such a hybrid dynamical system. Inter-
val analysis has indeed been used to solve numerous practical problems (see e.g.,
[16] for solving nonlinear problems, [30, 31] for localization and mapping, [9] for
autonomous driving). In the context of dynamical systems and stability analysis,
Tucker [33] has used interval analysis to prove that the Lorenz attractor exists and
efficient solvers (such as CAPD) have been proposed for integrating differential
equations [14, 35] in a rigorous way. The corresponding methods can then be used
for stability analysis of nonlinear systems [5, 17, 28]. In the context of hybrid sys-
tems, even if guaranteed integration has been used for characterizing reachability
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sets [24, 25], to our knowledge, it has never been used to check the stability of
dynamical systems where jumps could occur.

The work is an extended version of the abstract presented for SCAN 2020 [6]
which deals with the rigorous stability of hybrid systems. The main contribution
of our paper is to propose a method which combines Poincaré maps with interval
analysis in order to provide an attraction basin [2, 12, 19, 26] associated with an
hydrid system. More precisely, we want to find a subset of the state space which
will converge to a stable periodic orbit.

Section 2 recalls the basic definitions related to Poincaré maps and stability
analysis of nonlinear discrete-time systems. Section 3 formalizes the problem of
the rolling-based navigation of robots in terms of hybrid systems. Section 4 proves
the stability of the rolling-based navigation in the case where the environment is
linear. Section 5 shows how the stability analysis can be used to compute a set of
initial vectors which will converge to a stable attractor and Section 6 concludes the
paper.

2 Mathematical tools

In this section, we give the basic tools that will be used to prove the stability of a
periodic orbit of a hybrid system.

2.1 Discrete-time positive invariant set

Consider the discrete-time system

xk+1 = f(xk) (1)

with f(0) = 0. A set A is positive invariant if f(A) ⊂ A. We consider two types of
sets for positive invariance: Ellipsoids or boxes.

Ellipsoid. Figure 1 (a) illustrates the case of a discrete-time system where the
arrows represent the function f . Subfigure (b) gives a positive invariant set.

To find such an ellipsoid Ex : xT ·P · x ≤ ε, we can use the Lyapunov method
in the linear case. If the system is stable and linear, we have

xk+1 = A · xk (2)

and we can find a positive definite matrix P (denoted by P � 0) such that V (x) =
xT ·P · x is a Lyapunov function:

V (xk+1) = V (xk)− xT
k xk

⇔ xT
k+1 ·P · xk+1 = xT

k ·P · xk − xT
k xk

⇔ xT
k ·AT ·P ·A · xk − xT

k ·P · xk = −xT
k xk

⇔ xT
k ·
(
AT ·P ·A−P

)
· xk = −xT

k xk.

(3)

To determine the ellipsoid Ex, we have to solve the Lyapunov equation:

AT ·P ·A−P = −I (4)
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Figure 1: (a) A discrete-time system; (b) The green ellipse A is positive invariant;
(c) The green ellipse B is not positive invariant

which is linear in P. If the system is nonlinear, we apply the Lyapunov method on
the linearized system and check the positive invariance using interval analysis [28].
There, an ellipsoidal calculus method is presented that allows for finding domains
that certainly belong to the region of attraction of a stable equilibrium. Due to the
straightforward implementation of these approaches, they can serve as an initializa-
tion of advanced procedures for finding the maximal provable attraction domains
of nonlinear systems for which advanced methods based on linear matrix inequal-
ity or Bezoutian approaches were developed in [13, 23]. For methods, optimizing
the quadratic Lyapunov functions for a stability proof of nonlinear autonomous
systems using interval analysis, see [32]. Combinations of these methods with the
box-type representation of invariant sets used in the remainder of this paper can
be investigated in future work.

Boxes. To find a box which is positive invariant, we may use the centered form
method [8, 28]. For this, check if

[Jf ] ([x]) · [x] ⊂ [x] (5)

where Jf (x) is the Jacobian matrix of f at x and [Jf ] is its interval extension [22].
In some situations, such a box [x] does not exist. Now, for k ∈ {1, 2, . . . }, we have

Jfk = (Jf (fk−1)) · Jfk−1

fk = f ◦ fk−1.
(6)

In this case, we search for the smallest k such that

[Jfk ] ([x]) · [x] ⊂ [x], (7)

where
[Jfk ] ([x]) = [Jf ]([fk−1]([x])) · [Jfk−1 ]([x])

[fk] ([x]) = [f ] ◦ [fk−1] ([x])
(8)

as illustrated by Figure 2.
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Figure 2: Sequential computation of [fk] ([x]) and [Jfk ] ([x])

For instance, for k = 2, we have to check that

([Jf ]([f ]([x]))) · [Jf ]([x]) · [x]︸ ︷︷ ︸
[Jf2 ]([x])

⊂ [x]. (9)

For both approaches, we need to have an interval extension for f and for its
Jacobian matrix Jf . It is not a problem when we have an analytical expression for
f but this is not always the case as we will see in the following section.

2.2 Poincaré map

Consider now a continuous-time system of the form ẋ = f(x), x ∈ Rn, such as the
Van der Pol system illustrated by Figure 3 which contains a stable periodic orbit
γ. To prove the stability of γ, we use the Poincaré method. For this, we choose a
point x0 ∈ γ. Then, we chose a n− 1 dimensional manifold S called the Poincaré
section. The Poincaré section S is chosen transversal to the flow of the system. It
is such that S ∩ γ = {x0}. We assume that the points of S all satisfy the equation
g(x) = 0.

Assume that we have a Cartesian parametrization for S, i.e., a diffeomorphism
h : A 7→ S such that h(0) = x0, where A = h−1(S) ⊂ Rn−1. The function h is
called the chart for S. It allows us to fix a coordinate system on S. Equivalently,
when a scans A, h(a) scans S.

We define the Poincaré map by:

p :
A → A
a 7→ p(a)

(10)

where p(a) is the point in A ⊂ Rn−1 such that the trajectory initialized at xa =
h(a) ∈ Rn intersects S for the first time at xb = h(p(a)). Then we define the
discrete-time system

a(k + 1) = p(a(k)). (11)

If the sequence is asymptotically stable, then γ is an attractor of the vector field f .
Equivalently, we will say that γ is stable.

Now, the asymptotic stability of the Poincaré map p can be proved using the
Lyapunov method, as described in the previous section, combined with interval
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Figure 3: Stable periodic orbit (red) of a continuous time system

tools [29]. A three dimensional illustration of the Poincaré map is given in Figure
4. In the picture, both a and p(a) are represented in the 3D frame, at the places
of xa and xb, but they actually belong to the Cartesian plane R2 represented by
the red base. For simplicity, we may confuse the part of the hyperplane A ⊂ Rn−1
and the surface S.

Figure 4: Poincaré map (left); Positive invariant ellipsoid of the Poincaré section
(right)
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2.3 Partial Poincaré maps

Hybrid systems [21], is a class of dynamical systems with discrete state q (for
instance q ∈ {0, 1}) and a continuous state x ∈ Rn. The continuous state x follows
a state equation of the form

ẋ = f(x, q).

When some equality conditions are satisfied for x, say g(x, q) = 0 then q may jump
from one discrete state to another (e.g., from q =0 to q = 1). The state vector x
may jump also. For hybrid systems, we need more than one section to prove the
stability [11]. An illustrative example will be given in Section 4. Since we have
several sections, we will have several Poincaré maps. They will be called partial
Poincaré maps. These maps also exist for dynamical systems that are not hybrid,
but they are not strictly needed.

Figure 5 represents a situation with two sections S1, S2 and the partial Poincaré
map is p : S1 7→ S2 which is defined from a state equation of the form ẋ = f(x).
We assume that it is possible to get a Cartesian frame for S1 and S2 thanks to
charts h1 and h2. Using these charts we can define boxes on these sections.

Figure 5: Partial Poincaré map to go from one section to another

2.4 Interval extension for the Poincaré map

Consider the system

ẋ = f(x) (12)

where f : Rn 7→ Rn is C1 and Lipschitz continuous. The flow of the system is
denoted by Φ(x0, t). Take two Poincaré sections S1,S2 with charts h1,h2. We
assume that S1 ∩ S2 = ∅ and any trajectory initialized in S1, will cross S2 later.
Define the two sets A1 = h−11 (S1) ⊂ Rn−1 and A2 = h−12 (S2) ⊂ Rn−1. Take a
point a ∈ A1 and denote by xa = h1(a) the corresponding state vector in S1 ⊂ Rn.
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The trajectory initialized at xa will cross S2 for the first time at xb ∈ Rn at time τb.
Define by b = h−12 (xb) ∈ A2. Note that a and xa correspond to the same quantity
except that a ∈ A1 whereas xa ∈ S1 ⊂ Rn. The same remark could be done
for the pair (b,xb). The Poincaré map b = p(a) is here defined as the following
composition:

a ∈ A1 ⊂ Rn−1 7→ xa ∈ S1 ⊂ Rn 7→ xb = Φ(xa, τb) ∈ S2 ⊂ Rn 7→ b ∈ A2 ⊂ Rn−1.

We want an interval extension for p. We propose the following algorithm with the
illustrating Figure 6.

Step 1. Take a box [a] ⊂ A1 ⊂ Rn−1 and compute [xa] = [h1]([a]), where [h1] is
the interval extension of the chart h1.

Step 2. Integrate [xa] to get a tube [x](·) of Rn. Note that [x](0) = [xa]

Step 3. We compute the tubes [y](·) = [g2]([x](·)) and the tube [ẏ](·) = [∂g2∂x ] ·
[f ]([x](·)) and we select an interval [t1, t2] which satisfies

(i) [y]([0, t1]) ⊂]0,∞]

(ii) [y]([t2]) ⊂ [−∞, 0[

(iii) [ẏ]([t1, t2])) ⊂ [−∞, 0[

(13)

If we fail to find this interval, we return a failure.

Step 4. Select the subtube [x]([t1, t2]).

Step 5. Return a box [xb] ⊂ Rn which encloses the subtube ∪t∈[t1,t2][x](t).

Step 6. Compute a box [b] which encloses h−12 ([xb] ∩ S2)

2.5 Variational equation

Consider again the system
ẋ = f(x), x ∈ Rn (14)

where f is now assumed to be twice differentiable. Denote by Φ(x0, t) the flow

for an initial vector x0. We define the variational matrix J(x0, t) = ∂Φ(x0,t)
∂x0

. It
describes the effect of a small perturbation on a given trajectory, while we make a
small variation on the initial state vector x0. It can be shown that it satisfies the
variational equation [1]

J̇ =
∂f(x)

∂x
· J, (15)

with J(0) = I for which further applications are discussed with respect to sensitiv-
ity analysis and control design in [27]. Using an interval ODE solver, we get an
enclosure for x(t) and J(t), for a given initial box [x0].
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Figure 6: Poincaré interval extension

2.6 Jacobian of the Poincaré map

Proposition 1. Consider a state equation with a flow Φ(x, t) and two Poincaré
sections S1, S2 with equations g1(x) = 0, g2(x) = 0. The associated charts for S1
and S2 are denoted by h1,h2. Define A1 = h−11 (S1) and A2 = h−12 (S2). Denote by
p : A1 → A2 the associated partial Poincaré map and by

τ(x) = min{t > 0|Φ(x, t) ∈ S2} (16)
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the associated Poincaré time function, which is assumed to exist for all x ∈ A1.
Take a ∈ A1. We have

Jp(a) =
∂p

∂a
(a) =

∂h−12

∂x
(xb) ·

∂q

∂x
(xa) · ∂h1

∂a
(a), (17)

where
(i) q(xa) = Φ(xa, τ(xa))

(ii) ∂q
∂x (xa) = Jm + f(xb) · ∂τ∂x (xa)

(iii) ∂τ
∂x (xa) = − 1

∂g2
∂x (xb)·f(xb)

· ∂g2∂x (xb) · Jm
(18)

and
xa = h1(a),a ∈ Rn−1

xb = h2(b),b ∈ Rn−1

b = p(a)

Jm = ∂Φ
∂x (xa, τ(xa)) (monodromy matrix).

(19)

In this expression,
∂h−1

2

∂x (xb), is the generalized inverse, i.e.

∂h−12

∂x
(xb) =

((
∂h2

∂x
(b)

)T(
∂h2

∂x
(b)

))−1(
∂h2

∂x
(b)

)T

. (20)

Proof. The computation will be based on the composition of Figure 7.

Figure 7: Composition of functions used to compute the Jacobian of the Poincaré
map

Define
y = g2(xb)

xb = Φ(xa, τb)

τb = τ(xa).

(21)
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We have
dy = ∂g2

∂x (xb) · dxb
dxb = ∂Φ

∂x (xa, τb) · dxa +
∂Φ

∂t
(xa, τb)︸ ︷︷ ︸
f(xb)

· dτb

dτb = ∂τ
∂x (xa) · dxa.

(22)

Thus
dy = ∂g2

∂x (xb) · dxb
= ∂g2

∂x (xb) ·
(
∂Φ
∂x (xa, τb) · dxa + f(xb) · dτb

)
= ∂g2

∂x (xb) ·
(
∂Φ
∂x (xa, τb) · dxa + f(xb) · ∂τ∂x (xa) · dxa

)
.

(23)

Since dy = 0, we get

∂g2
∂x

(xb) · f(xb) ·
∂τ

∂x
(xa) = −∂g2

∂x
(xb) ·

∂Φ

∂x
(xa, τb), (24)

i.e.
∂τ

∂x
(xa) = − 1

∂g2
∂x (xb) · f(xb)

· ∂g2
∂x

(xb) ·
∂Φ

∂x
(xa, τb), (25)

which corresponds to (iii).
As a consequence

dxb = ∂Φ
∂x (xa, τb) · dxa + f(xb) · dτb

= ∂Φ
∂x (xa, τb) · dxa + f(xb) · ∂τ∂x (xa) · dxa,

(26)

i.e.,
∂q

∂x
(xa) =

∂Φ

∂x
(xa, τ(xa)) + f(xb) ·

∂τ

∂x
(xa), (27)

which corresponds to (ii).
The expression for Jp(a) is directly obtained from the chain rule. �

Remark 1. The function h2 : A2 7→ S is a diffeomorphism and we have an expres-
sion for it. For instance, it could be

h2(a1, a2) =

 a1 + a2
a1 − a2
a1

 (28)

if we choose h2 linear. We have h2(R2) = S2 which is a two-dimensional plane
of R3. To apply the chain rule, we need the Jacobian matrix for h−12 . Several
expressions exist for it. One of them is the generalized inverse given here by

h−12 =

(
1
3 (x1 + x2 + x3)

1
2 (x1 − x2)

)
. (29)
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Indeed

h−12 ◦ h2(a1, a2) =

(
1
3 (a1 + a2 + a1 − a2 + a1)

1
2 (a1 + a2 − (a1 − a2))

)
=

(
a1

a2

)
. (30)

Since we have chosen h2 linear, the function and its Jacobian are similar. The goal
of this remark is to explain why we need the generalized inverse (20) whereas h2 is
a diffeomorphism: it is due to the fact that h2 needs to be represented as a function
from Rn−1 to Rn.

2.7 Interval extension of its Jacobian

To get an interval extension of the Jacobian matrix Jp of the Poincaré map, we
integrate the variational equation using an interval integration scheme such as the
Lohner method [20]. We get a tube [J](t) and we select the smallest interval
matrix which encloses the monodromy matrix [J]([τb]), where [τb] is the time interval
computed in Section 2.4. The following algorithm computes the Jacobian matrix
Jp for p. Note that this algorithm is not new and can be seen as a simplified
version of existing algorithms, see e.g., [15, 35, 36].

Algorithm IntervalPoincaréJacobian

Input: f , [a]

Output: [Jp]

1: [xa] = [h1]([a])

2: Compute the tubes [x](t) = [Φ]([xa], t) and [J](t) = [∂Φ
∂x ]([xa], t)

3: From g2([x](t)), select the Poincaré time interval [τb] (see Section 2.4)

4: [xb] = [x]([τb])

5: [Jm] = [J]([τb]) (monodromy matrix)

6: [Jq] =

(
I− [f ]([xb])·(([ ∂g2∂x ]([xb])))

[Jg2 ]·[f ]([xb])

)
· [Jm]

7: [b] = [h−12 ]([xb])

8: [H2] = [∂h2

∂b ]([b])

9: [Jp] =
((

[HT
2 ] · [H2]

)−1
[HT

2 ]
)
· [Jq] · [∂h1

∂a ]([a])

2.8 Example

We choose a very simple example to illustrate the principle of the procedure Inter-
valPoincaréJacobian. We have chosen this example for the following reasons:

• It is related to the application that will be considered in Section 3.
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• It can be executed analytically by hand by the reader for a better under-
standing of the approach.

• The example will allow us to produce a 3D figure which illustrates clearly the
principle of our method.

Consider the system  ẋ1 = 1
ẋ2 = sinx3
ẋ3 = 1.

(31)

We assume that we have two surfaces

S1 = {x |x1 = 0}
S2 = {x |x2 = 0}. (32)

We fix the coordinate frames of these surfaces by choosing the origins o1 = (0, 0, π2 ),
o2 = (π, 0, 3π2 ) and the basis i1 = (0, 1, 0), j1 = (0, 0, 1) for S1. The basis for S2 is
chosen as i2 = (1, 0, 0), j2 = (0, 0, 1). Thus, the charts are

h1(a) =

 0
a1
a2

+ o1 =

 0
a1

a2 + π
2

 , (33)

and

h2(b) =

 b1
0
b2

+ o2 =

 b1 + π
0

b2 + 3π
2

 . (34)

Take [a] = [−0.1, 0.1]× [−0.1, 0.1].
Step 1. We have

[xa] = [h1]([a]) =

 0

[−0.1, 0.1]

[−0.1 + π
2 , 0.1 + π

2 ]

 . (35)

Step 2. We need to consider the variational equation:

J̇ =
∂f(x)

∂x
· J, (36)

i.e.,  J̇11 J̇12 J̇13
J̇21 J̇22 J̇23
J̇31 J̇32 J̇33

 =

 0 0 0
0 0 cosx3
0 0 0

 ·
 J11 J12 J13

J21 J22 J23
J31 J32 J33

 . (37)

Using an interval integration for both (31) and (37), for an initial vector [xa] we
get a tube for [x](t) = [Φ]([xa], t) and a tube for [J](t) = [∂Φ

∂x ]([xa], t).



Proving the Stability of the Rolling Navigation 17

Step 3. Since g2(x) = x2, we get the Poincaré interval [τb] from the second
component of [x](t). We get

τb ∈ [τb] = [2.82, 3.47]. (38)

Step 4. From the tube [x](t), we extract [xb] = [x]([τb]). We get

[xb] = [2.82, 3.47]× [−0.63, 0.63]× [4.29, 5.14]. (39)

Step 5,6. We get

[Jq] =

 1 [1, 1.1] [−2.41,−1.60]

[−0.01, 0.01] [−0.1, 0.09] [−0.64, 0.7]

[−0.01, 0.01] [1, 1.1] [−1.41,−0.69]

 . (40)

Step 7. We get (see Figure 8)

[b] =

(
1 0 0
0 0 1

)[xb]−

 π
0
3π
2

 . (41)

Step 8. We get the degenerate matrix

[H2] = [
∂h2

∂x
]([b])) =

 1 0
0 0
0 1

 . (42)

Step 9. We get

[Jp] =

(
1 0 0

0 0 1

)
· [Jq] ·

 0 0

1 0

0 1

 =

(
[0.99, 1.1] [−2.41,−1.60]

[0.99, 1.1], [−1.41,−0.69]

)
. (43)

3 Rolling navigation

3.1 Principle

We consider the robot moving on a plane described by the Dubins car model [10] ẋ1 = cosx3
ẋ2 = sinx3
ẋ3 = u,

(44)

where (x1, x2) is the position of the robot, x3 is its heading and u is the input. The
robot has no possibility to measure its state, neither its position nor its heading. It
is only able to measure a function ϕ(x1, x2) of its position such as a temperature or
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Figure 8: Example of Poincaré interval extension

an altitude. We want that the robot moves along the wanted curve ϕ(x1, x2) = 0.
For this, we suggest to use the Trinity pattern proposed in [34] which yields a rolling
behavior for the motion. The stability of the resulting navigation has been shown
experimentally in [34] with an autonomous plane turning around a cloud with an
unknown shape.

Now, to our knowledge, no theoretical analysis has been provided in the literature.

The principle of the rolling navigation is to alternate between a circle of radius ρ0
when ϕ < 0 and a circle of radius ρ1 when ϕ > 0, as illustrated by Figure 9. The
left figure illustrates the ideal situation where the robot starts on the wanted curve
ϕ = 0 (which is approximated by a line) with an incident angle of π

2 . The robot
follows the circle of radius ρ0 until ϕ = 0, taking u = 1

ρ0
. With a counter, the robot

measures the elapsed time c0. We should have c0 = ρ0π. Then the robot follows
the circle of radius ρ1 for a time c1 in order to be on the wanted line again. For
k1, k2 in N, we should have

k1
c1
ρ1

+ k2
c0
ρ0

= (k1 + k2)π, (45)

i.e.,

c1 = ρ1

(
π +

k2
k1

(
π − c0

ρ0

))
. (46)

Take for instance k1 = 2, k2 = 1. We get

c1 = ρ1
3π− c0ρ0

2 = ρ1π. (47)

If we have no uncertainties, the robot will be on the wanted line with an incidence
angle of π

2 .
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Figure 9: Left: The incidence angle β = π
2 is the right. Right: β 6= π

2 should be
compensated

3.2 Stability along the path

The question we need to study now, is the stability along the path ϕ = 0 for the
chosen k1, k2. Consider the case where β 6= π

2 and assume that we are on the
wanted line. The robot follows the circle of radius ρ0 until ϕ = 0, taking u = 1

ρ0
.

It measures an elapsed time of c0 = ρ0α0, where α0 is the corresponding angle and
then follows the circle of radius ρ1 for a time c1 given by (47). We understand that
we are not anymore on the wanted line and proving the stability is not trivial.

Take for simplicity ρ0 = 1, ρ1 = 1
2 .

Figure 10 shows a block diagram with the Dubins car and the controller. The
controller has a single input corresponding to ϕ. It has two state variables: q ∈
{0, 1} and the counter c ∈ [−π2 ,

π
2 ]. It generates the control u.

Figure 10: The controller is an automaton which controls our robot
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The hybrid automaton representing our controlled system is given by Figure 11.

Figure 11: The corresponding trajectory is expected to roll on the curve ϕ = 0 in
a stable way

3.3 Stability of a periodic orbit

Stability along a path can be simplified by a stability along a periodic orbit in the
state space, by taking into account the symmetries by translation and by rotation of
the problem. We consider a linear approximation of ϕ and we change the coordinate
frame so that ϕ > 0 translates into x2 < 0. This is illustrated by Figure 12.

Figure 12: Left: The function ϕ is assumed to be linear. Right: simplification after
a change of the coordinate frame

We want to prove the stability with respect to (q, c, x2, x3) at the point (0, 0, 0, π2 ).
The corresponding hybrid automaton is depicted in Figure 13. The state variable
x1 has been removed since its stability is not of interest.

4 Proving the stability of rolling navigation

In this section, we propose to use analytical expressions of the Poincaré maps and
their Jacobian to have a better understanding of how they are computed. Later,
we will show that we do not need any analytical expression to prove the stability.

For the sake of clarity, we added an intermediate state q = 1
2 , as illustrated by

Figure 14. This state, called the jump, is fleeting, i.e., the state stays inside the
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Figure 13: The periodic orbit generated by this automaton is stable if we start at
(q, c, x2, x3) = (0, 0, 0, π2 )

jump state for 0 sec, or equivalently, as soon as it is inside q = 1
2 , it jumps to q = 1.

In the jump, we added x3 := x3 − 2π which is a non transformation, since x3 is an
angle. Now, this transformation allows us to have a bounded x3 and to reason in
the Cartesian line for x3 instead of the trigonometric circle. Otherwise, the angle
x3 would increase by 2π at each lap of the hybrid automaton.

Figure 14: The trajectory generated by this automaton is stable at (q, c, x2, x3) =
(0, 0, 0, π2 )

4.1 Periodic orbit

If we simulate the system, starting from (q, c, x2, x3) = (0, 0, 0, π2 ), we get the
periodic orbit depicted in Figure 15 in the (c, x2, x3)-space. The red transitions
of Figure 14 become the three red two-dimensional Poincaré sections of Figure 15.
We switch from one surface to another using the partial Poincaré maps p0,p 1

2
,p1.
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Figure 15: Periodic orbit in the (c, x2, x3)-space. The gray curves correspond to
the three projections of the trajectory on each of the three canonical vertical planes

4.2 Equilibrium

Proposition. Assume that at time t = 0, we are at the state

(q, c, x2, x3) = (0, 0, 0,
π

2
). (48)

Then at time t = 3π
2 , we will come back to the same state.

Proof. Let us start at t = 0. We have

c(t) = t

x2(t) = x2(0) +
∫ t
0

sin(x3(τ)) · dτ =
∫ t
0

sin(π2 + τ) · dτ
=

∫ t
0

cos(τ) · dτ = sin(t)

x3(t) = π
2 + t.

(49)

When t = π, we have x2(t) = 0 and we switch to q = 1
2 . The state is now

(q, c, x2, x3) = (
1

2
, π, 0,

3π

2
). (50)

We immediately jump to (1,−π2 , 0,−
π
2 ).



Proving the Stability of the Rolling Navigation 23

As long as we stay with q = 1, we have

c(t) = −π2 + (t− π)

x2(t) = x2(π) +
∫ t
π

sin(x3(τ)) · dτ
= −

∫ t
π

sin(π2 − 2τ) · dτ = −
∫ t
π

cos(2τ) · dτ
= −

[
1
2 sin(2τ)

]t
π

= − 1
2 · sin(2t)

x3(t) = x3(π) +
∫ t
π

2 · dτ = −π2 + 2(t− π) = 2t− 5π
2 .

(51)

When t = 3π
2 , we have c(t) = 0 and switch back to q = 0. The state it now

(q, c, x2, x3) = (0, 0,− 1
2 · sin(2 · 3π2 ), 2 · 3π2 −

5π
2 )

= (0, 0, 0, π2 ).
(52)

We thus came back to the initial state.

4.3 Expression for p0

Take t = 0, and assume that we are at the state

(q, c, x2, x3) = (0, 0, x̃2,
π

2
+ x̃3). (53)

It means that we are on the Poincaré surface S
1
2
0 , at the coordinates x̃2, x̃3.

As long as we satisfy q = 0, we have

c(t) = t

x2(t) = x̃2 +
∫ t
0

sin(x3(τ)) · dτ = x̃2 +
∫ t
0

sin(π2 + τ + x̃3) · dτ
= x̃2 +

∫ t
0

cos(τ + x̃3) · dτ = x̃2 + [sin(τ + x̃3)]
t
0

= x̃2 + sin(t+ x̃3)− sin(x̃3)

x3(t) = π
2 + x̃3 + t.

(54)

We define

t1(x̃2, x̃3) = min {t > 0 | x̃2 + sin(t+ x̃3)− sin(x̃3) = 0}
= min {t > 0 | sin(t+ x̃3) = sin(x̃3)− x̃2}
= π − arcsin(sin(x̃3)− x̃2)− x̃3.

(55)

We thus get the first partial Poincaré map

p0

(
x̃2

x̃3

)
=

(
t1(x̃2, x̃3)

π
2 + x̃3 + t1(x̃2, x̃3)

)
−

(
π
3π
2

)

=

(
−arcsin(sin(x̃3)− x̃2)− x̃3
−arcsin(sin(x̃3)− x̃2)

)
.

(56)
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A first order approximation of this function is

p0

(
dx2

dx3

)
=

(
−arcsin(sin(dx3)− dx2)− dx3
−arcsin(sin(dx3)− dx2)

)

=

(
−2dx3 + dx2

−dx3 + dx2

)

=

(
1 −2

1 −1

)
︸ ︷︷ ︸

=J0

(
dx2

dx3

)
.

(57)

These results are consistent with those obtained in Section 2.8.

4.4 Expression for p 1
2

The jump is the affine map defined by

p 1
2

(
c̃
x̃3

)
=

(
0 0
0 1

)(
c̃
x̃3

)
=

(
0
x̃3

)
. (58)

Thus, we get

p 1
2
◦ p0

(
[−0.1, 0.1]

[−0.1, 0.1]

)
⊂

(
0

[−0.43, 0.43]

)
(59)

and

Jp 1
2

=

(
0 0
0 1

)
. (60)

4.5 Expression for p1

Take t = 0, and assume that we are at the state

(q, c, x2, x3) = (1,−π
2

+ c̃, 0,−π
2

+ x̃3). (61)

As long as we satisfy q = 1, we have

c(t) = −π2 + c̃+ t

x2(t) = 0 +
∫ t
0

sin(x3(τ)) · dτ =
∫ t
0
− sin(π2 − 2τ − x̃3) · dτ

= −
∫ t
0

cos(2τ + x̃3) · dτ
= −

[
1
2 sin(2τ + x̃3)

]t
0

= 1
2 sin(x̃3)− 1

2 sin(2t+ x̃3)

x3(t) = −π2 + x̃3 + 2t.

(62)

We define
t2(c̃, x̃3) = min

{
t > 0 | − π

2
+ c̃+ t = 0

}
=
π

2
− c̃. (63)
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We have

p1

(
c̃

x̃3

)
=

(
1
2 sin(x̃3)− 1

2 sin(2t2(c̃, x̃3) + x̃3)

−π2 + x̃3 + 2t2(c̃, x̃3)

)
−

(
0
π
2

)

=

(
1
2 sin(x̃3)− 1

2 sin
(
2
(
π
2 − c̃

)
+ x̃3

)
−π2 + x̃3 + 2

(
π
2 − c̃

)
− π

2

)

=

(
1
2 sin(x̃3)− 1

2 sin(π − 2c̃+ x̃3)

x̃3 − 2c̃

)

=

(
1
2 sin(x̃3)− 1

2 sin(2c̃− x̃3)

x̃3 − 2c̃

)
.

(64)

A first order approximation of p1 is

p1

(
dc

dx3

)
=

(
1
2 sin(dx3)− 1

2 sin(2dc− dx3)

dx3 − 2dc

)

=

(
−dc+ dx3

dx3 − 2dc

)

=

(
−1 1

−2 1

)
︸ ︷︷ ︸

=J1

(
dc

dx3

)
.

(65)

4.6 Poincaré map

We define

p

(
x̃2
x̃3

)
= p1 ◦ p 1

2
◦ p0

(
x̃2
x̃3

)
. (66)

Since

p0

(
x̃2

x̃3

)
7→

(
−arcsin(sin(x̃3)− x̃2)− x̃3
−arcsin(sin(x̃3)− x̃2)

)
(67)

p 1
2

(
c̃

x̃3

)
=

(
0 0

0 1

)(
c̃

x̃3

)
=

(
0

x̃3

)
(68)

p1

(
c̃

x̃3

)
=

(
1
2 sin(x̃3)− 1

2 sin(2c̃− x̃3)

x̃3 − 2c̃

)
, (69)

we get

p

(
x̃2

x̃3

)
=

(
x̃2 − sin(x̃3)

arcsin(x̃2 − sin(x̃3))

)
. (70)
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The Jacobian of p at 0 is

Jp(0) = J1 · J 1
2
· J0 =

(
−1 1
−2 1

)(
0 0
0 1

)(
1 −2
1 −1

)
=

(
1 −1
1 −1

)
, (71)

which is stable (all roots are in the unit disk). As a consequence, the periodic orbit
is stable.

5 Basin of attraction

In this section, we want to find a subset of the state space of all states which will
converge to the periodic orbit. It is sufficient to limit our analysis to a Poincaré
section, say S1

0 . More precisely, we will find a centered box X0 inside S1
0 such that

p(X0) ⊂ X0 in this case, X0 is positive invariant. Unfortunately, in our situation
(which is not atypical), such a box does not exist and we can only find k > 1 such
that pk(X0) ⊂ X0. This corresponds to the periodic invariance studied by Lee and
Kouvaritakis in [18].

5.1 Find a periodic positive invariant box

To check the stability we take a small box containing 0, for instance

X0 = [−0.1, 0.1]× [−0.1, 0.1],

which corresponds to the red box in Figure 16. If we compute the smallest box
which contains X0 we find the blue box, which means that p(X0) 6⊂ X0. Now, we
also get p2(X0) ⊂ X0 and p3(X0) ⊂ X0. We conclude that X0 is periodic positive
invariant.

5.2 Find an asymptotically stable box

We now want to show that all initial state inside X0 will converge to 0. We use
the centered form [22] for stability [8, 28]. For this, we follow the procedure given
by relation (7). For k = 1, we do not get the enclosure. For k = 2, we get (see
Equation (9)):(

[Jp]

(
[p]

(
[x̃2]

[x̃3]

)))
·

(
[Jp]

(
[x̃2]

[x̃3]

))
·

(
[x̃2]

[x̃3]

)
⊂

(
[x̃2]

[x̃3]

)
. (72)

For the Poincaré map and its Jacobian, we took:

p

(
x̃2

x̃3

)
=

(
x̃2 − sin(x̃3)

arcsin(x̃2 − sin(x̃3))

)
(73)

and

Jp

(
x̃2

x̃3

)
=

 1 − cos(x̃3)

1√
1−(x̃2−sin(x̃3))2

− cos(x̃3)√
1−(x̃2−sin(x̃3))2

 . (74)
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Following [8] we get that all trajectories initialized in X0 will converge to 0 and
will stay inside p(X0). We can write this property under the form p∞(X0) = 0.

5.3 Find an asymptotically stable box using an interval in-
tegration

In the general case, we do not have any analytical expression for the flow. The pro-
cedure has to be applied using an interval integration. We give here all intermediate
results related to our test-case (see [7] for more details). We start from

[a] = [−0.01, 0.01]. (75)

First lap. We get

[τb] = [3.1114, 3.17179] , (76)

[xb] =

 [3.1114, 3.17179]

[−0.0603952, 0.0603829]

[4.67219, 4.75259]

 . (77)

The monodromy matrix for p0 is

[J]([τb]) =

 [1, 1]
[
−10−10, 10−10

] [
−10−10, 10−10

][
−10−10, 10−10

]
[1, 1] [−2.01996,−1.97913][

−10−10, 10−10
] [
−10−10, 10−10

]
[1, 1]

 (78)

and the Jacobian matrix for p0 is

[Jp0 ] =

(
[1, 1.00081] [−2.02159,−1.97913]

[1, 1.00081] [−1.02159,−0.979133]

)
. (79)

We have the jump and then, we switch to p1. We get

[τb] = [1.5708, 1.5709] (80)

and

[xb] =


[
−10−10, 10−10

]
[−0.0417802, 0.0417865]

[1.5306, 1.611]

 . (81)

For the monodromy matrix, we get

[J]([τb]) =

 [1, 1]
[
−10−10, 10−10

] [
−10−10, 10−10

][
−10−10, 10−10

]
[1, 1] [0.958986, 1.03941][

−10−10, 10−10
] [
−10−10, 10−10

]
[1, 1]

 . (82)
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The Jacodian matrix is

[Jp1 ] =

(
[1, 1.00081] [−2.02159,−1.97913]

[1, 1.00081] [−1.02159,−0.979133]

)
, (83)

and the interval enclosure of the Poincaré map becomes

[p] ([a]) =

(
[−0.021021, 0.021021]

[−0.020224, 0.020224]

)
. (84)

Second lap. We perform the same type of computation as for the first lap and
we get

[p ◦ p] ([a]) =

(
[−0.00512577, 0.00512577]

[−0.00178467, 0.00178467]

)
. (85)

For all other details, see [7].
From these results, we have easily checked that [Jp]([p][a]) · [Jp]([a]) · [a] ⊂ [a]

and we conclude the asymptotic stability.

5.4 Capture basin

We now want to characterize a set larger than X0 = [−0.1, 0.1] × [−0.1, 0.1] for
(x̃2, x̃3) which will converge to 0. Such a set is called a capture basin [2]. We
know from [3, 4] that, since X0 is a capture basin, p−k(X0), k ≥ 0 is also a basin.
Indeed all points (x̃2, x̃3) ∈ p−k(X0) will be such that pk(x̃2, x̃3) ∈ X0 and will
thus converge to 0.

The orange strip in Figure 16 corresponds X1 = p−1(X0) and extends from −π2
to π

2 , The green set corresponds to X2 = p−2(X0).
All the properties we have proven can be summarized by Figure 17. From this

graph, we read that pk(X2) ⊂ X0 for k ∈ {2, 4, 5, 6, . . . }. But, we have p3(X2) ⊂ [b]
which may be outside X0. Moreover, we have p∞(X2) = 0. The non inclusion
monotonicity of the chain is due to the fact that X0 is not positive invariant. It is
only periodic positive invariant.

5.5 Illustration

The stability property has been proven for a linear ϕ(x1, x2). In order to illustrate
the behavior of our controller for an arbitrary ϕ, we consider that ϕ corresponds
to the Hippopede of Proclus given by

ϕ(x1, x2) = 9x21 + x22 −
(
x21 + y22

)2
. (86)

Of course, this equation is not known by our controller which is based on the fact
that ϕ(x1, x2) is linear. We take for the initial state vector of the robot x = (3, 0, 1)
and for the controller q = 0, c = 0. The simulation of the controlled robot generates
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Figure 16: Each point in X2 (green) will first enter in the orange set X1, then in
the red set X0. Once in X0, it will converge to 0

Figure 17: Each point in X2 (green) will converge to 0 and will cross a non-nested
chain of sets

Figure 18 and shows that without any compass, measuring only the sign of a scalar
unknown function ϕ depending of the position, we are able to move along the curve
ϕ(x1, x2) = 0 in a stable and robust way.

6 Conclusion

In this paper, we have proposed an interval extension of Poincaré maps to show
the stability of hybrid dynamical systems with respect to a periodic orbit. The
approach has been illustrated on the rolling navigation. This type of navigation
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Figure 18: The robot rolls along the Hippopede. The frame box is [−4.5, 3.5] ×
[−3, 3].

can be used in an unstructured environment, where few sensors can be used by the
robot. Then, we extended our approach to characterize an inner approximation of
the attraction domain of the periodic orbit.

The mathematical tools used here were well known [14] for studying attractors
of continuous dynamical systems. Our main contribution is the adaptation of these
tools, mainly based on the rigorous computation of Poincaré maps, to prove the
stability of periodic orbits of hybrid systems. One limitation of the approach is that
we have to perform an undefined number of laps before proving the periodic stabil-
ity. An extension would be the use of ellipsoids instead of boxes. This would allow
us to perform only one lap by choosing the right shape for the ellipsoid. Moreover,
each time we intersect a surface, the wrapping effect introduced by the intersec-
tion would significantly decrease with ellipsoids, since the intersection between one
ellipsoid and one plane is still an ellipsoid.

The Python programs associated to all examples can be found here:
https://www.ensta-bretagne.fr/jaulin/rolling.html.

https://www.ensta-bretagne.fr/jaulin/rolling.html
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The Inventory Control Problem for a Supply Chain

With a Mixed Type of Demand Uncertainty

Elena Chausovaa

Abstract

This paper is concerned with a dynamic inventory control system de-
scribed by a network model where the nodes are warehouses and the arcs
represent production and distribution activities. We assume that an uncer-
tain demand may take any value in an assigned interval and we allow that the
system is disturbed by noise inputs. These assumptions yield a model with a
mix of interval and stochastic demand uncertainties. We use the method of
model predictive control to derive the control strategy. To deal with interval
uncertainty we use the interval analysis tools and act according to the inter-
val analysis theory. The developed results are illustrated using a numerical
example.

Keywords: inventory control, supply chain, network model, model predic-
tive control, interval-stochastic uncertainty, interval analysis, multiobjective
optimization, quadratic programming

1 Introduction

Nowadays, most supply chains are multi-echelon and have a complex network struc-
ture. Such a network consists of suppliers, manufacturing plants, warehouses, cus-
tomers, and distribution channels that are organized efficiently to get raw materials,
convert them to finished products, and distribute the products to customers. The
structure of any multi-echelon supply chain depends on the configuration and loca-
tion of various echelons with respect to each other. It can be described by a directed
network in which the nodes represent warehouses and the arcs are controllable and
uncontrollable flows in the network. The controllable flows can be controlled by a
system manager. They redistribute resources between the network nodes, possibly
process them, and plan deliveries from outside. The uncontrollable flows represent
a demand in the network nodes that can be made both by other nodes and from
the outside. Supply chain managers always seek to find best decisions to provide
products or services for customers in the right quantities, at the right places, and
at right times.
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This paper deals with the inventory control problem in a multi-echelon supply
chain network. In the classical inventory control theory uncertainty of demand
is regarded as stochastic uncertainty. However, in many real cases, there are not
enough historical data to estimate parameters of distributions of random variables
that affect the system. This fact gives rise to the need to use other approaches to
describing uncertainty. An interesting approach based on unknown-but-bounded
inputs is proposed in [2, 3]. The studies are devoted to the inventory control prob-
lem under an uncertain demand. Unlike the classical stochastic approach, they
model demand uncertainty in an unknown-but-bounded way assuming that an un-
certain demand may take any values in an assigned set, and nothing else is known
about demand behaviour. This makes sense because in practice the upper and
lower bounds for an uncertain demand can be inferred from the decision maker’s
experience or available historical data much more easily and with much more con-
fidence than empirical probability distribution. At the same time, the efficiency
of the control strategy strongly depends on the width of the interval of uncertain
demand and this interval should be as narrow as possible. To reduce the width
of the interval we can use a mixed form of model uncertainty. This is reasonable,
for example, when we have partial information about demands. Indeed, for some
products we do not have historical demand data, while for others we do. In addi-
tion, we can have quite stable orders within given limits from some consumers and
random orders from others. In such cases, an uncertain aggregate demand can be
decomposed in two sub-vectors, one of which is unknown-but-bounded (interval),
and the other is stochastic. These assumptions lead to a mixed interval-stochastic
uncertainty which is used further in this study.

We use the model predictive control [4, 14] (MPC) to derive the optimal control
strategy. The MPC approach is widely applied in the practice of control and allows
for solving complex control problems for systems with various types of uncertainty.
For example, the papers [15, 18] consider supply chain networks under conditions
of stochastic uncertainty, and the MPC approach allows the authors to develop a
control strategy in order to achieve the system robustness, performance and high
levels of service. The paper [1] studies stochastic hybrid systems and shows the
effectiveness of suggested techniques for a problem of supply chain management.
The paper [8] addresses the problem of the model predictive control for discrete
systems with random dependent parameters and its possible application to invest-
ment portfolio optimization. The papers [6, 12, 17] examine the MPC problem for
systems with a polytopic uncertainty description on state-space matrices under di-
verse input-output constraints. The problem is solved using the minmax approach
to the MPC based on linear matrix inequalities. The paper [7] discusses the case
of uncertain linear dynamic systems with interval assigned parameters and multi-
plicative noises in system matrices. By using the minmax MPC based on linear
matrix inequalities, the optimal robust control strategy providing the system with
stability in the mean-square sense is obtained. But the lack of constraints does not
allow the use of the obtained results for inventory management directly, where, as
a rule, there are various capacity constraints. The paper [5] is concerned with the
inventory control problem under hard constraints in storage levels and controls. A
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linear objective criterion is used to find the optimal control strategy that minimizes
the worst-case storage cost under interval demand uncertainty, but the cost of con-
trol actions is not taken into account here. The problem is converted into a linear
programming problem with constraints to be solved online that gives the optimal
control strategy without a shortage and backlogged demand. However, additional
stochastic uncertainty is not assumed here.

This paper considers an inventory control system with mixed additive uncer-
tainty in the presence of constraints in the states of the system and control actions.
An uncertain demand is estimated by an interval without any distribution infor-
mation, and the system is assumed to be disturbed by white noise. To deal with
the interval uncertainty we use the interval analysis tools and act according to the
interval analysis theory [13]. The influence of stochastic uncertainty leads to the
minimization of the conditional expected value of the MPC objective under soft
constraints in the states of the system. We transform the system control problem
with mixed model uncertainty to a deterministic quadratic programming problem
for which there are efficient solution methods and commercial software packages
(we used the quadprog function provided by the software Optimization Toolbox
in the MATLAB environment). Solving this problem online, we get a feedback
inventory control strategy with a minimum expected level of storage, but a high
level of service.

The paper is organized as follows. Section 2 introduces the problem to be solved.
Section 3 presents the main results concerning the optimal control under interval-
stochastic demand uncertainty. A numerical example showing the results obtained
is presented in Section 4 and conclusions are given in Section 5.

2 Problem statement

We consider a dynamic inventory control system with a network structure (supply
chain). The evolution of the network is described by the equation:

x(k + 1) = x(k) +Bu(k) + Cd(k) + Cw(k), k = 0, 1, 2, . . . (1)

Here x(k) ∈ Rn is the system state whose components represent storage levels in
the network nodes at the time k, the initial state x(0) is assumed to be fixed and
given; u(k) ∈ Rm is the control representing the controllable flows between the
network nodes at the time k; d(k), w(k) ∈ Rl are the uncertain demand vectors
describing the uncontrollable flows in the network nodes at the time k; the matrices
B ∈ Rn×m and C ∈ Rn×l describe the network structure. As the unit of time k we
can take, for example, a day, a week, a month, or a longer period.

Interval uncertainty in the system is represented by the vector d(k). We know
that d(k) takes its values within a given interval but the rest is unknown:

d(k) ∈D, k = 0, 1, 2, . . . , (2)

where D ∈ IRl, D =
[
D,D

]
≥ 0.
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In the paper we follow the notation of the informal international standard [11].
Intervals and interval objects (vectors, matrices) are denoted in bold, x, x are the
lower and upper bounds of the interval x, IRn = {x = [x, x] , x ≤ x, x, x ∈ Rn} is
the set of all n-dimensional intervals in the classical interval arithmetic IR, KRn =
{x = [x, x] , x, x ∈ Rn} is the set of all n-dimensional intervals in the Kaucher com-
plete interval arithmetic KR [10, 16].

The uncertain vector w(k) describes white noise with a zero mean and the
covariance matrix E{w(k)w>(k)} = W . This forms stochastic uncertainty in the
system.

Additionally, we assume that both expected storage levels and controls must be
non-negative and bounded:

E
{
x(k + 1)

∣∣ x(k)
}
∈X, k = 0, 1, 2, . . . , (3)

u(k) ∈ U , k = 0, 1, 2, . . . , (4)

where E {·|·} denotes the conditional expectation; X ∈ IRn, X =
[
0, X

]
;

U ∈ IRq, U =
[
0, U

]
. The bounds of the constraints given in (3), (4) define

the system’s capacities, such as storage limit and order quantity limit. In (3),
the lower bound equal to zero means that a shortage of stock is undesirable, but
possible. The shortage reduces the service level that is defined as the proportion
of demand satisfied. The ideal case is 100% service level. In order to maintain a
high service level under the uncertain demand a safety stock is formed. The level
of the safety stock for real-life complex, lean, and agile networks can be efficiently
determined by the method of the dynamic simulation.

We define the MPC performance index (cost function) as follows:

J(k + p|k) = E

{ p∑
i=1

((
x(k + i|k)− x0

)>
Q
(
x(k + i|k)− x0

)
−Q1

(
x(k + i|k)− x0

)
+ u(k + i− 1|k)>Ru(k + i− 1|k)

) ∣∣∣ x(k)

}
,

(5)

where x(k + i|k) is the state at the time k + i which is predicted at the time k,
x(k) or x(k|k) denotes the state measured at the time k; x0 is the target level that
defines a desired storage level; u(k+ i|k) is the predictive control at the time k+ i
which is computed at the time k; p is the prediction horizon; Q ∈ Rn×n, Q1 ∈ R1×n

and R ∈ Rm×m are the weighting matrices such that Q,R are symmetric positive
definite matrices and Q1 ≥ 0.

The control goal generally is to keep the state of the system close to the target
using little control efforts. But taking into account the fact that we deal with a
storage level it is necessary to specify the goal so that the state of the system is
close but preferably not below the target level x0. In cost function (5) the first

term
(
x(k + i|k) − x0

)>
Q
(
x(k + i|k) − x0

)
penalizes the state deviation from the

target level, the second linear term Q1

(
x(k+ i|k)−x0

)
penalizes the state negative

deviation from the target level, and the last term u(k + i − 1|k)>Ru(k + i − 1|k)
penalizes the control efforts.
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The problem to be solved is to compute a sequence of the predictive controls
u(k|k), u(k + 1|k), . . . , u(k + p− 1|k) which minimizes cost index (5):

min
u(k|k),u(k+1|k),...,u(k+p−1|k)

J(k + p|k),

subject to system dynamics (1) and constraints (2), (3), (4).
We reduce the above problem to an interval quadratic programming problem

where the uncertain inputs are represented by intervals. Since the input data are in-
terval, the objective value is also interval. We calculate the lower and upper bounds
of the objective values of the interval quadratic programming problem analytically
using the interval analysis and formulate a two-objective optimization problem. We
then transform the problem into a conventional quadratic programming problem
with a single objective by using the multi-objective optimization technique [9].

As is standard in the MPC, at the time k we calculate the sequence of predictive
controls u(k|k), u(k + 1|k), . . . , u(k + p − 1|k), but use only the first of them and
obtain the feedback control u(k) = u(k|k) as a function of the state x(k). Then the
state x(k+1) is measured, the control horizon is moved by one, and the optimization
is repeated at the next time k + 1. The result is the feedback inventory control
strategy Φ = {u(k) = u (x(k), k) , k ≥ 0}.

3 Main results

The following theorem gives the sequence of predictive controls {u(k|k), u(k +
1|k), . . . , u(k + p− 1|k)} at the time k.

Theorem. The vector of predictive controls

ũ(k) =
(
u(k|k)>, u(k + 1|k)>, . . . , u(k + p− 1|k)>

)>
that minimizes performance index (5) under constraints (2), (3), (4) on the tra-
jectories of system (1) is defined at each time k as a solution to the quadratic
programming problem with the criterion

Y (k + p|k) = ũ(k)>Hũ(k) + 2G(k)ũ(k) (6)

under the constraints(
B 0n×m 0n×m . . . 0n×m

)
ũ(k) ∈X 	CD − x(k), (7)

ũ(k) ∈ Ũ . (8)

Here H,G(k) are the block matrices of the type

H =


H11 H12 . . . H1p

H21 H22 . . . H2p

...
. . .

...
Hp1 Hp2 . . . Hpp

 , Hij =


(p− j + 1)B>QB, i < j,

R+ (p− j + 1)B>QB, i = j,

(p− i+ 1)B>QB, i > j,

(9)

G(k) =

((
x(k)− x0

)>
Q− 1

2
Q1

)
BK + midDF , (10)
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where

K =
(
K1 K2 . . . Kp

)
, Ki = (p− i+ 1)Im,

F =


F11 F12 . . . F1p

F21 F22 . . . F2p

...
. . .

...
Fp1 Fp2 . . . Fpp

 , Fij =

{
(p− j + 1)C>QB, i ≤ j,
(p− i+ 1)C>QB, i > j,

0n×m is the zero matrix of the dimension n × m, Im is the unit matrix of the

dimension m, Ũ =
(
U> U> . . .U>

)>
, D̃ =

(
D> D> . . .D>

)>
, CD is the result

of multiplying the real matrix C by the interval vector D, DF is the result of

multiplying the interval vector D̃
>

by the real matrix F , midx is the midpoint of
the interval x, x	 y =

[
x− y, x− y

]
is the internal subtraction in KR.

Proof. Let us consider performance index (5). By using the fact that the summand

(x(k + i|k)− x0)
>
Q (x(k + i|k)− x0)−Q1 (x(k + i|k)− x0)

+u(k+ i−1|k)>Ru(k+ i−1|k) = x(k+ i|k)>Qx(k+ i|k)−
(
2x>0 Q+Q1

)
x(k+ i|k)

+
(
x>0 Q+Q1

)
x0 + u(k + i− 1|k)>Ru(k + i− 1|k),

(5) turns into

J(k + p|k) = E
{ p∑

i=1

(
x(k + i|k)>Qx(k + i|k)−

(
2x>0 Q+Q1

)
x(k + i|k)

+ u(k + i− 1|k)>Ru(k + i− 1|k)
) ∣∣∣ x(k)

}
+ p

(
x>0 Q+Q1

)
x0.

To deal with the conditional expectation, we rewrite the index as:

J(k + p|k) = E

{
x(k + 1|k)>Qx(k + 1|k)−

(
2x>0 Q+Q1

)
x(k + 1|k)

+ u(k|k)>Ru(k|k) + E
{
x(k + 2|k)>Qx(k + 2|k)

−
(
2x>0 Q+Q1

)
x(k + 2|k) + u(k + 1|k)>Ru(k + 1|k) + . . .

+ E
{
x(k + p|k)>Qx(k + p|k)−

(
2x>0 Q+Q1

)
x(k + p|k)

+ u(k + p− 1|k)>Ru(k + p− 1|k)
∣∣ x(k + p− 1)

}
. . .∣∣∣ x(k + 1)

} ∣∣∣∣ x(k)

}
+ p

(
x>0 Q+Q1

)
x0.
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We introduce the notation

Jk+i = E

{
x(k + i+ 1|k)>Qx(k + i+ 1|k)−

(
2x>0 Q+Q1

)
x(k + i+ 1|k)

+ u(k + i|k)>Ru(k + i|k) + E
{
x(k + i+ 2|k)>Qx(k + i+ 2|k)

−
(
2x>0 Q+Q1

)
x(k + i+ 2|k) + u(k + i+ 1|k)>Ru(k + i+ 1|k) + . . .

+ E
{
x(k + p|k)>Qx(k + p|k)−

(
2x>0 Q+Q1

)
x(k + p|k)

+ u(k + p− 1|k)>Ru(k + p− 1|k)
∣∣ x(k + p− 1)

}
. . .∣∣∣ x(k + i+ 1)

} ∣∣∣∣ x(k + i)

}
.

Now it is clear that

Jk+i = E
{
x(k + i+ 1|k)>Qx(k + i+ 1|k)−

(
2x>0 Q+Q1

)
x(k + i+ 1|k)

+ u(k + i|k)>Ru(k + i|k) + Jk+i+1

∣∣ x(k + i)
}
, i = 0, . . . , p− 1,

(11)

with Jk+p = 0 and
J(k + p|k) = Jk + p

(
x>0 Q+Q1

)
x0. (12)

Using the method of mathematical induction we prove that the following relation-
ship is valid:

Jk+p−t = tx(k + p− t|k)>Qx(k + p− t|k)

+
(

2
(
x(k + p− t|k)− x0

)>
Q−Q1

)
×
( t∑

i=1

iBu(k + p− i|k) +

t∑
i=1

iCd(k + p− i)
)

+

t∑
i=1

u(k + p− i|k)>
(

2

i−1∑
j=1

jB>QBu(k + p− j|k)

+ (iB>QB +R)u(k + p− i|k)

)
+ 2

t∑
i=1

( i∑
j=1

jd(k + p− j)>

+

t∑
j=i+1

id(k + p− j)>
)
C>QBu(k + p− i|k)

+

t∑
i=1

d(k + p− i)>C>QC
(

2

i−1∑
j=1

jd(k + p− j) + id(k + p− i)
)

+ tr

{
t(t+ 1)

2
C>QCW

}
− t(2x>0 Q+Q1)x(k + p− t|k), t = 1, . . . , p,

(13)

where tr{·} is the trace of a matrix.
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At first, let us consider the case for p = 1. From (11) for i = p− 1 we have

Jk+p−1 = E
{
x(k + p|k)>Qx(k + p|k)−

(
2x>0 Q+Q1

)
x(k + p|k)

+ u(k + p− 1|k)>Ru(k + p− 1|k)
∣∣ x(k + p− 1)

}
.

(14)

Substituting x(k+ p|k) by its expression in terms of x(k+ p− 1|k) from (1) in (14)
and taking the conventional mathematical expectation, we get

Jk+p−1 = x(k + p− 1|k)>Qx(k + p− 1|k) +
(

2
(
x(k + p− 1|k)− x0

)>
Q−Q1

)
×
(
Bu(k + p− 1|k) + Cd(k + p− 1)

)
+ u(k + p− 1|k)>(B>QB +R)u(k + p− 1|k)

+ 2d(k + p− 1)>C>QBu(k + p− 1|k) + d(k + p− 1)>C>QCd(k + p− 1)

+ tr{C>QCW} −
(
2x>0 Q+Q1

)
x(k + p− 1|k),

and this coincides with (13) if t = 1.
Now let us suppose that relationship (13) is valid for some t, and show that (13) is
valid for t+ 1. Indeed, from recursive expression (11) we obtain

Jk+p−t−1 = E
{
x(k + p− t|k)>Qx(k + p− t|k)−

(
2x>0 Q+Q1

)
x(k + p− t|k)

+ u(k + p− t− 1|k)>Ru(k + p− t− 1|k) + Jk+p−t
∣∣ x(k + p− t)

}
.

(15)

Now we will substitute x(k+p− t|k) by its expression in terms of x(k+p− t−1|k)
from (1) in (15) and Jk+p−t by its expression from (13). Expanding the conventional
expectation and transforming the expression, we obtain that

Jk+p−t−1 = (t+ 1)x(k + p− t− 1|k)>Qx(k + p− t− 1|k)

+
(

2
(
x(k + p− t− 1|k)− x0

)>
Q−Q1

)
×
(t+1∑

i=1

iBu(k + p− i|k) +

t+1∑
i=1

iCd(k + p− i)
)

+

t+1∑
i=1

u(k + p− i|k)>
(

2

i−1∑
j=1

jB>QBu(k + p− j|k)

+ (iB>QB +R)u(k + p− i|k)

)
+ 2

t+1∑
i=1

( i∑
j=1

jd(k + p− j)>

+

t+1∑
j=i+1

id(k + p− j)>
)
C>QBu(k + p− i|k)

+

t∑
i=1

d(k + p− i)>C>QC
(

2

i−1∑
j=1

jd(k + p− j) + id(k + p− i)
)

+ tr

{
(t+ 1)(t+ 2)

2
C>QCW

}
− (t+ 1)(2x>0 Q+Q1)x(k + p− t− 1|k).

(16)
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Formula (16) coincides with (13) if t is replaced by t + 1, and hence, according to
the mathematical induction rule, formula (13) is valid for all t = 1, . . . , p.
Using the fact that (13) gives an expression for Jk with t = p, we get from (12):

J(k + p|k) = px(k|k)>Qx(k|k) +
(

2
(
x(k|k)− x0

)>
Q−Q1

)
×
( p∑

i=1

iBu(k + p− i|k) +

p∑
i=1

iCd(k + p− i)
)

+

p∑
i=1

u(k + p− i|k)>
(

2

i−1∑
j=1

jB>QBu(k + p− j|k)

+
(
iB>QB +R

)
u(k + p− i|k)

)
+ 2

p∑
i=1

( i∑
j=1

jd(k + p− j)>

+

p∑
j=i+1

id(k + p− j)>
)
C>QBu(k + p− i|k)

+

p∑
i=1

d(k + p− i)>C>QC
(

2

i−1∑
j=1

jd(k + p− j) + id(k + p− i)
)

+ tr

{
p(p+ 1)

2
C>QCW

}
− p

(
2x>0 Q+Q1

)
x(k|k) + p

(
x>0 Q+Q1

)
x0.

Eliminating all the terms that do not depend on the controls u and do not influence
the optimum, we obtain

J (k + p|k) =
(

2
(
x(k|k)− x0

)>
Q−Q1

) p∑
i=1

iBu(k + p− i|k)

+

p∑
i=1

u(k + p− i|k)>
(

2

i−1∑
j=1

jB>QBu(k + p− j|k)

+
(
iB>QB +R

)
u(k + p− i|k)

)
+ 2

p∑
i=1

( i∑
j=1

jd(k + p− j)>

+

p∑
j=i+1

id(k + p− j)>
)
C>QBu(k + p− i|k).

(17)

Expression (17) can be rewritten in a matrix form as:

J (k + p|k) = ũ(k)>Hũ(k) + 2G(k)ũ(k), (18)

where ũ(k) =
(
u(k|k)>, u(k + 1|k)>, . . ., u(k + p− 1|k)>

)>
, H is given by (9),

G(k) =

((
x(k)− x0

)>
Q− 1

2
Q1

)
BK + d̃(k)>F,
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and

d̃(k) =
(
d(k)>, d(k + 1)>, . . . , d(k + p− 1)>

)>
, d̃(k) ∈ D̃. (19)

Now we will consider constraints (3), (4). It is clear that (4) leads to constraint
(8). Using the expression in terms of x(k) from (1) instead of x(k + 1) in (3) we
get

E
{
x(k + 1)

∣∣ x(k)
}

= E
{
x(k) +Bu(k) + Cd(k) + Cw(k)

∣∣ x(k)
}

= x(k) +Bu(k) + Cd(k) ∈X.
(20)

Under constraint (2), condition (20) turns into the next inclusion:

x(k) +Bu(k) + CD ∈X,

that is valid if and only if

x(k) +Bu(k) ∈X 	CD.

Then for the observed state of the system x(k) at each sampling time k the control
u(k) must satisfy

Bu(k) ∈X 	CD − x(k),

which is consistent with (7).
We come to the problem of minimizing quadratic function (18) with interval data

(19) subject to constraints (7), (8). To handle the interval data in (18) we convert
the problem of interval quadratic programming into the following two-objective
optimization problem:

min
ũ(k)
J (k + p|k) = ũ(k)>Hũ(k) + 2G(k)ũ(k),

min
ũ(k)
J (k + p|k) = ũ(k)>Hũ(k) + 2G(k)ũ(k),

(21)

subject to (7), (8),

where the first objective function is the lower bound of interval quadratic function
(18) over the interval D̃, and the second is its upper bound. In (21)

G(k) =
((
x(k)− x0

)>
Q− 1

2
Q1

)
BK +DF,

G(k) =
((
x(k)− x0

)>
Q− 1

2
Q1

)
BK +DF,

and DF,DF are the lower and upper bounds of the possible values of d̃(k)>F over
the interval D̃.

According to the multi-objective optimization technique [9], problem (21) can
be transformed into a quadratic programming problem with a single objective.
Based on the scalarization method (the weighting objectives method), we obtain
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an equivalent compromise single objective optimisation problem where the objective
is chosen as a weighted sum of the original criteria:

min
ũ(k)

Y (k + p|k) = λ1J (k + p|k) + λ2J (k + p|k)

subject to (7), (8),

where λ1, λ2 ≥ 0 are the weighting coefficients that represent the relative impor-
tance of each criterion, λ1 + λ2 = 1. At various weights, we can express varies
preferences to estimate the performance objective. For example, λ1 = 1 means the
optimistic estimate, λ2 = 1 states the pessimistic estimate, λ1 = λ2 = 0.5 indi-
cates the neutral estimate. It can be tuned manually until the controller reflects
the desired behaviour. From our experience, if the demand values are more or less
evenly distributed within its intervals, the equal weights give quite good results.
Assuming equal weights in objective functions (21) we obtain the following result:

Y (k + p|k) =
(
J (k + p|k) + J (k + p|k)

) /
2

= ũ(k)>Hũ(k) + 2
1

2

(
G(k) + G(k)

)
ũ(k) = ũ(k)>Hũ(k)

+ 2
((

(x(k)− x0)>Q− 1

2
Q1

)
BK +

1

2

(
DF +DF

))
ũ(k),

that is consistent with (6) and (10).

At this point, it is worth noting that, due to the interval uncertainty in the
system, we can only steer the state to a tube sufficiently close to the target level
x0, and keep the state trajectory on average within the target tube. The target
tube is a sequence of the sets that at each time contain all the states whose future
trajectory can be kept inside the constraints, for all admissible disturbances [2].
It is clear, the width of this tube depends on the width of the initial uncertainty
intervals. Indeed, the problem of keeping the state x(k), on average, in some tube
X(a, b) = [a, b] has a solution if and only if, for all x(k) ∈X(a, b), there is a control
u(t) ∈ U so that

E
{
x(k + 1)

∣∣ x(k)
}

= x(k) +Bu(k) + Cd(k) ∈X(a, b)

is valid for all d(k) ∈D. That takes place if and only if

x(k) +Bu(k) + CD ∈X(a, b),

and then
x(k) +Bu(k) ∈X(a, b)	CD.

It makes sense if and only if X(a, b) 	 CD ∈ IR, that is a − CD ≤ b − CD. We
can argue that CD − CD ≤ b − a, and widCD ≤ widX(a, b). Therefore, the
minimum width of the tube, within which on average the state x(k) can be kept
for all possible values of the demand, is given by

widCD = CD − CD.
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Evidently, under an excessive storage level any system must pay a high storage
cost. But if the storage level is too low, the system will have a low service level
due to the shortage, resulting in lost profits and loss of customer loyalty. To find
the trade-off, we need to maintain the minimum level of storage without violating
state constraints for all possible realizations of model uncertainty. This is why we
suggest setting the target level at zero during the first simulation and waiting for
the tube X(0,widCD) to be received. In this case, the control is obtained by
pointing to the order-up-to-level in the sense that

x(k) +Bu(k) = −CD (22)

because of X(0,widCD) 	 CD = −CD. Thus, the developed feedback control
turns out to be a periodic review, order-up-to-level (R,S) strategy, where the review
interval R is the unit of time, and the order-up-to-level S is equal to −CD. If the
levels of service in the network nodes are high enough, there is no need to raise the
target level x0. Otherwise, we can gradually increase the target level and form a
safety stock until the required levels of service are received.

4 Numerical Problem

Now we will apply the results obtained in Section 3 to an example. Let us consider
the fictional production-distribution system represented by Figure 1.

A

B

AB

1

2

3

u1

u2

u4

u3

d1, w1

d2, w2

d4, w4

d5, w5

d3, w3

Figure 1: The network structure of a production-distribution system with three
nodes and controllable (solid) and uncontrollable (dashed) flows between them

The system has three interdependent production-distribution centres, repre-
sented by three nodes. Nodes 1 and 2 make products A and B, these products are



The Inventory Control Problem for a Supply Chain 47

used later for making product AB in node 3. The controllable flows u1, u2 describe
the production levels of A in node 1 and B in node 2, respectively, per unit of time,
u3 describes a production line in node 3 which takes some amount of products A
and B to produce the same amount AB in node 3. The arc u4 models an additional
flexible capacity present in the system which can be split in any proportion between
two production lines A and B. If the arc u4 works at full force, the flexible capacity
is fully used to produce B, while if it works at zero force, the flexible capacity is fully
used to produce A. The uncontrollable flows represent the demand in the network
nodes that can arise from outside and other nodes. The arcs d1, d2, d3 represent
demands for products A, B and AB. And there are the redistribution arcs d4, d5
which represent demands that may unpredictably require A or AB, and B or AB,
respectively.
The structural matrices B and C for the system have the form:

B =

1 0 −1 −1
0 1 −1 1
0 0 1 0

 , C =

−1 0 0 −1 0
0 −1 0 0 −1
0 0 −1 1 1

 .

The constraints in the states and controls are given as follows

X =
(
[0, 130] [0, 120] [0, 150]

)>
,

U =
(
[0, 170] [0, 50] [0, 100] [0, 70]

)>
.

The demand d(k) takes values within the interval vector

D =
(
[5, 25] [20, 30] [60, 80] [0, 20] [0, 10]

)>
.

This example is an adapted version of the example from [2]. The system contains
the white noise w(k) with a zero mean and the covariance matrix

W = diag
(
σ2
1 , σ

2
2 , . . . , σ

2
l

)
, σ2

i = 0.25 widDi.

We assume that the demand cannot be backlogged and that demands during stock-
outs are completely lost. The initial storage level is x(0) = (130 120 150)

>
and

the target storage level is x0 = (0 0 0)>. The weighting matrices are chosen as
Q = In, Q1 = (1 1 1)>, R = Im, the prediction horizon is p = 6, the problem is
solved for 100 time steps. We carried out modelling and simulation in MATLAB.
The simulation results are presented in Figures 2, 3, 4, 5.

Figure 2 shows the time behaviour of demands in the network. Normally, they
fluctuate inside the given intervals, but there are some peaks lying outside their
lower and upper bounds. This is the influence of random disturbances that can
cause the demand to leave the predicted interval. We take them into account only
in the expected way, and this is reflected in customer service levels. But in our
case, decrease in the service levels is insignificant. As the simulation showed, we
received high levels of service in the network nodes. They are maintained at the
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Figure 2: The dynamics of di +wi (solid blue) and the lower and upper bounds of
the demand intervals

[
Di, Di

]
(dashed red), i = 1, . . . , 5

level of 98.72% in node 1, 99.98% in node 2, and 99.67% in node 3. In this case,
there is no need to increase the target level x0 to form a safety stock.

Figure 3 demonstrates the controls in the network. The average time required
to compute the control actions within a time step using the quadprog function was
about 0.005 seconds. It is worth noting that the arc u2 works at full force. The
flexible capacity is divided between the production lines A and B (u4 > 0). This
means that the constraint in u2 is limiting.

Figure 4 presents the inventory dynamics in the network nodes under the op-
timal control strategy. In all the nodes, a decreasing trend of the storage lev-
els can be observed. In our case, CD = ([−45,−5] [−40,−20] [−80,−30])

>
and

widCD = (40 20 50)
>

. Figure 4 shows that starting from some timestep, the
state trajectory on average lies within the minimal tube X(0,widCD).
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Figure 3: The trajectories of the controls u1, u2, u3, u4 (solid blue) and its con-
straints (dashed red)
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Figure 4: The trajectories of the states xi (solid blue) and the levels widCDi

(dashed red), i = 1, 2, 3
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Figure 5 shows the order-up-to-levels which starting from some point in time
are constant and equal to −CD = (45 40 80)

>
. This fact is consistent with (22).

0

45

(x
+
B
u
) 1

0

40

(x
+
B
u
) 2

0 20 40 60 80 100

Timestep k

0

80

(x
+
B
u
) 3

Figure 5: The order-up-to-levels (solid blue) and −CD (dashed red)

5 Conclusions and further research

In this study, we considered a supply chain network under interval and stochastic
uncertainties. The mixed type of uncertainty is preferred in many cases since it is
close to real life. We used the integrated approach to inventory control, with all
the network nodes optimized simultaneously. We applied the MPC approach and
reduced the problem to a constrained quadratic programming problem which can
be solved using efficient techniques. As a result, we developed a feedback inventory
control strategy with a high level of service.

However, there are still a number of issues that need to be addressed, such as the
case of nonstationary demand, multiplicative noise, storage loss, and the conditions
for the existence of controls to fulfill any values of possible demands under interval-
stochastic uncertainty. These are the points of possible future research.
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Inverses of Rational Functions∗

Tamas Dozsaa

Abstract

We consider the numerical construction of inverses for a class of rational
functions. We propose two inverse algorithms, which can be used to simulta-
neously identify every zero of a rational function or polynomial. In the first
case, we propose a generalization of an inverse algorithm based on our previ-
ous work and specify a class of rational functions, for which this generalized
algorithm is applicable. In the second case, we provide a method to con-
struct Blaschke-products, whose roots match the roots of a polynomial or a
rational function. We also consider different iterative methods to numerically
calculate the inverse points and discuss their properties.

Keywords: rational functions, Blaschke-products, fixed point iterations,
winding numbers

1 Introduction

Rational functions play a crucial role in many theoretical and engineering applica-
tions. Rational orthogonal systems, such as the Malmquist-Takenaka system were
proven to be well suited for several biological signal processing tasks [8, 13]. The
transfer functions of linear systems are also rational, making the study of ratio-
nal functions essential in system identification [12, 14]. Special types of rational
functions, such as Blaschke-products also form the basis of many theoretical appli-
cations such as the Riesz-Nevanlinna factorization of Hardy-spaces [13], hyperbolic
wavelet construction [12] and the construction of bi-orthogonal systems [6].

Our objective in this paper is to describe and numerically produce all solutions
of the implicit equation

f(φ) = Γ ⊂ C, (1)
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where f ∈ R belongs to a class of rational functions and Γ is a simple smooth
curve. The proposed methods aim to generalize our previous results for Blaschke-
products described in [4, 5]. In [5], we provided sufficient conditions on Γ for the
distinct, continuous solutions φk, k = 1, . . . , n to uniquely exist if f is an n-factor
Blaschke-product. Furthermore, we proposed an inverse algorithm, which can be
used to find all solutions of (1).

The rest of this paper is organized as follows. In Section 2 we provide sufficient
conditions on Γ for the existence of distinct continuous solutions to (1), if f is
rational. In Section 3, we specify the class of considered rational functions R, and
propose a generalization of the inverse algorithm in [5] to produce the inverses
of any f ∈ R. Alternatively, one can construct a Blaschke-product, whose zeros
match the zeros of the function in question and apply the algorithm proposed in
[5] as-is. This approach and its properties are discussed in Section 3.5. In Section
4 we consider different numerical iterative methods and highlight their advantages
for use with the proposed, generalized inverse algorithm. Finally, we summarize
our results in Section 5.

2 Inverses of Analytic Functions along a Curve

In this section we will discuss the inverses of functions along a curve. Let f be
an analytic function on the region Ω ⊂ C and denote by Ω′ := f(Ω) its range.
Furthermore, let K := {z ∈ Ω : f ′(z) = 0} be the set of critical points and
K ′ = f(K) their image with respect to f . We note that, if f is a polynomial every
point in K falls into the convex hull of the roots of f [11], while if f happens to be
a Blaschke-product, all of its critical points fall into the hyperbolic convex hull of
its zeros [11].

The analytic function f can be locally inverted in any z0 ∈ Ω \ K [7, 11]. In
other words, for any W0 ⊂ Ω′ neighborhood of the point w0 = f(z0), we can find
an U0 ⊂ Ω neighborhood of z0, such that f : U0 → W0 is injective (one-to-one
function). Our proposed algorithms rely on a generalization of this statement to
curves. Let

Γ := {γ(s) : s ∈ J = [α, β]} ⊂ Ω′ (2)

be a simple smooth curve with γ parameterization. That is, γ : J → Γ is a
continuously differentiable bijection, for which γ′(s) 6= 0 (s ∈ J). We say that the
smooth function φ : J → f−1(Γ) is the inverse function of f along the curve Γ in
notation

f(φ) = Γ, (3)

if, f(φ(s)) = γ(s) (s ∈ J) holds. We will use the following theorem regarding the
solutions of (3).
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Theorem 1. Suppose Γ ∩K ′ = ∅. Then,

1. For any z0 ∈ f−1(Γ), equation (3) has a solution that passes through z0:
∃φ : φ(s0) = z0, f(φ(s)) = γ(s) (s ∈ J).

2. If any two solutions of (3) have a common point, then these solutions coin-
cide: φ1(s0) = φ2(s0) =⇒ φ1(s) = φ2(s) (s ∈ J).

A proof of Theorem 1 can be found in [5]. This relies on the existence and
uniqueness theorem for differential equations. An alternative way to prove the
theorem can be found in [11] (2.1, pp. 25).

If f is a rational function, then it has a finite number of critical points. Fur-
thermore, supposing Γ ∩ K ′ = ∅, the equation f(φ) = Γ has a finite number of
φ1, . . . , φm, m ∈ N solutions. Based on Theorem 1, the ranges Γj := φj(J) ⊂
f−1(Γ) (j = 1, . . . ,m) of these solutions, are distinct smooth curves.

3 An inverse algorithm for rational functions
In this section we discuss how to find the inverse curves Γj (j = 1, . . . ,m). We
propose a generalization of the inverse algorithm introduced in [5], where f was
assumed to be a finite Blaschke-product:

B(z) := ε

m∏
k=1

z − ak
1− akz

(z ∈ D, ak ∈ D, k = 1, . . . ,m, m ∈ N, ε ∈ T). (4)

These special rational functions, as defined in (4), have many applications such as
the construction of rational orthogonal systems [6]. Our algorithm proposed in [5]
had two main ideas. First, we showed that if f is an m-factor Blaschke-product
and we choose a point w ∈ T, then every solution zi ∈ T of

f(zi) = w (i = 1, . . . ,m) (5)

can easily be identified. In this work, we introduce a class of rational functions R
and generalize this idea for f ∈ R in Section 3.3. The second idea of the algorithm
in [5] was that given the initial solutions in (5), a successive application of Newton’s
iteration can be used to produce every inverse of the Blaschke-product f along the
curve Γ ⊂ D ∪ T.

The main contribution of this paper therefore is a generalization of the inverse
algorithm introduced in [5] for a wide class of rational functions. We begin by com-
paring the proposed algorithm’s properties to well-established root finding methods
in Section 3.1. We will discuss a generalization of this iterative method for arbitrary
analytic functions in Section 3.2. Furthermore, we are going to propose a method
to identify every zero of the rational function f ∈ R in Section 3.4. Finally, we
will investigate an alternative root finding algorithm involving the construction of
Blaschke-products in Section 3.5.
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3.1 Comparison with existing approaches

If f is a rational function, then for any w ∈ C, the implicit equation

f(z) = w (6)

can be rewritten as the polynomial root finding problem

P (z) = H(z)− w ·Q(z) = 0, (7)

where H and Q are polynomials such that f(z) = H(z)
Q(z) . Many well-established

numerical algorithms exist for solving such problems. In this section we will com-
pare the proposed method to the well-known algorithms [1, 3]. Comparison with
these methods makes sense, because both the proposed inverse algorithm for ra-
tional functions and [1, 3] were created to produce every solution of (6) and (7)
simultaneously.

The Graeffe-Dandelin-Lobachesky method detailed in [3] introduces an iteration
which squares the zeros of a polynomial in each step. This separates the roots by
magnitude, then the Vieta-relations can be exploited to get good estimates on the
absolute values of the roots. These estimates can either serve as a starting point
for some other root finding algorithm, or one of numerous strategies can be applied
to estimate the angles of the zeros as well.

Another well-known and popular algorithm for finding every zero of a poly-
nomial is Aberth’s method [1]. This algorithm is cubically convergent for simple
zeros and can be interpreted as an improvement of the Durand-Kerner method
[10]. Aberth’s method updates an initial estimate of the roots in each step of the
iteration. The iteration can encounter problems in the case when both the zeros
of the polynomial and the initial approximations are distributed in a symmetrical
fashion.

The advantages of the rational inverse algorithm proposed in this manuscript
over the above mentioned well-known polynomial root finding methods are twofold.
First, in order to acquire the form (7) from (6), one assumes that the values of the
polynomials H and Q can be accessed separately. If the value of f is available in a
sufficient number of points, one could apply interpolation to achieve this, however at
the cost of possibly introducing numerical errors (especially in real life applications
in the presence of noise). The second advantage of the proposed method is that it
makes no assumptions on the order of f . The root finding algorithms [1, 3] require
us to have apriori information about the order of the polynomial whose roots we
are trying to identify. In contrast, the algorithm presented here can produce every
solution to (6), regardless of the number of solutions, provided that f belongs to
a certain class of rational functions. For some applications however this condition
is naturally satisfied. For example our algorithm could presumably be applied to
identify the zeros (and thus poles) of the transfer function of an all-pass filter [2]
without knowing the order of the transfer function.

Finally, we would like to mention that our approach in considering rational
functions for inverse problems instead of polynomials is not without precedent. In
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fact, the classical Bernoulli-method [10] constructs a special rational function and
identifies its so-called dominant pole in order to determine a zero of a polynomial.

3.2 Finding the inverses given an initial solution
Henceforth, denote by Dr(z0) := {z ∈ C : |z − z0| < r} and Dr(z0) := {z ∈ C :
|z− z0| ≤ r} the open and closed neighborhoods of z0 and let Ω = DR(0). Suppose
the function f is analytic on Ω = DR(0). Furthermore, let

Mj := max
z∈Ω
|f (j)(z)|. (8)

In order to produce the inverse curves Γj ⊂ Ω (j = 1, . . . ,m) introduced in
Section 2, we need to find neighborhoods which separate the curve Γ ⊂ Ω′ = f(Ω)
from K ′ and the Γj curves from each other. Let

ρ(H,L) := inf{|z − w| : z ∈ H,w ∈ L} (9)

denote the distance between sets H,L ⊂ C and

Γr := {w ∈ Ω′ : ρ(w,Γ) < r} (10)

denote the neighborhood of the curve Γ with a radius of r. In addition, let Kc
r =

Ω \ ∪κ∈KDr(κ) be the complement of the r radius neighborhood of the critical
points. If Γ ∩ K ′ = ∅, then Γ can be separated from K ′ in the following sense.
There exists a number r1 > 0 such that

ρ(Γr1 ,K
′) > r1. (11)

By (11),

ρ(L,K) ≥
√
r1/M2 =: r2, (12)

where L := f−1(Γr1). Indeed, if κ ∈ K, w = f(z) ∈ Γr1 , then

|f(z)− f(κ)| = |f(z)− f(κ)− f ′(κ)(z − κ)| ≤M2|z − κ|2.

From here, (12) is a consequence of

ρ(Γr1 ,K
′) ≤M2ρ

2(K,L).

Since by Theorem 1, the inverse curves Γj are pairwise distinct, there exists r0

for which

Γjr0 ⊂ L, Γjr0 ∩ Γkr0 = ∅, j 6= k, 1 ≤ j, k ≤ m, L := f−1(Γr1). (13)

Furthermore let

m1 := max
z∈Kc

r

|1/f ′(z)| ≥ max
z∈L
|1/f ′(z)|. (14)
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We note, that the constants m1 and Mj only depend on Γ and f .
In order to solve the equation f(φ) = Γ, suppose we already acquired for some

w0 = γ(s0) ∈ Γ point the solutions z0,j = φj(s0) ∈ Γj (j = 1, . . . ,m). We are going
to discuss iterative methods, with which we can determine the inverses z ∈ Γj of
w ∈ Γ, provided w is close enough to w0. The solution z ∈ Γj can be found on the
disk Dr(z0,j), as the fixed point of an iteration generated by the function

h(v) = v − (f(z0 + v)− w) · g(z0 + v) (|v| < r). (15)

Indeed, if g does not vanish, then

h(v) = v ⇐⇒ f(z) = w (z := z0 + v), (16)

and since |z − z0| = |v| < r, based on (13), z falls on Γj , provided r < r0.
In order to find v which satisfies (16), we are going to show for some functions

h, that they are contraction mappings. That is, for any |vk| < r (k = 1, 2),

|h(v1)− h(v2)| < q · |v1 − v2| (17)

for some constant q ∈ [0, 1). In Section 4, we provide specific examples of h and
show that there exist 0 < r ≤ r0 and 0 < r < r1, such that

z0 ∈ Γj , f(z0) = w0, w ∈ Γ, |w − w0| ≤ r =⇒ h : Dr → Dr (18)

and h also possesses the property described in (17). Such mappings h satisfy the
conditions of the Fixed-point theorem and therefore iterations of the type vk+1 :=
h(vk) will converge to the solution (16). Using these iterations, we can invert the
function f in the wk := γ(sk) ∈ Γ points, where sk belongs to the partitioning
s0 = α < s1 < . . . < sN = β (J = [α, β]). If the partitioning is dense enough,
beginning from some initial solution z0 ∈ Γj satisfying f(z0) = w0 ∈ Γ, we can find
the rest of the solutions zk ∈ Γj for which f(zk) = wk, (k = 1, . . . , N) recursively.
These zk solutions are the limits of fixed point iterations.

3.3 Finding an initial solution
In this section we introduce an algorithm to produce every initial solution z0,j =
φ(s0) ∈ Γj , (j = 1, . . . ,m). The proposed algorithm is a generalization of the
method introduced in [5], where similar ideas were used to produce these solutions
if f is an m-factor Blaschke-product (4).

We begin by specifying the class of rational functions R, for which the discussed
ideas are applicable. For a rational function f , let Zf and Pf denote the set of its
zeros and poles respectively. Let R be the class of rational functions, for which

R∗ := max{|ξ| : ξ ∈ Zf} < R∗ := min{|ζ| : ζ ∈ Pf}. (19)

Polynomials and Blaschke-products obviously belong to R. We will make use of the
notion of the Nyquist-plot, which for a function f belonging to R can be defined
by (20).
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fTR := f(TR)

(TR := {z = R · eit, t ∈ I = [−π, π)}, R∗ < R < R∗, f ∈ R).
(20)

Our reason for considering the class of functions R is summarized by the next
theorem.

Theorem 2. If f ∈ R, then the Nyquist-plot fTR can be written in the form

f(Reit) = A(t)eiθ(t) (t ∈ R),

where A is a positive continuous function and θ : R → R is a strictly increasing
function. Furthermore θ satisfies θ(t+ 2π) = θ(t) + 2mπ (t ∈ R), where m denotes
the number of f ’s zeros with multiplicities.

Proof. The winding number

Ind(u, fTR) =
1

2πi

∫
fTR

1

z − u
dz (u ∈ C)

specifies the integer number of times the Nyquist-plot travels around the point u
in a counter clockwise manner [7, 9, 11]. Cauchy’s argument principle [7, 9, 11],
makes a connection between the poles and zeros of f and the winding number of
the Nyquist-plot at u = 0:

Ind(0, fTR) = Zf,TR − Pf,TR ,

where Zf,TR and Pf,TR denote the number of zeros and poles that fall inside TR.
From this and the above mentioned interpretation of the winding number, choosing
f ∈ R guarantees that in the Nyquist-plot

f(R · eit) = A(t)eiθ(t) (t ∈ R)

the argument function θ : R → R is strictly increasing and satisfies θ(t + 2π) =
θ(t) + 2mπ (t ∈ R).

We note that for Blaschke-products (4) A(t) = 1 (t ∈ R). Figure 1 illustrates
the Nyquist-plots of some examples of rational functions.



60 Tamas Dozsa

-1 0 1

-1

-0.5

0

0.5

1

-0.5 0 0.5
-0.4

-0.2

0

0.2

0.4

0.6

-3 -2 -1 0 1 2 3

-2

0

2
arg(f(T))

|f(T)|

(a) The curve TR with R = 1 (top left), its image f(TR) with respect to f ∈ R (top right),
θ(t) mod 2π and A(t) (bottom).
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(b) The curve TR with R = 1 (top left), its image f(TR) with respect to f 6∈ R (top right),
θ(t) mod 2π and A(t) (bottom).

Figure 1: 1a: Nyquist-plot of a rational function belonging to R. The argument
function θ is made up of 2 strictly increasing parts. 1b: Nyquist-plot of a rational
function not in R. Now the winding number is 1 and the Nyquist-plot makes a
single revolution around 0. Blue points denote the zeros (and their images) of the
functions, magenta points denote the poles.
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From Theorem 2 it follows, that if f ∈ R, each set

Iτ := {t = θ−1(θ(τ) + 2jπ) : t ∈ [−π, π), j ∈ Z} (τ ∈ [−π, π)) (21)

has exactly m members. Furthermore, for any fixed τ we can easily produce the set
Iτ numerically (i.g. by interval halving). Then, we can identify m initial solutions
by

f(Reitj ) = f(z0,j) = A(tj)e
iθ(τ) = w0,j (tj ∈ Iτ , j = 1, . . . ,m). (22)

3.4 Identifying every zero

In this section we discuss an application of the proposed inverse algorithm to find
every zero of f ∈ R. Then, we can give a parametric representation of the boundary
of the star-like domain f(DR) as

FR = {A∗(τ)eiθ(τ) : τ ∈ [−π, π)}, (23)

where A∗(τ) := maxt∈Iτ A(t). The point w ∈ f(DR) is said to be an internal self
intersecting point of the diagram f(TR), if there exist t1, t2 ∈ I, t1 6= t2 that satisfy
f(Reit1) = f(Reit2) = w. If f ∈ R, then the S set of internal self intersecting
points is finite. In order to find the zeros of f , we are going to produce the inverses
along the line segments

Γ := [0, w0,j ] = {γ(s) := (1− s)w0,j : 0 ≤ s ≤ 1}, (24)

that connect 0 with the initial points w0,j (j = 1, . . . ,m). We only consider the
inverses along the line segments for which

[0, w0,j ] ∩ (K ′ ∪ S) = ∅ (25)

holds. Let F ∗R denote the set of possible w0,j endpoints, with which the segment
[0, w0,j ] satisfies (25). The set FR\F ∗R is a finite set. We bring attention to the fact,
that if the initial inverse points were determined according to Section 3.3, then the
points w0,j all fall on the same line segment (j = 1, . . . ,m). Henceforth we assume
that the elements of Iτ are indexed in a way so that the points w0,j = A(tj)e

iθ(τ)

satisfy |w0,1| < |w0,2| < . . . < |w0,m| and therefore

[0, w0,1] ⊂ [0, w0,2] ⊂ . . . ⊂ [0, w0,m]. (26)

Suppose that f has only simple roots. Consider the functions φj : [0, A(tj)] →
f−1(Γ) starting from the origin going backwards. That is, as a first step we define
the inverse images of the segment [0, w0,1], which start from the m zeros of f . Now
φ(A(t1)) = z0,1 = Reit1 . Taking the inverse images of the segment [w0,1, w0,2]
starting from the point φj(t1) (j = 2, . . . ,m), we get m − 1 smooth curves, fur-
thermore φ1(A(t2)) = z0,2 = Reit2 . Continuing this method finally brings us to
consider the inverse of [w0,m−1, w0,m] starting from the point φm(tm−1), which gives
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us a smooth curve ending in φ1(A(tm)) = z0,m = Reitm . Thus, we showed that
the functions φj considered over the intervals [0, A(tj)] are smooth solutions of the
equation f(φ) = [0, w0,j ]. Furthermore, these solutions connect the z0,j points on
the boundary with the zeros of f . Our numerical experiments show, that if a zero
of f has a multiplicity greater than 1, then the number of φj solution trajectories
ending in this root matches the multiplicity. Figures 2 and 3 illustrate the above
described root finding algorithm.
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Figure 2: LEFT: The domain DR (bordered by black circle), the zeros (blue points)
and the poles (purple points) of f ∈ R, initial inverse points (red points on the
circle), and the inverse curves Γ1 and Γ2 (green curves). RIGHT: The range f(DR)
bordered by the Nyquist-plot (black curve), w0,1 and w0,2 (red points), the inverted
line segments [0, w0,1] and [0, w0,2] (light blue segments)

3.5 Construction of equivalent Blaschke-products

We now detail an alternative approach to identify the zeros of polynomials. Namely,
we will construct Blaschke-products (4), whose zeros match the zeros the polyno-
mial in question, then apply the inverse algorithm introduced in [5] to identify
these. Suppose first that P is a polynomial of degree m. We can then consider the
reciprocate polynomial Pr:

Pr(z) := zmP (1/z) (z ∈ C). (27)
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(a) LEFT: The complex unit circle, containing the roots (blue points) of a Chebyshev-
polynomial. The inverse curves found by the proposed inverse algorithm are colored
green. RIGHT: The Nyquist-plot f(TR) and the line segments [0, w0,j ] (j = 1, . . . , 5) to
be inverted. Here, [0, w0,j ] ∩ S = ∅.

(b) LEFT: The complex unit circle, containing the roots (blue points) of a Chebyshev-
polynomial. The inverse curves found by the proposed inverse algorithm are colored
green. RIGHT: The Nyquist-plot f(TR) and the line segments [0, w0,j ] (j = 1, . . . , 5) to
be inverted. Here, [, w0,j ] ∩ S 6= ∅.

Figure 3: Internal self intersecting points S

Using (27), we can construct the m-factor Blaschke-product B:

B(z) :=
P (z)

Pr(z)
=

m∏
i=k

z − ak
1− zak

, (28)

where ak, (k = 1, . . . ,m) are the zeros of P including multiplicities. Then, the
algorithm described in [5] can be applied to find the zeros ak, (k = 1, . . . ,m).

4 Fixed point iterations
In this section we are going to give some concrete examples for the contraction
mappings (15) and consider their properties. More precisely, we suppose that for
a rational function f ∈ R, we already have an initial inverse point z0 satisfying
f(z0) = w0. We are going to show that the proposed iterations satisfy (18) and (16),
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hence they produce the inverse at a point w ∈ Γ as explained in 3.2, provided w is
close enough to w0.

4.1 A linearly convergent iteration
Our first example is a linearly convergent iterative method. Let

h(v) := v − f(z0 + v)− w
f ′(z0)

(|v| < r), (29)

where 0 < r is assumed to satisfy r < r0, in accordance with (18) and (13). We
are going to show that there exists r1 > r > 0 such that if |w − w0| < r and r is
sufficiently small, then h : Dr → Dr is a contraction mapping. Then, according to
Section 3.2, for the limit

v∗ = lim
k→∞

vk, vk+1 := h(vk), v0 = 0 (30)

f(v∗ + z0) = w will hold. Notice, that h has the following properties:

1. h′(0) = 0,

2. |h′′(v)| ≤M2 ·m1 (|v| ≤ r),

where M2 and m1 only depend on f and Γ as defined in (14) and (8). Choosing
v1, v2 ∈ Dr, we get:

|h(v1)− h(v2)| ≤ max
s∈[v1,v2]

|h′(s)| · |v1 − v2| ≤M2 · r · |v1 − v2|. (31)

Furthermore, if v ∈ Dr

|h(v)| ≤ |h(v)− h(0)|+ |h(0)| ≤M2 · r · |v|+ |w − w0| ·m1. (32)

From (31) and (32), choosing r := min{r0, 1/(2M2)} and w such that |w − w0| =
min{ r

2m1
, r1} hold guarantees that h : Dr → Dr is a contraction:

|h(v1)− h(v2)| ≤ 1

2
|v1 − v2|, |h(v)| ≤ r (v, v1, v2 ∈ Dr).

Convergence of (30) then follows from the Fixed-point theorem and the inverse
property h(v) = v ⇐⇒ f(z0 + v) = w is guaranteed by the considerations in 3.2.
We can also apply the Fixed-point theorem to get the error estimate

|vn − v∗| ≤ 2−n+1 (n ∈ N). (33)

We note that a slight modification of h yields the iteration

h̃(v) := v − f(z0 + v)− w
f ′(z0 + v)

(|v| ≤ r ≤ r0) (34)

which shows locally quadratic convergence. The iterative method generated by (34)
can be interpreted as a Newton-iteration aimed at finding a zero of the function
g(v) := f(z0 + v)− w0.
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4.2 Identifying the zeros of Blaschke-products without ac-
cess to derivatives

Suppose we are trying to identify the zeros of f ∈ R, where f is an m-factor
Blaschke-product (4). Suppose furthermore that every solution of f(z0,k) = w0 (k =
1, . . . ,m) has already been acquired for some w0. In this section we are going to
construct a polynomial P based on the initial solutions z0,k, whose zeros match
the zeros of f . We can then apply the generalized inverse algorithm proposed
in this paper to identify the zeros of P , thus identifying the zeros and poles of
f . In addition, we are going to show, that when solving the implicit problems
P (z) = wj (j > 0), we can express the derivative P ′(z0) in (29) using the solutions
from previous steps of the algorithm. This in turn means that when f is an m-
factor Blaschke-product, one can find all of its zeros using the proposed inverse
algorithm with a variation of the iteration (29), where we can express the needed
derivative values from previous solutions.

In Section 3.3 we saw that if we choose the right side of f(z) = w0 carefully,
then every solution can be found with a simple numerical method (i.e. by interval
halving). If, for example the disk DR contains every zero of a polynomial H,
then for any w0 = H(Reit0) value, every zero of Q(z) := H(z) − w0 can be easily
identified. These could be used as the initial solutions for the proposed algorithm
in 3.2. We can, however have other uses for the z1, . . . , zm (pairwise different) zeros
of Q as well. Namely, since H ′ = Q′, we can use the Q(z) = qm ·

∏m
k=1(z − zk)

form of Q to calculate the derivatives of H. Here qm denotes the leading coefficient
of Q. Provided we have access to qm, we can easily construct the derivative values
needed for the linearly convergent iteration (29) using the initial solutions.

We are going to extend this idea to m-factor Blaschke-products. Namely, we
are going to construct an m degree polynomial P with a leading coefficient pm = 1,
whose zeros match the zeros of the Blaschke-product. Then, the proposed inverse
algorithm and the above idea can be used to identify these zeros. Suppose f is a
Blaschke-product and for some w0 ∈ T , all m solutions to f(z) = w0 have already
been found. Since

f(z) =

m∏
k=1

z − ak
1− akz

(ak ∈ D, z ∈ D ∪ T),

the solutions z1, . . . zm coincide with the roots of the m degree polynomial

Pw0(z) :=

m∏
k=1

(z − ak)− w0 ·
m∏
k=1

(1− akz) =

m∑
k=0

pw0,k · zk. (35)

From (35), the leading coefficient is pw0,m = 1 − w0 · (−1)m
∏m
k=1 ak. Notice,

that since f was a Blaschke-product, the leading coefficient can also be written as
pw0,m = 1 − w0 · f(0). This means, we can write the polynomial Pw0

using the
solutions z1, . . . , zm to f(z) = w0 as
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Pw0
(z) =

(
1− w0 · f(0)

) m∏
k=1

(z − zk). (36)

Now consider the equation f(u) = −w0. If w0 ∈ T, then the ideas discussed in
3.3 can be used to identify all m solutions to this. These u1, . . . , um solutions are
also the zeros of the polynomial

P−w0(u) =

m∏
k=1

(u− ak) + w0 ·
m∏
k=1

(1− aku), (37)

which by the above can be written using the solutions to f(u) = −w0 as

P−w0(z) =
(

1 + w0 · f(0)
) m∏
k=1

(z − uk). (38)

By equations (36) and (38) we can query the values of Pw0
and P−w0

using the
solutions and f(0), while by equations (35) and (37)

P (z) =
1

2
(Pw0

(z) + P−w0
(z)) =

m∏
k=1

(z − ak). (39)

In (39), P (z) is an m degree polynomial with a leading coefficient pm = 1, whose
zeros ak (k = 1, . . . ,m) match the zeros of the original Blaschke-product f .

4.3 Secant method
We now discuss an alternative to (29), where we replace the derivatives in (29) with
divided differences. For v ∈ Dr, let (15) take the form

h(v) := v − f(z0 + v)− w
f [z0 + v, z0]

= v − v · (f(z0 + v)− w)

f(z0 + v)− f(z0)
, lim
v→0

h(v) =
w − w0

f ′(z0)
, (40)

where f ∈ R, f(z0) = w0 ∈ Γ, |w − w0| < r and r < r0 in accordance with (18).
We are going to show, that such r and r exist for (40). Then, by the ideas in 3.2
the limit

v∗ = lim
k→∞

vk, vk+1 := h(vk), 0 < |v0| < r

satsifies f(v∗ + z0) = w.
Consider the Taylor-series of f around z0:

f(z0 + v) = f(z0) + f ′(z0) · v +

∞∑
k=2

f (k)(z0)

k!
· vk. (41)

Equation (41) gives us
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f [z0 + v, z0] = f ′(z0) + ε(v) = f ′(z0) + v · ε1(v),

where ε1(v) =
∑∞
k=2

f(k)(z0)
k! vk−2. Notice that

ε(0) = 0, ε′(0) =
f ′′(z0)

2
(42)

hold.
Since

h(v) := v − f(z0 + v)− w
f ′(z0) + ε(v)

= v − f1(v) · g(v), (43)

where f1(v) = f(z0 + v)−w and g(v) = 1/(f ′(z0) + ε(v)), we can write the second
derivative function of h as

h′′ = f ′′1 g + 2f ′1g
′ + f1g

′′ = f ′′1 g − 2f ′1ε
′g2 + f1(−ε′′g2 + 2ε′2g3).

The derivatives f (j)
1 , ε(j) (j ≤ 2) are bounded on Ω. We are going to show, that

for sufficiently small r, the function 1/g is bounded from below on Γj . Indeed, for
z0 ∈ Γj ,

1/|g(v)| ≥ |f ′(z0)| − |v||ε1(v)| ≥ 1/m1 − |v|m2, (44)

where m2 := max|v|<r |ε1(v)| and m1 is defined in (14). From this, if |v| ≤ r :=
1

2m2m1
, then |g(v)| ≤ 2m1. It follows that h′′ is bounded from above:

|h′′(v)| ≤ m3 (|v| ≤ r). (45)

In order to show that h is a contraction mapping, we introduce the function

h1(v) = h(v)− v · h′(0). (46)

It is clear, that for h1,

h′1(0) = 0 (47)

holds. Using (47) and the mean value theorem, we get that for any v1, v2 ∈ Dr:

|h1(v1)− h1(v2)| ≤ max
v∈[v1,v2]

|h′1(v)||v1 − v2| ≤ m3 · r · |v1 − v2|. (48)

Now we can use (48) to show h is a contraction mapping. Let v1, v2 ∈ Dr, then

|h(v1)− h(v2)| = |(h1(v1) + h′(0)v1)− (h1(v2) + h′(0)v2)| ≤
m3 · r · |v1 − v2|+ |h′(0)||v1 − v2| = (m3 · r + |h′(0)|)|v1 − v2|

(49)

and
|h(v)| ≤ |h(v)− h(0)|+ |h(0)| ≤ (m3r + |h′(0)|)|v|+ |h(0)|. (50)
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If we now choose

r ≤ min{r0, 1/(4m3)}
|w − w0| ≤ r ≤ min{r1, 1/(2m

2
1M2), r/(2m1)},

then by (40) and (43)

|h(0)| ≤ |w − w0|m1 ≤ r/2, |h′(0)| ≤ |w − w0|M2m
2
1/2 ≤ r/4 (51)

and consequently

|h(v1)− h(v2)| ≤ |v1 − v2|/2, |h(v)| ≤ |v|/2 + r/2 ≤ r (|v| ≤ r). (52)

Equation (52) shows that h : Dr → Dr is a contraction mapping. Thus, by the
ideas in 3.2 and the fixed point theorem, the iteration generated by (40) can be
used to find the inverse of f at a suitable point w.

5 Conclusion

In this study, we examined the numerical construction of the inverseses of rational
functions along a curve. We considered the existence of continous solution curves
in Section 2. We then provided an iterative algorithm to produce these solutions
numerically in Section 3.2, given some initial solution points. We also proposed
a class of rational functions, for which we can easily identify the needed initial
solutions in Section 3.3. Furthemore, we proposed an algorithm with which the
inverses can be used to identify the zeros of rational functions in Section 3.4. We
gave an alternative algorithm for root finding in the case, when f is a polynomial,
whose main feature was the construction of special Blaschke-products in Section
3.5. Finally, we investigated fixed point iterations to be used with our iterative
algorithm and proved their convergence properties in Section 4.

The investigated algorithms give rise to a number of interesting applications,
such as the identification of transfer functions for SISO (single input, single output)
systems. We plan to explore these applications in future works.
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On Some Convergence Properties for

Finite Element Approximations to the

Inverse of Linear Elliptic Operators∗

Takehiko Kinoshitaa, Yoshitaka Watanabeb, and Mitsuhiro T. Nakaoc

Abstract

This paper deals with convergence theorems of the Galerkin finite ele-
ment approximation for the second-order elliptic boundary value problems.
Under some quite general settings, we show not only the pointwise conver-
gence but also prove that the norm of approximate operator converges to the
corresponding norm for the inverse of a linear elliptic operator. Since the
approximate norm estimates of linearized inverse operator play an essential
role in the numerical verification method of solutions for non-linear elliptic
problems, our result is also important in terms of guaranteeing its validity.
Furthermore, the present method can also be applied to more general elliptic
problems, e.g., biharmonic problems and so on.

Keywords: linear elliptic problems, finite element approximation, norm es-
timation of the inverse operator, convergence theorem

1 Introduction

In this section, we describe the background of the present study with notations
of related function spaces, including finite elements, and the formulation of the
problem. We will also mention the previous results that motivated this article.

1.1 Notations

We now introduce some function spaces necessary to consider the concerned prob-
lems.
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Let Ω ⊂ Rd be a bounded polygonal or polyhedral domain where d ∈ {1, 2, 3}.
For a non-negative integer m, let Hm(Ω) be the real L2 Sobolev space with order
m on Ω. We define

H1
0 (Ω) :=

{
u ∈ H1(Ω)

∣∣u = 0 on ∂Ω
}

then H1
0 (Ω) is a Hilbert space with respect to the inner product (u, v)H1

0 (Ω) :=

(∇u,∇v)L2(Ω)d and its norm is given by ‖u‖H1
0 (Ω) :=

√
(u, u)H1

0 (Ω) where ( · , · )L2

is the usual L2 inner product on Ω. Let H−1(Ω) be the dual space of H1
0 (Ω).

For a given non-linear function f : H1
0 (Ω) → H−1(Ω) with certain properties,

we often consider the existence and local uniqueness of the solution u satisfying the
following non-linear elliptic boundary value problem of the form (e.g. [6] etc.):{

−4u = f(u) in Ω

u = 0 on ∂Ω.

(1a)

(1b)

To prove the existence of the solution of (1a)-(1b), the information on the linearized
operator L := −4 − f ′(uk) : H1

0 (Ω) → H−1(Ω) and its inverse play important
roles where uk is a suitable approximation of u and f ′(uk) is the Fréchet derivative
of f at uk. Moreover, we assume that f ′(uk) ∈ L

(
H1

0 (Ω), L2(Ω)
)

for uk with suit-

able regularities and the weak Laplace operator −4 ∈ L
(
H1

0 (Ω), H−1(Ω)
)

where
L(X,Y ) is the linear space of all bounded linear operators from X to Y . As well
known, by the Riesz representation lemma, the Poisson equation with homogeneous
Dirichlet boundary condition is uniquely solvable. Namely, there exists a bounded
inverse operator of −4 such that (−4)−1 ∈ L

(
H−1(Ω), H1

0 (Ω)
)
. Then, L can

be represented as L = (−4)
(
I − (−4)−1f ′(uk)

)
where I is the identity map on

H1
0 (Ω). We denote A := (−4)−1f ′(uk) ∈ L

(
H1

0 (Ω)
)
. Note that A is a compact

operator on H1
0 (Ω).

For an arbitrary w ∈ H1
0 (Ω), we set u := Aw ∈ H1

0 (Ω). Then, u satisfies the
following variational equation:

(∇u,∇v)L2(Ω)d =
(
Ieg
)
(v) ∀v ∈ H1

0 (Ω) (2)

where Ie : L2(Ω) ↪→ H−1(Ω) is an embedding operator and g := f ′(uk)w ∈
L2(Ω). By some standard arguments using the Riesz representation theorem, we
can rewrite (2) simply as

(∇u,∇v)L2(Ω)d = (g, v)L2(Ω) ∀v ∈ H1
0 (Ω). (3)

In general, the regularity of the solution (3) is smoother than H1
0 (Ω). Particularly,

u ∈ H
(
4;L2(Ω)

)
holds where H

(
4;L2(Ω)

)
:=
{
u ∈ H1

0 (Ω)
∣∣4u ∈ L2(Ω)

}
.

Note that, if there exists a bounded inverse of I−A, then L also has an inverse:
L −1 = (I−A)−1(−4)−1, and that

∥∥L −1
∥∥
L
(
H−1(Ω),H1

0 (Ω)
) =

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
)

holds (also see [4, Remark 1.3]).
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Nakao et al. [5, 7] proposed numerical verification approaches for computing upper
bounds of

∥∥L −1
∥∥
L
(
H−1(Ω),H1

0 (Ω)
) (cf. [9, 10, 12, 3]).

Now, in order to define the approximation to the inverse operator L −1, we
introduce the finite element space in the most general way possible. Let Sh(Ω) be
a finite-dimensional subspace of H1

0 (Ω) depending on the discretization parameter
h > 0 corresponding to the mesh size. We define the H1

0 -projection Ph from H1
0 (Ω)

to Sh(Ω) such that

(u− Phu, vh)H1
0 (Ω) = 0 ∀vh ∈ Sh(Ω). (4)

Let {φi}ni=1 ⊂ H1
0 (Ω) be the set of basis functions in Sh(Ω) where n := dimSh(Ω).

Let Dφ and Gφ be n-by-n matrices whose (i, j) elements are defined by

Dφ,i,j = (∇φj ,∇φi)L2(Ω)d ,

Gφ,i,j = (∇φj ,∇φi)L2(Ω)d − (f ′(uk)φj , φi)L2(Ω) ,

where matrix Gφ is the corresponding representation to the Galerkin approxima-
tion of operator L . Since Dφ is a positive definite matrix, it can be Cholesky
decomposed as Dφ = EφE

T
φ where Eφ is a lower triangular matrix and ETφ is

the transposed matrix of Eφ. We define the Galerkin approximation of I − A by
[I −A]h := Ph(I −A)|Sh(Ω) : Sh(Ω)→ Sh(Ω) where (I −A)|Sh(Ω) is the restriction

of I − A on Sh(Ω) and let [I − A]−1
h :=

(
Ph(I −A)|Sh(Ω)

)−1
, if the inverse exists.

Then,
∥∥[I −A]−1

h

∥∥
L
(
Sh(Ω)

) =
∥∥∥ETφG−1

φ Eφ

∥∥∥
2

=: rh holds where ‖ · ‖2 is the matrix

2-norm / the spectral matrix norm (see [5]). Since the non-singularity of the ma-
trix can be verified by computational procedure (see, e.g., [11]), the existence of
[I −A]−1

h is usually assumed to be valid([5]).

1.2 Motivation and preliminary results

In this subsection, we describe the previous results mainly obtained in [4], which is
the motivation of this study.

Suppose that Ph defined by (4) has the following convergence property

lim
h→0
‖Phu− u‖H1

0 (Ω) = 0, ∀u ∈ H1
0 (Ω) (5)

and that there exists a positive constant C̃(h) such that C̃(h) → 0 as h → 0 and
satisfying

‖∇(u− Phu)‖L2(Ω)d ≤ C̃(h) ‖4u‖L2(Ω) , ∀u ∈ H
(
4;L2(Ω)

)
. (6)

The conditions (5) and (6) are satisfied for usual finite element subspaces (see, e.g.,
[1, 2, 8] etc.). Also, note that the following estimates hold for arbitrary u ∈ H1

0 (Ω):

‖(I − Ph)Au‖H1
0 (Ω) ≤ C̃(h) ‖4Au‖L2(Ω)

≤ C̃(h) ‖f ′(uk)‖
L
(
H1

0 (Ω),L2(Ω)
) ‖u‖H1

0 (Ω) . (7)
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We now suppose that the linearized operator f ′(uk) is represented as f ′(uk)u =
−b · ∇u− cu for some functions such that b ∈ W 1,∞(Ω)d and c ∈ L∞(Ω). And we
set the following non-negative constants:

C1 := ‖b‖L∞(Ω)d + Cp ‖c‖L∞(Ω) ,

C2 := ‖b‖L∞(Ω)d + C̃(h) ‖c‖L∞(Ω) ,

K(h) := C̃(h)
(
Cp ‖∇ · b‖L∞(Ω) + C1

)
where Cp is the Poincaré constant satisfying

‖u‖L2(Ω) ≤ Cp ‖∇u‖L2(Ω)d ∀u ∈ H1
0 (Ω).

Then we already obtain the following existential condition and estimates of the
linearized inverse operator (I −A)−1:

Theorem 1 ( [7, Theorem 2] ). If κh := C̃(h)
(
rhK(h)C1 +C2

)
< 1, then I −A is

invertible and the following estimate holds:

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
) ≤ 1

1− κh

∥∥∥∥(rh(1− C2C̃(h)
)

rhK(h)

rhC1C̃(h) 1

)∥∥∥∥
2

.

Moreover, by using the above theorem, if {rh}h>0 is a convergent sequence,
then we have∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) ≤ lim

h→0

1

1− κh

∥∥∥∥(rh(1− C2C̃(h)
)

rhK(h)

rhC1C̃(h) 1

)∥∥∥∥
2

=

∥∥∥∥∥
(

lim
h→0

rh 0

0 1

)∥∥∥∥∥
2

= max

{
lim
h→0

rh, 1

}
. (8)

In our previous paper [4], by using (8), we presented the following relation:

1 ≤
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) ≤ lim

h→0

∥∥[I −A]−1
h

∥∥
L
(
H1

0 (Ω)
) , (9)

provided that the limit in (9) actually exists. However, the question remains
whether the second inequality of (9) becomes equality. In this paper, we prove
that such equality holds true as well as clarify the condition for the existence of
[I −A]−1

h .

2 Main results

In this section, based on the notations and the preliminaries introduced in previous
sections, we present the main result on the convergence property for finite element
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approximations of an inverse elliptic operator. To proceed with the argument, in
the following, although it may be duplicated, some new definitions and assumptions
are made again. It should also be noted that the intended purpose is achieved under
a very common setting of the finite element space and approximation scheme. Let
L
(
H1

0 (Ω)
)

be a Banach space constituting of a set of bounded linear operators on

H1
0 (Ω) with norm ‖Q‖

L
(
H1

0 (Ω)
) := sup

0 6=u∈H1
0 (Ω)

‖Qu‖H1
0 (Ω)

‖u‖H1
0 (Ω)

for each Q ∈ L
(
H1

0 (Ω)
)
.

Therefore, Sh(Ω) is considered as a finite-dimensional subspace of H1
0 (Ω) depending

on the discretization parameter h > 0 with the same inner product and norm as
H1

0 (Ω).

Assumption 1. Operator I − A is invertible. Namely, there exists (I − A)−1 ∈
L
(
H1

0 (Ω)
)
.

Let Ph ∈ L
(
H1

0 (Ω), Sh(Ω)
)

be an orthogonal projection defined in (4). Then
note that ‖Ph‖L

(
H1

0 (Ω),Sh(Ω)
) ≤ 1 holds. We now assume the following two conver-

gence properties:

Assumption 2. For an arbitrary u ∈ H1
0 (Ω), Phu converges to u in H1

0 (Ω) as
h→ 0.

Assumption 3. For each h, there exists a positive constant C(h), which converges
to 0 as h→ 0, satisfying

‖(I − Ph)Au‖H1
0 (Ω) ≤ C(h) ‖u‖H1

0 (Ω) , ∀u ∈ H1
0 (Ω).

Assumptions 2 and 3 correspond to (5) and (7), respectively, in the previous
section. Therefore, as mentioned in subsection 1.2, these assumptions are quite
reasonable conditions for usual finite element subspace Sh(Ω) ⊂ H1

0 (Ω).

Remark 1. From the assumptions 1 and 3, there exists a constant δA > 0 such
that, for all h ∈ (0, δA),

C(h) <
1

‖(I −A)−1‖
L
(
H1

0 (Ω)
) . (10)

Due to the compactness of operator PhA ∈ L
(
H1

0 (Ω), Sh(Ω)
)
, we have the

following properties.

Lemma 1. Let δA be the same constant in Remark 1. Then, for all h ∈ (0, δA),
there exists a bounded inverse of I − PhA with estimates

∥∥(I − PhA)−1
∥∥
L
(
H1

0 (Ω)
) ≤

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
)

1− C(h) ‖(I −A)−1‖
L
(
H1

0 (Ω)
) . (11)
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Proof. For an arbitrary f ∈ H1
0 (Ω), we consider the solution u ∈ H1

0 (Ω) satisfying:

(I − PhA)u = f. (12)

From assumption 1, it is readily seen that (12) is equivalent to the following fixed
point equation:

u = −(I −A)−1(I − Ph)Au+ (I −A)−1f =: Th,f (u). (13)

Hence, by using assumption 3, for arbitrary v, w ∈ H1
0 (Ω), we have

‖Th,f (v)− Th,f (w)‖H1
0 (Ω) =

∥∥(I −A)−1(I − Ph)A(v − w)
∥∥
H1

0 (Ω)

≤
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) C(h) ‖v − w‖H1

0 (Ω) .

If h is sufficiently small that (10) holds, then Th,f is a contraction map. Therefore,
Th,f has a unique fixed point u ∈ H1

0 (Ω) satisfying (12) by Banach’s fixed point
theorem. Furthermore, the arbitrariness of f implies that I−PhA is a bijection on
H1

0 (Ω) for such an h.
Also, by some simple calculation using (13) with assumption 3, we obtain

∥∥(I − PhA)−1f
∥∥
H1

0 (Ω)
≤

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
)

1− ‖(I −A)−1‖
L
(
H1

0 (Ω)
) C(h)

‖f‖H1
0 (Ω) ,

which yields the desired estimates (11).

Note that
(I − PhA)uh = Ph(I −A)uh, ∀uh ∈ Sh(Ω)

holds. This fact means that I − PhA is equal to Ph(I − A) on Sh(Ω), namely,
(I−PhA)|Sh(Ω) = Ph(I−A)|Sh(Ω) holds. Therefore, let define [I−A]h ∈ L(Sh(Ω))
by [I−A]h := Ph(I−A)|Sh(Ω). The following lemma gives an invertibility condition

of [I −A]h, and estimates for the norm of [I −A]−1
h .

Lemma 2. Under the same conditions as in Lemma 1, for all h ∈ (0, δA), there
exists a inverse of [I −A]h and the following estimate holds∥∥[I −A]−1

h

∥∥
L
(
Sh(Ω)

) ≤ ∥∥(I − PhA)−1
∥∥
L
(
H1

0 (Ω)
) . (14)

Proof. For an fh ∈ Sh(Ω), if Ph(I −A)fh = 0, then

fh = PhAfh

= −(I − Ph)Afh +Afh.

Hence we have
(I −A)fh = −(I − Ph)Afh.
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Namely,

fh = −(I −A)−1(I − Ph)Afh.

Therefore, by assumption 3, we have

||fh||H1
0 (Ω) ≤ ||(I −A)−1||

L
(
H1

0 (Ω)
)||(I − Ph)Afh||H1

0 (Ω)

≤ ||(I −A)−1||
L
(
H1

0 (Ω)
)C(h)||fh||H1

0 (Ω),

which yields fh = 0 from (10). Taking notice that the existence and uniqueness of
the solution are equivalent for the finite dimensional linear equation on Sh(Ω), the
invertibility of [I −A]h follows immediately.
Next, observe that

∥∥(I − PhA)−1
∥∥
L
(
H1

0 (Ω)
) = sup

0 6=f∈H1
0 (Ω)

‖f‖H1
0 (Ω)

‖(I − PhA)f‖H1
0 (Ω)

≥ sup
0 6=fh∈Sh(Ω)

‖fh‖H1
0 (Ω)

‖(I − PhA)fh‖H1
0 (Ω)

= sup
0 6=fh∈Sh(Ω)

‖fh‖H1
0 (Ω)

‖Ph(I −A)fh‖H1
0 (Ω)

=
∥∥[I −A]−1

h

∥∥
L
(
Sh(Ω)

) ,
which completes the proof of (14).

On the convergence of (I − PhA)−1, we have the following lemma:

Lemma 3. The following convergence property holds:

lim
h→0

∥∥(I − PhA)−1 − (I −A)−1
∥∥
L
(
H1

0 (Ω)
) = 0

Proof. Let δA be the same constant defined above. Therefore, for each h ∈ (0, δA),
I − PhA is invertible on H1

0 (Ω) by lemma 1. For an arbitrary f ∈ H1
0 (Ω), we set

u := (I −A)−1f ∈ H1
0 (Ω) and w(h) := (I − PhA)−1f ∈ H1

0 (Ω). Then we have

(I −A)u = f and (I − PhA)w(h) = f.

Hence, we obtain

(I −A)
(
u− w(h)

)
= (I − PhA)w(h)− (I −A)w(h),

which is rewritten as

u− w(h) = (I −A)−1(I − Ph)Aw(h).
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From assumption 3, we obtain

‖u− w(h)‖H1
0 (Ω) ≤

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
) C(h) ‖w(h)‖H1

0 (Ω)

≤
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) C(h)

(
‖u− w(h)‖H1

0 (Ω) + ‖u‖H1
0 (Ω)

)
.

Hence we have(
1− C(h)

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
)) ‖u− w(h)‖H1

0 (Ω) ≤

C(h)
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) ‖u‖H1

0 (Ω) .

Taking notice of (10),

‖u− w(h)‖H1
0 (Ω) ≤

C(h)
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
)

1− C(h) ‖(I −A)−1‖
L
(
H1

0 (Ω)
) ‖u‖H1

0 (Ω) .

Namely, it holds that∥∥(I −A)−1f − (I − PhA)−1f
∥∥
H1

0 (Ω)

≤
C(h)

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
)

1− C(h) ‖(I −A)−1‖
L
(
H1

0 (Ω)
) ∥∥(I −A)−1f

∥∥
H1

0 (Ω)

≤
C(h)

∥∥(I −A)−1
∥∥2

L
(
H1

0 (Ω)
)

1− C(h) ‖(I −A)−1‖
L
(
H1

0 (Ω)
) ‖f‖H1

0 (Ω) .

Therefore, we obtain the following convergence property:

∥∥(I − PhA)−1 − (I −A)−1
∥∥
L
(
H1

0 (Ω)
) ≤ C(h)

∥∥(I −A)−1
∥∥2

L
(
H1

0 (Ω)
)

1− C(h) ‖(I −A)−1‖
L
(
H1

0 (Ω)
) → 0

as h→ 0, which yields the desired conclusion.

Theorem 2. The following convergence property holds for each f ∈ H1
0 (Ω).

lim
h→0

∥∥[I −A]−1
h Phf − (I −A)−1f

∥∥
H1

0 (Ω)
= 0. (15)

Proof. Let δA be a positive constant satisfying condition (10) and let h be a fixed
parameter in (0, δA). Then, there exists [I − A]−1

h ∈ L
(
Sh(Ω)

)
by lemma 2. For

each f ∈ H1
0 (Ω), we set u := (I−A)−1f ∈ H1

0 (Ω) and uh := [I−A]−1
h Phf ∈ Sh(Ω).

By the definition, we have

f − Phf = (I −A)u− Ph(I −A)uh

= (I − PhA)(u− uh) + (I −A)u− (I − PhA)u

= (I − PhA)(u− uh)− (I − Ph)Au.
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Noting that there also exists (I − PhA)−1 ∈ L
(
H1

0 (Ω)
)

by lemma 1, from the
assumption 3 and (11), we obtain, by using the above equality,

‖u− uh‖H1
0 (Ω) =

∥∥(I − PhA)−1(f − Phf + (I − Ph)Au
)∥∥

H1
0 (Ω)

≤

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
)

1− C(h) ‖(I −A)−1‖
L
(
H1

0 (Ω)
) (
‖f − Phf‖H1

0 (Ω) + C(h) ‖u‖H1
0 (Ω)

)

≤

∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
)

1− C(h) ‖(I −A)−1‖
L
(
H1

0 (Ω)
) (‖f − Phf‖H1

0 (Ω)

+ C(h)
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) ‖f‖H1

0 (Ω)

)
. (16)

The right-hand side of (16) converges to 0 as h → 0 by the assumptions 2 and 3.
Thus, (15) is proved.

Now we present the norm convergence theorem, which is the main result of this
paper.

Theorem 3. The following norm convergence property holds:

lim
h→0

∥∥[I −A]−1
h

∥∥
L
(
Sh(Ω)

) =
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) .

Proof. First, note that, for each fixed f ∈ H1
0 (Ω), we have by Theorem 2∥∥(I −A)−1f

∥∥
H1

0 (Ω)
= lim
h→0

∥∥[I −A]−1
h Phf

∥∥
Sh(Ω)

.

Therefore, it holds that∥∥(I −A)−1
∥∥
L
(
H1

0 (Ω)
) = sup

||f ||
H1

0(Ω)
=1

∥∥(I −A)−1f
∥∥
H1

0 (Ω)

= sup
||f ||

H1
0(Ω)

=1

lim
h→0

∥∥[I −A]−1
h Phf

∥∥
Sh(Ω)

. (17)

Moreover, for each h ∈ (0, δA) and f ∈ H1
0 (Ω) with ‖f‖H1

0 (Ω) = 1, observe that by

using Lemma 2∥∥[I −A]−1
h Phf

∥∥
Sh(Ω)

≤
∥∥[I −A]−1

h

∥∥
L
(
Sh(Ω)

) ||Phf ||Sh(Ω)

≤
∥∥[I −A]−1

h

∥∥
L
(
Sh(Ω)

)
≤ ||(I − PhA)−1||

L
(
H1

0 (Ω)
).

(18)

(19)

On the other hand, by Lemma 3, it holds that the right-hand side of (19) converges
to
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) as h→ 0. Combining this fact with (17)-(19) we can show
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that lim
h→0

∥∥[I −A]−1
h

∥∥
L
(
Sh(Ω)

) exists and equals
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
). Indeed, we

take the limit inferior and limit superior of (18) and (19),

lim
h→0

∥∥[I −A]−1
h Phf

∥∥
Sh(Ω)

≤ lim inf
h→0

∥∥[I −A]−1
h

∥∥
L
(
Sh(Ω)

)
≤ lim sup

h→0

∥∥[I −A]−1
h

∥∥
L
(
Sh(Ω)

)
≤
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) (20)

holds. Here, the last inequality follows from Lemma 3. Taking notice that the
inequalities, except for the first left-hand sides in (20) is independent of f , we
obtain from (17)∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) = sup

||f ||
H1

0(Ω)
=1

lim
h→0

∥∥[I −A]−1
h Phf

∥∥
Sh(Ω)

≤ lim inf
h→0

∥∥[I −A]−1
h

∥∥
L
(
Sh(Ω)

)
≤
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
)

Combining the above with (20), we have

lim inf
h→0

∥∥[I −A]−1
h

∥∥
L
(
Sh(Ω)

) = lim sup
h→0

∥∥[I −A]−1
h

∥∥
L
(
Sh(Ω)

) =
∥∥(I −A)−1

∥∥
L
(
H1

0 (Ω)
) ,

which yields the desired conclusion.

Remark 2. Note that the result of Theorem 3 does not mean
[I −A]−1

h Ph → (I −A)−1 as h→ 0 in L
(
H1

0 (Ω)
)
.

Actually, if lim
h→0

∥∥[I −A]−1
h Ph − (I −A)−1

∥∥
L
(
H1

0 (Ω)
) = 0 holds, then considering

the particular case: A ≡ 0, it implies that lim
h→0
‖Ph − I‖L

(
H1

0 (Ω)
) = 0. From the fact

that Ph is a finite dimensional operator, this contradicts that the identity operator
I is not compact on the infinite dimensional space L

(
H1

0 (Ω)
)
.

3 Conclusion

We presented the convergence theorem of [I − A]−1
h Ph to (I − A)−1 as h → 0 in

Theorem 2, and we also established the norm convergence theorem in Theorem 3.
Moreover, Lemma 2 is important as a theoretical result for the existence of the
Galerkin approximation for (I − A)−1. It is also expected that these results can
be extended for the more general linear compact operator A, e.g., corresponding to
the biharmonic problems, under similar assumptions to 1, 2, and 3.
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BR
π -Matrices, B-Matrices, and Doubly B-Matrices

in the Interval Setting∗

Matyáš Lorenca

Abstract

In this paper, we focus on generalizing BR
π -matrices into the interval set-

ting, including some results regarding this class. There are two possible ways
to generalize BR

π -matrices into the interval setting, but we prove that, in a
sense, they are one. We derive mainly recognition methods for this interval
matrix class, such as characterizations, necessary conditions, and sufficient
ones.

Next, we also take a look at interval B-matrices and interval doubly
B-matrices, which were introduced recently, and we present characterizations
through reduction for them and for BR

π -matrices.

Keywords: BR
π -matrix, B-matrix, doubly B-matrix, interval analysis, inter-

val matrix, P -matrix

1 Introduction

P-matrices. An important class of matrices, in optimization as well as linear
algebra and graph theory (see [7]), is the class of P -matrices. Recall that A ∈
Rn×n is a P-matrix if all its principal minors (i.e. determinants of its principal
submatrices) are positive.

The class of P -matrices has a close connection to the linear complementarity
problem (which is more thoroughly described in [1]), which is one of the reasons
the P -matrices are studied. A connection has even been found between P -matrices
and the regularity of interval matrices, as shown in [5] or [16]. However, the task
of verifying whether a given matrix is a P -matrix is co-NP-complete, as proved in
[2].

B-matrices, Doubly B-matrices, BR
π -matrices. Testing P -matrix property

is hard; it is important to identify such subclasses of P -matrices which are efficiently
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recognizable. Besides positive definite matrices or M -matrices, those might be e.g.,
B -matrices (introduced in [14]), doubly B -matrices (introduced in [15]) or BR

π -
matrices (introduced in [12]); here we will focus mainly on the last mentioned. In
addition to their usefulness as subclasses of the P -matrices, these matrix classes
also appeared in the context of Markov chains and in localization of eigenvalues.

Interval analysis. Interval analysis was developed to deal with inaccuracy in
data, rounding errors, or a certain form of uncertainty. A central concept of interval
analysis is an interval matrix. We denote the set of all real intervals by IR. Now,
let us define an interval matrix.

Definition 1.1 (Interval matrix). An interval matrix A, which we denote by A ∈
IRm×n, is defined as

A =
[
A,A

]
=
{
A ∈ Rm×n

∣∣A ≤ A ≤ A} ,
where A,A are called the lower or upper bound matrices of A, respectively, and ≤
is understood entrywise.

We can look at A as a matrix with its entries from IR, hence ∀i ∈ [m],∀j ∈
[n] : aij =

[
aij , aij

]
, where [m] = {1, 2, . . . ,m} and analogously for [n].

Definition 1.2. Let A ∈ IRm×n. We say that A has positive row sums if the
intervals of the row sums are positive. In other words, if ∀i ∈ [m] :

∑n
j=1 aij > 0.

We call an interval matrix A ∈ IRn×n an interval P-matrix if every A ∈ A
is a P -matrix. Similarly other matrix classes might be defined, e.g., the class of
Z -matrices, which are matrices with non-positive off-diagonal elements. We can
also define some basic properties, such as regularity, which are studied more in the
following works: [3], [6], [8], and [9], among many others.

Structure and contribution of the paper. In this work, we present some re-
sults based on [10], such as a generalization of BR

π -matrices into the interval settings,
and lay the foundations for recognizing the interval variants through characteri-
zation, or sufficient conditions and necessary ones. We then proceed to introduce
characterizations through reduction of interval B -matrices, doubly B -matrices, and
BR
π -matrices.

As we show, these interval variants of our matrix classes are connected to the
interval P -matrices in the same way the real variants are connected to the real
P -matrices. Interval P -matrices are closely connected to the linear complementar-
ity problem with uncertain data, which might be modeled by intervals. So again,
it is useful to have easily recognizable subclasses of interval P -matrices.
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2 BR
π -matrices

2.1 Real BR
π -matrices

Let us start by introducing real BR
π -matrices and a few facts about them, which were

introduced by Neumann, Peña, and Pryporova in [12] or by Araújo and Mendes-
Gonçalves in [11], and which we will later transfer into the interval setting.

Definition 2.1 (BR
π -matrix, [12]). Let A ∈ Rn×n, let π ∈ Rn such that it fulfills

0 <

n∑
j=1

πj ≤ 1, (1)

and let R ∈ Rn be the vector formed by the row sums of A (hence ∀i ∈ [n] : Ri =∑n
j=1 aij). We say that A is a BR

π -matrix if ∀i ∈ [n] :

a) Ri > 0

b) ∀k ∈ [n] \ {i} : πk ·Ri > aik

The next proposition is introduced in [12] as Observation 3.2.

Proposition 2.1. Let A ∈ Rn×n have positive row sums, and let R ∈ Rn be
the vector formed by the row sums of A. There exists a vector π ∈ Rn satisfying
inequality (1) such that A is a BRπ -matrix if and only if

n∑
j=1

max

{
aij
Ri

∣∣∣∣ i 6= j

}
< 1.

Remark 2.1. If for any matrix A ∈ Rn×n the condition from Proposition 2.1 is
satisfied, then we are able to construct a vector π ∈ Rn satisfying inequality (1)
such that A is a BR

π -matrix in the following manner:

1. We define ε ∈ R as

ε = 1−
n∑
j=1

max

{
aij
Ri

∣∣∣∣ i 6= j

}
,

2. and then for every j ∈ [n] we define πj as

πj = max

{
aij
Ri

∣∣∣∣ i 6= j

}
+
ε

n
.

Of course, instead of ε
n in the second step we may use any constant 0 < c ≤ ε

n ,
or we might use a vector ξ ∈ R+n such that 0 <

∑n
j=1 ξj ≤ ε, and define πj as

πj = max

{
aij
Ri

∣∣∣∣ i 6= j

}
+ ξj .

(It is easy to verify that this holds from Definition 2.1, because so defined π meets
condition b) for the above-mentioned definition, and also satisfies inequality (1).)
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The following result is stated and proved in [13].

Proposition 2.2. Every BRπ -matrix with π ≥ 0 is a P-matrix.

Remark 2.2. We can show an example of a BR
π -matrix with πi < 0 for some i ∈ [n],

which is not a BR
ψ -matrix for any ψ ≥ 0. (To verify this fact, the reader may use

the properties of BR
π -matrices stated in the next proposition, more precisely, part

1).)

Example 2.1.

A =

(
3
2 −1
2 − 1

2

)
It is easy to check that A is a BR

π -matrix for π = (2,−1)T . (And it is clearly not a
P -matrix.)

Hence, for the purpose of this work, we are interested only in such BR
π -matrices

that have π ≥ 0, since only those ought to be P -matrices.
The next proposition is introduced in [11] as Proposition 2.1.

Proposition 2.3. Let π ∈ Rn such that inequality (1) holds, and let A ∈ Rn×n
be a BRπ -matrix, where R ∈ Rn is the vector of row sums of A. Then the following
holds:

1. ∀i ∈ [n] : aii > πi ·Ri,

2. ∀(i, j) ∈ [n]2, j 6= i : πi ≥ πj ⇒ aii > aij,

3. let k = argmax{πi | i ∈ [n] }, then ∀j 6= k : akk > akj, and

4. ∀(i, j) ∈ [n]2, j 6= i : πj ≤ 0 ⇒ aij < 0.

The next proposition is introduced in [11] as Proposition 2.5.

Proposition 2.4. Let π ∈ Rn such that condition (1) holds, and let A ∈ Rn×n be
a BRπ -matrix. If α ∈ Rn satisfies analogy of inequality (1) and α ≥ π, then A is
a BRα -matrix.

2.2 Interval BR
π -matrices

Next, we proceed to generalize the class of BR
π -matrices into the interval setting.

However, there are two ways to do so, differing in the order of quantifiers.

Definition 2.2 (Homogeneous interval BR
π -matrix). Let A ∈ IRn×n, π ∈ Rn such

that inequality (1) holds, and let R ∈ IRn. We say that A is a homogeneous
interval BR

π -matrix if ∀A ∈ A: ∃R ∈ R such that A is a (real) BRπ -matrix.

Here, the R in the definition can be perceived as the vector whose entries
correspond to the intervals of the row sums of matrices A ∈ A, but in the interval
setting it is more of a symbol than of any greater significance. This is because if we
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have two interval BR
π -matrices A and B, we cannot say that any two A ∈ A and

B ∈ B are real BR
π -matrices for the same R. Despite that, we decided to include

it in the notation of the interval matrix class for compatibility with the real case
definition.

Corollary 2.1. Every homogeneous interval BR
π -matrix with π ≥ 0 is an interval

P-matrix.

Proof. It holds for every instance, hence it holds for the whole interval matrix.

Definition 2.3 (Heterogeneous interval BR
Π -matrix). Let A ∈ IRn×n, and let

R ∈ IRn. We say that A is a heterogeneous interval BR
Π -matrix if ∀A ∈ A:

∃R ∈ R,∃π ∈ Rn such that condition (1) holds and A is a (real) BRπ -matrix.

Here, the R in the definition again has the same meaning as in the case of
homogeneous interval BR

π -matrices. As for the Π, we may understand it as a set of
all such vectors π satisfying condition (1) such that there exists A ∈ A, for which
it holds that A is a real BR

π -matrix. However, again it can be perceived just as a
symbol that distinguishes this interval matrix class, since the exact form or content
of the set Π holds no real significance to us, and we have no way of deriving it yet.

Corollary 2.2. Every homogeneous interval BR
π -matrix is a heterogeneous interval

BR
Π -matrix.

Proof. It trivially follows from the definitions.

Let us start by stating a characterization that helps us with the recognition
of the class of homogeneous interval BR

π -matrices in finite time.

Theorem 2.1. Let A ∈ IRn×n, let π ∈ Rn satisfy inequality (1), and let R ∈ IRn
be the vector of intervals of individual row sums in matrix A. The matrix A is
a homogeneous interval BR

π -matrix if and only if ∀i ∈ [n] the following properties
hold:

a) Ri > 0

b) ∀k ∈ [n] \ {i} :πk > 1 ⇒
∑
j 6=k

aij >

(
1

πk
− 1

)
· aik


∧

0 < πk ≤ 1 ⇒
∑
j 6=k

aij >

(
1

πk
− 1

)
· aik


∧

(
πk = 0 ⇒ 0 > aik

)

∧

πk < 0 ⇒
∑
j 6=k

aij <

(
1

πk
− 1

)
· aik


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Proof. Condition a) of Definition 2.1 evaluated for every A ∈ A is equivalent to
Ri > 0. As for the condition b) of the definition, it may be modified for every k 6= i
as follows (while noting that πk ·Ri = πk ·

∑n
j=1 aij):

1. πk > 1 :

πk ·
n∑
j=1

aij > aik ⇔
n∑
j=1

aij >
1

πk
· aik ⇔

∑
j 6=k

aij >

(
1

πk
− 1

)
· aik

(2)

We observe that the highest value of
(

1
πk
− 1
)
· aik is attained at the lower

bound on the aik, because when πk > 1, we have
(

1
πk
− 1
)
< 0. Whence,

the condition above holds for everyA ∈ A if and only if the following condition
holds: ∑

j 6=k

aij >

(
1

πk
− 1

)
· aik

2. 0 < πk ≤ 1 : Using the chain of equivalences (2) from the previous part, we

observe that the highest value of
(

1
πk
− 1
)
·aik is obtained by the upper bound

on the aik, because when 0 < πk ≤ 1, then
(

1
πk
− 1
)
≥ 0. Thus, condition b)

of Definition 2.1 holds for every A ∈ A if and only if the following condition
holds: ∑

j 6=k

aij >

(
1

πk
− 1

)
· aik

3. πk = 0 : πk ·
∑n
j=1 aij > aik ⇔ 0 > aik

The condition above holds for every A ∈ A if and only if 0 > aik

4. πk < 0 :

πk ·
n∑
j=1

aij > aik ⇔
n∑
j=1

aij <
1

πk
· aik ⇔

∑
j 6=k

aij <

(
1

πk
− 1

)
· aik

We observe that the smallest value of
(

1
πk
− 1
)
· aik is obtained by the upper

bound on the aik, because when πk < 0, then
(

1
πk
− 1
)
< 0. From that

we have that the condition above holds for every A ∈ A if and only if the
following condition holds:∑

j 6=k

aij <

(
1

πk
− 1

)
· aik

Remark 2.3. This characterization has time complexity O(n2), which is, surpris-
ingly, the same as a characterization from the definition of the real case, Definition



BRπ -Matrices, B-Matrices, and Doubly B-Matrices in the Interval Setting 89

2.1 (although the interval case has undoubtedly higher implementational complex-
ity).

Let us now introduce an analogy of Proposition 2.1 for homogeneous interval
BR
π -matrices.

Theorem 2.2. If A ∈ IRn×n has positive row sums, then there exists a vector
π ∈ Rn satisfying inequality (1) such that A is a homogeneous interval BR

π -matrix
if and only if

n∑
j=1

max

 aij
aij +

∑
m 6=j

aim
,

aij
aij +

∑
m6=j

aim

∣∣∣∣∣∣∣ i 6= j

 < 1. (3)

Proof. ”⇒”: A is a BR
π -matrix for some π satisfying the property (1), hence every

A ∈ A is a BR
π -matrix, thus, in particular, matrices Aj ∈ A for every j ∈ [n]

defined as follows:

Aj = (a′m1m2
);

a′m1m2
=

 am1m2 if m2 = j ∧ am1j

am1j+
∑

m6=j

am1m
>

am1j

am1j+
∑

m6=j

am1m
,

am1m2
otherwise.

(4)

Therefore, (if we denote Rj the vector of row sums of Aj) we have

∀j ∈ [n] :

max

 aij
aij +

∑
m 6=j

aim
,

aij
aij +

∑
m 6=j

aim

∣∣∣∣∣∣∣ i 6= j

 = max

{
a′ij

Rji

∣∣∣∣∣ i 6= j

}
< πj . (5)

But then

n∑
j=1

max

 aij
aij +

∑
m6=j

aim
,

aij
aij +

∑
m 6=j

aim

∣∣∣∣∣∣∣ i 6= j

 <

n∑
j=1

πj ≤ 1. (6)

”⇐”: Let

ε = 1−
n∑
j=1

max

 aij
aij +

∑
m6=j

aim
,

aij
aij +

∑
m 6=j

aim

∣∣∣∣∣∣∣ i 6= j

 > 0,

and for every j ∈ [n] set the πj = max

{
aij

aij+
∑

m6=j

aim
,

aij
aij+

∑
m6=j

aim

∣∣∣∣∣ i 6= j

}
+ ε
n . Then
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A is a homogeneous interval BR
π -matrix. That is because for any A ∈ A

max

 aij
aij +

∑
m 6=j

aim
,

aij
aij +

∑
m 6=j

aim

∣∣∣∣∣∣∣ i 6= j


≥ max

 aij
aij +

∑
m 6=j

aim

∣∣∣∣∣∣∣ i 6= j

 ≥ max


aij
n∑

m=1
aim

∣∣∣∣∣∣∣∣ i 6= j

 .

Thus, for every A ∈ A and for every (k, j) ∈ [n]2, j 6= k, it holds that

akj
Rk

=
akj
n∑

m=1
akm

≤ max


aij
n∑

m=1
aim

∣∣∣∣∣∣∣∣ i 6= j


≤ max

 aij
aij +

∑
m6=j

aim
,

aij
aij +

∑
m 6=j

aim

∣∣∣∣∣∣∣ i 6= j


< max

 aij
aij +

∑
m6=j

aim
,

aij
aij +

∑
m 6=j

aim

∣∣∣∣∣∣∣ i 6= j

+
ε

n
= πj ,

ergo πj ·Rk > akj . Therefore, every A ∈ A is a BR
π -matrix.

Remark 2.4. If any matrix A ∈ IRn×n satisfies the condition from Theorem 2.2,
we can construct a vector π ∈ Rn satisfying condition (1) such that A is a homo-
geneous interval BR

π -matrix in an analogous way to what we did in Remark 2.1.

Next, let us introduce one interesting fact about the class of heterogeneous
interval BR

Π-matrices that helps us to characterize it. For that, we first need to
state a few auxiliary propositions.

Proposition 2.5. Let A ∈ IRn×n. The matrix A is a heterogeneous interval
BR

Π -matrix only if

n∑
j=1

max

 aij
aij +

∑
m 6=j

aim
,

aij
aij +

∑
m6=j

aim

∣∣∣∣∣∣∣ i 6= j

 < 1.

Proof. A is a heterogeneous BR
Π -matrix, hence every A ∈ A is a BR

π -matrix for
some π = (π1, . . . , πn) satisfying the property (1), thus in particular the matrices
Aj ∈ A for every j ∈ [n] defined as in the proof of Theorem 2.2 in expression (4)
are BR

π -matrices.
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Therefore, (if we denote Rj the vector of row sums of Aj) again just as in the
proof of Theorem 2.2, the expression (5) holds ∀j ∈ [n]. From that we also get
that expression (6) from the proof holds, which is exactly what we wanted to prove
here.

Corollary 2.3. Every heterogeneous interval BR
Π -matrix is a homogeneous interval

BR
π -matrix for some π fulfilling inequality (1).

Proof. Let A ∈ IRn×n have positive row sums. From Proposition 2.5, we get the
following implication:

A is a heterogeneous interval BR
Π -matrix ⇒ Inequality (3) holds.

From the equivalence from Theorem 2.2 we use the following implication:
Inequality (3) holds ⇒ ∃π : π satisfies condition (1) ∧ A is a homoge-

neous interval BR
π -matrix.

Ergo we compose these two implications (because from Definition 2.3 we can
easily observe that if A is a heterogeneous interval BR

Π -matrix, then it has positive
row sums, therefore fulfilling the assumptions of Theorem 2.2), and thus obtain
the desired implication.

What we obtained is the second inclusion we need to show the equality among
our two interval matrix classes, the class of homogeneous interval BR

π -matrices
and that of the heterogeneous interval BR

Π -matrices.

Theorem 2.3. Let A ∈ IRn×n have positive row sums. We have that A is a
heterogeneous interval BR

Π -matrix if and only if ∃π ∈ Rn such that condition (1)
holds and that A is a homogeneous interval BR

π -matrix.

Proof. Follows from Corollaries 2.2 and 2.3.

We proved that the two classes we have defined at the beginning of this subsec-
tion are the same, hence it does not make any sense to differentiate the two. Thus,
from now on we refer to them as interval BR

π -matrices.

Definition 2.4 (Interval BR
π -matrix). Let A ∈ IRn×n, and let π ∈ Rn satisfy

inequality (1). We say that A is an interval BR
π -matrix if it is a homogeneous

interval BR
π -matrix.

Remark 2.5. Because of this definition, we can use the same characterizations we
use to characterize the homogeneous interval BR

π -matrices (Theorem 2.1, Theorem
2.2) to characterize the interval BR

π -matrices (and because of Theorem 2.3 also the
BR

Π -matrices).

Now, let us generalize some properties of real BR
π -matrices to the interval BR

π -
matrices. The first is a direct consequence of the definition.

Corollary 2.4. Every interval BR
π -matrix with π ≥ 0 is an interval P-matrix.

Proposition 2.6. Let π ∈ Rn such that inequality (1) is fulfilled, and let A ∈
IRn×n be an interval BR

π -matrix. The following holds:
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1. ∀i ∈ [n] : aii > max

{
πi ·

(
aii +

∑
j 6=i

aij

)
, πi ·

(
aii +

∑
j 6=i

aij

)}
,

2. ∀(i, j) ∈ [n]2, j 6= i : πi ≥ πj ⇒ aii > aij,

3. if k = argmax{πi | i ∈ [n] }, then ∀j 6= k : akk > akj , and

4. ∀(i, j) ∈ [n]2, j 6= i : πj ≤ 0 ⇒ aij < 0.

Proof. Let A ∈ IRn×n be an interval BR
π -matrix for some π ∈ Rn fulfilling inequal-

ity (1).

1. Let A1, A2 ∈ Rn×n be defined as follows:

A1 = A

A2 = (am1m2); am1m2 =

{
aii if m1 = m2 = i,
am1m2

otherwise.

Because A1, A2 ∈ A, they are both BR
π -matrices, thus from Proposition 2.3,

part 1) we get that this point holds.

2. Let A′ ∈ Rn×n be defined as A′ = A2, where A2 is defined in the previous
part of this proof. Because A′ ∈ A, it is a BR

π -matrix, thus from Proposition
2.3, part 2) we get that this point holds.

3. Direct consequence of the previous point.

4. Because A ∈ A, it is a BR
π -matrix, thus from Proposition 2.3, part 4) we get

that this point holds.

Proposition 2.7. Let π ∈ Rn fulfill inequality (1), and let A ∈ IRn×n be an
interval BR

π -matrix. If α ∈ Rn satisfies the analogy of inequality (1) and α ≥ π,
then A is an interval BR

α -matrix.

Proof. It holds for every instance of the interval matrix (see Proposition 2.4), thus
it holds for the whole interval matrix.

3 Characterizations through reduction

Here, in this section, we take a closer look at how we may characterize BR
π -matrices,

B -matrices, and doubly B -matrices through reduction. By that we mean testing
an interval matrix for the property of being an interval BR

π -matrix, B -matrix or
doubly B -matrix, respectively, using only a finite subset of instances of the interval
matrix, and testing them on being a member of the corresponding real matrix class.
Reductions for other matrix classes were surveyed, e.g., by Garloff et al. in [4].

Both the class of interval B -matrices and the one of interval doubly B -matrices
were introduced in [10], and we use the characterizations stated and proved there
in our proofs. However, everything we use is also stated here as well.
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3.1 BR
π -matrices

Let us begin with the interval BR
π -matrices we introduced in section 2.

Proposition 3.1. Let A ∈ IRn×n, let π ∈ Rn satisfy inequality (1), and let R ∈
IRn be the vector of intervals of the individual row sums in matrix A. Let ∀i ∈
[n] : Ai ∈ Rn×n be defined as follows:

1. if πi > 1, then:

Ai = A

2. else if 0 ≤ πi ≤ 1, then:

Ai = (am1m2
); am1m2

=

{
am1m2 if m1 6= i,m2 = i,
am1m2

otherwise.

3. else if πi < 0, then:

Ai = (am1m2
); am1m2

=

{
am1m2

if m1 = i,
am1m2 otherwise.

It holds that A is an interval BR
π -matrix if and only if ∀i ∈ [n] : Ai is a BRπ -matrix,

where R ∈ Rn is the vector of values corresponding to the row sums of Ai.

Proof. ”⇒” This holds, because ∀i ∈ [n] : Ai ∈ A (and the corresponding R ∈ R).
”⇐”
a)∀i ∈ [n] : Ri > 0, because Ai is a BR

π -matrix, and (Ai)i,∗ = (A)i,∗, the entries
of R are positive.

b)∀i ∈ [n] ∀k 6= i : Ak is a BR
π -matrix and so, from Definition 2.1:

1. πk > 1 :

πk ·
n∑
j=1

(Ak)ij > (Ak)ik ⇔ πk ·
n∑
j=1

aij > aik

⇔
∑
j 6=k

aij >

(
1

πk
− 1

)
· aik

2. 0 < πk ≤ 1 : πk ·
∑n
j=1 (Ak)ij > (Ak)ik ⇔

∑
j 6=k aij >

(
1
πk
− 1
)
· aik

3. πk = 0 : πk ·
∑n
j=1 (Ak)ij > (Ak)ik ⇔ 0 > aik

4. πk < 0 : πk ·
∑n
j=1 (Ak)ij > (Ak)ik ⇔

∑
j 6=k aij <

(
1
πk
− 1
)
· aik

Thus, A fulfills the conditions of Theorem 2.1, and so it is an interval BR
π -matrix.

Proposition 3.2. The characterization of the interval BR
π -matrices through the

reduction given by Proposition 3.1 is for π ≥ 0 minimal with respect to inclusion.
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Proof. First, we notice that from the condition (1) on π, it follows that ∀j ∈ [n] :
0 ≤ πj ≤ 1, so every matrix from the reduction has the form given by point 2).

If we skip any Ai for arbitrary i ∈ [n], then we could construct a counterexample,
e.g., a unit matrix with interval [0, πi

1−πi
] at position (j, i) for arbitrary j 6= i. Then

∀k 6= i : Ak = In, which surely is a BR
π -matrix. But Ai does not fulfill condition b)

from Definition 2.1 in the j-th row. That is because the sum of the j-th row is
equal to 1 + πi

1−πi
and (Ai)ji = πi

1−πi
, so we get

πi ·Rj = πi ·
(

1 +
πi

1− πi

)
= πi ·

(
1− πi + πi

1− πi

)
=

πi
1− πi

= (Ai)ji ,

which violates the condition, and so the Ai is not a BR
π -matrix.

Remark 3.1. In Proposition 3.2, the assumption that π ≥ 0 is present both
because such a π is what we are interested in in this work, and, more importantly,
because for the general case we might have such a π that two entries of the vector
are larger than 1. However, then the two matrices Ai corresponding to those entries
are the same and equal to A, and so we may remove one of the two matrices from
the reduction, and it still works. As for the case of almost general π, where we
only want that there is at most one entry larger than one, we have not managed to
prove or disprove the statement yet.

Remark 3.2. This reduction reduces the problem of verifying whether any given
interval matrix is an interval BR

π -matrix, into testing whether n matrices are real
BR
π -matrices.

Example 3.1. Here we show an example of an interval BR
π -matrix, and use it to

point out some things. Let us have a vector π, such that π = (0.36, 0.28, 0.36), and
let us define an interval BR

π -matrix A ∈ IR3×3 as follows:

A =

[7.95, 8.05] [−7.05,−6.95] [−0.05, 0.05]
[0.95, 1.05] [0.95, 1.05] [0.95, 1.05]
[8.95, 9.05] [10.95, 11.05] [19.95, 20.05]


It is easy to verify that A belongs to the class of BR

π -matrices for some π
satisfying the condition (1) by using Theorem 2.2 or to verify whether it is a BR

π -
matrix for our value of π using Theorem 2.1.

What is quite interesting and important is the fact that this matrix is not
positive definite (it is not symmetric), it is not an interval M -matrix (it is not
a Z -matrix), nor is it an interval H -matrix (e.g., the central matrix is not an
H -matrix). This shows that for this matrix other usual conditions of P -matrices
fail, while we might recognize it as a P -matrix due to it being a BRπ -matrix. This
shows a reason for studying this matrix class.

Now, let us conclude this illustration by showing the characterization through
reduction on this example. The three instances from the reduction from Proposi-
tion 3.1 are:
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A1 =

7.95 −7.05 −0.05
1.05 0.95 0.95
9.05 10.95 19.95

 , A2 =

7.95 −6.95 −0.05
0.95 0.95 0.95
8.95 11.05 19.95

 ,

A3 =

7.95 −7.05 0.05
0.95 0.95 1.05
8.95 10.95 19.95

 .

3.2 B-matrices

As written at the beginning of this section, we need to use a characterization of
interval B -matrices introduced in [10] plus a definition of real B -matrices and one
of their characterizations introduced by Peña in [14], so let us state them here.

Definition 3.1 (B -matrix, [14]). Let A ∈ Rn×n. We say that A is a B -matrix if
∀i ∈ [n] the following holds:

a)

n∑
j=1

aij > 0

b) ∀k ∈ [n] \ {i} :
1

n

n∑
j=1

aij > aik

Remark 3.3. We can see that from Definition 3.1 we have that B -matrices are
B -Rπmatrices for π =

(
1
n , . . . ,

1
n

)
. Therefore, the B -Rπmatrices might be seen as a

generalization of the B -matrices.

Proposition 3.3. If A ∈ Rn×n, then A is a B-matrix if and only if ∀i ∈ [n] the
following holds:

n∑
j=1

aij > n · r+
i ,

where r+
i = max{0, aij | j 6= i}.

Definition 3.2 (Interval B -matrix). Let A ∈ IRn×n. We say that A is an interval
B -matrix if ∀A ∈ A: A is a (real) B-matrix.

Proposition 3.4. If A ∈ IRn×n, then A is an interval B-matrix if and only if
∀i ∈ [n] the following two properties hold:

a)

n∑
j=1

aij > 0

b) ∀k ∈ [n] \ {i} :
∑
j 6=k

aij > (n− 1) · aik

Now, let us introduce the reduction.
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Proposition 3.5. Let A ∈ IRn×n, and let ∀i ∈ [n] : Ai be matrices defined as
follows:

Ai = (am1m2
); am1m2

=

{
am1m2

if m1 6= i,m2 = i,
am1m2

otherwise.

It follows that A is an interval B-matrix if and only if ∀i ∈ [n] : Ai is a B-matrix.

Proof. ”⇒” This holds trivially, because ∀i ∈ [n] : Ai ∈ A
”⇐”
a)∀i ∈ [n] :

∑n
j=1 aij > 0, because Ai is a B -matrix, and (Ai)i,∗ = (A)i,∗, so

the row sums of A are positive.
b)∀i ∈ [n] ∀k 6= i : Ak is a B -matrix ⇒ (From Proposition 3.3:)

aik +
∑
j 6=k

aij =

n∑
j=1

(Ak)ij > n · r+
i ≥ n · (Ak)ik = n · aik

⇒ ∑
j 6=k

aij > (n− 1) · aik

Whence it follows that A fulfills the conditions of Proposition 3.4, and so is an
interval B -matrix.

Proposition 3.6. The characterization of interval B-matrices through the reduc-
tion given by Proposition 3.5 is minimal with respect to inclusion.

Proof. If we skip any Ai for arbitrary i ∈ [n], then we would be able to construct
a counterexample, e.g., a unit matrix with an additional interval [0, 1] on position
(j, i) for arbitrary j 6= i. Then ∀k 6= i : Ak = In, which surely is a B -matrix, but
Ai does not fulfill condition b) from Definition 3.1 in the j-th row. (The sum of
the j-th row is equal to 2, so we get 2/n > 1 = (Ai)ji, which does not hold for
n ≥ 2.)

Remark 3.4. This reduction reduces the problem of verifying whether any given
interval matrix is an interval B -matrix, into testing whether n matrices are real
B -matrices.

3.3 Doubly B-matrices

As written at the beginning of this section, we need to use a characterization of
interval doubly B -matrices introduced in [10] and a definition of real doubly B -
matrices introduced by Peña in [15], so let us state them here.

Definition 3.3 (Doubly B -matrix, [15]). Let A ∈ Rn×n. We say that A is a doubly
B -matrix if ∀i ∈ [n] the following holds:

a) aii > r+
i

b) ∀j ∈ [n] \ {i} :
(
aii − r+

i

) (
ajj − r+

j

)
>

∑
k 6=i

(
r+
i − aik

)∑
k 6=j

(
r+
j − ajk

)
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Remark 3.5. We can rearrange the inequality from Proposition 3.3 and hence
obtain the following characterization of B -matrices:

∀i ∈ [n] :
(
aii − r+

i

)
>
∑
k 6=i

(
r+
i − aik

)
This shows that doubly B -matrices are another generalization of B -matrices. Is
there then any difference between the two generalizations, between doubly B -
matrices and BR

π -matrices? Yes, there is. The two matrix classes indeed have
a nonempty intersection with B -matrices in it, however, as we will see in the fol-
lowing example, the intersection is just a proper subset of each of those two classes.

Example 3.2. Let us show two examples of matrices that demonstrate the differ-
ence between the class of doubly B -matrices and that of BR

π -matrices.(
1 −2
0 1

) (
1 1
0 1

)
X Doubly B-matrix × Doubly B-matrix
× BRπ -matrix (for no π) X BRπ -matrix (e.g. π = ( 1

3 ,
2
3 ))

It does not have a positive row sum. The diagonal element is not the largest.

Definition 3.4 (Interval doubly B -matrix). Let A ∈ IRn×n. We say that A is an
interval doubly B -matrix if ∀A ∈ A: A is a (real) doubly B-matrix.

Proposition 3.7. If A ∈ IRn×n, then A is an interval doubly B-matrix if and
only if the following two properties hold:

a) ∀i ∈ [n] : aii > max{0, aij |j 6= i}, and

b) ∀(i, j) ∈ [n]2, j 6= i,∀(k, l) ∈ [n]2, k 6= i, l 6= j :

I.
(
aii − aik

)(
ajj − ajl

)
>

max

0,
∑
m 6=i
m6=k

(
aik − aim

)

max

0,
∑
m 6=j
m 6=l

(
ajl − ajm

)


II. aii
(
ajj − ajl

)
>

(
max

{
0,−

∑
m6=i

aim

})max

0,
∑
m 6=j
m 6=l

(
ajl − ajm

)


III. aii · ajj >

(
max

{
0,−

∑
m 6=i

aim

})(
max

{
0,−

∑
m 6=j

ajm

})

Now, let us present the reductions.
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Proposition 3.8. Let A ∈ IRn×n for n ≥ 4, and let us define A(i,k),(j,l) ∈ Rn×n
as follows:

A(i,k),(j,l) = (am1m2
) ; am1m2

=

 aik if (m1,m2) = (i, k),
ajl if (m1,m2) = (j, l),
am1m2

otherwise.

It holds that A is an interval doubly B-matrix if and only if ∀(i, j) ∈ [n]2, j >
i,∀(k, l) ∈ [n]2, k 6= i, l 6= j : A(i,k),(j,l) is a doubly B-matrix.

Proof. ”⇒” Trivial, for all such matrices: A(i,k),(j,l) ∈ A.

”⇐” We prove that the conditions of Proposition 3.7 hold:

a) ∀i ∈ [n],∀k 6= i : aii > max{0, aik}, because for any arbitrary j, l the matrix
A(i,k),(j,l) is a doubly B -matrix. Hence, ∀i ∈ [n] : aii > max{0, aik|k 6= i}.

b) Let us fix arbitrary (i, j) ∈ [n]2, j 6= i and arbitrary (k, l) ∈ [n]2, k 6= i, l 6= j.
Without loss of generality suppose j > i. (If j < i, we swap their values and we also
swap the values of k and l, too.) Let us define A = A(i,k),(j,l) to simplify notation.
Then:

I. (
aii − aik

)(
ajj − ajl

)
≥

(
aii − r+

i

) (
ajj − r+

j

)
>

∑
m6=i

(
r+
i − aim

)∑
m6=j

(
r+
j − ajm

)

≥

max

0,
∑
m 6=i
m6=k

(
aik − aim

)

max

0,
∑
m 6=j
m6=l

(
ajl − ajm

)


The second inequality holds, because A is a doubly B -matrix.

II.

aii
(
ajj − ajl

)
≥

(
aii − r+

i

) (
ajj − r+

j

)
>

∑
m 6=i

(
r+
i − aim

)∑
m 6=j

(
r+
j − ajm

)

≥

max

0,−
∑
m 6=i

aim



max

0,
∑
m 6=j
m 6=l

(
ajl − ajm

)


The second inequality holds because of the fact that A(x,y),(j,l) for any x 6= i and
y 6= x is a doubly B -matrix.
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III.

aii · ajj ≥
(
aii − r+

i

) (
ajj − r+

j

)
>

∑
m 6=i

(
r+
i − aim

)∑
m 6=j

(
r+
j − ajm

)
≥

max

0,−
∑
m 6=i

aim


max

0,−
∑
m 6=j

ajm




The second inequality holds because of the fact that A(x,y),(u,v) for any x, y, u, v,
such that x 6= i, x 6= j, y 6= x, u 6= i, u 6= j, u 6= x, and v 6= u is a doubly B -matrix
and n ≥ 4.

Thus, as we have shown, the A fulfills both the conditions of Proposition 3.7,
therefore it is an interval doubly B -matrix.

Remark 3.6. Proposition 3.8 could also work for n ≥ 3, but we would have
to add a requirement that A is a doubly B -matrix, too. Or it could work even
for n ≥ 2, but again we would have to add requirements that A is a doubly B -matrix
and ∀j ∈ [n], l 6= j : A(j,l) is a doubly B -matrix, where

A(j,l) = (am1m2);

{
ajl if (m1,m2) = (j, l),
am1m2

otherwise.

These requirements are needed for proof of parts ”II.” and ”III.” of condition b)
of the second (right-to-left) implication. However, we can show an example that
they are not just formal requirements:

Example 3.3. Let A ∈ IR3×3, such that Aij =

{
[1, 1] = 1 if i = j,
[− 1

2 , 0] otherwise.

Then ∀A(i,k),(j,l) : ∀z, z′ ∈ [3], z′ 6= z : r+
z = r+

z′ = 0, so:(
azz − r+

z

) (
az′z′ − r+

z′

)
= 1 · 1 = 1,

and ∑
m6=z

(
r+
z − azm

)∑
m6=z′

(
r+
z′ − az′m

) ≤ 1

2
· 1 =

1

2
.

Thus, every A(i,k),(j,l) is a doubly B -matrix.
However, for A : ∀z, z′ ∈ [3], z′ 6= z :(

azz − r+
z

) (
az′z′ − r+

z′

)
= 1 · 1 = 1,

and ∑
m6=z

(
r+
z − azm

)∑
m6=z′

(
r+
z′ − az′m

) =

(
1

2
+

1

2

)2

= 12 = 1.

Therefore, A is not a doubly B -matrix, and hence A cannot be an interval doubly
B -matrix.
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Proposition 3.9. The characterization of interval doubly B-matrices through the
reduction given by Proposition 3.8 is minimal with respect to inclusion.

Proof. If we skip A(i,k),(j,l) for any arbitrary (i, j, k, l) ∈ [n]4, j 6= i, k 6= i, l 6= j,
then we would be able to construct a counterexample, e.g., a unit matrix with an
additional interval [0, 1

2 ] at positions (i, k) and (j, l). Then ∀(x, y, u, v) ∈ [n]4, u 6=
x, y 6= x, v 6= u, such that (x, y, u, v) 6= (i, k, j, l) : A(x,y),(u,v) is a doubly B -matrix.
That holds because ∀(z, z′) ∈ [n]2, z′ 6= z :(

azz − r+
z

) (
az′z′ − r+

z′

)
≥ 1

2
,

and ∑
m 6=z

(
r+
z − azm

)∑
m 6=z′

(
r+
z′ − az′m

) = 0.

However, A(i,k),(j,l) is not a doubly B -matrix, because(
aii − r+

i

) (
ajj − r+

j

)
=

1

2
· 1

2
=

1

4
,

and∑
m 6=i

(
r+
i − aim

)∑
m 6=j

(
r+
j − ajm

)
=

((
1

2
− 1

2

)
+ (n− 2) ·

(
1

2
− 0

))2

=

(
n− 2

2

)2

,

and for n ≥ 3 it does not hold that 1
4 >

(
n−2

2

)2
. (Plus in Proposition 3.8 we assume

n ≥ 4.)
Hence, the whole interval matrix cannot be an interval doubly B -matrix.

Whereas the previous reduction stated in Proposition 3.8 reduces the problem of
verifying an interval matrix on being an interval doubly B -matrix to O(n4) matrices
(more precisely, for its basic version for n ≥ 4 it reduces the problem to

(
n
2

)
·(n−1)2

real instances), the following uses a bit different approach and achieves to reduce
the definition to O(n3) (more precisely to n2 · (n− 1) + n2 = n3) matrices.

Proposition 3.10. Let A ∈ IRn×n, and let us define A(i,k),(∗,l) and
i
A(∗,l) ∈ Rn×n

as follows:

A(i,k),(∗,l) = (am1m2) ; am1m2 =

 aik if (m1,m2) = (i, k),
am1l if m2 = l ∧m1 6= i ∧m1 6= l,
am1m2

otherwise.

and

i
A(∗,l) =

(
a′m1m2

)
; a′m1m2

=

{
am1l if m2 = l ∧m1 6= i ∧m1 6= l,
am1m2

otherwise.
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The matrix A is an interval doubly B-matrix if and only if ∀(i, l) ∈ [n]2 : (
i
A(∗,l)

is a doubly B-matrix ∧ ∀k ∈ [n] \ {i} : A(i,k),(∗,l) is a doubly B-matrix).

Proof. ”⇒” Trivial, for all such matrices are in A.

”⇐” We prove that the conditions of Proposition 3.7 hold:

a) ∀i ∈ [n],∀k 6= i : aii > max{0, aik}, because for any arbitrary l the matrix
A(i,k),(∗,l) is a doubly B -matrix. Therefore, ∀i ∈ [n] : aii > max{0, aik|k 6= i}.

b) Let us fix arbitrary (i, j) ∈ [n]2, j 6= i and arbitrary (k, l) ∈ [n]2, k 6= i, l 6= j.

I. Let us take A = A(i,k),(∗,l). Then:(
aii − aik

)(
ajj − ajl

)
≥

(
aii − r+

i

) (
ajj − r+

j

)
>

∑
m6=i

(
r+
i − aim

)∑
m6=j

(
r+
j − ajm

)

≥

max

0,
∑
m 6=i
m6=k

(
aik − aim

)

max

0,
∑
m 6=j
m6=l

(
ajl − ajm

)


II. Let us take A =
i
A(∗,l). Then:

aii
(
ajj − ajl

)
≥

(
aii − r+

i

) (
ajj − r+

j

)
>

∑
m 6=i

(
r+
i − aim

)∑
m 6=j

(
r+
j − ajm

)

≥

max

0,−
∑
m 6=i

aim



max

0,
∑
m 6=j
m 6=l

(
ajl − ajm

)


III. Let us take A =
i
A(∗,j). Then:

aii · ajj ≥
(
aii − r+

i

) (
ajj − r+

j

)
>

∑
m 6=i

(
r+
i − aim

)∑
m 6=j

(
r+
j − ajm

)
≥

max

0,−
∑
m 6=i

aim


max

0,−
∑
m 6=j

ajm




Therefore, as we have proved, the A fulfills both the conditions of characterization
stated in Proposition 3.7, thus it is an interval doubly B -matrix.
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4 Conclusion and future work

There are several ways in which the current results might be extended. One pos-
sibility is to generalize our three classes even further, into parametric matrices,
otherwise known as linearly dependent, addressed, for example, in [17]. Another
direction is to generalize another subclass of P -matrices. Those might be, for
example, so-called mimes, which stands for ”M -matrix and Inverse M -matrix Ex-
tension”, as they were introduced in [18]. Or it still remains unresolved whether
the reductions presented in this paper are optimal with respect to the number of
real instances used, or whether there exists some other reduction achieving to char-
acterize one of the interval matrix classes using fewer instances. For the reduction
from Proposition 3.10, the minimality with respect to inclusion is still undecided.
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[13] Orera, Héctor and Peña, Juan Manuel. Error bounds for linear complemen-
tarity problems of BRπ -matrices. Comput. Appl. Math., 40(3):94:1–94:13, 2021.
DOI: 10.1007/s40314-021-01491-w.

[14] Peña, J. M. A class of P -matrices with applications to the localization of the
eigenvalues of a real matrix. SIAM J. Matrix Anal. Appl., 22(4):1027–1037,
2001. DOI: 10.1137/S0895479800370342.

[15] Peña, J. M. On an alternative to Gerschgorin circles and ovals of Cassini.
Numer. Math., 95(2):337–345, 2003. DOI: 10.1007/s00211-002-0427-8.
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Quantification of Time-Domain Truncation Errors
for the Reinitialization of Fractional Integrators

Andreas Rauha and Rachid Maltib

Abstract

In recent years, fractional differential equations have received a significant
increase in their use for modeling a wide range of engineering applications.
In such cases, they are mostly employed to represent non-standard dynamics
that involve long-term memory effects or to represent the dynamics of system
models that are identified from measured frequency response data in which
magnitude and phase variations are observed that could be captured either
by low-order fractional models or high-order rational ones. Fractional mod-
els arise also when synthesizing CRONE (Commande Robuste d’Ordre Non
Entier) and/or fractional PID controllers for rational or fractional systems.
In all these applications, it is frequently required to transform the frequency
domain representation into time domain. When doing so, it is necessary to
carefully address the issue of the initialization of the pseudo state variables
of the time domain system model. This issue is discussed in this article for
the reinitialization of fractional integrators which arises among others when
solving state estimation tasks for continuous-time systems with discrete-time
measurements. To quantify the arising time-domain truncation errors due to
integrator resets, a novel interval observer-based approach is presented and,
finally, visualized for a simplified battery model.

Keywords: fractional differential equations (FDEs), observer design, uncer-
tain cooperative dynamics, temporal truncation errors, state estimation

1 Introduction
Fractional differential equations (FDEs) are powerful modeling tools in many en-
gineering applications in which non-standard dynamics, characterized by infinite
horizon states, can be observed [21, 23, 37, 40]. Examples for such applications are
modeling the charging and discharging dynamics of batteries [11], the identifica-
tion of dynamic system models by means of impedance spectroscopy [2] if amplitude
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and phase variations do not correspond to integer multiples of ±20 dB and ±π2 per
frequency decade, respectively, modeling of multi-robot systems [9], control design
for flexible manipulators [4], and generally for the representation of dynamic sys-
tems with long-term memory effects. Moreover, advanced models of visco-elastic
damping [13] can be described with the help of FDEs. In this domain, FDEs can
be used to describe phenomena with non-integer time derivatives, which represent
phenomena lying “between” Hooke’s law (with a proportionality of forces to the
displacement) and Newton’s law (being proportional to the first time derivative of
the displacement) [16]. Similar effects also exist in the domain of heat and mass
transport, where non-standard dynamics may be related to phenomena “between”
diffusion and wave propagation [36].

Previous work for an interval-based state estimation of such systems has ac-
counted for a cooperativity preserving or cooperativity enforcing design of ob-
servers [3, 11]. These interval observers exploit specific monotonicity properties
of positive dynamic systems and provide lower and upper bounding trajectories
for all pseudo state variables1 as soon as suitable initialization functions for the
fractional dynamic system model are specified.

Moreover, FDEs arise naturally if the CRONE design methodology [15,22] for ef-
ficient shaping of frequency response characteristics of linear control systems and/or
if fractional PID controllers [20, 24] are employed. FDEs then arise independently
of whether the plant to be controlled is represented by a rational or fractional
system model, and if the resulting closed-loop system dynamics are subsequently
represented in the time domain.

In contrast to the case of integer-order models, the time responses of fractional
systems significantly depend on the initialization of the pseudo state. This is shown
exemplarily in this paper with the help of the Grünwald-Letnikov definition of frac-
tional derivatives [23, 32, 34, 39] to illustrate further that the Caputo initialization
corresponds to the special case that an FDE model is initialized with an initial con-
dition that also represents a perfectly constant, infinitely long history of the pseudo
states in the past. Although this may hold (at least in good approximation) for the
initialization of a dynamic system which is fully in rest, this is obviously not true
when resetting integrators after a finitely long time interval.

Apart from the discussions above, interval-valued iteration procedures have been
developed in [26–29] for a verified simulation of FDE models. These iteration
procedures, based on Mittag-Leffer function parameterizations of the pseudo-state
enclosures, are not a priori restricted to cooperative models but are applicable also
to nonlinear systems with interval parameters. So far, this procedure assumes that
— for the initialization — a fractional derivative definition according to Caputo is
used. This verified simulation, however, allows for resetting the integration after
a finite time span by applying (to our knowledge, for the first time in a verified
simulation of FDEs) an error quantification originally published in the book [23]

1The notion pseudo state is used throughout this manuscript to indicate the existence of the
infinite memory problem of FDEs in contrast to the classical notion of state variables that only
need to be specified at distinct points in time to unambiguously solve initial or boundary value
problems for classical integer-order dynamic system models.
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by Podlubny.
In this paper, we aim at improving this error quantification scheme by a novel

interval observer-based approach that allows for estimating guaranteed interval
bounds for time-domain truncation errors in scenarios in which fractional integra-
tors need to be reset. Such cases occur when state estimation for continuous-time
FDE models with discrete-time measurements is considered. So far, the state-of-
the-art in the evaluation of observer-based pseudo-state estimation procedures for
continuous-time FDE models supposes that measurements are also available in a
continuous-time form or at least at each sampling period [3]. If measurements are
available only at discrete time instants, continuous-time pseudo-state predictions
need to be performed between the sampling instants of the measurements.

Then, the measured pseudo-state information (described by intervals to rep-
resent bounded measurement errors) can be intersected with the predicted state
information to enhance the knowledge of the actual system dynamics. However,
this intersection demands reinitializing the integration of the fractional model. As
already mentioned above, a similar requirement is discussed in [26], where tempo-
ral sub-slices were considered to reduce the overestimation of interval-based sim-
ulation approaches. Moreover, such integrator resets also help to limit memory
demands that would grow continuously with increasing integration times if solu-
tions to FDEs were approximated with the help of series expansion techniques based
on the Grünwald-Letnikow definition of fractional derivatives.

Due to the infinite horizon memory property of fractional systems, the reinitial-
ization of time-domain simulations requires a rigorous consideration of the arising
truncation errors. Although guaranteed outer bounds for these errors were derived
by Podlubny in [23], they may be unnecessarily conservative due to an assumption
of the time invariance of these bounds for all future points after the integrator reset.
We aim at using Podlubny’s initial bounds as a basis for a novel error refinement
strategy between discrete reinitialization points in an observer-based setting.

After an introduction into the infinite memory problem of FDE models in Sec. 2,
an approach that accounts for handling non-constant pseudo-state initializations
from a bounded past time window in terms of uncertain initial conditions at a sin-
gle point is derived. This approach is based on a conservative interval-valued cor-
rection of the FDE model. It forms the basis for implementing an observer-based
quantification of truncation errors for simulations of FDEs in which a periodic
reinitialization is employed in Sec. 3. This approach is then applied in Sec. 4 to an
academic benchmark example as well as to the interval contractor-based state esti-
mation of a continuous-time battery model [11] with discrete-time measurements,
before the paper is concluded with an outlook on future work in Sec. 5.

2 Influence of the Initialization of FDE Models

To visualize the influence of the initialization of the pseudo state of FDE models on
their future behavior, consider the representation of the solution of a commensurate
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autonomous FDE
x(ν)(t) = f

(
x(t)

)
, f : Rn 7→ Rn, (1)

in terms of the infinite series

x(tk+1) = νI · x(tk) + ∆T νk · f
(
x(tk)

)
−
∞∑
i=2

ci · x(tk+1−i) (2)

with the sufficiently short step size ∆Tk = tk+1 − tk. This series expansion results
from the Grünwald-Letnikov definition2 of a non-integer derivative of order 0 <
ν ≤ 1 with the coefficients

ci = (−1)
i ·
(
ν

i

)
= (−1)

i · Γ (ν + 1)

Γ (i+ 1) · Γ (ν − i+ 1)
, (3)

in which the term
(
ν
i

)
is the Newton binomial coefficient with the gamma function

Γ (ν) =

∞∫
0

ξν−1e−ξdξ (4)

as a generalization of the factorial to the case of non-integer arguments. To avoid
excessive numerical errors when evaluating the coefficients ci, they are typically
computed in a recursive manner according to [39]

ci = ci−1 ·
(

1− 1 + ν

i

)
with c0 = 1 and i ∈ N. (5)

As it can be seen already in Eq. (2), future pseudo states x(tk+1) do not only
depend on the current state x(tk) as a kind of initialization (as it would be the
case for integer-order system models), but they also depend on an infinite horizon
of pseudo states from previous points of time t < tk. Note, stability properties
of this series expansion and properties of its convergence toward the true solution
of a fractional system model have been analyzed in detail in [32]. In fact, the
Grünwald-Letnikov discretization can be interpreted as a generalization of the well-
known Euler discretization scheme for integer-order models so that the true state
evolution can be approximated accurately for sufficiently small values of ∆Tk. For
methods that allow a rigorous quantification of time discretization errors, the reader
is referred to [27–29], where an exponential state enclosure technique is generalized
to fractional models by using an iteration scheme exploiting an interval extension of
Mittag-Leffler functions [10, 19], or to [1, 18, 26] where series expansion approaches
and Picard iteration schemes were generalized to the fractional case.

For linear FDEs of Caputo type, typically only initial conditions x(tk) are spec-
ified explicitly at a point of time t0 that is set to t0 = 0 without loss of generality in
the remainder of this paper. As shown in the following example, this specification

2This representation corresponds to the one discussed in [26], except for the correction of a
small typo in the quoted previous work of the first author.
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implicitly imposes that the pseudo state of the system showed an exactly constant
behavior for an infinitely long time window in the past.

To perform this investigation, consider the FDE

x(0.5)(t) = −x(t) + u(t) (6)

with the pseudo state initialization

x(t) = x0 for t ≤ 0 (7)

and the constant external control input

u(t) =

{
0 for t < 0

u0 for t ≥ 0.
(8)

Due to the fact that fractional derivatives of constant values in the Caputo sense
are zero, the linear change of variables

x(t) = y(t) + u0 with x(0.5)(t) = y(0.5)(t) (9)

yields the equivalent FDE
y(0.5)(t) = −y(t) (10)

with
y(t) = x0 − u0 for t ≤ 0 (11)

for which the exact solution is given by

y(t) = (x0 − u0) · E0.5,1

(
−t0.5

)
for t ≥ 0 (12)

being equivalent to

x(t) = xML(t) = (x0 − u0) · E0.5,1

(
−t0.5

)
+ u0 for t ≥ 0. (13)

In (12) and (13), Eν,1 (·) is the Mittag-Leffler function with the fractional deriva-
tive order ν = 0.5 as parameter.

In Fig. 1, different approximations of the solution to the FDE model (6)–(8) are
computed by using the Grünwald-Letnikov approximation with the constant dis-
cretization step size ∆Tk = 0.01 and approximations of the infinitely long constant
initialization of the pseudo state in (7). These latter approximations are defined by

x(t) = x0 for t ∈
[
−∆Tk · 10N ; 0

]
(14)

with N ∈ {1, 2, . . . , 8}, where the corresponding approximations to the true so-
lution x(t) are denoted by xN (t). As described above, the exact solution xML(t)
corresponds to a solution representation in terms of the Mittag-Leffler function ac-
cording to (13), which has been evaluated in Fig. 1 by the Matlab implementation
by R. Garrappa in [8].
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(a) Pseudo state x(t). (b) Approximation error xML(t)− xN (t).

Figure 1: Influence of the memory length of the pseudo state initialization.

It can be seen that insufficiently long memory lengths in the state initialization
lead to large deviations between the Grünwald-Letnikov approximation and the
true solution. These deviations due to an insufficiently long initialization window
are much larger than the influence of the finitely long discretization step size ∆Tk.

In the following section, time domain truncation errors resulting from resetting a
numerical integration of an FDE model after a finitely long time span are quantified
in a rigorous manner under the assumption that the system behavior for t ≤ 0 is
known in advance. For the sake of simplicity, we rely on the temporally constant
initialization according to (7) in the following.

Remark 1. Due to the fact that the numerical solution of an FDE with non-
constant initialization functions is influenced by the change of coordinates in (9),
this linear shift of the coordinate system will form a potential basis for identifying
the history of the pseudo states in future work.

3 Interval Observer Technique for the Identifica-
tion of Improved Bounds of Time-Domain Trun-
cation Errors

3.1 Constant Bounds for Time-Domain Truncation Errors
So far, we have assumed that initial conditions for the pseudo state of the FDE
system model (1) are specified at the instant t = 0 with a temporally constant past
for all times t < 0 in accordance to the Caputo definition of fractional derivatives.
To allow for a notation denoting the influence of the point of time at which the
derivative operator 0D

(ν)
t is initialized, the notation of Eq. (1) is changed to

0D
(ν)
t x(t) = f

(
x(t)

)
(15)
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in the following, where the left subscript of 0D
(ν)
t specifies the initialization point

of time (in the case above, t = 0).
According to the work of Podlubny [23, Eq. (7.5)], guaranteed bounds for the

influence of shifting this initialization point from the time instant tk to another
point tk + T , T > 0, can be computed component-wise according to∣∣∣tkD(ν)

t x(t)− tk+TD
(ν)
t x(t)

∣∣∣ ≤ XT−ν∣∣Γ(1− ν)
∣∣ =: µ (16)

with
X =

[
X1 . . . Xn

]T (17)

comprising the suprema

Xi = sup
t∈[tk ; tk+T ]

∣∣xi(t)∣∣ , i ∈ {1, . . . , n} (18)

of the reachable pseudo states over the time interval t ∈ [tk ; tk + T ] for each
element of the vector x(t).

As shown in [28], these error bounds can be employed to reset interval-based
verified solution procedures for FDE models after a certain time span and to use
the solution enclosures determined after the reset to reduce overestimation arising
due to pessimism that is introduced by long integration time intervals. For that
purpose, the right-hand side of the system model (15) is inflated by the error bound
interval [−µ ; µ] to obtain the uncertain system model

f̃
(
x(t)

)
∈ f
(
x(t)

)
+ [−µ ; µ] . (19)

Using this modification, the simulation is continued after the point t = tk + T for
the differential inclusion model defined by the expression f̃

(
x(t)

)
and the pseudo

state values x(tk) as initial condition, while the entire past for t < tk is no longer
required for a further system simulation.

Under the assumption of cooperativity of the state equations, see [3,5,25,33] for
further details, independent lower and upper bounding trajectories can be extracted
from the modified system model (19) so that set-based integration routines such as
the one based on interval extensions of the Mittag-Leffler function from [27–29] can
be avoided when solving the corresponding initial value problem for the differential
inclusion problem (19) after the inflation of the right-hand side f

(
x(t)

)
of the

original system.

Remark 2. To limit the pessimism introduced by the additive error bounds in (19),
the following two aspects should be accounted for:

• Define the pseudo state x(t) in such a way that x = 0 corresponds to the
equilibrium of an asymptotically stable FDE. If x = 0 is not the corresponding
steady state after a first-principle modeling, perform a shift of coordinates as
inspired by Eq. (11) so that the absolute values for the bounds X do not
increase for sufficiently large values of tk + T .
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• Set the initial point tk in (16) to tk = 0. Together with the first aspect in this
remark, this allows for a computation of values for the error bounds µ that
decrease after sufficiently long integration times and thus lead to less conser-
vative system models than always recomputing the bounds µ with respect to
a previous reset point tk > 0.

Even though these two aspects can be accounted for in many practical situa-
tions, the bounds µ given in (16) remain conservative due to the fact that they
are temporally constant. This property does not explicitly account for the ob-
servation that shifting the initialization point of the fractional derivative operator
becomes less important for increasing integration times3. Therefore, an observer-
based refinement of the bounds µ — to our knowledge not yet considered in any
other publication — is presented in the following subsection. A similar approach,
however, can be found in [35], where the authors propose an observer to initialize
fractional system models consistently.

3.2 Observer-Based Enhancement of the Bounds for Time-
Domain Truncation Errors

For the observer-based enhancement of the time-domain truncation error bounds
when resetting fractional integrators, we restrict ourselves to the case of cooperative
system models in this paper.

As a generator for virtual measurements of a cooperative dynamic system model,
we compute pseudo state enclosures

x(t) ∈
[
v(t) ; w(t)

]
(20)

for the FDE model (15) with the temporally constant initialization

x(t) ∈ [x0] , ẋ(t) = 0 for t < 0. (21)

This setting corresponds to uncertain initial conditions in the sense of Caputo,
while the influence of temporally varying initializations is taken into account as
soon as the first integrator reset has been performed.

Cooperativity of the system model (15) is guaranteed as a sufficient condition if
all off-diagonal elements of the Jacobian of the right-hand side of the system model
with respect to the pseudo state vector x(t) (i, j ∈ {1, . . . , n}, i 6= j) satisfy the
inequalities

∂fi(x)

∂xj
≥ 0. (22)

Then, all reachable pseudo states can be enclosed by the lower and upper bound-
ing systems

0D
(ν)
t v(t) = fv

(
v(t)

)
, v(t ≤ 0) = x0 and

0D
(ν)
t w(t) = fw

(
w(t)

)
, w(t ≤ 0) = x0,

(23)

3This observation is denoted as short memory principle in [23].
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respectively, where the inequalities

vj(t) ≤ xj(t) ≤ wj(t) (24)

hold for all j ∈ {1, . . . , n}.
If the integration of a cooperative FDEmodel is reinitialized at a point t = T > 0,

an observer-based approach

TD
(ν)
t z(t) =


fv
(
ṽ(t)

)
+ µv(t)

fw
(
w̃(t)

)
+ µw(t)

0
0

+ H ·
[
v(t)− ṽ(t)
w(t)− w̃(t)

]
(25)

with the augmented state vector

z(t) =


ṽ(t)
w̃(t)
µv(t)
µw(t)

 ∈ R4n (26)

can be used to enhance the pseudo state enclosures and the truncation error bounds
in comparison with the ones obtained by the integrator resetting approach according
to the previous subsection that only employs temporally constant truncation error
bounds.

The observer (25) is initialized with the pseudo state vector

z(T ) =


v(T )
w(T )
−µT
µT

 , (27)

where the truncation error bounds [−µT ; µT ] are computed as described in the
previous subsection. Due to the inclusion of the truncation error bounds µv(t)
and µw(t) by means of so-called integrator disturbance models in (25), leading to
constant values if H = 0, the case of the error quantification according to the
previous subsection is included as a special case in this formulation. If H 6= 0, the
bounds µv(t) and µw(t) are enhanced in such a way that the virtual measurements
and the enhanced bounds for the pseudo state variables approach each other as
close as possible. For that purpose, the augmented system model (25) must be a
valid interval observer.

To make the augmented system model (25) with the estimated lower and upper
bounding trajectories ṽ(t) and w̃(t) a valid observer, the gain matrix H needs to be
chosen so that the error dynamics associated with the bounding trajectories remain
asymptotically stable with∥∥v(t)− ṽ(t)

∥∥→ 0 and
∥∥w(t)− w̃(t)

∥∥→ 0 for t→∞ (28)
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and that [
v(t) ; w(t)

]
⊆
[
ṽ(t) ; w̃(t)

]
(29)

is ensured for all t ≥ T .
For corresponding stability criteria for linear fractional differential equations,

see the eigenvalue domains summarized in [11, 35]. Due to the fact that these
domains can be expressed effectively by linear matrix inequality constraints and
that nonlinear models can be bounded by quasi-linear system models with polytopic
uncertainty representations, stability requirements for the gain matrix H cannot
only be obtained for linear system models. They can also be obtained from the
existing literature for nonlinear ones as it has been shown, for example in [3, 11],
for the design of robust state estimation schemes for FDEs.

To ensure the enclosure property (29) and to verify the decoupled nature of
the equations in (25) with respect to ṽ(t) and w̃(t) as well as µv(t) and µw(t),
respectively, the Jacobian of the right-hand side of the augmented model (25) with
respect to the pseudo state vector z(t) needs to satisfy the sign property presented
in the inequalities (22) with now 4n as the dimension of the augmented model.

3.3 Periodic Reset of Fractional Integrators and Their Ap-
plication to Predictor–Corrector State Estimation

The observer approach from the previous subsection is the basis for a predictor–
corrector technique for state estimation if measurements

y(tm,k) ∈ [y](tm,k) =
[
y(tm,k) ; y(tm,k)

]
(30)

(including interval uncertainty to represent bounded measurement errors with un-
known distributions) are available at the time instants tm,k in the form

g
(
x(tm,k)

)
∈
[
y(tm,k) ; y(tm,k)

]
. (31)

Then, the same observer (25) as in the previous subsection is employed with
virtual measurements obtained from a simulation of the original system dynam-
ics. The actual state measurements [y](tm,k) are then used to tighten the bounds
included in the pseudo state initialization z(T ) at each point T = tm,k.

This tightening is either obtained by a direct intersection of the measured in-
tervals [y](tm,k) with the already computed state bounds

[
ṽ(tm,k) ; w̃(tm,k)

]
in

the case of a direct pseudo state measurement or by applying a suitable contrac-
tion scheme [12] (forward–backward contractor or Krawczky-type contractor) to
the relation (31), where the bounds for x(tm,k) are initialized with the interval[
ṽ(tm,k) ; w̃(tm,k)

]
as in the first case. After this tightening step, the procedure

is continued as described in the previous subsection, where the modification of
the pseudo state reinitialization is the only modification in comparison with the
previous subsection.

This approach allows for directly handling the continuous-time dynamics of the
system model between two subsequent discrete time instants at which measured
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data are available. In such a way, the sampling times both for the numerical
evaluation of the FDE model and the measurements can be decoupled.

Remark 3. Cases in which the measurement step size is not an integer multiple
of the numerical integration step, or in which the measurement times themselves
are uncertain, can be handled with the same procedure as in [31].

Remark 4. Future work will aim at removing the precondition of cooperativity
of the original as well as the observed system dynamics in (15) and (25). To solve
this task, the so-called TNL approach for the parameterization of interval observers
as derived in [38] is a promising solution which — due to its direct applicability
to descriptor models — can extend the approach presented in this paper also to
cases in which only some of the pseudo state variables are described by the explicit
FDE models studied in (15) and others are expressed implicitly by using algebraic
constraints. This approach is named after three matrices T, N, and L which are
included in the observer as design degrees of freedom instead of using purely the
observer gain for defining the observer dynamics.

4 Illustrating Example: Observer Approach
In this section, the observer-based identification of bounds for time-domain trun-
cation errors of FDE models is presented for both a nonlinear academic simulation
scenario and for a close-to-life quasi-linear model for the charging and discharging
dynamics of Lithium-ion batteries.

4.1 Nonlinear Academic Benchmark System
4.1.1 Observer-Based Quantification of Time-Domain Truncation Er-

rors

As a first example, consider the uncertain FDE model

x(0.5)(t) = −x(t)− p · x3(t) (32)

with the interval-based temporally constant initialization

x(t) ∈ [x0] = [0.9 ; 1.0] for t ≤ 0 (33)

and the uncertain, time-invariant parameter p ∈ [0.1 ; 0.2]. This system model
is simulated over the time interval t ∈ [0 ; 10] with integrator resets at the time
instants

T ∈ {T ′, 2T ′, 3T ′, . . .} , where T ′ = 1. (34)

Due to its scalar nature, this system model satisfies the property of cooperativ-
ity, so that (without integrator resetting) the true pseudo state enclosure x(t) ∈[
v(t) ; w(t)

]
according to (23) can be determined by means of the crips system

models
0D

(0.5)
t v(t) = −v(t)− p · v3(t) , v(t ≤ 0) = x0 (35)
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and

0D
(0.5)
t w(t) = −w(t)− p · w3(t) , w(t ≤ 0) = x0. (36)

These bounds, computed with the help of the numerical integration routine
fde12 [7], are visualized by the solid lines in Figs. 2 and 3.

To investigate the observer approach given in Eq. (25), the time- and state-
independent gain matrix

H = 20 ·


1 0
0 1
1 0
0 1

 (37)

is chosen which ensures stability of the estimation error dynamics and cooperativity
of the augmented pseudo state equations.

Fig. 2(a) presents a comparison between the integrator resetting in combina-
tion with piecewise constant bounds µT for each time slice t ∈

[
(i− 1)T ′ ; iT ′

]
,

i ∈ {1, 2, . . . , 10} (determined according to (16), where tk = 0 is chosen in each
reinitialization point T defined in (34)), while Fig. 2(b) shows the observer-based
enhancement of the pseudo state enclosures due to the temporal adaptation of the
truncation error bounds according to Eq. (25) in Sec. 3.2.

(a) Piecewise constant error bounds µT . (b) Observer-based enhancement of µv , µw.

Figure 2: Simulation of the uncertain, nonlinear benchmark system (32).

4.1.2 Predictor–Corrector State Estimation

For the implementation of the predictor–corrector state estimator according to
Sec. 3.3, we assume that pseudo state measurements are available at the time in-
stants tm,k = T listed in (34).

The results in Fig. 3(a) distinguish the following two cases:
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• The measured pseudo state information at the time instants tm,k corresponds
to the enclosures from (35) and (36) with

y(tm,k) ∈
[
v(tm,k) ; w(tm,k)

]
. (38)

This scenario is depicted in Figs. 3(a) and 3(b).

• The measured pseudo state information at the time instants tm,k is obtained
as

y(tm,k) ∈ x̂(tm,k) + 0.001 · [−1 ; 1] (39)

with x̂(t) as the simulation of a nominal parameter model

x̂(0.5)(t) = −x̂(t)− 0.15 · x̂3(t) (40)

with x̂(t) = 0.95 for t ≤ 0, see Figs. 3(c) and 3(d).

From a comparison of Figs. 3(a) and 3(b), it is obvious that the observer-based
approach in combination with resetting the pseudo state to the measured data leads
to significantly tighter enclosures of the solutions than the use of piecewise constant
error bounds µT .

A further tightening of the simulated bounds becomes possible if the uncer-
tainty in the measured data is reduced in Figs. 3(c) and 3(d) in accordance with
the second case above. Then, the new solution approach is capable of determining
pseudo state enclosures that are partially tighter (in this case for the upper bound-
ing trajectory) than a pure simulation of the uncertain nonlinear model (32) that
still serves as the virtual measurement generator between the points T at which
the actual discrete-time measurements are available. In such a way, the proposed
observer-based enhancement of the time-domain truncation error bounds as well as
the predictor–corrector state estimation scheme form the basis for the development
of set-based parameter identification schemes that are part of our ongoing research
activities.

4.2 Simplified Fractional Battery Model
As a final application scenario, consider the fractional-order equivalent circuit model
for the charging and discharging dynamics of Lithium-ion batteries depicted in
Fig. 4.

Using the parameter values identified experimentally in [30], continuous-time
state equations

0D
(0.5)
t x(t) = A · x(t) + b · i(t) (41)

with the system and input matrices

A =


0 1 0

η1·sign(i(t))
3600CN

0 0

0 0 − 1
RQ

 and b =

 0
− η0

3600CN
1
Q

 (42)
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(a) Piecewise constant error bounds µT , mea-
sured pseudo state information according to
Eq. (38).

(b) Observer-based enhancement of µv , µw for
the measured pseudo state information accord-
ing to Eq. (38).

(c) Observer-based enhancement of µv , µw for
the measured pseudo state information accord-
ing to Eq. (39).

(d) Enlarged view of Fig. 3(c).

Figure 3: Predictor–corrector state estimation for the uncertain, nonlinear bench-
mark system (32).

vOC(σ(t))
+
−

i(t) R0

R y(t)

+

−

Q

v1(t)

Figure 4: Equivalent circuit representation of a simplified fractional battery model.
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as well as the pseudo state vector

x(t) =
[
σ(t) 0D

(0.5)
t σ(t) v1(t)

]T
∈ R3 (43)

can be derived by applying Kirchhoff’s voltage and current laws. In (43), σ(t)
denotes the state of charge of the battery, its fractional derivative is included in
the vector x(t) to represent long-term memory phenomena, and v1(t) is the volt-
age across a non-integer constant phase element Q serving as a generalization of
capacitors that are typically employed to represent polarization effects and the
transportation of charge carriers in Thevenin equivalent circuit models of batter-
ies [6].

For state estimation purposes, the terminal voltage (given in a quasi-linear
representation)

y(t) = g
(
x(t)

)
=

[
4∑
k=0

ckσ
k−1(t) 0 −1

]
·x(t)+

(
−R0 + d0e

d1σ(t)
)
·i(t) (44)

is assumed to be available as a measured system output at specific discrete points
in time.

To obtain further a cooperative system model, we consider the special case with
η1 = 0 and a controlled discharging process of the battery with the terminal current

i(t) = −kT · x(t) (45)

as the system input in which the controller gain vector kT is determined by pole
assignment so that the eigenvalues of the closed-loop system are located at the
points λ ∈ {0;−0.0002;− 1

RQ}.
This leads to the linear autonomous system model

0D
(0.5)
t x(t) = AC · x(t) (46)

with

AC =

0 1 0
0 a22 0
0 a32 a33

 (47)

in which the entries a22, a32, and a33 are converted into interval parameters (dis-
played after outward rounding of the corresponding bounds) according to

a22 ∈ [−0.000220 ; −0.000179]
a32 ∈ [ 0.097557 ; 0.119237]
a33 ∈ [−0.531557 ; −0.434910]

(48)

to account for independent uncertainties of each of these quantities in the inter-
vals of ±10% around the respective nominal values obtained with the help of the
parameters given in [28] and [30].
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The initial conditions of the system are assumed to be uncertain according to
the Caputo definition

x(t) =
[
0.5 0.01 0.1

]T · [0.9 ; 1.1] , t ≤ 0. (49)

To set up the observer-based enhancement of the time-domain truncation error
bounds according to Eq. (25) with the resetting time instants

T ∈ {T ′, 2T ′, 3T ′, . . .} , where T ′ = 60 s, (50)

the gain matrix

H = 5 ·


1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

 (51)

is chosen in the following subsections. According to the description in Sec. 3.2,
this matrix is specified so that stability and cooperativity of the estimation error
dynamics are ensured.

4.2.1 Observer-Based Quantification of Time-Domain Truncation Er-
rors

Fig. 5 summarizes a simulation of the fractional battery model in terms of a direct
evaluation of the pseudo state equations (46)–(48) by directly exploiting the prop-
erty of cooperativity. These results are shown by solid lines, indicating the lower
and upper bounds of each state variable, respectively. As for the previous academic
example, the numerical solver fde12 [7] has been used for this purpose.

When resetting the fractional integrator at the time instants (50) and using con-
stant bounds for the time-domain truncation errors, a rapid inflation of the pseudo
state enclosures can be observed. This inflation is reduced in Fig. 6, where it has
been assumed that the bounds, resulting from the cooperative system simulation,
are available as initial conditions for each of the time slices. This resetting of the
integrator, together with a reinitialization of the pseudo state for each point in
time T is shown in the left column of Fig. 6 for piecewise constant bounds of the
time-domain truncation errors.

Activating the observer-based quantification of the truncation according to
Sec. 3.2 additionally, as illustrated in the right column of Fig. 6, leads to sig-
nificantly tighter outer enclosures that satisfy the relation (29) with certainty.

4.2.2 Predictor–Corrector State Estimation

In practical situations, the resetting of the fractional integrator is often combined
with a pseudo state estimation approach as presented in Sec. 3.3. To visualize the
applicability of this technique for the model of a controlled Lithium-ion battery, it
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(a) State x1(t) (state of charge σ(t)). (b) State x1(t) (enlarged).

(c) State x2(t). (d) State x2(t) (enlarged).

(e) State x3(t) (voltage v1(t)). (f) State x3(t) (enlarged).

Figure 5: Simulation of the simplified battery model with piecewise constant error
bounds µT ; integrator reset at the points T defined in (50).
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(a) State x1(t) (state of charge σ(t).) (b) State x1(t) (state of charge σ(t)).

(c) State x2(t). (d) State x2(t).

(e) State x3(t) (voltage v1(t)). (f) State x3(t) (voltage v1(t)).

Figure 6: Comparison of piecewise constant error bounds µT (left column) with the
observer-based enhancement µv, µw (right column) according to Sec. 3.2; resetting
to the true state enclosures

[
v(t) ; w(t)

]
at each time instant T defined in (50).
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is assumed that uncertain measurements of the terminal voltage of the battery are
available at each time instant tm,k = T . These uncertain measurements are chosen
as the intervals

[y](tm,k) = mid

(
[g]
([

v(tm,k) ; w(tm,k)
]))

+ [−10 ; 10] mV, (52)

where mid
(
[x]
)

= 1
2 · (x+ x) defines the midpoint of an interval [x].

At each measurement instant T , the new pseudo state bounds are then initialized
with the enclosure

[
ṽ(T ) ; w̃(T )

]
obtained at the end of the previous time slice.

From these bounds, an axis-aligned interval box is extracted by a SIVIA-like state
reconstruction for the measured system output (44) that eliminates subboxes that
are incompatible with the measurement intervals (52). To continue the simulation
further, a tight axis-aligned interval hull around the not eliminated boxes is formed,
so that the pseudo state enclosures shown in Fig. 7 are obtained.

Future work will make use of these bounds for an identification of interval
parameters included in both the FDE model and the algebraic output equation
of a dynamic system.

5 Conclusions

In this paper, a novel observer-based approach for the quantification of time-domain
truncation errors of FDE models has been presented. These errors arise inevitably
when resetting fractional integrators. Integrator resets are necessary for the nu-
merical evaluation of FDE models both to restrict the growth of memory demands
when evaluating FDEs over long time spans and to take into account measured
state information at distinct points in time between which the system dynamics
are evolving continuously.

Future work will make use of the presented approach to solve the tasks of iden-
tifying past pseudo state information from an observed evolution of these quan-
tities into the future and to identify uncertain system parameters on the basis of
predictor–corrector state estimators. Moreover, the TNL interval observer design
approach [38] for non-cooperative system models will be taken into consideration
to avoid the currently existing necessity to transform non-cooperative models into
cooperative ones by using the approaches presented in [14]. Although these ap-
proaches are useful for many practical applications, they always lead to conservative
state enclosures due to the wrapping effect [17] that is inevitable when transforming
the state equations and the domains of uncertain initial conditions with the help
of (static) similarity transformations. This pessimism can be reduced by the TNL
approach due to the introduction of further degrees of freedom for the observer pa-
rameterization. Moreover, this approach will also make the proposed methodology
applicable to fractional descriptor systems.
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(a) State x1(t) (state of charge σ(t).) (b) State x1(t) (enlarged).

(c) State x2(t). (d) State x2(t) (enlarged).

(e) State x3(t) (voltage v1(t)). (f) State x3(t) (enlarged).

Figure 7: Simulation using the observer-based enhancement µv, µw according to
Sec. 3.2 and contractor-based resetting of the state variables at each measurement
instant T according to Sec. 3.3.
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Affine Iterations and Wrapping Effect:

Various Approaches

Nathalie Revola

Abstract

Affine iterations of the form xn+1 = Axn + b converge, using real arith-
metic, if the spectral radius of the matrix A is less than 1. However, substi-
tuting interval arithmetic to real arithmetic may lead to divergence of these
iterations, in particular if the spectral radius of the absolute value of A is
greater than 1. We will review different approaches to limit the overesti-
mation of the iterates, when the components of the initial vector x0 and b
are intervals. We will compare, both theoretically and experimentally, the
widths of the iterates computed by these different methods: the naive itera-
tion, methods based on the QR- and SVD-factorization of A, and Lohner’s
QR-factorization method. The method based on the SVD-factorization is
computationally less demanding and gives good results when the matrix is
poorly scaled, it is superseded either by the naive iteration or by Lohner’s
method otherwise.

Keywords: interval analysis, affine iterations, matrix powers, Lohner’s QR
algorithm, QR factorization, SVD factorization

1 Introduction

The problem we consider is the evaluation of the successive iterates of{
xn+1 = Axn + b,
x0 given,

where A ∈ Rd×d, xn ∈ Rd for every n ∈ N and b ∈ Rd. More specifically, the focus
is on the use of interval arithmetic to evaluate these iterates.

In what follows, interval quantities will be denoted in boldface.
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1.1 A Toy Example

This problem was brought to us through this example of an IIR (Infinite Impulse
Response) linear filter in a state-space form:

xn = 1.8 ∗ xn−1 − 0.9 ∗ xn−2 + 4.7.10−2 ∗ (un−2 + un−1 + un)

for x0 = 0 and x1 ∈ [1, 1.1]. We assume that un ∈ u = [9.95 , 10.05] for every n.
This iteration can also be written as a linear recurrence in R2:(

xn−1

xn

)
= A.

(
xn−2

xn−1

)
+ bn,

where A =

(
0 1

−0.9 1.8

)
and bn =

(
0

4.7.10−2 ∗ (un−2 + un−1 + un)

)
.

This toy example will be used to illustrate the various approaches mentioned
in this paper. The first iterates, obtained using floating-point arithmetic, with
random values for x1 ∈ [1, 1.1] and each un ∈ [9.95 , 10.05], are given on the left
two columns of Table 1.

The system stabilizes around 14, with variations due to the random values
taken by the un. However, the following snippet of Octave code computes the
successive iterates using interval arithmetic, using the interval [1 , 1.1] for x1 and
u = [9.95 , 10.05] for the un, that is, we replace un−2 + un−1 + un by 3 ∗ u.

A=[[0 1];[-0.9 1.8]];

xn=[infsup(0,0);infsup(1,1.1)];

b=4.7e-2 * 3.0*[infsup(0,0);infsup(9.95,10.05)];

n=500; for i=1:n, i , xn=A*xn+b, wid(xn(1)), end;

Table 1: Comparison of the behavior of the iterates: point values on the left,
interval values on the right

n xn

0 0
1 1.0617
2 3.3183
3 6.4234
4 9.9851
5 13.6031
6 16.9117
7 19.6103
8 21.4884
9 22.4394
10 22.4595
12 20.1508
15 13.8931

n xn

20 9.1518
30 17.0186
40 12.4414
50 15.0305
60 13.6130
70 14.3858
80 13.9680
90 14.1510
100 14.0949
200 14.0870
300 14.1443
400 14.1282
500 14.0828

n wid(xn)

0 0
1 0.1000
2 0.1941
3 0.4535
4 1.0051
5 2.2313
6 4.9350
7 10.905
8 24.085
9 53.182
10 117.42
12 572.31
15 6158.0

n wid(xn)

20 3.2293.105

30 8.8808.108

40 2.4423.1012

50 6.7164.1015

60 1.8470.1019

70 5.0794.1022

80 1.3969.1026

90 3.8415.1029

100 1.0564.1033

200 2.6137.1067

300 6.4663.10101

400 1.5998.10136

500 3.9580.10170
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On the right two columns of Table 1, the widths of the successive iterates xn are
given: the widths of the iterates diverge rapidly to infinity.

The explanation of this phenomenon is the following: the spectral radius of A
is strictly less than 1: ρ(A) ' 0.9487 < 1, and thus the exact (and, for that matter,
floating-point) iterations converge. However, the recurrence satisfied by the widths
of the iterates is wid(xn) = 1.8∗wid(xn−1)+0.9∗wid(xn−2)+4.7.10−2 ∗3∗wid(u),
which corresponds to the 2-dimensional iteration wn = |A|.wn−1 + wb, with wn =
wid(xn), |A| the matrix whose coefficients are the absolute values of the coefficients
of A and wb = 4.7.10−2 ∗ 3 ∗wid(u). As the spectral radius of |A| is larger than 1,
indeed ρ(|A|) ' 2.208 > 1, the iterations diverge.

This phenomenon is a special case of the so-called wrapping effect. Its ubiquity
in interval computations has been put in evidence by Lohner in [8].

1.2 The Wrapping Effect

The wrapping effect is ubiquitous, as defined and developed in [8]. It can be de-
scribed as the overestimation due to the enclosure of the sought set in a set of a
given simple structure. In our case, this simple structure corresponds to multidi-
mensional intervals or boxes, that is, parallelepipeds with sides parallel to the axes
of the coordinate system. When the computation is iterative, and when each iter-
ation produces such an overestimating set that is used as the starting point of the
next iteration, the size of the computed set may grow exponentially in the number
of iterations, even when the exact solution set remains bounded and small.

Lohner also put in evidence that the affine iteration we study in this paper,
namely xn+1 = Axn + b, or more generally xn+1 = Anxn + bn with xn+1, xn and
bn vectors in Rd and An ∈ Rd×d for every n ∈ N, is archetypal. It occurs in many
algorithms, and the examples cited in [8] include

• matrix-vector iterations as the ones studied in this paper;

• discrete dynamical systems: xn+1 = f(xn), x0 given and f sufficiently smooth;

• continuous dynamical systems (ODEs): x′(t) = g(t, x(t)), x(0) = x0, which is
studied through a numerical one step method (or more) of the kind xn+1 =
xn + hΦ(xn, tn) + zn+1;

• difference equations: a0zn+a1zn+1+. . .+amzn+m = bn with z1, . . . zm given;

• linear systems with (banded) triangular matrix;

• automatic differentiation.

In this paper, we concentrate on examples similar to the toy example presented
above: for every initial value x0 ∈ Rd, the sequence of iterates (xn)n∈N converges to
a finite value x∗ ∈ Rd, since ρ(A) < 1; however, the computations performed using
interval arithmetic diverge because their behaviour is dictated by ρ(|A|) which is
larger than 1. We are interested in the iterates computed using interval arithmetic:
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it is established that these iterates increase in width, however different approaches
can be applied to counteract the exponential growth of the width of the iterates.
Several of them, some new as in Sections 2.3.2 and 2.3.3, and some already well
established as in Section 2.4, will be tried and compared, in terms of the widths of
the results and the computational time.

2 Theoretical Results

2.1 Problem and Notations

Let A be a d × d matrix in Rd×d, x0 ∈ IRd be an interval vector (boldface font is
used for interval quantities and IR stands for the set of real intervals), x0 a vector
in Rd with x0 ∈ x0, b ∈ IRd an interval vector, and b a vector in Rd and b ∈ b. In
what follows, n denotes the number of iterations.

It is assumed that ρ(A) < 1 and ρ(|A|) > 1. The fact that ρ(A) < 1 implies
that An → 0 when n→ +∞.

A first goal is to determine the set of all fixed-points of the iteration{
x0 ∈ x0, b ∈ b,
xn+1 = Axn + b

for every x0 ∈ x0 and every b ∈ b.
It is known that xn can be written as

xn = Anx0 +

n−1∑
i=1

Aib,

thus

{xn : x0 ∈ x0} ⊂ Anx0 +

(
n−1∑
i=1

Ai

)
b.

However, when the vectors x0 and b are replaced in the iterative formula by
their interval enclosures x0 and b, one obtains the new interval vector xn+1, which
is computed as: {

x0 and b given,
xn+1 = Axn + b.

Another goal is to determine a tight enclosure for each iterate of this diverging set
of intervals.

As mentioned above, the increase in widths of the iterates can be attributed to
the use of parallelepipeds with sides parallel to the axes of the coordinate system,
and not to the geometry of the transformation. To cure this problem, changes of
coordinates will be applied, using an invertible matrix B, with x = By ⇔ y = B−1x
and its interval counterpart x = By. This yields the iteration{

xn+1 = Byn+1

yn+1 = B−1AByn +B−1b
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and its interval counterpart{
xn+1 = Byn+1

yn+1 = B−1AByn +B−1b.

In what follows, analogously to the approach in [10], to establish bounds and
to simplify the derivation of their proofs, we assume A diagonalizable (this will
not necessarily be the case for the experiments) and A can be diagonalized as
A = P−1ΛP where Λ is a diagonal matrix with the eigenvalues λ1, . . . λd of A on
the diagonal and the columns of P−1 are the corresponding eigenvectors.

The iteration considered in this paper corresponds to xn = Anx0 +
∑n−1
i=0 A

ib.
The numerical unstability of computing the matrix power An and applying it to a
vector, is well known: Anx0 tends to be aligned with the eigenvector of A associated
with the largest (in module) eigenvalue, and the information corresponding to the
contribution of the other eigenvectors is lost. To avoid this well-known problem of
the power method, we will consider orthogonal changes of coordinates. The choice
of the orthogonal matrices is related to A, the matrix of the iteration.

We will first consider the QR-factorization of A: A = QR with Q ∈ Rd×d
orthogonal, that is, QQ′ = Q′Q = I is the identity matrix and R ∈ Rd×d is upper
triangular.

The other factorization used in this paper is the SVD-factorization of A: A =
UΣV ′ with U , V and Σ ∈ Rd×d, where U and V are orthogonal and Σ is a diagonal
matrix with the singular values σ1, . . . σd of A on the diagonal. We also assume
that σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. This idea has been sketched but not completely
developed by Beaumont in [2].

2.2 Known results

Mayer and his co-authors have extensively studied the existence of a fixed-point
for the iteration studied in this paper. In [9], Mayer and Warnke have thoroughly
established formulas for the fixed-point in the case of ρ(|A|) < 1: this fixed-point is
independent of the starting interval x0. In [1], Arndt and Mayer have established
necessary and sufficient condition on A for a fixed-point to exist, when ρ(|A|) = 1.
In this case, the fixed-point is an interval of nonzero width, that is, a non-degenerate
interval. It is well-known that the widths of the iterates diverge when ρ(|A|) > 1,
and thus that no fixed-point exists in this case. Our goal is to study the speed of
divergence of the iterates in this case.

2.3 Different Approaches along with Theoretical Bounds

The main idea is to use an orthogonal change of coordinates which is related to
the matrix of the iteration. As the matrix A is kept constant for all iterations (and
this is not the case in the more general approach of Lohner, see Section 2.4), the
change of coordinates is also kept constant and given by an orthogonal matrix B.
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The two orthogonal matrices considered in what follows are either B = Q from the
QR-factorization of A, or B = U , resp. B = V ′, from the SVD-factorization of A.

2.3.1 Orthogonal Change of Coordinates

Before diving into the specificities of these changes of coordinates, let us study the
general change of coordinates using an orthogonal matrix B, that is, B−1 = B′,
with x = By ⇔ y = B−1x and its interval counterpart x = By. The interval
iteration is {

xn+1 = Byn+1

yn+1 = B−1AByn +B−1b.

Thus the iteration satisfied by the width of the yn is

wid(yn+1) = |B−1AB|wid(yn) + |B−1|wid(b)
≤ |B−1|.|A|.|B|wid(yn) + |B−1|wid(b)

where the inequalities are to be understood componentwise. By induction on n,

wid(yn) ≤ (|B−1|.|A|.|B|)n.wid(y0) +

n−1∑
i=0

(|B−1|.|A|.|B|)i.|B−1|.wid(b).

Taking norms, one gets

‖wid(yn)‖ ≤
(
‖ |B−1| ‖.‖ |A| ‖.‖ |B| ‖

)n ‖.wid(y0)‖

+
∑n−1
i=0

(
‖ |B−1| ‖.‖ |A| ‖.‖ |B| ‖

)i
.‖ |B−1| ‖.‖wid(b)‖

≤
(
‖ |B−1| ‖.‖ |A| ‖.‖ |B| ‖

)n ‖.wid(y0)‖

+
(‖ |B−1| ‖.‖ |A| ‖.‖ |B| ‖)

n−1

‖ |B−1| ‖.‖ |A| ‖.‖ |B| ‖−1 ‖ |B
−1| ‖.‖wid(b)‖.

Remark: if the considered norm is the matrix norm induced by the vector Eu-
clidean norm, then ‖|B|‖2 = ‖B‖2 for any matrix B. Similarly, ‖|B|‖∞ = ‖B‖∞ ≤√
d for any d× d orthogonal matrix B. In such cases, the bound becomes

‖wid(yn)‖ ≤ (κ(B).‖ |A| ‖)n ‖wid(y0)‖

+ (κ(B).‖ |A| ‖)n−1
κ(B).‖ |A| ‖−1 ‖B

−1‖.‖wid(b)‖,

where κ(B) denotes ‖B‖.‖B−1‖, the condition number of B for the problem of
solving a linear system.

Since ‖B‖2 = ‖B−1‖2 = κ2(B) = 1 for an orthogonal matrix B, this bound
simplifies even further with the Euclidean norm:

‖wid(yn)‖ ≤ ‖A‖n.‖wid(y0)‖+ ‖A‖n−1
‖A‖−1 .‖wid(b)‖.

In other words, theoretically there is no difference in the bounds on the widths of
the iterates, whether an orthogonal change of coordinates takes place or not.



Affine Iterations and Wrapping Effect 135

In what follows, we assume again A diagonalizable so as to simplify the presented
proofs (this will not necessarily be the case for the experiments) and A can be
diagonalized as A = P−1ΛP where Λ is diagonal. If we replace A by P−1ΛP in
the iteration, one gets the mathematically equivalent formulation

yn+1 = B−1P−1ΛPByn +B−1b
= (PB)−1Λ(PB)yn +B−1b,

thus
wid(yn) = (|(PB)−1|.|Λ|.|PB|).wid(yn) + |B−1|.wid(b),

and by induction

wid(yn) = (|(PB)−1|.|Λ|.|PB|)n.wid(y0) +

n−1∑
i=0

(|(PB)−1|.|Λ|.|PB|)i.|B−1|.wid(b).

Taking the Euclidean norm of vectors and the induced matrix norm, one gets

‖wid(yn)‖2 ≤ (κ2(PB)‖Λ‖2)
n
.‖wid(y0)‖2

+ (κ2(PB)‖Λ‖2)n−1
κ2(PB)‖Λ‖2−1 .‖wid(b)‖2.

Let us note that κ(PB) = κ(P ). Furthermore, as Λ is diagonal, ‖Λ‖ is the
largest eigenvalue (in module) of A, that is, ‖Λ‖ = ρ(A) < 1. This implies

‖wid(yn)‖2 ≤ (κ2(P )ρ(A))
n
.‖wid(y0)‖2 + (κ2(P )ρ(A))n−1

κ2(P )ρ(A)−1 .‖wid(b)‖2,

This inequality puts in evidence the influence of the condition number of P , the
matrix of eigenvectors. For instance, in the ideal case where the eigenvectors form
an orthonormal basis, no overestimation occurs.

2.3.2 Use of the QR Factorization

When the orthogonal change of coordinates involves Q from the QR-factorization
of A, the algorithm can be written as

A = QR,
xn+1 = Qyn+1

⇔ yn+1 = Q′xn+1

yn+1 = Q′AQyn +Q′b

In exact arithmetic, one should get

yn+1 = RQyn +Q′b.

The interval counterpart is

xn+1 = Qyn+1

yn+1 = Q′AQyn +Q′b.
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2.3.3 Use of the SVD Factorization

Our second and third proposals consist in using respectively U and V from the
SVD-factorization of A: from A = UΣV ′, we use either B = U or B = V ′, which
yields

xn+1 = Uyn+1

⇔ yn+1 = U ′xn+1,
yn+1 = U ′AUyn + U ′b.

In exact arithmetic, this corresponds to

yn+1 = ΣV Uyn + U ′b.

The interval counterpart is

xn+1 = Uyn+1

yn+1 = U ′AUyn + U ′b.

xn+1 = V ′yn+1

⇔ yn+1 = V xn+1,
yn+1 = V AV ′yn + V b.

In exact arithmetic, this corresponds to

yn+1 = V UΣyn + V b.

The interval counterpart is

xn+1 = V ′yn+1

yn+1 = V AV ′yn + V b.

Remark: V U is also an orthogonal matrix.

2.4 Lohner’s QR Method

A well-known approach is given in Lohner, e.g. in [8] and studied in details by
Nedialkov and Jackson in [10]. It is usually presented for the iteration xn+1 =
Anxn + bn, that is when the matrix and the affine term vary at each iteration.

Lohner’s QR method consists in performing the following iteration:
y0 = x0, Q0 = I, [Q1, R1] = qr(A) that is, A = Q1R1

[Qn+1, Rn+1] = qr(RnQn)
yn+1 = Q′n+1AQnyn +Q′n+1b
xn+1 = Qn+1yn+1

and its interval counterpart is
y0 = x0, Q0 = I, [Q1, R1] = qr(A) that is, A = Q1R1

[Qn+1, Rn+1] = qr(RnQn)
yn+1 = Q′n+1AQnyn +Q′n+1b
xn+1 = Qn+1yn+1.

In the case of a constant – throughout the iterations – matrix A, one can
recognize Francis’ and Kublanovskaya’s QR-algorithm. Using the convergence of
(Rn) towards the matrix of eigenvalues of A (or towards its Schur form), in [10],
Nedialkov and Jackson established the following bounds:

w(xn) ≤ cond(P )ρ(A)nw(x0) +
cond(P )ρ(A)n−1 − 1

cond(P )ρ(A)− 1
w(b) + b

where we recall A diagonalizable: A = P−1ΛP .
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2.5 Comparison

Two aspects are compared: the complexity and the accuracy, that is, the bounds
on the widths of the iterates, of each method.

Let us first examine the computational complexity. Let us recall that the QR-
factorization, resp. SVD-factorization, of a d× d matrix has a computational com-
plexity of O(d3). In the algorithms of Sections 2.3.2 and 2.3.3, the factorization of
a matrix is performed only once, and not at every iteration: for n iterations, these
algorithms thus have complexity O(d3 +nd2). In comparison, Lohner’s QR method
has complexity O(nd3), which is significantly larger when d is large. In comparison,
the cost of the factorization is negligible when the number n of iterations is large.

Let us now compare the accuracy of these different methods, from a theoretical
point of view. The bounds we get on the width of the iterate xn are larger than
the bounds obtained by Nedialkov and Jackson, as the condition number of the
diagonalizing matrix P appears to the n-th power in the formula for the QR-
and SVD-algorithms, whereas it appears without this n-th power in the bound for
Lohner’s QR-algorithm. As a condition number is always larger or equal to 1, this
means that the bound for Lohner’s QR-algorithm is tighter than the bounds for
the QR- and SVD-algorithms.

3 Experiments

3.1 Experimental Setup

After the results on the widths of the iterates of the toy example given in Section 1.1,
Section 3.2 presents the computation of each corner of the initial box, to illustrate
that it is possible to get tight enclosures, on such a small example.

All algorithms presented in this paper, namely the naive (or brute-force) appli-
cation of the iteration, the QR-algorithm of Section 2.3.2, the two versions of the
SVD-algorithm of Section 2.3.3, and Lohner’s QR algorithm given in Section 2.4
have been implemented in Octave using Heimlich’ interval package [4], then in Mat-
lab using Rump’s Intlab package [13]. Two other methods have been implemented
and compared. The first technique [11] consists in the determination of k such
that ρ(|Ak|) < 1, then it computes only one iterate every k step, in other words it
computes

x(k+1)n = Akxkn +

k−1∑
i=0

Aib :

this iteration converges even when interval arithmetic is employed. The other
technique is the use of affine arithmetic [3], as advocated by Rump in a private
communication. The affine arithmetic employed here is the one available in Int-
lab [12]. In the experimental results presented below, each technique is associated
to a color, as shown in Table 2.
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Table 2: Color code for each method

algorithm color
brute force black
QR cyan
SVD U red
SVD V magenta
Lohner’s QR dark blue
every k-th iterate green
affine arithmetic gray

The factorizations use only the basic QR and SVD factorizations available in
Matlab, but neither the pivoted QR recommended by Lohner in [8] nor more elab-
orate versions presented by Higham in [5]. Very preliminary experiments with
Lohner’s pivoted QR factorization (not presented here) do not exhibit any differ-
ence in the width of divergence.

Sections 3.3 and 3.4 contain the evolution of the radii of the iterates computed
by these different techniques, for two matrix dimensions: 10 × 10 and 100 × 100.
The y-axis for the radii uses a logarithmic scale. For both dimensions, four kinds of
matrices A have been used for the experiments. On the one hand, matrices which
are well-conditioned (with a condition number of order 102) and ill-conditioned
(with a condition number of order 1010) have been generated. On the other hand,
the scaling of the matrices varies: matrices which are well-scaled and matrices which
are ill-scaled, with the order of magnitude of their coefficients varying between 1 and
1010. More specifically, well-scaled matrices A are generated by a call to randsvd

with the prescribed condition number. It is known that these matrices are well-
scaled: all coefficients are of the same order of magnitude, they are said to be
scaled, or equilibrated [6, Section 7.2]. Ill-scaled matrices are obtained as DAD−1

where the matrices A are generated by a call to randsvd as before and D is a
diagonal matrix with diagonal elements varying in magnitude between 1 and 1010:
the coefficients of the resulting matrix also vary in magnitude, they are unscaled.

These denominations of ”well-scaled” and ”ill-scaled”, ”well-conditioned” and
”ill-conditioned” are qualitative and not totally quantitative, as the matrices, orig-
inally generated by a call to Matlab’s randsvd were then added to a multiple of
the identity matrix and multiplied by a constant, in order to satisfy both ρ(A) < 1
and ρ(|A|) > 1. It can also be noted that degrading the scaling of the matrix
also degrades its condition number; in other words, a “well-conditioned ill-scaled”
matrix has a much worse condition number than a “well-conditioned well-scaled”
matrix, even if the required condition numbers, in the call to randsvd, are initially
the same.

Preliminary experiments with interval matrices, that is, matrices with interval
coefficients, put into evidence two difficulties. First, the divergence is much faster:
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with an interval matrix whose width is a thousandth of the center matrix, it takes
less than 5 iterations to get a width that is several millions larger than the width
of the iterates obtained using the center matrix, or even more. Second, accounting
for interval matrices in the algorithms must be done with care: indeed, QR and
SVD factorizations apply only to point matrices, thus they are used for the center
matrices, but then the rest of the algorithm must correctly incorporate the interval
parts of the matrices.

All experiments have been performed on a 2.7 GHz Quad-Core Intel Core i7 with
16GB RAM. Timings are averaged over 100 executions, except for affine arithmetic
where at most 10 executions were performed.

3.2 Toy Example

First, the toy example presented in Section 1.1 is considered. As the iteration is
affine, one can compute separately the images of the endpoints of the initial vector,
to get the endpoints of the successive iterates. That is, we compute separately

xn = 1.8 ∗ xn−1 − 0.9 ∗ xn−2 + 4.7.10−2 ∗ 3 ∗ u

for x0 = 0 and x1 = 1 and for x0 = 0 and x1 = 1.1. However, we use the interval
vector u = [9.95, 10.05] in the iteration. The convex hull of the 10 first iterates
are represented on the left part of Figure 1. It is obvious that the width of the
successive iterates grows rapidly.

Then we compute separately

xn = 1.8 ∗ xn−1 − 0.9 ∗ xn−2 + 4.7.10−2 ∗ 3 ∗ u

for x0 = 0 and x1 = 1 and for x0 = 0 and x1 = 1.1, and for u = 9.95 and
u = 10.05. The convex hull of the 10 first iterates are represented on the right part
of Figure 1. In this case, the width of the successive iterates remains small, of the
order of magnitude of 1% of the midpoint of the interval.

In this toy example, the iterations had to be performed 4 times, that is, once for
each corner of the initial values, in order to get a tight enclosure. This can clearly
not be generalized to high dimensions, as the number of corners grows as 4d with
the dimension d of the problem.

3.3 Example of dimension 10

Figure 2 gives the radii (in logarithmic scale) for the successive iterates computed by
the methods detailed above. When the number of iterations is large (visually, above
30 or 40 iterations), the iterates computed by all methods presented in Section 2
diverge rapidly, as can be seen on the plots on the left. When one concentrates
on the first iterations, the behaviours compare differently. One can also note that
unscaling the matrix A speeds the divergence, for all methods. On the contrary,
the k-step method and the use of affine arithmetic preserve the convergence of the
iterates.
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Figure 1: Top: the 10 first iterates of the toy example, where the endpoints of
x0 are considered separately. Bottom: the 10 first iterates of the toy example,
computed corner by corner.
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(a) Well-conditioned and well-scaled

(b) Ill-conditioned well-scaled

(c) Well-conditioned ill-scaled
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(d) Ill-conditioned ill-scaled

Figure 2: The case of a 10× 10 matrix (right part: zoom of the left part)

Table 3: Timings for 10× 10 examples

method well-cond. ill-cond. well-cond. ill-cond.
well-scaled well-scaled ill-scaled ill-scaled

naive 0.0088 0.0084 0.0093 0.0086
k-th step 0.0044 0.0015 0.0043 0.0045
QR 0.0161 0.0155 0.0160 0.0157
SVD U 0.0162 0.0156 0.0161 0.0166
SVD V 0.0147 0.0145 0.0324 0.0332
Lohner’s QR 0.0170 0.0164 0.0165 0.0177
affine arith. 8.1859 8.7911 8.6595 8.2754

The timings in seconds are given in Table 3.

The methods presented in Sections 2.3.2, 2.3.3 and 2.4 all exhibit similar exe-
cution times. The naive method performs less operations and is thus faster. The
k-th step method is fast as well, the variations in its execution time are due to the
preprocessing, that is to the determination of the power k such that ρ(|Ak|) < 1:
the execution time is larger when k is larger. With this method, the convergence
is good. The use of affine arithmetic significantly slows down the computations,
however the iterates converge.

3.4 Example of dimension 100

Figure 3 gives the radii (in logarithmic scale) for the successive iterates computed
by the methods detailed in Section 3.1. When the number of iterations is large
(visually, above 40 or 50 iterations), the iterates computed by all methods, except
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the k-step method, diverge rapidly, as can be seen on the plots on the left. Again,
when one concentrates on the first iterations, the behaviours compare differently.

The timings in seconds are given in Table 4.

Table 4: Timings for 100× 100 examples

method well-cond. ill-cond. well-cond. ill-cond.
well-scaled well-scaled ill-scaled ill-scaled

naive 0.0163 0.0145 0.0142 0.0142
k-th step 0.0046 0.0071 0.0048 0.0072
QR 0.1577 0.0363 0.0408 0.0409
SVD U 0.0427 0.0420 0.0437 0.0437
SVD V 0.0423 0.0390 0.0643 0.0638
Lohner’s QR 0.0611 0.0758 0.0646 0.0804
affine arith. 70.8724 72.6441 76.6102 71.2518

The comments on the timings apply again, with the exception of the use of
affine arithmetic, which is still much slower but does not manage any more to
preserve the convergence very long. Indeed, the exponential growth applies when
affine arithmetic is applied, as well as when other methods are employed; as the
exponential growth occurs to the smaller terms (called the noise), affine arithmetic
simply delays the divergence phenomenon.

3.5 Comments

One can note that the k-step method, that is the method that resorts to a conver-
gent interval iteration, performs very well at a moderate computation cost. Even
the preprocessing time to determine the value of k has a negligible cost.

This method is a totally ad hoc approach for this problem and cannot be gen-
eralized. However, in the framework of filters and control theory, it has a physical
meaning: the divergence of the iterations can be attributed to a sampling time
which is too small to allow for significant variations to be observed. Multiplying
the sampling time by k means sampling less frequently (by a factor k) and thus
being able to measure the evolution of the observed quantities.

The use of affine arithmetic, on the contrary, is a very general method and it ex-
hibits a very good accuracy, even if it eventually diverges (see the experiments with
the 100×100 matrices in Section 3.4). The counterpart is the execution time, which
is at least a thousand times larger than for the other methods. This is not an issue
for the experiments presented here, as the time is of order of magnitude of a minute.

The methods based on the QR or SVD factorizations of the matrix A were
developed with geometric principles in mind. For the QR-algorithm, the idea was
to align the current box with the directions that are preserved by the product by A,
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(a) Well-conditioned and well-scaled

(b) Ill-conditioned well-scaled

(c) Well-conditioned ill-scaled
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(d) Ill-conditioned ill-scaled

Figure 3: The case of a 100× 100 matrix (right part: zoom of the left part)

with a tradeoff between aligning the box along the eigenvectors and preserving an
orthonormal system of coordinates, hence the choice of Q. For the SVD-algorithm,
the idea was to align the box along the direction which gets the maximal elongation,
that is along the singular vector corresponding to the largest singular value.

In both cases, the benefit of these geometric transformations is mitigated with
the overestimation implied by extra computations, and there is either no clear ben-
efit for the QR-based approach, or a delicate balance for the SVD-based approach.
The SVD-algorithm is interesting when the matrix is ill-scaled, and particularly for
the first iterations.

The methods of choice remain either the naive approach, when the matrix A
is well-conditioned and well-scaled, or Lohner’s QR method when the matrix is
ill-conditioned. Surprisingly, the overhead of Lohner’s QR method, in terms of
computational time, is not as large as the formula for its complexity implies.

Our general recommendation is thus:

• to preprocess the matrix A in order to scale it (see [6, Section 7.3] about
diagonal scaling);

• then to execute in parallel the naive approach and Lohner’s QR approach, in
order to converge reasonably well for any condition number of A.

Affine arithmetic is a solution of choice when other solutions fail and when the
analysis and developing time is a scarce resource.
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4 Conclusion and Future Work

This study, both theoretical and experimental, has compared several approaches to
counteract the wrapping effect for the computation of affine iterations. Geometric
considerations have led to the proposed algorithms. The benefit of these approaches
is not always clear, as a better configuration is obtained through extra-computations
and thus extra-overestimation. To deepen this geometric approach, we will aim
at simplifying the resulting formulas, at getting formulas that are closer to the
mathematically equivalent, but simpler, ones that are given after each proposed
transformation. The main difficulty is to perform products such as Q.Q′ or U ′.U ,
without replacing them by the identity, but in a certified and tight way. As the
SVD-based approach seems more promising, our future work will concentrate on the
use of a certified SVD factorization, as proposed by van der Hoeven and Yakoubsohn
in [14]. We also plan to consider an interval version of the matrix, using the results
in [7] to keep guarantees on the singular quantities involved in the computations.
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