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EA-POT: An Explainable AI Assisted Blockchain
Framework for Honeypot IP Predictions∗

Shajulin Benedicta

Abstract

The culpable cybersecurity practices that threaten leading organizations
are logically prone to establishing countermeasures, including honeypots, and
bestowing research innovations in various dimensions, such as ML-enabled
threat predictions. This article proposes an explainable AI-assisted permis-
sioned blockchain framework named EA-POT for predicting potential default-
ers’ IP addresses. EA-POT registers the probable defaulters predicted by ex-
plainable AI based on the approval of IP authorizers of blockchain databases.
Experiments were carried out at the IoT Cloud Research laboratory using
three prediction models, such as Random Forest Modeling (RFM), Linear
Regression Modeling (LRM), and Support Vector Machines (SVM); and, the
experimental results for predicting the AWS honeypots were explored. The
proposed EA-POT framework revealed the procedure for including interpretable
knowledge while blacklisting IPs that reach honeypots.

Keywords: blockchain, cyber security, honeypot, hyperledger, predictions

1 Introduction

Developing a secure cloud-based or IoT-enabled application is an extraordinary feat
of development as newer security issues evolve, especially when the post COVID-19
scenario was considered in a connected devices world. Remote accesses to organiza-
tional resources and services are prone to security challenges in newer dimensions.
Notably, as an essential part of preparedness, transferring identity credentials to
employees has become a landmark shift in handling the security challenge needed
to protect resources.

It is estimated by high-income companies/organizations and researchers that a
reasonably high volume of budget needs to be spent to counteract evolving cyberse-
curity issues. For instance, Australia economists have estimated that it will spend
over $7.6 billion by 2024 [32]; Investments towards cloud security tools are projected
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to increase from $5.6 billion in 2018 to $12.6 billion in 2024 [36]; Centrify, a com-
pany specializing in cybersecurity, highlighted the possibility of phishing attacks
that could lead to a huge investment in potential IIoT industries [35].

Looking to the future, in the wake of COVID-19, many countries or organi-
zations, especially those belonging to government sectors, have suggested newer
security policies or procedures to counteract notable sprouting security challenges,
such as i) phishing, ii) malicious attacks, iii) accessing orphaned accounts, iv) ran-
somware attacks, v) advanced persistent threat, and so forth. In fact, the Wan-
naCry ransomware attack challenged over 150 countries [17]. Additionally, IoT
devices, which increase day by day, require diligent secure connectivity services.
The failure to provide proactive secured access to connected devices or associated
cloud services, especially in the automobile and healthcare industries, could lead
to unnecessary data leaks. This could disrupt important automated decisions and
slow down the global economic situation. There have been a few research efforts in
the recent past to address the IoT security inefficiencies [26, 27, 31].

Obviously, preventing potential attackers/hackers from breaching security needs
to be handled diligently. In recent years, honeypots have been established by several
leading cloud-based service providers, including AWS IoT infrastructure providers.
Honeypot, in general, lies alongside the firewall inviting security challenges from
potential hackers. In doing so, the specific pattern of attacks can be explored; the
motivation of cybercriminals in writing code could be reduced; the activity of in-
vesting money for illegal purposes may be minimized; the intention of attackers and
involved countries can be observed; and, the possibility of the attackers’ evolving
innovations can also be studied.

Traditionally, honeypots on cloud infrastructures address several known issues
as listed below:

1. The attacks initiated by their own organizations’ employees must be diligently
handled. In fact, such organizational attacks are possible due to poor knowl-
edge of utilizing cyber-physical devices/gadgets or the associated services;

2. Indigent policies of honeypots need to be dynamically handled in a decentral-
ized environment ; and,

3. The time needed to learn about the potential attack has to be negligible
compared to the time it takes to attack.

This paper proposes an EA-POT framework, an Explainable AI-assisted block-
chain framework, for honeypot IP predictions. EA-POT attempts to reduce the
time needed to identify potential attackers using prediction algorithms, such as
Random Forest Modeling (RFM), Linear Regression Modeling (LRM), and Sup-
port Vector Machines (SVM). Unlike traditional methods, which are dependent on
non-explainable parameters (black-box and temperamental), the proposed EA-POT
framework enables the explainability features of prediction models.

The framework is combined with a hyperledger fabric-based blockchain network
to register the honeypot IP addresses and to inject dynamic prevention policies on
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the fly. The reasons for including the permissioned blockchain into the framework
are multi-fold:

1. The blacklisted IP addresses considered to be more vulnerable become im-
mutable as the organizations or the inner employees of an organization cannot
modify them; and,

2. Specific policies can be formulated by involving permissioned organizations
or stakeholders in deciding the actions against the defaulters.

In addition, experts believe that the performance of the hyperledger fabric,
especially when the chaincodes are written using golang, is reasonably better than
the other blockchains. Authors of [9] have studied the performance impact of
transactions concerning the underlying programming languages; similarly, authors
of [22] have delved into the end-to-end transaction latency factors of hyperledger
fabric blockchains.

In this paper, the research work emphasized the importance of the EA-POT
framework to register blacklisted IPs, which were explainable using prediction mod-
els, in the immutable database. Experiments were held at the IoT cloud research
laboratory on distributed systems after a Kubernetes cluster of hyperledger fabric
components was launched.

The major contributions of the work are listed as follows:

1. an EA-POT framework was proposed to register potential hackers into the
blockchain database after the policies were satisfied;

2. the importance of explainable AI while predicting IPs was explored; and,

3. the experimental results were investigated and revealed to highlight the ne-
cessity of the proposed EA-POT framework.

The rest of the paper is organized as follows: Section 2 investigates the state-
of-the-art research in the field of honeypots and the utilization of explainable AI
for enhancing cybersecurity; Section 3 reveals the functionalities and components
of the proposed EA-POT framework; Section 4 illustrates the approach of utilizing
explainable AI for the framework; Section 6 manifests the experimental evaluations
of the proposed framework that were carried out at the laboratory; and finally,
Section 7 offers a few outlooks and conclusions for the near future research based
on the proposed work.

2 Related Work
Countering cybercrime in several countries is often considered an ongoing crucial
agenda. In fact, a proactive approach to handling security measures has attracted
several researchers/countries in recent years. Honeypots, being a measure of lur-
ing potential hackers, have served as a foundation for proactively analyzing the
characteristics of hackers and their malicious behaviors.
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This section explains the state-of-the-art work of honeypot research in three
different perspectives as listed below:

1. Honeypot placements (Clouds),

2. Inclusion of Machine Learning / Explainable AI,

3. Application of Blockchains.

Finally, the shortcomings of the existing works and the contributions of this
article are expressed in the section.

2.1 Honeypot Research – Domains, Placements, and Clouds

Researchers/practitioners belonging to several domains, such as Clouds and Indus-
trial IoT (IIoT), have evidenced the importance of including honeypots in their
organizations. There exist several honey pot implementations, both static and dy-
namic, in IIoT or cloud environments. For instance, authors of [20] and [16] studied
the application of honeypots for smart grids; authors of [7] revealed the importance
of honeypots for capturing DDoS attacks in IIoT environments; and, authors of
[24] proposed a social leopard algorithm to detect ransomware attacks using hon-
eypots. Additionally, a few honey pot implementations for protecting buildings [3]
and establishing a secured smart home infrastructure [14] have been developed in
the recent past.

A sector of researchers has attempted to optimize honeypot placements in or-
ganizations based on malicious attackers – i.e., authors of [12] and [1] have applied
a game-theoretic framework model to optimally choose honeypots in various loca-
tions; in [10], the authors have installed honeypots in nine countries and studied
the behavior of malicious users. Besides, honeypots have been widely deployed to
enable lightweight interactions in IoT-based infrastructures. For instance, authors
of [26] have implemented BoTNet, and authors of [27] have implemented IoTCMal
for low interaction honeypots using TelNet and SSH; authors of [6] have deployed
a global honeypot infrastructure to detect industrial attacks.

The deployment of honeypots has been studied in cloud environments as poten-
tial attacks on public cloud infrastructures, such as AWS Cloud, Google Compute
Engine, and Microsoft Azure. This process has become an inevitable activity. Ac-
cordingly, a few researchers have oriented their analysis and studies towards cloud
infrastructures. For instance, the authors of [21] have developed a high interac-
tion system using Kerberos authentication, Virtual Private Cloud, and Elastic File
System to understand the malicious nature of attackers; the authors of [13] have
developed honeypot as a service model for luring attackers. This honeypot-as-a-
service is implemented as a plug-and-play model, which could be hosted on gateways
for capturing the malicious attackers; and, a few practitioners have listed the AWS
honeypot data that suggested potential hackers, who attempted to maliciously at-
tack AWS cloud services, including AWS IoT services.
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2.2 Machine Learning and Explainable AI

Traditionally, machine learning has been applied in several domains, including IoT
to predict machine behavior or future events [8]. Several variants of machine learn-
ing, including federated learning aspects, have reached the market for efficient learn-
ing processes of IoT and cloud services [28, 4]. Additionally, the application of own
decision-making algorithms, such as neural networks, has been practiced to classify
security attacks [2].

In fact, proactively learning the behavior of malicious attackers or potential
IP addresses of the attacker’s needs a diligent skillset that modern computational
efforts are required. With the evolution of several machine learning platforms and
tools, in recent years, the identification of attackers and the classification of the
severity of attacks have become a widely discussed topic of research. Authors of
[23] have studied the application of probabilistic models for proactively estimating
the honeypot detection. The authors have confined their research to TELNET and
SSH-based communications in IoT domains. Authors of [15] have applied an outlier
detection mechanism to project anomalies from the outlier information. To do so,
the authors have utilized unsupervised machine learning approaches for honeypots.

A few machine learning researchers have predicted attacks using statistical mod-
eling methods, including GARCH models. For instance, the authors of [19] have
characterized the honeypot captured data using statistical approaches. The au-
thors have pointed out the importance of explainable statistical approaches for
efficiently handling the prediction problems in honeypot data using case studies.
The same authors have additionally predicted cyber-attack rates using GARCH
prediction models in their following works [30]. Obviously, robust prediction mod-
els are crucial for proactively identifying the potential hackers or malicious attackers
in modern networking applications, including IIoT or cloud services.

Apart from the normal prediction approaches which predict the potential hack-
ers or their activities, a few researchers have devised honeypot mechanisms to
protect against vulnerabilities arising out of the adversarial learning processes. Au-
thors of [29] have suggested learning models that protect against adversarial errors
opted by automated machine learning algorithms. For instance, IIoT applications,
guided by machine learning services, could be exposed to wrong learning advice
which could end up with hazardous results. To override such effects, honeypots
were utilized to protect failures and rectify prediction failures.

As observed, there exists a few research works that utilize machine learning
algorithms and mechanisms, including the Cloud services domain, for predicting or
characterizing hackers. However, there are very few works that utilize explainable
AI for validating the importance of honeypot predictions levied by machines or
computing domains in an organization. It could be noticed from the literature that
explainable AI has emerged in the recent past to justify the blackbox prediction
approaches or prediction algorithms.
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2.3 Blockchains for Honeypots

Although attackers and associated vulnerabilities could be predicted, the findings
need to be protected. Insider attacks in most organizations have been highly dan-
gerous due to the modifications and corrections held to the findings by potential
inner-organizational hackers. Blockchains could protect against tampering with
data in such environments. In addition, the security policies could vary depending
on regional/organizational policies. For instance, blacklisting certain IP addresses
depends on several factors, including the organizational relationships with associ-
ated countries.

There exists a few research works of honeypots relating to blockchains. However,
they were applied in a different context. For instance, researchers of [25] and [5]
have established data science algorithms to learn the potential fraudulent activities
such as fraud payments due to the Ethereum smart contracts.

A very few research works have applied the permissioned blockchains to quickly
validate the blacklisting IPs that reach honeypots.

This work endeavored to apply prediction models, such as RFM, LRM, and
SVM to predict the potential hacking IPs and commit the information into the
permissioned blockchain ledger. The entry of information into the ledger is governed
by a few approvers, including the Explainer-AI of the proposed framework (see
Section 3).

3 EA-POT Framework

Honeypots have been reasonably deployed alongside production systems in recent
years to study the behavior of potential cyberattackers. Accordingly, the honeypots
pave way for the security team of organizations to protect their systems from sev-
eral vulnerable attacks. In fact, the potential attackers should be predicted in an
explainable manner before the information were listed in an immutable database.

This section explains the inner details of the proposed EA-POT framework for
blacklisting potential cyber attackers using explainable prediction models and block-
chains.

The proposed EA-POT framework consists of the following entities:

• Honeypot Data Engine,

• Prediction Models,

• Explainable AI Components,

• Policy Stakeholders,

• Blokchain Network, and,

• BlackBlock Database.
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Figure 1: EA-POT Framework

The crucial functionalities of these entities are explained below.

3.1 Honeypot Data Engine

The Honeypot Data Engine is an entity that resides on honeypots that are located
nearer to the firewall component of the organizations. It collects information, such
as IP addresses, source port address, destination port addresses, connection proto-
cols, such as TCP or UDP, country of origin, and so forth, of defaulters. Besides, it
formats the information into CSV, XML, and JSON formats, in a periodic manner
and keeps them ready for further processing of the intended prediction models of
the framework.

3.2 Prediction Models

The framework utilizes a few notable algorithms, such as RFM, LRM, and SVM
for predicting the potential hackers and their IP addresses. One battle in which the
traditional honeypot engines allied to defeat progress was the timely identification
of potential hackers’ IP addresses. In doing so, several countermeasures could be
adopted for overriding the issues.

The synopsis of the three prediction algorithms applied in the EA-POT framework
is given in the following paragraphs.
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Random Forest Modeling (RFM) Random Forest Modeling (RFM), the con-
cept initially conceptualized by Breiman et al. [40], has been widely applied for
creating prediction models that resemble real-world situations. It is an ensemble-
based learning approach that creates decision forests based on modeling features.
The models are created for the dependent variable of the dataset. For instance,
the independent variable for honeypot IP prediction includes the IP addresses of
potential hackers.

The decision forests consist of tens of hundreds of decision trees that analogously
represent rules and inferences. Based on the creation of decision forests consider-
ing the decision rules for training data, the predictions are applied to the testing
data. During the process of predictions, in the case of honeypot IP predictions, the
independent variables, such as source port addresses, destination port addresses,
latitude and longitude of locations, and so forth, are considered as modeling features
– i.e., the independent variables.

RFM-specific tuning parameters[41], such as number of trees to grow in a forest
(ntree), number of trials (mtry), and so forth, define the prediction accuracy on
the testing dataset. For instance, increasing the number of trees could improve the
prediction accuracy on large datasets.

Support Vector Machine (SVM) Support Vector Machine (SVM) is a super-
vised learning algorithm [11], as similar to RFM, where it attempts to produce
hyperplanes that split data with sufficient distinctions. It attempts to increase the
decision boundary of categorizing training data so that predictions could be much
easier. The accuracy of the prediction algorithm is highly dependent on the dataset
that is utilized – i.e., if the algorithm could not find sufficient hyperplanes, the error
rate for predictions is typically higher than the expected ones.

During the training processes, the SVM algorithm iteratively prepares hyper-
planes based on the independent variables of the dataset. To do so, it utilizes
kernels, such as linear, polynomial, radial, and sigmoid, to transform the training
data to a high dimensional space so that the process of creating hyperplanes is
comparatively carried out elegantly.

Linear Regression Modeling (LRM) Linear Regression Modeling (LRM) is
considered to be the simplest prediction model that identifies the relationship be-
tween the dependent and independent variables of a dataset. It highlights the
potential changes that could happen in the dependent variable while modifying
the independent variables. Not all independent variables are inclined towards the
dependent variables of a dataset.

During the training processes of the linear regression algorithm, linear equations
or mathematical formulas are created for the dependent variable based on the
training dataset. In the proposed work, ML algorithms, such as RFM, SVM, and
LRM are sufficient for learning the blacklisted IPs as decisions on confirming them
are governed by a few stakeholders of blockchain networks. Accordingly, the policies
could be varied as specified in the blockchains and the predictions are faster than
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learning algorithms, such as neural networks.

3.3 Explainable AI Components
The prediction models are reasoned using the explainable AI components aug-
mented in the framework. The framework applies explainable AI components to
explore the inference levied from the models. For instance, the framework feeds
specific modeling parameters to understand the R2 values of the models. The R2

values determine the closeness of the model and the dependent variables. The
framework iterates over the available independent variables to identify the best set
of independent variables IV1...n which offer the best R2 values.

3.4 Policy Stakeholders
The policies for registering an IP to blacklists and for releasing the IPs from the
blacklists need to be guided/formulated by multiple stakeholders. For instance,
email hackers, the IP addresses, and port numbers of hacking applications need to
be blacklisted depending on genuine reasons. Notably, blacklisting IP addresses due
to technical failures reduces the reputation of an organization. Hence, in EA-POT
framework, an array of policy stakeholders are represented for validating the gen-
uineness of blacklisting IP addresses. In addition, it involves the explainable AI
features to evaluate the necessity of blacklisting an IP into the immutable database.

3.5 Blockchain Network
The policy stakeholders of the EA-POT framework are connected to each other using
a P2P blockchain network. These policy stakeholders are responsible for running
policies or chaincodes; and, to interpret the data on server components. These
server components, mostly established as a docker farm, are connected to each
other using the blockchain network.

3.6 BlackBlock Database
The potential blacklisted IP addresses that are predicted and validated using the
blockchain stakeholders of the network are registered into the blockchain ledger
of EA-POT framework named as BlackBlock database. The reason to set up a
blockchain database to register blacklisted IPs into the ledger is to protect the
vulnerability raised by potential hackers, mostly the vulnerability due to the inner
threats by colleagues of the same organizations. Figure 1 depicts on the entities
involved in the EA-POT framework.

4 Explainable AI and Predictions
The recent era of machine learning development, in various research domains, has
seen a proliferation of prediction models which can often be classified as blackbox
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mechanisms. At this juncture, the evolution of explainable AI concepts has im-
proved the trust levied by researchers on blackbox models. This section explains
the interpretability procedure of prediction models of the EA-POT framework.

In general, a blacklisting of IP addresses happens due to several reasons:

1. an execution of a malicious program in a machine, including sensor nodes;

2. varying policies of organizations, which protect against the utility of certain
types of applications – for instance, a military organization does not permit
access to unauthorized military services;

3. inappropriate content, such as illicit videos and images in the services; and

4. spying of services within intra- and inter-organizations.

Predicting the blacklisting of an IP address in EA-POT framework attempts
to avoid threats and strengthens the firewall policies depending on the learning
inferences. In addition to a normal prediction process, EA-POT framework applies
explainable features of AI to bolster the accuracy of predictions.

There may be various reasons for the formidable range of issues and inaccuracies
of prediction models in modern applications:

1. the learning parameters are not appropriately chosen;

2. the modeling algorithms learn almost all available data – i.e., the model is
biased concerning the data;

3. the training datasets are comparatively low; and so forth.

Obviously, it is an impressive activity for the user to understand the reason for
predicting the blacklisting IP, an independent variable BIP , with a specific level of
accuracy considering dependent variables Xi...n. EA-POT utilizes local independent
variable information of models for collecting Xi...n that influence the predictions.

The major advantages of including the explainable features of the model in the
EA-POT framework are:

• the features of Explainer-AI reveal the level of confidence of prediction models
in R2 percent; and,

• they establish a set of permutations from the observation instances and high-
light the inclination of dependent variables towards the independent variable.

The Explainer-AI identifies the best suitable modeling parameters based on the
R2 values of the prediction models. Accordingly, the algorithms impose the choice
for registering IP addresses into the blockchain ledger.
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5 Immutability of BlackBlock and Processes

In EA-POT framework, BlackBlock database is established to list the blacklisted IP
addresses that are predicted to be registered into the honeypots of organizations.
In this section, the formation of a blockchain network, Blackblock database, and
the processes involved in ensuring immutability are discussed.

5.1 Blockchain Network

The BlackBlock database of EA-POT framework is a distributed ledger that is estab-
lished in the nodes of a Kubernetes cluster. The Kubernetes cluster [39] is chosen
for the scalability and reliability features of distributed ledgers.

In general, Kubernetes is an orchestration tool that manages the containerized
workloads of applications. It is manifested that the performance of Kubernetes clus-
ters is better than many other orchestration tools while executing the containerized
applications on them [18].

In EA-POT framework, the stakeholders of blockchains are represented as docker
instances, which are containerized instances. The inclusion of the Kubernetes clus-
ter enables users to evaluate and modify the state of docker machines, typically,
the peer nodes of blockchains in the network.

The policy stakeholders of the framework that are represented in the docker
instances include:

• IP Approving Authority,

• Explainer-AI,

• Cybercrime official, and

• Netizen/Expert.

These stakeholders have provisions to interact with the docker instances through
docker client instances (see Figure 1). The docker instances, which represent the
stakeholders of the EA-POT framework, install and launch chaincodes, the policies,
for understanding the inferences of explainable AI, and for manipulating the entry
of IP addresses into the ledger.

The chaincodes of the framework are written in golang language. These chain-
codes are responsible for implementing policies of stakeholders where the Explainer-
AI or similar stakeholders could determine the approval of transactions – i.e., the
registering of blacklisted IPs into the database. The chaincodes are instantiated,
installed, packaged, and queried using specific commands as shown below:

peer chaincode install/instantiate/...

The Blackblock database is protected within a specific channel that has connec-
tions to the permissioned stakeholders. The channel configurations and associated
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information are defined before starting the blockchain network. The channel is re-
sponsible for establishing a sub-network where peer nodes could share the database
within the organizations.

The blockchain network of the EA-POT framework emphatically complies with
promoting a trustless trust environment using the distributed docker instances.
The network offers ledger services across the connected nodes. It enables the nodes
to readily keep the database for querying or modifying or manipulating the records
in the database.

5.2 BlackBlock Database

The proposed EA-POT framework has a specific data structure to append blacklisted
IP addresses into the BlackBlock database. The data in the database is appended
as backlinked listed blocks for every initiation of transactions by peer nodes. The
blocks are identified by hashes which include the previous hash values of the block-
chain and the state of the blocks [37].

Each block is appended with a data structure that includes IP addresses, source
port addresses, destination port addresses, and country information. Typically, the
chaincode policies determine the entry of the blacklisted IP into the BlackBlock
database.

The data appended into the database is sequential and immutable. The moment
an entry would be registered into the ledger in a channel, the data will be visible
to all available peer nodes of the channel.

5.3 Processes Involved

The processes involved in the entire life cycle of the EA-POT framework for register-
ing the blacklisted IP addresses into the permissioned blockchain are described as
steps below:

1. Initiation: In this step, the honeypot data engine and blockchain networks
are initiated on top of the Kubernetes cluster. This means that the services
are enabled at servers to attract potential hackers. In addition, the channel
and peer networks are activated for implementing chaincode policies.

2. Predictions: Based on the available data, the learning models are created
using sophisticated algorithms, such as RFM, LRM, and SVM. The generated
regression models are utilized for predicting the future potential hacker IP
addresses.

3. Explanations: Using the generated prediction models, explanations are de-
veloped using the independent variables of the models in the EA-BOT frame-
work. The explanations are linked to the chaincode policies of the policy
stakeholders of the blockchain network such that the stakeholders govern the
control of blockchain transactions, including Explainer-AI.
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4. Chaincode Instantiation: The stakeholders of the EA-POT framework are re-
sponsible for collectively agreeing upon entering the predicted IPs to blacklist
them. Chaincode policies are defined in the EA-POT framework such that the
stakeholders are diverse in nature – i.e., one stakeholder is Explainer-AI.
This stakeholder evaluates the model that manifests a higher threshold of
agreement while blacklisting IPs; another stakeholder is a representative of
country authorities who approves and disapproves the blacklisted IPs – i.e.,
IP Approving Authority. This stakeholder evaluates the IPs concerning the
country-wide policies set up for IPs; the other stakeholder is a netizen/expert
who has a wide experience in executing a similar kind of applications and have
the knowledge to judge the genuineness of actions to some confidence level.
This stakeholder is named as Cybercrime Official, and the last stakeholder
of the EA-POT framework is responsible for evaluating the IPs based on the
genuineness of country-specific information.

5. Transactions: Once when the stakeholders agree on the possibility of the
vulnerability of an IP address impacted on honeypots, the transaction to
blacklist the IP address as an entry to the BlackBlock database is initiated
by the orderer service of the hyperledger fabric-based permissioned blockchain
[38]. Figure 2 illustrates the processes involved in the EA-POT framework in
a pictorial form.

Figure 2: Processes Involved in the EA-POT Framework

6 Experimental Results

This section explains the experiments held at the IoT Cloud research laboratory. At
first, the experimental setup is explained; next, the validation and prediction results
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of identifying the potential IP addresses of hackers using prediction algorithms are
explored; next, the application of explainable AI concepts, while including them in
blockchains, for approving the transactions is discussed; and, at last, the entry of
predicted IPs into the BlockBlack immutable database is showcased.

6.1 Experimental Setup
To mimic the scenario of receiving IP addresses into the honeypot engine of the
EA-POT framework, AWS honeypot dataset [33] was utilized in the experiments.
The honeypot dataset had 451581 rows of data with information, such as hacker IP
addresses, country of origin, source port address, destination port address, latitude
and longitude of the hacker, postal code, protocol, and date/time of the incident.
Although any honeypot dataset could be applied for predicting potential hackers,
in this work, the AWS honeypot dataset was utilized for the prediction models
RFM, LRM, and SVM, to reveal the capability of the framework.

All experiments were carried out on four machines of IoT cloud research lab-
oratory – i) a DELL precision tower 7810 machine which consists of 48 CPUs.
This node serves as the master node of the Kubernetes cluster; and, ii) three i7
processor machines which serve as the worker node of the cluster. These nodes
were interconnected based on the Calico networking policies [34] of the Kubernetes
cluster.

On top of the Kubernetes cluster, a hyperledger-based permissioned blockchain
was set up with the following configurations: fabric v2.0, dockerv19.03, and golang
version 1.14. Four docker instances were established that represent the policy stake-
holders of EA-POT, such as:

explainer-ai.com,
ip-approve-authority.com,
cybercrime-aiciiit.com, and
netizen.com.

The blockchain network was established using these docker machines that rep-
resent the organizations. Each organization had one peer for installing, instan-
tiating, and executing the chaincode policies; the blockchain network had one
channel to hold the blockchain ledger consisting of honeypot IPs; the peer of the
cybercrime-aiciiit.com served as the orderer of the permissioned blockchain
setup of the EA-POT framework.

For providing predictions, algorithms, namely, RFM, LRM, and SVM were writ-
ten using R version 4.0.0. The prediction algorithms utilized 50 percent training
data and the other 50 percent testing data during the validation processes.

6.2 Honeypot Data – Validation of Algorithms
Analyzing honeypot data of AWS using prediction algorithms, such as RFM, LRM,
and SVM of the EA-POT framework could provide a better insight into the efficiency
of the algorithms. Hence, the validation of subsets of data was analyzed. Figure 3
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reveals the R2 values of the prediction results. For RFM experiments, the number
of trees was chosen as 100 (ntree=100) and the number of variables sampled at
each split was chosen as 2 (i.e., ntry=2). For SVM experiments, the kernel was
fixed as “linear“; the coefficient value was fixed as “0“; cache memory was chosen as
40 MB; the tolerance of termination criterion was chosen as 0.001; and, the epsilon
value was fixed as 0.1. Additionally, the model was allowed to undergo probability
predictions. For LRM experiments, the model type was chosen as “responsive“. All
prediction experiments were carried out such that the variable “ipnumber“ of the
dataset was chosen as the dependent variable; and, the independent variables were
considered as “country code“, “source port address“, and “destination port address“.
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Figure 3: R2 Values of RFM, LRM, and SVM

The following points could be observed from the Figure 3:

1. RFM algorithm performs well when compared to the other two algorithms
of consideration. It could be observed that RFM has achieved around 99.99
percent accuracy when compared to the 85.4 percent accuracy of SVM.
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2. Similarly, the prediction algorithm performs better when the training data
size increases. For instance, the R2 value of the SVM algorithm improved
from 79.6 percent to 86.4 percent when the data size was increased from 2326
to 89795.

In addition, experiments were performed to study the variation of the predic-
tion accuracy (R2) while choosing different parameters in modeling algorithms. For
instance, the R2 value of SVM was reduced to 76.4 when the SVM modeling algo-
rithm was executed with kernel=“radial“, coefficient=0, tolerance=0.01, epsilon =
1, and the probability of prediction was set to TRUE.

The time required for predicting these algorithms increased for a certain subset
of analysis data. Table 1 illustrates the time required for processing data TDP ,
time for modeling data TM , and time for predicting data TP .

Table 1: Time Measured in Seconds For Data Processing, Modeling, and Prediction

Dataset Algorithm TDP TM TP
RFM 2.52 0.76 0.02
LRM 2.42 0.01 0.0022325x2326
SVM 2.33 1.3 0.08
RFM 2.76 2.12 0.04
LRM 2.45 0.017 0.00144624x4625
SVM 2.37 4.95 0.32
RFM 3 3.75 0.23
LRM 2.66 0.04 0.00223057x23058
SVM 2.57 2.3 7.1
RFM 3.26 1.68 0.75
LRM 3.05 0.211 0.0145807x45807
SVM 3.18 11.8 27.3
RFM 3.04 3.48 1.13
LRM 3.14 0.19 0.0467697x67697
SVM 3.82 1.58 58.51
RFM 3.14 5.98 1.107
LRM 3.13 0.32 0.00489794x89795
SVM 3.69 1.08 65.71

Table 1 pinpoints that the modeling time was dependent on the available dataset.
Increasing the data size of the dataset had an increase in the modeling and pre-
diction time – i.e., RFM algorithm required TM = 0.76 seconds and TP = 0.02
seconds for 2325 x 2326; whereas, the same algorithm took over TM = 1.08 seconds
and TP = 65.71 seconds for 89794 x 89795.

Another feature that was observed from Table 1 is the increasing prediction time
of SVM when compared to LRM or RFM. Note that the prediction time of SVM
reached 65.71 seconds when compared to RFM of 1.107 seconds. The average data
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processing time reached 3 seconds for all these prediction algorithms. The data
processing involved loading data, initializing dependent and independent variables,
and splitting the training and testing dataset of the AWS honeypot data.

In addition, it was observed that varying the parameters of modeling algo-
rithms influenced the TM . For instance, the RFM algorithm showed an increasing
modeling time when experimented with more number of splits in variables while
constructing the random trees – i.e., TM reached 10.92 seconds when RFM was
executed with ntree=4 in contrary to TM = 5.98sec. for ntree=2 of 89794 x 89795
dataset (see Table 1).

6.3 Prediction Results

Having validated the model, the potential hacker IP addresses were predicted for
the specific location using RFM, LRM, and SVM algorithms. The prediction re-
sults obtained for a few candidate locations, when experimented with the RFM
algorithm, are shown in Table 2.

The prediction of potential IP addresses that fall prey to the honeypot engine
of organizations was reported in Table 2 using RFM prediction algorithm. In fact,
the other algorithms could also be reported as similar to RFM. However, the reason
for choosing RFM is because of its higher prediction accuracy when compared to
the other algorithms namely LRM and SVM.

As shown in Table 2, the potential IP addresses that could harm organizations,
that reach the honeypots, were initially predicted as numbers. Later, the numeric
IP addresses were converted to IP numbers based on the iptools utility of R
programs.

Table 2: Prediction of IP Addresses of Honeypot using RFM

Sl.No Latitude Longitude IP Addresses Country
1 37.49 127.02 218.237.65.47 South Korea
2 40.45 -105.46 129.82.138.44 United States
3 52.35 4.9167 8.16.85.133 Netherlands
4 55.154 61.429 31.207.238.106 Russia
5 39.715 -75.5281 199.59.160.152 United States
6 31.8639 117.2808 25.9.68.20 China
7 37.4906 127.02 60.173.14.88 China

6.4 Explainability Analysis

Explainability features of prediction algorithms reveal the prior importance of ac-
curate predictions. The predictions carried out at EA-POT framework utilizes R2

values to explain the importance of independent variables of prediction algorithms.
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It is a known fact that most of the available models are considered black boxes – i.e.,
they may bestow better predictions without hinting at the reasons for achieving a
better accuracy or without pointing out the most impacting independent variables
for achieving the accuracy. In succinct, apt independent variables must be chosen
for gaining better prediction results.

To manifest the influence of the choice of independent variables in the prediction
results, experiments were carried out by varying the involvement of independent
variables in the prediction processes of prediction algorithms.

In the experiments, three selection options S1, S2, and S3 were considered.
The selections were organized to choose certain columns of the dataset – i.e., S1
utilized latitude, date, longitude, country code, source port, and destination port
as independent variables while predicting the IP addresses; S2 utilized protocol,
source port, and destination port addresses; and, S3 utilized all variables, such
as date of occurrence, hostname, latitude, longitude, country code, source port,
destination port, country name, and postal code for predicting the blacklisted IP
addresses.

The explainability features of prediction algorithms were utilized by the block-
chain chaincodes of the EA-POT framework. Figure 4 manifests that the variation
in choosing inappropriate independent variables could lead to potential prediction
inaccuracies – for instance, S3 has only 7.35 percent accuracy while predicting the
IP addresses that reach the honeypots.

S1 S2 S3

RFM 99.99 97.3 20.12

LRM 95.45 89.25 12.34

SVM 85.4 79.45 7.35
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Figure 4: Variations in R2 Values Depending on Independent Variables

6.5 Blockchain Transactions

It is not advisable to blindly choose the predicted IP address and protect the
intended organizations or take countermeasures on the defaulters. Listing potential
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IP addresses, therefore, needs to be diligently handled.
In EA-POT framework, permissioned blockchains using hyperledger fabric were

applied. The master and worker nodes are set up such that docker instances repre-
senting the peer nodes of the blockchain network are executed on the Kubernetes
cluster. During the experiments, the time taken to establish the Kubernetes clus-
ter by the master node on three working nodes was 245.72 seconds. The clustering
has several steps, such as creating the master node, joining worker nodes, deploying
docker pods that represent the blockchain organizations, and specifying the domain
names of the organizations for the fully operational cluster.

Once the predictions were carried out by the master node of the Kubernetes
cluster, the predicted IPs are initiated as blockchain transactions by a peer node
of the blockchain network. Note that all peer nodes install and instantiate the
chaincodes – i.e., the policies for defining whether to register the IP address as
blocklist into the BlackBlock database. In EA-POT framework, the organizations
that approve the blockchain transactions are i) IP Approving Authority, ii) EA-POT
Explainer, iii) CyberCrime Official, and iv) Netizen/Expert.

The time taken by the peer nodes of the blockchain network to install and query
chaincodes was 13.35 seconds of which 12.78 seconds were spent on the installation
of chaincode policies.

Predicting blacklisted IPs may not be successful at all times due to the accuracy
of algorithms. Accordingly, it is not a good solution to blacklist all predicted IPs.
Hence, in the proposed framework, the stakeholders of blockchains, based on the
policies, decide to collectively agree on the IP addresses before they were registered
in the immutable database.

To demonstrate the viability of choosing stakeholders for deciding the registry
of IP addresses in the BlackBlock database, a few experiments reported in Table 2
were repeated. It was observed that all IP addresses that were predicted by the
RFM algorithm in the experiments were not committed to the database – i.e., IP
addresses “8.16.85.133“ and “25.9.68.20“ pointing to the latitude and longitude of
countries, such as the Netherlands and China were incorrect. This is because a

Table 3: IP Addresses Committed to the BlackBlock Database

Table
Entry

Approver 1
(IP Approving
Authority)

Approver 2
(Explainer-AI)

Approver 3
(Cybercrime
Official)

Approver 4
(Netizen
Expert)

BlackBlock
(Committed)

1 X X X X X
2 X X X X X
3 X X X
4 X X X X X
5 X X X X X
6 X X X
7 X X X X X
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few predictions could lead to wrong IP addresses when applied using prediction
models. Accordingly, all policy stakeholders of the Blockchain network, namely the
IP Approving Authority, did not approve the entry of registering the IP addresses
to the BlackBlock database (see Table 3). Hence, only the IP addresses that were
approved by all stakeholders were committed to the database.

Table 3 illustrates the records that were registered into the BlackBlock database.
The database, being an immutable database, could not be modified by participants,
including the intra-organizational participants. Thus, the proposed EA-POT frame-
work achieves better efficiency in handling cybercrimes without any modifications
to the predicted honeypot IP addresses.

7 Conclusion

The process of converting potential cyber threats into threat discoveries, learning,
and ultimately developing security-enabled products, such as honeypots has been
evidenced in recent years in various domains, such as IIoT and Cloud environments.
Initial efforts to predict the potential hackers, either by establishing honeypots or
the other cybersecurity features, predominantly save time and protect the limited
compute resources from hackers, especially on cloud-based IoT services. Prediction
approaches of the past indicate that blackbox prediction approaches were practiced
with limited utility. Additionally, the hacker information was not well-protected,
especially when the hacking was carried out within an organization by an insider
employee.

This article proposed an Explainable AI-Assisted Blockchain Framework for
honeypot IP predictions named EA-POT framework. The proposed framework ap-
plied explainable features of prediction models, such as Random Forest Modeling,
Support Vector Machine, and Linear Regression Modeling, to approve the registry
of predicted blacklisted IPs into the Blockchain database along with the other ap-
provers, such as CyberCrime official of a country/region.

Experiments were carried out in the IoT Cloud research laboratory by establish-
ing a hyperledger-fabric permissioned blockchain on top of the Kubernetes cluster
consisting of four experimental compute nodes. The experiments manifested the
efficiency of the proposed EA-POT framework using AWS honeypot use cases. The
article explored the findings and reported how the EA-POT framework blacklisted
potential IPs based on the policy stakeholders involving the explainable AI features
of prediction models.
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Adding Semantics to Measurements:

Ontology-Guided, Systematic Performance Analysis

Attila Klenikab and András Patariczaac

Abstract

The design and operation of modern software systems exhibit a shift to-
wards virtualization, containerization and service-based orchestration. Per-
formance capacity engineering and resource utilization tuning become priority
requirements in such environments.

Measurement-based performance evaluation is the cornerstone of capacity
engineering and designing for performance. Moreover, the increasing complex-
ity of systems necessitates rigorous performance analysis approaches. How-
ever, empirical performance analysis lacks sophisticated model-based support
similar to the functional design of the system.

The paper proposes an ontology-based approach for facilitating and guid-
ing the empirical evaluation throughout its various steps. Hyperledger Fabric
(HLF), an open-source blockchain platform by the Linux Foundation, is mod-
elled and evaluated as a pilot example of the approach, using the standard
TPC-C performance benchmark workload.

Keywords: performance, measurement, bottleneck identification, EDA, on-
tology, blockchain, Hyperledger Fabric, TPC-C

1 Introduction

The rapidly increasing number of IT service customers made the performance of
such systems a high priority. Performant systems are not just a question of pow-
erful hardware anymore, they also require the system-wide careful design of the
software stack. The systematic detection and diagnosis of performance bottlenecks
by analysing multi-dimensional measurement data becomes an integrated part of
both the development and operational (DevOps) parts of the system life-cycle.

The industrialization of general-purpose data analysis resulted in typical stan-
dard workflows, like CRISP-DM [59], or ASUM-DM [11]. Such workflows are typi-
cally centered around the following high-level, domain-agnostic steps [6, 20, 52]:
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Figure 1: Typical performance evaluation steps

data acquisition; representation; analysis; visualization and reporting – with a
proper model-driven engineering (MDE) support. Different performance analysis
tasks – such as bottleneck identification and latency anomaly root cause analysis
– can be considered domain-specific refinements [28] of the analysis step, defining
further, embedded sub-workflows.

However, the technical metrology of performance evaluation poses specific chal-
lenges. The technical systems under test (SUT) are usually very complex, both
in the terms of their architecture and potential state space. Still, performance
engineering became increasingly important, as many systems have to fulfill soft
real-time requirements. Moreover, poor performance dimensioning (stemming from
architectural design or misconfiguration) can lead to service-level violations, or the
malfunctioning of the system, even in the case of short overloads.

The paper proposes an activity and observability-focused ontological approach
for the model-based guidance of SUT- and measurement-related, technical perfor-
mance analysis tasks (Fig. 1): instrumentation; measurement; data cleaning and
enriching; and measurement data analysis.

Instrumentation, the insertion of sensors into the system, plays an important
role in system observability, i.e., the degree to which an observer can reconstruct
the internal state of a system based on its outputs. However, sensor placement
must balance multiple requirements: non-intrusivity whenever possible; develop-
ment time/cost; and sufficient amount of resulting measurement data to work with.

On one hand, increasing the number of sensors might provide a deeper insight
into the system, but application-specific sensors require a careful development to
assure the integrity of the measurement results without distorting temporal metrics.
On the other hand, under-instrumentation confines the granularity of root cause
analysis and consequently the indication for mitigating bottlenecks. Moreover, it
can leave faulty behavior undetected.

Correspondingly, instrumentation needs a careful trade-off between the rele-
vance and redundancy of the measurements. The proposed approach aids the de-
signer or analyst in formally arguing about the observability of the system, or in
selecting a sufficient sensor placement.

During the measurement, data acquisition has to cope with the heterogeneity
of data sources generating observation logs in very different formats. Data source
models [27, 52] support the semantic fusion and representational homogenization
of the sources and the following ETL (extract, transformation, load) steps.

The proposed ontology guides the ETL process towards a relation-oriented and
activity-focused representation of measurement data, building on widely used con-
cepts. The common format may serve as a gateway toward other temporal modeling
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frameworks (e.g. the OWL Time ontology1 from the World Wide Web Consortium),
metrology-related technologies (e.g., the OpenTelemetry2 project from the Cloud
Native Computing Foundation), or other analysis techniques (such as process min-
ing [56]).

Clean and detailed data is a prerequisite for many performance analysis tasks,
such as bottleneck identification. Large-scale system observations constitute as big
data, but more importantly, as multi- or many-dimensional data. Data is harvested
from multiple layers of numerous system components, ranging from boundary-level
response times to infrastructure-level resource utilization metrics. Bottleneck iden-
tification in such a context is a complex diagnostic process. It is a priori unknown
how deep the analysis must drill down to uncover root causes of performance anoma-
lies.

The proposed approach makes data validation a systematic process by shard-
ing and inspecting the data set based on the modeled activities and corresponding
services. Thus data omission errors, for example, can be easily pinpointed even in
larger data sets. Moreover, the activity and observability models coupled with vari-
ous temporal rules provide a framework for automatically deriving further temporal
information, even if not explicitly observed.

The analysis of the gathered multi-dimensional data necessitates exploratory
data analysis (EDA). EDA is, by its nature, a highly adaptive and iterative process
for identifying a model of the system behavior. Usually, a domain expert is in
charge of guiding the drill-down process if something peculiar is detected from the
point of view of the application. The exhaustiveness and quality of this exploration
process heavily depend on the domain knowledge of the expert, the automation of
the elementary steps, and a proper navigation along the process and the data [52,
14, 45, 63].

The hierarchical nature of the proposed activity ontology and the corresponding
service/deployment information make the drill-down process intuitive and system-
atic. The domain expert can dissect higher-level activities as needed, until a possible
cause is found for a peculiar behavior. Then they can correlate the time range of
the behaviour with various workload metadata and/or resource utilization metrics
to find its root cause (may it be a bottleneck of the system, or a resource saturation
issue). Furthermore, the drill-down steps are guided by concepts independent of the
actual SUT, making the process reusable for different systems, a viable candidate
for automation, or to be performed by a less experienced domain expert.

A complex case study demonstrates the benefits of the proposed approach:

• The HLF blockchain platform’s consensus activities and their observability
are modelled in a reusable and modular way.

• The activities of the standard TPC-C performance benchmark3 are modeled
and combined with the HLF model.

1https://www.w3.org/TR/owl-time/
2https://opentelemetry.io/
3http://tpc.org/tpcc/default5.asp

https://www.w3.org/TR/owl-time/
https://opentelemetry.io/
http://tpc.org/tpcc/default5.asp
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• The formal measurement inference capabilities of the ontology are demon-
strated, coupled with a systematic data validation process.

• An ontology-guided, EDA-based, hierarchical bottleneck identification pro-
cess is demonstrated on measurement data observed while executing the TPC-
C workload (generated by the Hyperledger Caliper4 benchmarking tool) on
HLF.

The paper is structured as follows. Sec. 2 introduces the proposed general ap-
proach for the performance analysis of complex systems. Sec. 3 presents related
MDE approaches for activity modeling and surveys the state of the art HLF per-
formance researches. Sec. 4 introduces the elements of the proposed ODK used
for complex activity modeling and automatic observability inference, along with
formal semantics. Sec. 5 presents the case study of compositional modeling of
the HLF consensus process and the TPC-C benchmark execution using the ODK.
Sec. 6 demonstrates the various applicability of the resulting system models in aid-
ing complex measurement data validation and analysis tasks. Sec. 7 concludes the
paper.

2 The proposed model-guided analysis approach

The cornerstone of a performance analysis process is the observability of the activ-
ities performed by a system. On a high level, the beginning, duration, and end of
system tasks are the basis of common metrics, like incoming task rate, throughput,
and latency. Bottleneck identification, however, requires more interconnected data
to work with, including the well-defined composition semantic of complex activities.
Moreover, such observations are also crucial for building precise, well-parametrized
models for efficient performance prediction [8, 15].

Our contribution is an ontology-guided workflow for the systematic, drill-down
performance analysis of multi-dimensional measurement data. Moreover, the sup-
porting ontology development kit (ODK) is provided for ensuring the quality and
sufficiency of measurement data, enhanced with composition semantics for facil-
itating bottleneck identification processes. The ODK supports the modeling of
activities, their relations, and whether their execution is observable outside of the
system. Furthermore, it provides a formal foundation for rigorous measurement
data analysis task, e.g., bottleneck identification.

The proposed approach is outlined in Fig. 2 and detailed in subsequent sections:

1. Model the important activities of the system components, focusing on their
relations and hierarchical composition.

2. Model the explicit observability of activities to assist observability inference.

3. Extend the model with additional elements (by bridging to other ontologies,
for example) to support further design, DevOps, or analysis tasks, as needed.

4https://www.hyperledger.org/use/caliper

https://www.hyperledger.org/use/caliper
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Figure 2: The proposed workflow for model-guided performance evaluation

4. Automatically enrich the current model with additional observability infor-
mation by using an OWL reasoner (detailed in Sec. 4.5).

5. Correlate and validate distributed request traces from the SUT to uncover
data omission or similar errors.

6. Calculate additional, indirect measurement using the ontology (or other de-
rived) model as guide.

7. Validate the conformance of the measurement data and the model to ensure
the correctness of further analysis tasks.

8. Perform the desired analysis task based on rigorously cleaned and validated
data, and using the ontology model as guide.

Following the outlined steps allows for a rigorous performance analysis of the
SUT. Note that the model construction steps only need to be performed once (if
done properly), then the component models can be reused and recombined to fit
further performance analysis scenarios for different SUT setups. Moreover, the
modeling and analysis parts of the workflow can be performed by different domain
experts, lowering the entry barrier for the overall performance analysis of a given
SUT.

3 Related work

The section presents the related work on creating activity execution models and
surveys the state of the art regarding HLF performance evaluations. The limitations
of the presented literature motivated our contribution to bring MDE approaches
closer to the domain of performance evaluation of complex systems.
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3.1 Activity modelling

System activities are usually observed through individual events (e.g., logs, noti-
fications) or sensors. An important requirement of activity modeling – relating
to performance analysis – is to allow the systematic reconstruction of detailed
timelines from the available partial observations, facilitating data analysis. Fur-
thermore, having well-defined modeling semantics and building blocks allow the
assessment of a wide range of systems.

Our experience with EDA and bottleneck identification outlined the following
requirements for model-based support:

• formal modeling of complex activity hierarchies and relations;

• explicit modeling of system observability (i.e., sensor placement);

• systematic derivation of additional temporal knowledge;

• extensibility for incorporating further service/infrastructure models;

• composability and reusability of different activity models.

Similar approaches exist in the domain of business process analysis using on-
line analytical processing (OLAP) [1, 39, 42, 48]. However, our approach has to
comply with the additional requirements of technical metrology, like allowing the
performance evaluation of general system activities despite limited observability of
tasks, and facilitation of the adaptation of metrology principles.

Modeling the execution of activities also has a long tradition in software devel-
opment, both as design phase artifacts for validation, and as inputs to automatic
task orchestration systems. Business process models (building on the BPMN5 stan-
dard) or activity diagrams in UML6 or SysML7 are prime examples of high-level
activity modeling languages.

Such visual languages facilitate the modeling of activity control flows, imposing
certain temporal constraints (e.g., activity A must be executed before activity B).
However, the enforcement of such constraints must be validated during analysis
time or runtime. Such validation necessitates the detailed observation of activities
to allow rigorous temporal constraint checks. Moreover, the available high-level
languages lack an intuitive support of modeling observability.

Additional formal approaches can also aid the design and verification of com-
plex systems or processes. Temporal logics – such as Temporal Logic of Actions
(TLA, TLA+ [30, 31]), Propositional Temporal Logic (PTL [46]), Interval Tem-
poral Logic (ITL [3]) – enable the specification and verification of time-dependent
system behavior [9]. Furthermore, different probabilistic or stochastic process al-
gebra approaches [22] can aid the design and verification of concurrent, distributed
systems, including the communication and synchronization of their independent

5https://www.omg.org/spec/BPMN/2.0/
6https://www.omg.org/spec/UML/
7https://www.omg.org/spec/SysML/

https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/UML/
https://www.omg.org/spec/SysML/
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components. Such process algebras include the Performance Evaluation Process
Algebra (PEPA [16]), or extended versions of the Communicating Sequential Pro-
cesses (CSP [32]) language.

The above formal approaches provide an expressive power sufficient for the
detailed design, verification and subsequent implementation of concurrent systems.
However, their application requires knowledgeable experts in the formal verification
domain. Moreover, the intended purpose of the presented approaches is to aid the
correct design and implementation process of complex systems, thus providing more
facilities than needed for validating and analyzing performance measurements of the
already implemented systems.

Accordingly, the goal of the current work is to provide a kernel modelling frame-
work (with simple vocabulary and relations pertaining to system activities) that is
easier to use, given a standard information technology background. The semantic
mapping of the referenced formal approaches (and the corresponding, readily avail-
able formal design models during system development) to the presented modelling
framework is left as future work.

Ontology-like formal approaches also gain ground in general system modeling
tasks (e.g., the upcoming OMG SysML v2 Kernel Modeling Language8), thus our
contribution relies on ontologies, preparing for future interoperability. Knowledge
representation-based approaches can also aid the visual analysis of network traf-
fic [61] or the semantic fusion of data originating from different sources [60]. More-
over, ontology-based approaches can reason about the occurrence of composite
activities [43, 12, 21, 33, 49].

The referenced activity modeling works have several elements in common. They
utilize Allen’s interval algebra [2] for describing temporal relations, allowing bridg-
ing to other similar solutions. However, they reverse-engineer/infer the activity
model based on the observation of performed activities, similarly to process min-
ing [56]. Model mining is unavoidable in contexts where the ”schedule” of exe-
cuted activities is non-deterministic, such as in smart homes or in smart ware-
houses [12, 49].

However, when the execution of activities must conform to a predefined spec-
ification, model mining becomes unnecessary. The paper proposes a model-first
approach to construct an ontology-based composite activity model, which will later
provide a strong foundation for the systematic performance evaluation and bottle-
neck analysis of the target system. Accordingly, the model becomes an input to
the analysis tasks, and not an output.

3.2 Hyperledger Fabric performance analysis

The complex consensus process of HLF [5] (detailed and modeled in Sec. 5) made its
performance evaluation a hot research topic. Related works can be divided mainly
into the following categories based on their goals:

8https://github.com/Systems-Modeling/SysML-v2-Release

https://github.com/Systems-Modeling/SysML-v2-Release
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1. Performance evaluation and characterization: [47, 7, 55, 38, 18, 34, 51, 19,
58, 29, 40, 24, 41, 4, 13, 57, 50, 10]

2. Performance optimization: [55, 17, 25, 37]

3. Formal consensus modelling : [53, 54, 26, 64, 62]

Category 1 receives most of the attention, which is identifying the performance
characteristics of HLF. The evaluations employ empirical sensitivity analyses to
measure the change in key performance indicators (such as throughput and end-to-
end latency) when applying different network scales, configurations, and workloads.

The concern of Category 2 is the performance enhancement of HLF. Researches
either transparently optimize certain consensus steps or propose changes to the
architecture (and correspondingly the consensus process) itself. The researches of
Category 2 also rely on empirical performance analysis to confirm bottlenecks and
evaluate the effectiveness of optimizations.

Works in Category 3 build formal behavior models of the consensus process.
Model parameter identifications also rely on empirical performance evaluations.
Finally, the parameterized model allows for cost-efficient sensitivity analyses capa-
ble of covering a large configuration and parameter space, without actual further
empirical analyses.

Table 1 further refines Categories 1–3 based on the following aspects:

• Network scaling (NS): the research performed multiple evaluations while vary-
ing the scale of the Fabric network, e.g., the number of orderer and/or peer
nodes (horizontal scaling), or their allocated resources (vertical scaling).

• Configuration sweep (CS): the Fabric network was evaluated in multiple oper-
ational modes, e.g., using different transaction ordering protocols (Kafka- or
Raft-based implementations), varying the configuration of a specific ordering
protocol (target block size or block time), or changing the implementation of
other elements (the choice for state database, or the used chaincode language).

• Workload scaling (WS): certain attributes of the workload were changed
among multiple evaluations, e.g., the incoming rate of requests, or the ra-
tio of read and write intensive requests.

• Consensus step optimization (CSO): the research proposed improvements to
certain steps of the consensus process that are transparent (i.e., non-breaking,
backward compatible changes) to other network components or users, e.g., the
parallelization of inner component tasks (like transaction validation).

• Consensus process optimization (CPO): the proposed improvements signif-
icantly change the overall consensus process, i.e., the changes require the
adaptation of certain APIs, breaking the existing solutions.

• Consensus modelling (CM): the research formally modelled and evaluated
certain aspects of the Fabric consensus, e.g., calculated expected transaction
latencies based on the approximated processing times of subtasks.
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Table 1: Categorization of Fabric performance evaluation-related works (NS: Net-
work Scaling, CS: Configuration Sweep, WS: Workload Scaling, CSO: Consensus
Step Optimization, CPO: Consensus Process Optimization, CM: Consensus Mod-
elling)

Related Works NS CS WS CSO CPO CM
[55] X X X X

[7, 57, 50] X X X
[13] X X

[38, 58, 40, 10] X X
[34] X X
[51] X X X
[17] X X X

[19, 37] X X
[25] X X
[4] X X

[47, 18, 29, 24, 41] X
[53, 54, 26, 64, 62] X

A common requirement for all categories and aspects is the rigorous empirical
performance evaluation of HLF based on the analysis of measurement data. Super-
ficial analyses may lead to incorrect hypotheses or misidentified model parameters,
invalidating the results of the evaluation.

Accordingly, a systematic, rigorous, and easy to follow analysis process (even
for complex systems) is needed to achieve relevant results. Moreover, the correct-
ness and richness of measurement data can further increase the quality of gained
insights.

4 Activity and observability modeling framework

The section introduces the formal foundations and building blocks of the proposed
ODK for constructing complex activity models. Moreover, it details the observ-
ability modeling and automatic observability inference mechanisms that are the
cornerstones of a rigorous performance data analysis.

4.1 Formal foundations

The ODK is constructed using the Web Ontology Language9 (OWL2), adhering to
some constraints (resulting in an OWL-DL ontology) that make the OWL direct
semantics compatible with the model-theoretic semantics of the SROIQ descrip-
tion logic [23]. This restriction provides useful computational properties for the

9https://www.w3.org/TR/owl2-syntax/

https://www.w3.org/TR/owl2-syntax/
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language, backed by extensive literature and tooling support, such as OWL-DL
reasoners [44].

OWL2 provides facilities such as object and data properties, literals, individuals,
and classes to model relations among different concepts and resources. Classes
can have associated relationship constraints that must hold for every individual
belonging to the class. It is important to note that OWL employs the open-world
assumption, meaning that if something is not asserted as knowledge, it is taken
as unknown, rather than as untrue. The OWL2 structural specification10 further
details the available language constructs and their meaning.

The paper utilizes the OWL-DL notations of Table 2 to describe the elements
of the ODK and their semantics.

Table 2: OWL-DL notations

OWL construct Notation OWL construct Notation

Class C1, C2 SubClassOf C1 ⊆ C2
IntersectionOf C1 ∩ C2 UnionOf C1 ∪ C2
Thing T Property P
PropertyRange T ⊆ ∀P.C1 EquivalentClass C1 ≡ C2
AllV aluesFrom C1 ⊆ ∀P.C2 SomeV aluesFrom C1 ⊆ ∃P.C2

The temporal constructs of the ODK build on Allen’s interval algebra. Let us
consider activity instances a = (ab, ae, ad) ∈ A of an activity class with a beginning
time instant ab ∈ N+, an ending time instant ae ∈ N+, and a non-zero duration
ad ∈ N+, where ab < ae, and ab + ad = ae for every a ∈ A, measured on a logical
clock for the simplicity of the notation.

If a property (i.e., directed relation) P holds between activity instances a and
b, we denote it by a ∈ P.b, where a ∈ A, b ∈ B activity classes. The shorthand
notation A ⊆ P.B specifies the relation P as constraint between activity classes A
and B, implying ∀a ∈ A : ∃b ∈ B, a ∈ P.b.

The ODK defines the following Allen interval relations as OWL properties:
after, before, meets, metBy, starts, startedBy, finishes, and finishedBy. Ac-
cordingly, if an activity type A is always followed by an activity type B, the axiom
A ⊆ meets.B will be part of the ontology. Note, that the ODK contains only
the Allen relations that provide precise or useful activity composition semantics.
Accordingly, the during, overlaps, and equal relations (and their inverses) are not
utilized directly, but can be derived from the modeled relationships in a straight-
forward way.

10https://www.w3.org/TR/owl2-syntax/

https://www.w3.org/TR/owl2-syntax/


Ontology-Guided, Systematic Performance Analysis 185

4.2 Component overview

The ODK contains a hierarchy of smaller ontologies – each with well-defined re-
sponsibilities – to promote composability (Fig. 3).

The Activity ontology (Sec. 4.3) allows the modeling of system activity relations.
For example, the following set of assertions partially describe an activity decom-
position (Fig. 4): Processing ⊆ SequentialActivity, Substepi ⊆ AtomicActivity,
and Processing ⊆ hasSubactivity.Substepi.

The Observability ontology (Sec. 4.4) provides classes to ”annotate” the activ-
ities with further information regarding their degree of observability. For example,
Processing ⊆ EndMeasured denotes that the end of Processing activities are
explicitly observed/measured through logs, or system events.

The Structural constraints ontology provides well-formedness axioms for ac-
tivity composition. The open-world semantic of OWL2 makes it cumbersome to
convey traditional (closed-world) modelling intentions to a set of ontology axioms.
For example, it is not enough to just state that a subactivity is the starting activ-
ity of its parent. Correct modeling also requires the statement that the starting
activity is not preceded by any other activity (otherwise it could not be the first
subactivity of its parent).

The structural constraints ontology provides several axioms that can automati-
cally detect (using an ontology reasoner) such inconsistencies or potentially missing
axioms. The description of constraints, however, is outside the scope of this paper.

The inference ontologies (Sec. 4.5) extend the observability ontology with
equivalence axioms that can automatically flag (during reasoning) activity classes

Observability Activity
Observability-

Activity bridge

Ontology bridges

Core inference

Allen inference Structural  inference Structural  constraints
Imports

Figure 3: Ontologies in the ODK

Processing

Time

Substepi

hasSubactivity

... ...

Figure 4: Example of a partial activity decomposition
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based on their degree of observability. Such observability flags are propagated
during reasoning along the activity relations, resulting in a complete observability
description of the entire activity hierarchy.

The structural constraint and inference ontologies can be referred to as aspect
ontologies in general: they separate orthogonal modelling concerns in a modular
way and can be used to enrich a base model (similarly to aspects is aspect-oriented
programming). Accordingly, a modeler can work using light-weigh and simple ontol-
ogy concepts (activities and observability), and only perform possibly heavyweight
computations/reasoning periodically by including the aspects.

The recommended modelling approach of the ODK is to decompose the com-
plete system model into smaller ontologies (Fig. 5) for maximum flexibility and
reusability.
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Figure 5: Ontology structure of a multi-component use case

A platform ontology models the composition of executed activity steps and their
observability utilizing the ODK core vocabulary. A specific platform is usually just
a means to execute a higher-level business scenario, which steps should be modeled
as a platform-independent workload ontology whenever possible. This separation
allows the flexible evaluation of different architectural/platform design choices by
providing a platform-workload bridging ontology for specific scenarios.

The final element of the stack is a top-level (possibly automatically constructed)
ontology that unites the pure system model with the chosen aspects of the ODK.
Various OWL-DL reasoners can validate and enrich the top-level ontology, resulting
in a detailed knowledge representation of the system that will serve as a basis for
later performance analysis tasks. A concrete case study following the presented
approach is detailed in Sec. 5 through modeling TPC-C benchmark execution on
HLF networks.

4.3 Modeling activity hierarchies

Activity (ACT ) hierarchies are defined with atomic (”leaf”) elements and com-
posite elements supporting further refinement (Fig. 6). The ODK provides the
following Activity subclasses for modeling activity composition through subsump-
tion relations:

• AtomicActivity (AA) represents elementary steps without further refinement;
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Activity

Atomic Activity Composite Activity Forked Activity

Sequential Activity

Alternating Activity

Figure 6: Hierarchy of activity types

• CompositeActivity (CA) allows further refinement of activities through the
following subclasses, representing different composition semantics:

– SequentialActivity (SA) allows refinement into a sequence of subactiv-
ities;

– ForkedActivity (FA) allows refinement into parallel subactivities;

– AlternatingActivity (TA) allows refinement into subactivities without
additional control flow constraints.

The core classes on the same hierarchy level are disjoint (AA ∩ CA = ∅, SA ∩
FA ∩ TA = ∅). However, uncategorized activities and additional composition
semantics are allowed to promote extendability, i.e., AA ∪ CA 6= ACT and SA ∪
FA ∪ TA 6= CA.

The following high-level relations (OWL object properties) provide the basis for
constructing complex hierarchies of activities:

• Substepi ⊆ hasParentActivity.Parent, denoting that activity type Substepi
has a parent (encapsulating) activity of type Parent.

• Parent ⊆ hasSubactivity.Substepi, denoting that activity type Parent has
a subactivity (a refined substep) of type Substepi.

• Substepi ⊆ hasSiblingActivity.Substepj , denoting that Substepi has the
same parent activity type as Substepj , i.e., ∃Parent such that Substepi ⊆
hasParentActivity.Parent, and Substepj ⊆ hasParentActivity.Parent

The composite activity subclasses denote the typical (de)composition constructs
for activity executions:

Sequential activities (SA) group together a sequence of subactivities that fol-
low traditional sequential execution semantics. Moreover, refined relations
are introduced (with Allen interval-like semantics, as mapped in Table 3) to
further enrich parent-subactivity and sibling relations. The ”synonyms” for
the Allen relations were introduced to hint at the compositional nature of the
activities (and not just their relative temporal placement), aiding modelers
with traditional activity modeling backgrounds.

Note, that ”gapped” relations indicate an incomplete timeline, hindering later
analyses, and probably warranting additional instrumentation. However, the



188 Attila Klenik and András Pataricza

Table 3: ODK and Allen relation mappings for sequential composition

Parent Relation ⊇ Subrelation ≡ Allen relation

hasParentActivity startsParentActivity starts
finishesParentActivity finishes

hasSubactivity startedBySubactivity startedBy
finishedBySubactivity finishedBy

hasSiblingActivity hasImmediatePredecessorActivity metBy
hasImmediateSuccessorActivity meets
hasGappedPredecessorActivity after
hasGappedSuccessorActivity before

ODK inference rules can be easily extended to detect ”unknown”, albeit ob-
servable activities whenever possible.

Forked activities (FA) group together parallel subactivities that are executed
independently of each other. An associated synchronization/join semantic
class (⊆ hasSyncSemantic.SyncSemantic) can be used to model the condi-
tion when the parent activity is deemed finished.

The ODK defines two synchronization semantics: when all (WaitForAll ⊆
SyncSemantic), or any (WaitForAny ⊆ SyncSemantic) of the subactivities
must finish to consider the parent activity done. Extending ontologies can
define further semantics, e.g., waiting for the majority of subactivities.

Alternating activities (TA) are decomposed into a set of subactivities, disre-
garding control flow restrictions in cases when the control flow of subactiv-
ities is irrelevant. TA is a tool of abstraction for concentrating only on the
”weight” (i.e., duration) of a subactivity, and not on its scheduling.

A typical use case is the modeling of in-process execution times and database
access times of a task, disregarding execution semantics among the substeps:
Task ⊆ TA, InProcExec,DbAccess ⊆ hasParentActivity.Task. Modeling
the exact activity flow of computation and database access can be cumber-
some for some use cases. Moreover, it may be sufficient during performance
analysis to consider only the time/duration spent with each processing types,
instead of focusing on their exact, possibly rapidly alternating order.

4.4 Modeling observability

Once the activity model is complete, the next step is modeling which activity
temporal aspects (beginning, duration, and/or end) are measured directly in the
system (i.e., modeling the placement of sensors and instrumentation) using the
Observability ontology concepts.

The core concepts can be grouped into three main categories (Fig. 7):
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Observable Temporal Entity

BeginningObserved (BO) DurationObserved (DO) EndObserved (EO)

BeginningMeasured (BM)

BeginningInferred (BI)

DurationMeasured (DM)

DurationInferred (DI)

EndMeasured (EM)

EndInferred (EI)

Figure 7: Observability ontology components, with abbreviations

1. observable data in the abstract sense (e.g., Task ⊆ EndObserved), denoting
that the temporal data is available in some way (measured or inferred);

2. directly measured data (e.g., Task ⊆ EndMeasured ⊆ EndObserved), de-
noting that the data is explicitly measured;

3. and inferred data (e.g., Task ⊆ Rule ⊆ EndInferred ⊆ EndObserved).

The following class abbreviations are used in some places for readability (Fig. 7):
BO, BM , BI, DO, DM , DI, EO, EM , and EI.

The modeler must ”annotate” each activity class if one or more of its tempo-
ral aspects are directly measured in the system. For example, if the system logs
the end time of an activity Processing, then the modeler can add the following
axiom to the ontology: Processing ⊆ EndMeasured, also implicitely stating that
Processing ⊆ EndMeasured ⊆ EndObserved. Such annotations will serve as a
priori knowledge to the reasoner later. Moreover, additional instrumentation knowl-
edge can be encoded in the ontology if modelers subsume the ∗Measured classes
(e.g., name of the logging component, format, reference to source code, etc.).

The general classes for observable data (BO, DO, and EO) provide an abstrac-
tion layer that hides the exact source of observability. Inference rules will reference
this abstract level to handle and propagate explicit and inferred observability uni-
formly (Sec. 4.5).

The BI, DI, and EI classes are the extension points of the observability ontol-
ogy, i.e., the superclasses for implementing observability inference rules, as detailed
next.

4.5 Observability inference

Given a partially observable activity model, an OWL-DL reasoner can infer further
observable temporal aspects based on rules utilizing Allen interval and structural
relations. The ODK provides general inference rule ontologies that encode how ex-
plicit measurements (i.e., observability) can be propagated along activity relations.

Users of the ODK can build their custom activity ontology of the SUT (con-
taining the hierarchy of activities and their relations), including the explicit ob-
servability of activities (i.e., which activities are directly measured through sensor
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instrumentation). Then, inputting the inference rule and user ontologies to a rea-
soner (e.g., in the form of a top-level ontology that imports the previous ontologies)
reveals how certain activity temporal aspects (time of beginning, duration, and/or
end) can be calculated through related activities. For example, the reasoning pro-
cess could infer the following knowledge: the end time of activity Processing can
be inferred from the end time of its finishing subactivity Subactivity4 (based on
Rulei).

The observability inference is implemented using the class equivalence construct
of OWL2. The rules are modeled as OWL classes (e.g., RuleX ⊆ EndInferred)
with corresponding equivalence axioms as criteria (describing an anonymous class
in OWL in the form of RuleX ≡ criteria). The axioms of criteria usually encode
some kind of temporal data propagation rule among activities, while referencing
the abstract observability of the involved activities.

When a reasoner infers that an activity type Processing satisfies the crite-
ria (i.e., subsumes the corresponding anonymous class), Processing becomes part
of the class hierarchy of the corresponding ∗Observed class. E.g., if we have a
rule (RuleX) about inferring the end time of an activity based on some criteria
(i.e., RuleX ≡ criteria), then the following axiom will be added the ontology if
Processing ”matches” criteria:

Processing ⊆ criteria ≡ RuleX ⊆ EndInferred ⊆ EndObserved

Accordingly, Processing will be categorized as an EndObserved class, allowing
the propagation of the newly inferred knowledge through other rules, continuing
until no new knowledge can be inferred.

4.6 Inference rules

The inference mechanism is demonstrated through the simple constraint between
the beginning time, duration, and end time of any activity instance: ab + ad =
ae,∀a ∈ A ⊆ ACT . This constraint is the basis of the three core inference rules
(Eqs. 1–3) provided by the ODK: if two of the temporal aspects are observable,
then the third is inferrable. Rules are encoded through equivalent class axioms and
subsume the proper BI, DI or EI inference extension points.

A ⊆ (DO ∩ EO) ≡ Rule1 =⇒ A ⊆ Rule1 ⊆ BI ⊆ BO (1)

A ⊆ (BO ∩ EO) ≡ Rule2 =⇒ A ⊆ Rule2 ⊆ DI ⊆ DO (2)

A ⊆ (BO ∩DO) ≡ Rule3 =⇒ A ⊆ Rule3 ⊆ EI ⊆ EO (3)

The ODK contains numerous additional inference rules based on Allen interval
and structural relations. The following conjunctions of criteria (in the form of
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A ⊆ (criteria1 ∪ ... ∪ criterian) =⇒ A ⊆ BO/DO/EO) succinctly encode the
additional rules for inferring beginnings, durations, and ends, respectively:

A ⊆ ((FA ∩ ∀hasSubactivity.BO) ∪ (∃starts.BO) ∪ (∃startedBy.BO)∪
(∃metBy.EO) ∪ (∃hasParentActivity.(BO ∩ FA))) =⇒ A ⊆ BO

(4)

A ⊆ ((∃hasParentActivity.(TA ∩DO) ∩ ∀hasSiblingActivity.DO)∪
(TA ∩ ∀hasSubactivity.DO)) =⇒ A ⊆ DO

(5)

A ⊆ ((∃meets.BO) ∪ (∃finishes.EO) ∪ (∃finishedBy.EO)∪
(FA ∩ ∀hasSubactivity.EO) =⇒ A ⊆ EO

(6)

The ODK allows the declaration of additional rule classes by simply subsuming
the appropriate ∗Inferred classes.

Note that an activity A can match multiple rules. For example, if two temporal
aspects are observable, A matches one of Eqs. 1–3. However, now all three aspects
are observable, so A matches all three rules. In general, the matching inference
rules between temporal data define a data flow network, facilitating various data
analysis tasks, as detailed in Sec. 6.

4.7 ODK extendability

The ODK operates with high-level and abstract concepts in order to allow extend-
ability with additional concepts, increasing the flexibility and usability of the model
in subsequent analysis tasks. Fig. 8 contextualizes the different ODK capabilities
in the typical MDE worklfow.
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Figure 8: Envisioned MDE flow of activity modelling

The core activity concepts and inference rules comprise a computation-inde-
pendent model (CIM) for describing observability in a temporal representation-
agnostic way. The models at this level (e.g., in Sec. 5) only state knowledge like
the beginning of a Processing activity is measured. Information about how that
measurement is acquired, and in what format, is omitted. Moreover, inference rules
define only the data dependency of calculated measurements – again, omitting the
exact computational steps.

The first step towards an actual realization of the analysis process is to enrich
the core model with temporal data and corresponding relations. E.g., the OWL
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Time ontology11 defines Intervals as ”a temporal entity with an extent or dura-
tion.” Furthermore, the ontology defines the hasBeginning relation (among others)
between temporal entities (such as intervals) and arbitrary time instants. A simple
bridging between the two ontologies (e.g., Activity ≡ Interval) enriches the activ-
ities with actual temporal data formats. The associated temporal data concretize
the manner of measurement calculations, but still neglects the exact source and
harness of measurement data, thus acting as a platform-independent model (PIM).

Two ODK aspects support the refinement of PIMs into platform-specific models
(PSM). On one hand, additional ontologies can refine classes like BeginningMea-
sured to inlcude the source of the measurement data. For example, an extending
ontology could define a BeginningLogged subclass of BeginningMeasured, providing
details about the log format, source software component, and the semantic struc-
ture of the message, all aiding the extraction of measurement information in a log
processing pipeline.

On the other hand, the ODK provides an executedBy relation to associate an
Activity type with a Service type (e.g., Endorsement activities are executedBy
PeerServices). Extending ontologies can build on this relation to further model
the deployment information related to a certain environment where the SUT is
operated. For example, a deployment ontology could maintain information about
a HLF network, where each service instance is located on a certain Kubernetes12

node, in a cluster comprised of several virtual machines, hosted on specific hardware
components.

Finally, a technology stack realizing the actual data analysis flow can utilize all
levels of the final, rich model to uncover the root cause of an anomalous activity
duration/latency (partially demonstrated in Sec. 6.4), even if stemming from the
lowest level of the infrastructure.

5 Case study: Modeling TPC-C on Fabric

Performance benchmarks serve as platform-agnostic workload specifications rep-
resentative for a given domain, facilitating the comparison of different backend
platform implementations under reproducible conditions. The benchmark plays
the role of a platform-independent model (PIM) in MDE terminology, while the
emulated clients and database engine make it platform-specific. The section intro-
duces a compositional model of the TPC-C workload executed on HLF, using the
presented ODK concepts as case study.

5.1 Modeling the TPC-C benchmark

TPC-C is a mature online transaction processing (OLTP) benchmark inspired by
the typical activities of a wholesale supplier. TPC-C uses a mix of five transaction

11https://www.w3.org/TR/owl-time/
12https://kubernetes.io/

https://www.w3.org/TR/owl-time/
https://kubernetes.io/
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types – with varying complexity – to be executed against a rich database schema
(HLF in the case study).

The execution of a TPC-C transaction by an emulated client has the following,
strictly sequential composition of steps: (1) the client selects a transaction type
(Menu selection); (2) then fills the required inputs for the request (Fill inputs);
(3) then the database engine executes the transaction (Execute TX); (4) and finally
the client takes some time to think about the next transaction (Think time) before
starting the next cycle. The model of this client cycle plays the role of the workload
ontology in Fig. 5.

Accordingly, the activity model (Fig. 9) declares a top-level/root sequential ac-
tivity, having four subactivities. The Menu selection, Fill inputs, and Think time
subactivities are atomic activities that simply emulate user behavior through arti-
ficial delays with specified distributions.

Menu selection (:AA) Fill inputs (:AA) Execute TX Think time (:AA)

Read-only Tx Read-write  TX

Delivery New orderOrder status PaymentStock level

TPC-C User Cycle (:SA)
startedBy finishedBymeets meets meets

Figure 9: TPC-C transaction execution scheduling

The exact composition of the Execute TX activity is specific to the database
engine, thus its type does not subsume any of the Activity ontology classes. The
exact type binding is the task of a platform-workload bridging ontology that maps
the platform request execution activities to the Execute TX activity.

The TPC-C transaction types are further categorized based on whether they
are read-only, or read-write requests, making the bridging easier to platforms that
differentiate between the execution of the two categories (like HLF does).

5.2 Modeling the Hyperledger Fabric consensus

During the benchmark measurement, a HLF network served as the ”database en-
gine.” The novelty of HLF is its execute-order-validate style consensus mechanism,
breaking with the traditional order first approaches [5]. However, its performance
characterization is still incomplete. The case study models the detailed HLF consen-
sus mechanism, enriched with client-side observations provided by the Hyperledger
Caliper workload generator.

The concepts and consensus steps of HLF are detailed in [5] or in the official
documentation.13 The section focuses only on the composition of activities (and

13https://hyperledger-fabric.readthedocs.io/en/release-1.4/txflow.html

https://hyperledger-fabric.readthedocs.io/en/release-1.4/txflow.html
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not on their technical descriptions) to demonstrate that deep domain knowledge is
not required during the guided performance analysis tasks. Note that creating the
model, however, requires familiarity with the modeled platform, but ideally it is
the responsibility of the designers or platform experts to create such a model.

Fig. 10 details the high-level, sequential steps of the HLF transaction life-cycle.
The model plays the role of the platform ontology in Fig. 5.

Clients first assemble and send a transaction proposal to one or multiple peers
for parallel simulation/endorsement and wait for all results (Awaiting Endorsement
activity) to arrive, modeled by an associated WaitForAll synchronization semantic.
Once the results are available, the client then sends them to the ordering service
and waits for a notification from the network that the transaction was successfully
committed or not (Awaiting Ordering and Validation activity).

The ordering and validation phase is modelled by two consecutive subactivities:
Block inclusion and the client Awaiting Validation from any peer (denoted by a
WaitForAny synchronization semantic). It is important to note, that the Awaiting
Validation activity is not a dedicated, explicitly observable activity of the client. It
is artificially introduced for convenience to separate the ordering and the validation
steps for detailed analysis. This choice demonstrates that the activity model is
constructed in a way to facilitate detailed performance analysis, rather than be a
technically faithful representation of the platform.

Awaiting Endorsement (:FA) Awaiting Ordering and Validation (:SA)

Transaction Processing (:SA)
startedBy finishedBymeets

Block inclusion (:AA) Awaiting Validation (:FA)

meetsstartedBy finishedBy

Endorsement (:SA)

hasSubactivity

Block Validation (:SA)

hasSubactivity

Figure 10: High-level steps of the HLF consensus

The endorsement activity (Fig. 11) consists of the peer receiving the proposal,
calling the required chaincode, then returning the result to the client. On the
platform level, the Chaincode Call activity type is not specified to enable refinement
by different use cases, detailed in the next section.

The block validation and commit process of peers is modelled by a hierarchy of
activity sequences (Fig. 12). The validation begins by the ordering service deliv-
ering the new block to the peer (Getting Block). Then the peer checks the block
payload and fetches any private data (a privacy feature of HLF) required for further
validation (Check Payload and Fetch pvt. data activities).

The State validation and commit step is refined into further subactivities. First,
the state modifications of transactions are validated (State validation). Then the
raw block content is committed to the blockchain storage (Block Commit). Next the
state modification of valid transactions are committed to the world state database
(State Commit). Finally, the history database is updated with the data accesses of
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Receiving Proposal (:AA) Sending result (:AA)

Endorsement (:SA)
startedBy finishedBymeets

Chaincode Call

meets

Receiving Call (:AA) Returning result (:AA)

startedBy meets

Chaincode Execution (:TA)

meets finishedBy

In-process Execution (:AA) Ledger access (:TA)
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Get (:AA) Put (:AA) Iterate (:AA) Delete (:AA)

hasSubactivity

Figure 11: Steps of the endorsement activity
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Figure 12: Steps of the validation and commit activity

committed transactions (History Commit).

Finally, the peer purges stale private data and sends a notification about the
block commit to subscribed clients. Once a client receives a notification about a
block/transaction, the transaction life-cycle is considered complete.

5.3 TPC-C and HLF bridge ontology

The case study contains a final ontology that maps/bridges the TPC-C and HLF
concepts, achieving the TPC-C on HLF model. The mapping plays the role of the
platform-workload bridge ontology in Fig. 5.

On one hand, the TPC-C case study chaincode was instrumented to measure the
raw execution time of the chaincode. This allows the observation of peer-chaincode
communication activities and differentiate between in-process execution and ledger
access times (lower part of Fig. 11). The exact control flow of the chaincode is not
modelled, alternating activities are used instead to focus only on the duration of
subactivities, and not on their order.

On the other hand, the bridge also refines the Execute TX class of the TPC-
C ontology. Due to the Read-only TX and Read-write TX class hierarchy, the
following equivalence axioms are enough to specify that the workload is executed
on HLF: i) Read-write TX ≡ Transaction Processing and ii) Read-only TX ≡ Query
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Processing (which is a simplified version of transaction processing, containing only
the endorsement activity hierarchy, without further ordering or validation).

6 Systematic measurement data analysis

At this point, the workload and platform ontologies are combined, and the measured
activities are annotated with the appropriate BM/DM/EM observability classes.
Inputting the ODK and user-defined ontologies to an OWL-DL reasoner will prop-
agate the measured activity aspects throughout the rest of the model by flagging
activities with different inference rule classes. The added classes denote how the
beginning, duration and end of a flagged activity can be calculated based on other
activity observations.

The case study imported the bridged TPC-C and Fabric (Sec. 5.3), and inference
ontologies (Sec. 4.5) into a top-level ontology (as depicted by Fig. 5). Then, the
Hermit OWL-DL reasoner [35] (present as a built-in reasoner plugin in the Protégé
ontology tool [36]) performed a subsumption relation inference. The resulting (out-
put) ontology contained additional knowledge about how to derive certain temporal
aspects of TPC-C and Fabric activities (even when directly unobserved by sensors)
based on the explicit measurement data.

The added rule classes define relations between the temporal data of different
activities. The following subsections provide examples for how such relations can
be exploited to:

1. correlate and validate the distributed measurement data;

2. derive further, directly not measured (i.e., indirect) temporal data;

3. validate the conformance of measurement data to the activity model;

4. and systematically guide the bottleneck analysis tasks.

6.1 Correlate and validate measurement data

Online services today exhibit a shift towards micro-service architectures to facili-
tate different DevOps tasks (e.g., rapid continuous delivery and deployment) and
increase certain extra-functional properties of systems (e.g., availability, maintain-
ability, fault tolerance, scalability). Accordingly, an end user request will traverse
many services and corresponding components during processing. The same phe-
nomenon is inherently present in distributed, peer-to-peer systems, such as HLF.

In most cases a unique correlation/trace identifier is associated with each re-
quest to facilitate its tracing across component boundaries. HLF, for example,
associates a unique transaction identifier (TX ID) with each client request, calcu-
lated from the client’s identity and the time the transaction was constructed. When
network components provide logs about certain transaction steps, they also log the
corresponding TX ID along with the trace data.
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A prerequisite of reconstructing a detailed activity timeline of transactions is
the collection and correlation of such distributed traces. Novel observability frame-
works, such as OpenTelemetry,14 may provide means to collect traces across com-
ponent boundaries. For example, services utilizing OpenTelemetry can also send
the collected traces (as metadata) along with the requests to other system com-
ponents. Even though such approaches can centralize trace collection to a certain
level, it is a rather intrusive instrumentation choice, hindering adoption by existing
systems (such as HLF15).

Instead, many systems opt to provide request trace data utilizing their already
existing logging capabilities. In this case, distributed transaction traces must be
collected and correlated using a separate monitoring stack, which presents its own
challenges (but at least it is separate from the core system functionality). Having
a detailed activity model for distributed transaction processing (such as the HLF
consensus process) can facilitate the correlation and availability check of traces.

A HLF network setup usually contains the following trace sources (Fig. 13):

• optional end-to-end traces logged by the client (Caliper, in this case), with
an associated TX ID;

• optional traces logged by chaincodes (one for each executing peer), with an
associated TX ID;

• chaincode call traces logged by the peer nodes (one for each executing peer),
with an associated shortened TX ID (first 8 characters only);

• block validation and commit traces logged by the peer nodes (one for each
peer), with an associated block ID;

• and block creation traces logged by the leader orderer node, with an associated
block ID.

Caliper 

Worker

Peer 

Chaincode

Peer Chaincode 

Call
Orderer

TX ID TX ID TX IDShortTX ID

Log Store

Peer Block 

Validation
Block  ID

Figure 13: Different trace sources of a transaction

The activity model of the case study defined the measured temporal data of
activities, associated with the service types logging them. Accordingly, the pre-
requisite trace correlation step simply followed the structure of the model to check
whether all supposedly measured data are available from all sources.

14https://opentelemetry.io/
15https://hyperledger.github.io/fabric-rfcs/text/0000-opentelemetry-tracing.html

https://opentelemetry.io/
https://hyperledger.github.io/fabric-rfcs/text/0000-opentelemetry-tracing.html
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The check revealed two anomalies:

1. there were 4334 transactions with missing traces;

2. there were 2 transactions with more traces than required.

Case 1 had an interesting symmetry in it: there were 2167 transactions where
all Caliper-side traces were missing; and there were 2167 transactions where all
other (non-Caliper) traces were missing. This lead to the hypothesis that one half
is actually corresponding to the other half.

Since the non-Caliper traces constituted a complete data set on their own, the
focus of investigation was Caliper’s Fabric integration. Further transaction meta-
data analysis revealed that all mismatched traces were HLF queries. Finally, the
investigation revealed a bug in Caliper’s query submitting logic.16 Caliper created
a TX ID for the request, but did not pass it along to the HLF SDK, which in
turn created a new (and different) TX ID, unknown to Caliper. This resulted in
client-side traces having a different TX ID than HLF-side traces.

Case 2 was a similarly peculiar anomaly. Two transactions had chaincode call
traces from peers that did not even execute those transactions. Closer inspection
revealed that the shortened TX IDs contained a duplicate, i.e., two different TX
IDs had the same shortened (8 characters) versions. Accordingly, the pairing of
traces was not unique, two transaction got each others chaincode call traces.

Luckily, the correct traces could be restored without data loss through temporal
correlation: the conflicting transactions were executed well apart in time. However,
if all peers would have executed those transactions, then the short TX ID conflict
would have gone unnoticed until later in the analysis workflow (Sec. 6.3). The
anomaly showed that reducing the information carried by trace correlation IDs is
highly discouraged.

6.2 Deriving indirect measurement data

The final activity model of the HLF consensus refines a transaction into 28 hi-
erarchical steps even if only a single peer endorses and validates transactions. In
general, the number of activities corresponding to a transaction is 5+13∗E+10∗V ,
where E ∈ N+ is the number of endorsing peers for a transaction, and V ∈ N+ is
the total number of peers in the network (since every peer validates transactions).

Moreover, each activity has three associated temporal data: its beginning time,
duration, and end time. Accordingly, the volume of temporal can quickly increase
with the network size and the number of analysed transactions. For the sake of
readability, let us assume that only a single peer endorses and validates transactions,
resulting in 84 potentially observable temporal data for the 28 activities of each
transaction.

Figs. 14–16 depict each activity and their corresponding temporal data (be-
ginning, duration, and end). Black-filled shapes mark the directly measured data

16https://github.com/hyperledger/caliper/issues/1187

https://github.com/hyperledger/caliper/issues/1187
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points. Using a component-off-the-shelf (COTS) HLF as SUT and Caliper as work-
load generator, there are 18 directly measured data points:

• Caliper marks: the beginning of a transaction; the end time when all en-
dorsements arrive; and the end time when a notification is received about a
committed block/transaction.

• Orderer nodes mark the end time when a new block is created.

• Peer nodes mark: the beginning, duration and end of a chaincode call; the end
time when a block is received from an orderer; the end time and duration for
checking the payload of a new block; and the end time and duration (including
durations of some substeps) for validating and committing a block.

• The TPC-C chaincode implementation marks the start time, duration, and
end time of the actual chaincode program execution.

The arrows in Figs. 14–16 symbolize the direction of measurement data prop-
agation, i.e., A −→ B means that data B is calculated from data A (and possibly
from other data in cases like A −→ B ←− C). The arrows essentially represent
inference rules in the model, e.g., stating that the start time of an activity can be
calculated from its end time and duration (like in the case of the State validation
and commit activity).

As shown in the figures, the directly measured temporal aspects are sufficient to
completely observe the entire activity hierarchy through measurement propagation.
If that were not the case, then the missing data propagation paths would identify
the places where the SUT needs additional sensor instrumentation to allow for more
detailed observability.

Note that Figs. 14–16 are just a single, simplified view of a more complex data
flow network determined by the applicable inference rules. The rigorous formal
analysis of such data flow networks (in the context of temporal data) is subject to
future work.

Moreover, the example assumes a single-peer HLF network. If the network
consists of more than one peer, then the single-peer assumption is achieved by
reducing the replicated endorsement and validation activities to a single instance
by disregarding the non-bottleneck instances:

1. Since transaction endorsements have a WaitForAll synchronization seman-
tic, keep only the longest running (i.e., the slowest) Endrosement activity
and its subactivities.

2. Since block validations have a WaitForAny synchronization semantic, keep
only the shortest running (i.e., the fastest) BlockV alidation activity and its
subactivities.

At this point, a data analyst can use the formal data flow network to systemati-
cally derive new temporal data about the SUT’s activities. However, an additional
validation step is still needed to ensure not only the cleanness and richness, but
also the correctness of the measurement data (or the model).
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Figure 14: Measurement propagation for high-level HLF activities

Chaincode call

Endorsement

Rec. prop. Sending res.

Chaincode execRec. call Returning res.

Figure 15: Measurement propagation for the endorsement-related activities
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Figure 16: Measurement propagation for the correct validation-related activities

6.3 Model and measurement data validation

Validating the measurement data is an important step to ensure the correctness of
data analysis findings and insights. The proposed model-guided approach necessi-
tates the following validation steps before proceeding to the performance analysis
tasks:
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1. checking the conformance of measurement data to the activity model;

2. and checking the consistency of the measurement data itself.

6.3.1 Detecting modelling errors

The following scenario demonstrates how model conformance checks can reveal
activity modelling errors. Such errors can be common if the model is reverse-
engineered by others than the platform developers (like in this case study).

For example, HLF peers log the State validation and commit activity details us-
ing the following message format: [mychannel] Committed block ... in 26ms

(state validation=3ms block and pvtdata commit=16ms state commit=3ms).
Accordingly, a previous version of the consensus model refined the State val-

idation and commit activity as having only three subactivities (state validation,
block commit, and state commit, as indicated by the log format). Fig. 17 shows
the temporal data propagation for the initial version.

Note how the (directly unobserved) beginning time of the State validation sub-
activity can be calculated in two different ways (highlighted arrows in Fig. 17): i)
based on sibling activity data; ii) and/or directly from parent activity data. There
should not be any difference between the two paths in the case of a correct model
and instrumentation. Validating this assumption requires checking whether the
beginning times of the State validation subactivities coincide with the beginning
times of the State validation and commit parent activities for every transaction, as
required by the startedBySubactivity relation among the two activity classes.

However, performing the check revealed that the equality constraint was violated
for every transaction. The State validation activities always started later than their
parent activities, indicating the presence of a hidden subactivity. Moreover, the
magnitude of the missing time was sometimes non-negligible (Fig. 18), i.e., it could
not be considered a measurement noise, thus warranting further investigation.

As it turns out, the format of the log message was misleading and not all relevant
subactivities were listed in the message. The source code inspection of HLF revealed
that there is an other non-negligible subactivity performed during State validation

Purge & notify
State val. & com.

Check payload

Block val.

Getting block Fetch pvt. data

Block com.State val. State com.

Figure 17: Measurement propagation for the initial validation-related activities
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Figure 18: Frequency distribution of missing validation time durations

and commit, namely committing the state modifications of a transactions to a
history database. Accordingly, the final model of the HLF consensus was extended
with the Commit history subactivity (Fig. 16).

Note that measurement noises are a common occurrence in complex, especially
high-throughput or overloaded systems. The measurement data conformance check
also revealed some inconsistencies around the Check payload activity. Calculating
the beginning time of the activity from its own end time and duration yielded a
different result than propagating the end time of its immediate predecessor Getting
block activity. Even though the propagation path is short and simple, it still vio-
lated the modeled activity relationship. However, the magnitude of the amount of
unaccounted time for the activity (Fig. 19) is negligible.

One probable explanation could be that the missing time is a side-effect of the
logging mechanism: the measured duration was calculated based on times startcalc
and endcalc, while the logging library marked the log message with an endlog >
endcalc timestamp, and endlog was taken as the measured end time by the log
processing pipeline. An other explanation could be that negligible activities were
performed between the two modeled activities that can be safely ignored during
performance analysis.

6.3.2 Detecting measurement errors

The systematic data propagation can also aid the detection of measurement (or
measurement setup) errors. The missing subactivity issue manifested itself as un-
accounted time in the transaction timeline. The other important symptom of in-
consistent measurement data is negative durations.

The analysis showed negative Receiving proposal activity durations upon mea-
surement data validation. The duration in question is a derived measurement.
Its value is indirectly calculated as the difference between the beginning time of
calling a chaincode (Chaincode call activity) and the beginning time of creating
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Figure 19: Frequency distribution of missing payload check time durations

a transaction (Transaction processing activity), both data being direct measure-
ments. A negative duration result would mean that the chaincode is called before
the transaction is even constructed, which is a serious event causality violation.

Note that the two direct measurements (the bases of the duration calculation)
originate from two different (physical) components in the distributed network: the
beginning of Transaction processing is captured by Hyperledger Caliper (i.e., the
HLF client), while the beginning of the Chaincode call is logged by the HLF peer
nodes. Fig. 20 shows the Receiving Proposal durations for each transaction over the
time of the SUT measurement and reveals a curious trend: the anomalous dura-
tions smoothly oscillate around zero over time, i.e., negative durations are not that
isolated and sporadic. Moreover, Fig. 20 depicts the activity data of each transac-
tion after non-bottleneck endorsement activities have been eliminated, as outlined
in Sec. 6.2. Correspondingly, different Receiving Proposal activity durations may
originate from different peer nodes of the network.

Combining the observations with the outlined assumptions results in the follow-
ing working hypothesis: the system clock of a peer node periodically drifts out of
sync from the other components. Measurement setup investigations later revealed
that network nodes used a default, light-weigh time synchronization service instead
of a more sophisticated one that provides higher precision.

Measurement errors of such a low magnitude was deemed negligible in the pre-
vious section (Fig. 19). However, in this case, the presence of event causality
violations shadows the usually insignificant magnitude of the actual measurement
error. For example, process mining approaches can produce significantly different
results in the presence of such causality violations.

Considering only the atomic activities of the HLF consensus model results in the
low-level sequence of steps of the transaction life-cycle. Inputting the measurement
data of such activities into a process mining algorithm should result in the process
of Fig.21, assuming that the measurement data reflects the correct causality of
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Figure 20: Effect of misaligned system clocks over time

events. However, the presence of causality violations in the input temporal data
can lead to an incorrect process model (Fig. 22). Such models can hinder the correct
understanding and insights of the SUT (that would be the goal of process mining)
even for experienced HLF domain experts.

Figure 21: Process mining result without causality violations

Figure 22: Process mining result with causality violations
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Figure 23: A partial HLF activity time series hierarchy demonstrating a latency
anomaly.

Correspondingly, systematically cleaned and validated data is a must if the data
analysis workflow incorporates formal approaches. The proposed approach and
supporting ontology models enable rigorous (and possibly automated) measurement
data validation before performing further performance analysis tasks.

6.4 Guided bottleneck identification

The primary goal and advantage of the proposed approach is that by the time the
data analysts reach the actual performance analysis task, the available measurement
data is validated, cleaned, and structured among semantically precise relations. The
last section demonstrates how bottleneck identification and the root cause analysis
of latency anomalies become intuitive and easy-to-perform tasks, given the proper
input data.

Let us assume that an end-to-end latency spike is detected on the client-side,
classified as an anomaly (the exact anomaly detection methods are out of the scope
of this paper). Fig. 23 demonstrates how the hierarchical activity data aids the root
cause analysis of the anomaly, uncovering bottlenecks contributing to the latency
spike.

The analysis employs a drill-down approach using the parent-subactivity hier-
archy relations to gradually pinpoint significant latency contributors. At first, the
latency of the high-level transaction processing subactivties are considered. Since
endorsement times seem constant during the anomaly, the endorsement activity is
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dismissed as bottleneck and root cause. The ordering and validation subactivity,
however, exhibits the same latency trend as the end-to-end anomaly. Correspond-
ingly, it becomes the next activity of interest.

At this point, the subactivity latency trends show an interesting pattern. Nei-
ther the block creation, nor the block validation subactivites show the same trend
as their anomalous parent activity. However, both indicate deviation from their
previous baseline latency characteristics. Accordingly, the hierarchical exploratory
process supports the identification of multivariate root causes.

Block creation is a leaf activity element in the HLF consensus model, thus
further root cause analysis along this path would require additional instrumentation
or the detailed inspection of corresponding computing resource utilizations. The
other prominent root cause path is the block validation activity. Further drill-down
steps reveal that the atomic block commit activity caused the latency spike in this
path. However, it must be noted that while the block commit anomaly is a short
transient spike, the block creation latency needs more time to settle, hinting at some
system statefullness and memory in the performance domain (probably resulting
from a queuing mechanism).

Nevertheless, the hierarchical and systematic approach allows the intuitive and
quick identification of bottleneck activities of the SUT. Given the activities of inter-
est, the next analysis steps include the correlation of bottleneck activity latencies
with the corresponding component resource utilizations, or with the characteristics
of the workload. Such correlations can answer the question whether the anomaly
is caused by resource limits, or it is not really an anomaly, but a change in the
presumed workload affected the exprected performance characteristics of the SUT.
Such analysis, however, is outside the scope of this paper.

7 Conclusion

The increasing volume and dimensionality of performance measurement data neces-
sitate the rigorous model-based support of data analysis tasks, such as bottleneck
identification. While traditional DevOps approaches already benefit from MDE,
performance data analysis lacks such support.

The paper proposed an ontology-guided workflow (and presented the corre-
sponding ODK) for modeling the composition of complex platform activities and
their explicit observability. The ODK also supplies numerous inference rules to
reason about the implicit observability of activities, creating a rich model serving
as a strong formal basis for later performance analysis tasks.

A representative case study demonstrated the advantages of the approach: a
model-guided drill-down bottleneck identification process for a TPC-C benchmark
workload executed on a HLF network. The current work aims at the integration
of domain-specific knowledge in performance analysis into a core ontology, provid-
ing a strong formal foundation for measurement data analysis and performance
monitoring of complex systems.
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Abstract

A family is the smallest entity that formed the world with specific charac-
teristics. The characteristics of a family are that the member can/may share
some similar DNA and leads to similar physical appearances, including simi-
lar facial features. This paper proposed a dual convolutional neural network
(CNN) with a pyramid attention network for image-based kinship verifica-
tion problems. The dual CNN classifier is formed by paralleling the FaceNet
CNN architecture followed by family-aware features extraction network and
three final fully-connected layers. A channel-wise pyramid attention network
is added after the last convolutional layers of FaceNet CNN architecture.
The family-aware features extraction network is used to learn family-aware
features using the SphereFace loss function. The final features used to clas-
sify the kin/non-kin pair are joint aggregation features between the pyramid
attention features and family-aware features. At the end of the fully con-
nected layer, a softmax loss layer is attached to learn kinship verification
via binary classification problems. To analyze the performance of our pro-
posed classifier, we performed experiments heavily on the Family in The Wild
(FIW) kinship verification dataset. The FIW kinship verification dataset is
the largest dataset for kinship verification currently available. Experiments
of the FIW dataset show that our proposed classifier can achieve the highest
average accuracy of 68.05% on a single classifier scenario and 68.73% on an
ensemble classifier scenario which is comparable with other state-of-the-art
methods.
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1 Introduction

Humans are unique species in the universe that discriminate by visual appearances,
including human faces, fingerprints, retina patterns, and gait. All of those visual
appearances are widely used as biometric authentication features of identity. The
human faces are a little bit special due to the visual appearances that can be descent
from parents or grandparents and can be used to analyze the kinship relationship
among people. In this modern era, the camera sensor is widely used to capture
images. Many of those images were uploaded to the internet, including photos
with human faces and family photos. In recent years, several kinship relationship
datasets were formed by researchers to support the development of image-based
kinship relationship problems, including KinFaceW-I [26, 27], KinFaceW-II [26, 27],
KFVW (Kinship Face Video in The Wild) [54], Cornell KinFace [12], Tri-Subject
Kinship [31] and FIW (Family in The Wild) [37, 50, 35]. The dataset is usually
formed by crawling well-known families’ photos on the web, including actresses and
the royal family with clear kinship relationships between the family members.

One of the technologies that provide an opportunity to develop image-based kin-
ship verification problems is the evolution of deep learning methods widely used af-
ter Krizhevsky et al. [17] won the ILSVRC 2012 challenges by using a convolutional
neural network classifier. After 2012, deep learning is constantly used for a lot of
problems and applications, from computer science to remote sensing applications.
There are several deep learning approaches for image-based kinship verification
problems, including the one described in [20, 21, 11, 50, 8, 32, 35, 33, 30, 36, 53].

In this paper, we proposed a dual convolutional neural network (CNN) classifier
with joint features aggregation and a pyramid attention network for image-based
kinship verification problems. Our proposed classifier was formed by paralleling the
FaceNet CNN architecture [40] and adding two subnetworks, one for family-aware
features extraction and one for kin/non-kin classification. Our contributions can
be listed as follows.

• We investigated a dual CNN classifier with joint features aggregation for
image-based kinship verification problems. The experiments are heavily per-
formed using the FIW dataset [37, 50, 35], which is considered the largest
kinship verification dataset currently available.

• We investigated the combination of our proposed classifier with a channel-
wise pyramid attention network. The attention network described by Zhao
and Wu [58] is adopted with our proposed classifier. Experiments on the
FIW dataset show that adding a channel-wise pyramid attention network can
improve the classifier’s performance.
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• For further analysis, we also investigated our proposed classifier with a subset
of the FIW dataset, including RFIW’17 [38] and RFIW’18 [35]. The subset
of the FIW dataset is used for the competition, which can be compared side-
by-side with other methods in the competition.

The rest of the paper is organized as follows. Section 2 discussed several related
works on image-based kinship relationship analysis. Our proposed classifier is de-
scribed in section 3, follows by results and discussion in section 4. Finally, we
conclude the experiments in the last section.

2 Related Work

In recent years, there are several works on image-based kinship relationship analysis,
including those described in [8, 49, 33, 39, 56, 19]. Dawson et al. [8] reported
a performance comparison FSP (From-Same-Photo) classifier on several kinship
verification datasets. The FSP classifier is trained on the same photo dataset
instead of kinship verification data. The results show that the performance is very
good on some kinship verification datasets (some achieved around 90%). Dawson
et al. [8] conclude that some kinship verification datasets are not suitable for model
development because a lot of the data is taken from the same photo.

Robinson et al. [39] described the RFIW 2020 challenges results with three
tasks: kinship verification, tri-subject verification, and search & retrieval of missing
children. To create a baseline performance, Robinson et al. [39] use SphereFace
CNN classifier [24] which proved to produce high accuracy on face recognition
tasks. The baseline performances of the SphereFace classifier are 64% on kinship
verification tasks, 68% on tri-subject kinship verification, and mAP of 0.02 on
missing children search & retrieval tasks.

Yu et al. [56] proposed a deep fusion siamese network for kinship verification
problems. The deep siamese network is used to extract the features of two faces
input. The features are fed into a features fusion network before classifying using
fully connected layers with a sigmoid activation function at the network’s end. Yu
et al. [56] perform experiments using several different features fusion mechanisms
and two different loss functions, including BCE (Binary Cross Entropy) loss and
focal loss. Experiments on RFIW 2020 dataset show that the proposed classifier
achieves an average accuracy of 76% on kinship verification problems and 79% on
tri-subject kinship verification problems.

A combination of the Young Generation Model with Sparse Discriminative Met-
ric Loss (SDM-Loss) was proposed by Wang et al. [49] for kinship verification
problems, especially for parents-child and grandparents-grandchild kinship. The
model is based on StarGAN CNN architecture described by Choi et al. [5] and
modified the loss with SDM-Loss. Experiments on 5-folds FIW dataset show that
ResNet+SDMLoss with an additional young generation model can achieve an av-
erage accuracy of 68.68% with siblings and 69.47% without siblings kinship. The
testing is divided into two protocols because the proposed classifier uses a young
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generation model that may not work properly when combined with siblings kinship
that has lower different ages than parent-child or grandparents-grandchild kinship.

Laiadi et al. [19] use Multilinear Side-Information based Discriminant Analy-
sis integrating Within Class Covariance Normalization (MSIDA+WCCN) to train
a model for image-based kinship verification problems. The features used by the
model are extracted from the fc6 and fc7 layers of four VGG-based CNN that are
trained using the ImageNet dataset. The final decision is decided using a sim-
ple cosine similarity score between features extracted from two faces using the
MSIDA+WCCN model. The proposed model was tested using the KinFaceW
dataset and achieved an average accuracy of 87.65% and 87% on the KinFaceW-I
and KinFaceW-II datasets.

3 Proposed Classifier

This section describes our proposed classifier, which consists of two different things,
the dual CNN classifier with family-aware features and channel-wise pyramid at-
tention network. Figure 1 shows the diagram of our proposed classifier.

3.1 Dual Convolutional Neural Network

The dual CNN classifier of our proposed classifier is formed by paralleling FaceNet
CNN architecture which will process for each face image pair. An additional family-
aware features extraction network is attached at the end of the classifier, which is
adapted from [33]. We use joint features aggregation between pyramid features and
family-aware features to improve the classifier’s performance. Those joint features
aggregation networks proved can improve the classifier’s performance in some tasks,
including super-resolution tasks [22] and remote sensing image classification [28].
Unlike the dual CNN classifier used in [33], the backbone of our dual CNN classifier
weights is not frozen but updated in the training process with a 0.001 times lower
learning rate comparing with a fully connected and pyramid attention network. We
use three different loss functions that can be computed as follows.

L = Lk + α(Lf1 + Lf2) (1)

with Lk is the loss function of kin/non-kin classification loss, Lf1 and Lf2 is the
loss function for learning family-aware features, and α is the contributing factor
to the final loss value. We use α > 1 for the training process, which will let the
classifier learn the family-aware features strongly.

To learn the family-aware features, we use two different deep metric learning
widely used for face recognition tasks, including SphereFace [24] and Center Loss
[51]. Deep metric learning can be divided into two categories, euclidean metric-
based loss [43, 42, 40, 51, 13] and cosine metric-based loss [25, 47, 24, 48, 9]. The
SphereFace is deep metric learning that cosine metric-based loss function, which
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can be computed as follows.

La =
1

N

N∑
i=1

− log

(
e||xi||ψ(θci,i)

e||xi||ψ(θci,i) + fs(ci)

)
(2)

fs(ci) =
∑
j 6=ci

e||xi|| cos(θci,i) (3)

with ψ(θci,i) defined as ψ(θci,i) = (−1)k cos(mθci,i)− 2k, θci,i ∈
[
kφ
m ,

(k+1)φ
m

]
, and

k ∈ [0,m − 1]. We use m = 4 to performs the training process as described in
the original SphereFace paper [24]. The second deep metric learning used to train
our proposed classifier is center loss [51]. The center loss works by minimizing the
variation of the intra-class features while trying to separate the features between
classes. The loss function for center loss is divided into two functions; the first loss
function is used to update the center or centroid of the features, while the second
loss function is used to classify the features based on their label. Let xi is the
extracted features of the last layer of the classifier and cyi is the centroid of the
features of class yi-th of the data, the loss function used for updating the center
can be computed as follows.

Lc =
1

2

N∑
i=1

∣∣∣∣xi − cyi
∣∣∣∣2
2

(4)

The efficient way to update the centroid of the features is by analyzing all of the
examples and deciding the centroid’s shift based on the error produced by the
examples. The process is not possible when training the classifier using the mini-
batch SGD algorithm. Instead, Wen et al. [51] proposed a joint loss function
between softmax and center loss that can be computed as follows.

Lf = Ls + µLc (5)

= −
m∑
i=1

log
eW

T
yi

xi+byi∑n
j e

WT
j xi+bj

+
µ

2

m∑
i=1

||xi − ci||22 (6)

with µ is the contribution of the center loss in the final loss function, and Ls is the
softmax loss function. We use µ = 0.008 to performs the training process, which
the original authors also recommend.

3.2 Channel-wise Pyramid Attention Network

Attention network is one type of additional network that explores the importance
of features on the tasks. The attention network is widely and originally used for
natural language processing problems, including that described in [2, 29, 41, 55,
45, 3, 44, 1, 10]. As time goes by, some researchers also tried to implement an
attention network for the problem with an image as an input of the classifier,
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including that described in [46, 15, 52, 57, 58]. Zhao et al. [58] proposed a pyramid
attention network for saliency detection problems. The pyramid attention network
consists of two types of attention network, channel-wise attention network and
spatial attention network. The channel-wise pyramid attention network computes
the importantness of the features per channel, while the spatial attention network
computes importantness per feature based on spatial coordinates.

Our proposed classifier adopted the channel-wise pyramid attention network
(PAN) described by Zhao et al. [58] and joined the features with family-aware
features [33]. Assume that z ∈ RW×H×C is the concatenation of multi-level convo-
lutional layer outputs with z = [z1, z2, · · · , zC ], C is the total channel number of
the features, and zi ∈ RW×H is the i -th channel of z, the output of channel-wise
attention network can be calculated as follows.

Ac(v,W ) = σ(fc2(δ(fc1(v,W1)),W2)) (7)

with v ∈ RC is unfold version of z, W is the parameters in the channel-wise
attention network, σ is the sigmoid function, δ is the ReLU function, fc1 and fc2 is
the fully-connected function. In our implementation, we use the PReLU function
[14] instead of the ReLU which used in the original implementation. We change the
activation function to match the activation function used in the backbone network
(FaceNet architecture). The final features are computed by weighting the features
with the output of the channel-wise attention network as follows.

z̃ = z ·Ac(v,W ) (8)

The operation is performed channel-wise multiplication using the attention weights.
The features used to calculate the channel-wise attention outputs are extracted

using CFE (Context14 aware Features Extraction) module, which is also used in
the original pyramid attention network paper [58]. The CFE module consists of
four convolutional layers with different kernel size and dilation rates, 1×1 kernel,
3×3 kernel with dilation rates of 3, 3×3 kernel with dilation rates of 5, and 3×3
kernel with dilation rates of 7. The output of the CFE module is the combination of
those four convolutional with additional batch normalization and PReLU activation
functions. As shown in Figure 1, the output of convolutional blocks 2, 3, and 4 is
used to extract pyramid features using the CFE module and combined it to form
the final pyramid features. Features extracted from convolutional block two are
downsampled to match the resolution of other features.

3.3 Face Segmentation

To ensure that the classifier only learned the appropriate face features, we applied
a face parsing/face segmentation of the input faces in the preprocessing step before
the training process. We use a face labeling model described in [4], which utilizes
the face labeling problem described in [23] and is used to supplying the semantic
segmentation for thermal-to-visible image translation using a generative adversarial
network. The face parsing model produces eleven labels of face images, including
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Figure 2: The results of the face parsing model that was used in our pre-processing
step. (a) face image, (b) the parsing result with background, (c) the parsing result
without background, and (d) the final result used in the training process.

background, left eye, right eye, left eyebrow, right eyebrow, nose, upper lips, lower
lips, inside the mouth, facial skin, and hair.

In our experiments, we only take pixels that label as non-background (eyes,
eyebrows, nose, lips, mouth, facial skin, and hair) for the training process. Figure 2
shows the face parsing process and removing the background labeled pixels before
saved the final images for the training process (as showed in Figure 2-(d)). By
using the preprocessing face images, our proposed classifier can achieve a good
validation accuracy comparing without the face parsing preprocessing process. The
face segmentation preprocessing process is only applied in the training process.

4 Results and Discussion

To evaluate our proposed classifier, we performed a detailed analysis using the FIW
dataset [37, 50, 35] and Caffe deep learning framework [16]. We also performed
experiments using only a family-aware CNN classifier [33] and several ensemble
configurations. Figure 3 shows the flow of the kinship verifiation experiments for
our proposed classifier.

4.1 FIW Dataset

The FIW dataset [37, 50, 35] is currently the largest kinship verification dataset and
proved to be a challenging problem. The FIW dataset consists of 11,932 face im-
ages covering around 1,000 families with eleven different kinship relationship types.
The eleven kinship relationship can be divided into three categories, same gener-
ation kinship (siblings, brother, and sister), first-generation kinship (mother-son,
mother-daughter, father-son, and father-daughter), and second-generation kinship
(grand mother-grand son, grand mother-grand daughter, grand father-grand son,
and grand father-grand daughter). Figure 4 shows several examples of face im-
ages for each kinship category on the FIW dataset. As shown in Figure 4, higher
generation kinship may reduce the facial features similarity which reasonable due
to combination of DNA from grand parent to parent to grand child. There are
several different split configurations (training and testing list) of the FIW dataset.
This paper uses three different configurations, including the 5-folds configurations
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Start
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For each fold configuration

Training CNN Model

Apply face parsing for
training data
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Averaging results
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Good  
Validation  

Results?
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Figure 3: The main flow of our experiments using the FIW dataset.

(no overlapped family between folds), RFIW 2017 challenge, and RFIW 2018 chal-
lenge. We heavily perform the experiments using the 5-folds configuration before
use RFIW 2017 and RFIW 2018 split configuration.

4.2 Experiments Setup

Implementation Detail. We use four different classifier configurations of our
dual CNN classifier with a pyramid attention network. All approaches are based on
FaceNet CNN architecture, and final features are constructed by combining family-
aware features with pyramid attention features. Each classifier can be described as
follows.

• DFaceNet-FC512-CAtt. Dual FaceNet classifier combined with 512 family-
aware features learned using SphereFace Loss function [24] and channel-wise
attention network (CAtt). The total features used for the final fully-connected
layers are 896 features with 512 family-aware features and 384 features from
the pyramid attention network.

• DFaceNet-FC1K-CAtt and DFaceNet-FC2K-CAtt. The classifier uses
the same configuration as the DFaceNet-FC512-CAtt classifier but with a
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Same-Generation

Father-Daughter

Mother-Daughter

Mother-Son

Siblings

Sister

Grand Mother-Grand Son

Grand Mother-Grand Daughter

Grand Father-Grand Son

Grand Father-Grand Daughter

First-Generation Second-Generation

Brother Father-Son

Figure 4: Kinship relationship categories in the FIW dataset and their examples
pair of each category [37, 50, 35].

different number of family-aware features, 1,024 and 2,048. The total number
of final features for DFaceNet-FC1K-CAtt and DFaceNet-FC2K-CAtt is 1,408
and 2,432 features, respectively.

• DFaceNet-FC512-ASCL-CAtt. Similar to DFaceNet-FC512-CAtt but
with two different family-aware features, features learned using SphereFace
Loss function and features learned using Center Loss function. The final
features are 1,024 family-aware features (from two different family-aware
branches) and 384 pyramid attention features.

All of the classifiers use a CPFE network with four different atrous convolutions,
1×1 kernel with dilation rate of 1 and 3×3 kernel with dilation rate of 3, 5, and 7.
The CPFE network is attached after each output of blocks 2 to 4, and the pyramid
features are constructed by combining the output of all CPFE networks.

Training Process. The training process is done for ten epochs using NAG
(Nesterov Accelerated Gradient) training algorithm. The learning rate is initialized
at 0.01 with a polynomial reducing policy and additional clipping gradient method
to reduce the exploding gradient problem, especially in the first couple of epoch. We
reduce the learning rate by 0.001 factor for the backbone network to preserve the
classifier’s ability to extract face features. The input images are resized to 120×120,
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followed by random cropping using 112×112 resolution and data normalization
before the training process.

Testing Process. In the testing process, we use multi-resolution approaches
by classifying the input image using several different input resolutions, including
115×115, 118×118, 122×122, and 128×128. Each resolution is cropped into ten
different crops (center, left top, left bottom, right top, right bottom, and their
respective mirror version of the crops) with a resolution of 112×112. After the
pre-processing process, the testing process performs a classification using 40 crops,
and the final classification score is computed by averaging the score of all crops. We
performed ensemble testing by using a simple average ensemble mechanism, which
proved to improve the classifier’s performance by around 1-2%.

4.3 Results and Discussion

The results are divided into four different independent experiments, which are de-
tailed discussed in each sub-section. We added one additional preliminary experi-
ment using the FA-CNN classifier [33], which was used as the basis for our proposed
classifier.

4.3.1 Preliminary Results

In the preliminary experiments, we use Dual FaceNet-FA (Family-Aware CNN)
[33] with the SphereFace Loss function to learn the family-aware features. We
use different training scenarios, which are not time-consuming, as reported in the
original paper. The training process is done with the same hyperparameter setting
as described in the experiment’s setup. Lambda λ = 10 is used for the SphereFace
Loss function, which in the original paper suggested choosing a small lambda value
(e.g. 10 or 5) to compensate for the original softmax loss function. Table 1 shows
the result of the preliminary experiments using the 5-folds FIW dataset and three
different classifier configurations. As shown in Table 1, the average accuracy of
the classifier is similar to the one reported in [33], although we use a different
training scenario. The second-generation kinship relationship still produces the
lowest accuracy due to the limited data available in the dataset.

4.3.2 5-Folds Configuration

After preliminary experiments, we conducted the experiments using a Dual FaceNet
classifier with family-aware features and channel-based pyramid attention network
features. Four different classifiers along with ensemble configuration were used to
perform the experiments. Table 2 shows the results of the Dual FaceNet classifier
with family-aware features and channel-wise pyramid attention network features
with average accuracy ranged from 67.80% to 68.05%. As shown in Table 2, the
best performance of the single classifier is achieved using the DFaceNet-FC1K-
CAtt classifier with an average accuracy of 68.05%. The second-generation kinship
verification seems still the hardest case for the classifier with average accuracy
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(a) makeup

(b) large age difference

(c) color

Figure 5: Examples of the correct classification (left) and incorrect classification
(right) on sister kinship relationship using same person pair.

ranged from 62% to 64%. The highest accuracy appears on sister and mother-
daughter kinship type, which may be supported by the fact that sister and mother-
daughter may like the same favourite makeup style and may contribute to the
training process.

We take a quick analysis for the sister kinship relationship category, and Figure
5 shows the pair that correctly classify (left side) and incorrectly classify (right
side). Three different factors affected the classification process; the first one is the
makeup used in the photo (Figure 5-(a)), large-age difference (Figure 5-(b)), and
color (Figure 5-(c)). We believe that those three factors also affected other kinship
relationship categories. That is why the sister kinship relationship type achieved
the highest average accuracy compared with other types of kinship.

To further improve the classifier’s performance, we also conducted the testing
process using four ensemble configurations, as shown in Table 2. As shown in Table
2, the ensemble configuration can improve the classifier’s performance by around
0.5-0.8% compared with the single classifier configuration. As predicted, the second
generation kinship relationship categories still produce the lowest average accuracy.
Still, it is relatively higher compared with the single classifier results except for
the grand mother-grand son kinship category. The best average accuracy of the
ensemble classifier is 68.73% using Ensemble All (four of the DFaceNet classifiers).

Figure 6 shows the ROC curve plot of eleven kinship relationship categories
from three different classifiers, the DFaceNet-FC512 classifier, DFaceNet-FC1K-
CAtt classifier, and Ensemble All configuration. The AUC score is also included in
the graph to provided insight information regarding the classifier. As shown in Fig-
ure 6, the ensemble configuration provides around 0.01 increase on the AUC score.
The ROC curve of second-generation kinship relationship categories is not smooth
with a lot of jigsaw-like lines, especially on grand father-grand daughter kinship.
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BBSS SIBS

GMGD GMGS

FD FS MD

MS GFGD GFGS

Figure 6: ROC curve of three different classifiers, the DFaceNet-FC512, DFaceNet-
FC1K-CAtt, and Ensemble All, for 5-folds split configuration on FIW dataset.
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Table 3: Comparison of our proposed classifier with several other methods on 5-
folds FIW dataset.

Siblings Parent Grand Avg.
No. Method

Child Grand All

1. SphereFace [35] 73.15 69.76 65.60 69.18

2. SDMLoss [49] 74.11 69.08 64.22 68.68

3. DML1[50] 75.27 70.05 65.89 68.79

4. Dual VGG-Face [34] 69.43 66.65 61.37 65.49

5. FA-CNN [33] 73.64 71.12 62.93 68.84

6. Our method 72.68 70.94 63.53 68.73

The AUC (area under the curve) on the ROC curve shows that the worst perfor-
mance occurs in the grand father-grand daughter class and the best performance
is occurs in the sister class.

Comparison with state-of-the-art (SOTA). We listed several different
other methods that use 5-folds FIW dataset. In the early FIW dataset, the 5-
folds configuration consists of only nine instead of eleven kinship categories [50].
Although Wang et al. [50] use different 5-folds configurations, we still included the
results for information preservation because we cannot recreate the experiments
due to no available information regarding the split configuration. Table 3 shows
the comparison between our proposed classifier with several other methods on the
5-folds FIW dataset. We also include the average accuracy of each generation
(siblings, parent-child, and grand parent-grand child) to provide more information
regarding the classifier’s performance on different generations.

4.3.3 RFIW’17

We use the RFIW2017 challenge split configurations to perform similar experiments
as in the 5-folds experiments to make more comparisons. We use the same hyperpa-
rameter and epoch to perform the training process and tested using the validation
dataset only because submission to the challenge website is already closed by the
organizer. Table 4 shows the results of our proposed classifier on the RFIW’17

1The 5-folds dataset is different with nine kinship relationship categories instead of eleven.
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dataset. As shown in Table 4, the best performance of single classifier configura-
tion is achieved using the DFaceNet-FC1K-CAtt classifier with an average accuracy
of 71.20%. The ensemble configuration is improved by around 0.5-1.0%, and the
best performance is achieved using Ensemble All classifier with an average accuracy
of 72.44%.

Same with previous experiments, we also plot the ROC curve of each kinship
relationship category. Figure 7 shows the ROC curve of three different classifier con-
figurations, including DFaceNet-FC512-CAtt, DFaceNet-FC1K-CAtt, Ensemble-1-
2-4, and Ensemble All. As shown in Figure 7, the ROC analysis shows that our
proposed classifier performs well with an AUC score of more than 80% except
for the father-son and father-daughter kinship relationship. The same AUC score
improvement of 0.01 as in the 5-folds experiments also occurs in the RFIW’17
experiments.

Table 6 shows the comparison of our proposed classifier with other methods
on the RFIW’17 dataset. Unfortunately, we can also provide the accuracy on the
validation set instead of the testing set because the organizer already close the
submission server, and we don’t have any annotation on the testing set. As shown
in Table 6, our proposed classifier is comparable with other methods. We are
aware that our proposed classifier does not produce the highest accuracy. Still, in

Table 6: Comparison of our proposed classifier with several other methods on
RFIW’17 dataset (average accuracy of each category.

Siblings Parent Avg.
No. Method

Child All

1. KinNet [21] 75.07 74.68 74.85

2. AdvNet [11] 73.00 68.46 70.41

3. LPQ-SIEDA [18] 54.53 55.01 54.81

4. Multi-Set Learning [7] 63.68 62.66 63.10

5. Parallel SPCNN [32] 62.01 60.81 61.33

6. FA-CNN [33] 74.52 70.79 72.39

7. Our method2 75.02 70.50 72.44

2The average accuracy is based on validation set instead of testing set
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our understanding, the KinNet approaches [21] use a deeper and bigger classifier,
which is natural will have more accuracy than our approaches.

BBSS SIBS

FD FS

MD MS

Figure 7: ROC curve of three different classifiers, the DFaceNet-FC512-CAtt,
DFaceNet-FC1K-CAtt, Ensemble-1-2-4, and Ensemble All, for the RFIW’17
dataset.
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4.3.4 RFIW’18

The last experiment is conducted using the RFIW’18 dataset. The RFIW’18
dataset is a subset of the FIW dataset used for the RFIW challenge 2018 and
consists of the same number of kinship relationships as the 5-folds configuration.
Same as the previous experiments, the same hyperparameter values were used to
perform the experiments. Table 5 shows the results of the experiments using four
different single classifiers along with four ensemble configurations. As shown in
Table 5, the best single classifier performance is achieved using DFaceNet-FC2K-
CAtt with an average accuracy of 67.69%. By using ensemble configuration, the
classifier’s performance is slightly improved by around 0.5%, with the best average
accuracy of 68.05%. As we expected, the worst performance of the proposed classi-
fier is on second generation relationship categories which also occurs in the previous
experiments. The difference between RFIW’18 with two previous experiments is
that the best performance is not occurring in the sister kinship category but in
siblings kinship. We believe that those phenomena occur because the dataset’s face
images composition may consist of more face pairs with large-gap age.

Figure 8 shows the ROC curve of three different proposed classifiers, including
DFaceNet-FC512-CL-CAtt, DFaceNet-FC2K-CAtt, and Ensemble-All. As shown
in Figure 8, all classifier configurations do not perform well on the grand father-
grand daughter and grand mother-grand daughter category. Same as in the 5-
folds experiments, the best performance occurs in the same generation kinship
relationships. According to Figure 8, the ensemble configuration can improve the
AUC score by around 0.01 on all kinship relationship categories.

Table 7 shows the comparison of our proposed classifier with other methods

Table 7: Comparison of our proposed classifier with several other methods on
RFIW’18 dataset (average accuracy of each category.

Siblings Parent Grand Avg.
No. Method

Child Grand All

1. Group #1 [6] 71.67 70.61 63.17 68.20

2. Group #2 67.53 62.82 58.38 62.44

3. Group #3 66.75 62.65 58.87 62.40

5. FA-CNN [33] 70.34 68.54 62.83 66.96

6. Our method 70.71 69.51 61.62 66.97
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Figure 8: ROC curve of three different classifiers, the DFaceNet-FC512-CL-CAtt,
DFaceNet-FC2K-CAtt, and Ensemble All, for RFIW’18 dataset.
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on the RFIW’18 dataset. We took the three top participants with the highest
performance on the RFIW’18 competition. Unfortunately, the method used by
Group #2 and #3 is not published yet. As shown in Table 7, our proposed clas-
sifier can achieve an average accuracy of 66.97% and ranked the second-highest
performance on the RFIW’18 dataset. Compared with the FA-CNN classifier, the
proposed classifier produces a similar performance. Still, the performance per gen-
eration shows that the pyramid attention network can improve the performance on
same and first-generation kinship relationships while decreasing the performance
on second-generation kinship relationships.

5 Conclusion

We present our proposed classifier that combined FaceNet CNN architecture origi-
nally used for face recognition with pyramid attention network to solve the kinship
verification problem. Our proposed classifier was formed by parallelling the FaceNet
CNN architecture and adding family-aware features and a pyramid attention net-
work. The final features were constructed by combining pyramid attention features
and family-aware features and fed the features into three fully connected layers to
perform the verification tasks. Experiments on three different subsets of the FIW
dataset show that the proposed classifier can achieve good accuracy and is compa-
rable with the state-of-the-art classifier on the FIW dataset. The proposed classifier
achieves an average accuracy of 69.73% on the 5-folds RFIW dataset, 72.44% on
the RFIW’17 dataset, and 66.97% on the RFIW’18 dataset.

For further study, experiments using several different CNN architectures (in-
cluding non-face recognition architecture) with pyramid attention networks are
demanding to show which CNN architectures perform best for image-based kinship
verification. The second-generation kinship type may need to be solitary exper-
imented due to lower facial features matched between the pair. Other concerns
worth analyzing are the relation between each region of the face for kinship verifi-
cation problems (e.g., eyes, lips, nose, etc.).
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Refined Fuzzy Profile Matching∗

Gábor Ráczab, Attila Saliac, and Klaus-Dieter Schewed

Abstract

A profile describes a set of properties, e.g. a set of skills a person may
have or a set of skills required for a particular job. Profile matching aims
to determine how well a given profile fits to a requested profile and vice
versa. Fuzzyness is naturally attached to this problem. The filter-based
matching theory uses filters in lattices to represent profiles, and matching
values in the interval [0,1], so the lattice order refers to subsumption between
the concepts in a profile. In this article the lattice is extended by additional
information in form of weighted extra edges that represent partial quantifiable
relationships between these concepts. This gives rise to fuzzy filters, which
permit a refinement of profile matching. Another way to introduce fuzzyness
is to treat profiles as fuzzy sets. In the present paper we combine these two
aproaches. Extra edges may introduce directed cycles in the directed graph of
the ontology, and the structure of a lattice is lost. We provide a construction
grounded in formal concept analysis to extend the original lattice and remove
the cycles such that matching values determined over the extended lattice are
exactly those resulting from the use of fuzzy filters in case of crisp profiles.
For fuzzy profiles we show how to modify the weighting construction while
eliminating the directed cycles but still regaining the matching values. We
also give sharp estimates for the growth of the number of vertices in this
construction.

Keywords: lattice, filter, matching measure, fuzzy sets, fuzzy filter, lattice
enrichment, formal concept analysis
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1 Introduction

A profile describes a set of properties, and profile matching is concerned with the
problem of determining how well a given profile fits to a requested one. Profile
matching appears in many application areas such as matching applicants for jobs
to job requirements, matching system configurations to requirements specifications,
matching team players to game strategies in sport, etc.

A simple approach to profile matching considers profiles as sets of unrelated
items, which leads to measuring the similarity or distance of sets. Several ways
of definition of distances of sets were introduced such as Jaccard or Sørensen-Dice
measures [17], which turned out to be useful in ecological applications. However,
skills or properties included in profiles are usually not totally unrelated items, de-
pendencies between them exist and need to be taken into account. For example, in
the human resources area several taxonomies for skills, competences and education
such as DISCO [6], ISCED [13] and ISCO [14] have been set up. These taxonomies
organize the individual properties into a lattice structure. Popov and Jebelean
[26] proposed to define an asymmetric matching measure on the basis of filters in
such lattices. They represented a profile P with the lattice filter generated by P
on the basis that having a specialized skill imples the having a more general skill
like knowledge of Java assumes knowledge of Object Oriented Programming as in
Figure 4.

Besides such subsumption relationships captured by the lattice order other “hor-
izontal” relationships exist as well. For instance, a job applicant may have some
other skills with certain probabilities or of some (not complete) proficiency level,
e.g. we may reasonably assume that knowledge of Java implies knowledge of Net-
Beans up to a grade of 0.7 (or with probability 0.7). This kind of dependencies are
exploited in [27]. The idea is that a given profile is considered better than another
one for a given requested profile, if they match equally using the filter-based mea-
sure, but the first one has more items implied partially that match the requested
profile. In this way we get a refinement of the filter-based matchings using the
maximum weight of a path from the profile’s nodes to a vertex x. This process
results in a set of nodes with grades in [0,1], which can be interpreted as a fuzzy
set. Actually, it turns out to be a fuzzy filter [12, 18].

However, the introduction of extra edges may give rise to directed cycles, and
the elegance of the uniform filter-based matchings is destroyed. Therefore, we raised
the question in [28], if the extra edges can be used to modify the original lattice in
such a way that instead of using fuzzy filters ordinary filters in the modified lattice
can be exploited, which means that the refinement can be re-interpreted in the
context of the filter-based matching theory. The answer to this problem is positive,
as we explore in this article.

1.1 Our Contribution

In this article we develop an enriched theory of profile matching centered around
the idea from [27] using weighted extra edges in addition to edges defined by the
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order in a lattice to capture partial relationships between concepts in a profile. How
matching measures can be extended has been shown in our previous work [27].

We now provide a construction that gets rid of directed cycles caused by the
extra edges. In doing so we show that all matching results that can be obtained by
exploiting extra edges can also be obtained from an extended lattice without such
extra edges. That is, the theory of profile matching remains within the filter-based
approach that we developed in [21], which underlines the power and universality
of this theory. In particular, we emphasize how to obtain the lattices underly-
ing the matching theory from knowledge bases that define concepts used in given
and requested profiles, and accordingly we call the lattices also ontology lattices.
These knowledge bases are grounded in description logics, so the lattice exten-
sions provide also feedback for fine-tuning the knowledge representation, whereas
weighted extra-edges are not supported in the knowledge bases. In [21] it was also
shown that under mild plausibility constraints on human-defined matchings ap-
propriate weights can be defined such that the filter-based matchings preserve the
human-defined rankings, which further enables linear optimization to synchronize
matchings with human expertise. These results on learning matchings from human
expertise can now be carried over to the refined matching theory.

The extension is done by extending the original ontology lattice by new nodes
and weighting of the nodes. The result is a directed acyclic graph, whose structure
reflects the different possible path lengths between nodes of the ontology lattice.
A directed acyclic graph naturally represents a poset, although not a lattice in
general. In order to gain back the lattice structure formal concept analysis is used.

The concept of offers and applications from [27, 28] is extended to fuzzy sets.
That is we interpret such formulations as “knowledge of skill X is an advantage” by
giving a membership value to skill X in the offer a number from (0, 1), measuring
the importance of X. Similarly, applications are also considered as fuzzy sets where
the membership values signify the proficiency of the applicant in the given skill.

While the extension of given profiles is natural, e.g. for job applications the
consideration of skills derived from extra edges appears natural, as employers may
benefit from these skills, it is not so clear whether the requested profiles should
be extended as well. On one hand, profiles should be handled uniformly, as they
could represent both given and requested profiles. On the other hand, if requested
profiles, e.g. requirements in job offers, are also extended, then it may happen that a
high matching score may result only from derived skills, not from the ones originally
required, which may be considered as being misleading and disadvantageous. In the
present paper we discuss both scenarios, the latter one being treated by applying
different weighting functions for given and requested profiles.

Note the conceptual difference between horizontal connections represented by
extra edges and the membership values of skills in offers and applications. The extra
edges belong to the taxonomy used and are determined by the domain experts, while
fuzzy values are determined by the firms and individuals who apply the matching
measure to rank applications for offers.
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1.2 Organization of the Article

The remainder of this article is organized as follows. In Section 2 we provide a brief
introduction of the fundamentals of filter-based profile matching as developed in
our previous research (summarized in [21]), and then extend the approach by using
extra edges and fuzzy filters. Section 3 is then dedicated to the construction of
the lattice enlargement using formal concept analysis and the proof that matching
values using extra edges can be equivalently obtained by ordinary matching values
on the extended lattice. We also give node weightings that preserve the weights of
fuzzy filters assuming that requested profiles are also extended. Section 4 contains
the analysis for the case that requested profiles are not extended. Section 3.3
discusses related extremal problems concerning how the size of the constructed
enlargement relates to the size of the original lattice. It is included for the sake of
completeness, the proofs of the statements can be found in [28]. Finally, in Section
5 we discuss related work, and in Section 6 we conclude the article with a brief
summary.

2 Profile Matching Based on Lattices and Filters

In this section we briefly present the definitions underlying the matching theory
from [21] and its refinement from [27], as well as notations of fuzzy set theory used.
Matching theory is based on lattice L, and a profile is represented by a filter F in
the lattice. A matching measure is a function defined on pairs of filters. If µ is such
a matching measure and F , G are filters, then µ(F ,G) will be a real number in
the interval [0, 1], which is called a matching value. Matching measures in general
exploit weights assigned to concepts in the lattice L.

Let L(S,≤) be a lattice. Informally, for A,B ∈ S we have A ≤ B, if the property
A subsumes property B, e.g. for skills this means that a person with skill A will
also have skill B. A filter is a non-empty subset F ⊆ S, such that for all C,C ′ with
C ≤ C ′ whenever C ∈ F holds, then also C ′ ∈ F holds.

Let F ⊆ P(S) denote the set of filters. A weighting function on S is a function
w:P(S) → [0, 1] satisfying (1) w(S) = 1, and (2) w(

⋃
i∈I Ai) =

∑
i∈I w(Ai) for

pairwise disjoint Ai (i ∈ I).

Definition 1. A matching measure is a function µ:F × F → [0, 1] such that
µ(F1,F2) = w(F1 ∩ F2)/w(F2) holds for some weighting function w on L.

The matching measure µpj defined in [26] uses simply cardinalities:

µpj(F1,F2) = #(F1 ∩ F2)/#F2

Thus, it is defined by the weighting function w on S with w(A) = #A/#L, i.e.
all properties have equal weights. From Section 3 onwards we will tacitly assume
that properties have equal weight. This will simplify our presentation, and the
extension of our theory to matching measures with general weighting functions is
straightforward.
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Figure 1: Fragment of a graph with lattice edges (solid) and extra edges (dashed)
and assignment of degrees.

Let F(S) be the collection of fuzzy sets over S. For an X ∈ F(S) and s ∈ S let
µX(s) denote the membership value of s in X. We also write X = {x1: γ1, x2: γ2, . . .,
xn: γn} where γi = µX(xi). The support of fuzzy set X ∈ F(S) is supp(X) = {s ∈
S|µX(s) > 0}. For two fuzzy sets F,G of F(S) let F ∩G = {s: γs|s ∈ S and γs =
min{µF (s), µG(s)}, furthermore let ||F ||: =

∑
v:γv∈F γv, i.e. || · || denotes sigma car-

dinality and intersection is defined as the min t-norm. Note, that other cardinality
and intersection functions could be applied in the same way [35, 12]. We assume
that v: γv ∈ F means γv = µF (v) > 0.

We can extend the lattice with additional information in form of so called extra
edges that represent some kind of quantifiable relationship between skills. However,
these edges can form cycles in the hierarchy therefore we use directed graphs to
handle them instead of the lattice structure [27].

Let G = (V,E) be a directed graph where V = S and E = Elat∪Eext is a set of
lattice edges and extra edges such that for two nodes vi, vj ∈ V : (vi, vj) ∈ Elat iff vj
covers vi, i.e. vi < vj and there exists no vk such that vi < vk < vj . Furthermore,
(vi, vj) ∈ Eext iff there is an extra edge between vi and vj . Let wedge:E → [0, 1]
be an edge weighting function such that for all elat ∈ Elat:wedge(elat) = 1 and for
all eext ∈ Eext:wedge(eext) ∈ [0, 1] that represents the strength of the relationship
between start and end node of the edge. See Figure 1 for a fragment of such a
graph. Let pF (x, v) denote the set of directed paths from node x to node v using
edges of a subset F ⊆ E of edge set E of G.

Let application A and offerO be fuzzy sets over S and define a matching function
of an application A to an offer O using the graph in the following way. First, we
define function ext to extend the application and the offer with all the skills that
are available from them via directed path in G. For an arbitrary fuzzy set of skills
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X ∈ F(S) and a subset F ⊆ E of edges let

extF (X) = {v: γv|v ∈ S and γv = maxx′,p∈pF (x′,v)length(p) · µX(x′)}, (1)

where length of a path p = (v1, . . . , vn) is the product of the edge weights on

p, i.e. length(p) =
∏n−1
i=1 wedge((vi, vi+1)) and if pF (x′, v) = ∅, then naturally

length(p) = 0 for p ∈ pF (x′, v) .
Fuzzy filters were introduced in [18]. A fuzzy set Y over S is a fuzzy filter in

L = (S,≤) if for all t ∈ [0, 1] the level set Yt = {y ∈ Y : µY (y) ≥ t} is a filter in L.
A crisp version of the following was proven in [28].

Theorem 1. Let G = (S,E = Elat ∪ Eext) be a directed graph with edge weights
wedge:E → [0, 1] extending the lattice L(S,≤), and let X ∈ F(S) be a fuzzy set over
S. Then the extension extE(X) of X with respect to E is a fuzzy filter in L.

Proof. Let s ∈ extE(X)t and s < s′ in L. Furthermore, let x ∈ S and p ∈ pE(x, s)
where the maximum in (1) is taken. Since s < s′ in L, there exists a directed
path p′ from s to s′ using only lattice edges. The concatenation of p and p′ is a
directed walk q in G from x to s′ such that length(p) = length(q), because lattice
edges have weight 1. Let q′ be the the walk from x to s′ of fewest edges such that
q′ ⊆ q. Then clearly q′ ∈ pE(x, s′) and length(q′) ≥ length(q) = length(p). Hence,
γs′ ≥ γs implying that s′ ∈ extE(X)t.

Example 1. For the graph in Figure 1 take the following fuzzy sets of skills

O = {Java: 1.0, Netbeans: 0.9, XML: 0.5} and

A = {Java: 1.0, PHP : 0.9, Eclipse: 0.7}

These generate the following fuzzy filters:

extE(O) = {Java: 1.0, Netbeans: 0.9, XML: 0.5, OOP : 1.0, PL: 1.0,

IT : 1.0, IDE: 0.9, Eclipse: 0.8,ML: 0.5}
and extE(A) = {Java: 1.0, PHP : 0.9, Eclipse: 0.8, OOP : 1.0, PL: 1.0,

IT : 1.0, Script: 0.9, IDE: 0.8, Netbeans: 0.7,

Javascript: 0.81, HTML: 0.9,ML: 0.9, XML: 0.63}

This gives rise to the intersection fuzzy filter

extE(A) ∩ extE(O) = {Java: 1.0, OOP : 1.0, PL: 1.0, IT : 1.0, IDE: 0.8,

Eclipse: 0.8, Netbeans: 0.7, XML: 0.5,ML: 0.5}

Assuming a weighting function w that assigns the same weight to all elements
we obtain the matching value µ(extE(A), extE(O)) = 6

7.1 .

It perfectly makes sense to use lattice edges to extend applications and offers as
lattice edges describe specialization relation between skills. Namely if an applicant
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possesses a special skill then he or she must possess the more general skills as well.
However extra edges are used in the extension as well to get more selective matching
functions that help differentiate applications.

Let us call nodes in supp(extE(X))\ supp(extElat
(X)) derived nodes for a fuzzy

set X ∈ F(S) of skills. We investigate two approaches or philosophies when extend-
ing profiles using the extra edges. The first one is symmetric, that is the case when
offers and applications are treated in the same way. In this case we use extension
function extE for both, offers O and applications A. The advantage is that we only
have to apply one weighting function and the proof of equivalence of different repre-
sentations is simpler than that of the other case. There is a disadvantage, though.
If offers are also extended with derived skills, then an application may obtain high
matching value just having those skills. However, it is not really advantageous for
an employer, as required skills are not in the application.

The second approach called the strict approach is when offers are only extended
with non-derived nodes, that is extE is used for applications but extElat

is used for
offers. This is the approach of [27]. The disadvantage of this case is that different
weighting functions have to be applied for applications and offers, consequently
the proofs of equivalences are more complicated. However, the point of view of
employers is better represented in the second way. An application has to have good
matching in target skills to score high, and the derived skills can be used to rank
applications scoring equally otherwise. Note, that supp(extElat

(X)) is exactly the
set of nodes contained in the lattice filter generated by the support supp(X) = {s ∈
S : µX(s) > 0} in the ontology lattice (S,≤).

We adapted the profile matching function proposed by Popov et. al. [26] to
fuzzy sets in [27]. We use the same function here except the different approaches
in extension of offers. So, let the matching value of A to O be

matchsym(A,O) =
||extE(A) ∩ extE(O)||

||extE(O)||
(2)

in case of the symmetric approach, and

match(A,O) =
||extE(A) ∩ extElat

(O)||
||extElat

(O)||
(3)

in case of the strict approach.

3 Lattice Enlargement

In this section, we present a graph transformation method to eliminate extra edges
from extended lattices preserving symmetric matching values of applications to
offers, and then we use formal concept analysis to restore lattice properties in the
transformed graphs.
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3.1 Extension Graph

Let G = (V,E) be a directed graph with weighting function wedge as defined above
and cij be the length of the longest path from vi to vj where vi, vj ∈ V are two
nodes. Let vi1j , . . . vikj be the nodes from where vj is available via directed path

such that ci1j ≤ · · · ≤ cikj . Let cj1 , . . . , cjlj denote the different values among

ci1j , . . . , cikj , i.e. cj1 < · · · < cjlj .

For all cj1 . . . cjlj , add new nodes Vj = {vj1 , . . . , vjlj−1
} (for simplicity let vjlj =

vj) to V and add new edges of weight one from vjlj to vjlj−1
, . . . , from vj2 to vj1 ,

and from vj1 to the top to E. The new edges form a directed path from vj to the
top. Let qj = (vjlj , . . . , vj1 , top) denote that path. Assign weight wjk = cjk − cjk−1

to vjk (k = 1, . . . , lj) where cj0 = 0. Note, that
∑l
k=1 wjk = 1 as it is a telescopic

sum. If the length of the longest path from vi to vj was cjk , then add a new edge
of weight one from vi to vjk . Finally, remove all extra edges from the graph. Now
each edge has weight one, so edge weights can be ignored.

Let G′ = ext(L, Eext) = (V ′, E′) denote the modified graph, called extension
graph, and wnode denote the node weighting function defined.

New nodes of Vj and new edges of qj can be considered as an extension of vj to
a chain because there do not start edges from intermediate nodes to other chains
so out-degrees of intermediate nodes are always one. We call vj the base node of
the chain. Base nodes of such chains are nodes of L, and G as well.

Let qj and qk be two chains with base nodes vj and vk, respectively. Then, an
edge from qk to qj in G′ can go

• from vk to vj and then it represents a directed path in G from vk to vj
containing lattice edges only;

• from vk to an intermediate node vji of qj and then it represents a directed

path pvkvj of G from vk to vj such that length(pvkvj ) =
∑i
s=1 wnode(vjs).

Note, that lattice edges in G are acyclic so the corresponding edges in G′ are acyclic
as well, and newly added edges between different chains start from base nodes of
chains only. So G′ is an acyclic graph.

Figure 2 shows an example of the construction of G′. There is the original
graph, called G, on the left. Blue (solid) edges represent lattice edges and orange
(dashed) edges with numbers on them represent extra edges and their weights.
There is the extension graph, called G′, on the right where green edges represent
the newly added edges, and numbers in the top right corners of nodes are weights
of the nodes.

As it can be seen, for example, node A of G has been transformed into the chain
qA = (A,A1, T op) since A is available via lattice edges (i.e. via maximum length
paths) from B,C,Bottom and it is available from D via the path pDA = (D,C,A)
whose length is 0.8 and A is not available from any other nodes. Therefore A1 got
the weight 0.8 and A got the weight 0.2.
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Figure 2: Lattice with extra edges and the generated extension graph

The extension graph defined above makes calculating matching value of crisp
offers and applications easy. The following was proven in [28], we include the proof
here for further use and sake of completeness.

Lemma 1. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges, G′ = ext(L, Eext) = (V ′, E′) be the extension graph. Let O ⊆ S
be an offer and A ⊆ S be an application, that are crisp sets. Then,

matchsym(A,O) =
||extE(A) ∩ extE(O)||

||extE(O)||
=
||extE′(A) ∩ extE′(O)||

||extE′(O)||
, (4)

where extE′(X) denotes the set of vertices of G′ that are reachable from some nodes
in X via directed paths of G′.

Proof. Let u ∈ G′ and let qz = (zlz , . . . , z1, top) be the node chain with base node
z ∈ G that contains u, i.e. zlz = z and u = zi for some i ∈ [1 . . . lz]. First, we will
show for an arbitrary X ⊆ S that u ∈ extE′(X) iff z ∈ extE(X).

If u ∈ extE′(X), then there is a node a ∈ X ⊆ V ′ and a directed path pau =
(x1, . . . , xi, xi+1, . . . xn) from a to u in G′ where x1 = a and xn = u. If a = z
then z ∈ extE(X). Otherwise let xi+1 = zm be the first node of pau that is an
intermediate node of qz as well. Then for j ∈ [1 . . . i − 1]: xj , xj+1 are nodes of
G, and edges (xj , xj+1) of pau represent directed paths containing lattice edges
only in G. Note that lattice edges form an acyclic subgraph of G. Therefore the
concatenations of lattice edge paths pxjxj+1

represented by directed edges (xj , xj+1)
of G′ for j ∈ [1 . . . i− 1] is a path paxi in the lattice L from a to xi. Now, the edge
(xi, xi+1 = zm) of G′ represents a directed path pxiz from xi to z in G using some
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extra edges. The concatenation of paxi and pxiz is a directed walk from a to z in
G, so it contains a directed path paz, that is z ∈ extE(X).

On the other hand, if z ∈ extE(X) with grade γz, then there is a node b ∈ X
and a maximal length path pbz from b to z in G such that length(pbz) = γz.
In that case, there is an edge from b to zr in G′ for some r ∈ [1..lz] such that∑r
s=1 w

′
node(zr) = length(pbv) and also zr, zr−1, z1 ∈ extE′(X).

Consequently, extE′(A)∩extE′(O) contains fragments of chains generated from
base nodes that are available from both A and O in G. Sum of node weights in a
fragment equals to the minimum of the lengths of the maximal length paths starting
from A or O ending in the base node of the chain. Thus, ||extE(A) ∩ extE(O)|| =
||extE′(A) ∩ extE′(O)|| and ||extE(O)|| = ||extE′(O)||, i.e. equation (4) holds.

If offers O and applications A are allowed to be fuzzy sets, that is O,A ∈ F(S),
then the situation is more complicated. As an example consider the lattice and ex-
tension graph of Figure 2. If A = {D: 0.6} and O = {B: 0.9}, then extE(A) =
{A: 0.48, C: 0.48, D: 0.6, top: 0.6} and extE(O) = {A: 0.9, B: 0.9, D: 0.54, C: 0.432,
top: 0.9}, so extE(A) ∩ extE(O) = {A: 0.48, C: 0.432, D: 0.54, top: 0.6}. Observe
that for any X ∈ F(S) we have supp(extE(X)) = extE(supp(X)) that would sug-
gest defining ext′E′(X) = {v: γv|γv = maxµX(x)wnode(v) for x ∈ supp(X) and
∃ directed path from x to v in G′}. However, this definition would give

ext′E′(A) = {A1: 0.48, C2: 0.192, C1: 0.288, D: 0.18, D2: 0.06, D1: 0.36, top: 0.6}

and
ext′E′(O) = {A: 0.18, A1: 0.72, B: 0.9, C1: 0.432, D1: 0.54, top: 0.9}

resulting in

ext′E′(A) ∩ ext′E′(O) = {A1: 0.48, C1: 0.288, D1: 0.36, top: 0.6}.

Thus, ||ext′E′(A) ∩ ext′E′(O)|| 6= ||extE(A) ∩ extE(O)||.
In order to resolve this problem we charge the contributions of nodes of each

chain to the chain’s top node as follows. For x, v ∈ S define t(x, v) =
∑m
i=1 wnode(vi)

where (x, vm) is the edge of the extension graph G′ from x to the chain qv. If no
such edge exists then t(x, v) is defined to be 0. Note, that values t(x, v) can be
calculated as a preprocessing step for every pair x, v ∈ S, since they do not de-
pend on particular profiles. Let X ∈ F(S) and x ∈ supp(X), furthermore let

extfE′(X) = {v1: γv1 |v ∈ S and γv1 = maxx∈supp(X) µX(x)t(x, v)}. Considering

the previous example of A = {D: 0.6} and O = {B: 0.9}, we obtain extfE′(A) =

{A1: 0.48, C1: 0.48, D1: 0.6, top: 0.6} and extfE′(O) = {A1: 0.9, B1: 0.9, D1: 0.54,
C1: 0.432, top: 0.9}. Note that B1 = B and top1 = top as their chains contain
one element, respectively.

Theorem 2. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges, G′ = ext(L, Eext) = (V ′, E′) be the extension graph. Let O ∈ F(S)
be an offer and A ∈ F(S) be an application . Then

matchsym(A,O) =
||extE(A) ∩ extE(O)||

||extE(O)||
=
||extfE′(A) ∩ extfE′(O)||

||extfE′(O)||
. (5)
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Proof. There is a directed edge (x, vm) from a node x ∈ S to vm ∈ V ′ iff there exists
a directed path from x to v in G by the construction of the extension graph. Fur-
thermore,

∑m
i=1 wnode(vi) the length of the longest path from x to v in G. Thus, for

any X ∈ F(S) we have v: γv ∈ extE(X) ⇐⇒ v1: γv ∈ extfE′(X).This together with
v ∈ supp(extE(A) ∩ extE(O)) ⇐⇒ v ∈ supp(extE(A)) ∩ supp(extE(O)) ⇐⇒ v ∈
supp(extfE′(A)) ∩ supp(extfE′(O)) ⇐⇒ v ∈ supp(extfE′(A) ∩ extfE′(O)) completes
the proof.

Note, that G′ is acyclic by its construction but does not necessarily define a
lattice. There is a natural way to define a lattice, namely a concept lattice from G′

in which matching values of crisp applications to crisp offers are preserved.

3.2 Concept Lattices

First, we define a formal context and formal concepts based on G′. Let (V ′1 , V
′
2 , T

′)
be a formal context, where V ′1 = V ′2 = V ′ and (vi, vj) ∈ T ′ iff vj is available from
vi via directed path supposing that the relation is reflexive. Consider the element
of V ′1 as start points and the element of V ′2 as end points of directed paths in G′.
Let I ⊆ V ′1 and J ⊆ V ′2 and let us define their dual sets IDs and JDe as follows:

IDs = {b ∈ V ′2 | (a, b) ∈ T ′ for all a ∈ I}
JDe = {a ∈ V ′1 | (a, b) ∈ T ′ for all b ∈ J}

A concept of the context (V ′1 , V
′
2 , T

′) is a pair 〈I, J〉 such that I ⊆ V ′1 , J ⊆ V ′2 and
IDs = J , JDe = I. I is called an extent of 〈I, J〉, and J is called an intent of 〈I, J〉.

Table 1: Formal context (V ′1 , V
′
2 , T

′)

Bot B C C1 C2 D D1 D2 A A1 Top
Bot X X X X X X X X X X X
B X X X X X X
C X X X X X X X X
C1 X X
C2 X X X
D X X X X X X X
D1 X X
D2 X X X
A X X X
A1 X X
Top X

Table 1 shows the formal context (V ′1 , V
′
2 , T

′) that was generated based on graph
G′ of Figure 2. Labels of rows and columns represent the elements of V ′1 and the
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elements of V ′2 , respectively. There is an X in row i column j if (i, j) ∈ T ′, i.e. j is
available from i via directed path in G′.

Lemma 2. If G′ is an acyclic graph, then

1. For every concept 〈I, J〉 of the context (V ′1 , V
′
2 , T

′): I ∩ J = {v} for some
v ∈ V ′ or I ∩ J = ∅

2. For every v ∈ V ′: there is a concept 〈Iv, Jv〉 in the context (V ′1 , V
′
2 , T

′) such
that Iv ∩ Jv = {v}.

Proof.

1. Indirectly, suppose that for a concept 〈I, J〉 of (V ′1 , V
′
2 , T

′) and for two different
nodes u, v ∈ V ′: u, v ∈ (I ∩ J) holds. In this case (u, v) ∈ T ′ and (v, u) ∈ T ′
hold as well. It would mean that there is a cycle in G′ which is a contradiction
as G′ is acyclic.

2. For a node v ∈ V ′ let Jv = {v}Ds be the set of all nodes that are available
from v via directed path (including v itself). Let Iv = JDe

v , then v ∈ Iv. If
Iv = {v}, then 〈Iv, Jv〉 is the concept we are looking for.
Otherwise, suppose that for a node u such that u 6= v: u ∈ Iv = JDe

v =
({v}Ds)De . That means (u, v) ∈ T ′, i.e. v is available from u. As T ′ is a tran-
sitive relation {v}Ds ⊆ {u, v}Ds . However {u, v}Ds ⊆ {v}Ds because {u, v}Ds

cannot contain such node that is not available from all nodes of {u, v}. Fol-
lowing this construction we can get that if JDe

v = Iv = {u1, . . . , ui, v}, then
IDs
v = {u1, . . . , ui, v}Ds = {v}Ds = Jv. Therefore 〈{u1, . . . , ui, v}, {v}Ds〉 is a

concept such that {u1, . . . , ui, v} ∩ {v}Ds = {v}.

Let B(V ′1 , V
′
2 , T

′) be the set of all formal concepts in the context, and ≤ be
a subconcept-superconcept order over the concepts such that for any 〈A1, B1〉,
〈A2, B2〉 ∈ B(V ′1 , V

′
2 , T

′): 〈A1, B1〉 ≤ 〈A2, B2〉, iff A1 ⊆ A2 (or, iff B2 ⊆ B1).
(B(V ′1 , V

′
2 , T

′),≤) is called concept lattice [10] and let cl((L, Eext)) denote the con-
cept lattice obtained from the extension graph ext(L, Eext).

Figure 3 1 shows concept lattice of the context (V ′1 , V
′
2 , T

′) from Table 1. Con-
cepts 〈Iv, Jv〉 where Iv ∩ Jv = {v} are labeled with v. For example, 〈IC2 , JC2〉 =
〈{Bot, C,C2, D}, {C2, C1, T op}〉. But, concepts 〈I, J〉 such that I ∩ J = ∅ are
unlabeled like the 〈{Bot,B,C}, {A,A1, C1, D1, T op}〉 parent of concepts B and C.

Another, larger example of concept lattice is shown on Figure 4 obtained from
the ontology with added extra edges from [27] shown on Figure 1.

It is worth mentioning that the concept lattice cl((L, Eext)) generated from
ontology L endowed with extra edges Eext coincides with the Dedekind-McNeille
completion [8] of the poset obtained as transitive closure of acyclic directed graph

1The concept lattices were generated using the Concept Explorer tool. Web page: http:

//conexp.sourceforge.net/

http://conexp.sourceforge.net/
http://conexp.sourceforge.net/
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Figure 3: Concept lattice of context (V ′1 , V
′
2 , T

′)

ext(L, Eext). Indeed, the collection of upper bounds of a subset S of elements of
the poset is exactly the collection of the vertices reachable from the vertices of S
via directed paths in the directed graph. We use the concept lattice formulation for
two reasons. First, a direct construction is obtained skipping the step of construct-
ing the poset from the directed graph ext(L, Eext). Second, the concept lattice
structure allows us to define node weights properly.

A crisp offer O = {o1, . . . , ok} ⊆ S = V ⊆ V ′ generates a filter FO ⊆
B(V ′1 , V

′
2 , T

′) in the concept lattice such that FO = {〈I, J〉 | ∃〈Io, Jo〉 ≤ 〈I, J〉 such
that Io ∩ Jo = {o} for some o ∈ O}. Similarly, a crisp application A generates a
filter FA in the concept lattice.

Let wcon:B(V ′1 , V
′
2 , T

′)→ [0, 1] be a concept weighting function such that for a
concept 〈I, J〉 of B(V ′1 , V

′
2 , T

′):

wcon(〈I, J〉) =

{
wnode if I ∩ J = {v} for some v ∈ V ′,
0 otherwise.

Let wfil be a filter weighting function such that for a filter F ∈ P(B(V ′1 , V
′
2 , T

′)):
wfil(F ) =

∑
〈I,J〉∈F wcon(〈I, J〉).

The following was proven in [28].
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Figure 4: The concept lattice corresponding to the ontology lattice with added
extra edges of Figure 1.

Theorem 3. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges and cl((L, Eext)) = (B(V ′1 , V

′
2 , T

′),≤) be the concept lattice con-
structed from G and wfil be the filter weighting function. Let O ⊆ S be an offer
and A ⊆ S be an application. Then,

matchsym(A,O) =
wfil(FA ∩ FO)

wfil(FO)
. (6)

The case of fuzzy offers and applications has the same complication as was with
the extension graph. Similarly, we can salvage by charging the contributions of
named concepts to the “top one with the same name”. That is, we define t(x, v) =∑
〈Ix,Jx〉≤〈Ivi ,Jvi 〉≤〈Iv1 ,Jv1 〉

wcon(〈Ivi , Jvi〉) if 〈Ix, Jx〉 ≤ 〈Iv1 , Jv1〉 and 0 otherwise,

for all pairs x, v ∈ S. This again, is a preprocessing step. For X ∈ F(S) let

wfX(〈Iv1 , Jv1〉) = {〈Iv1 , Jv1〉 = maxx∈supp(X) µX(x)t(x, v)} and wfX(〈Ivi , Jvi〉) = 0

for i > 1, as well as wfX(〈I, J〉) = 0 if I ∩ J = ∅. Furthermore, for the filter
FX of the concept lattice B(V ′1 , V

′
2 , T

′)) generated by supp(X) let fuzzfil(FX) =

{〈I, J〉:wfX(〈I, J〉)|〈I, J〉 ∈ FX} be a fuzzy set. Then the following can be proven
along the lines of the proof of Theorem 2.

Theorem 4. For a given offer O ∈ F(S) and application A ∈ F(S) we have

matchsym(A,O) =
||fuzzfil(FA) ∩ fuzzfil(FO)||

||fuzzfil(FO)||
. (7)
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3.3 Extremal problems

It is a natural question how the size of the original ontology lattice L = (S,�)
relates to the sizes of the extension graph ext(L, Eext) and the concept lattice
cl((L, Eext)) obtained from ext((L, Eext)).

The proofs of the following statements can be found in the conference paper
[28]. First, let us consider ext(L, Eext).

Proposition 1. Let L = (S,�) be an ontology lattice of n + 2 nodes. Then for
G′ = ext(L, Eext) = (V ′, E′) we have |V ′| ≤ n2 + 2. Furthermore, this estimate is
sharp, that is for every positive integer n there exists ontology Ln = (Sn,�) and
set of extra edges Eext such that ext(Ln, Eext) has n2 + 2 vertices.

The extremal example is shown on Figure 5.

Figure 5: Extremal example

Our next goal is to bound the size of concept lattice cl((L, Eext)). The main
question is how many “dummy” vertices are generated, that is concepts 〈I, J〉 such
that I ∩ J = ∅.

Theorem 5. Let L = (S,�) be an ontology lattice of n + 2 nodes. Then for
a set Eext of extra edges |cl((L, Eext))| ≤ 2n + n2 − n + 1 and this estimate is
sharp, that is there exist Ln = (Sn,�) and and set of extra edges Eext such that
|cl((Ln, Eext))| = 2n + n2 − n+ 1.

We have the same extremal example shown on Figure 5 as before.
Another interesting question could be how the average or expected size of ex-

tension graph and the concept lattice relates to the size of the original ontology
lattice. This is the topic of further investigations. The first task is finding a rea-
sonable probability distribution for the extra edges.

4 Strict Approach

As it was mentioned above, extra edges can be used based on different philosophies
when extending offers. In this section we investigate how strict matching values of
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applications to offers can be preserved in the extension graph and in the concept
lattice.

4.1 Preserving Strict Matching for crisp offers and applica-
tions

The main problem of preserving strict matching values in the extension graph is
if extra edges are used to extend the offer, then extra nodes might appear in the
extended offer whose weights are greater then 0. However, to address this problem,
special node weighting functions can be defined depending on the offers.

For an offer O ⊂ S let wOnode be a node weighting function that preserves the
weights of the nodes that are available from O via lattice edges in G, and the nodes
that were generated from such nodes in G′, and it assigns 0 to the other nodes, i.e.
for a node v ∈ V ′ let

wOnode(v) =

{
wnode(v) if ∃vj ∈ extElat

(O): v ∈ Vj ,
0 otherwise.

For X ⊂ S let extOE′(X) = {v : wOnode(v)|∃x ∈ X such that pE′(x, v) 6= ∅} Note,
that computing wOnode is a preprocessing step that has to be done once for all offers,
and then wOnode can be reused to calculate matching values of applications to the
given offer.

With these weighting function a similar result can be shown as in Lemma 1.

Lemma 3. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges, G′ = ext(L, Eext) = (V ′, E′) be the extension graph, Let O ⊆ S
be an offer with wOnode and let A ⊆ S be an application. Then,

match(A,O) =
||extE(A) ∩ extElat

(O)||
||extElat

(O)||
=
||extE′(A) ∩ extOE′(O)||

||extE′(O)||
(8)

Proof. The proof is analogous to Lemma 1’s. However, extE′(A) ∩ extE′(O) may
contain chain fragment (vyk , . . . , vy1) of a chain qy = {vyl , . . . , vy1 , top} with base
node vy where vy is only available from O via extra edges in G, i.e. vy ∈ extE(O) \
extElat

(O). But wOnode assigns 0 to such vyk , . . . , vy1 nodes by definition. Therefore
||extE′(A)∩extOE′(O)|| =

∑
u∈extE′ (A)∩extE′ (O) min(wnode(u), wOnode(u)) = ||extE(A)

∩extElat
(O)|| and analogously, ||extElat

(O)|| = ||extOE′(O)||. Thus equation (8)
holds as well.

The same issue appears if we want to preserve strict matching values of crisp
applications to crisp offers in the concept lattice as we solved in case of the extension
graph, namely extended offer might contain new nodes with weight greater than 0.
However, the offer specific weighting functions solve this issue as well.

We extend wOnode for concepts, namely let wOcon be a concept weighting function
generated by an offer O such that for a concept 〈I, J〉:

wOcon(〈I, J〉) =

{
wcon(〈I, J〉) if I ∩ J = {v} such that ∃vj ∈ extElat

(O): v ∈ Vj ,
0 otherwise.
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Let wOfil be the filter weighting function based on wOcon, i.e for a filter F ∈
P(B(V ′1 , V

′
2 , T

′)): wOfil(F ) =
∑
〈I,J〉∈F w

O
con(〈I, J〉).

With these weighting functions, we can prove the following theorem similarly
to Theorem 3.

Theorem 6. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges and cl((L, Eext)) = (B(V ′1 , V

′
2 , T

′),≤) be the concept lattice con-
structed from G and wfil be the filter weighting function. Let O ⊆ S be an offer
with wOcon and wOfil concept and filter weighting functions, respectively and let A ⊆ S
be an application. Then,

match(A,O) =
wOfil(FA ∩ FO)

wOfil(FO)
(9)

Proof. Analogously to Theorem 3’s proof and based on Lemma 1 it is enough to
prove that

wOfil(FA ∩ FO)

wOfil(FO)
=
||extE′(A) ∩ extOE′(O)

||extOE′(O)||
. (10)

However, FA and FO contain concepts for all nodes of extE′(A) and extE′(O)
respectively. But wOcon assigns 0 to such 〈Iv, Jv〉 concepts where v ∈ V ′ is not
contained in any chain whose base was available from O in G using lattice edges
only. Therefore wOfil sums up the same values as wOfset, i.e. equation (10) holds as
well.

4.2 Strict matching for fuzzy offers and applications

If offers and applications are allowed to be fuzzy sets, that is O,A ∈ F(S), then we
are confonted with the same problem as we saw in the symmetric case. Consider
the lattice and extension graph of Figure 2. If O = {D: 0.6} and A = {B: 0.9},
then extElat

(O) = {D: 0.6, top: 0.6} and extE(A) = {A: 0.9, B: 0.9, D: 0.54, C: 0.432,
top: 0.9}, so extE(A) ∩ extElat

(O) = {D: 0.54, top: 0.6}. If again we apply defini-
tion for the extension graph mechanically we would get ext′E′(X) = {v: γv|γv =
maxµX(x)wnode(v) for x ∈ supp(X) and pE′(x, v) 6= ∅} for applications and
ext′E′(X) = {v: γv|γv = maxµX(x)wOnode(v) for x ∈ supp(X) and pE′(x, v) 6= ∅}.
However, this definition would give

ext′E′(O) = {D: 0.18, D2: 0.06, D1: 0.36, top: 0.6}

and

ext′E′(A) = {A: 0.18, A1: 0.72, B: 0.9, C1: 0.432, D1: 0.54, top: 0.9}

resulting in

ext′E′(A) ∩ ext′E′(O) = {D1: 0.36, top: 0.6}.

Thus, ||ext′E′(A) ∩ ext′E′(O)|| 6= ||extE(A) ∩ extE(O)||.
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To avoid this anomaly we again charge the contributions of node weights to the
top elements of chains, as in the symmetric case. Recall that for x, v ∈ S

t(x, v) =

m∑
i=1

wnode(vi), (11)

where (x, vm) is the edge of the extension graph G′ from x to the chain qv. If no

such edge exists then t(x, v) is defined to be 0. Also for X ∈ F(S), extfE′(X) =
{v1: γv1 |v ∈ S and γv1 = maxx∈supp(X) µX(x)t(x, v)} was introduced. Now, let
x, v ∈ S. Define tO(x, v) by replacing wnode(vi) by wOnode(vi) in (11). Further-

more for X ∈ F(S), let extfOE′ (X) = {v1: γv1 |v ∈ S and γv1 = maxx∈supp(X) µX(x)
tO(x, v)}. The proof of the following theorem is straightforward analogue of that
of Theorem 2

Theorem 7. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges, G′ = ext(L, Eext) = (V ′, E′) be the extension graph. Let O ∈ F(S)
be an offer and A ∈ F(S) be an application . Then

match(A,O) =
||extE(A) ∩ extElat

(O)||
||extElat

(O)||
=
||extfE′(A) ∩ extfOfE′(O)||

||extfOE′ (O)||
. (12)

5 Related Work

The aim of profile matching is to find the most fitting candidates to given profiles.
Due to its various applications areas, it has become a widely investigated topic
recently. Profiles can be represented as sets of elements and then numerous set
similarity measures [3], such as Jaccard or Sørensen-Dice, are applicable to compute
matching values.

There exist methods assuming that elements of profiles are organized into a
hierarchy or ontology. For example, Lau and Sure [16] proposed an ontology-based
skill management system for eliciting employee skills and searching for experts
within an insurance company. Ragone et al. [29] investigated peer-to-peer e-market
place of used cars and presented a fuzzy extension of Datalog to match sellers and
buyers based on required and offered properties of cars. Di Noia et al. [5] placed
matchmaking on a consistent theoretical foundation using description logic. They
defined matchmaking as information retrieval task where demands and supplies are
expressed using the same semi-structured data in form of advertisement and task
results are ranked lists of those supplies best fulfilling the demands.

Guedj [11] claims that applying semantic matching technologies has the problem
that requesting to the user to weighing the skills is a barrier to an usability and an
efficiency of such methods on the user point of view and propses a first approach to
solve this problem. Tinelli et.al [33] combine the representation power of a logical
language with the information processing efficiency of a DBMS and implement it in
the platform I.M.P.A.K.T. Shen et.al. [32] use AI to jointly model job description,
candidate resume and interview assessment.Yan et.al. [36] realize that interviewers
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and job seekers have preferences and propose to learn job-resume matching methods
with the hidden preference information incorporated. Pitukhin et.al. [25] take “one
sided” question: they present methods to gather and rank job offers from the point
of view of the applicant, starting from the assumption that there are many offers
that could not be properly assessed by hand.

With respect to foundations of a profile matching theory the first promising
attempt to take hierarchical dependencies into account was done by Popov and
Jebelean [26], which defines the initial filter-based measure. However, weights are
not used, only cardinalities, which correspond to the special case that all concepts
are equally weighted. The matching theory in [21] is inspired by this work, but
takes the filter-based approach much further. To our best knowledge no other
approach in this direction has been tried, though sophisticated taxonomies in the
recruitment domain such as DISCO [6], ISCO [14] and ISCED [13] already exist.
Ontologies have also been used in the area of recruiting in connection with profile
matching (see [7] for a survey). However, while it is claimed that matching accuracy
can be improved [23], the matching approach itself remains restricted to Boolean
matching, which basically means to count how many requested skills also appear
in a given profile [22].

In [27] an extension to the matching theory has been proposed, which exploits
relations between the concepts in a profile that are not covered by the lattice, i.e. the
presence of a particular concept in a profile may only partially imply the presence of
another concept. Such additional links between the elements of the lattice may be
associated with a degree (or probability) and even cycles may be permitted. This
leads to an enriched matching theory by means of values associated to paths, which
enables an interpretation using fuzzy filters [12]. For the probabilistic extension this
research exploits probabilistic logic with maximum entropy semantics in [1, 15], for
which sophisticated reasoning methods exist [30]. In the meantime this research
has been taken further showing that it is possible to compute an extended lattice
such that matching measures for profiles in the extended lattice capture exactly
the same as the path values [28].

We also assumed a structure among elements of profiles that can be represented
by an ontology, which then fulfills lattice properties, so profiles can be represented
as filters. However, we extended the ontology lattice with extra edges to capture
such relationships that subsumptions cannot express. Then we showed how these
edges are usable to refine the ontology.

There are several methodologies to learn ontologies from unstructured texts or
semi-structured data [2, 31]. Besides identifying concepts, discovering relationships
between the concepts is a crucial part of ontology construction and refinement.
Text-To-Onto [20] uses statistical, data mining, and pattern-based approaches over
text corpus to extract taxonomic and non-taxonomic relations. In [34], various
similarity measures were introduced between semi-structured Wikipedia infoboxes
and then SVMs and Markov Logic Networks were used to detect subsumptions
between infobox-classes.

We presented a method to refine an ontology based on extra edges that rep-
resent some sort of quantifiable relationship between concepts in a profile. These
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relationships can be given by domain experts, computed from statistics, or result
from data mining techniques. For example, in [37] the authors used association
rules and latent semantic indexing over job offers to detect relationships between
competencies. In our method we defined profile extensions and weighting functions
as well to preserve matching values of profiles computed from edge weights.

Formal concept analysis (FCA) [9] is also used to build and maintain formal
ontologies. For example, Cimiano et al. [4] presented a method of automatic acqui-
sition of concept hierarchies from a text corpus based on FCA. In [19], the authors
used FCA to revise ontology when new knowledge was added to it. In our method
we used FCA to restore lattice properties after added new nodes and edges to it
based on extra edges. However as we focused on preserving matching values of
profiles during the transformations, we adapted our profile weighting functions to
the modified ontology lattice as well.

6 Conclusions

In this article the approach of [28] was extended to fuzzy sets of offers and appli-
cations. We refined the matching theory with profiles represented by filters in a
lattice. Such a lattice can be obtained from a knowledge base as shown in [24]. The
basis for the theory is the definition of weighted matching measures on pairs of such
filters. For instance, in the field of human resources profiles correspond to skills sets
of job applicants as well as to requirements in job offers. Learning matching weight
from human expertise as well as efficient querying have been handled in [21]. We
now investigated how ontology lattices can be extended by additional information
and used for matching. We defined matching functions to find the most suitable
applicant to a job offer, however, our results are applicable in other fields as well.

First, profiles are represented as filters in an ontology lattices, which capture
subsumption relations between concepts. Then, we extend such an ontology lattice
by additional information in the form of extra edges describing additional quan-
tifiable relations between the concepts. A directed graph is built from the lattice
endowed with extra edges to handle directed cycles that the new edges might have
introduced, and matching functions are defined based on reachable nodes from the
nodes in a profiles.

Two approaches were presented to extend profiles with derived nodes. In the
first one, both the given and the requested profiles were extended, as profiles should
be handled uniformly. In the second approach, only the given profiles were ex-
tended, which helps to distinguish cases, where the given requirements are met
directly from those, where the requirements are only met by the combination of
several concepts that all contribute partially to the requirements. For instance, in
the human resources field the second strict approach may help employers to better
differentiate among job applicants.

We presented a method that eliminates directed cycles from the graph. It
constructs an extension graph by adding node chains to the original lattice based
on directed paths between nodes in the directed graph and node weights got also
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modified as part of the construction. The extension graph is a directed acyclic
graph and therefore a poset but it is not necessary a lattice. We further exploited
formal concept analysis to extend the poset to a concept lattice so that filters of this
lattice could be used to calculate matching values. Different node weightings were
used to preserve the original matching values in the two approaches. Comparisons
of the sizes of the ontology lattice and the generated acyclic directed graph, as well
as the concept lattice were also given.

This shows that the matching theory from [21] is rather powerful, as it captures
de facto the fuzzy extensions.
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Discrete-Time Systems Using

Ellipsoidal State Enclosures
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Abstract

Stability contractors, based on interval analysis, were introduced in re-
cent work as a tool to verify stability domains for nonlinear dynamic systems.
These contractors rely on the property that — in case of provable asymp-
totic stability — a finitely large domain in a multi-dimensional state space is
mapped into its interior after a certain integration time for continuous-time
processes or after a certain number of discretization steps in a discrete-time
setting. However, a disadvantage of the use of axis-aligned interval boxes in
such computations is the omnipresent wrapping effect. As shown in this con-
tribution, the replacement of classical interval representations by ellipsoidal
domain enclosures reduces this undesirable effect. It also helps to find suit-
able ratios for the edge lengths if interval-based domain representations are
investigated. Moreover, ellipsoidal domains naturally represent the possible
regions of attraction of asymptotically stable equilibrium points that can be
analyzed with the help of quadratic Lyapunov functions, for which stability
criteria can be cast into linear matrix inequality (LMI) constraints. For that
reason, this paper further presents possible interfaces of ellipsoidal enclosure
techniques with LMI approaches. This combination aims at the maximization
of those domains that can be proven to be stable for a discrete-time range-
only localization algorithm in robotics. There, an Extended Kalman Filter
(EKF) is applied to a system for which the dynamics are characterized by a
discrete-time integrator disturbance model with additive Gaussian noise. In
this scenario, the measurement equations correspond to the distances between
the object to be localized and beacons with known positions.
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1 Introduction

The analysis of stability properties of nonlinear dynamic systems is a crucial aspect
for the verification of control and state estimation procedures (i.e., state observers)
in many different areas. From a methodological point of view, Lyapunov func-
tion techniques can be applied to deal with this task for both discrete-time and
continuous-time processes [18, 19]. They are not only applicable to the analysis
of predefined control and observer structures but are also widely used during their
synthesis. Especially when system models with a linear or quasi-linear structure are
considered, there exist a large number of interrelations between Lyapunov function
techniques and LMIs. This is basically caused by the fact that stability criteria for
linear dynamic systems, which are investigated with the help of quadratic candi-
dates for Lyapunov functions, are equivalent to criteria that can be stated with the
help of LMIs.

Based on these fundamental observations, numerous research activities have
been performed in recent years which (as an obviously non-exhaustive list) deal
with the following aspects:

• transforming stability requirements for linear uncertain system models with
polytopic time-invariant and time-varying uncertainty into sets of LMIs [2,5,
8, 9, 40];

• development of iterative LMI techniques for synthesizing robust output and
state feedback controllers for systems which are simultaneously subject to
polytopic parameter uncertainty and/or stochastic noise [11,28,32,41];

• verifying invariant sets of nonlinear closed-loop control systems [37];

• implementing gain scheduling controllers for quasi-linear systems with bound-
ed parameter uncertainty [17];

• implementing online gain adaptation schemes for variable-structure, sliding
mode controllers as well as backstepping techniques with the aim of chattering
reduction [33–35];

• investigation of the dual task of variable-structure state estimation [31];

• finding optimal candidates for Lyapunov functions for nonlinear dynamic sys-
tems [22,43];

• determining the region of attraction of stable operating points and maximiz-
ing the provable stability domains for nonlinear processes [7,12,15,25,44–46].

In parallel to the development of the above-mentioned Lyapunov and LMI tech-
niques, interval methods have been investigated during the last decades [16,20]. Due
to their fundamental property to enclose the solution to some mathematically for-
mulated problem in a guaranteed way, they have many applications in engineering.
These cover aspects such as state and parameter estimation [1], uncertainty quan-
tification in robotics applications [21, 24], or simulation of dynamic systems [23].
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Moreover, a new technique for enclosing provable stability domains was presented
recently in [3,4]. This so-called stability contractor is re-investigated in this paper
for analyzing stability properties of a discrete-time EKF [42] that is applied to the
task of localizing a robot with the help of range-only measurements. For that pur-
pose, the interval-based implementation of this contractor is compared with a novel
ellipsoidal enclosure approach. This approach was recently presented in [29, 30] as
a tool for nonlinear function evaluation, simulation of dynamic system models, as
well as performance analysis of linearization-based stochastic filters (such as the
EKF). In [26], it has been extended towards a state estimation procedure which
exploits a quasi-linear system structure when determining inner and outer bounds
for state enclosures.

This paper is structured as follows: Sec. 2 summarizes the already existing
interval-based stability contractor and reviews ellipsoidal enclosure techniques for
discrete-time dynamic systems. Both provide the basis for the novel ellipsoidal sta-
bility contractor in Sec. 3 which enhances the original interval-based technique due
to its capability for often proving larger regions of attraction for stable operating
points. A (near to optimal) parameterization of this novel contractor is described in
Secs. 3.1 and 3.2 with an illustrating example in Sec. 3.3 and its use for a localiza-
tion task in robotics in Sec. 3.4. Moreover, a new extension for proving instability
of equilibrium points is presented in Sec. 3.5. Finally, Sec. 4 describes an outlook
on using ellipsoidal techniques for finding positive invariant domains in the frame
of continuous-time processes before conclusions are given in Sec. 5.

2 Preliminaries

In this section, fundamental preliminaries published in previous works of the au-
thors are given. These are the interval-based stability contractor [3, 4] as well as
(thick) ellipsoidal state enclosure techniques for discrete-time systems. For the lat-
ter, we make a distinction between a general formulation [29,30] and a specialized
version for quasi-linear system models [26].

2.1 Notation

Throughout this paper, scalar interval variables with the lower and upper bounds x
and x, respectively, where x ≤ x, are denoted as [x] = [x ; x]. For the vector-valued
case, an interval vector (also called interval box ) is formed as the Cartesian product
of scalar intervals according to the stacked notation

[x] =
[
[x1] . . . [xn]

]T
, (1)

where the set of axis-aligned interval boxes in Rn is denoted as IRn. For funda-
mental enclosure properties of interval analysis as well as interval extensions of
(vector-valued) functions f : Rm 7→ Rn, the reader is referred to [16,20].
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Moreover, according to [29,30], define a thick ellipsoid
(
(E)
)

=
(
(E)
)(

µ,Γ,
[
ρ ; ρ

])
,

where 0 ≤ ρ ≤ ρ, as a subset of the power set P (Rn) so that

(
(E)
)

=
{
A ∈ P (Rn)

∣∣EI ⊆ A ⊆EO
}

(2)

encloses a set A of interest both from the inside and outside with the inner and
outer bounding ellipsoids

EI =

{
x ∈ Rn

∣∣ (x− µ)
T
(
ρΓ
)−T (

ρΓ
)−1

(x− µ) ≤ 1

}
,

EO =
{

x ∈ Rn
∣∣ (x− µ)

T
(ρΓ)

−T
(ρΓ)

−1
(x− µ) ≤ 1

} (3)

that have surfaces parallel to each other.
Finally, ‖·‖ represents (an interval extension of) the Euclidean norm of the

corresponding vector-valued argument as introduced in [29]; the relations M � 0
and M � 0 denote positive and positive semi-definiteness of a real-valued symmetric
matrix (M ≺ 0 and M � 0, negative (semi-) definiteness, respectively).

2.2 Interval-Based Stability Contractors

Consider an interval box [x0] of Rn. According to [4, Def. 1], a stability contractor
Ψ : IRn 7→ IRn of rate |α| < 1 is characterized by the following properties for all
boxes [a] , [b] ⊂ [x0]:

1. monotonicity: [a] ⊂ [b] =⇒ Ψ
(
[a]
)
⊂ Ψ

(
[b]
)
;

2. contractance: Ψ
(
[a]
)
⊂ [a];

3. equilibrium: Ψ (0) = 0;

4. convergence: Ψ
(
[a]
)
⊂ α · [a] =⇒ ∀k ≥ 1,Ψk

(
[a]
)
⊂ αk · [a], where Ψk

(
[a]
)

denotes the iterated evaluation Ψ ◦ . . . ◦Ψ︸ ︷︷ ︸
k

, where Ψ0 is the identity function.

As shown in [4], the existence of such a stability contractor with Ψ
(
[x0]

)
⊂ [x0]

can serve as a proof of Lyapunov stability of a discrete-time dynamic system

xk+1 = f (xk) , f : Rn 7→ Rn (4)

with the equilibrium state x = 0, i.e., 0 = f (0) in the complete box of initial
conditions [x0] 3 0.

Remark 1. Due to the fact that a centered form representation of the interval
extension of functions such as the system model (4) often leads to tighter bounds
of the resulting state enclosures than a naive interval extension if the domain on
which the function is evaluated is sufficiently small (cf. [10]), an evaluation of the
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stability contractor in centered form representation was proposed in [4]. Moreover,
it should be noted that a one-step evaluation of the state equations (especially for
systems with oscillatory but asymptotically stable dynamics), often does not satisfy
the contractance property mentioned above. Then, the stability contractor can be
applied to a multi-time step evaluation by using a k times iterated centered form
representation of (4) on the box of initial conditions.

2.3 Ellipsoidal Enclosures for Discrete-Time Dynamic Sys-
tems: General Case

Consider a finite-dimensional discrete-time system model (4), where (as also re-
quired for the centered form representation in the previous subsection) f is assumed
to be differentiable. Given a thick ellipsoid representation

(
(E)
)
k

=
(
(E)
)(

µk,Γk,
[
ρ
k

; ρk

])
(5)

at the time instant k, a thick ellipsoid

(
(E)
)
k+1

=
(
(E)
)(

µk+1,Γk+1,
[
ρ
k+1

; ρk+1

])
(6)

at the instant k + 1 is defined by the following Theorem 1 such that EI
k+1 is an

inner boundary containing certainly reachable states andEO
k+1 is a guaranteed outer

enclosure. A graphical representation of this enclosure property is given in Fig. 1.
For a proof of the following theorem, the reader is referred to [30].

μ1,k x1,k

x2,k

μ2,k μ2,k+1

μ1,k+1 x1,k+1

x2,k+1

EI
k

EO
k

Ak

xk+1 = f (xk)

EO
k+1

EI
k+1

Ak+1

Figure 1: Definition of a thick ellipsoid
(
(E)
)
k

enclosing the domain Ak and its

mapping
(
(E)
)
k+1

via the system model (4) that encloses the true solution set Ak+1

from the inside and outside.

Theorem 1 ( [29,30] Thick ellipsoid enclosures). Define the state enclosure at the
time instant k by the thick ellipsoid

(
(E)
)
k
. For a differentiable state equation (4),

with

Ak =
∂f

∂xk
(µk) invertible , (7)
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(
(E)
)
k+1

according to (6) is a thick ellipsoid enclosure of the solution set f
((
(E)
)
k

)

with
µk+1 = f (µk) and Γk+1 = Ak · Γk (8)

as well as
ρ
k+1

= (1− ρI,k) · ρ
k

and ρk+1 = (1 + ρO,k) · ρk . (9)

Here,

ρI,k = max
‖x̃k‖≤1

∥∥∥b̃I,k (x̃k)
∥∥∥ , (10)

b̃I,k (x̃k) = ρ−1
k

Γ−1k A−1k ·
(
f
(
ρ
k
Γkx̃k + µk

)
− f (µk)

)
− x̃k (11)

and
ρO,k = max

‖x̃k‖≤1

∥∥∥b̃O,k (x̃k)
∥∥∥ , (12)

b̃O,k (x̃k) = ρ−1k Γ−1k A−1k ·
(
f (ρkΓkx̃k + µk)− f (µk)

)
− x̃k . (13)

2.4 Ellipsoidal Enclosures for Discrete-Time Dynamic Sys-
tems: Quasi-Linear Case

As a special case of the general system model (4), consider the quasi-linear system
representation

xk+1 = A (xk,pk) · xk , (14)

where A (xk,pk) ∈ Rn×n is a state- and parameter-dependent system matrix. This
matrix can be extracted from the general system formulation (4) either by means
of factoring out the state vector in such a way that all matrix entries are finite and
non-singular in the operating domain of interest. Alternatively, it can be bounded
by means of slope calculus [6] or in analogy to the centered form representation
mentioned before by means of an interval extension of the system’s Jacobian, see
also [26].

Remark 2. To prove asymptotic stability by means of the contractor technique in
Sec. 2.2, it is necessary that the matrix A (xk,pk) in (14) does not introduce any
further equilibrium point (except for the origin of the state space) in the evalua-
tion domain of interest. This is a direct consequence of the contractance property
in Sec. 2.2 which must equally hold for the state equations if the interval-based
stability contractor of Sec. 2.2 and the general ellipsoidal evaluation technique of
Sec. 2.3 were applied.

The following five-step evaluation procedure for quasi-linear discrete-time sys-
tems (14) was published as a state prediction algorithm in the frame of a predictor–
corrector state estimator in [26]. As visualized in Fig. 2, this procedure is based

on propagating a thick ellipsoid ˇ((E)
)
k

centered at the origin of the state space in
parallel to an offset term (arising from non-zero ellipsoid midpoints µk) in the form

xk+1 = A (xk,pk) · x̌k + Ãk · µk +
(
A (xk,pk)− Ãk

)
· µk , (15)
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where

(
(E)
)
k

=
(
(E)
)
k

(
µk,Γk,

[
ρ
k

; ρk

])
(16)

denotes the uncertainty on the non-origin centered states xk,

ˇ((E)
)
k

= ˇ((E)
)
k

(
0,Γk,

[
ρ
k

; ρk

])
(17)

the uncertainty of x̌k after shifting the ellipsoid to the origin, and

Ãk = A
(
µk,mid

(
[pk]

))
(18)

the midpoint approximation of the quasi-linear system matrix with

pk ∈ [pk] =
[
p
k

; pk

]
, where mid

(
[pk]

)
=

1

2
·
(
p
k

+ pk

)
. (19)
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Ãk +
(
A (xk,pk)− Ãk
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Figure 2: Separation of the state equations according to (15)–(19) into the mapping
of an origin-centered ellipsoid and the verified treatment of non-zero offset terms.
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1. Apply the mapping

x̌k+1 = A (xk,pk) · x̌k , (20)

with A (xk,pk) evaluated for all xk ∈EO
k and pk ∈ [pk], to the inner bound

of ˇ((E)
)
k

in (17). The shape matrix of the inner hull of the image set is given
by

Q̌I
k+1 = α2

I,k+1 · ρ2k · Γk+1 · ΓT
k+1 , (21)

where αI,k+1 ≥ 0 is the maximum value for which

Nk+1 := Λ




α−2I,k+1 ·R−1k

(
Ã−1k ·A (xk,pk)

)−T
(
Ã−1k ·A (xk,pk)

)−1
Qk


Λ � 0 ,

Qk = ρ2
k
· Γk · ΓT

k

(22)

is satisfied in terms of positive semi-definiteness with the typical choice

Rk := ρ2
k
· Γk · ΓT

k , (23)

cf. [26]. An alternative choice for this matrix would be

Rk := ρ2
k
· Ã−Tk · Γk · ΓT

k · Ã−1k , (24)

leading to a predicted ellipsoid that has an outer surface parallel to the one
describing the state enclosure at the previous time step. As shown in [26],
the option (24) is beneficial if the ratios of the lengths of the principal axes
of the predicted ellipsoid differ significantly from the principal axes ratio of
the original one. Note that the shape matrix definition (24) also simplifies
the test for contractance in the following section.

As a generalization of the procedure derived in [26], the symmetric precon-
ditioning matrix Λ = ΛT � 0 is introduced in (22). It helps to optimize the
ellipsoidal enclosures, especially for the propagation of small state domains,

i.e., if the norms of
(
Ã−1k ·A (xk,pk)

)−T
and Qk are significantly different.

Then, the non-rescaled equation with Λ = I may be too conservative and
yield unnecessarily empty inner bounds1. For rescaling purposes, a block di-
agonal matrix Λ = blkdiag

(
βI, β−1I

)
with I ∈ Rn×n and the square root

β =
√

min{λi (Qk)} of the smallest eigenvalue of Qk is used in this paper.

2. Apply (20) to the outer bound of ˇ((E)
)
k

in (17). The shape matrix of the outer
hull of the image set is given by

Q̌O
k+1 = α2

O,k+1 · ρ2k · Γk+1 · ΓT
k+1 , (25)

1Omitting this rescaling in the following computation of outer bounds may also turn the results
unnecessarily wide and less useful when applied in the frame of proving stability.
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where αO,k+1 ≥ 0 is the smallest value for which

Mk+1 := Λ

[
−Q−1k AT (xk,pk) · Ã−Tk

Ã−1k ·A (xk,pk) −α2
O,k+1Rk

]
Λ � 0 ,

Qk = ρ2k · Γk · ΓT
k

(26)

is satisfied for all xk ∈EO
k and pk ∈ [pk] with Rk := ρ2k · Γk · ΓT

k .

3. Compute interval bounds for the term

bk =
(
A (xk,pk)− Ãk

)
· µk ∈ [bk] (27)

which accounts for a non-zero ellipsoid midpoint with xk, Ãk, and pk defined
according to (16), (18), and (19). Deflate the inner ellipsoid bound from (21)
according to

QI
k+1 =

(
1− ρI,k+1

)2 · Q̌I
k+1 , ρI,k+1 = sup

{∥∥∥α−1I,k+1 · ρ−1k
· Γ−1k · [bk]

∥∥∥
}

(28)

and inflate the outer bound in (25) with

QO
k+1 =

(
1 + ρO,k+1

)2 · Q̌O
k+1 , ρO,k+1 = sup

{∥∥∥α−1O,k+1 · ρ−1k · Γ−1k · [bk]
∥∥∥
}

.

(29)

For ρI,k+1 ≥ 1, or if A (xk,pk) contains points at which it is not invertible,
the inner bound becomes the empty set.

4. Compute the updated ellipsoid midpoint as

µk+1 = Ãk · µk . (30)

5. The thick ellipsoid at the time instant k + 1 then becomes

xk+1 ∈
(
(E)
)
k+1

(
µk+1,Γk+1,

[
ρ
k+1

; ρk+1

])
, (31)

where

ρ
k+1

= ρ
k
· αI,k+1 ·

(
1− ρI,k+1

)
,

ρk+1 = ρk · αO,k+1 ·
(
1 + ρO,k+1

)
, and

Γk+1 = Ãk · Γk .

(32)

Remark 3. For eigenvalue tests according to [36] as well as a Gershgorin circle cri-
terion [47] that both allow for checking the definiteness properties in (22) and (26),
the reader is referred to [26].
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3 Ellipsoidal Stability Contractor

3.1 Specification of the Initial State Domain

For what follows, we assume that a linearization of the system model (4) at the
equilibrium point x0 = 0 is given by the Jacobian J0 = J (0), where

J (x) =
∂f

∂x
(x) . (33)

For the quasi-linear model (14) with its equilibrium at the origin of the state space,
J0 is chosen as

J0 = A
(
0,mid

(
[p]
))

, (34)

where [p] denotes an interval box containing all (temporally constant) uncertain
system parameters.

3.1.1 Point-Valued Selection Approach

To find ellipsoidal domains as enclosures of the initial conditions, for which the
likelihood of convergence to the equilibrium state is as large as possible, we do
not purely assume axis-aligned initial state domains but rather exploit the local
dynamics properties of the (linearized) system model.

In the simplest approach, a reasonable shape matrix for the initial ellipsoidal
state domain can be determined by solving the discrete-time Lyapunov equation

JT
0 PJ0 −P = −I . (35)

Here, the actual choice of the matrix on the right-hand side represents a degree of
freedom with the prerequisite to be negative definite (in (35), the negative identity
matrix −I is used). To avoid specifying this matrix explicitly, the equality (35) can
be cast equivalently into the LMI

JT
0 PJ0 −P ≺ 0 (36)

for which a solution P = PT � 0 needs to be found. In analogy to a positive
definite solution P of the Lyapunov equation (35), the existence of a solution to
the LMI (36) corresponds to the local asymptotic stability of the linearized system
model at the origin of the state space. The ellipsoid shape matrix Q = Γ · ΓT is
then obtained according to the matrix inverse

Q = P−1 . (37)

3.1.2 Robust Domain Specification

The drawback of the ellipsoid parameterization according to (35) and (36) is the
fact that both approaches only take into account a point-valued system model in
terms of a linearization at the equilibrium state. This restriction can be removed if



Verifying Stability Domains Using Ellipsoidal State Enclosures 277

a polytopic uncertainty model is derived such that J (x) and A (x,p) with p ∈ [p],
respectively, are bounded by the convex polytopic domain

J (x) ∈
{

J
∣∣∣J(ξ) = J′0 +

nv∑

v=1

ξv ·∆Jv ;

nv∑

v=1

ξv = 1 ; ξv ≥ 0
}
. (38)

Here, x needs to be replaced with a set-valued representation that encloses an
application-motivated domain of interest for which stability shall be investigated.
The domain (38) is spanned by a collection of at most nv = 2n

2

vertices, where
the worst-case deviations of all possible realizations of the Jacobian J(x) from J′0
are described by the matrices ∆Jv. In (38), the matrix J′0 is a point-valued matrix
included in the set-based evaluation of J (x), which is enclosed by a convex polytope
that is spanned with the help of the individual increment matrices ∆Jv.

Using this formulation, (36) can be replaced in a conservative manner by the
collection of LMIs

(
J′0 + ∆Jv

)T ·P ·
(
J′0 + ∆Jv

)
−P ≺ 0 (39)

for which a joint solution P = PT � 0 in terms of a vertex-independent quadratic
Lyapunov function parameterization needs to be found. The existence of such a
matrix P proves that each vertex realization, and hence all convex combinations of
vertices according to (38), correspond to asymptotically stable realizations.

It should be pointed out that with the help of a quadratic Lyapunov function
candidate xT · P · x — that is parameterized according to (39) — only a proof of
asymptotic stability for states satisfying the inequality

fT (x0) ·P · f (x0)− xT
0 ·P · x0 < 0 (40)

in the interior of a contour line xT
0 · P · x0 = c, c > 0 that is fully included in

the box x0 ∈ [x0] is obtained. Note that this interval box needs to be employed
for generating the polytopic uncertainty representation (38). Hence, the direct
application of a stability contractor to the system models (4) and (14), making use
of an ellipsoid with a shape matrix Q computed by (37) simplifies the evaluation
of (40) and provides reasonably large provable stability domains as long as the
contractor itself can be evaluated with a small amount of overestimation.

The major drawback of the polytopic uncertainty representation (38) is the
typically large number of vertices that results from treating each matrix entry of
the Jacobian (or of the quasi-linear system matrix, respectively) as independent.

Remark 4. The number nv of the vertices to be considered in the polytopic uncer-
tainty representation (38) can often be reduced by identifying physically motivated
linear dependencies between individual entries of the matrix J (x) and by express-
ing them in terms of common interval parameters. For an example, where this has
been done successfully, the reader is referred to [11].
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When determining a candidate for the shape matrix of the initial state domain,
in which stability is investigated, a further reduction of the complexity can be
obtained by the introduction of a norm-bounded uncertainty model

J (x) ∈ J0 + ∆J , where ∆J = H · F ·E (41)

holds with F being an unknown, norm-bounded matrix according to ‖F‖ < 1.
The example in Sec. 3.4 demonstrates how the matrices E and H included in (41)
can be chosen to represent the variability of the matrix J (x) over the investigated
domain. There, the simplest choice is shown by setting one of the matrices to the
identity matrix, and to define the second as the worst-case interval radii of each
element of J (x) if J0 is set to the element-wise defined interval midpoint. Using
this norm-bounded model, a single LMI needs to be solved instead of finding a
common solution to the previous list of nv matrix inequalities.

Stability of the norm-bounded uncertainty model is verified according (39). Re-
writing this inequality by applying the Schur complement formula leads to

[
−P JT

0

J0 −P−1

]
+

[
ET

0

]
FT
[
0 HT

]
+

[
0
H

]
F
[
E 0

]
≺ 0 , P � 0 . (42)

Then, the application of the elimination lemma [40] allows for eliminating the
unknown matrix F. It turns the nonlinear matrix inequality2 (42) into

[
−P JT

0

J0 −P−1

]
+ ε−1

[
ET

0

]
[
E 0

]
+ ε

[
0
H

] [
0 HT

]
≺ 0 , P � 0 , (43)

where ε > 0 is a free parameter. After combining the second and third terms of
the inequality (43), it becomes equivalent to

[
−P JT

0

J0 −P−1

]
+

[
ET

εH

]
ε−1I

[
E εHT

]
≺ 0 , P � 0 , (44)

which can be transformed by applying the Schur complement into



−P JT

0 ET

J0 −P−1 εH
E εHT εI


 ≺ 0 , P � 0 . (45)

After multiplication of the matrix inequality (45) from the left and right with the
block diagonal matrix

blkdiag
(
P−1, I, I

)
=: blkdiag (Q, I, I) , (46)

2due to the inverse of the decision variable matrix P
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the LMI formulation


−Q QJT

0 QET

J0Q −Q εH
EQ εHT εI


 ≺ 0 , Q � 0 (47)

is obtained. It verifies asymptotic stability of the norm-bounded uncertainty
model (41) if Q = QT � 0 and, therefore, P = PT � 0 exists, where the ac-
tual value of ε > 0 can be determined automatically by the LMI solver.

3.2 Verification of the Property of Contractance

For the verification of the property of contractance in the case of a thick ellipsoid
stability check, we assume that the prior state domain (given as a crisp ellipsoid
E0 =

(
(E)
)
0

(
0,Γ0, [ρ0 ; ρ0]

)
with identical outer and inner bounds and a shape ma-

trix parameterized according to the options listed in the previous subsection) is
centered at the equilibrium state of the system (the origin, without loss of gener-

ality) and that it is mapped onto a thick ellipsoid
(
(E)
)
1

(
0,Γ1,

[
ρ
1

; ρ1

])
that is

again centered at the equilibrium.
Then, it is guaranteed by a one time step evaluation of the system model, that

E0 belongs to the region of attraction of the equilibrium if the predicted outer
bound EO

1 is a guaranteed subset of E0 according to

EO
1 ⊂E0 . (48)

The property (48) can be checked by verifying whether all eigenvalues λi of the
shape matrix difference satisfy the inequality3

λi = λi

((
ρ21 · Γ1 · ΓT

1

)−1
−
(
ρ20 · Γ0 · ΓT

0

)−1)
> 0 . (49)

This inequality is a direct consequence of the proof of Theorem 3 in [26].
In contrast, if

λi = λi

((
ρ2
1
· Γ1 · ΓT

1

)−1
−
(
ρ20 · Γ0 · ΓT

0

)−1)
< 0 (50)

holds for all of the eigenvalues according to the proof of Theorem 1 in [26], it
is guaranteed that the domain E0 is an unstable neighborhood of the equilibrium
x0 according to Chetaev’s theorem, see [19, Theorem 3.12]. Geometrically, this

3A rigorous proof of the inequalities (49) and (50) is possible with the help of the routine
verifyeig included in IntLab [39]. Alternatively, the matrices can be diagonalized as far as
possible using verified numerics with a subsequent eigenvalue test following Remark 3. In many
practical cases, however, it often suffices to check in classical floating point arithmetic whether
the eigenvalues with smallest magnitude have a sufficiently large distance to the value zero.
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corresponds to the fact that the predicted inner thick ellipsoid bound fully encloses
the sufficiently small original domain according to

EI
1 ⊃E0 . (51)

Note, this case only arises for an intuitive choice of E0 (cf. Sec. 3.5) because it
contradicts the robust LMI constraints listed above. Moreover, it should be noted
that the difference ρ1− ρ1 directly serves as a quantification of the possible overes-
timation of the predicted ellipsoid hulls according to [29].

The check of the eigenvalue inequalities (49) and (50) is necessary when applying
either the general-purpose ellipsoidal enclosures according to Sec. 2.3 (Theorem 1)
or when using the quasi-linear formulation (Sec. 2.4) with (23) as the parameteri-
zation for the predicted shape matrix. If the simplification (24) is used in the case
of Sec. 2.4, the inequality (49) turns into ρ1 < ρ0 and (50) turns into ρ

1
> ρ0.

To maximize the domains for which stability can be proven by this contractor,
the examples in the following two subsections try to find the largest positive value
ρ by means of a bisection algorithm so that min (λi) > 0 holds in (49), where the
threshold ε∗ = 10−6 is used as the tolerance between two subsequent admissible
solutions for the parameter ρ.

3.3 Proof of Stability: An Illustrating Example

As a first illustrating example, consider an explicit Euler discretization of the
second-order system model ẋ1 = −x1, ẋ2 = −x2 + x21x2 that was used in [15, 44]
as a numerical benchmark scenario for the analysis of continuous-time ordinary
differential equations. The discrete-time state equations can be specified as

xk+1 = xk + T ·
[

−x1,k
−x2,k + x21,kx2,k

]
leading to J0 =

[
1− T 0

0 1− T

]
, (52)

which can be re-written (with the unique equilibrium x0 = 0) into the quasi-linear
form

xk+1 = A (xk) ·xk =

[
1− T 0

Tαx1,kx2,k (1− T ) + T (1− α) · x21,k

]
·xk with α ∈ R .

(53)
For this special example, J0 = A (0) holds. In general, the quasi-linear reformula-
tion (53) is not unique. Therefore, the parameter α can be used as an optimization
variable (in addition to the parameter ρ) of the initial ellipsoidal state domain in
order to maximize the provable domain of attraction of the equilibrium.

Fig. 3 gives an overview of the provable stability domains by means of a symbolic
evaluation of the discrete-time Lyapunov function increment (40) for a one time
step evaluation of the system model. In Fig. 3, the result A denotes the maximum
provable domain with the given Lyapunov function candidate; moreover, the gen-
eral nonlinear ellipsoidal enclosure technique (result B), the quasi-linear ellipsoid
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implementation (result C) as well as an interval-based contractor implementation
(result D) are compared. Due to the fact that the system model has a dominant
linear behavior in the close vicinity to the equilibrium, the quasi-linear evaluation
outperforms the general nonlinear technique. Moreover, it can be seen that the ac-
tual choice of the parameter α has a strong influence on the volume of the provable
stability domain, where the maximum-volume ellipsoid is close to the volume of
the largest provable box volume in the case of Figs. 3a and 3b and even larger for
the heuristic choice of Figs. 3c and 3d. Note that the visible spikes in the volume
dependency can be removed by slightly adapting the scaling matrix Λ in (26).

Due to the fact that all domains shown in the left column of Fig. 3 are guar-
anteed to contain asymptotically stable system realizations, their set-valued union
can be formed to describe the domain in the state space for which the system ex-
hibits asymptotically stable dynamics. The fact that the quasi-linear contractor
outperforms the general nonlinear ellipsoidal enclosures gives rise to the follow-
ing aspect of future work: Find a unified implementation for both approaches in
which the quasi-linear system matrix and/or a suitable interval extension in slope
arithmetic [6, 38] are employed to enhance the tightness of solutions. Note that
the interval contractor was evaluated in an overestimation-free manner for this ex-
ample after a symbolic reformulation of the state equations. This fact emphasizes
the advantageous property of the ellipsoidal approach in Figs. 3a and 3c to prove
stability of initial conditions that could not be detected by the interval counterpart
for the same choice of aspect ratio (resulting from the precomputed ellipsoid shape
matrix Q).

In Figs. 3e and 3f, however, it can be seen that the ellipsoid enclosures are much
smaller than the interval contractor’s volume. This is caused by the fact that the
included matrices J(x) need to be evaluated on a box that encloses the ellipsoid
domain from the outside which leads to a kind of wrapping effect. For this specific
setting of the shape matrix Q, parts of those domains are close to the stability
boundary so that the ellipsoid approach performs worse than the interval-based
counterpart. In such cases, the approaches included in [13,14] for the computation
of outer state enclosures could be helpful to enhance the procedures of [3]. In
general, however, the ellipsoidal approach will be more efficient if the domains
under investigation are chosen on the basis of Lyapunov function candidates.

3.4 Stability Proof of an EKF-Based Localization Algorithm

As a second application scenario, we re-consider the stability proof of an EKF-
based localization algorithm, for which an interval-based stability contractor was
investigated in [3].

For this scenario, the output equation is given by

yk = h(xk) =

[
(x1,k − a1)2 + (x2,k − a2)2

(x1,k − b1)2 + (x2,k − b2)2

]
, (54)

where (a1, a2) and (b1, b2) denote the known positions of two beacons; the vector yk

denotes the squared distances to the object xk to be localized. This measurement
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(a) Selection of P = Q−1 acc. to (35), (36). (b) Selection of P = Q−1 acc. to (35), (36).

(c) Selection of P = Q−1 = diag
([

1 3
])

. (d) Selection of P = Q−1 = diag
([

1 3
])

.

(e) Selection of P = Q−1 = diag
([

3 1
])

. (f) Selection of P = Q−1 = diag
([

3 1
])

.

Figure 3: Provable stability domains for the example (52), (53) in the left column
(using the parameter α with the largest ellipsoid volume in the case C) and depen-
dence of the volume of the provable stability domain on the parameter α ∈ [−1 ; 1]
(right column).
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(subscript m) is assumed to be corrupted by additive, zero-mean Gaussian noise vk

with the covariance Cv, so that ym,k = yk + vk holds. Moreover, we assume that
the object to be localized is described by a discrete-time integrator disturbance
model with additive, zero-mean Gaussian process noise wk according to

[
x1,k+1

x2,k+1

]
=

[
x1,k
x2,k

]
+ wk , (55)

where the disturbance covariance matrix related to wk is denoted by Cw.
Then, an EKF algorithm can be specified with the help of the augmented state

vector
xk =

[
x1,k x2,k c11,k c12,k c22,k

]T
, (56)

which consists of the estimated position (x1,k, x2,k) and the entries of the covariance
matrix Ck after the innovation stage at the time instant k. The position and
covariance matrix can be extracted with the help of selection matrices

S1 =

[
1 0 0 0 0
0 1 0 0 0

]
and S2 =




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


 , (57)

where [
x1,k
x2,k

]
= S1 · xk (58)

and


c11,k
c12,k
c22,k


 = vech (Ck) = S2·xk , Ck =

[
c11,k c12,k
c12,k c22,k

]
⇐⇒ Ck = vech−1 (S2 · xk) .

(59)
Here, extracting the upper triangular part of the covariance matrix Ck is performed
by the half-vectorization operator vech, where the corresponding inverse operation
is denoted by vech−1. With this notation, the state equations of the EKF can be
specified so that xk+1 contains the estimated position and covariance matrix entries
after performing the subsequent prediction and innovation step associated with the
time instant k + 1. Hence, these equations are given by

xk+1 = f (xk) =


 S1 · xk + K (xk) ·

(
ym,k − h (xk)

)

vech
((

I−K (xk) ·H (xk)
)
·Cp

k+1 (xk)
)

 (60)

with the predicted covariance matrix

Cp
k+1 (xk) = vech−1 (S2 · xk) + Cw , (61)

the Kalman gain

K (xk) = Cp
k+1 (xk) ·HT (xk) ·

(
H (xk) ·Cp

k+1 (xk) ·HT (xk) + Cv

)−1
, (62)
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and the Jacobian

H (xk) =
[

∂h
∂x1,k

(xk) ∂h
∂x2,k

(xk)
]

(63)

of the output equation with respect to the current position estimate. For the
following numerical results in Tabs. 1 and 2, we consider the beacon positions

a1 = −5, a2 = 5, b1 = 5, b2 = 5, the measurement ym,k =
[
0 0

]T
, and the noise

covariances Cw = diag
([

0.01 0.01
])

as well as Cv = diag
([

1 1
])

. This leads

to the equilibrium state x∗1 = x∗2 = 0, c∗12 = 0 and c∗11 = c∗22 = 0.003660254037844
around which the stability domains are centered.

Using a point-valued selection of the ellipsoid shape matrix according to
Sec. 3.1.1 leads to the result in Tab. 1 which can be widened by the robustified,
norm-bounded uncertainty representation according to Sec. 3.1.2, see Tab. 2. For
that purpose, the norm-bounded uncertainty model in (41) is parameterized by
choosing E = I. Then, the matrix H is specified so that the maximum interval
radii of an interval extension of the Jacobian J (x) on a representative domain are
captured in an element-wise sense by the additive term ∆J. It should be pointed
out that the provably stable interval box domains are significantly larger than those
reported in [3]. This is caused (i) by choosing the ratios of the interval edge lengths
identical to the ratios of the edge lengths of an axis-aligned box corresponding to
the Lyapunov function and LMI-based shape matrix definitions, and (ii) by not
only using a centered form evaluation but also intersecting it with a slope extension
of the range implemented in IntLab [38, 39]. This kind of evaluation can also be
integrated into the ellipsoidal approach in future work.

3.5 Proof of Instability: An Illustrating Example

To demonstrate the applicability of the ellipsoidal approach to find unstable neigh-
borhoods of equilibrium points by means of (51) and the inequality (50), consider
the explicit Euler discretization with T = 0.1 of the benchmark example (3.23)
in [19] for which β = 1 is chosen. In a quasi-linear form, this example has the state
equations

xk+1 =


I + T ·

[
β2 − x21,k − x22,k 1

−1 β2 − x21,k − x22,k

]
 · xk . (64)

Parameterizing the initial state domain E0 as a circle with radius 0.1 leads to circles
as the inner ellipsoidal enclosures EI

1 with the inward rounded radii 0.10953174 and
0.11002215 for the general-purpose and the quasi-linear evaluation approaches of
Secs. 2.3 and 2.4, respectively. Due to EI

1 ⊃ E0, the domain E0 is a provably
unstable neighborhood of the equilibrium x0 = 0, where the quasi-linear approach
provides the less conservative solution.
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Table 1: Comparison of different stability contractors for a shape matrix selection
according to Sec. 3.1.1; for the ellipsoid case, a tight outer, axis-aligned hull is
given.

interval contractor
x x

x1 −0.00427481791343 0.00427481791343
x2 −0.00427481599897 0.00427481599897
c11 −0.00076536378418 0.00808587185987
c12 −0.00442561782520 0.00442561782520
c22 −0.00076536379689 0.00808587187258

ellipsoidal encl. (quasi-lin.)
x x

x1 −0.00161026895377 0.00161026895377
x2 −0.00161026823262 0.00161026823262
c11 0.00199318069709 0.00532732737860
c12 −0.00166707334195 0.00166707334195
c22 0.00199318069230 0.00532732738339

ellipsoidal encl. (general.)
x x

x1 −0.00043890766400 0.00043890766400
x2 −0.00043890746744 0.00043890746744
c11 0.00320586332007 0.00411464475562
c12 −0.00045439071810 0.00045439071810
c22 0.00320586331877 0.00411464475692

Table 2: Comparison of different stability contractors for a robustified shape matrix
selection according to Sec. 3.1.2; for the ellipsoid case, a tight outer, axis-aligned
hull is given.

interval contractor
x x

x1 −0.00440136214825 0.00440136214825
x2 −0.00440079183131 0.00440079183131
c11 −0.00076807607385 0.00808858414954
c12 −0.00441865927874 0.00441865927874
c22 −0.00076814256179 0.00808865063748

ellipsoidal encl. (quasi-lin.)
x x

x1 −0.00168345510722 0.00168345510722
x2 −0.00168323696953 0.00168323696953
c11 0.00196648408848 0.00535402398721
c12 −0.00169007100059 0.00169007100059
c22 0.00199318069230 0.00535404941785

ellipsoidal encl. (general.)
x x

x1 −0.00044551035825 0.00044551035825
x2 −0.00044545263019 0.00044545263019
c11 0.00321201395487 0.00410849412082
c12 −0.00044726119141 0.00044726119141
c22 0.00321200722490 0.00410850085079
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4 Outlook: Ellipsoid Definition of Positive Invari-
ant Sets for Continuous-Time Processes

Due to the fact that the ellipsoidal contractor above is based on a forward in time
evaluation of dynamic system models, it is also readily applicable to the continuous-
time case if the solution approach published in [27] is employed. However, to reduce
pessimism, it can be combined in future work with the following novel test for
positive invariance.

Theorem 2 (Positive invariant, ellipsoidal domains for continuous-time systems).
Consider the continuous-time system ẋ(t) = f

(
x(t)

)
, x ∈ Rn with the (locally)

stable equilibrium x = 0. Define the Lyapunov function candidate

V
(
x(t)

)
=

1

2
xTPx , x := x(t) (65)

with P � 0 and the small interval box [x] 3 0. Define the ellipsoid

EP

(
[x]
)

=

{
x ∈ Rn

∣∣∣ −xT ·P · ∂f

∂x
(0) · x ≤ v+

}
(66)

with

v+ = sup
(

[x]
T ·P · [e]

)
and [ei] =

1

2
[x]

T · ∂
2fi
∂x2

(
[x]
)
· [x] . (67)

If EP

(
[x]
)
⊂ [x], EP

(
[x]
)

is positive invariant.

Proof. Take an interval box x with center at x = 0 and express the i-th component
of f as a second-order Taylor form near the equilibrium, i.e.,

x ∈ [x] =⇒ fi (x) ∈ Ji: · x +
1

2
[x]

T · [Hi] · [x] = Ji: · x + [ei] , (68)

where [Hi] is an interval extension of the Hessian of fi and Ji: is the i-th row of
the Jacobian J = ∂f

∂x (0). Consequently,

V̇ (x) = xT ·P · f (x)

=

n∑

i=1

xi ·P:i · fi (x)

∈
n∑

i=1

xi ·P:i ·
(
Ji: · x + [ei]

)

= xT ·P · J · x + xT ·P · [e] .

(69)

Setting [v] = [x]
T ·P · [e], we have V̇ (x) < xT ·P ·J ·x + sup

(
[v]
)
. Taking x such

that xT ·P · J · x + v+ = 0, where v+sup
(
[v]
)
, yields V̇ (x) < 0 for x ∈ EP

(
[x]
)

according to (66), (67) which completes the proof.
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5 Conclusions

In this paper, an ellipsoidal implementation of a stability contractor was presented
for discrete-time systems. Due to the possibility for finding initial parameteriza-
tions of the shape matrix by means of Lyapunov equations or LMIs, it has the
advantage in comparison to a straightforward interval-based implementation that
the considered domains are not necessarily axis-parallel and that the form of the
domains investigated is close to (locally valid) Lyapunov function candidates. In
such a way, it becomes possible to often find larger domains of attraction than for
the previously investigated interval-based counterpart. In addition, it was shown
that the use of a specialized implementation for quasi-linear system models may
outperform the application of a general ellipsoidal enclosure technique. This is es-
pecially true if free parameters in the quasi-linear system models are used as further
degrees of freedom to optimize the volume of the provable stability domain.

In future work, the approach will not only be used for a stability analysis of
dynamic systems but also to optimize controllers so that the domains of attraction
of stable operating points become as large as possible. Moreover, it is reason-
able to consider not only set-valued uncertainty representations, but also links to
techniques which simultaneously allow for robustifying control procedures in the
presence of stochastic noise [11, 28, 32]. Finally, applications to continuous-time
processes, in combination with the new invariance test sketched in Sec. 4, will be
investigated.
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[46] Valmórbida, G., Tarbouriech, S., and Garcia, G. Region of attraction esti-
mates for polynomial systems. In Proceedings of the 48h IEEE Conference
on Decision and Control (CDC) held jointly with 2009 28th Chinese Control
Conference, pages 5947–5952, 2009. DOI: 10.1109/CDC.2009.5399969.

[47] Weinmann, A. Uncertain Models and Robust Control. Springer–Verlag, Wien,
1991. DOI: 10.1007/978-3-7091-6711-3.

Received 26th August 2021

https://doi.org/10.1007/978-94-017-1247-7_7
https://doi.org/10.1201/b10384
https://doi.org/10.1007/978-1-4471-5102-9_207-2
https://doi.org/10.1007/978-1-4471-5102-9_207-2
https://doi.org/10.1109/ECC.2015.7330560
https://doi.org/10.1109/CDC.2000.912314
https://doi.org/10.1109/CDC.2000.912316
https://doi.org/10.1109/CDC.2009.5399969
https://doi.org/10.1007/978-3-7091-6711-3






Contents

Regular papers
Shajulin Benedict: EA-POT: An Explainable AI Assisted Blockchain Frame-

work for HoneyPot IP Predictions . . . . . . . . . . . . . . . . . . . . . . 149
Attila Klenik and András Pataricza: Adding Semantics to Measurements:

Ontology-Guided, Systematic Performance Analysis . . . . . . . . . . . . 175
Reza Fuad Rachmadi, I Ketut Eddy Purnama, Supeno Mardi Susiki Nugroho,

and Yoyon Kusnendar Suprapto: Dual Convolutional Neural Network
Classifier with Pyramid Attention Network for Image-Based Kinship Ver-
ification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Gábor Rácz, Attila Sali, and Klaus-Dieter Schewe: Refined Fuzzy Profile
Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Andreas Rauh, Auguste Bourgois, Luc Jaulin: Verifying Provable Stability
Domains for Discrete-Time Systems Using Ellipsoidal State Enclosures . . 267

ISSN 0324—721 X (Print)
ISSN 2676—993 X (Online)

Editor-in-Chief: Tibor Csendes


