
Volume 26 Number 3

ACTA
CYBERNETICA

Editor-in-Chief: Tibor Csendes (Hungary)

Managing Editor: Boglárka G.-Tóth (Hungary)

Assistant to the Managing Editor: Attila Tanács (Hungary)

Associate Editors:

Michał Baczyński (Poland) Zoltan Kato (Hungary)
Hans L. Bodlaender (The Netherlands) Dragan Kukolj (Serbia)
Gabriela Csurka (France) László Lovász (Hungary)
János Demetrovics (Hungary) Kálmán Palágyi (Hungary)
József Dombi (Hungary) Dana Petcu (Romania)
Rudolf Ferenc (Hungary) Andreas Rauh (Germany)
Zoltán Gingl (Hungary) György Vaszil (Hungary)
Tibor Gyimóthy (Hungary)

Szeged, 2024

ACTA CYBERNETICA

Information for authors. Acta Cybernetica publishes only original papers in the field
of Computer Science. Manuscripts must be written in good English. Contributions are
accepted for review with the understanding that the same work has not been published
elsewhere. Papers previously published in conference proceedings, digests, preprints are
eligible for consideration provided that the author informs the Editor at the time of
submission and that the papers have undergone substantial revision. If authors have used
their own previously published material as a basis for a new submission, they are required
to cite the previous work(s) and very clearly indicate how the new submission offers
substantively novel or different contributions beyond those of the previously published
work(s). There are no page charges. An electronic version of the published paper is
provided for the authors in PDF format.

Manuscript Formatting Requirements. All submissions must include a title page
with the following elements: title of the paper; author name(s) and affiliation; name,
address and email of the corresponding author; an abstract clearly stating the nature
and significance of the paper. Abstracts must not include mathematical expressions or
bibliographic references.

References should appear in a separate bibliography at the end of the paper, with
items in alphabetical order referred to by numerals in square brackets. Please prepare your
submission as one single PostScript or PDF file including all elements of the manuscript
(title page, main text, illustrations, bibliography, etc.).

When your paper is accepted for publication, you will be asked to upload the complete
electronic version of your manuscript. For technical reasons we can only accept files in
LaTeX format. It is advisable to prepare the manuscript following the guidelines described
in the author kit available at https://cyber.bibl.u-szeged.hu/index.php/actcybern/
about/submissions even at an early stage.

Submission and Review. Manuscripts must be submitted online using the edito-
rial management system at https://cyber.bibl.u-szeged.hu/index.php/actcybern/

submission/wizard. Each submission is peer-reviewed by at least two referees. The
length of the review process depends on many factors such as the availability of an Edi-
tor and the time it takes to locate qualified reviewers. Usually, a review process takes 6
months to be completed.

Subscription Information. Acta Cybernetica is published by the Institute of Infor-
matics, University of Szeged, Hungary. Each volume consists of four issues, two issues are
published in a calendar year. From 2024, issues are published online only, and articles are
made available as soon as they are accepted and copyedited. The content is available free
of charge.

Contact information. Acta Cybernetica, Institute of Informatics, University of Szeged.
P.O. Box 652, H-6701 Szeged, Hungary. Tel: +36 62 546 396, Fax: +36 62 546 397, Email:
acta@inf.u-szeged.hu.

Web access. The above information along with the contents of past and current issues
are available at the Acta Cybernetica homepage https://cyber.bibl.u-szeged.hu/.

https://cyber.bibl.u-szeged.hu/index.php/actcybern/about/submissions
https://cyber.bibl.u-szeged.hu/index.php/actcybern/about/submissions
https://cyber.bibl.u-szeged.hu/index.php/actcybern/submission/wizard
https://cyber.bibl.u-szeged.hu/index.php/actcybern/submission/wizard
acta@inf.u-szeged.hu
https://cyber.bibl.u-szeged.hu/

EDITORIAL BOARD

Editor-in-Chief:

Tibor Csendes
Department of Computational Optimization
University of Szeged, Hungary
csendes@inf.u-szeged.hu

Managing Editor:

Boglárka G.-Tóth
Department of Computational Optimization
University of Szeged, Hungary
boglarka@inf.u-szeged.hu

Assistant to the Managing Editor:

Attila Tanács
Department of Image Processing
and Computer Graphics
University of Szeged, Hungary
tanacs@inf.u-szeged.hu

Associate Editors:

Michał Baczyński
Faculty of Science and Technology,
University of Silesia in Katowice,
Poland
michal.baczynski@us.edu.pl

Hans L. Bodlaender
Institute of Information and
Computing Sciences, Utrecht
University, The Netherlands
h.l.bodlaender@uu.nl

Gabriela Csurka
Naver Labs, Meylan, France
gabriela.csurka@naverlabs.com

János Demetrovics
MTA SZTAKI, Budapest, Hungary
demetrovics@sztaki.hu

József Dombi
Department of Computer Algorithms
and Artificial Intelligence, University of
Szeged, Hungary
dombi@inf.u-szeged.hu

Rudolf Ferenc
Department of Software Engineering,
University of Szeged, Hungary
ferenc@inf.u-szeged.hu

Zoltán Gingl
Department of Technical Informatics,
University of Szeged, Hungary
gingl@inf.u-szeged.hu

Tibor Gyimóthy
Department of Software Engineering,
University of Szeged, Hungary
gyimothy@inf.u-szeged.hu

Zoltan Kato
Department of Image Processing and
Computer Graphics, University of
Szeged, Hungary
kato@inf.u-szeged.hu

Dragan Kukolj
RT-RK Institute of Computer Based
Systems, Novi Sad, Serbia
dragan.kukolj@rt-rk.com

László Lovász
Department of Computer Science,
Eötvös Loránd University, Budapest,
Hungary
lovasz@cs.elte.hu

Kálmán Palágyi
Department of Image Processing and
Computer Graphics, University of
Szeged, Hungary
palagyi@inf.u-szeged.hu

Dana Petcu
Department of Computer Science, West
University of Timisoara, Romania
petcu@info.uvt.ro

Andreas Rauh
School II – Department of Computing
Science, Group Distributed Control in
Interconnected Systems, Carl von
Ossietzky Universität Oldenburg,
Germany
andreas.rauh@uni-oldenburg.de

György Vaszil
Department of Computer Science,
Faculty of Informatics, University of
Debrecen, Hungary
vaszil.gyorgy@inf.unideb.hu

Conference of
PhD Students

in Computer Science

Guest Editor:

Judit Jász

University of Szeged, Hungary
jasy@inf.u-szeged.hu

Preface

The 13th Conference of PhD Students in Computer Science (CSCS) was organized
by the Institute of Informatics of the University of Szeged (SZTE) and held in
Szeged, Hungary, between June 29 – July 1, 2022.

The members of the Scientific Committee were the following representatives
of the Hungarian doctoral schools in Computer Science: János Csirik (Co-Chair,
SZTE), Lajos Rónyai (Co-Chair, SZTAKI, BME), András Benczúr (ELTE), András
Benczúr ifj. (SZTAKI), Tibor Csendes (SZTE), László Cser (BCE), Erzsébet
Csuhaj-Varjú (ELTE), József Dombi (SZTE), Zoltán Fülöp (SZTE), Aurél Galántai
(ÓE), Zoltán Gingl (SZTE), Tibor Gyimóthy (SZTE), Katalin Hangos (MTA),
Zoltán Horváth (ELTE), Márk Jelasity (SZTE), Tibor Jordán (ELTE), Zoltán Kása
(Sapientia EMTE), Zoltán Kató (SZTE), László Kóczy (SZE), Andrea Kő (Corv-
inus), Miklós Kuczmann (SZE), János Levendovszki (BME), Gyöngyvér Márton
(Sapientia EMTE), Branko Milosavljevic (UNS), Valerie Novitzka (TUKE), László
Nyúl (SZTE), Marius Otesteanu (UPT), Attila Pethő (DE), Sándor Radeleczki
(ME), András Recski (BME), Sándor Szabó (PTE), Gábor Szederkényi (PPKE),
János Sztrik (DE), János Tapolcai (BME), János Tar (ÓE), Gyula Vastag (Corvi-
nus), and János Végh (ME).

The members of the Organizing Committee were: Judit Jász, Balázs Bánhelyi,
Tamás Gergely, Melinda Katona, and Zoltán Kincses.

There were more than 50 participants and 42 talks in several fields of computer
science and its applications (12 sessions). The talks were going in sections in
Education, Healthcare, Computer Graphics, Image Processing, Network, Graph,
Interpolation, Analysis Methods, Program Analysis, Machine Learning,Verification,
and AI&Testing.

The talks of the students were completed by 3 plenary talks of leading scientists:
Herbert Edelsbrunner (IST, Austria), András Benczúr (SZTAKI, Hungary), and
Gergely Röst (SZTE, Hungary).

The open-access scientific journal Acta Cybernetica offered PhD students to
publish the paper version of their presentations after a careful selection and review
process. Altogether 25 manuscripts were submitted for review, out of which 17
were accepted for publication in the present special issue of Acta Cybernetica.

The full program of the conference, the collection of the abstracts and further
information can be found at https://www.inf.u-szeged.hu/~cscs/.

Judit Jász
Guest Editor

295

https://www.inf.u-szeged.hu/~cscs/

Acta Cybernetica 26 (2024) 297–322.

Single and Combined Algorithms for Open Set

Classification on Image Datasets

Modafar Al-Shouhaab and Gábor Szűcsac

Abstract

Generally, classification models have closed nature, and they are con-
strained by the number of classes in the training data. Hence, classifying
”unknown” – OOD (out-of-distribution) – samples is challenging, especially
in the so called ”open set” problem. We propose and investigate different so-
lutions – single and combined algorithms – to tackle this task, where we use
and expand a K-classifier to be able to identify K + 1 classes. They do not
require any retraining or modification on the K-classifier architecture. We
show their strengths when avoiding type I or type II errors is fundamental.
We also present a mathematical representation for the task to estimate the
K + 1 classification accuracy, and an inequality that defines its boundaries.
Additionally, we introduce a formula to calculate the exact K+1 classification
accuracy.

Keywords: binary classification, multi-class classification, GAN, out-of-
distribution, open set classification

1 Introduction

In the field of computer vision, classification is one of the earliest and most common
tasks that are challenged by deep neural networks [38]. With the availability of
large, well maintained training datasets, and the advancement of convolutional
neural networks (CNNs) [21, 22], neural networks could achieve remarkable results
in performing this task. However, their classification ability is bounded by the
training data features and attributes [3].

Majority of these neural networks apply SoftMax [14] function on the last layer,
that outputs the probability of each of the K training classes, and as a result the
most likely class is chosen accordingly. One main limitation is the inability of clas-
sifying an instance correctly in case it is not presented during training, i.e. OOD
(out-of-distribution) or ”unknown” class. The task to overcome this limitation is

aDepartment of Telecommunications and Media Informatics, Budapest University of Technol-
ogy and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary

bE-mail: modafar.alshouha@tmit.bme.hu, ORCID: 0000-0003-2051-4036
cE-mail: szucs@tmit.bme.hu, ORCID: 0000-0002-5781-1088

DOI: 10.14232/actacyb.298356

mailto:modafar.alshouha@tmit.bme.hu
https://orcid.org/0000-0003-2051-4036
mailto:szucs@tmit.bme.hu
https://orcid.org/0000-0002-5781-1088
https://doi.org/10.14232/actacyb.298356

298 Modafar Al-Shouha and Gábor Szűcs

called open set recognition, open set classification, or as we call it K + 1 classifi-
cation. As a solution for such challenge, data can be produced or gathered for the
K+1 class, and a classifier could be trained on K+1 classes instead of K. However,
this solution remains insufficient and constrained by the ambiguity of defining the
”unknown” class while covering its wide features and possibilities.

Another way to address K + 1 classification is by adjusting K-classifier to be
able to solve the task. Most of the available approaches require retraining for
the original K-classifier or altering its architecture [43, 46]. In this paper, we
propose and study several solutions, that avoid the need for defining the ”unknown”
data explicitly or retraining the original K-classifier. The first group of solutions
consists of two single algorithms. One of them relies on the K classes confidence
when classifying an instance. The other takes advantage of GANs [15] to learn the
representation of the training data. A GAN consists of two parts, a generator and
a discriminator, and there is competition between them. The generative network
generates candidates while the discriminative network evaluates them. We use
the discriminator block as a binary classifier to distinguish between ”known” and
”unknown” instances, before performing K classification. As for the second group
we propose more robust solutions, by joining the strengths of various individual
algorithms; namely, the discriminator-based algorithm from the first group with a
threshold-based algorithm.

Moreover, we suggest a formula that represents mathematically the K+ 1 algo-
rithm classification accuracy when following our approach. Based on this formula,
we define an inequality that sets the boundaries for the K + 1 algorithm classifi-
cation accuracy. We validate those formulas empirically, and show that the test
results confirm their applicability.

In the next chapter we present some solutions that try to tackle the K + 1
classification task. Then we detail the proposed algorithms in two groups; single
and combined ones. In the same chapter, we introduce and prove the constructed
formula and inequality. After detailing the examination approach and presenting
the used models, datasets and metrics, we show and discuss the experimental re-
sults. Lastly, we conclude the paper and review the limitations and future work
possibilities.

2 Related work

Supervised learning methods hold an assumption about the excessive similarity
between training and testing data. With the presence of ”open set” data, the per-
formance of such models might degrade hugely, and it could be worse than random
guessing [9]. Many solutions were proposed to address this challenge focusing on
enhancing the supervised learning pipeline [33].

In computer vision related tasks, learning the feature representation is the first
component of the pipeline, where the aim is to achieve a proper generalization on
unseen target domain instances (images), i.e. images under different circumstances.
Some methods try to learn the disentangled and casual feature representation of

Single and Combined Algorithms for Open Set Classification 299

the data [4, 27], in order to assess the model generalization ability over OOD data
during the learning process [17, 20, 42]. DANN (domain-adversarial neural net-
work) [12, 13], CIAN (conditional invariant adversarial network) [24], and some
others follow domain adversarial learning approach to catch the domain invariant
features during training and inference. Another approach for representation learn-
ing is to increase and decrease the distances between different and similar domain
instances, i.e. domain alignment [23, 36, 39].

Other works focus on the training strategy. Under this category, Finn et al. [11]
and later improvements aim to achieve model domain generalization, this is done
with the help of meta-learning [19]. Works [32, 40, 45] follow ensemble learning
approach, by combining group of models from different domains’ knowledge. Pa-
pers [26, 44] adopt semi-supervised and unsupervised approaches. Zhang et al. [43]
combine the original classifier with a discriminative classifier. Later, they train the
model (end-to-end) based on the latent feature space of the train data. They pro-
pose a flow-based model (OpenHybrid), without facing a common issue of assigning
larger likelihood to the OOD data.

Closer to our work, ODIN (Out-of-DIstribution detector for Neural networks)
[25] does not require model retraining, but it involves temperature scaling and input
preprocessing inspired by other papers [16, 18]. Additionally, they introduce a de-
tector which catches the OOD data after combining the preprocessing components.
On the other hand, paper [46] integrates a GAN network from an AC-GAN [28],
where the discriminator is used as aK+1 classifier for HSIs (hyper-spectral images).

In this work, Double Probability Model (DPM) [30] is used in constructing
some of the combined algorithms. DPM relies on the likelihoods of a classifier with
the assumption that the training data is accessible. The K classifier cumulative
distribution function (CDF) and its inverse (inverse-CDF) are calculated. After
obtaining the K classifier output for an instance, and using CDF and inverse-
CDF, the probability of the ith and K + 1 classes are calculated, PCi

and PCK+1

respectively. Lastly, the condition described by Formula 1 is checked, and if it
is true, then K + 1 class is assigned to the instance, otherwise, the K classifier
predicted label. Thus, the K classifier is extended by the OOD class; K + 1.

PCK+1
> maxi{PCi

} (1)

3 Proposed method

In this paper, we propose multiple algorithms with various combinations to tackle
K + 1 classification task. In contrast to prior work, these algorithms are model
agnostic (where the model is a K-classifier), and they do not require K-classifier
retraining or any modification on its architecture. The task becomes more difficult
in scenarios where the training data is not accessible. Our aim is to tackle these
challenges while maintaining the immunity against several uncertainties, including
but not limited to: OOD data characteristic and amount. We rely on two assump-
tions; (1) models tend to assign lower likelihoods to OOD (out-of-distribution) than

300 Modafar Al-Shouha and Gábor Szűcs

Figure 1: K + 1 classification task stages; (1) binary classification, and (2) K
classification.

ID (in-distribution) instances [5], and (2) the two distributions (ID and OOD) are
different [1].

Moreover, K + 1 classification task can be divided into two steps, (1) binary
classification, and (2) K classification (Figure 1). Firstly, in the binary classification
stage, the instance is categorized as either ID or OOD. If it is determined as OOD
instance, K + 1 label is assigned to it. Otherwise, it is directed to the K-classifier
to get one of the K labels. Therefore, our approach is to construct the binary
classification component, and let the original K-classifier to handle the other task.
To do so, we design two groups of algorithms; i.e. single [2] and combined. In
the combined algorithms, the binary classification task is performed jointly by two
methods; while in the single algorithm, it is an individual decision. Furthermore,
we formulate the overall accuracy of the K + 1 classification task, by connecting
the test accuracy scores of the individual components (binary and K classification),
and the ratio of the OOD data in the test set. Consequently, we define an inequality
for the K + 1 classification accuracy based on those factors.

3.1 Single algorithms

We propose two single algorithms, one of them is the Threshold algorithm ”Thr”
(Algorithm 1) that relies on the prediction of the K-classifier. The prediction
output of the K-classifier is a vector that contains values that can be considered
as probabilities of an instance belonging to the K classes, i.e. higher probability
means more confidence. The Threshold algorithm checks the highest confidence
level for a prediction, and if it is lower than the threshold value, the instance is
assigned an K + 1 label, otherwise, the label is one of the K classes (K-classifier
prediction). The threshold value β (β ∈ [0, 1]) represents the aggressiveness of the
algorithm, higher threshold means that the algorithm is more strict in considering
the ID decision from the classifier. Despite that a similar idea was presented earlier,

Single and Combined Algorithms for Open Set Classification 301

e.g. by [43] and [30], those approaches require either an end-to-end retraining or
access to the training data, to obtain a proper threshold value. In contrast, our
proposed ”Thr” algorithm does not assume that the training ID data is accessible,
and does not require any data preprocessing or additional model training.

Algorithm 1 Threshold algorithm

1: Obtain Preds, β (Threshold)
2: yi = ArgMax(Preds)
3: Pi = Max(Preds) Prediction confidence
4: if Pi < β then
5: Yi = not in class K+1 label
6: else
7: Yi = yi K-classifier label
8: end if

The other proposed algorithm is the Discriminator algorithm ”Disc”; which,
unlike ”Thr”, requires access to ID training data. We construct a K + 1-classifier
by using a discriminator block from a GAN as a binary classifier, then cascade it by
the pre-trained K-classifier. We built a simple GAN using two convolution and two
deconvolution layers for its discriminator and generator, respectively. In contrast
to some of the papers which are listed in the Related Work [11, 19, 24, 28], neither
the GAN nor the Discriminator component has a special architecture. Additionally,
unlike [25, 40, 45] it does not require knowledge or assumption about the OOD data
distribution, and it does not need any preprocessing. Furthermore, in contrast to
the mentioned papers [12, 13, 17, 20, 23, 32, 36, 39, 43], all the proposed methods
do not need any access, modification or retraining for the K-classifier. Later, we
trained the GAN on the available ID data only. The discriminator’s job is to
distinguish between ”real” and ”fake” instances based on the knowledge it gains
about the data during the GAN training process. We use this discriminator to
catch the OOD instances before deciding if the K-classifier prediction is considered
or not. If the discriminator defines an instance as ”fake”, K + 1 label is assigned
to it, otherwise, its label is the one that is offered by the K-classifier. While this
algorithm requires an extra training step with access to the ID training data, there
is no need to retrain the original K-classifier. Additionally, it is considered as
a generic method, and there are no specific characteristics defined for the GAN
network or any of its components (Algorithm 2).

3.2 Combined algorithm

Although the simplicity of the single algorithms is a big advantage, stability issues
in the performance might appear. For instance, the decision about β value is cru-
cial and influences ”Thr” algorithm performance. Also, relying on the K-classifier
Softmax confidence might be misleading in our task [31]. In order to utilize their
strengths, we combine them together in different variations. The general frame-
work stays the same; at first, if the instance is OOD, K + 1 label is assigned to

302 Modafar Al-Shouha and Gábor Szűcs

Algorithm 2 Discriminator algorithm

1: Obtain Preds, Disc Pred
2: yi = ArgMax(Preds)
3: if Disc Pred = fake then
4: Yi = not in class K+1 label
5: else
6: Yi = yi K-classifier label
7: end if

it, otherwise, K-classifier decision is considered. The combination happens in the
binary classification level; at the stage where an instance is allocated either to ID or
OOD. Unlike in the single algorithms, the decision is jointly made by two individual
algorithms.

The combination has two main aspects; (1) selecting the individual methods to
combine, and (2) defining the logical relation between their decisions. We join our
proposed ”Disc” method with a threshold based method. For the latter, we use
either our proposed ”Thr” algorithm or ”DPM” (Double Probability Model) [30].
”DPM” [30] is a threshold based approach, which unlike ”Thr” algorithm demands
access on training data, and its threshold value is dynamically set. Regarding the
other aspect, logical ”OR” and ”AND” are used to combine the decisions of the
individual methods (Table 1). As a result, the combined algorithm has four different
variations: ”ThrAndDisc”, ”ThrOrDisc”, ”DpmAndDisc” and ”DpmOrDisc”.

Table 1: Truth table for combined algorithms. The first main column shows two
individual methods (”A” and ”B”) decisions, while the other represents their deci-
sions combined by logical ”OR” and ”AND”.

individual decision combined decision
method A method B OR AND

ID ID ID ID
ID OOD OOD ID

OOD ID OOD ID
OOD OOD OOD OOD

3.3 Formula for estimating the open set classification accu-
racy

Our approach to solve the K+ 1 classification task goes through two stages; (1) bi-
nary classification to opt out the OOD instances, and (2) K classification for the
instances which are ruled to be ID (Figure 1). Accordingly, the accuracy of the
algorithm can be estimated by combining high level information about the binary

Single and Combined Algorithms for Open Set Classification 303

and K classification tasks. This can be accomplished by incorporating (1) the ratio
of OOD data in the test set, (2) the original model K classification accuracy, and
(3) the algorithm binary classification accuracy. This estimation does not require
more details about the task, such as: access to the confusion matrix, or the true
positive and negative ratios. In Formula 2, the first and second terms represent the
binary and the K classification tasks, respectively. Another form for Formula 2 is
Formula 3.

ÂK+1 = Abin ·OOD + Abin · ÂK · ID (2)

ÂK+1 = Abin + Abin · ID · (ÂK − 1) (3)

Where:

ÂK+1: estimated K + 1 classification accuracy

ÂK : K classification accuracy of the original model

Abin: binary classification accuracy

OOD: OOD data ratio

ID: ID data ratio

Proof.

1. Let us denote the number of instances by N. The number of ID instances and
OOD instances are N ·ID and N ·OOD respectively. The decision between ID
and OOD leads to a binary classification task. The approximate number of
correct decisions among the OOD (TPOOD or TN) and ID instances (TPID

or TP) is expressed by Equations 4 and 5, receptively.

TPOOD ≈ N ·OOD ·Abin (4)

TPID ≈ N · ID ·Abin (5)

2. The correctly classified ID instances are passed to the K-classifier. The orig-
inal accuracy of the K-classifier (ÂK) is not more than the original model
test accuracy (test set consists of ID data only). The number of the true
positives in the K-classification task is approximated by multiplying ÂK by
the all number of the instances in the K-classification task (TPID).

TPK ≈ N · ID ·Abin · ÂK (6)

304 Modafar Al-Shouha and Gábor Szűcs

3. The estimated K+1 classification accuracy (ÂK+1) is the ratio of the correct
decisions.

ÂK+1 =
N · ID ·Abin · ÂK + N ·OOD ·Abin

N
(7)

After using OOD = 1− ID and simplifying Equation 7, we get Formula 3.

Additionally, we prove that the estimated K+1 classification accuracy is neces-
sarily larger than w and cannot exceed the algorithm binary classification accuracy
(Abin); where w = Abin · ÂK (Formula 9) and the conditions (Formulas 10, 11
and 12) hold. To do so, we rewrite Formula 2 as Equation 8 by using OOD = 1−ID.

OOD =
ÂK+1 − w

Abin − w
(8)

Where:

w = Abin · ÂK (9)

0 < Abin ≤ 1 (10)

0 ≤ ÂK < 1 (11)

0 ≤ OOD ≤ 1 (12)

We use Formula 8 to derive the K + 1 classification accuracy inequality defined
in Formula 13.

w ≤ ÂK+1 ≤ Abin (13)

Proof.

1. Using proof by contradiction, we will prove that the denominator in For-
mula 8 is always positive (Abin − w > 0). Let us suppose the opposite of
this statement.

Abin − w ≤ 0 (14)

a) if Abin−w = 0, then OOD is undefined, which contradicts Formula 12.
Thus,

Abin − w 6= 0 (15)

Single and Combined Algorithms for Open Set Classification 305

b) Let us suppose the following

Abin − w < 0 (16)

Abin < w (17)

Abin < Abin · ÂK (18)

1 < ÂK (19)

but this contradicts Formula 11.
Therefore,

Abin − w > 0 (20)

2. Using the left side of the inequality (Formula 12) and Formula 20, the nu-
merator cannot be negative (ÂK+1 − w ≥ 0).

OOD ≥ 0 (21)

ÂK+1 − w

Abin − w
≥ 0 (22)

but Abin − w > 0, then,

ÂK+1 − w ≥ 0 (23)

ÂK+1 ≥ w (24)

3. Using the right side of the inequality (Formula 12) and Equation 8

OOD ≤ 1 (25)

ÂK+1 − w

Abin − w
≤ 1 (26)

ÂK+1 − w ≤ Abin − w (27)

ÂK+1 ≤ Abin (28)

4. Finally, combining Formulas 24 and 28

w ≤ ÂK+1 ≤ Abin (29)

3.4 Formula for calculating the exact open set classification
accuracy

The exact accuracy of the algorithm can be calculated by using Formula 30. It
is important to highlight that AK is the actual K-classification accuracy. It is

306 Modafar Al-Shouha and Gábor Szűcs

calculated for the ID instances in the test set and it depends on the actual scenario.
In general, it can be assumed that AK is close to ÂK , in scenarios where the ID
data has similar distribution as the original K-classifier test set. Additionally, if
the data has only OOD instances (ID = 0), Formula 30 cannot be applied, since
RID is undefined (RID = 0

0).

AK+1 = Abin + RID · ID · (AK − 1) (30)

Where:

AK+1: exact K + 1 classification accuracy

AK : K classification accuracy of the actual model

Abin: binary classification accuracy

RID: binary True Positive Ratio (TPR = TPID

TPID+FNID
)

OOD: OOD data ratio

ID: ID data ratio

Proof.

1. Let us denote the number of instances by N. The exact number of correct
decisions among the OOD (TPOOD) and ID instances (TPID) is expressed
by Equations 31 and 32, receptively.

TPOOD = N ·OOD ·ROOD (31)

TPID = N · ID ·RID (32)

2. The accuracy of binary classification task Abin comes from the sum of correct
decisions divided by the all decisions (Equation 33).

Abin =
N · ID ·RID + N · (1− ID) ·ROOD

N
(33)

Using Equation 33, ROOD can be expressed by Equation 34.

ROOD =
Abin − ID ·RID

(1− ID)
(34)

3. The diagonal entries of the confusion matrix contains the true positive in-
stances in the K-classification task, and the sum of them gives the number of
correct decisions, which is equal to accuracy AK multiplied with all instances
in the K classification task (Equation 35).

TPK = N · ID ·RID ·AK (35)

Single and Combined Algorithms for Open Set Classification 307

4. The exact K + 1 classification accuracy (AK+1) is the ratio of the correct
decisions.

AK+1 =
N · ID ·RID ·AK + N · (1− ID) ·ROOD

N
(36)

5. After substituting the ROOD in Equation 36, and simplification, Equation 36
can be written as Formula 30

To determine AK+1, RID and AK have to be known. Whereas the estimation
(ÂK+1) is calculated using ÂK without the need for RID. The difference between
the exact and the estimated algorithm accuracy is the correction factor (∆AK+1).
It is expressed by Formula 38, which is derived by plugging Formulas 3 and 30 in
Equation 37. If AK = ÂK and RID = Abin, then ∆AK+1 = 0.

∆AK+1 =
∣∣∣AK+1 − ÂK+1

∣∣∣ (37)

∆AK+1 =
∣∣∣ ID · [RID · (AK − 1) − Abin · (ÂK − 1)

]∣∣∣ (38)

4 Experiments

In the experiments, we examined and evaluated the four variations of the combined
algorithm; ”ThrAndDisc”, ”ThrOrDisc”, ”DpmAndDisc” and ”DpmOrDisc”. Also,
we studied the three single algorithms – ”Thr”, ”Disc” and ”DPM” – individually
to show their drawbacks and set them as a baseline. One main variable is the
threshold value (β) for the ”Thr” algorithm. Hence, we picked and tested different
threshold values (with 0.01 step) out of the infinitely many possibilities; β ∈ [0, 1].
The other variable is the OOD percentage in the test set, since it has a direct
relation with the overall algorithm performance (Formulas 2 and 30). Those two
variables; i.e. β and OOD ratio, affect the algorithms robustness when dealing with
different scenarios. For proper generalization, we used multiple datasets, models
(classifiers) and metrics.

4.1 Datasets

We defined ID and OOD datasets; ID data includes instances of K classes, while
OOD data is the test set from other datasets. For ID data we used two sets
separately, creating two main experiment groups. The first is Extended-mnist (E-
MNIST - by merge) dataset [7], where the numbers are excluded, hence, it contains
37 letter categories (K = 37). The other is Arabic handwritten characters set
(Arab-L) [10], that contains 13440 and 3360 grey-scaled 32x32 pixel images for train
and test splits respectively. Those images are distributed evenly over 28 classes,
hence, K = 28. We augmented the data in order to expand its size. After

308 Modafar Al-Shouha and Gábor Szűcs

resizing it into 28x28 pixel, random scaling and rotation was applied resulting in
40 000 train and 10 000 test images. The train sets were used to train two different
K-classifiers, and the experiments were conducted with the test sets (Table 2).

Table 2: Datasets size details. E-MNIST and Arab-L datasets are the ID data. K
is the number of classes in each dataset.

Dataset train test K
E-MNIST 410 000 10 000 37
Arab-L 40 000 10 000 28

In order to provide better generalization and represent diverse levels of similarity
with respect to the ID data, we used six different types for OOD data (Figure 2).
We chose the test set of four classical datasets: MNIST dataset [8], Fashion-mnist
(F-MNIST) [41], Kuzushiji-mnist (Ku-MNIST) [6] and B-MNIST (we performed
binarization for MNIST test set). Additionally, we generated two datasets with
Gaussian distribution. R-gauss (28x28 pixel random Gaussian data with 128 mean
and 12.8 standard deviation), and I-gauss (ID-based Gaussian data). For the I-
gauss we calculated the training data (ID) mean and standard deviation and used
them as the distribution parameters. Since we have two ID sets, separate I-gauss
data was generated for each of them.

We executed the experiments on mixed test sets, each containing in total 10000
ID and OOD instances. For the test set of each experiment, we selected one ID set
and one OOD set. Hence, we chose either E-MNIST or Arab-L data as ID, and
combined it with one of the six OOD sets. The percentage of OOD instances was
defined by setting the OOD ratio, which varies from 0% to 100% with 5% step.

4.2 Classifiers

For K classification we trained two different classifiers on the two different ID
sets. For the first classifier, we used VGG16 [34] architecture with dropout layers.
The classifier was trained on E-MNIST data (without numbers data). Since the
training data has 37 categories (K = 37), it is called ”Classifier-37”. Similarly, we
trained AlexNet [21] on Arab-L dataset. Following the same fashion, this classifier
is called ”Classifier-28”; K = 28. Additionally, we trained a simple GAN on the
two ID training sets separately, then we extracted the discriminators to be used
as a binary classifier in the proposed ”Disc” algorithm accordingly. As mentioned
earlier, any arbitrary classifier can fit this purpose.

4.3 Metrics

The first component of our approach is the binary classification, where the sus-
pected OOD instances are filtered out. In case the instance is from ID, it is either
correctly classified (TP) or results in type II error (FN). While if it is from OOD,

Single and Combined Algorithms for Open Set Classification 309

Figure 2: OOD with (a) E-MNIST and (b) Arab-L datasets after dimension reduc-
tion using t-SNE [37]. The number of components for t-SNE is 2, and it uses PCA
initialization with 50 components.

310 Modafar Al-Shouha and Gábor Szűcs

it is either TN or FP (type I error). Therefore, to evaluate the first step we used
sensitivity (TP rate) and specificity (TN rate). Moreover, we used the accuracy
(Equation 39) and the balanced accuracy1 (Equation 40) to measure the perfor-
mance of the overall classification task [35], because unbalanced data might mislead
the conclusion [29]. Lastly, we used mean squared error for evaluating the goodness
of Formula 2 using Formula 37 (∆AK+1), and aggregating these results of all the
experiments.

Accuracy =
1

nsamples

nsamples∑
i=1

1 (ŷi = yi) (39)

Balanced Accuracy =
1∑
ŵi

nsamples∑
i=1

ŵi (ŷi = yi) (40)

5 Results and discussion

When performing the experiments, the two main variables to deal with are the
OOD ratio in the test set, and the β value. Keeping in mind that β value is only
relevant for the methods that include ”Thr” algorithm, and it is not arbitrarily
chosen. Instead, we defined a range [0.90, 0.99], where the resulted K + 1 accuracy
is the highest with the smallest variance as shown in Figure 3. The aim is to avoid
any misleading intuitions that might be caused by relying on K-classifier Softmax
confidence [31]. Additionally, we created three groups. In the first group we fixed
β value to 0.99, and checked the results over the OOD ratio between 5% and 95%.
The other two groups simulate two extreme scenarios; we fixed OOD ratio to 5%
and 95% over a range of β values (Table 3).

Table 3: Groups parameters

Parameter Group 1 Group 2 Group 3
β 0.99 ∈ [0.90, 0.99] ∈ [0.90, 0.99]
OOD ratio ∈ [0.05, 0.95] 0.05 0.95

First, we evaluated the proposed algorithms’ ability to execute the binary clas-
sification task. In Table 4 it can be seen that ”And” methods, i.e. ”ThrAndDisc”
and ”DpmAndDisc”, achieve the highest sensitivity score, alongside with the sin-
gle ”Disc” algorithm. In other words, they can lead the ID instances to the next
stage successfully and attain the highest TP rate. They are well suited in scenarios
where avoiding type I error (FP) is vital. In contrast, Table 5 shows that ”OR”
methods, i.e. ”ThrOrDisc” and ”DpmOrDisc”, are better fit in scenarios where
committing type II error (FN) is more harmful. Sensitivity and specificity results

1ŵi is the sample weight adjusted according to its true class inverse prevalence.

Single and Combined Algorithms for Open Set Classification 311

Figure 3: The average K+ 1 accuracy (in dark blue) and standard deviation range
(in light blue) from all experiments that include ”Thr” at β value in range [0, 1].
(a) and (b) plots are for the experiments that use Classifier-37 and Classifier-28,
respectively. Red lines define the range of β value where the accuracy is the highest
and the standard deviation is the lowest.

(Tables 4 and 5) also highlight some interesting points: (1) despite its simplicity,
single ”Disc” algorithm executes the binary classification task adequately; (2) the
ability to catch OOD instances is in an acceptable range regardless of the algo-
rithm; (3) the methods are more stable in terms of sensitivity (TP rate) compared
to specificity (TN rate).

312 Modafar Al-Shouha and Gábor Szűcs

Next, we used the three groups to assess the algorithms capability in accom-
plishing the K + 1 classification task, based on their average accuracy results. The
experiment results are consistent regardless of the used classifier and the ID data
type. Furthermore, second and third group results in Tables 6 and 7 confirm our
previous findings w.r.t. sensitivity and specificity. For instance, when OOD ratio
is low (Group 2) ”And” methods perform the best, whereas ”OR” methods excel
with high OOD ratio (Group 3). Also, the first group demonstrates the overall
superiority of ”DpmAndDisc” method in terms of achieved accuracy and stability.

Table 4: Average sensitivity of binary task among all OOD datasets (using
Classifier-37 & Classifier-28). In Table 3, Group 1 shows the corresponding ex-
periment parameters. The results are in the form of mean and standard deviation.
The highest three sensitivity scores in every group are in bold.

Algorithm
Classifier-37 Classifier-28
mean sd mean sd

Disc 85.81 0.27 76.73 2.42
DPM 65.14 0.45 37.46 2.28
DpmAndDisc 95.59 0.24 84.97 2.28
DpmOrDisc 55.36 0.48 29.22 2.39
Thr 66.44 0.41 69.98 2.35
ThrAndDisc 95.54 0.13 91.90 1.23
ThrOrDisc 56.72 0.57 54.81 3.33

Table 5: Average specificity of binary task among all OOD datasets (using
Classifier-37 & Classifier-28). In Table 3, Group 1 shows the corresponding ex-
periment parameters. The results are in the form of mean and standard deviation.
The highest three specificity scores in every group are in bold.

Algorithm
Classifier-37 Classifier-28

mean sd mean sd
Disc 93.84 13.70 100 0.00
DPM 80.61 12.13 93.16 13.25
DpmAndDisc 75.40 16.00 93.16 13.25
DpmOrDisc 99.04 2.12 100 0.00
Thr 91.63 9.89 82.53 27.48
ThrAndDisc 85.47 13.53 82.53 27.48
ThrOrDisc 100 0.00 100 0.00

Additionally, Tables 6 and 7 highlight the instability of single ”Thr” algorithm.
It is very sensitive to β value, which is reflected in Group 2 and 3 standard deviation

Single and Combined Algorithms for Open Set Classification 313

results. Thus, albeit having a high mean value in Group 2, it cannot be concluded
that it outperforms the others. For instance, in this scenario single ”Disc” algorithm
might be a better choice.

Table 6: Average AK+1 (using Classifier-37). The experiments’ parameters are
detailed in Table 3. The results are in the form of mean and standard deviation.
The highest three accuracy scores in every group are in bold.

Algorithm
Group 1 Group 2 Group 3

mean sd mean sd mean sd
Disc 87.39 8.90 81.57 0.78 93.15 14.33
DPM 72.53 8.58 65.65 0.67 78.71 13.73
DpmAndDisc 83.00 10.80 90.11 0.86 75.09 17.34
DpmOrDisc 76.93 13.46 57.11 0.06 96.77 2.48
Thr 78.70 9.68 86.46 9.54 48.44 33.75
ThrAndDisc 87.93 8.29 91.26 1.60 46.06 32.42
ThrOrDisc 78.17 13.29 76.76 8.92 95.53 9.19

Table 7: Average AK+1 (using Classifier-28). The experiments’ parameters are
detailed in Table 3. The results are in the form of mean standard deviation. The
highest three accuracy scores in every group are in bold.

Algorithm
Group 1 Group 2 Group 3

mean sd mean sd mean sd
Disc 82.08 12.17 62.87 0.01 98.52 0.00
DPM 64.39 19.94 36.12 0.64 90.38 13.94
DpmAndDisc 82.81 0.82 70.28 0.64 92.25 13.94
DpmOrDisc 63.66 23.06 28.72 0.02 96.64 0.00
Thr 73.83 17.34 74.29 7.96 28.68 31.52
ThrAndDisc 80.71 16.26 77.52 1.73 28.84 31.73
ThrOrDisc 75.20 16.49 59.64 6.59 98.36 0.36

We evaluated the algorithms further, by investigating a more general scenario.
Figure 4 shows their average K + 1 balanced accuracy, given that β ∈ [0.90, 0.99].
Using balanced accuracy eliminates the effect of OOD ratio and provides broader
insight about the algorithms’ performance. This figure gives another evidence of
the ”And” methods general effectiveness. In this case, ”ThrAndDisc” algorithm
outperforms the others, followed closely by ”DpmAndDisc”. Since the two algo-
rithms include ”Disc” component, they both require access to the training data.
Therefore, the main advantage of ”Thr” algorithm, i.e. train data independence,
vanishes.

314 Modafar Al-Shouha and Gábor Szűcs

Figure 4: The average K+1 balanced accuracy for all OOD sets, at OOD ratio value
in range [0.05, 0.95] for the experiments using (a) Classifier-37 and (b) Classifier-28.

Moreover, Figure 5 shows the algorithms’ average K + 1 accuracy results with
respect to the OOD set. All the algorithms, regardless of the used K-classifier,
performed the best when OOD data was random (R-gauss). With other OOD
sets, ”Disc” algorithm performance was independent from the OOD data. This
behaviour was reflected also on the ”OR” methods.

Lastly, Table 8 demonstrates an empirical evidence of our proposed Formula 2.
We executed an extensive amount of experiments (∼76 000 experiments2) and

2total number of experiments = 2 ID sets (classifiers) * 6 OOD sets * 20 OOD ratios * [4
algorithms without ”Thr” + 3 algorithms with ”Thr” * 100 β values].

Single and Combined Algorithms for Open Set Classification 315

Figure 5: The average K+1 accuracy for all algorithms with respect to the selected
OOD set for the experiments using (a) Classifier-37 and (b) Classifier-28.

calculated the mean squared error between the actual and estimated K+1 accuracy.
Additionally, we validated that the proposed inequality (Formula 13) holds in all
cases (Figure 6). The estimated K + 1 accuracy (ÂK+1) of the algorithm is higher
than or equal to w (ÂK ·Abin), but it can not exceed Abin. The inequality highlights
that the binary classifier is the vital segment in this architecture (Figure 1). Failing
to distinguish ID from OOD data degrades the overall algorithm performance.

316 Modafar Al-Shouha and Gábor Szűcs

Table 8: MSE scores between the actual (by experiment) and the estimated (by
formula) K + 1 accuracy for the algorithms (using Classifier-37 & Classifier-28).

Classifier-37 Classifier-28
MSE 1.02 · 10−4 6.31 · 10−4

Figure 6: The inequality empirical results sorted by the calculated accuracy value.
The dark blue data is the calculated K + 1 accuracy (ÂK+1), that lies between the
lower (w) and upper (Abin) bounds in light blue for all the experiments using (a)
Classifier-37 and (b) Classifier-28. A plot was used instead of a table, because of
the large number of experiments (more than 76 000).

Single and Combined Algorithms for Open Set Classification 317

6 Conclusion

In this paper we proposed various approaches to solve the open set classification
task for image datasets. By proposing a flexible methodology, we overcome the need
for retraining a pretrained K-classifier or altering its architecture. As a result, our
proposed methods can adapt to any available classifier.

We interpreted K + 1 classification task as two consecutive steps: (1) Binary
classification; i.e. ID or OOD, followed by (2) K classification. Our proposal han-
dles the first task and lets the original K-classifier to solve the other. We grouped
our proposed algorithms based on the decision technique. The first is the sin-
gle algorithms, where we proposed threshold-based ”Thr” and discriminator-based
”Disc” methods. The second is the combined algorithms, where we built the fi-
nal judgment based on a collective decision between ”Disc” and a threshold-based
method, i.e. ”Thr” or ”DPM”. Their outcomes are joined either by logical ”OR”
or ”AND”. As a result, we proposed four variations; ”ThrAndDisc”, ”ThrOrDisc”,
”DpmAndDisc” and ”DpmOrDisc”. After evaluating all methods, the results show
that ”DpmAndDisc” and ”ThrAndDisc” algorithms are an excellent general solu-
tions. Additionally, ”And” algorithms are good fit when the priority is to avoid
committing type I error (FP), while ”OR” algorithms are more suitable in dealing
with higher percentage of OOD instances; avoiding type II error (FN).

Furthermore, we presented mathematical formulas to calculate the exact and
estimated K + 1 accuracy of the algorithm, and used the latter to define an in-
equality for ÂK+1. We proved mathematically and empirically that ÂK+1 is equal
to or larger than w (ÂKAbin), but it is lower than Abin.

7 Future work

We evaluated our proposal to tackle open set classification task for image datasets
from multiple aspects. However, the proposal ability to solve the task for other
data types, e.g. text (document) classification, can be shown. Another direction is
to investigate the influence of the ID and OOD data characteristic on the proposed
solutions performance. For instance, the task is expected to be more challenging
with higher similarity between ID and OOD data distribution. Additionally, more
experiments can be conducted to analyze how the hyper-parameters (β) tunning is
affected by multiple factors, such as the ID and OOD data characteristic and the
K-classifier performance (AK).

References

[1] Adila, D. and Kang, D. Understanding out-of-distribution: A perspective of
data dynamics. In I (Still) Can’t Believe It’s Not Better! Workshop at NeurIPS
2021, pages 1–8. PMLR, 2022. DOI: 10.48550/arXiv.2111.14730.

https://doi.org/10.48550/arXiv.2111.14730

318 Modafar Al-Shouha and Gábor Szűcs

[2] Al-Shouha, M. Two algorithms for not-in-class classification task on image
datasets. 13th Conference of PhD Students in Computer Science (CSCS),
pages 130–134, 2022. URL: https://www.inf.u-szeged.hu/~cscs/pdf/

cscs2022.pdf.

[3] Bendale, A. and Boult, T. E. Towards open set deep networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1563–1572, 2016. DOI: 10.1109/cvpr.2016.173.

[4] Bengio, Y., Courville, A., and Vincent, P. Representation learning: A review
and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798–1828, 2013. DOI: 10.1109/TPAMI.2013.50.

[5] Bishop, C. M. Novelty detection and neural network validation. IEE Proceed-
ings — Vision, Image and Signal Processing, 141(4):217–222, 1994. DOI:
10.1049/ip-vis:19941330.

[6] Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K.,
and Ha, D. Deep learning for classical japanese literature. arXiv preprint
arXiv:1812.01718, 2018. DOI: 10.48550/arXiv.1812.01718.

[7] Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A. EMNIST: Extending
MNIST to handwritten letters. In International Joint Conference on Neu-
ral Networks, pages 2921–2926. IEEE, 2017. DOI: 10.1109/IJCNN.2017.

7966217.

[8] Deng, L. The mnist database of handwritten digit images for machine learning
research [best of the web]. IEEE signal processing magazine, 29(6):141–142,
2012. DOI: 10.1109/MSP.2012.2211477.

[9] Duchi, J. and Namkoong, H. Learning models with uniform performance via
distributionally robust optimization. arXiv preprint arXiv:1810.08750, 2018.
DOI: 10.48550/arXiv.1810.08750.

[10] El-Sawy, A., El-Bakry, H., and Loey, M. CNN for handwritten Arabic dig-
its recognition based on LeNet-5. In International Conference on Advanced
Intelligent Systems and Informatics, pages 566–575. Springer, 2016. DOI:
10.1007/978-3-319-48308-5_54.

[11] Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast
adaptation of deep networks. In International Conference on Machine Learn-
ing, Volume 70, pages 1126–1135. Proceedings of Machine Learning Research,
2017. DOI: 10.48550/arXiv.1703.03400.

[12] Ganin, Y. and Lempitsky, V. Unsupervised domain adaptation by backprop-
agation. In International Conference on Machine Learning, pages 1180–1189.
Proceedings of Machine Learning Research, 2015. DOI: 10.48550/arXiv.

1409.7495.

https://www.inf.u-szeged.hu/~cscs/pdf/cscs2022.pdf
https://www.inf.u-szeged.hu/~cscs/pdf/cscs2022.pdf
https://doi.org/10.1109/cvpr.2016.173
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1049/ip-vis:19941330
https://doi.org/10.48550/arXiv.1812.01718
https://doi.org/10.1109/IJCNN.2017.7966217
https://doi.org/10.1109/IJCNN.2017.7966217
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.48550/arXiv.1810.08750
https://doi.org/10.1007/978-3-319-48308-5_54
https://doi.org/10.48550/arXiv.1703.03400
https://doi.org/10.48550/arXiv.1409.7495
https://doi.org/10.48550/arXiv.1409.7495

Single and Combined Algorithms for Open Set Classification 319

[13] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette,
F., Marchand, M., and Lempitsky, V. Domain-adversarial training of neural
networks. The Journal of Machine Learning Research, 17(1):2096–2030, 2016.
DOI: 10.48550/arXiv.1505.07818.

[14] Goodfellow, I., Bengio, Y., and Courville, A. Softmax Units for Multinoulli
Output Distributions. In Deep Learning, chapter 6.2.2.3. MIT Press Cam-
bridge, MA, USA, 2016. URL: http://www.deeplearningbook.org.

[15] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., and Bengio, Y. Generative adversarial nets. Communications
of the ACM, 63(11):139–144, 2020. DOI: 10.1145/3422622.

[16] Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harness-
ing adversarial examples. arXiv preprint arXiv:1412.6572, 2014. DOI:
10.48550/arXiv.1412.6572.

[17] Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M.,
Mohamed, S., and Lerchner, A. beta-VAE: Learning basic visual concepts
with a constrained variational framework. In International Conference on
Learning Representations, 2017. URL: https://openreview.net/forum?id=
Sy2fzU9gl.

[18] Hinton, G., Vinyals, O., Dean, J., et al. Distilling the knowledge in a neu-
ral network. arXiv preprint arXiv:1503.02530, 2(7), 2015. DOI: 10.48550/

arXiv.1503.02531.

[19] Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. Meta-learning in
neural networks: A survey. arXiv preprint arXiv:2004.05439, 2020. DOI:
10.48550/arXiv.2004.05439.

[20] Kim, H. and Mnih, A. Disentangling by factorising. In International Con-
ference on Machine Learning, Volume 80, pages 2649–2658. Proceedings of
Machine Learning Research, 2018. DOI: 10.48550/arXiv.1802.05983, URL:
https://proceedings.mlr.press/v80/kim18b.html.

[21] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classifica-
tion with deep convolutional neural networks. In Pereira, F., Burges,
C., Bottou, L., and Weinberger, K., editors, Advances in Neural In-
formation Processing Systems, Volume 25. Curran Associates, Inc., 2012.
URL: https://proceedings.neurips.cc/paper_files/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[22] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998. DOI: 10.1109/5.726791.

https://doi.org/10.48550/arXiv.1505.07818
http://www.deeplearningbook.org
https://doi.org/10.1145/3422622
https://doi.org/10.48550/arXiv.1412.6572
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://doi.org/10.48550/arXiv.1503.02531
https://doi.org/10.48550/arXiv.1503.02531
https://doi.org/10.48550/arXiv.2004.05439
https://doi.org/10.48550/arXiv.1802.05983
https://proceedings.mlr.press/v80/kim18b.html
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1109/5.726791

320 Modafar Al-Shouha and Gábor Szűcs

[23] Li, H., Pan, S. J., Wang, S., and Kot, A. C. Domain generalization with
adversarial feature learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5400–5409, 2018. DOI:
10.1109/CVPR.2018.00566.

[24] Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K., and Tao, D. Deep do-
main generalization via conditional invariant adversarial networks. In Proceed-
ings of the European Conference on Computer Vision, pages 624–639, 2018.
DOI: 10.1007/978-3-030-01267-0_38.

[25] Liang, S., Li, Y., and Srikant, R. Enhancing the reliability of
out-of-distribution image detection in neural networks. arXiv preprint
arXiv:1706.02690, 2017. DOI: 10.48550/arXiv.1706.02690.

[26] Liao, Y., Huang, R., Li, J., Chen, Z., and Li, W. Deep semisupervised domain
generalization network for rotary machinery fault diagnosis under variable
speed. IEEE Transactions on Instrumentation and Measurement, 69(10):8064–
8075, 2020. DOI: 10.1109/TIM.2020.2992829.

[27] Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., and
Bachem, O. Challenging common assumptions in the unsupervised learning of
disentangled representations. In International Conference on Machine Learn-
ing, pages 4114–4124. PMLR, 2019. DOI: 10.48550/arXiv.1811.12359.

[28] Odena, A. Semi-supervised learning with generative adversarial networks.
arXiv preprint arXiv:1606.01583, 2016. DOI: 10.48550/arXiv.1606.01583.

[29] Papp, D. and Szűcs, G. Balanced active learning method for image classifica-
tion. Acta Cybernetica, 23(2):645–658, 2017. DOI: 10.14232/actacyb.23.2.

2017.13.

[30] Papp, D. and Szűcs, G. Double probability model for open set problem
at image classification. Informatica, 29(2):353–369, 2018. DOI: 10.15388/

Informatica.2018.171.

[31] Pearce, T., Brintrup, A., and Zhu, J. Understanding softmax confidence and
uncertainty. arXiv preprint arXiv:2106.04972, 2021. DOI: 10.48550/arXiv.

2106.04972.

[32] Segu, M., Tonioni, A., and Tombari, F. Batch normalization embeddings for
deep domain generalization. arXiv preprint arXiv:2011.12672, 2020. DOI:
10.48550/arXiv.2011.12672.

[33] Shen, Z., Liu, J., He, Y., Zhang, X., Xu, R., Yu, H., and Cui, P. Towards
out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624,
2021. DOI: 10.48550/arXiv.2108.13624.

[34] Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014. DOI: 10.

48550/arXiv.1409.1556.

https://doi.org/10.1109/CVPR.2018.00566
https://doi.org/10.1007/978-3-030-01267-0_38
https://doi.org/10.48550/arXiv.1706.02690
https://doi.org/10.1109/TIM.2020.2992829
https://doi.org/10.48550/arXiv.1811.12359
https://doi.org/10.48550/arXiv.1606.01583
https://doi.org/10.14232/actacyb.23.2.2017.13
https://doi.org/10.14232/actacyb.23.2.2017.13
https://doi.org/10.15388/Informatica.2018.171
https://doi.org/10.15388/Informatica.2018.171
https://doi.org/10.48550/arXiv.2106.04972
https://doi.org/10.48550/arXiv.2106.04972
https://doi.org/10.48550/arXiv.2011.12672
https://doi.org/10.48550/arXiv.2108.13624
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556

Single and Combined Algorithms for Open Set Classification 321

[35] Sokolova, M. and Lapalme, G. A systematic analysis of performance measures
for classification tasks. Information processing & management, 45(4):427–437,
2009. DOI: 10.1016/j.ipm.2009.03.002.

[36] Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., and Darrell, T. Deep domain
confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474,
2014. DOI: 10.48550/arXiv.1412.3474.

[37] van der Maaten, L. and Hinton, G. Visualizing high-dimensional
data using t-SNE. Journal of Machine Learning Research, 9(2579-
2605), 2008. URL: https://jmlr.org/papers/volume9/vandermaaten08a/
vandermaaten08a.pdf.

[38] Viola, P. and Jones, M. Rapid object detection using a boosted cascade of
simple features. In Proceedings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, Volume 1. IEEE, 2001. DOI:
10.1109/CVPR.2001.990517.

[39] Wang, J., Feng, W., Chen, Y., Yu, H., Huang, M., and Yu, P. S. Visual domain
adaptation with manifold embedded distribution alignment. In Proceedings of
the 26th ACM International Conference on Multimedia, pages 402–410, 2018.
DOI: 10.1145/3240508.3240512.

[40] Wang, S., Yu, L., Li, K., Yang, X., Fu, C.-W., and Heng, P.-A. Dofe: Domain-
oriented feature embedding for generalizable fundus image segmentation on
unseen datasets. IEEE Transactions on Medical Imaging, 39(12):4237–4248,
2020. DOI: 10.1109/TMI.2020.3015224.

[41] Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: A novel image
dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017. DOI: 10.48550/arXiv.1708.07747.

[42] Yang, M., Liu, F., Chen, Z., Shen, X., Hao, J., and Wang, J. CausalVAE:
Disentangled representation learning via neural structural causal models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9588–9597, 2021. DOI: 10.1109/CVPR46437.2021.00947.

[43] Zhang, H., Li, A., Guo, J., and Guo, Y. Hybrid models for open set recognition.
In European Conference on Computer Vision, pages 102–117. Springer, 2020.
DOI: 10.1109/JPROC.2021.3052449.

[44] Zhang, X., Zhou, L., Xu, R., Cui, P., Shen, Z., and Liu, H. Domain-irrelevant
representation learning for unsupervised domain generalization. arXiv preprint
arXiv:2107.06219, 2021. DOI: 10.48550/arXiv.2107.06219.

[45] Zhou, F., Jiang, Z., Shui, C., Wang, B., and Chaib-draa, B. Domain
generalization with optimal transport and metric learning. arXiv preprint
arXiv:2007.10573, 2020. DOI: 10.48550/arXiv.2007.10573.

https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.48550/arXiv.1412.3474
https://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1145/3240508.3240512
https://doi.org/10.1109/TMI.2020.3015224
https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.1109/CVPR46437.2021.00947
https://doi.org/10.1109/JPROC.2021.3052449
https://doi.org/10.48550/arXiv.2107.06219
https://doi.org/10.48550/arXiv.2007.10573

322 Modafar Al-Shouha and Gábor Szűcs

[46] Zhu, L., Chen, Y., Ghamisi, P., and Benediktsson, J. A. Generative ad-
versarial networks for hyperspectral image classification. IEEE Transac-
tions on Geoscience and Remote Sensing, 56(9):5046–5063, 2018. DOI:
10.1109/TGRS.2018.2805286.

https://doi.org/10.1109/TGRS.2018.2805286

Acta Cybernetica 26 (2024) 323–371.

Towards a Block-Level ML-Based Python

Vulnerability Detection Tool∗

Amirreza Bagheriab and Péter Hegedűsac

Abstract

Computer software is driving our everyday life, therefore their security is
pivotal. Unfortunately, security flaws are common in software systems, which
can result in a variety of serious repercussions, including data loss, secret
information disclosure, manipulation, or system failure. Although techniques
for detecting vulnerable code exist, the improvement of their accuracy and
effectiveness to a practically applicable level remains a challenge. Many exist-
ing methods require a substantial amount of human expert labor to develop
attributes that indicate vulnerabilities. In previous work, we have shown that
machine learning is suitable for solving the issue automatically by learning
features from a vast collection of real-world code and predicting vulnerable
code locations. Applying a BERT-based code embedding, LSTM models with
the best hyperparameters were able to identify seven different security flaws
in Python source code with high precision (average of 91%) and recall (av-
erage of 83%). Upon the encouraging first empirical results, we go beyond
this paper and discuss the challenges of applying these models in practice and
outlining a method that solves these issues. Our goal is to develop a hands-on
tool for developers that they can use to pinpoint potentially vulnerable spots
in their code.

Keywords: deep learning, vulnerability detection, source code embedding,
data mining

1 Introduction

In today’s applications, security bugs (i.e., vulnerabilities) in software are becom-
ing increasingly difficult to detect, allowing hackers and attackers to profit from

∗The research was supported by the Ministry of Innovation and Technology NRDI Office within
the framework of the Artificial Intelligence National Laboratory Program (RRF-2.3.1-21-2022-
00004) and by project TKP2021-NVA-09, implemented with the support provided by the Min-
istry of Innovation and Technology of Hungary from the National Research, Development and
Innovation Fund, financed under the TKP2021-NVA funding scheme.

aInstitute of Informatics, University of Szeged, Hungary
bE-mail: bagheri@inf.u-szeged.hu, ORCID: 0000-0001-9691-7937
cE-mail: hpeter@inf.u-szeged.hu, ORCID: 0000-0003-4592-6504

DOI: 10.14232/actacyb.299667

mailto:bagheri@inf.u-szeged.hu
https://orcid.org/0000-0001-9691-7937
mailto:hpeter@inf.u-szeged.hu
https://orcid.org/0000-0003-4592-6504
https://doi.org/10.14232/actacyb.299667

324 Amirreza Bagheri and Péter Hegedűs

their exploits. Tens of thousands of such flaws are discovered and fixed each year.
Manually auditing source code and discovering vulnerabilities is time-consuming at
best, if not impossible.

In our previous work [2], we have shown that machine learning is suitable for
solving the issue automatically by learning features from a vast collection of real-
world code and predicting vulnerable code locations. The dataset was gathered
from GitHub and contains Python code with a variety of vulnerabilities that is
embedded into a vector space using one of three embedding models (word2vec,
fasttext, BERT) [5, 16, 8]. Individual code tokens and their context are extracted
from the source code of the vulnerable files to provide data samples for fine-grained
analysis. Then, we trained various machine learning (ML) models to see how
effective they were at identifying vulnerable code parts.

The entire training process can be divided into two parts: first, an embedding
model is trained using its parameters, such as min-count (how frequently a token
must appear in the training corpus to be assigned a vector representation), and
second, the system is trained using its parameters, such as min-count or iterations.
After that, the code blocks can only be encoded in their vector representations.
We found that LSTM models were the most suitable, thus we used them and
trained them with different hyperparameters, such as the number of neurons or
dropout, in the second stage. Applying a BERT-based code embedding, LSTM
models performed the best, they were able to identify seven different security flaws
in Python source code with high precision (average of 91%) and recall (average of
83%).

Following a successful empirical evaluation, the results must be implemented
in practice. However, there are several difficulties in putting the above-described
method into practice and making it available as a developer tool. The training data
samples are code snippets (extracted from vulnerability fixing commits), but when
we use vulnerability identification in practice, we use the entire program as input.
To use code embedding and model prediction, we need a method for efficiently
locating code blocks within the program. Furthermore, because these code blocks
may overlap, we require a method for aggregating block-level predictions.

In this paper, we focus on overcoming these challenges and outline a potential
developer tool that developers can use. We apply a small focus area and a sliding
context window to divide the code into blocks. The focus area moves through the
code, and with each step, the model gathers surrounding information, generates a
prediction based on that context as input, and uses that prediction to determine the
vulnerability rating of the focus area. In a developer tool, the different classification
confidence levels may be represented by different colors. To summarize our contri-
butions, we provide a block-level vulnerability prediction method that is practically
applicable to Python code, in contrast to the majority of other research initiatives,
which are primarily focused on Java, C, C++, or PHP and do not provide guidance
on practical application. Furthermore, existing vulnerability prediction approaches
provide predictions at higher abstraction levels, such as methods, classes, or files,
whereas we aim for finer-grained, smaller block-level predictions.

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 325

2 Related Work

This section describes previous works in finding vulnerabilities and also attempts
a classification, although there are many different criteria under which approaches
can be compared. The advantages and disadvantages of the previous approaches
are described.

2.1 Vulnerability Prediction Based on Software Metrics

What characteristics should be considered while determining whether or not code is
vulnerable? For a long time, the most popular features were software and developer
metrics. Code churn, developer activity, coupling, amount of dependencies, and
legacy metrics are examples [22]. Such metrics are widely employed as features
in fault prediction models [13], and they are extremely important in the field of
software quality and reliability assurance. Nagappan et al. [23], for example, use
organizational measures to predict software failures.

Although it appears that those data may be employed in vulnerability predic-
tion, there are significant issues with this. For starters, two pieces of code could
have the same characteristics but completely different behaviors, resulting in a dis-
tinct risk of being exposed. They also tend not to transfer well from one software
project to the next. The most serious complaint is that such measurements fail
to capture the semantics of the code [30], and that this method ignores the source
code, program behavior, and data flow. The method effectively applies a presump-
tion that particular meta characteristics will be linked to security issues, which is
not always accurate [15].

Many vulnerabilities can, for example, be found in extremely simple programs.
The simplest or most direct solution to an algorithmic problem frequently lacks
the safeguards and measures necessary to prevent attacks, which is precisely why
software engineers working under time constraints or with little familiarity with
security issues have difficulty. Code complexity isn’t a perfect indicator of security
problems, and there are analogous arguments and counterexamples for the other
measures as well. However, it must be accepted that software metrics can provide
at least some insight. This is demonstrated in the following studies, which em-
ploy machine learning techniques and code metrics to anticipate the occurrence of
software security problems. Shin et al. [30] estimate vulnerabilities in JavaScript
projects using nine complexity measures, with a low false positive rate but a large
false negative rate. Using linear discriminant analysis and Bayesian networks, the
authors used code complexity, code churn, and developer metrics to identify vul-
nerabilities in a later paper [29], attaining 80 percent recall and 25 percent false
positives. Chowdhury et al. [4] use complexity, coupling, and cohesion metrics to
try to anticipate software vulnerabilities using methodologies that have previously
been used for fault detection. They conduct a study on Mozilla Firefox releases
and anticipate vulnerabilities using decision trees, random forest, logistic regression,
and naive Bayes models, with precision and recall of roughly 70% and 70%, respec-
tively. Zimmerman et al. contributed to the list by looking into code churn, code

326 Amirreza Bagheri and Péter Hegedűs

complexity, code coverage, organizational metrics, and actual dependencies [40].
They discovered a weak but statistically significant link between the indicators

studied and utilized logistic regression to identify vulnerabilities based on them,
with an emphasis on Windows Vista’s proprietary code. The measures were able
to anticipate vulnerabilities with a median precision of 60%, but a recall of 40%,
which was disappointing. When using support vector machines to anticipate vul-
nerabilities using import statements, Neuhaus et al. [24] found an average precision
of 70% and recall of 40% when using import statements in the Mozilla project. Yu
et al. [38] include a variety of factors, including software metrics like the number
of subclasses or methods in a file, as well as crash features and code tokens with
associated tf-idf scores. As a result, their strategy incorporates a variety of perspec-
tives. They can forecast vulnerabilities at the file level and get very good results
in reducing the amount of code that needs to be reviewed by humans to detect a
vulnerability.

Other researchers have made predictions based just on commit messages. Zhou
et al. [39] use a K-fold stacking technique to examine commit messages to forecast
whether or not a commit contains vulnerabilities. In contrast, Russel et al. [26]
discovered that humans and Machine Learning systems both struggled to iden-
tify build failures or defects based just on commit messages. Our approach, the
suggested method, does not use external code measurements and instead learns
characteristics directly from the source code.

2.2 Anomaly Detection Approaches for Finding Vulnerabil-
ities

The task of characterizing normal and anticipated behavior and finding deviations
from it is known as anomaly detection. The assumption is that code that does not
follow the indicated criteria is frequently the source of a bug. To evaluate source
code and uncover normal coding patterns, data mining techniques were applied. For
instance, Li et al. [19] developed PR-Miner, a tool that can discover code patterns
in any programming language and has shown to be highly beneficial. Their method,
which is based on associating programming patterns that are used in tandem, is
independent of the language used, and the violations detected by their tool have
been confirmed as flaws in Linux, PostgreSQL, and Apache. However, a basic issue
is that faults that are themselves normal patterns are routinely neglected, resulting
in common vulnerabilities going undetected [36].

Rare programming patterns or API usages, on the other hand, may be labeled
as false positives simply because they are uncommon. Several anomaly detection
methods have a high risk of false positives [10]. Anomaly detection in code is not a
simple way for detecting security vulnerabilities, because it is difficult to tell when
a violation of typical code patterns has a security implication and when it does
not. The method utilized in this study varies from traditional anomaly detection
in that explicit labels are used to train a model on both vulnerable and secure
code, avoiding the dubious assumption that ”normal” = ”right.” It falls under the
heading of susceptible code pattern analysis.

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 327

2.3 Vulnerable Code Pattern Analysis and Similarity
Analysis

In comparison to learning about abstract metrics or the notion of proper code, it
seems almost natural to just try to answer the question: What does vulnerable
code often look like? Vulnerable code pattern analysis and similarity analysis are
two slightly different approaches to answering that question. The name suggests
that similarity analysis achieves exactly that. The purpose is to locate the most
comparable code fragments to a susceptible code snippet, presuming that they are
at risk of sharing the vulnerability. This method works well for identical or almost
identical code clones in which the compared code fragments’ inherent structure is
quite close [18], a circumstance that occurs frequently, especially in the open-source
community.

Susceptible code pattern analysis examines vulnerable code segments using data
mining and machine-learning techniques to discover common characteristics. These
characteristics are patterns that can be used to detect vulnerabilities in new code
portions. As detailed by Ghaffarian et al. [10], most of the work in this area gathers
a huge dataset, analyzes it to extract feature vectors, and then applies machine-
learning techniques to it. Both methodologies are often used to analyze source code
without running it, which is known as a static analysis, while some academics also
use a dynamic analysis. The bottom line is that, unlike ’conventional’ static analy-
sis, the characteristics are generated automatically or semi-automatically, removing
the need for subjective human specialists. An unbiased model can be developed by
learning directly from a dataset of code what susceptible code includes.

In many cases, those approaches use a coarse granularity, classifying entire
programs [11], files [29], components [24], or functions [37], making pinpointing
the specific position of a vulnerability hard. Some researchers, such as Li et al. [18]
and Russell et al. [26], employ a finer representation of the code. Furthermore, the
approaches differ in several ways, including the language used, the data source, the
dataset size, the labeling process, the granularity level of the analysis (whole files
down to code tokens), the machine learning model used, the types of vulnerabilities
examined, and whether the model can be used in cross-project predictions or only
on the project it was created for. To begin, some fundamental approaches utilizing
various machine learning techniques will be discussed.

Following that, deep learning-based techniques are investigated in further depth.
Morrison et al. [22] look at security flaws in Windows 7 and Windows 8. 8 using
a variety of machine learning approaches such as logistic regression, naive Bayes,
and others With very unsatisfactory results, support vector machines, and random
forest classifiers. As a result, the precision and recall levels were quite poor. Pang
et al. [25] extract labels from an internet database in a fairly basic manner. To
classify the entire Java code, utilize a combination of feature selection and n-gram
analysis. susceptible or not vulnerable classes. They use a simple n-gram model in
combination with feature selection methods to integrate related features and limit
the number of irrelevant features taken into account on a relatively small dataset
of four Java android applications. After that, they use support vector machines

328 Amirreza Bagheri and Péter Hegedűs

as their learning algorithm, with 92 percent accuracy, 96 percent precision, and 87
percent recall inside the same project, and 65 percent in cross-project prediction
(training on one project and trying to classify vulnerable files in another one).

Shar et al. [28] use machine learning to detect XSS and SQLI vulnerabilities in
PHP code and reduce false positives. They manually select specific code attributes
before training a multi-layer perceptron to augment static analysis tools. They
discovered fewer vulnerabilities than a static analysis tool, but with reduced false
positive rates, resulting in a satisfactory outcome. They adopt a hybrid technique
with dynamic analysis in their later work [28], which significantly improves their
earlier results, as tested on six large PHP projects. They also try unsupervised
predictors, which are less accurate but still a fascinating study topic.

Raw source code is analyzed as text by Hovsepyan et al. [15]. They used an
Android email client built in Java as an example, focusing on evaluating the source
code as if it were a natural language and processing files as a whole. They convert
files into feature vectors made up of Java tokens with their respective counts in the
file after filtering out comments. These feature vectors are classed as susceptible or
clean in a binary approach. Finally, a support vector machine classifier is trained to
determine whether a file is vulnerable. This classifier has an accuracy of 87 percent,
with 85 percent precision and 88 percent recall. Their success demonstrates that
evaluating source code as natural text and gaining insight without sophisticated
models of code representation is possible. Unfortunately, the application on a single
software repository limits their work. For a comparable job, they later utilized
decision trees, k-nearest-neighbor, naive Bayes, random forest, and support vector
machines [27].

2.3.1 Deep Learning for Vulnerability Prediction

Several papers have successfully used deep learning models to automatically learn
features for fault prediction [35]. The following works show how this approach
can be applied to vulnerability detection. Russell et al. [26] employ recurrent
and convolutional neural networks to scrape a large codebase of C projects from
GitHub, the Debian Linux distribution, and synthetic examples from the SATE
IV Juliet test suite, resulting in a database of over 12 million functions. They
produce the binary labels ’vulnerable’ and ’not vulnerable’ for the routines using
three separate static tools, as well as a randomly initialized one-hot embedding for
lexing. Convolutional and recurrent neural networks are used for feature extraction
at the core of their research, followed by a random forest classifier. The best results
came from convolutional neural networks, which allowed for fine-tuning of precision
and recall against each other.

Russel et al. are not only among the first researchers to use deep representation
learning directly on source code from a large codebase, but they are also able to
use a convolutional feature activation map to highlight suspicious parts of the code,
rather than simply classifying a whole function as vulnerable, with their work. The
work of Liu et al. [20] is based on the notion that violations that are consistently
remedied are genuine positives, whereas violations that are disregarded are likely

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 329

to be either not important or false positives. They look into changes in 730 Java
projects, use the static bug detection tool Findbugs to find changes that are fixing
a violation reported by that tool, then follow the violations across versions to see
if they are addressed or ignored. They can use this information to determine
which tool-reported infractions are consistently disregarded over several revisions
and which are addressed almost immediately. They collect the code patterns that
correlate to infractions using an abstract syntax tree as a representation.

Liu et al employ an unsupervised learning approach to extract features of code,
focusing primarily on patches to learn fix patterns, rather than building a binary
classifier on ’vulnerable’ or ’not vulnerable.’ As a result, their method may be
characterized as a type of similarity analysis. The discovered coding patterns are
encoded into a vector space using an embedding layer, the discriminating features
are learned using a convolutional neural network, and violations with learned fea-
tures are clustered using an X-means clustering technique. They discovered that,
while security-related breaches are uncommon, they are common in 30 percent
of the projects. Furthermore, the research shows that only a small percentage of
breaches are corrected. Liu et al. discovered that for 90% of fixed breaches, a chunk
of merely 10 lines of code or fewer is adequate to capture the relevant context. The
CNN produces patterns that are nearly identical to the tool’s violation description
and are used to build fixed patterns. One of the top five suggested fix patterns can
fix roughly one-third of a test set of violations. Liu et al. also chose 10 open-source
Java projects to offer proposals to based on the modifications proposed by their
program, with 67 of the 116 suggestions being accepted right away. Of course, their
technology can only suggest patches that match previously discovered fix patterns.

2.3.2 Long-short Term Memory Networks

Although Gupta et al. [12] and Dam et al. [6] have demonstrated that extended
short-term memory networks are well suited to modeling source code and correcting
faults in C code, the latter was likely the first to do so. to learn features automat-
ically for anticipating security vulnerabilities [7]. They Extract the code from a
publicly available dataset including 18 Java applications. utilizing Java Abstract
Syntax Tree to replace all methods in the source file Some tokens are available in
generic versions. They then employ LSTM to train syntactic and semantic skills.

A random forest classifier and semantic characteristics. They got over 91 percent
precision for within-project vulnerability prediction, and after training a model on
one project, it got over 80 percent precision and recall in at least four of the other
17 projects. VulDeePecker [18] is a deep learning-based vulnerability detection
method. The authors propose the first dataset of vulnerabilities targeted for deep
learning algorithms, which is derived from the National Vulnerability Database and
the Software Assurance Reference Dataset maintained by the NIST and come from
popular C and C++ open-source products.

Li et al. want to design a tool that doesn’t rely on humans to determine features
but still has a low rate of false positives and false negatives. They divided files
into code gadgets, which are semantically related lines of code that are grouped,

330 Amirreza Bagheri and Péter Hegedűs

focusing on critical areas of library and function API calls in a very sophisticated
manner. Only two sorts of vulnerabilities are evaluated: buffer errors and resource
management problems. On different subsets of their data, Li et colleagues chose
bidirectional long short-term memory networks, attaining a precision of roughly 87
percent, with better results if the network is trained on manually selected function
calls. Harer et al. [14] used LSTM networks to detect and resolve C vulnerabilities
in the synthetic SATE IV code base. They were able to use a sequence-to-sequence
strategy to develop solutions for discovered vulnerabilities, albeit measuring and
comparing their success is difficult. Similarly, Gupta et al. [12] employ RNNs in
a sequence-to-sequence configuration to remedy flawed C code, while not focusing
on security vulnerabilities, fixing 27 percent of their applications completely and
19 percent partially.

3 Approach

Our approach to vulnerability detection is to analyze code tokens and their sur-
rounding tokens to determine the context in which they exist. Using embedding
layer models, the code is embedded into semantically meaningful numerical vec-
tors. After that, an LSTM network is used to recognize vulnerable code features
and categorize code as vulnerable or not vulnerable. The overview of the approach
is shown in Figure 1.

Figure 1: Overview of the approach

3.1 Data Source

In prior research, the researchers found that applying their model to code from the
same project that it was trained on yielded better results in detecting vulnerabil-
ities [25]. Cross-project prediction resulted in a significant reduction in precision
and recall. In the works of Russel et al. [26] and Li et al. [18], the best results
were obtained when dealing with a synthetic data set rather than code from real
applications. Nonetheless, because such a vulnerability detection tool appears to
be the most desirable and final result, our strategy attempts to leverage a huge
dataset of real-life source code to train a model that can be applied to any code,
not just one project.

For numerous reasons, the entire dataset was compiled from publicly available
GitHub projects: First, because GitHub is the world’s largest repository of source

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 331

code, the amount of meaningful data accessible is unlikely to be insufficient for this
application. Second, unlike synthetic code bases, nearly all GitHub projects contain
’natural’ source code in the sense that they are real-world projects. Third, the data
is open, making it easier to re-examine and reproduce the work, which is difficult in
studies that focus on proprietary code, for example. Because GitHub is primarily a
version control system, it is centered on commits, and as Zhou et al. [39] explains,
it is possible to detect vulnerabilities by looking at commits. Patches are commits
that remedy a defect or vulnerability and consist of two versions, one buggy and
one updated and correct. Vulnerable code patterns can be discovered by evaluating
the differences between the old and new versions.

3.2 The Data Collection Process

Commits that fixed numerous vulnerabilities were gathered. Each vulnerability
needed its dataset after the data had been collected and filtered. Table 1 sum-
marizes the fundamental data of the dataset, such as the number of repositories
and commits that comprise it, the number of modified files that contain known
vulnerabilities, the number of lines of code, the number of distinct functions they
contain, and the total number of characters.The following sections will demonstrate
the suitability of this dataset by using it to train the model.

Table 1: Vulnerability Dataset

Vulnerability Repo. Commits Files Functions LOC Chars
SQL Injection 457 582 721 7452 102558 5960074
XSS 52 89 102 983 18916 1236587
Command injection 125 225 354 3561 48031 2740339
XSRF 112 189 384 6418 76198 3368206
Remote code execution 71 88 186 4198 40591 1955087
Path disclosure 175 204 332 4596 62303 2814413

3.2.1 Python Vulnerabilities

Injection attacks - An injection attack is based on user input that causes un-
expected or harmful behavior when processed or executed. A user can sometimes
access or change data without permission by exploiting an injection vulnerability,
which usually allows the user to have the interpreter (such as the server or the
operating system) execute arbitrary commands. Injection attacks can be avoided
by vetting all user input and employing so-called ”sanitization” techniques that
convert harmful to harmless inputs, such as filtering out special characters.

SQL injection - The OWASP foundation lists SQL injections as one of the top
security flaws, ranking them among the most prevalent and dangerous flaws affect-
ing web applications. The Common Weakness Enumeration defines SQL injection

332 Amirreza Bagheri and Péter Hegedűs

as ”when a SQL command is provided to a downstream component, the software
generates all or a portion of it using externally influenced input from an upstream
component, but fails to neutralize or does so in a way that may cause it to change
the intended SQL command.” When user-controllable input contains SQL syntax
that has not been removed, it can be misinterpreted and executed as a SQL state-
ment. This can be used to alter searches, such as accessing files that should not
be accessible or adding new statements that can alter or destroy databases. If its
sanitization is not thorough, any form of a database-driven website could end up
being the subject of such an exploit.

Command injection - According to the Common Weakness Enumeration, the
software constructs all or a portion of a command using externally affected input
from an upstream component, but it fails to neutralize or does so incorrectly specific
aspects that could change the intended command when it is sent to a downstream
component. This is another instance of untrusted data being executed, but instead
of being directed at a SQL database, it is directed at a command run by the system
being attacked, such as the server shell. An attacker could then read, modify, or
delete files that they shouldn’t have access to.

Remote code execution - The primary distinction between command injec-
tion and remote code execution is that command injection executes an OS system
command, whereas remote code execution executes actual programming code on
the target machine. It is also sometimes used to define a hacking goal rather than
a vulnerability, in the sense that an attacker can execute arbitrary commands on a
system by exploiting a vulnerability.

Various types of session hijacking - The main goal of session hijacking is to
allow an attacker to enter a client’s connection with a server, typically by obtaining
or guessing a valid session token and then posing as a trusted client.To connect
to a client using a maliciously set session ID by a third party, a user must be
tricked into clicking a link that contains the session ID as a parameter. Because
the malicious third party now has access to the session token, the active session can
be accessed. An attacker could even gain access to a logged-in account. By using
cross-site scripting to obtain a session token, the attacker can hijack the shared
session between the client and server.

Man-in-the-middle attacks are also included in session hijacking. An attacker
pretends to be the connection partner on both sides of a conversation between two
systems, possibly a client and a server. Because they are effectively acting as a
proxy, the attacker can view and occasionally change the content of the communi-
cation. By utilizing appropriate encryption and certifications, man-in-the-middle
attacks are avoided. The term ”replay attack” refers to an attack in which the
attacker, posing as the original originator of the transmission, records a legitimate
portion of communication between two parties (such as a client and a server) and
sends it again later. The attacker can access features and data that were only
intended to be accessible to the original sender if suitable protective measures are
not in place (primarily secret one-time session IDs).

Cross-site scripting - Cross-site scripting, also known as XSS, is one of the
most serious flaws in web applications. It frequently appears on OWASP’s top ten

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 333

list of vulnerabilities. Unsanitized data is also central to the cross-site scripting
problem. This time, a user adds custom code to a website or URL before passing
it on to other users, who will see the code as part of the page and run it in their
browser. The CWE defines cross-site scripting as follows: The program either
does not neutralize user-controllable input at all or neutralizes it incorrectly before
including it in output that is used to create a web page that is served to other
users.

A guest book that accepts arbitrary input is a simple example of stored cross-site
scripting. A visitor may post plain text or Javascript, which is saved on the website
permanently and distributed to other users, who will receive and run the Javascript
code. Of course, changes can be made, such as using different input methods and
producing executable code in languages such as Flash. Another example is an email
that contains a link to another website, but the URL contains malicious Javascript
that, when clicked, executes the malicious code. To prevent XSS attacks, user-
generated content should be sanitized with tools such as HTML escape and others.

Cross-Site request forgery - The CWE defines cross-site request forgery as
follows: The web application does not, or is unable to, thoroughly verify whether
the request was submitted by a well-formed, legitimate, consistent user. This is
further explained below: If a web server is designed to accept requests from clients
without any means of verifying that they were made voluntarily, an attacker may be
able to trick a client into sending an unintended request to the website that would
be treated as a legitimate request. This can expose data or result in accidental code
execution and can be accomplished via a URL, image load, XMLHttpRequest, or
other means.

Directory traversal/path disclosure -When a user changes the input in
such a way that paths of a file system that were not intended to be accessed
are exposed, this is known as a path traversal or directory traversal vulnerability.
According to the CWE, the software does not properly neutralize special elements in
the pathname that could cause it to resolve to a location outside of the restricted
directory. The software generates a pathname from external input to identify a
file or directory that is located beneath a restricted parent directory. A common
example of this vulnerability is a website that displays a file whose path is specified
in a URL parameter. The attacker can explore the file system and possibly show
files that weren’t intended to be accessible by altering this parameter to contain
some ”../../..”.

3.2.2 Scraping GitHub

The first step is to build a dataset, or more precisely, to find a large number of
commits that address a security issue. Because the goal is to cover a wide range of
vulnerabilities, each vulnerability type requires multiple examples. Commits are the
main topic of interest in our work because the process of patching a flaw indicates
the presence of the flaw in the first place and provides the basis for labeling the
data afterward. The GitHub search API can only handle certain types of requests,
and the number of results for each request is limited to 1000. Filters cannot be

334 Amirreza Bagheri and Péter Hegedűs

implemented in the search API, unlike the regular search available to users, so
filtering for only the programming language is not possible. As a result, after
obtaining the results and selecting the few relevant and useful ones from among
them, this filtering must be done manually. As a result, the approach taken here is
to write a script that searches the Github API for contributions containing various
security-related search phrases, then filters out everything that isn’t relevant, such
as code written in a different programming language or configuration files. The
script is included in the repository and authenticates with an API token.

Initially, a lengthy list of security-related terms was used. These terms are based
on prior research citezhou2017automated, the CVE database, and the OWASP
foundation’s list of security risks. To collect the data, a script was written that
connected to the GitHub API via the requests library. The keyword list must be
supplied at the beginning of the script. This first set of keywords will be combined
with a second set of keywords related to improvements, repairs, or modifications in
order to consider every possible combination of the first and second set elements.
Because the second set of terms denotes a problem or a solution, the combinations
should be useful (but not sufficient) in distinguishing genuine security improvements
from numerous other mentions of vulnerabilities, such as examples in showcase
projects for educational purposes.

However, it quickly became clear that only a few of those keyword combinations
were truly relevant to the task at hand. Some, like ’vuln’, ’XXE’,’malicious’, or
’CVE’, were overly broad and yielded a wide range of results; others, like ’dos’
(as an abbreviation for denial of service), yielded completely unrelated results due
to overlap of meanings (in this case, ’dos’ referring to an old Windows operating
system, and, even more frequently, the very common Portuguese As a result, the
available options were significantly reduced. After combining every keyword from
the revised first set with every keyword from the second set, a search request is
sent to Github for each of the combinations. It should be noted that this only
means that the names (and thus URLs) of commits and repositories are gathered;
no actual source code or even a diff file is downloaded at this time. After combining
every keyword from the revised first set with every keyword from the second set,
a search request for each combination is submitted to Github. It should be noted
that this only collects the names (and thus URLs) of commits and repositories: no
actual source code or even a diff file has been retrieved.

3.2.3 Filtering the Results

The second priority was to find projects that display security flaws, exhibit exploits,
or serve as tools for attacking or preventing exploits. While those works frequently
include useful examples of vulnerabilities, they rarely include commits that repair
them, but rather commits that introduce them into the codebase on purpose. Fur-
thermore, they run counter to the work’s methodological assumptions, as the goal
is to learn about vulnerable code as it appears in real-world projects where devel-
opers make legitimate mistakes. As a result, an attempt is made to screen such
projects out.

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 335

With the -b parameter, the script could include a list of keywords to indicate
projects that should be avoided. The repository names were searched for the fol-
lowing keywords: ”offensive”, ”pentest”, ”vulnerab”, ”security”, ”hack”, ”exploit”,
”ctf”, ”capture the flag”, ”attack”. The README files for the remaining projects
are then downloaded from Github. The next step is to obtain the diff files. In the
GNU diff model and similar representations used by GitHub, a diff is a text file that
represents the changes made in a commit. It contains some metadata (such as the
filename and change line number), the modified lines, and three lines of code before
and after. A ’+’ at the beginning of a line denotes a new and fixed line, whereas
a ’-’ denotes a line that was eliminated in favor of the repair [20]. A commit on
Github might include modifications to multiple files at once.

A single HTTP request can be used to download the diff for a commit URL. This
is a far easier way than cloning the entire repository and selecting individual files
from a certain point in the project’s history, which appears to be impossible at this
time due to the size of the dataset and computational and temporal constraints.
The preceding phase produces a large number of code diffs that can be used to
recreate important lines of code in the state before and after the modification. The
diff from GitHub includes the modified lines as well as three lines before the first
change and three lines after the last change for each changed file, so there isn’t
much context for the change. However, the vast number of changes that can be
mined with this method may more than compensate for the comparatively limited
context offered for each change. The time it took to run all of those queries was
over 80 hours.

To build the dataset, we obtained only the diff files and recreated the ’before
version’ and ’after version’ of the required code snippet, each with the modified lines
and three lines above and below them. The goal was to classify the first version as
vulnerable and the second version as ’not vulnerable’, which yielded some pleasing
results. The classifier that had learned from the training set was able to accurately
classify the validation set samples and determine whether they belonged in the
’previous/vulnerable’ or ’after/fixed’ categories. When the model was applied to
a new file containing source code, it went through several parts of it and tried to
identify them, and the problem became evident.

That endeavor resulted in an astonishing number of false positives. The reason
behind this is that the dataset had the same number of (actual) positives and
negatives, whereas in reality, Figure 2: In between numerous lines of ’clean’ code,
retrieving the snippet in the state before and after the commit from a git diff,
the old vulnerable version in red, the new vulnerable version in green The dataset
does not accurately reflect the class unbalanced nature of the data to which the
classifier should be applied. Of course, this was clear from the start, but owing
to the aforementioned time and processing resource constraints, it appeared that
collecting the diffs was simply the best technique that could be done at all. This
was not accurate, and a better solution may be found.

336 Amirreza Bagheri and Péter Hegedűs

Figure 2: Vulnerable and Not Vulnerable parts selection

3.2.4 Downloading the Dataset

We noticed that downloading the source code in a reasonable amount of time was
possible if all of the filterings were done beforehand in a clever way to keep the
number of downloaded repositories to a bare minimum. First, the commit is ex-
amined to see if it contains keywords related to the vulnerability. The diff file is
then examined to see if any files with the code language of choice are affected. If
this is not the case, the commit can be ignored because only commits that change
specific language source code files are taken into account. The commit is then
compared to the previously downloaded commits. By definition, many open-source
repositories are forks or clones of one another, or they contain the commit history
of other projects. Duplicates are excluded. The distinction is then thoroughly ex-
amined.Each change in the commit has an effect on a specific file. The filename
is reviewed for each modification to see if it contains terms that indicate it is a
showcase project - a file called ”SQL exploit” is more likely to be part of a project
exhibiting vulnerabilities than a patch that fixes an inadvertent vulnerability.

The body of the diff file is then processed. If HTML tags or the keywords’sage’
are used, the diff is no longer considered. Although HTML code is sometimes
embedded in some files, the vulnerabilities in those files are almost never in the
same code. Sage is an open-source mathematics system, and some commits include

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 337

parameters and variables that are useful to it but not relevant to this project.
Finally, the change is checked to see if any lines of code have been removed or
replaced. If there are only minor changes, the algorithm will struggle to determine
which lines are vulnerable. Finally, after much deliberation, it is determined which
commits are truly worth downloading.

Pydriller [32], a tool for downloading repositories containing intriguing commits
and traversing their commitments to identify all the matches with the commits that
remain in the collection of interesting ones, is only now being used. Some checks are
performed anew for each commit. The commit is skipped if the prior file is empty.
The commit is also avoided if the previous file is longer than 30.000 characters.
Similar to the file name, the commit message is reviewed for suspicious terms.
Finally, the source code for the dataset is downloaded and saved.

3.2.5 Flaws in the Data

When we dug deeper into the data, we discovered that the process of collecting
vulnerability samples based on commit messages is far from perfect. There were
still some (albeit minor) commits that contained exploit implementations rather
than fixes, such as setups for capturing the flag, attack demonstrations, or cyber
security tools like Burp Suite. Some commit messages, for example, read ’fix remote
code execution,’ and this vulnerability is repaired somewhere, but the same commit
also contains, for example, eight other files with minor and significant changes that
may or may not be related to the issue indicated in the commit message. It’s
difficult to tell whether modifications are related to the commit message’s stated
goal without human supervision or predetermined knowledge.

The answers for several keywords were just unspecific. There were many results
for the phrase brute force in which a brute force strategy was utilized to solve a
problem rather than a defense against a brute force attack. As a result, the findings
were not particularly useful. A similar issue arose with the phrase tampering, which
was used seldom and for a variety of reasons (including DNS tampering, but also
game data manipulation for cheating purposes). The term ”keyword hijacking”
was frequently used in a figurative sense, for example, to describe a person or
application that inserted undesirable but authorized material, or to describe data
fields or entries that were used by the developers for other purposes as intended.
Many fixes and changes relating to developers traversing their file structures, not
an attacker attempting to do so, were found using the phrase directory traversal.

Changes were occasionally overly convoluted and spanned numerous files, in-
cluding those that were not written in Python. The more complex the modifica-
tions and the more lines changed, the more difficult it is to model and learn from
the sample. Another issue is that many vulnerabilities are defined by the lack of
specific defense mechanisms, such as XSRF tokens or nonces/counters that prevent
replay attacks. Fixing those vulnerabilities sometimes does not alter or remove a
susceptible section of code, resulting in insights into what vulnerable code looks
like, but instead adds a few extra lines. In other circumstances, those lines can
be positioned in a variety of ways, with a variety of ways to provide the needed

338 Amirreza Bagheri and Péter Hegedűs

functionality. Learning to notice the lack of something vague that is required is
far more difficult than learning to recognize a very explicit erroneous piece of code
that is there.

Commits using replay attacks typically had both of the aforementioned issues:
They’re dispersed throughout a lot of files, and they usually add new lines rather
than alter an existing, broken code segment. As a result, this kind of vulnerability
had to be ruled out. There were just a few results for man-in-the-middle attacks
that were trying to harden an application against them rather than performing
them. And the defense systems were so specialized that they yielded little usable
information. The majority of the unauthorized commits were likewise not related
to fixing susceptible code segments, but instead invoked methods or handled errors
that were not particularly tied to a vulnerability.

There were simply too many applications outside the realm of security and
vulnerabilities that were only concerned with pretty formatting of outputs rather
than preventing vulnerabilities exploiting format strings, and there were simply
too many applications outside the realm of security and vulnerabilities that were
only concerned with pretty formatting of outputs rather than preventing vulnera-
bilities exploiting format strings. Other types of vulnerabilities, such as cross-site
scripting, command injection, cross-site request forgery, path disclosure, remote
code execution, open redirect vulnerabilities, SQL injection, and so on, did provide
excellent learning opportunities.

3.2.6 Filtering the Data

Individual samples were subjected to specific constraints to improve the dataset’s
quality. Only files with a length of fewer than 10,000 characters were considered.
This offers some advantages: Long portions of comments, docstrings, and manually
specified variables are common features of very long files. Furthermore, they act
as a form of ’long tail’ in terms of computing costs, requiring a significant amount
of time to analyze for very small advantages. Finally, certain manual examinations
revealed that they do not appear to contain the best quality code. Commits that
removed or changed a file in more than 10 different locations were removed from
the sample to improve the dataset’s quality even more. Such bulk modifications are
likely to affect several different concerns at once, rather than just one. Of course,
such steps lowered the number of samples. In the case of SQL injections, for
example, the dataset was reduced from 842 repositories and 903 commits affecting
2354 files totaling 212913 lines of code to 457 repositories, 582 commits, 721 files,
and 102558 lines of code. The quality of the data did not suffer as a result of the
reduction, as a test of the final model with the non-trimmed dataset yielded no
better results.

A severe flaw in the code was introduced at this time, which was only discov-
ered and repaired late in the process. After identifying which lines of code in the
diff file were susceptible, they were removed from the source code and labeled as
such. The rest of the file was then divided into even blocks of the same length as
the vulnerable code snippets on average, and tagged as ’not vulnerable’. Notice

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 339

how the splitting occurs initially, followed by the separation of vulnerable and non-
vulnerable individuals. The issue with this method was that it regarded susceptible
code areas differently than non-vulnerable code areas. The procedure of construct-
ing a code block differed: vulnerable blocks were extracted directly from the source
code, whereas clean blocks were constructed using the block-splitting algorithm.
As a result, the vulnerable blocks developed some specific characteristics that the
trained classifier could easily recognize.

Some of the susceptible areas were probably very long (with entire functions
removed, for example) Since the majority were relatively brief (one or two lines
modified), resulting in an average of medium length, thus the clean code was divided
into medium-length blocks, which doubled as a proxy for their vulnerability status.
When the classifier was applied to a new source code file cut into even blocks and
should determine which were vulnerable, the outcome was excessively high precision
and recall numbers, as well as poor performance.

3.3 Labeling

The data is tagged using information from the commit context, similar to Li et
al. [18]. The bits of code that were altered or deleted in such a commit can be
labeled as vulnerable, and the version after the fix, as well as all the data around
the affected component, can be labeled as not susceptible. Of course, there are
times when a repair fails to cure an issue, when many vulnerabilities exist at the
same time, or when a new vulnerability is introduced. This strategy ignores all of
it because the key goal is simple automation without the requirement for human
expert oversight. Furthermore, everything marked as ’not-vulnerable’ should be
regarded as ’at least not demonstrated to be vulnerable’.

3.4 Representation of the Source Code

Simple techniques like a bag of words representations have previously shown unsat-
isfactory results and are unable to capture the semantic context of code by design.
They may be promptly rejected. Others, such as Russell et al. [26] and Hovsepyan
et al. [15], claim that an AST representation is required to mine patterns from code,
while others, such as Liu et al. [20], argue that this is not the case. Furthermore,
Dam et al. [7] claim that, in addition to human-engineered features and software
metrics, ASTs may be unable to capture the semantics buried deep within source
code. Code is sequential data akin to natural text, and long short-term memory
networks are created specifically for modeling such data, with excellent results.

Given all of this, our technique is built to work directly on source code as text.
Because code snippets are used as samples, the method could be compared to an
n-gram technique, however, the snippets are far longer than those used in n-grams.
To account for the code’s locality aspect [34], the context surrounding each code
token will be emphasized for learning features.

340 Amirreza Bagheri and Péter Hegedűs

3.4.1 Choosing Granularity

As Morrison et al. [22] explain, binary-level predictions and analysis on the level of
whole files provide little insight because developers often already know which files
are vulnerable to security issues, and developers prefer, if possible, a much finer
approach at the level of lines or instructions. Dam et al. [7] start their paper with
some persuasive examples, suggesting that there are files with comparable metrics,
structure, and even almost identical tokens, one of which may be clean and the
other vulnerable, despite the same metrics. A technique that ’zooms in’ to study
small bits of code individually may be more promising than a top-down approach
that looks at entire files. Our method employs a fine-grained approach, examining
each character in the code as well as its context. Only in this way can the specific
position of the vulnerability be pinpointed.

3.4.2 Preprocessing the Source Code

Tokens at the source-code level in languages like Python include identifiers, key-
words, separators, operators, literals, and comments. While some researchers [25]
omit separators and operators, others [37] remove a large number of tokens and keep
only API nodes or function calls. Comments are removed from this work because
they do not affect the program’s behavior. Even if they have some predictive value
for vulnerability status, this is not the type of data that should be learned by the
model, which is designed to discover vulnerable code. Otherwise, the source code
remains unchanged. Hovsepyan et al [15] take a similar strategy. Generic names
are not used to substitute variables or literals; everything is taken exactly as it is
represented. Because neural networks work with numerical vectors of uniform size,
it’s vital to represent code tokens as vectors that keep the semantic and syntactic
information from the code. Furthermore, the vector’s variables must be chosen in
such a way that the vectors are manageable in size.

Li et al. [18] apply carefully constructed code gadgets, Hovsepyan et al. [15]
use a simple bag-of-words strategy, Russell et al. [26] train a randomly initialized
one-hot-embedding, and Liu et al. [20] use word2vec. A naive one-hot encoding is
one possibility, but it is utterly oblivious to the semantic meaning of tokens. An
embedding layer, on the other hand, uses vectors with high cosine similarity to
represent semantically comparable code elements. A code snippet is turned into a
list of representations of its tokens in our method. Language keywords, identifiers
such as function names and variables, integers, operators, and even whitespaces,
brackets, and indentations are examples of these. Every one of the tokens must be
embedded, or represented by a numeric vector.

As a result, a complete portion of the code is converted into a vector of vectors
of numbers. All the embedding layers have previously been used successfully for
similar projects [20]. Aside from the conceptual advantages over a one-hot encoding,
it also requires significantly smaller vector sizes, making it computationally less
expensive. It was picked as the best embedding method for our strategy. Because
no pre-trained language model for Python code is currently available, embedding

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 341

layers must be trained first. A corpus of high-quality Python code is obtained for
this purpose, once again from GitHub. The embedding layer model is trained on
this corpus to prepare it for the task of encoding Python code tokens as vectors.

The vulnerable and non-vulnerable components had to be treated the same the
entire way up to the labeling stage to properly analyze the data. The data was
divided into equal chunks, which were then tagged as vulnerable if they overlapped
with one of the vulnerable code segments, otherwise as clean. The technique of
breaking down source code into blocks has been given in a simplified manner thus
far. Initially, the comments are filtered out of the code, similar to the work of
Hovsepyan et al. [15] and many others, because they are unlikely to alter the vul-
nerability of a file. A small focus window iterates over the entire source code in
n-steps. To avoid tokens being split in half, the focus window always starts and
stops at a character that represents the end of a token in Python, such as a colon,
bracket, or whitespace. The surrounding context of roughly length m, starting and
stopping at the border of code tokens, is determined for this focus window, with
m > n. The context will largely lie behind the focus window if it is at the beginning
of the file, and if it is in the middle, the surrounding context will span a snippet
that spans equally before and after the focus window.

As a result, there are a lot of overlapping blocks. It is labeled as vulnerable if
the entire block contains partially vulnerable code, otherwise, it is labeled as clean.
This ensures that code snippets that contain a vulnerability are identified. The
parameters n and m will be optimized, and their ideal values will be found through
experimentation. According to Liu et al. [20], a portion of merely 10 lines of code
is usually enough to capture the important context for a vulnerability. The next
step is to convert those code blocks, which are simply lists of Python characters,
into numerical vector lists.

3.5 Embedding Layers

A suitable embedding layer model trained on Python source code is required to
encapsulate the code tokens in a numerical vector. A substantial training base of
code, ideally made up of clean, working Python code, is necessary to train this
model. This research follows the heuristic that popular code projects are of high
quality, similar to Bhoopchand et al. [3] and Allamanis et al. [1]. It is worth noting
that those repositories are likely to include minimal security flaws and defects in
general. We propose our recommended embedding layers in our previous paper
and test them with different hyperparameters to see the effectiveness of each of
them [2].

3.6 Selecting the Machine Learning Model

Many machine learning models and methodologies have been applied to vulnera-
bility detection, with inconsistent results, including SVMs, decision trees, random
forest, and naive Bayes models. However, not all of those models are equipped
with the needed features. Our technique aims to construct a model that can learn

342 Amirreza Bagheri and Péter Hegedűs

vulnerability aspects from code token sequences. Source code is sequential data by
definition, as the effect of each line is highly dependent on the effects of the in-
structions around it. This will result in many false positives when trying to detect
a vulnerability. Rather, the idea is to discover that a token is ’bad’ when used in
a specific way, with tokens that have come before it.

Deep learning-based models, particularly RNNs, are particularly well-suited to
representing code locality while also being able to capture far more context than
ngrams [6]. Deep neural networks, particularly recurrent neural networks and long
short-term memory networks, have numerous advantages. To recap, such networks
may describe sequential data by using an internal state as a ”memory” to keep
track of prior inputs and contextualize data. RNNs, on the other hand, suffer
from vanishing or exploding gradients, making it difficult to train them on longer
sequences since the distance between the occurrence of a piece of information and
the point at which it becomes relevant exceeds the RNN’s capabilities. LSTM, on
the other hand, were created to cope with problems like this since they can learn
how long information should be preserved. They have been effectively employed in
modeling code and are designed for the type of task required in Our method. As a
result, an LSTM is used as the model in this study. We decided to utilize Bi-LSTM
for the final version of the tool, but because we started with LSTM, we will explain
it first.

3.7 Preparing the Data for Classification

The information gathered is still in the form of code snippets that are vulnerable and
not vulnerable.The snippets are translated into a list of tokens, and each token is
replaced with its vector representation based on the chosen embedding layer model.
Each vector has a binary label, with ’0’ indicating vulnerable and ’1’ indicating
not vulnerable or unknown status. The data is divided into three sets: training,
validation, and testing. 70% of the data is chosen at random as a training set, 15%
is chosen as a test set for validation, and 15% is kept aside for a final evaluation
after the experiments. Dam et al. [7] utilized the same ratios, Russell et al. [26]
split their dataset into 80 percent training, 10% validation, and 10% final test set,
and Li et al. [18] used an 80-20 split between train and test set.

It is worth noting that the validation set is not used to learn parameters; instead,
it is used to assess the model’s performance after it has learned its parameters on
the training set. This evaluation is taken into account while adjusting the model’s
hyperparameters, and all findings are finally presented using the final test set,
which the model has never seen before. To obtain an equal length of vectors for
each sample, the lists of vectors are shortened and padded.

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 343

3.8 Training the LSTM

3.8.1 Architecture of the Model

A sequential model is built using the Keras package. The most crucial aspect comes
first: the LSTM layer. The goal of this layer is to discover features that are linked
to a code snippet’s vulnerability state. There is no need for a separate dropout
layer because the LSTM layer is susceptible to numerous hyperparameters, includ-
ing dropout and recurrent dropout. The classes should be weighed appropriately
because the data is inherently class imbalanced (there are far more clean code
blocks in the training data than vulnerable ones). This ensures that, even though
there are many more instances of clean code, the examples of vulnerable code are
handled appropriately in training. The class weights are determined automatically
using the scikit-learn library’s class weight function. The activation layer, a dense
output layer with a single neuron, follows the LSTM layer. Because the purpose
is to produce a forecast between 0 and 1 for the two classes of non-vulnerable
and vulnerable code, the activation function utilized here is a sigmoid activation
function.

3.8.2 Selecting Hyperparameters for the LSTM

Many choices must be taken when it comes to the LSTM hyperparameters. The
hyperparameters are adjusted and tested empirically to identify the ideal configu-
rations after calculating some plausible beginning values based on other research
and common sense. Technically, the metric and loss functions are hyperparameters
Figure 3. Because our approach prefers a fair balance of false positives and false
negatives and the classes are already weighed, the F1 metric appears to be par-
ticularly well suited to evaluate overall performance. As a result, the F1 score is
chosen as the LSTM model’s optimization criterion. In the scripts, the F1 metric
and its accompanying loss function are custom defined. The number of neurons
is, of course, a key hyperparameter that defines the model. It has an impact on
learning ability. More neurons let the model learn a more complex structure, but
training the model takes longer. The dimensionality of the output space is likewise
determined by the number of neurons.

The batch size specifies how many samples are displayed to the network before
the weights are changed again. As a result, when making a prediction later, the
model should not be trained with a batch size smaller than the number of samples
used at the time. To compare the outcomes, a range of various batch sizes are used.
A batch size of one single sample or a batch size of the entire training set is the most
extreme value. Batch sizes of 32, 64, and 128 samples are commonly employed in the
middle of the two. LSTM, like many other models, can be overfitted with training
data, lowering their predictive effectiveness. Dropout is a regularization strategy in
which input and recurrent connections to LSTM units are occasionally randomly
omitted from the next step of the training, preventing the network from updating
its weights. This decreases the risk of the network overfitting by depending too
heavily on a few inputs.

344 Amirreza Bagheri and Péter Hegedűs

There are two types of dropout in LSTM: the standard dropout describes the
proportion of units that are dropped from the inputs; the cheval dropout describes
the fraction of units that are dropped from the inputs. The recurrent dropout
is the percentage of units that leave the recurrent condition. A normal dropout
rate is between 10% and 50%. Experimentation will establish the ideal dropout.
Finally, the number of epochs, or the number of times the learning algorithm will
run through the entire training data set, must be changed. In the literature, epochs
are commonly referred to as 10, 100, 500, or even 1000. Several optimizers from
the adam family will be tried to discover which produces the best results. A model
with optimal configurations can be calculated when all of those hyperparameters
have been modified.

Figure 3: Creating models with different hyperparameters

3.8.3 Selecting the Optimizer

The objective for the F1 score was chosen as a criterion for the model’s performance
because our strategy is to attain high precision and recall at the same time. To
determine how ’wrong’ the forecasts are at a given point, a loss function based on
the F1 score will be employed. The optimizer must update the model parameters
until the global minimum is found to minimize the loss function. Simply remove
the gradient of the loss concerning the weights multiplied by a modest amount
called the ’learning rate’ from the weights to be improved. With each iteration of
the optimization, the gradient is calculated for a distinct sub-sample of the data
and is thus subject to statistical fluctuation, which is why this approach is called
Gradient Descent” (SGD). However, if the loss function is not convex or there are
ill-conditioned regions, SGD can become stuck in a local minimum. This can be
changed by lowering the learning rate. A slow learning rate, on the other hand,
suggests that the network will not learn rapidly enough. What factors should be
considered when determining the learning rate?

Fortunately, the learning rate does not have to be set in stone and may be dy-
namically adjusted. The adam optimizer dynamically selects a learning rate. It was

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 345

first published in 2014 [17], and it is built primarily for deep neural networks, where
it produces excellent results quickly and is frequently used as a go-to optimization
approach for a variety of issues. It considers prior updates as well as the first and
second moments of the gradient, which are defined as the expected value of that
variable to the power of one or two, respectively - the mean and centered variance
of the gradient. It combines the advantages of the Adaptive Gradient Algorithm
(adagrad) [9] and Root Mean Square Propagation (RMSprop) [33], according to
the authors. Adagrad adjusts the learning rate for different characteristics and
performs exceptionally well on sparse datasets with a large number of missing sam-
ples. Its disadvantage is that it has a very slow learning rate. RMSprop, a variant of
adagrad, adjusts learning rates based on recent gradient magnitudes for the weight
and works well on both online and non-stationary issues.

When calculating momentum, it only considers gradients in a fixed window.
Other optimizers, such as adadelta, nadam, adamax, NAG, and others, will not
be discussed in length here. Since the chosen loss function, the F1 score is not
convex, SGD will probably not converge towards the optimal solution. According
to IBM, the adam family of optimizers (which includes RMSprop, adagrad, and
others) should converge under certain conditions. Li et al. [18], Russell et al. [26],
and Dam et al. [7] employ adamax, Russell et al. [26] use the conventional adam
optimizer, and Dam et al. [7] utilize RMSprop, however, the applicability depends
heavily on the dataset’s peculiarities. The Adam optimizer is utilized as a starting
point for our technique, and it may be empirically compared to other optimizers to
see which provides the best results in practice.

3.9 Evaluation

True positives, true negatives, false positives, and false negatives are frequently the
basis for evaluation when it comes to prediction and categorization. They have
been referenced before, but they will be adequately clarified here. Positive and
negative refer to the prediction, so a prediction of ’vulnerable’ would be positive,
and a prediction of ’not vulnerable’ would be negative in this work. True and false
refer to whether the forecast matches the actual value or an external evaluation.
As a result, a false positive is a piece of clean code that the classifier incorrectly
labels as vulnerable, a true positive is a vulnerability that was correctly identified,
a false negative is an actual vulnerability that was not classified as such, and a true
negative is a piece of code that was classified as ’not vulnerable’ and is free from
vulnerabilities. Precision and recall are two metrics that are directly derived from
those four numbers.

The rate of genuine positives within all positives is the precision. It assesses
how accurate the model is in terms of how many of the predicted positives are
true positives, or, to put it another way, how much trust can be placed in the
positive categorization and how many false alarms are generated. The recall, also
known as sensitivity, is a metric that compares the percentage of correctly detected
positives to the total number of positives. It could be interpreted as a measure
of how diligently the classifier looks for all positives - or how much is missed.

346 Amirreza Bagheri and Péter Hegedűs

When the data set is class imbalanced, meaning there are many more positives
than negatives or vice versa, accuracy does not provide much insight. When it
comes to vulnerability detection, the majority of code fragments will be clean,
and vulnerabilities will be uncommon. For example, Morrison et al. [22] discovered
that only 0.003 percent of their Windows code was vulnerable, while Shin et al. [31]
found that 3% of their Firefox files were vulnerable. When genuine positives are few
and true negatives are common, a classifier can attain high accuracy ratings even
though it misses the majority of the positives because the many true negatives make
the total result appear to be extremely accurate. As a result, the accuracy alone
is insufficient for this application. The F1 score is a balanced score that considers
precision and memory. The F1 score is better suitable for class-imbalanced data
sets since it is less easily influenced by a large number of true negatives.

In an ideal, perfect world, the model would have a near-zero percent rate of false
positives and false negatives, implying that precision and recall, as well as accuracy
and F1 score, are all close to one. The accuracy, precision, recall, and F1 score will
be used to evaluate the model in this study, although many previous studies on
similar themes only use the first three of those four variables. Precision and recall
values of 70% are feasible for prediction models, according to some studies [31], [22],
however, current techniques have shown some more astonishing outcomes. Precision
and recall of more than 65% seem like a good target for this project.

4 Study Results

A significant amount of contributions that addressed vulnerabilities were gathered.
Each vulnerability needed its dataset after the data had been collected and filtered.
The table below provides a summary of their basic information, including the num-
ber of repositories and commits that make up the dataset, the number of modified
files that contain security holes, the number of lines of code, the number of distinct
functions they contain, and the total number of characters. By using it to train the
model, the next parts will show that this dataset is appropriate. Since some config-
urations must be used as a starting point, even though their hyperparameters are
not optimum, they can be used to show how alternative hyperparameters lead to
better or worse results. The ideal combination of all parameters can be found after
going through each hyperparameter and describing how it impacts performance.

The baseline model analyzes the dataset for SQL injections using a focus region
step size n of 5 and a context length m of 200. It has 30 neurons and is trained
using the Adam optimizer for 10 epochs with a dropout and recurrent dropout
of 20% and a batch size of 200. Even though training a model for more epochs
would almost surely produce superior results, this was not possible due to the need
to test numerous combinations, which would have taken more than an hour. As a
result, only the resultant ”best” model is trained for more epochs. The classification
performance of the resulting LSTM model’s F1 score, which offers a balanced score
that considers precision and recall, is used to compare results. It should be noted
that the same model can be trained on the same data two times, one right after

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 347

the other, and the resulting scores for precision, accuracy, recall, etc. can deviate
by roughly 1-3% due to the nondeterministic character of the entire process. As a
result, all of the results in the following tables are only estimates and could vary
somewhat.

4.1 Hyperparameters of the Embedding Layers

Are our models useful as an embedding, and how do their hyperparameters affect
the overall outcomes? The tests that follow look into this. The training corpus
has 69,517,343 (almost 70 million) unique tokens that were extracted from multiple
Python projects. In various configurations, the hyperparameters vector length, min
count, and training iterations are tested. The results of retaining strings as-is versus
replacing them with generic string tokens are also compared. Since the baseline
model is employed, all hyperparameters are, unless otherwise provided, selected
using this default setup. In general, the method entails training an embedding layer
model, using it to embed the data, and then training an LSTM model on it. Since
the embedding layer itself cannot be evaluated by any kind of number, the quality
of the embedding is assessed using the performance of the LSTM model. Its ability
to be applied in the situation for which it was designed determines how effective it
is. A poor embedding will produce a poor LSTM model that is unable to interpret
the data that is given to it. However, a functional LSTM model demonstrates that
the embedding layers were appropriate.

4.1.1 Vector Dimensionality

The code tokens are transformed into numerical vectors of a specific length or
dimensionality when utilizing embedding layers. The more distinct ”axes” there
are for relating words to one another, the longer those vectors are, and the better
the models can capture more intricate connections. It is doubtful that a vector
with a size of under 100 can represent Python’s semantics well understood, judging
by comparisons to jobs involving natural language, where 200-point vector sizes
are usual. The minimal count of a token to occur in the vector is used to compare
different vector lengths. The models’ training iterations are set at 100 and their
vocabulary to 1000.

4.1.2 String Replacement

As some other researchers have done, strings found in the Python training file can
either be replaced with a generic ”string” token or left alone. It is difficult to
predict which option will perform better in advance. Replacing them could lessen
the level of detail in the model while maintaining them could focus too much on the
particular content of string tokens. The embedding vectors are set to have a length
of 200 to compare the two methods. The comparison is made between a min count
of 10, 100, and 5000 with training iterations between 1 and 300. The Average F1
score for the embedding layers encoding that retains strings is indicated in Table 2

348 Amirreza Bagheri and Péter Hegedűs

by the value before the slash (/), while the score for the model that substitutes a
generic string token for strings is indicated by the value after the slash (/). These
outcomes demonstrate that the variant without string substitution consistently
produces better outcomes.

Table 2: F1 score for different min-count and iteration number w and w/o string

Minimum count 1 Iter. 10 Iter. 100 Iter. 300 Iter.
10 64% / 58% 78% / 72% 82% / 72% 84% / 74%
100 58% / 49% 75% / 66% 73% / 69% 82% / 74%
5000 50% / 49% 67% / 64% 75% / 73% 76% / 73%

4.1.3 Minimum Count

The minimum count specifies the minimum number of times a token must appear
in the training corpus before a vector representation is given to it. Less frequently
occurring tokens will not be encoded and will instead be skipped over later when
entire lists of tokens are transformed into lists of vectors. This largely serves to
ignore illegitimate identifiers such as uncommon variable names, strings, and other
identifiers. To train the embedding layer model, strings are left unchanged for 100
iterations with a 200-vector training set. It could have appeared logical to believe
that disregarding unusual tokens would enhance performance, but this was not the
case. When tokens are seldom disregarded, the model performs better, Figure 4.

Figure 4: Iterations and minimum count in the different models

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 349

4.1.4 Iterations

The quantity of repetitions in training is determined by the number of iterations.
It is reasonable to anticipate that there will be no additional advantage from ad-
ditional training after a certain number of iterations. Using the same parameters
as before—a corpus of original strings, a dimensionality of 200, and a min count
of 10—the model is trained. Up until 50 or 100 iterations, it seems that more
iterations improve the model’s performance. There is no need to increase the iter-
ations to 300 because doing so decreases rather than improves model performance
and necessitates a significant increase in training time. It should be noted that the
overall trend for greater performance is a smaller min count.

The LSTM model, which uses different embedding layers, performs noticeably
differently depending on the hyperparameters, as shown by the tables above, with a
difference between the best and worst parameters in the LSTM’s F1 score of almost
25 percentage points. Therefore, careful evaluation of the hyperparameter values
was not a waste of effort, as the final model’s ability to learn features is influenced by
the quality of the embedding. The final model will require a min count of merely 10
for tokens to be included, encode code tokens in 200-dimensional numerical vectors,
not alter any strings, and be trained for 100 iterations, Figure 4.

4.2 Parameters in Creating the Dataset

The collection is made up of samples, each of which is a brief section of code
built around a single token. Different step sizes n can be selected while shifting
the focus point through the source code. Higher total samples and more sample
overlap result from a smaller step size. The second argument, the complete length
of a code sample m, determines the size of the context window surrounding the
token in focus. Characters are used to measure both. The default settings are
applied to all hyperparameters of the LSTM model, and the previously established
ideal model is employed. Consistently lower outcomes follow bigger n. This is most
likely because there will not be much overlap between the focus points’ surrounding
context, and the moving window that contains the code snippets if the gaps between
them are wide.

A single token will appear multiple times if the emphasis shifts in very short
steps because the code snippets have a lot of overlap. For example, a token can
appear at the end of one snippet, in the middle of the next, and at the beginning
of the one after that. This implies that there are samples that demonstrate the
pertinent code with more information before and after it for each vulnerability,
Making it somewhat simpler for the model to figure out which component is the
real source of the vulnerability With a longer whole length m of the code snippet
constituting one sample, the model performs better. Again, a bigger m results in
more overlap. The drawback of this is that the prediction may become less accurate,
as a significant portion of text around a token may be identified as vulnerable
because it is located within a snippet of length m. However, a bigger m also has the
benefit that more token context may be taken into account, which is precisely why

350 Amirreza Bagheri and Péter Hegedűs

the LSTM was initially chosen. The samples, which were already rather numerous
and relatively huge in size, continued to grow for a whole length of more than
200, outpacing the machines’ computing power. Moving forward, the settings for
building the training set were fixed to a step length of n=5 and a full context
window length of m=200.

4.3 Hyperparameters and Performance of the LSTM model

It is necessary to choose appropriate hyperparameters for the LSTM model to
respond to the study question, ”How effective is our technique in finding vulner-
abilities as measured with accuracy, precision, and recall?” All additional LSTM
hyperparameters are evaluated using the baseline model with the following values:
n=5, m=200, 30 neurons, 10 epochs, dropout 20%, and Adam optimizer. The
code examples are embedded using the embedding layer models with the optimal
configuration predetermined.

4.3.1 Number of Neurons

The model can represent more complicated structures with a larger number of neu-
rons, but training takes longer. In general, a model performs better with more
neurons, with diminishing results beyond 50 to 70 neurons. When all other factors
are held constant, the training time nearly doubles from 1 neuron to 100 neurons,
then again from 100 neurons to 250 neurons. The machines the models are trained
on reached their limits after more epochs and bigger datasets, sometimes termi-
nating the operation. The optimal arrangement is therefore determined to be 100
neurons, Figure 5.

4.3.2 Batch Size

The following outcomes (Figure 5) were achieved using the baseline model with
standard batch sizes (32, 64, and 128) as well as some very small and very large
batch sizes: The size of the batch does not appear to have a significant impact on
the model’s overall performance. Only very large batch sizes of above 1000 result
in performance degradation. On the other hand, the batch size had a big impact
on how long it took to train the model. While training with a batch size of 5000
took 45 seconds each epoch, a batch size of 200 took 130 seconds, a batch size of 64
required 270 seconds, and the smallest practicable batch size required roughly 370
seconds. The model had to be trained for more than twenty minutes with a batch
size of 10, hence the training was stopped. Conclusion: It can be said that for batch
sizes less than 64, no improvement in accuracy and recall would warrant spending
the additional time required for training with such little chunks of samples. From
now on, a batch size of 128 will be regarded as ideal.

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 351

Figure 5: Hyperparameters for the LSTM model

4.3.3 Optimizer

In addition to the common Adam optimizer, the Keras model also provides similar
optimizers like RMSprop and Adagrad, as well as NAdam and Adamax. To assess
each person’s performance, they are all put to the test. Due to their suitability
for online issues, Adam, NAdam, and RMSprop appear to perform slightly better
than Adagrad and Adamax. The SGD’s performance is significantly worse. It
takes around three hours to train each of the top three optimizers, therefore they
are compared once more with 50 epochs. Adam has been selected as the preferred
standard optimizer since it was a very close call. All things being equal, this
optimizer is more likely to be employed in other studies, making comparisons easier.

4.3.4 Dropout

The terms dropout and repeat dropout are combined. The baseline model is trained
once more but for 30 epochs this time. A fluctuation of about 2 percent points can
still be accounted for by a few remaining variances in the outcome. The model
functions well up to a 25% dropout. Performance gradually declines as there is
a greater random loss of neurons. Therefore, setting the default dropout at 20%
seems like a sensible decision, minimizing overfitting while yet allowing for adequate
model performance, Figure 6.

4.3.5 Number of Training Epochs

Up to a certain point, training the model for additional epochs improves perfor-
mance (Figure 6). 100 neurons were used in the model’s training. Keep in mind
that the performance on the validation set is used to calculate the accuracy, preci-
sion, recall, and F1 score. Additionally, the model has a 20% dropout, which should
help avoid overfitting. Naturally, using more epochs lengthens the time required
to train the entire model. Lengthier training sessions result in noticeable benefits.

352 Amirreza Bagheri and Péter Hegedűs

However, beyond 100 epochs, there is not much to be gained, hence 100 epochs are
selected for the model.

Figure 6: Hyperparameters for the LSTM model

4.3.6 Optimal Configuration

Given the dataset, limitations on processing capacity, and storage space, the rec-
ommended hyperparameter settings are:

• 100 neurons

• Training for 100 epochs

• About 20% of dropouts and repeat dropouts

• Batch size 128

• Utilizing the Adam Optimizer

These hyperparameters enable the model to be trained on all vulnerabilities for
the best outcomes.

4.4 Performance for Subsets of Vulnerabilities

To respond to our study question, what categories of vulnerabilities are detectable,
we looked at each vulnerability group separately. Several of the initial considera-
tions for vulnerabilities have to be eliminated. There were relatively few results for
the keywords cross-origin, buffer overflow, function injection, clickjack, eval injec-
tion, cache overflow, smurf, and denial of service, and no dataset of any size could
be produced. Numerous commits that were unrelated to security vulnerabilities
were produced by the keywords brute force, tampering, directory traversal, hijack-
ing, replay attack, man-in-the-middle, format string, unauthorized, and sanitize.

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 353

A manual review of a few randomly chosen samples revealed that the majority of
those commits dealt with other problems unrelated to thwarting an exploit.

Table 3: LSTM+word2vec results for each vulnerability categories

Vulnerability Accuracy Precision Recall F1
SQL Injection 92.5% 86.2% 86.0% 86.1%
XSS 91.2% 87.9% 80.8% 84.2%
Command injection 90.3% 88.0% 82.3% 84.0%
XSRF 90.1% 87.6% 84.4% 85.9%
Remote code execution 90.0% 86.0% 85.1% 85.8%
Path disclosure 89.3% 89.0% 86.4% 86.1%
Average 91.0% 88.2% 86.1% 85.6%

Therefore, it was unable to produce a high-quality dataset for those vulnera-
bilities. Seven vulnerabilities are left for which a dataset might be produced. The
LSTM model is trained on the training sets using the determined ideal hyperparam-
eters, with the optimizers set to minimize the F1 scores. Finally, the performance
of the model is assessed, this time using the final test dataset that the models have
never ”seen”. The findings are shown in Tables 3, 4 and 5. It seems that while
the optimizer is attempting to reduce the F1 score, it is more straightforward to
do so by increasing precision while the recall is a little lower. Figure 7 displays
the exact meanings of the colors. In the sections that follow, one example for each
vulnerability is also provided.

Table 4: LSTM+fastText results for each vulnerability categories

Vunlnerability Accuracy Precision Recall F1
SQL Injection 91.2% 82.2% 88.0% 85.1%
XSS 92.8% 83.8% 80.8% 82.2%
Command injection 91.2% 89.0% 87.3% 88.1%
XSRF 92.3% 82.7% 81.3% 81.9%
Remote code execution 90.2% 86.0% 82.8% 83.7%
Path disclosure 89.8% 82.0% 81.1% 81.5%
Average 91.8% 86.4% 85.1% 84.0%

4.4.1 SQL Injection

With 96041 samples for training and 20581 samples for testing, the data for the
SQL injection vulnerability was divided into a training set and a test set. 10.9% or
so of those code fragments have some susceptible code in them.

354 Amirreza Bagheri and Péter Hegedűs

Table 5: LSTM+BERT results for each vulnerability categories

Vunlnerability Accuracy Precision Recall F1
SQL Injection 92.5% 82.2% 78.0% 80.1%
XSS 93.8% 91.9% 80.8% 86.0%
Command injection 95.8% 94.0% 87.2% 90.5%
XSRF 92.2% 92.9% 85.4% 89.0%
Remote code execution 91.1% 96.0% 82.6% 88.8%
Path disclosure 91.3% 92.0% 84.4% 88.1%
Average 93.8% 91.4% 83.2% 87.1%

Figure 7: Color codes and confidence levels

With the aforementioned hyperparameters, the LSTM model trained for 100
iterations on the training set, yielding accuracy, precision, recall, and F1 scores of
92.5%, 82.2%, and 78.0%, 83.5% respectively within the test set. Figure 8 shows a
tiny example of a SQL injection repair on GitHub. The SQL query stored in the
variable SQL str, which is formed by directly concatenating other variables into a
string, is executed by the instruction cursor.execute in the exposed code snippet.
Figure 9 shows the detection of this vulnerability with help of our model.

4.4.2 Cross-site Scripting

A rate of 8.9% vulnerable samples was obtained after splitting and processing the
data for cross-site scripting, producing 17010 training samples and 3645 test sam-
ples. Following training on the training set, the model performed on the test set
with accuracy, precision, recall, and F1 score of 97.7%, 91.9%,80.8%, and 86.0%.
For an illustration of how the model finds an XSS vulnerability, see Figure 10. The
variable self.content is used to create dynamically generated HTML code for a
comment area. This code needs to be escaped to prevent script injection. Figure 11
shows the detection on the source code.

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 355

Figure 8: Commit for vulnerability (SQL injection)

Figure 9: Detection of vulnerability (SQL injection)

356 Amirreza Bagheri and Péter Hegedűs

Figure 10: Commit for vulnerability (Cross-site scripting)

Figure 11: Detection of vulnerability (Cross-site scripting)

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 357

4.4.3 Command Injection

The accuracy, precision, recall, and F1 score of the command injection model’s
performance on the test set were 97.8%, 94.0%, 87.2%, and 90.5%, respectively.
With a rate of 4.6% samples containing a vulnerability, 51763 training samples,
and 11073 test samples were generated from the dataset. One illustration can be
found in Figure 12. Here is an example of some code that uses subprocess.call

to run the Java compiler when given a command with the detection part in Fig-
ure 13. Extra items can be handled as additional arguments to the shell because
the command is passed to it as a string and with the option ”shell=True,” which
enables the injection of other commands.

Figure 12: Commit for vulnerability (Command injection)

4.4.4 Cross-site Request Forgery

68434 training samples and 14665 test samples were used to process the data, and
5.9% of the samples contained susceptible code. The model performed quite well on
the test data set for XSRF, achieving an accuracy of 97.2%, a precision of 92.9%, a
recall of 85.4%, and an F1 score of 89.0%. Figure 14 shows an example of an XSRF
vulnerability and Figure 15 shows the detection done by our approach. In this
instance, an XSRF attack prevention check for proper XSRF cookies was merely
absent.

4.4.5 Remote Code Execution

There were 9797 test samples and 45723 training samples in the data for remote
code. 5.3% or so of the samples were vulnerable, the remainder were uncontami-
nated. The model was performed on the final test set with an accuracy of 98.1%, a
precision of 96.0%, a recall of 82.6%, and an F1 score of 88.8% after being trained
on the training set. Similar to the previous vulnerabilities, a specific illustration
is provided here. Figure 16 illustrates a situation in which a command created by
concatenating strings is executed using a call to os.system.

It is preferable to give the command as a sequence rather since just the first
element of the sequence will be considered as a program to run. Figure 17 shows

358 Amirreza Bagheri and Péter Hegedűs

Figure 13: Detection of vulnerability (Command injection)

the detection of this vulnerability with help of our model.

4.4.6 Path Disclosure

With 11802 test samples and 55072 training samples, this vulnerability had a rate of
7.13% vulnerable samples. The model’s performance on the test set was 97.3% accu-
rate, 92.0% precise, 84.4% recall, and 88.0% overall F1 score. An example is shown
in Figure 18 and the detection example in Figure 19. Using the commonprefix

function to determine whether the requested path is located inside the web root
directory prevented a path disclosure in the example.

4.4.7 Open Redirect

There were 38189 training samples and 8184 test samples after the data had been
processed. 6.4% of the samples have a vulnerability in them. An accuracy of 96.8%,
a precision of 91.0%, a recall of 83.9%, and an F1 score of 87.3% were attained for
this last vulnerability.

Figure 20 shows a common and simple case in which the session’s next URL is
requested without being sanitized, allowing untrusted URL strings to contain redi-

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 359

Figure 14: Commit for vulnerability (Cross-site request forgery)

Figure 15: Detection of vulnerability (Cross-site request forgery)

rect parameters that route users to pages other than the ones they were supposed
to see and detection sample in Figure 21.

360 Amirreza Bagheri and Péter Hegedűs

Figure 16: Commit for vulnerability (Remote code execution)

Figure 17: Detection of vulnerability (Remote code execution)

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 361

Figure 18: Commit for vulnerability (Path disclosure)

4.5 Application on Source Code

Our approach expands the work in the area of vulnerable code pattern analysis. A
large dataset of source code written in Python is collected from Github, filtered,
preprocessed, and labeled based on the information from commits. Several different
types of vulnerabilities are taken into consideration, and source code from many
different projects is collected. The resulting dataset of natural code containing
vulnerabilities is made available for further research. Samples are generated by
dividing the code into overlapping snippets that capture the immediate context
of some tokens. The samples are embedded in numerical vectors using different
embedding layers.

A long short-term memory network is trained to extract features and then
applied to classify code that was not used in training, highlighting the exact lo-
cations within the code that are potentially vulnerable. We combine all of the

362 Amirreza Bagheri and Péter Hegedűs

Figure 19: Detection of vulnerability (Path disclosure)

Figure 20: Commit for vulnerability (Open redirect)

trained models into a single, straightforward text editor, called VulDetective, and
test them using a variety of features, including which embedding layer and which
vulnerabilities they are vulnerable to. Additionally, the tool displays the content
color coded, Figure 22, including gray for comments, green for not vulnerable, and
red for vulnerable. We aim to keep it as straightforward as we can because the
tool’s goal is better detection; as a result, we spend a lot of time training various
models and experimenting with various embedding layers and hyperparameters.

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 363

Figure 21: Detection of vulnerability (Open redirect)

The application we have created differs in some respects from all other previous
work. Unlike the approaches of Li et al. [18], Pang et al. [25], Hovsepyan et al. [15],
and Dam et al. [7], it uses a broad code base rather than a select number of
projects. The predictions are not only applicable within the same file or project,
but can be generalized to any other source code. In contrast to these four works,
a fine granularity is also chosen. The aforementioned works all classify entire files
or, as in the case of Li et al. [18], consider only API and function calls. Our
approach is more in line with the work of Russell et al. [26] and Ma et al. [21] in
that vulnerabilities are detected at specific locations in the code rather than just
at the file level, which is likely to be more useful to developers; different tokens
can even be color-coded depending on the confidence level of the classification.
Similar to the research of Hovsepyan et al. [15] and in contrast to the work of Ma
et al. [21], Yamaguchi et al. [37], and Liu et al. [20], this work does not convert the
source code into a structure such as an abstract syntax tree but assumes that it is
plain text. It follows the natural hypothesis and aims to use as few assumptions
as possible, leaving the extraction of features from the source code entirely to the
trained model.

The labels for the dataset are not generated using a static analysis tool, as is
the case in the work of Russel et al. [26], Dam et al. [7], and Hovsepyan et al. [15].
The basic idea of our approach is independence from manually designed features,

364 Amirreza Bagheri and Péter Hegedűs

Figure 22: Overview of the VulDetective application

which is the major limitation of previous static analysis tools. The goal is not to
model an existing static tool, but to learn features without initial assumptions.
Therefore, it is based on a similar assumption as Liu et al. [20], namely that code
that has been patched or patched was most likely vulnerable before the fix. The
flag is based solely on the Github commits, which (at least in theory) allows the
discovery of vulnerability patterns that have not yet been manually included in
static analysis tools. The dataset used as a basis for training consists of natural code
from real software projects, rather than synthetic databases designed to provide
clear examples of vulnerabilities.

This makes the whole task more difficult, as real code is much messier and less
clean than synthetic code. In this respect, our method differs from the approaches
of Russell et al. [26] and Li et al. [18]. However, this also makes our approach
independent of specific projects with their characteristics and therefore robust to
some degree to the threats to validity that would arise from a narrower approach.
The machine learning model used is an LSTM and Bi-LSTM, as also used by

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 365

Li et al. [18] and Dam et al. [7]. Compared to the latter, the architecture and
preprocessing of the data in our approach are much simpler. Many other approaches
use either different deep learning models (CNNs and RNNs in the case of the work
by Russell et al. [26]) or completely different machine learning approaches (support
vector machines in the case of the work by Pang et al. [25]).

To conclude the list of contributions: The focus is on code written in Python,
unlike most other research projects that are primarily concerned with Java, C,
C++, or PHP. No other approach has been found that uses even remotely similar
techniques and works with Python. Of course, the proposed approach could be
applied to other languages as well. The various embedding layer models that have
been trained for Python are another contribution to this work.

4.6 Result Comparison with Other Works

To give a framework for the assessment of this study, Table 6 and 7 includes com-
parisons with related research in the field. Each approach has inherent variances,
hence it is difficult to directly compare them. Approaches are compared under the
following aspects:

• Language: what language is subject of the classification efforts

• Data: does the data stem from real-life projects or synthetic databases

• Labels: how are the labels for the training data originally generated

• Granularity: is the code evaluated on a rough granularity (whole classes or
files) or a fine granularity (lines or tokens)

• Method: what class of neural network or machine learning approach is used
(CNN, RNN, LSTM)

5 Conclusion

This paper presents a vulnerability detection method based on deep learning on
source code. Its purpose is to relieve human vulnerability detection experts of the
time-consuming and subjective effort of manually defining vulnerability detection
criteria. Via LSTM models, this research demonstrates the feasibility of learning
vulnerability attributes straight from source code using machine learning. It can
detect seven different types of errors in Python source code. We were able to
identify specific sections of code that are likely to be vulnerable, as well as provide
confidence levels for our predictions. We get an accuracy of 93.8%, a recall of 83.2%,
a precision of 91.4%, and an F1 score of 87.1% on average. We also demonstrate how
the trained model can be applied in practice, therefore opening up the possibility of
building a hands-on developer tool for detecting vulnerable code blocks in arbitrary
Python programs. Moreover, the presented method is language agnostic, it can be
adapted to other languages as well. Higher measurements in precision, recall, and

366 Amirreza Bagheri and Péter Hegedűs

Table 6: Comparisons with related researches

Name Lang. Data Labels Scope Gran. Method
Russel et al. [26] C/C++ real

and
synth.

static tool general token
level

CNN
RNN

Pang et al. [25] Java real pre existing 4 apps whole
classes

SVM

VuRLE [21] Java real manually general edits
(fine)

10-fold
CV

VulDeePecker [18] C/C++ real
and
synth.

patches and
manual

general API
func-
tion
calls

BLSTM

Dam et al. [7] Java real static tool 18 apps whole
file

LSTM

Hovsepyan et al. [15] Java real static tool 1 project whole
file

grid
search

Bagheri et al. Python real patches general token
level

LSTM

Table 7: Comparisons with related researches

Name Accuracy Precision Recall F1
Russel et al. - - - 57%
Pang et al. 63% 67% 63% 65%
VuRLE - 65% 66% 65%
VulDeePecker - - - 85%-95%
Dam et al. 81% 82% 76% 80%
Hovsepyan et al. 87% 85% 88% 85%
Bagheri et al. 93% 91% 83% 87%

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 367

F1 are a lot simpler to accomplish if the methodology centers around forecasts
inside a solitary task, as Hovsepyan et al. [15] and Dam et al. [7] do when they
train a classifier to predict vulnerabilities inside the same application. Preparing
a classifier that is relevant for general recognition of vulnerabilities is a lot harder
- yet additionally prompts a substantially more valuable final product. Note that
similar two methodologies, as well as the one taken by Pang et al. [25], are likewise
simply attempting to predict regardless of whether an entire record is defenseless
without having the option to bring up the specific area of the vulnerability. Since
it expects to foster an overall vulnerability identifier that can be utilized at the
fine granularity of code tokens, it has a significantly more confounded undertaking
to satisfy. With basically a similar methodology, Russel et al. [26] accomplished
56% on regular code from Github, yet 84% on the Satisfy test suite because of its
spotless and predictable structure and design. our methodology seemingly performs
all around given that it works absolutely on normal real-life source code.

References

[1] Allamanis, M. and Sutton, C. Mining source code repositories at massive
scale using language modeling. In 2013 10th Working Conference on Mining
Software Repositories (MSR), pages 207–216. IEEE, 2013. DOI: 10.1109/

MSR.2013.6624029.

[2] Amirreza, B. and Hegedűs, P. A Comparison of Different Source Code Repre-
sentation Methods for Vulnerability Prediction in Python. In Proceedings of the
14th International Conference on the Quality of Information and Communica-
tions Technology (QUATIC 2021), 2021. DOI: 10.48550/arXiv.2108.02044.

[3] Bhoopchand, A., Rocktäschel, T., Barr, E., and Riedel, S. Learning
Python code suggestion with a sparse pointer network. arXiv preprint
arXiv:1611.08307, 2016. DOI: 10.48550/arXiv.1611.08307.

[4] Chowdhury, I. and Zulkernine, M. Using complexity, coupling, and cohesion
metrics as early indicators of vulnerabilities. Journal of Systems Architecture,
57(3):294–313, 2011. DOI: 10.1016/j.sysarc.2010.06.003.

[5] Church, K. W. Word2vec. Natural Language Engineering, 23(1):155–162, 2017.
DOI: 10.1017/S1351324916000334.

[6] Dam, H. K., Tran, T., Grundy, J., and Ghose, A. Deepsoft: A vision for
a deep model of software. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 944–
947, 2016. DOI: 10.1145/2950290.2983985.

[7] Dam, H. K., Tran, T., Pham, T., Ng, S. W., Grundy, J., and Ghose,
A. Automatic feature learning for vulnerability prediction. arXiv preprint
arXiv:1708.02368, 2017. DOI: 10.48550/arXiv.1708.02368.

https://doi.org/10.1109/MSR.2013.6624029
https://doi.org/10.1109/MSR.2013.6624029
https://doi.org/10.48550/arXiv.2108.02044
https://doi.org/10.48550/arXiv.1611.08307
https://doi.org/10.1016/j.sysarc.2010.06.003
https://doi.org/10.1017/S1351324916000334
https://doi.org/10.1145/2950290.2983985
https://doi.org/10.48550/arXiv.1708.02368

368 Amirreza Bagheri and Péter Hegedűs

[8] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. DOI: 10.48550/arXiv.1810.04805.

[9] Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research,
12(7), 2011. DOI: 10.1109/TSMC.2021.3097714.

[10] Ghaffarian, S. M. and Shahriari, H. R. Software vulnerability analysis and
discovery using machine-learning and data-mining techniques: A survey. ACM
Computing Surveys (CSUR), 50(4):1–36, 2017. DOI: 10.1145/3092566.

[11] Grieco, G., Grinblat, G. L., Uzal, L., Rawat, S., Feist, J., and Mounier, L. To-
ward large-scale vulnerability discovery using machine learning. In Proceedings
of the Sixth ACM Conference on Data and Application Security and Privacy,
pages 85–96, 2016. DOI: 10.1145/2857705.2857720.

[12] Gupta, R., Pal, S., Kanade, A., and Shevade, S. Deepfix: Fixing common
C language errors by deep learning. In Thirty-First AAAI Conference on
Artificial Intelligence, 2017. DOI: 10.1609/aaai.v31i1.10742.

[13] Hall, T., Beecham, S., Bowes, D., Gray, D., and Counsell, S. A systematic
literature review on fault prediction performance in software engineering. IEEE
Transactions on Software Engineering, 38(6):1276–1304, 2011. DOI: 10.1109/

TSE.2011.103.

[14] Harer, J., Ozdemir, O., Lazovich, T., Reale, C., Russell, R., Kim,
L., et al. Learning to repair software vulnerabilities with genera-
tive adversarial networks. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems, Volume 31, 2018.
URL: https://proceedings.neurips.cc/paper_files/paper/2018/file/

68abef8ee1ac9b664a90b0bbaff4f770-Paper.pdf.

[15] Hovsepyan, A., Scandariato, R., Joosen, W., and Walden, J. Software vul-
nerability prediction using text analysis techniques. In Proceedings of the 4th
International Workshop on Security Measurements and Metrics, pages 7–10,
2012. DOI: 10.1145/2372225.2372230.

[16] Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., and Mikolov,
T. Fasttext.zip: Compressing text classification models. arXiv preprint
arXiv:1612.03651, 2016. DOI: 10.48550/arXiv.1612.03651.

[17] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. DOI: 10.48550/arXiv.1412.6980.

[18] Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., and Zhong, Y.
Vuldeepecker: A deep learning-based system for vulnerability detection. arXiv
preprint arXiv:1801.01681, 2018. DOI: 10.48550/arXiv.1801.01681.

https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1109/TSMC.2021.3097714
https://doi.org/10.1145/3092566
https://doi.org/10.1145/2857705.2857720
https://doi.org/10.1609/aaai.v31i1.10742
https://doi.org/10.1109/TSE.2011.103
https://doi.org/10.1109/TSE.2011.103
https://proceedings.neurips.cc/paper_files/paper/2018/file/68abef8ee1ac9b664a90b0bbaff4f770-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/68abef8ee1ac9b664a90b0bbaff4f770-Paper.pdf
https://doi.org/10.1145/2372225.2372230
https://doi.org/10.48550/arXiv.1612.03651
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1801.01681

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 369

[19] Li, Z. and Zhou, Y. PR-Miner: Automatically extracting implicit programming
rules and detecting violations in large software code. ACM SIGSOFT Software
Engineering Notes, 30(5):306–315, 2005. DOI: 10.1145/1095430.1081755.

[20] Liu, K., Kim, D., Bissyandé, T. F., Yoo, S., and Le Traon, Y. Mining fix
patterns for findbugs violations. IEEE Transactions on Software Engineering,
47(1):165–188, 2018. DOI: 10.1109/TSE.2018.2884955.

[21] Ma, S., Thung, F., Lo, D., Sun, C., and Deng, R. H. Vurle: Automatic
vulnerability detection and repair by learning from examples. In European
Symposium on Research in Computer Security, pages 229–246. Springer, 2017.
DOI: 10.1007/978-3-319-66399-9_13.

[22] Morrison, P., Herzig, K., Murphy, B., and Williams, L. Challenges with
applying vulnerability prediction models. In Proceedings of the 2015 Sym-
posium and Bootcamp on the Science of Security, pages 1–9, 2015. DOI:
10.1145/2746194.2746198.

[23] Nagappan, N., Murphy, B., and Basili, V. The influence of organiza-
tional structure on software quality. In 2008 ACM/IEEE 30th International
Conference on Software Engineering, pages 521–530. IEEE, 2008. DOI:
10.1145/1368088.1368160.

[24] Neuhaus, S., Zimmermann, T., Holler, C., and Zeller, A. Predicting vul-
nerable software components. In Proceedings of the 14th ACM Conference
on Computer and Communications Security, pages 529–540, 2007. DOI:
10.1145/1315245.1315311.

[25] Pang, Y., Xue, X., and Namin, A. S. Predicting vulnerable software com-
ponents through n-gram analysis and statistical feature selection. In 2015
IEEE 14th International Conference on Machine Learning and Applications
(ICMLA), pages 543–548. IEEE, 2015. DOI: 10.1109/ICMLA.2015.99.

[26] Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O.,
Ellingwood, P., and McConley, M. Automated vulnerability detection in source
code using deep representation learning. In 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA), pages 757–762.
IEEE, 2018. DOI: 10.1109/ICMLA.2018.00120.

[27] Scandariato, R., Walden, J., Hovsepyan, A., and Joosen, W. Predicting vul-
nerable software components via text mining. IEEE Transactions on Software
Engineering, 40(10):993–1006, 2014. DOI: 10.1109/TSE.2014.2340398.

[28] Shar, L. K. and Tan, H. B. K. Predicting SQL injection and cross site script-
ing vulnerabilities through mining input sanitization patterns. Information
and Software Technology, 55(10):1767–1780, 2013. DOI: 10.1016/j.infsof.

2013.04.002.

https://doi.org/10.1145/1095430.1081755
https://doi.org/10.1109/TSE.2018.2884955
https://doi.org/10.1007/978-3-319-66399-9_13
https://doi.org/10.1145/2746194.2746198
https://doi.org/10.1145/1368088.1368160
https://doi.org/10.1145/1315245.1315311
https://doi.org/10.1109/ICMLA.2015.99
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/TSE.2014.2340398
https://doi.org/10.1016/j.infsof.2013.04.002
https://doi.org/10.1016/j.infsof.2013.04.002

370 Amirreza Bagheri and Péter Hegedűs

[29] Shin, Y., Meneely, A., Williams, L., and Osborne, J. A. Evaluating com-
plexity, code churn, and developer activity metrics as indicators of software
vulnerabilities. IEEE Transactions on Software Engineering, 37(6):772–787,
2010. DOI: 10.1109/TSE.2010.81.

[30] Shin, Y. and Williams, L. An empirical model to predict security vulnerabilities
using code complexity metrics. In Proceedings of the Second ACM-IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement,
pages 315–317, 2008. DOI: 10.1145/1414004.1414065.

[31] Shin, Y. and Williams, L. Can traditional fault prediction models be used for
vulnerability prediction? Empirical Software Engineering, 18(1):25–59, 2013.
DOI: 10.1007/s10664-011-9190-8.

[32] Spadini, D., Aniche, M., and Bacchelli, A. Pydriller: Python framework
for mining software repositories. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 908–911, 2018. DOI:
10.5281/zenodo.1327411.

[33] Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop, coursera: Neural networks
for machine learning. Technical report, University of Toronto, 2012.

[34] Tu, Z., Su, Z., and Devanbu, P. On the localness of software. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pages 269–280, 2014. DOI: 10.1145/2635868.2635875.

[35] Wang, S., Liu, T., and Tan, L. Automatically learning semantic features
for defect prediction. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), pages 297–308. IEEE, 2016. DOI: 10.1145/

2884781.2884804.

[36] Yamaguchi, F., Lottmann, M., and Rieck, K. Generalized vulnerability ex-
trapolation using abstract syntax trees. In Proceedings of the 28th Annual
Computer Security Applications Conference, pages 359–368, 2012. DOI:
10.1145/2420950.2421003.

[37] Yamaguchi, F., Rieck, K., et al. Vulnerability extrapolation: Assisted discov-
ery of vulnerabilities using machine learning. In 5th USENIX Workshop on
Offensive Technologies (WOOT 11), 2011. DOI: 10.5555/2028052.2028065.

[38] Yu, Z., Theisen, C., Williams, L., and Menzies, T. Improving vulnerability
inspection efficiency using active learning. IEEE Transactions on Software
Engineering, 47(11):2401–2420, 2019. DOI: 10.1109/TSE.2019.2949275.

[39] Zhou, Y. and Sharma, A. Automated identification of security issues from
commit messages and bug reports. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pages 914–919, 2017. DOI:
10.1145/3106237.3117771.

https://doi.org/10.1109/TSE.2010.81
https://doi.org/10.1145/1414004.1414065
https://doi.org/10.1007/s10664-011-9190-8
https://doi.org/10.5281/zenodo.1327411
https://doi.org/10.1145/2635868.2635875
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1145/2420950.2421003
https://doi.org/10.5555/2028052.2028065
https://doi.org/10.1109/TSE.2019.2949275
https://doi.org/10.1145/3106237.3117771

Towards a Block-Level ML-Based Python Vulnerability Detection Tool 371

[40] Zimmermann, T., Nagappan, N., and Williams, L. Searching for a needle in
a haystack: Predicting security vulnerabilities for Windows Vista. In 2010
Third International Conference on Software Testing, Verification and Valida-
tion, pages 421–428. IEEE, 2010. DOI: 10.1109/ICST.2010.32.

https://doi.org/10.1109/ICST.2010.32

Acta Cybernetica 26 (2024) 373–404.

A Formalisation of Core Erlang,
a Concurrent Actor Language∗

Péter Bereczkyab, Dániel Horpácsiac, and Simon Thompsonade

Abstract

In order to reason about the behaviour of programs described in a pro-
gramming language, a mathematically rigorous definition of that language is
needed. In this paper, we present a machine-checked formalisation of concur-
rent Core Erlang (a subset of Erlang) based on our previous formalisations
of its sequential sublanguage. We define a modular, frame stack semantics,
show how program evaluation is carried out with it, and prove a number of
properties (e.g. determinism, confluence). Finally, we define program equiv-
alence based on bisimulations and prove that side-effect-free evaluation is a
bisimulation. This research is part of a wider project that aims to verify
refactorings to prove that particular program code transformations preserve
program behaviour.

Keywords: formal semantics, formal verification, concurrency, actor model,
program equivalence, bisimulation, Erlang, Core Erlang, Coq

1 Introduction
Our work here contributes to a wider project [17] to reason about the correctness of
refactorings for functional languages in general, and for Erlang [7] in particular. In
our terminology, refactoring is a code transformation that preserves the observable
behaviour of programs. Our understanding of the state-of-the-art refactoring tools
scene suggests that behaviour preservation (i.e. correctness) is subject to extensive
testing, but formal verification is not yet used in practice. We aim to change this,
at least in the case of Erlang, and develop higher assurance for refactorings by

∗Supported by the ÚNKP-21-3 New National Excellence Program of the Ministry for Inno-
vation and Technology from the source of the National Research, Development and Innovation
Fund. Supported by “Application Domain Specific Highly Reliable IT Solutions” financed under
the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Subprogramme)
funding scheme by the National Research, Development and Innovation Fund of Hungary.

aEötvös Loránd University, Budapest, Hungary
bE-mail: berpeti@inf.elte.hu, ORCID: 0000-0003-3183-0712
cE-mail: daniel-h@elte.hu, ORCID: 0000-0003-0261-0091
dUniversity of Kent, United Kingdom
eE-mail: S.J.Thompson@kent.ac.uk, ORCID: 0000-0002-2350-301X

DOI: 10.14232/actacyb.298977

mailto:berpeti@inf.elte.hu
https://orcid.org/0000-0003-3183-0712
mailto:daniel-h@elte.hu
https://orcid.org/0000-0003-0261-0091
mailto:S.J.Thompson@kent.ac.uk
https://orcid.org/0000-0002-2350-301X
https://doi.org/10.14232/actacyb.298977

374 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

developing formal, machine-checked theories for program semantics, equivalence
and program transformation.

Erlang is a dynamically-typed, impure, functional programming language, which
excels at concurrency. Core Erlang [6] is a standard subset of Erlang that contains
all the essential elements of Erlang, so that a semantics of Core Erlang can be
extended to a semantics for the full language in a straightforward way. In earlier
work we defined and implemented formal semantics for the sequential parts of
Erlang and Core Erlang, including a reduction semantics for a subset of Erlang
using the K framework [20], and a natural semantics for a subset of Core Erlang,
implemented in Coq [2, 3]. We have also implemented a functional big-step [28]
semantics for this subset of Core Erlang, and shown [8] that this semantics is
equivalent to the natural semantics. In turn, the semantics was validated [4] against
the reference implementation of Erlang, namely the Erlang/OTP compiler [11].

Having these semantics defined, we focused on proving the equivalence of pro-
grams. On the one hand, we are interested in using the semantics to prove partic-
ular pairs of programs equivalent, and on the other, the correctness of many local
refactoring steps can be reduced to the equivalence of simple expressions. When
developing precise, standard definitions of equivalence, we decided to bring our
results to smaller-step semantics and developed a frame stack semantics and equiv-
alence definitions [32] built on that for sequential Core Erlang [19]. The frame stack
style for semantics is beneficial for two reasons: it is well-suited to express various
standard equivalence definitions [29], and furthermore, the semantics of concurrent
expressions can be defined more easily in small-step approaches [25].

Our formalisations of (Core) Erlang are not the first ones. There are a number
of other semantics for both sequential and concurrent subsets of (Core) Erlang on
which our work has been based. The novelty of our work presented here lies in the
fact that it remains more faithful to the language specification [6] and the reference
manual [12] than the others; for instance, unlike other works, we formalised exit
signals and the signal ordering guarantee closely following the specification. We
give a more detailed comparison and an overview of the related research in Sec-
tion 6. Also worth pointing out is that our formal development is accompanied by
a machine-checked implementation [9].

We continue our formalisation efforts and in this paper we add concurrency to
our frame stack semantics for Core Erlang. In particular, we create the definition
in a modular way: the sequential and process-local parts of the semantics can be
replaced by a more complete formalised part of Core Erlang or Erlang (or indeed
another programming language) without the need to rewrite the whole semantics.
The main contributions of this paper are the following:

• A modular, frame stack semantics for a concurrent subset of Core Erlang;

• Proofs about the properties of the concurrent semantics;

• Results on Core Erlang program equivalence verification using bisimulation.

The rest of the paper is structured as follows. In Section 2 we introduce (Core)
Erlang and our previous work informally, and define the syntax of the formalised

A Formalisation of Core Erlang, a Concurrent Actor Language 375

sublanguage. In Section 3 we describe a modular, dynamic semantics of Core
Erlang, focusing on the concurrent sublanguage, then in Section 4 we show the
evaluation of simple concurrent programs and prove properties of the semantics.
Section 5 defines the concepts of program equivalence and the corresponding results,
and then we discuss related work in Section 6. Finally, Section 7 discusses future
work and concludes.

2 Background

As mentioned before, Erlang is a dynamically-typed, impure functional program-
ming language. The biggest strength of Erlang is that it really excels at concurrent
computation, based on the actor model [1]. For this reason, Erlang was initially
used in telecommunication and banking systems, but it now plays a role in high-
availability, scalable web-based systems.

2.1 The Erlang Model of Concurrency

Erlang implements and extends the actor model [1]. An Erlang system contains
lightweight processes (actors) that can spawn other processes to execute a particular
task. Each process executes in its own space, and so they do not share memory.
Processes can only communicate by asynchronous message passing. Each process
has a message queue (mailbox), where incoming messages are stored in the order
of their arrival. A process can select which messages to handle from its mailbox:
messages do not need to be handled in the order in which they are received.

Besides messages, processes can also send and receive other signals [13], such
as link, unlink and exit. These additional signals can trigger potential changes in
the state of the process immediately upon their arrival without being placed into
the mailbox. The link and unlink signals create and remove, respectively, a bi-
directional link between two processes, which represents a mutual dependency, and
affects the handling of exit signals. In general, exit signals are used to indicate
and initiate termination; they include a reason (describing why they were sent),
and a flag indicating whether they were sent through a link (we call this value the
link flag of the exit signal). If one of a pair of linked processes terminates, it will
send an exit signal to the other process via the link. Processes can terminate for
a number of reasons: having finished evaluation, receiving a particular exit signal,
or terminating abnormally (e.g. with an exception).

Processes have a flag called ’trap_exit’ which, when set, causes exit signals
to be converted into messages (except in very particular circumstances), i.e. the
process traps exits. Based on this flag, the reason of the exit signal, and whether
the exit signal was sent through a link, there are three different outcomes (see [13]
and Section 3.3): the receiver process 1) terminates, 2) drops the exit signal, or 3)
converts the exit signal to a message and adds it at the end of its mailbox.

In the next section, we present the syntax of the language under formalisation,
which is a sublanguage of Core Erlang. Note that Core Erlang is not merely a stan-

376 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

dard subset of Erlang, it is also used in the compilation process as an intermediate
step, and numerous programming languages based on the BEAM platform can be
compiled to Core Erlang [16]. Furthermore, as for concurrency, the two languages
implement essentially the same model. For more details, we refer to the Erlang
Programming book [7] and the reference manual [12].

2.2 Language Syntax
In this section we discuss and extend the formal syntax of the sequential sublan-
guage of Core Erlang as presented in our previous work [19]. For better readability,
we use a syntax definition that abstracts over the concrete syntax of the language;
however, any expressions written in this syntax can be simply transformed to Core
Erlang.

Definition 1 (Language syntax).

v ∈ Val ::= i | a | ι | [] | [v1|v2] | fun f/k(x1, . . . , xk)→ e

p ∈ Pat ::= i | a | ι | [] | [p1|p2] | x
e ∈ Exp ::= v | x | f/k | apply e(e1, . . . , ek) | case e of p then e1 else e2

| let x = e1 in e2 | [e1|e2] | letrec f/k(x1, . . . , xk)→ e0 in e1

| call e(e1, . . . , ek) | receive p1 → e1; . . . pk → ek end

We use i, k, n to range over integers, a, f over atoms, x over variables, and ι
over process identifiers. f/k denotes a function identifier, where f is the function
name, and k is its arity. The primitive values of the language are integers (denoted
by numbers), atoms (strings of characters, enclosed in single quotation marks), and
process identifiers (for simplicity, also denoted by numbers). Besides these, lists
and functions are also values, and patterns are built from variables, integers, atoms
and process identifiers, and formed into composite patterns as lists1.

Note that process identifiers are not patterns in Core Erlang, but with process
identifiers as patterns, we can distinguish them from other values of the language;
in Erlang, the is_pid function can be used instead. This distinction is needed to
maintain the proof of coincidence of sequential equivalence definitions described
in [19] (namely, the coincidence of behavioural and contextual equivalence).

For simplicity of formalisation, functions are always named to enable explicit
recursive calls, but in this paper we omit function names for readability when
there are no recursive calls in the body expression. For lists, we use the standard
notations of Erlang, that is a list [e1|[e2|[. . . |[en|[]]] . . .]] will be denoted by
[e1,e2, . . . ,en]. Note that we also include Erlang’s improper lists (such as [1|2]),
but these do not require specific care in the semantics rules.

Expressions of the sequential sublanguage are values, variables, function iden-
tifiers, binding expressions (both let and letrec), function applications (apply),
pattern matching (case) expressions2.

1Tuples are not included in this language, but would be handled similarly to parameter lists.
2This expression is a simplified version of Core Erlang’s case, restricting it to only two branches.

A Formalisation of Core Erlang, a Concurrent Actor Language 377

We extend the syntax (as in [19]) with two language elements in this work, the
first one is BIF (built-in function) call (denoted by call e(e1, . . . , ek)), the second is
the receive expression. BIFs are used to implement both sequential (e.g. addition
of integers) and concurrent features of the language.

In particular, the concurrency model introduced in the previous subsection is
implemented as follows:

• the ’!’ BIF is used to send messages;

• a receive expression is used to select a message from the process mailbox by
means of pattern matching;

• processes are created with the ’spawn’ BIF (taking a function and its pa-
rameters as arguments for the new process to evaluate);

• link, unlink and exit signals can be sent with the identically named BIFs;

• the ’process_flag’ BIF is used to set the ’trap_exit’ flag.

The syntax we presented here is implemented in Coq using the nameless variable
representation [10]. This way, we reuse existing approaches to define capture-
avoiding, parallel substitutions [30]. Nonetheless, we use named variables in this
paper for readability. Substitutions are denoted by e[x1 7→ v1, . . . , xk 7→ vk], which
results in replacing x1, . . . , xk variables simultaneously with v1, . . . , vk values in the
expression e. We omit further details about substitutions and static semantics since
they are not in the scope of this paper. For further details we refer to our previous
work [19] and to the formalisation [9]. Next, we show an example expression in the
syntax presented above:

Example 1 (A simple map function in Core Erlang). The following snippet shows
a simple sequential Core Erlang function that transforms the elements of a list by
applying the function F to each member. Since it is a rather simple definition, we
present it in concrete syntax for better readability. To evaluate the function, it
suffices to substitute the body of the letrec (denoted by ...) with an application
of ’mm’/2.

letrec ’mm’/2 =
fun(F, E) ->

case E of [H|T]
then [apply F(H) | apply ’mm’/2(F, T)]
else []

end
in ...

4

The syntax of the sequential sublanguage is minimal, but representative.

378 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

3 Dynamic Semantics
In this section we explain the dynamic semantics of the formalised Core Erlang
subset. We present a three-layered, modular semantics for the language such that
the sequential parts of the semantics can be replaced by a more complete formalised
part of Core Erlang, Erlang, or another programming language entirely.

Table 1: Layers of the semantics

Layer name Notation Description

Inter-process semantics (Section 3.4) ι:a−−→ System-level reductions

Process-local semantics (Section 3.3) a−→ Process-level reductions

Sequential semantics (Section 3.1) −→ Computational reductions

3.1 Sequential Semantics
First, we briefly present the sequential semantics [19] on which we base the concur-
rent formalisation. We highlight that the specification of Core Erlang [6] does not
define the evaluation order of subexpressions, but the compiler employs a leftmost-
innermost strategy [26]: during the standard translation of Erlang, the evaluation
order is enforced by nested let expressions in Core Erlang. Furthermore, lists in
Core Erlang are evaluated from the right3. The compiler’s evaluation strategy is
reflected in our definition.

The semantics has been formally defined as a frame stack semantics [29]. This
definition style resembles reduction semantics [14], but the reduction context is
deconstructed into a stack of evaluation frames with holes denoted by �. The
frame stack can be regarded as the continuation of the computation.

Definition 2 (Syntax of frames, frame stacks).

F ∈ Frame ::= call �(e1, . . . , ek) | call v(�, . . . , ek) | · · · | call v(v1, . . . ,�)

| apply �(e1, . . . , ek) | apply v(�, . . . , ek) | · · · | apply v(v1, . . . ,�)

| let x = � in e2 | case � of p then e2 else e3

| [e1|�] | [�|v2]
K ∈ FrameStack ::= Id | F :: K

For the stacks, we use the following notations: Id denotes the empty stack and
F :: K denotes adding frame F to the top of stack K. Next, we introduce two
metatheoretical functions for pattern matching:

3The reference implementation generates a bytecode sequence that evaluates the list tail before
evaluating the list head.

A Formalisation of Core Erlang, a Concurrent Actor Language 379

〈K, let x = e1 in e2〉 −→ 〈let x = � in e2 :: K, e1〉
〈K, [e1|e2]〉 −→ 〈[e1|�] :: K, e2〉
〈K, apply e(e1, . . . , ek)〉 −→ 〈apply �(e1, . . . , ek) :: K, e〉
〈K, call e(e1, . . . , ek)〉 −→ 〈call �(e1, . . . , ek) :: K, e〉
〈K, letrec f/k(x1, . . . , xk)→ e0 in e〉 −→
〈K, e[f/k 7→ fun f/k(x1, . . . , xk)→ e0]〉

〈K, case e1 of p then e2 else e3〉 −→ 〈case � of p then e2 else e3 :: K, e1〉

〈apply �(e1, . . . , ek) :: K, v〉 −→ 〈apply v(�, . . . , ek) :: K, e1〉
〈call �(e1, . . . , ek) :: K, v〉 −→ 〈call v(�, . . . , ek) :: K, e1〉
〈apply v(v1, . . . , vi−1,�, ei+1, . . . , ek) :: K, vi〉 −→
〈apply v(v1, . . . , vi−1, vi,�, ei+2, . . . , ek) :: K, ei+1〉 (if i < k)

〈call v(v1, . . . , vi−1,�, ei+1, . . . , ek) :: K, vi〉 −→
〈v(v1, . . . , vi−1, vi,�, ei+2, . . . , ek) :: K, ei+1〉 (if i < k)

〈[e1|�] :: K, v2〉 −→ 〈[�|v2] :: K, e1〉

〈apply �() :: K, fun f/0()→ e〉 −→ 〈K, e[f/0 7→ fun f/0()→ e]〉
〈apply (fun f/k(x1, . . . , xk)→ e)(v1, . . . ,�) :: K, vk〉 −→
〈K, e[f/k 7→ fun f/k(x1, . . . , xk)→ e, x1 7→ v1, . . . , xk 7→ vk]〉

〈call ’+’(i1,�) :: K, i2〉 −→ 〈K, i1 + i2〉
〈let x = � in e2 :: K, v〉 −→ 〈K, e2[x 7→ v]〉
〈[�|v2] :: K, v1〉 −→ 〈K, [v1|v2]〉
〈case � of p then e2 else e3 :: K, v〉 −→ 〈K, e2[match(p, v)]〉 (if is_match(p, v))

〈case � of p then e2 else e3 :: K, v〉 −→ 〈K, e3〉 (if ¬is_match(p, v))

Figure 1: Sequential semantics of Core Erlang

• is_match(p, v): determines whether the value v matches the pattern p: that
is they have been built up with the same constructs of Core Erlang up to
pattern variables.

• match(p, v): if the value v matches the pattern p, this function returns a
substitution which contains the result of the pattern matching in form of a
mapping from pattern variables to values.

380 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

We present the sequential semantics rules in Section 1. We use 〈K, e〉 −→
〈K ′, e′〉 to denote one reduction step between configurations consisting of a frame
stack and an expression to be evaluated. Recall that v, vi are used for values, i, ij
for integer values, and e, ek for (unevaluated) expressions.

The biggest advantage of this semantics definition is that there are no premises
in the reduction rules about the reduction of subexpressions since they have been
put into the frame stack. Therefore the propagation of concurrent actions to this
level is not necessary (i.e. there are no labels on the reduction rules). On the other
hand, its disadvantage is that the complex syntax of frames is needed to be defined
separately from the syntax of the language.

The reduction rules can be categorised into three groups:

• Rules that extract the first redex from language constructs, and put the re-
mainder with a hole into the frame stack.

• Rules that modify the top frame of the stack by putting the calculated value
into the hole, and obtaining the next reducible expression from the same
frame.

• Rules that remove the top element of the frame stack, which also marks that
the subexpression has been completely reduced.

The evaluation of any language element (except letrec) includes using exactly
one rule once from the first and third categories. We note that this would change
if exceptions and exception handler expressions were present in the sequential lan-
guage. The connection between exceptions and signals is that when an exception
terminates a process, it will emit an exit signal with the details of the exception.
The presence of exceptions does not affect the modularity of the definition, but it
would require consistent modifications in multiple layers.

Example 2 (Sequential evaluation of Section 1). We use −→∗ to denote the reflex-
ive, transitive closure of the relation −→. For simplicity, we denote the successor
function fun(X)→ call ’+’/2(X, 1) with f in the following example. We also use
mm to denote the function bound inside the letrec expression in Section 1.

The first step is to evaluate the head of the application mm to itself (since it
is a function). Next, the parameter function f is reduced to itself. Thereafter,
the parameter list is reduced ([0,1,2]) by deconstructing it starting from the
back, pushing the head elements of the sublists into the frame stack. Actually, the
semantics just checks in this case that all of these elements are values, and then the
list is reconstructed. These actions transform the type of the parameter list from
[e1|e2] to [v1|v2], this is the reason why they are necessary, although, there are

A Formalisation of Core Erlang, a Concurrent Actor Language 381

two seemingly identical configurations in the reduction sequence.

〈Id, letrec ’mm’/2 = mm in apply ’mm’/2(f, [0,1,2])〉 −→
〈Id, apply mm(f, [0,1,2])〉 −→
〈apply mm(�, [0,1,2]) :: Id, f〉 −→
〈apply mm(f,�) :: Id, [0,1,2]〉 −→∗

〈[2|�] :: [1|�] :: [0|�] :: apply mm(f,�) :: Id, []〉 −→∗

〈apply mm(f,�) :: Id, [0,1,2]〉

Thereafter, the function mm is applied by substituting the previous list into its
body expression. The pattern in the case expression matches the parameter list,
thus the first clause will be evaluated.

〈apply mm(f,�) :: Id, [0,1,2]〉 −→
〈Id, case [0,1,2] of

[H|T] then [apply f(H)|apply mm(f, T)] else []〉 −→
〈Id, [apply f(0)|apply mm(f, [1,2])]〉

Next, we continue the evaluation with the tail of the list (since lists are evalu-
ated backwards). Again we evaluate the application of mm and reduce the case
expression, etc. The recursion stops when the list has been consumed. The last
sublist, [] will not match the pattern of the case expression, thus the application of
mm will leave [] unchanged while being removed from the stack. These reduction
steps built up a sequence of applications inside the stack.

〈Id, [apply f(0)|apply mm(f, [1,2])]〉 −→∗

〈apply mm(f,�) :: [apply f(0)|�] :: Id, [1,2]〉 −→∗

〈apply mm(f,�) :: [apply f(1)|�] :: [apply f(0)|�] :: Id, [2]〉 −→∗

〈apply mm(f,�) :: [apply f(2)|�] :: [apply f(1)|�] ::

[apply f(0)|�] :: Id, []〉 −→∗

〈[apply f(2)|�] :: [apply f(1)|�] :: [apply f(0)|�] :: Id, []〉

Thereafter, the function applications can be evaluated for the elements of the
list. First, the top element of the frame is extracted while [] is placed back. The
application of f increases 2 to 3. Combining the top element of the frame ([�|[]])
and 3, we obtain the list value [3].

〈[apply f(2)|�] :: [apply f(1)|�] :: [apply f(0)|�] :: Id, []〉 −→
〈[�|[]] :: [apply f(1)|�] :: [apply f(0)|�] :: Id, apply f(2)〉 −→∗

〈[�|[]] :: [apply f(1)|�] :: [apply f(0)|�] :: Id, 3〉 −→
〈[apply f(1)|�] :: [apply f(0)|�] :: Id, [3]〉

382 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

For the other two elements, we omit the previous steps and just show how the
list inside the frame stack is reconstructed.

〈[apply f(1)|�] :: [apply f(0)|�] :: Id, [3]〉 −→∗

〈[apply f(0)|�] :: Id, [2,3]〉 −→∗ 〈Id, [1,2,3]〉

4

In the next section, we show how we built the concurrent semantics on top of
the frame stack relation.

3.2 Processes, Signals and Actions

In this section we formalise the notions of processes, signals and actions, on which
we build in the next two sections where we describe the concurrent semantics of
Core Erlang, first the process-local semantics and then the inter-process semantics.
In the remainder of this section we also establish some metatheoretical notation
that we use in presenting the semantics.

Definition 3 (Core Erlang processes). A process (p ∈ Process) is either dead or
alive.

• A live process is a quintuple (K, e, q, pl,flag), where K denotes a frame stack,
e is an expression, q is the mailbox (represented as a list of values). pl is the
set of linked processes (a list of process identifiers), and flag is the status of
the ’trap_exit’ flag.

• A terminated (or dead) process is a list of linked process identifiers.

As described earlier, Erlang and Core Erlang implement the actor model [1] for
asynchronous communication between processes by message passing. Besides mes-
sages, there are other signals that can be sent between the processes (we formalise
exit, link, and unlink signals beside messages) which potentially change the state
of the process upon arrival without being put into the mailbox.

Actions represent the effects that characterise concurrency: message send and
arrival in a mailbox, processing a mailbox with receive, process creation, and so on.
An action will have an effect on individual processes (in the process-local semantics)
and also between processes in the system level, inter-process semantics.

We define the following signals and actions of the semantics.

Definition 4 (Signals and Actions).

s ∈ Signal ::= msg(v) | exit(v, b) | link | unlink
a ∈ Action ::= send(ι1, ι2, s) | rec(v) | self(ι) | arr(ι1, ι2, s) | spawn(ι, e1, e2)

| τ | ⇓ | flag

A Formalisation of Core Erlang, a Concurrent Actor Language 383

Signals can be messages (parametrised by a value), exits (parametrised by a
reason value and a flag whether the exit was sent through a link), links, and unlinks
(which do not have parameters). The source and destination process identifiers are
handled by actions, thus they are not included in the signals. We explain the syntax
of actions as follows:

• Signal sending (send) and signal arrival (arr) actions carry a signal as a pa-
rameter, as well as the source and target process identifiers which are propa-
gated from the inter-process semantics.

• rec actions have as parameter the message that is to be removed from the
mailbox. There is no need to include process identifiers since these actions
denote a process-local step and the removable message is already present in
the mailbox of the process.

• self actions contain the identifier of the executing process as a parameter,
which was obtained from the inter-process semantics.

• spawn actions include the new process identifier (propagated from the inter-
process semantics), a function expression, and its actual parameters (as a
Core Erlang list). The spawned process will execute this function with the
given parameters.

• A sequential (τ) action denotes one reduction step with the sequential seman-
tics.

• Termination (⇓) actions denote either normal termination or the execution of
the single-parameter ’exit’ BIF.

• flag actions denote the execution of the ’process_flag’ BIF (which does
not necessarily change the state of the ’trap_exit’ flag).

Actions are used as the labels of the one-step evaluation relation. Next, we
define the following metatheoretical functions and notations for the next sections:

• tt denotes the metatheoretical true, while ff denotes false.

• x :: xs denotes a list with x as the first element and xs as the tail.

• [] denotes the empty list.

• [x1, . . . , xn] = x1 :: (x2 :: (. . . xn :: []) . . .).

• rem1(x, l): creates a list by removing the first occurrence of x from l.

• rem(x, l): creates a list by removing all occurrences of x from l.

• map(fn, l): constructs a list by applying the metatheoretical function fn to
the elements of l.

• l1 ++ l2: constructs a list to represent the concatenation of l1 and l2.

384 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

• convert(b): maps tt to ’true’ and ff to ’false’.

• convert(v): maps ’true’ to Some tt and ’false’ to Some ff, for other inputs,
it returns None.

3.3 Process-Local Semantics
Next, we show the process-local semantics (see Section 2, Section 3, and Section 4),
denoted by p

a−→ p′, which describes the one-step evaluation of actions by indi-
vidual processes. We primarily built this semantics by following the techniques of
Fredlund’s formalisation [15], since it has the widest coverage of language features
among previous semantics. We note that the evaluation of the parameters of BIF
calls call e(e1, . . . , ek) is handled by the sequential semantics (see Section 3.1),
while the final reductions are formalised in the process-local level of BIF calls, with
concrete BIF names, as shown in Section 3 below.

In the following, we make a brief description of the process-local reduction rules.
The process identifiers in the reduction rules are propagated from the inter-process
semantics via actions. First we detail the rule for sequential steps, and the rules
for signal arrival (Figure 2):

• Seq lifts the computational layer to the process-local level. This is the sequen-
tial (τ) reduction rule of the semantics. In this rule, the computational layer
could be replaced by any other frame stack semantics, such as a semantics
for Erlang.

• Msg describes message arrival. Whenever a message arrives, it is appended
to the mailbox of the process.

• ExitDrop describes when should an exit signal be dropped without modify-
ing the state of the process [13, Receiving Exit Signals].

• ExitTerm describes when an exit signal terminates the process [13, Receiv-
ing Exit Signals]. The process becomes a terminated process by pairing the
exit reason with the linked process identifiers. When an exit signal was sent
explicitly, and the reason was ’kill’4, it also has to be converted to ’killed’
for the links (to prevent unnecessary termination of additional processes that
are trapping exits).

• ExitConv describes when an exit signal should be converted to a message
and appended at the end of the mailbox [13, Receiving Exit Signals]. This
action can only occur when the ’trap_exit’ flag of the process is set.

• LinkArr, UnlinkArr rules describe arrival of link and unlink signals. In
the first case, a process identifier is added to the links of the process, while
in the second case, all occurrences of the process identifier are removed from
the links.

4The ’kill’ reason causes unconditional termination almost always. We explain the only
exception in Section 4.1 with Example 4.

A Formalisation of Core Erlang, a Concurrent Actor Language 385

〈K, e〉 → 〈K ′, e′〉

(K, e, q, pl, b) τ−→ (K ′, e′, q, pl, b)
(Seq)

(K, e, q, pl, b)
arr(ι1,ι2,msg(v))−−−−−−−−−−−→ (K, e, q ++ [v], pl, b) (Msg)

(ι1 6= ι2 ∧ b = ff ∧ v = ’normal’) ∨ (ι1 /∈ pl ∧ be = tt ∧ ι1 6= ι2)

(K, e, q, pl, b)
arr(ι1,ι2,exit(v,be))−−−−−−−−−−−−→ (K, e, q, pl, b)

(ExitDrop)

(v = ’kill’ ∧ be = ff ∧ v′ = ’killed’)∨
(b = ff ∧ v 6= ’normal’ ∧ v′ = v ∧ (be = tt→ ι1 ∈ pl))∨

(b = ff ∧ v = ’normal’ = v′ ∧ ι1 = ι2)

(K, e, q, pl, b)
arr(ι1,ι2,exit(v,be))−−−−−−−−−−−−→ map (λι⇒ (ι, v′)) pl

(ExitTerm)

b = tt ∧ ((be = ff ∧ v 6= ’kill’) ∨ (be = tt ∧ ι1 ∈ pl))

(K, e, q, pl, b)
arr(ι1,ι2,exit(v,be))−−−−−−−−−−−−→ (K, e, q ++ [[’EXIT’,ι1,v]], pl, b)

(ExitConv)

(K, e, q, pl, b)
arr(ι1,ι2,link)−−−−−−−−−→ (K, e, q, ι1 :: pl, b) (LinkArr)

(K, e, q, pl, b)
arr(ι1,ι2,unlink)−−−−−−−−−−→ (K, e, q, rem(ι1, pl), b) (UnlinkArr)

Figure 2: Process local semantics (part 1)

Next, we describe the formal rules of signal sending (Figure 3):

• Send describes message sending. If the BIF ’!’ is on the top of the frame
stack with the target process identifier, and the message is evaluated to a
value, a send action is emitted containing the source (which is propagated
from the inter-process semantics in the NSend rule) and target identifiers
and the message value, while the send expression itself is reduced to the
message value.

• Exit describes explicitly sending an exit signal to a process. If the two-
parameter ’exit’ BIF is on the top of the frame stack with the target process

386 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

identifier, and the reason is evaluated to a value, an exit action is emitted with
the source (which is propagated from the inter-process semantics in NSend),
target identifiers, and the exit reason value, while the expression is reduced
to ’true’. Note that when sending an explicit exit signal, the link flag of the
signal is false.

• Link, Unlink rules both reduce the evaluable expression to ’ok’. In the
first case, a link signal is emitted with the source and target identifier, and
the target is appended to the links of the process. In the second case, an
unlink signal is emitted with the source and target identifier, and the target
is removed from the links of the process.

• Dead describes the communication of a terminated process. In this rule, the
first item of the links of the dead process is removed while an exit signal is
emitted to the target with the reason that is specified in this first item. Note
that the link flag of this exit signal is true, because this exit is sent through
a link.

(call ’!’(ι2,�) :: K, v, q, pl, b)
send(ι1,ι2,msg(v))−−−−−−−−−−−−→ (K, v, q, pl, b) (Send)

(call ’exit’(ι2,�) :: K, v, q, pl, b)
send(ι1,ι2,exit(v,ff))−−−−−−−−−−−−−→ (K, ’true’, q, pl, b)

(Exit)

(call ’link’(�) :: K, ι2, q, pl, b)
send(ι1,ι2,link)−−−−−−−−−−→ (K, ’ok’, q, ι2 :: pl, b) (Link)

(call ’unlink’(�) :: K, ι2, q, pl, b)
send(ι1,ι2,unlink)−−−−−−−−−−−→ (K, ’ok’, q, rem(ι2, pl), b)

(Unlink)

(ι2, v) :: pl
send(ι1,ι2,exit(v,tt))−−−−−−−−−−−−−→ pl (Dead)

Figure 3: Process-local semantics (part 2)

Finally, we detail the rest of the process-local rules (Figure 4):

• Self receives the identifier of the process from the inter-process semantics,
and evaluates the ’self’ BIF call to this identifier.

• Spawn describes process creation. The spawned process receives its identifier
from the inter-process semantics, and this identifier will be the result of this

A Formalisation of Core Erlang, a Concurrent Actor Language 387

rule. Note that it is necessary that the first parameter of the ’spawn’ is
a function value, while the second is a correct, object-level parameter list
(which is checked in the inter-process semantics).

• Receive describes message processing. With pattern matching, the first
(oldest) message is selected from the mailbox of the process that matches any
clause of the receive expression (if more patterns are matching to the same
message, the first matching clause is selected). The evaluation continues with
the body expression of the selected clause, substituted by the result (pattern
variable - value) bindings.

• Flag describes when the process flag ’trap_exit’ changes. The result of
this rule is the original value of the flag.

• Term describes normal termination, i.e. there are no more continuations in
the frame stack, and the evaluable expression has already been reduced to a
value. The result is a dead process, which will send exit signals to its links
with the reason ’normal’.

• ExitSelf describes the call of the single-parameter ’exit’ BIF. It imme-

(call �() :: K, ’self’, q, pl, b)
self(ι)−−−−→ (K, ι, q, pl, b) (Self)

f = fun f/k(x1, . . . , xk)→ e

(call ’spawn’(f,�) :: K, vs, q, pl, b)
spawn(ι,f,vs)−−−−−−−−→ (K, ι, q, pl, b)

(Spawn)

l = match(pi, v)

is_match(pi, v)

q = [v1, . . . , vn, v, . . .]

∀j < i : ¬is_match(pj , v)

(∀m, j : 1 ≤ m ≤ k ∧ 1 ≤ j ≤ n =⇒ ¬is_match(pm, vj))

(K, receive p1 → e1; . . . ; pk → ek end, q, pl, b)
rec(v)−−−−→ (K, ei[l], rem1(v, q), pl, b)

(Receive)

convert(v) = Some v′ v′′ = convert(b)

(call ’process_flag’(’trap_exit’,�) :: K, v, q, pl, b) flag−−→ (K, v′′, q, pl, v′)
(Flag)

(Id, v, q, pl, b) ⇓−→ map (λι⇒ (ι, ’normal’)) pl (Term)

(call ’exit’() :: K, v, q, pl, b) ⇓−→ map (λι⇒ (ι, v)) pl (ExitSelf)

Figure 4: Process-local semantics (part 3)

388 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

diately terminates the process, and exit signals will be sent to the linked
processes with the parameter reason value. We note that when introducing
exceptions in the future, this version of exit signals will be capable of being
caught by exception handlers.

3.4 Inter-Process Semantics
In this section we discuss the inter-process reduction rules for the semantics. The
advantage of this formalisation is that the dynamic semantics of the system is
described by only 5 rules (by combining the rules from related work [15, 18, 23]
with the same premises but different actions), which resulted in shorter proofs.
First, we introduce the necessary concepts.

Definition 5 (Ether). An ether (denoted by ∆) is a mapping of source and target
identifier pairs to lists of signals. We use ∅ to denote the empty ether, which maps
everything to the empty list5.

We use an ether to express non-atomic signal passing (unlike a number of related
works [15, 18]); that is, the signals sent from one process do not arrive immediately,
but they are transferred via the ether. This is also described in the reference
manual [13]: “The amount of time that passes between the time a signal is sent and
the arrival of the signal at the destination is unspecified but positive”.

In addition, the ether is used to implement the signal ordering guarantee [13],
that is “if an entity sends multiple signals to the same destination entity, the order
is preserved”. If a source sends multiple signals to the same target, these signals
will be appended to the end of the list associated with the source and target in
the ether. However, if multiple processes send signals to the same destination, the
arrival order of these signals is not specified, thus they are included in separate lists
in the ether based on their source.

Definition 6 (Node). A node is a pair ((∆,Π) ∈ Node) of an ether and a process
pool. The process pool (denoted by Π) is a mapping that associates process identifiers
with processes. We denote nodes with Σ and the empty process pool with ∅.

On top of these concepts, we introduce notations and metatheoretical functions:

• ι : p ‖ Π: Appends process p associated with the identifier ι to the process
pool Π. In formalising this we used function update, so that the order of iden-
tifiers is irrelevant. Because of this, we are justified in abusing the notation
somewhat when we write the rules using pattern matching: without loss of
generality, we assume that the item of interest appears in the head position
of the collection of processes given.

• remFirst(∆, ι, ι′): Removes the first element in the ether ∆ from the list
associated with ι source and ι′ destination, and returns a pair of this removed

5In the implementation, we formalised the ether as a function which maps (source) process
identifiers to a function mapping (target) process identifiers to a list of signals.

A Formalisation of Core Erlang, a Concurrent Actor Language 389

signal and the result ether inside Some. If the associated list was empty, it
returns None.

• ∆[(ι, ι′)
+7→ s]: Creates an ether by appending the signal s to the end of the

list associated with ι source and ι′ destination in the ether ∆ (while keeping
other parts of ∆ unchanged).

• Π \ ι: Creates a process pool by removing the process associated with ι from
process pool Π. This operation was also formalised by function updates.

• ι /∈ Π: Checks whether there is no process associated with ι in Π.

• convert_list(vs): Creates a metatheoretical list of expressions based on an
object-level Core Erlang list (constructed with [_|_] and []); if successful
the result is wrapped with a Some constructor; if not, None is returned.

Next, we define the semantics in Figure 5. This one-step reduction is denoted
by Σ

ι:a−−→ Σ′ that means the node Σ is reduced to Σ′ by taking a reduction step
determined by the action a with the process identified by ι. The rules always include
a “first” process (ι : p ‖ Π), nevertheless, any process from the pool can take this
place, since any process in a ‖ chain can be the outermost one, as mentioned before.
We give a brief, informal description of the inter-process rules now:

• NSend describes signal sending. While a process with the identifier ι is
reduced by emitting a send action, the contents of this action (target, source,
and signal) are placed into the ether.

• NArrive describes how an element is (nondeterministically) removed from
the ether. Any signal can be removed from the lists in the ether, if the signal
is the first element of that list, and there is a live process with the destination
identifier in the process pool.

• NTerm describes how a process identifier is freed. When a dead process has
notified all of its links, its identifier is removed from the process pool.

• NSpawn describes the creation of a new process. The new process is as-
signed a non-used identifier, and it starts evaluating the function application
described in the spawn action of the rule (note that conversion from object-
level to meta-level lists is needed). The initial configuration of the new process
is the empty frame stack (continuation), the given function application as the
evaluable expression, empty mailbox, it has no links, and it does not trap exit
signals.

• NOther describes the reduction in case of any other action, that is, this rule
propagates these actions to the process-local level.

We note that in every rule of this semantics, exactly one process is reduced.
Furthermore, all reduction rules (except NTerm) actually propagate the action to
the process-local semantics, while modifying the ether or the process pool. We also
introduce the following notations on top of the inter-process semantics:

390 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

p
send(ι1,ι2,s)−−−−−−−−→ p′

(∆, ι1 : p ‖ Π)
ι1:send(ι1,ι2,s)−−−−−−−−−−→ (∆[(ι1, ι2)

+7→ s], ι1 : p′ ‖ Π)

(NSend)

p
arr(ι1,ι2,s)−−−−−−−→ p′ remFirst(∆, ι1, ι2) = Some (s,∆′)

(∆, ι1 : p ‖ Π)
ι1:arr(ι1,ι2,s)−−−−−−−−−→ (∆′, ι1 : p′ ‖ Π)

(NArrive)

(∆, ι : [] ‖ Π)
ι:⇓−−→ (∆,Π \ ι) (NTerm)

ι2 /∈ (ι1 : p ‖ Π)

p
spawn(ι2,v,vs)−−−−−−−−−→ p′

v = fun f/k(x1, . . . , xk)→ e

convert_list(vs) = Some [v1, . . . , vk]

(∆, ι1 : p ‖ Π)
ι1:spawn(ι2,v,vs)−−−−−−−−−−−→ (∆, ι2 : ([], apply v(v1, . . . , vk), [], [],ff) ‖ ι1 : p′ ‖ Π)

(NSpawn)

p
a−→ p′ a ∈ {self(ι),⇓, τ,flag} ∪ {rec(v) | v ∈ V alue}

(∆, ι : p ‖ Π)
ι:a−−→ (∆, ι : p′ ‖ Π)

(NOther)

Figure 5: Formal semantics of communication between processes

• Σ
l−→ ∗Σ′ denotes a special reflexive, transitive closure of the relation ι:a−−→,

which traces the actions in the list l in forms of (ι, a) pairs. We use Σ
...−→∗Σ′

when the trace is not relevant. For example, if a node Σ can be reduced to
Σ′ in the three following steps: 1) the process identified by ι sends a message
v to the process identified by ι′, 2) this message arrives to the target, 3) the
message is received by the target, we use

Σ
[(ι,send(ι,ι′,msg(v))),(ι′,arr(ι,ι′,msg(v))),(ι′,rec(v))]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∗Σ′.

• Σ −→∗ Σ denotes a reduction sequence from node Σ to node Σ′ that contains
only sequential (τ) reduction steps.

Discussion. There are other approaches (e.g. [15]) which define fewer actions
for the semantics by defining input, output, spawn, and silent actions. In these
approaches, rec(v),flag,⇓, τ could all be handled as silent actions, since they affect
the state of a single process and do not communicate. Still, we formalised the more
fine-grained version, because this allows us to group the rules of the semantics into

A Formalisation of Core Erlang, a Concurrent Actor Language 391

more categories. By coupling the aforementioned actions, the less detailed approach
can also be simulated. Moreover, we proved theorems (specifically, Theorem 9)
which would not be provable if other actions were also considered to be silent.

4 Semantics Validation

After defining a formal semantics, the next step is to validate it [5]. We use two
approaches: 1) we evaluate simple parallel programs and compare the results to
the results of the Erlang/OTP compiler, and 2) we prove properties of the seman-
tics. We are also investigating ways in which the concurrent semantics can be
executed efficiently, which is a necessary step to enable extensive validation against
the reference implementation.

1

2 3

’fst’

’fst’

’snd’

Figure 6: Actor diagram for Example 3

4.1 Example Program Evaluation

In this section we present some simple program evaluation case studies that demon-
strate how the semantics operates.

Example 3 (Signal ordering). The first example illustrates when the signal or-
dering guarantee cannot be applied. Let us consider three processes (with the
identifiers 1, 2, 3), which evaluate the following expressions.

1. let X = call ’!’(2, ’fst’) in call ’!’(3, ’snd’)

2. receive X -> call ’!’(3, X) end

3. receive X -> X end

Next, we construct a node with the empty ether from these processes, and start
evaluating it. We use Π, to denote the process pool constructed from 2 and 3. For
simplicity, we omit the list of linked processes and the trap flag, since they are not
used during this evaluation. First, we reduce process 1, since the others are all

392 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

blocked by receive expressions. This evaluation puts the two messages into the
ether.

(∅, 1 : (Id, let X = call ’!’(2, ’fst’) in call ’!’(3, ’snd’), []) ‖ Π)
...−→∗

(∅[(1, 2)
+7→ msg(’fst’)][(1, 3)

+7→ msg(’snd’)], 1 : (Id, ’snd’, []) ‖ Π)

(Init)

We denote the result process pool with Π1 without process 3. Next, we can
evaluate process 3, to which the message ’snd’ arrives. Then the receive ex-
pression removes it from the mailbox and processes it. Thus the final value upon
termination in process 3 is ’snd’.

(∅[(1, 2)
+7→ msg(’fst’)][(1, 3)

+7→ msg(’snd’)],

3 : (Id, receive X -> X end, []) ‖ Π1)
3:arr(1,3,msg(’snd’))−−−−−−−−−−−−−→

(∅[(1, 2)
+7→ msg(’fst’)], 3 : (Id, receive X -> X end, [’snd’]) ‖ Π1)

...−→∗

(∅[(1, 2)
+7→ msg(’fst’)], 3 : (Id, ’snd’, []) ‖ Π1)

Note that the last configuration we presented above could still progress, because
process 2 can receive and forward the message ’fst’.

However, this was not the only option to evaluate this simple program. Instead
of evaluating process 3 in the previous reductions, we can progress with process
2 (from the state reached in Init). We denote the process pool containing the
terminated process 1 and process 3 with Π2. First, the message ’fst’ arrives to
process 2 which removes it from the mailbox, and forwards it to process 3.

(∅[(1, 2)
+7→ msg(’fst’)][(1, 3)

+7→ msg(’snd’)],

2 : (Id, receive X -> call ’!’(3, X) end, []) ‖ Π2)
2:arr(1,2,msg(’fst’))−−−−−−−−−−−−−→

(∅[(1, 3)
+7→ msg(’snd’)],

2 : (Id, receive X -> call ’!’(3, X) end, [’fst’]) ‖ Π2)
...−→∗

(∅[(1, 3)
+7→ msg(’snd’)][(2, 3)

+7→ msg(’fst’)], 2 : (Id, ’fst’, []) ‖ Π2)

After processes 1 and 2 are terminated (we denote the pool containing these with
Π3), we evaluate process 3. At this point, either of the messages in the ether could
arrive first at process 3, which will be processed then by the receive expression,

A Formalisation of Core Erlang, a Concurrent Actor Language 393

since their source is different. We present the case when ’fst’ arrives first.

(∅[(1, 3)
+7→ msg(’snd’)][(2, 3)

+7→ msg(’fst’)],

3 : (Id, receive X -> X end, []) ‖ Π3)
3:arr(2,3,msg(’fst’))−−−−−−−−−−−−−→

(∅[(1, 3)
+7→ msg(’snd’)],

3 : (Id, receive X -> X end, [’fst’]) ‖ Π3)
3:arr(1,3,msg(’snd’))−−−−−−−−−−−−−→

(∅, 3 : (Id, receive X -> X end, [’fst’, ’snd’]) ‖ Π3)
...−→∗

(∅[(1, 2)
+7→ msg(’snd’)], 3 : (Id, ’fst’, [’snd’]) ‖ Π3)

However, with this reduction sequence, process 3 terminates with ’fst’. The
signal ordering guarantee was not applicable in this scenario, because the messages
that process 3 received are from different sources. 4
Example 4 (Exit signals). Next, we present an example about sending exit signals,
specifically we show the difference between the one- and two-parameter ’exit’
BIFs. Consider two processes:

1. let X = call ’link’(2) in call ’exit’(1, ’kill’)

2. receive X -> X end

The second process is set to trap exit signals. Once again, we start the evaluation
with the first process. In the first steps, process 1 creates the link between the two
processes:

(∅, 1 : (Id, let X = call ’link’(2) in call ’exit’(1, ’kill’), [], [],ff) ‖
2 : (Id, receive X -> X end, [], [], tt) ‖ ∅) ...−→∗

(∅[(1, 2)
+7→ link], 1 : (Id, call ’exit’(1, ’kill’), [], [2],ff) ‖

2 : (Id, receive X -> X end, [], [], tt) ‖ ∅) 2:arr(1,2,link)−−−−−−−−−→
(∅, 1 : (Id, call ’exit’(1, ’kill’), [], [2],ff) ‖

2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅)
(Link)

Next, the first process terminates itself with the two-parameter ’exit’. This
involves multiple reduction steps, because the signal needs to be put into the ether,
and then retrieved from it. Then the reason will be converted to ’killed’ because
the two-parameter ’exit’ always sets the link flag of the exit signal to ff.

(∅, 1 : (Id, call ’exit’(1, ’kill’), [], [2],ff) ‖
2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅) ...−→∗

(∅[(1, 1)
+7→ exit(’kill’,ff)], 1 : (Id, ’true’, [], [2],ff) ‖

2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅) 1:arr(1,1,exit(’kill’,ff))−−−−−−−−−−−−−−−→
(∅, 1 : [(2, ’killed’)] ‖ 2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅)

394 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

Next, we propagate the exit signal through the link, and it will be converted to
a message because of the trap flag in the execution of process 2.

(∅, 1 : [(2, ’killed’)] ‖ 2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅) ...−→∗

(∅[(1, 2)
+7→ exit(’killed’, tt)],

2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅) 2:arr(1,2,exit(’killed’,tt))−−−−−−−−−−−−−−−−−→
(∅, 2 : (Id, receive X -> X end, [[’EXIT’, 1, ’killed’]], [1], tt) ‖ ∅) ...−→∗

(∅, 2 : (Id, [’EXIT’, 1, ’killed’], [], [1], tt) ‖ ∅

However, if we use the single parameter ’exit’ BIF, the reduction would be
carried out otherwise. We start the evaluation from the analogous state to the
point Link above. It immediately terminates the process without sending signals
into the ether. This also causes the reason ’kill’ not to be converted to ’killed’.
Next, this exit signal will be sent through a link (the link flag of the signal is tt),
which enables the use of ExitConv in process 2.

(∅, 1 : (Id, call ’exit’(’kill’), [], [2],ff) ‖
2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅) ...−→∗

(∅, 1 : [(2, ’kill’)] ‖ 2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅) ...−→∗

(∅[(1, 2)
+7→ exit(’kill’, tt)],

2 : (Id, receive X -> X end, [], [1], tt) ‖ ∅) 2:arr(1,2,exit(’kill’,tt))−−−−−−−−−−−−−−−→
(∅, 2 : (Id, receive X -> X end, [[’EXIT’, 1, ’kill’]], [1], tt) ‖ ∅) ...−→∗

(∅, 2 : (Id, [’EXIT’, 1, ’kill’], [], [1], tt) ‖ ∅

We should note that the ’kill’ reason is normally used to terminate a process
regardless of its current state. Although, in this case (when the signal is sent
through a link, i.e. its link flag is set) ’kill’ does not terminate the process in
question. 4

4.2 Properties of the Semantics
After formally evaluating simple programs, we proved some fundamental proper-
ties of the layers of the semantics, and formalised the proofs in the Coq theorem
prover [9]. In this section we highlight the most important properties, and provide
sketches of the proofs; for more insights, we refer to the formalisation. First, we
show the determinism of the sequential and process-local levels.

Theorem 1 (Sequential and process-local evaluation is deterministic). For all
frame stacks K,K ′,K ′′ and expressions e, e′, e′′, if 〈K, e〉 −→ 〈K ′, e′〉 and 〈K, e〉 −→
〈K ′′, e′′〉, then K ′ = K ′′ and e′ = e′′.

Similarly, for all processes p, p′, p′′, and actions a, if p a−→ p′ and p a−→ p′′, then
p′ = p′′.

A Formalisation of Core Erlang, a Concurrent Actor Language 395

Proof. To prove determinism (in both semantics), we carried out case distinction
based on the two reduction premises. If both use the same reduction rule, their
result is equal, otherwise a contradiction is found between the premises of the
different rules.

The determinism of these layers of the semantics is a natural property; one
process should handle an incoming action in the same way in the same inner state.
However, we found that the conditions in the reference manual [13, Receiving Exit
Signals] are ambiguous in the way that they describe how to handle exit signals.
We checked with the reference implementation what the correct conditions are, and
encoded them in the premises for reduction rules about exit signals: ExitConv,
ExitDrop, and ExitTerm.

In the previous sections, we emphasised why the concept of the ether is necessary
to ensure the signal ordering guarantee. We formally verified this property.

Theorem 2 (Signal ordering guarantee). For all nodes Σ1,Σ2,Σ3, process identi-

fiers ι, ι′, and unique signals6 s1 6= s2, if Σ1
ι:send(ι,ι′,s1)−−−−−−−−−→ Σ2 and Σ2

ι:send(ι,ι′,s2)−−−−−−−−−→
Σ3, then for all nodes Σ4 and action traces l which satisfy Σ3

l−→ ∗Σ4 and also

(ι′, arr(ι, ι′, s1)) /∈ l there is no node Σ5 at which s2 can arrive: Σ4
ι′:arr(ι,ι′,s2)−−−−−−−−→ Σ5.

Proof. We proved this theorem by induction on the length of the reduction chain
Σ3

l−→ ∗Σ4. In the base case, the first removable element in the ether is either s1
or another signal which is different from s2. In the inductive case, we suppose that
there is a reduction chain of length k which does not remove s1 from the ether.
Then there is the (k + 1)th reduction step, which also cannot remove s1 from the
ether, based on the hypotheses. Thus once again, the first removable element from
the ether is either s1 or another signal which is different from s2.

This theorem informally states the following: if two signals have been sent from
the same sender to the same target, after taking any number of reduction steps,
which do not contain the arrival of the first signal, it is not possible that the second
signal will arrive to the target.

We also proved a number of confluence properties, which are the basis of prov-
ing bisimulation-based program equivalence. Our goal is to prove that sequential
evaluation (Σ −→∗ Σ′) produces equivalent nodes. The first theorem expresses
that a sequential reduction can be carried out after another reduction step if this
step does not terminate the process. Otherwise, the sequential reduction cannot
be executed after the other action. This property holds for both process-local and
inter-process semantics.

Theorem 3 (Confluence of sequential reductions in the same process). For all
processes p1, p2, p′2, and action a, supposing that p1

τ−→ p2 and p1
a−→ p′2, then there

exists a process p3 that satisfies p2
a−→ p3 and (p′2

τ−→ p3 ∨ p′2 = p3).

6They are different from any other signal in the starting configuration.

396 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

Similarly, for all nodes Σ1,Σ2,Σ
′
2, process identifiers ι, and actions a, supposing

that Σ1
ι:τ−−→ Σ2 and Σ1

ι:a−−→ Σ′2, then there exists a node Σ3 that satisfies Σ2
ι:a−−→ Σ3

and (Σ′2
ι:τ−−→ Σ3 ∨ Σ′2 = Σ3).

Proof. The proof for both semantics relies on case distinction in the derivation of
Σ1

ι:a−−→ Σ′2. There are actually two separate cases:

• If the action a does not terminate the process (still, it potentially modifies
either the mailbox, or the list of linked processes, or the ’trap_exit’ flag),
then the sequential reduction step can be taken after this action too, since
these steps are not influenced by the mentioned attributes of the process.

• If the action a terminates the process, then p′2 and p3 denote the same termi-
nated process, since sequential steps do not modify the list of linked processes,
which is the only attribute of a live process that is kept when it terminates.

This theorem is used when two reductions for the same process need to be
chained after each other. Actually, this theorem is a stepping stone towards proving
Theorem 5.

The next theorem concerns different processes: possible reduction steps can be
carried out after each other if they are not both spawn actions.

Theorem 4 (Action ordering). For all nodes Σ1,Σ2,Σ
′
2, process identifiers ι 6= ι′,

actions a, a′, which are not both spawn actions, if Σ1
ι:a−−→ Σ2 and Σ1

ι′:a′−−−→ Σ′2 then

there exists a node Σ3, which can be reached from Σ2 with action a′: Σ2
ι′:a′−−−→ Σ3.

Proof. This theorem is proved by case separation on the two reduction premises.
There is no scheduling algorithm formalised in the semantics, thus any process can
be reduced if it is not in a stuck configuration (i.e. if it is waiting for a message
to evaluate a receive expression). We can define any order for the reductions
of different processes (except if both reductions are labelled by spawn actions),
because both of the reductions in the premise can always be carried out. The only
action a in the first reduction that could prevent making the second reduction (with
action a′) is the arrival of an exit signal that terminates the process identified by
ι′, but the premise ι 6= ι′ rules this case out.

The premise that restricts spawn actions is necessary because we cannot assure
that these spawned processes obtain the same process identifiers if their spawn order
is reversed (currently, the semantics assigns fresh process identifiers to spawned
processes based on the list of process identifiers already in use). This theorem is
also a stepping stone towards Theorem 6.

The following theorems contain any-step reduction chains. The first of these
theorem expresses that if there are τ actions and an additional action that can be
executed in a configuration, then either this additional action can be executed at
the final node after executing the chain, or it was τ -reduction inside the chain.

A Formalisation of Core Erlang, a Concurrent Actor Language 397

Theorem 5 (Chaining a reduction to the end of an sequential sequence). For
all nodes Σ1,Σ4,Σ

′
4, process identifier ι, action a, and action traces l, which only

include internal actions paired with any process identifiers, if Σ1
l−→∗Σ4 and Σ1

ι:a−−→
Σ′4, then there are two potential scenarios:

• Either there is a node Σ5 which can be reached by a reduction from Σ4: Σ4
ι:a−−→

Σ5.

• Or a = τ and there are nodes Σ2,Σ3 and action traces l1, l2, which can be used
to split the sequential reduction steps: Σ1

l1−→∗Σ2, Σ2
ι:a−−→ Σ3 and Σ3

l2−→∗Σ4,
moreover l = l1 ++ [(ι, a)] ++ l2.

Proof. We proved this theorem by induction on the reduction chain Σ1
l−→ ∗Σ4.

The base case is solved by the premise Σ1
ι:a−−→ Σ′4 (by choosing Σ5 = Σ′4), since

Σ1
l−→∗Σ4 was a 0-step reduction, thus Σ1 = Σ4. In the inductive case, we did case

distinction whether a = τ and (ι, a) is included in l. If this is not true, we can
make the reduction determined by (ι, a) from the configuration Σ4 based on the
induction hypothesis and Theorem 3. Otherwise (ι, a) = (ι, τ) is included in the
action trace l.

This theorem expresses one of the fundamental properties needed to prove that
−→∗ is a weak bisimulation, (Theorem 9 below). The next theorem is the other
fundamental property required. If there is an action that is executed at the end of
the execution of a sequential reduction chain, and it can be executed in the starting
configuration too, then from the result of the second derivation the result of the
first one can be reached by only sequential steps.

Theorem 6 (Confluence of sequential reductions). For all nodes Σ1,Σ2,Σ
′
2,Σ3,

process identifier ι, and action a, if Σ1 −→∗ Σ2, and a reduction can be done in
the starting and in the final configuration too: Σ1

ι:a−−→ Σ′2, and Σ2
ι:a−−→ Σ3, then

Σ′2 −→∗ Σ3.

Proof. The proof of this property is also carried out by induction on the reduction
chain Σ1 −→∗ Σ2. In the base case Σ1 = Σ2 and by Theorem 1, Σ′2 = Σ3, while the
proof of the inductive case is based on Theorem 4 and the induction hypothesis.

What if this potentially non-sequential action was the arrival of an exit signal?
That will potentially terminate a process, which could have taken some internal
steps. We note that with the −→∗ reduction in the conclusion we do not say that
the steps are preserved, thus the result node after the arrival of the exit signal can
take fewer internal steps by leaving the steps for the terminated process out.

5 Program Equivalence
In this section, we investigate program equivalence using bisimulation. Bisimula-
tions are relations between nodes that are preserved by the reduction steps.

398 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

Definition 7 (Bisimulation). A relation R is a bisimulation if it satisfies the fol-
lowing two properties:

• For all nodes Σ1,Σ2,Σ
′
1, process identifiers ι, and actions a, if (Σ1,Σ2) ∈ R

and Σ1
ι:a−−→ Σ′1, then there is a node Σ′2, which is reducible from Σ2 with the

action a: Σ2
ι:a−−→ Σ′2, and (Σ′1,Σ

′
2) ∈ R.

• For all nodes Σ1,Σ2,Σ
′
2, process identifiers ι, and actions a, if (Σ1,Σ2) ∈ R

and Σ2
ι:a−−→ Σ′2, then there is a node Σ′1, which is reducible from Σ1 with the

action a: Σ1
ι:a−−→ Σ′1, and (Σ′1,Σ

′
2) ∈ R.

We can show that equality satisfies the above conditions of being a bisimulation.

Theorem 7. The equality of nodes is a bisimulation.

Proof. This property is just a simple consequence of the definition of bisimulation.

We also defined a relaxed variant: weak bisimulations omit τ actions taken in
the semantics, so only communication actions should preserve the relation.

Definition 8 (Weak bisimulation). A relation R is a weak bisimulation if it satisfies
the following two properties:

• For all nodes Σ1,Σ2,Σ
′
1, process identifiers ι, and actions a 6= τ , if (Σ1,Σ2) ∈

R and Σ1
ι:a−−→ Σ′1, then there are nodes Σ1

2,Σ
2
2,Σ

′
2, which are reducible from

Σ2 in the following way: Σ2 −→∗ Σ1
2, Σ1

2
ι:a−−→ Σ2

2, and Σ2
2 −→∗ Σ′2, and

(Σ′1,Σ
′
2) ∈ R.

• For all nodes Σ1,Σ2,Σ
′
1, process identifiers ι, and actions a 6= τ , if (Σ1,Σ2) ∈

R and Σ2
ι:a−−→ Σ′2, then there are nodes Σ1

1,Σ
2
1,Σ

′
1, which are reducible from

Σ1 in the following way: Σ1 −→∗ Σ1
1, Σ1

1
ι:a−−→ Σ2

1, and Σ2
1 −→∗ Σ′1, and

(Σ′1,Σ
′
2) ∈ R.

Bisimulations satisfy the natural property of being weak bisimulations.

Theorem 8. Bisimulations are weak bisimulations.

Proof. This property is also a simple consequence of the definitions, since we can
choose 0-step reductions for Σ2 −→∗ Σ1

2 and Σ2
2 −→∗ Σ′2 in Definition 8, while the

middle step Σ1
2
ι:a−−→ Σ2

2 is obtained from Definition 7.

We consider two programs (Σ,Σ′) equivalent if there is a relation R that is a
weak bisimulation and (Σ,Σ′) ∈ R. Next, we prove that sequential evaluation is a
weak bisimulation. For this proof we used the chaining properties (Theorem 5 and
Theorem 6) of the semantics.

Theorem 9. −→∗ (between nodes) is a weak bisimulation.

A Formalisation of Core Erlang, a Concurrent Actor Language 399

Proof. To avoid ambiguity, we use Λ to denote the available nodes in the proof,
while we keep Σ for the definitions. To prove that a relation is a weak bisimulation,
two properties need to be proved:

• For the first part of Definition 8 we have Λ1 −→∗ Λ2 and Λ1
ι:a−−→ Λ′1 as

assumptions. We can chain the reduction determined by a to the end of
the sequential reduction sequence by Theorem 5 (Λ2

ι:a−−→ Λ3 for some Λ3).
Actually, the second possible conclusion (i.e. the a = τ) of this theorem can
not occur here, because of the restriction a 6= τ in Definition 8. We need to
prove that Λ2 −→∗ Σ1

2, Σ1
2
ι:a−−→ Σ2

2, Σ2
2 −→∗ Σ′2, and Λ′1 −→∗ Σ′2 for suitable

Σ nodes. We can choose Σ1
2 = Λ2, Σ2

2 = Λ3, and Σ′2 = Λ3, thus the first and
second −→∗ reductions are 0-step reductions, while the single-step reduction
is among the assumptions. The reduction Σ′1 −→∗ Σ′2 remains, which can be
proved by Theorem 6.

• To satisfy the second part of Definition 8 we have Λ1 −→∗ Λ2 and Λ2
ι:a−−→ Λ′2

as assumptions. We need to prove Λ1 −→∗ Σ1
1, Σ1

1
ι:a−−→ Σ2

1, and Σ2
1 −→∗ Σ′1,

and Σ′1 −→∗ Λ′2 for suitable nodes. We choose Σ1
1 = Λ2, Σ2

1 = Λ′2, and
Σ′1 = Λ′2, thus the first two reductions are among the assumptions, while the
third and fourth ones are 0-step reductions.

With this proof, we can state that a node is equivalent to the nodes to which
it reduces by using sequential steps only. For example, we can derive the following
property:

Example 5. For all nodes Π, ethers ∆, frame stacks K, process identifiers ι, mail-
boxes q, list of process identifiers pl, and process flags flag, the following nodes are
equivalent (where mm denotes the function expression inside letrec in Example 1,
and f denotes the successor function from Example 2).

(∆, ι : (K, letrec ’mm’/2 = mm in apply ’mm’/2(f, [0,1,2]), q, pl,flag) ‖ Π)

(∆, ι : (K, [1,2,3], q, pl,flag) ‖ Π)

Proof. We have already shown in Example 2 how the complex letrec expression
can be reduced to a list of values. Using this fact together with Theorem 9 we can
prove this equivalence (note that the sequential steps of the evaluation can be lifted
to the inter-process level with rules Seq and NOther).

There is a natural question, whether any evaluation sequence could be proved
to be a bisimulation. Unfortunately, that is not the case.

Theorem 10. For all l action traces, l−→ is not a weak bisimulation.

Proof. We can prove this theorem by providing a counterexample. Here, we just
give the idea of it: consider the process (with identifier 0) that evaluates let X =

400 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

0 in X. This process terminates in two sequential steps according to the semantics.
By the definition of the weak bisimulation, taking a reduction step determined by
any action (specifically for arr(0, 1, exit(’kill’, ’false’))), the result configura-
tions should be reducible to each other (by two sequential steps). let X = 0 in
X evaluates to a dead process with the action above, which naturally could not be
reduced to anything by sequential steps.

In this section we defined program equivalence based on bisimulations and
proved that sequential evaluation is a bisimulation. With the help of these def-
initions and theorems, we can establish the equivalence of simple programs. As
we noted at the start of the section, all of the definitions and theorems presented
here are formalised in the Coq proof assistant [9]. We plan to further investigate
bisimulations to enable reasoning about more complex programs.

6 Related Work
The results presented in this paper are extensions to our work on sequential Core
Erlang [2–4, 19]. We mainly based the concurrent semantics on the work of Fred-
lund [15], Harrison [18], and Lanese et al. [23]. The general idea of an interaction
semantics of actor languages is described in the work of Mason and Talcott [24].

The formalisation of Fredlund [15] is the most detailed regarding both the se-
quential and concurrent parts of Erlang, which also faithfully follows the documen-
tation of Erlang [12]. However, it considers signal transfer as an atomic operation
(i.e. when a signal is sent, it immediately arrives), while according to signal order-
ing guarantee [13], the order of the signals sent from an entity to the same entity
is preserved, which means that two signals that are targeting different entities can
arrive in arbitrary order. The semantics of Fredlund [15] differentiates active and
passive termination signals, while we denote these by the link flag of the exit signal.

Moreover, the work of Fredlund [15] differentiates only three actions on the
inter-process level semantics: input, output, and silent. This approach closely fol-
lows the general idea of the interaction semantics [24]. With our approach, we
can simulate input and output actions: send actions can be considered as output
actions, arr actions are the input actions, while every other action can be regarded
as silent. The advantage of our semantics is that we can distinguish more classes
of reduction sequences, moreover, we also exploit this property: the theorems dis-
cussed in Section 4.2 and Section 5 involving sequential reductions would not hold,
if other actions (e.g. flag) were considered as silent.

Lanese et al. [23] describe their results on bisimulations, and prove a number of
system equivalences (e.g. renaming, normalisation). They also use ethers to store
messages, however, their approach (deliberately) ignores the guarantee for signal
ordering [13]. Moreover, they do not formalise signals except messages, and used
only a small subset of Core Erlang. Still, we incorporated some of their ideas in the
formalisation of program equivalence, and plan to pursue this topic more in detail.

The work of Vidal et al. [21, 22, 27, 31] is also related to ours, they define
multiple semantics (reduction semantics and small-step semantics) for Core Erlang

A Formalisation of Core Erlang, a Concurrent Actor Language 401

to express reversible computation. The language they formalised has a similar
coverage to our formalisation, they also formalised concurrent semantics with an
ether and action traces, moreover, they also proved similar theorems about the
properties. However, their formalisations do not include signals except messages.

Harrison [18] presented a formalisation of a minimal subset of Core Erlang in
his paper, which has also been formalised in Isabelle. His formalisation techniques
aided us while creating a usable Coq definition of the concurrent semantics, how-
ever, his formalisation includes only a few of the language elements, and he too
treated signal transfer as an atomic operation.

An important advantage of our formalisation compared to most of the existing
ones is that it is also implemented in Coq in an open-source project. Most of the
existing works are paper-based formalisations or the machine-checked version is no
longer available to the public. Furthermore, our semantics implements the signal
ordering guarantee [13] more faithfully than the other discussed approaches.

7 Conclusion and Future Work

In this paper, we described our three-level, modular formal semantics for concurrent
Core Erlang. We discussed a number of theorems about the determinism and con-
fluence properties of the semantics, defined bisimulations to be able to reason about
program equivalence, and proved that side-effect-free evaluations of a program pro-
vide equivalent programs. Finally, we compared our approach with the results of
other authors. The formalisation has also been implemented as an open-source
project in the Coq proof assistant [9].

In the future we are planning to further extend this formalisation. Our future
goals include the following points:

• Investigating bisimulations in more depth, potentially by following a similar
path to Lanese et al [23] who defined barbed congruence, that enabled them
to develop a proof technique to effectively reason about program equivalence.

• Proving the equivalence between more complex examples of concurrent pro-
grams equivalent, as well as investigating equivalence between sequential and
concurrent algorithms.

• Extending the semantics to cover exceptions and other side effects (e.g. input-
output) based on our previous results [3].

• Implementing a formalisation of the module system within this semantics.

• In the longer term, an extensive, usable formalisation of Erlang is our ultimate
goal.

402 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

References
[1] Agha, G. and Hewitt, C. Concurrent programming using actors: exploit-

ing large-scale parallelism. In Bond, A. and Gasser, L., editors, Readings in
Distributed Artificial Intelligence, pages 398–407. Morgan Kaufmann, 1988.
DOI: 10.1016/B978-0-934613-63-7.50042-5.

[2] Bereczky, P., Horpácsi, D., and Thompson, S. A proof assistant based for-
malisation of a subset of sequential Core Erlang. In Byrski, A. and Hughes,
J., editors, Trends in Functional Programming, pages 139–158, Cham, 2020.
Springer International Publishing. DOI: 10.1007/978-3-030-57761-2_7.

[3] Bereczky, P., Horpácsi, D., and Thompson, S. Machine-checked natural se-
mantics for Core Erlang: exceptions and side effects. In Proceedings of Erlang
2020, page 1–13. ACM, 2020. DOI: 10.1145/3406085.3409008.

[4] Bereczky, P., Horpácsi, D., Kőszegi, J., Szeier, S., and Thompson, S. Val-
idating formal semantics by property-based cross-testing. In Proceedings of
the 32nd Symposium on Implementation and Application of Functional Lan-
guages (IFL ’20), pages 150–161. ACM, New York, NY, USA, 2021. DOI:
10.1145/3462172.3462200.

[5] Blazy, S. and Leroy, X. Mechanized semantics for the Clight subset of the
C language. Journal of Automated Reasoning, 43(3):263–288, 2009. DOI:
10.1007/s10817-009-9148-3.

[6] Carlsson, R., Gustavsson, B., Johansson, E., Lindgren, T., Nyström, S.-O.,
Pettersson, M., and Virding, R. Core Erlang 1.0.3 language specification. Tech-
nical report, 2004. URL: https://www.it.uu.se/research/group/hipe/
cerl/doc/core_erlang-1.0.3.pdf.

[7] Cesarini, F. and Thompson, S. Erlang programming. O’Reilly Media, Inc.,
1st edition, 2009. URL: https://www.oreilly.com/library/view/erlang-
programming/9780596803940/.

[8] Core Erlang formalization. URL: https://github.com/harp-project/Core-
Erlang-Formalization, 2022. Accessed on 20th of September, 2022.

[9] Core Erlang mini. URL: https://github.com/harp-project/Core-Erlang-
mini/releases/tag/v1.6, 2022. Accessed on 20th of September, 2022.

[10] de Bruijn, N. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser the-
orem. Indagationes Mathematicae (Proceedings), 75(5):381–392, 1972. DOI:
10.1016/1385-7258(72)90034-0.

[11] Erlang/OTP compiler, version 24.0. URL: https://www.erlang.org/
patches/otp-24.0. Accessed on 30th of September 2022.

https://doi.org/10.1016/B978-0-934613-63-7.50042-5
https://doi.org/10.1007/978-3-030-57761-2_7
https://doi.org/10.1145/3406085.3409008
https://doi.org/10.1145/3462172.3462200
https://doi.org/10.1007/s10817-009-9148-3
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.oreilly.com/library/view/erlang-programming/9780596803940/
https://www.oreilly.com/library/view/erlang-programming/9780596803940/
https://github.com/harp-project/Core-Erlang-Formalization
https://github.com/harp-project/Core-Erlang-Formalization
https://github.com/harp-project/Core-Erlang-mini/releases/tag/v1.6
https://github.com/harp-project/Core-Erlang-mini/releases/tag/v1.6
https://doi.org/10.1016/1385-7258(72)90034-0
https://www.erlang.org/patches/otp-24.0
https://www.erlang.org/patches/otp-24.0

A Formalisation of Core Erlang, a Concurrent Actor Language 403

[12] Erlang documentation. URL: https://www.erlang.org/docs, 2022. Accessed
on 20th of September, 2022.

[13] Erlang documentation, Processes. URL: https://www.erlang.org/doc/
reference_manual/processes.html, 2022. Accessed on 20th of September,
2022.

[14] Felleisen, M. and Friedman, D. Control operators, the SECD-machine, and
the λ-calculus. In Formal Description of Programming Concepts - III: Proceed-
ings of the IFIP TC 2/WG 2.2 Working Conference on Formal Description of
Programming Concepts - III, pages 193–222, 1987.

[15] Fredlund, L.-Å. A framework for reasoning about Erlang code. PhD thesis,
Mikroelektronik och informationsteknik, 2001. URL: https://urn.kb.se/
resolve?urn=urn:nbn:se:kth:diva-3210.

[16] Gumbs, K. The core of Erlang. URL: https://8thlight.com/blog/kofi-
gumbs/2017/05/02/core-erlang.html, 2017. Accessed on 17th of March,
2022.

[17] High-Assurance Refactoring Project. URL: https://github.com/harp-
project, 2023. Accessed on 27th of March 27th, 2023.

[18] Harrison, J. Towards an Isabelle/HOL formalisation of Core Erlang. In Pro-
ceedings of the 16th ACM SIGPLAN International Workshop on Erlang, Er-
lang 2017, page 55–63, New York, NY, USA, 2017. Association for Computing
Machinery. DOI: 10.1145/3123569.3123576.

[19] Horpácsi, D., Bereczky, P., and Thompson, S. Program equivalence in an
untyped, call-by-value functional language with uncurried functions. Journal
of Logical and Algebraic Methods in Programming, 132:100857, 2023. DOI:
10.1016/j.jlamp.2023.100857.

[20] Kőszegi, J. KErl: Executable semantics for Erlang. CEUR Workshop Proceed-
ings, 2046:144–160, 2018. URL: http://ceur-ws.org/Vol-2046/koszegi.
pdf.

[21] Lanese, I., Nishida, N., Palacios, A., and Vidal, G. A theory of reversibility for
Erlang. Journal of Logical and Algebraic Methods in Programming, 100:71–97,
2018. DOI: 10.1016/j.jlamp.2018.06.004.

[22] Lanese, I., Palacios, A., and Vidal, G. Causal-consistent replay reversible
semantics for message passing concurrent programs. Fundamenta Informaticae,
178(3):229–266, 2021. DOI: 10.3233/FI-2021-2005.

[23] Lanese, I., Sangiorgi, D., and Zavattaro, G. Playing with bisimulation in
Erlang. In Boreale, M., Corradini, F., Loreti, M., and Pugliese, R., editors,
Models, Languages, and Tools for Concurrent and Distributed Programming,
pages 71–91. Springer, Cham, 2019. DOI: 10.1007/978-3-030-21485-2_6.

https://www.erlang.org/docs
https://www.erlang.org/doc/reference_manual/processes.html
https://www.erlang.org/doc/reference_manual/processes.html
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3210
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3210
https://8thlight.com/blog/kofi-gumbs/2017/05/02/core-erlang.html
https://8thlight.com/blog/kofi-gumbs/2017/05/02/core-erlang.html
https://github.com/harp-project
https://github.com/harp-project
https://doi.org/10.1145/3123569.3123576
https://doi.org/10.1016/j.jlamp.2023.100857
http://ceur-ws.org/Vol-2046/koszegi.pdf
http://ceur-ws.org/Vol-2046/koszegi.pdf
https://doi.org/10.1016/j.jlamp.2018.06.004
https://doi.org/10.3233/FI-2021-2005
https://doi.org/10.1007/978-3-030-21485-2_6

404 Péter Bereczky, Dániel Horpácsi, and Simon Thompson

[24] Mason, I. and Talcott, C. Equivalence in functional languages with ef-
fects. Journal of Functional Programming, 1(3):287–327, 1991. DOI:
10.1017/S0956796800000125.

[25] Mosses, P. Formal semantics of programming languages: — An overview
—. Electronic Notes in Theoretical Computer Science, 148(1):41–73, 2006.
DOI: 10.1016/j.entcs.2005.12.012, Proceedings of the School of SegraVis
Research Training Network on Foundations of Visual Modelling Techniques
(FoVMT 2004).

[26] Neuhäußer, M. and Noll, T. Abstraction and model checking of Core Er-
lang programs in Maude. Electronic Notes in Theoretical Computer Sci-
ence, 176(4):147–163, 2007. DOI: 10.1016/j.entcs.2007.06.013, Proceed-
ings of the 6th International Workshop on Rewriting Logic and its Applications
(WRLA 2006).

[27] Nishida, N., Palacios, A., and Vidal, G. A reversible semantics for Er-
lang. In Hermenegildo, M. and Lopez-Garcia, P., editors, International
Symposium on Logic-Based Program Synthesis and Transformation, pages
259–274, Cham, 2017. Springer, Springer International Publishing. DOI:
10.1007/978-3-319-63139-4_15.

[28] Owens, S., Myreen, M., Kumar, R., and Tan, Y. Functional big-step semantics.
In Thiemann, P., editor, Programming Languages and Systems, pages 589–615.
Springer Berlin Heidelberg, 2016. DOI: 10.1007/978-3-662-49498-1_23.

[29] Pitts, A. and Stark, I. Operational reasoning for functions with local state.
Higher order operational techniques in semantics, pages 227–273, 1998. DOI:
10.5555/309656.309671.

[30] Schäfer, S., Tebbi, T., and Smolka, G. Autosubst: Reasoning with de Bruijn
terms and parallel substitutions. In Urban, C. and Zhang, X., editors, Inter-
active Theorem Proving, pages 359–374, Cham, 2015. Springer International
Publishing. DOI: 10.1007/978-3-319-22102-1_24.

[31] Vidal, G. Towards symbolic execution in Erlang. In Voronkov, A. and Vir-
bitskaite, I., editors, International Andrei Ershov Memorial Conference on
Perspectives of System Informatics, pages 351–360, Berlin, Heidelberg, 2015.
Springer, Springer Berlin Heidelberg. DOI: 10.1007/978-3-662-46823-4_
28.

[32] Wand, M., Culpepper, R., Giannakopoulos, T., and Cobb, A. Contextual
equivalence for a probabilistic language with continuous random variables and
recursion. Proceedings of the ACM on Programming Languages, 2(ICFP), 2018.
DOI: 10.1145/3236782.

https://doi.org/10.1017/S0956796800000125
https://doi.org/10.1016/j.entcs.2005.12.012
https://doi.org/10.1016/j.entcs.2007.06.013
https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.5555/309656.309671
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1007/978-3-662-46823-4_28
https://doi.org/10.1007/978-3-662-46823-4_28
https://doi.org/10.1145/3236782

Acta Cybernetica 26 (2024) 405–429.

Identifying Client-Server Behaviours in

Legacy Erlang Systems∗

Zsófia Erdeiab, Melinda Tóthac, and István Bozóad

Abstract

In Erlang, behaviours are special forms of design patterns. There are
many benefits to using behaviours. For example, behaviours can help abstract
away the most common parts when solving similar problems. Design pattern
recognition may help understand the source code of the software. It can
provide structured information about the purpose of specific parts and the
design decisions behind the implementation. For object-oriented languages,
several tools exist that use different approaches and methods to identify design
patterns. We present a method for identifying source code fragments in legacy
Erlang systems amenable to transforming into client-server Erlang design
patterns. In our analysis, we identify the base set of server candidates using
concurrent process analysis and narrow down the result using further static
analysis knowledge using the RefactorErl framework.

Keywords: Erlang, design patterns, client-server behaviour, concurrent be-
haviours, static analysis

1 Introduction

Design patterns are developed best practices that provide general, reusable solu-
tions to common problems. There are several benefits to using design patterns.
Their use promotes transparent and easy-to-maintain code, reduces the possibility
of errors, and speeds up the development process. Design patterns are not specific
to any programming language, they are general solutions that can be implemented
in many programming languages. However, most design patterns are designed for

∗Supported by EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Ve-
hicle Control Technologies – The Project is supported by the Hungarian Government and co-
financed by the European Social Fund. Application Domain Specific Highly Reliable IT Solutions
project has been implemented with the support provided from the National Research, Devel-
opment and Innovation Fund of Hungary, financed under the Thematic Excellence Programme
TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme.

aEötvös Loránd University, Budapest, Hungary
bE-mail: zsanart@inf.elte.hu, ORCID: 0000-0002-5089-4984
cE-mail: toth m@inf.elte.hu, ORCID: 0000-0001-6300-7945
dE-mail: bozo i@inf.elte.hu, ORCID: 0000-0001-5145-9688

DOI: 10.14232/actacyb.299529

mailto:zsanart@inf.elte.hu
https://orcid.org/0000-0002-5089-4984
mailto:toth\protect _m@inf.elte.hu
https://orcid.org/0000-0001-6300-7945
mailto:bozo\protect _i@inf.elte.hu
https://orcid.org/0000-0001-5145-9688
https://doi.org/10.14232/actacyb.299529

406 Zsófia Erdei, Melinda Tóth, and István Bozó

object-oriented environments. In object-oriented programming, a program design
pattern typically depicts the relationships between objects, and documents the in-
heritance, association, and aggregation relationships in design.

Design patterns can be broadly divided into three categories [5]. Structural pat-
terns are used to define relationships between classes, creation patterns are used to
represent the instantiation process, and behavioural patterns are used to describe
communication and interaction between objects. Recognising design patterns can-
not only help to understand the source code of software but also provide information
about the purpose of specific parts of the system and the design decisions behind
the implementation. Manually searching for design patterns in larger software is an
extremely cumbersome and time-consuming task. For this reason, a large number
of methodologies, approaches and tools have been proposed for detecting design
patterns and accordingly transforming the source code [21, 9, 22].

In the case of distributed software, supporting the understanding and transfor-
mation of source code with software tools is an even more critical task. Erlang [6]
is a programming language specifically designed to build fault-tolerant, distributed
systems that can contain a large number of concurrent processes. In software writ-
ten in Erlang, many processes can have similar structures and behaviours. The
formalization of these patterns is called behaviour. Using behaviours makes it
easier to read, understand and maintain legacy codes. Improvised programming
structures, while possibly more efficient, are always more difficult to understand.
In the Erlang/OTP libraries, there are several common concurrent design patterns
implemented. The programmer only needs to implement a callback module to
define the specific behaviour. Using behaviours also enables/makes it possible to
use verification tools and techniques developed for Erlang [4]. A simple example
of the pre-implemented design patterns included in the Erlang/OTP is the imple-
mentation of a client-server behaviour, the so-called gen server behaviour. The
client-server model consists of a central server process and an arbitrary number
of clients. Its most common application is resource management, where multiple
clients share a common resource. The server is then responsible for managing this
resource.

Identifying design patterns manually is not efficient. Therefore, various ap-
proaches have been developed to automatise this process. Static analysis-based
methods are widely used in this domain. The goal of our work is to identify source
code fragments in legacy Erlang systems that are amenable to transforming into
concurrent Erlang behaviours. This paper presents our first result in order to
achieve this, namely to analyse and to identify the client-server behaviour candi-
dates. We base our work on the static source code analysis and transformation tool
RefactorErl.

RefactorErl [19] is a static analyser and transformer tool for Erlang. The tool
uses static code analysis techniques and provides a wide range of features, like data-
flow analysis, dynamic function call detection, side-effect analysis, a user-level query
language to gather semantic information or structural complexity metrics about
Erlang programs, dependency examination among functions or modules, function
call graph with information about dynamic calls, etc.

Identifying Client-Server Behaviours in Legacy Erlang Systems 407

We propose a two-staged behaviour recognition analysis. At first, we use the
communication graph of RefactorErl [20] to find process candidates based on the
communication pattern. In the second stage, we filter those elements by a prede-
fined rule set to check the internal structure of the process.

The paper is structured as follows. In Section 2 we discuss related works,
where we present multiple methods designed to recognise design patterns in object-
oriented programming languages. In Section 3 we first introduce Erlang, its advan-
tages and some of the features of the language that can be used to develop highly
scalable soft real-time systems. We describe the characteristics of server processes
and present the basic architecture of the client-server behaviour. In Section 4 with
the use of an example, we present the structure and operation of an Erlang server
process and how it has similar properties to the gen server behaviour included
in the Erlang/OTP library. We also show a few examples of Erlang processes
that have similar characteristics to server processes but could not be implemented
with gen server behaviour. In Section 5 we introduce the RefactorErl tool, and
in Section 6 we present a method to identify the client-server behaviour in Erlang
programs based on static analysis. Finally, Section 7 presents the first results of
the prototype implementation and Section 8 summarises our results.

2 Related work

Different approaches can be used to identify design patterns, both in terms of the
method of identification (searching for the components of samples or recognising
the full structure of a design pattern) and the type of analysis (static or dynamic
analysis). Methods based on static analysis are based on the analysis of the source
code, while dynamic analysis collects information while the software is running.
Information obtained only from the static or dynamic analysis is seldom sufficient
to effectively recognize most design patterns, so many methods work with a hybrid
solution. Recognition methods can be broadly classified into several categories:
those that rely on database queries, those that use metrics, those that utilize graph
or matrix representations, those that are based on the Unified Modeling Language
(UML), and those that combine multiple of these techniques [1].

The paper [10] proposes a solution using metrics and a machine learning algo-
rithm for recognising micro-architectures similar to design patterns in the architec-
ture. This can be used to better understand the design problems solved by software
developers when designing the program architecture. Fingerprints are sets of metric
values characterising classes playing a given role. These fingerprints are based on a
set of external attributes that help categorise classes and can be used to reduce the
search space of micro-architectures similar to design motifs. The fingerprints were
created based on a rule-learner algorithm that inferred rules characterising design
motifs’ roles with the metric values of the classes playing these roles. The identifi-
cation process described in the paper consisted of two steps: identifying candidate
classes for design patterns by eliminating classes that did not match the expected
fingerprint and identifying candidate classes for the remaining roles starting from

408 Zsófia Erdei, Melinda Tóth, and István Bozó

key-role candidates and using structural matching.
A method based on both static and dynamic analysis was presented in [12] for

automatic design pattern recognition in Java. They use static analysis to compute
the potential program parts playing a certain role in a design pattern and dynamic
analysis to further examine those candidates. The static analysis reads the source
code and constructs an attributed AST, then computes the pattern relation on the
AST nodes and provides a result as a set of candidates consisting of tuples of AST
nodes. The dynamic analysis takes this set as an input and monitors the execution
of the nodes. Depending on the node’s unique role, dynamic test actions are exe-
cuted on the object sets of the candidates. In the paper, different approaches for
detecting the Observer, Composite, Mediator, Chain of Responsibility and Visitor
Patterns are discussed.

Another hybrid method for recognising design patterns is presented in [2]. They
developed the software prototype JADEPT (JAva DEsign Pattern deTector) for
design pattern recognition based on a predefined set of rules describing properties
that may be either structural or behavioural and may define relationships between
classes or families of classes. Weights have been associated with rules indicating
how much a rule is able to describe a specific property of a given design pattern.
JADEPT collects structural and behavioural information through dynamic analysis
of Java software by exploiting JPDA (Java Platform Debugger Architecture) and
stores the extracted information in a database. A rule is implemented by one or
more queries and the existence of a design pattern can be verified through the
validation of its associated rules.

Li and Thompson’s paper [15] presents a technique for detecting and eliminating
similar code in Erlang programs. The technique involves analysing the abstract
syntax trees (ASTs) of the source code, computing a similarity measure between
the ASTs, and then merging the similar code into a single function.

The authors argue that similar code is a common problem in Erlang programs,
and that it can lead to maintenance and readability issues. They propose a solution
that involves using a combination of structural and lexical analysis to identify
similar code, and then using a technique called “code merging” to eliminate the
duplication.

Duplicated code detection and design pattern recognition are two related but
distinct techniques used in software development. Duplicate code is code that is
identical or very similar to other code in the system mostly caused by copy-pasting
and reusing already existing code. While two code snippets that implement the
same design pattern can be very different even in the AST, in the case of duplicated
code we usually expect them to closely match. While the examination of AST alone
is not sufficient to detect design patterns, the recognition of certain similarities
could help to filter out results.

The structure of parallel computations in a program can be defined conveniently,
and at a high level of abstraction, using parallel design patterns. Algorithmic skele-
tons [7] implement common patterns of parallelism, allowing the programmer to
instantiate parallel skeletons with application-specific code fragments. PaRTE [18]
integrates capabilities of the RefactorErl and Wrangler [16] refactoring/program

Identifying Client-Server Behaviours in Legacy Erlang Systems 409

analysis tools into a parallelisation framework that can be used to identify parallel
patterns and determine the best implementations of those patterns.

Some well-known patterns are pipe (parallel pipeline) and task farm (applies
a given function to a sequence of independent inputs in parallel), the map-reduce
and the divide-and-conquer patterns. Skel [17] is a library of algorithmic skeletons
for Erlang, providing a small number of useful, classical skeletons. Since both pipe
and farm can be defined to operate on lists of inputs, the analysis described in
the paper focuses on identifying certain operations on lists, and also on identifying
those data structures that can be transformed to lists.

The tool developed by our research group targets three constructs: list compre-
hensions, library calls and recursive functions. List comprehensions are categorised
based on the output expression as a possible farm or pipe candidate. Calls to
functions that exhibit a map-like or pipeline-like behaviour over a sequence of data
and certain map-like and pipeline-like recursive functions can also be transformed
into farms or pipes. These patterns can be identified based on the syntax of the
code but not all code fragments that match a pattern can be safely executed in
parallel. In order to guarantee that the transformations preserve the semantics of
the program further semantic analysis is required.

The transformation process itself comprises two distinct phases, an initial pro-
gram shaping phase and the actual transformation into instances of skeletons. The
role of program shaping is to prepare the source code for the introduction of parallel
skeletons since it is necessary to shape the code into an appropriate canonical form
before the transformations can be applied.

The use of PaRTE is demonstrated on a simple worked example, showing how
the tool can be used to transform a sequentially implemented image merge to a
parallel version and automatically obtain significant and scalable speedups over
the original version.

3 Modelling client-server behaviour in Erlang

Our research focuses on legacy Erlang systems. In this section, we start with
introducing Erlang. Then we specify the properties of a general server process
structure implemented in Erlang, and extend these properties to express the client-
server behaviour.

3.1 Erlang

Erlang [6] is a general-purpose, dynamically typed, concurrent functional program-
ming language, which enables developers to write highly scalable, soft real-time
systems. Erlang was originally designed for developing telecommunication soft-
ware, since then, it is also widely used in the world of banking, chat services, and
database management systems. Due to its robustness and fault tolerance, it is
suitable for the development of large-scale distributed systems.

410 Zsófia Erdei, Melinda Tóth, and István Bozó

One of the main advantages of using Erlang instead of other functional lan-
guages is Erlang’s ability to handle concurrency and distributed programming. In
Erlang, the unit of concurrency is the process. A process is a lightweight task
that runs concurrently and is independent of the other processes. Processes do not
share memory, the only way for processes to interact with each other is through
message passing, where the message can be any Erlang term. Message passing is
asynchronous, so the process can continue processing once a message is sent. Each
process has its own input queue for messages it receives. New messages received are
put at the end of the queue. Received messages can be processed selectively, it is
not necessary to handle messages in the order of arrival. When a process executes
a receive, the first message in the queue is matched against the first pattern in
the receive. If it does not match, the next branch of the receive is matched. It is
repeated until the first match is found. If none of the patterns matches, the next
message from the message queue is examined. Once a match is found, the mes-
sage is removed from the queue and the actions corresponding to the pattern are
executed. If none of the messages match, the process is blocked until a matching
message arrives.

Every process in Erlang is identified by a unique process identifier (PID). The
Erlang BIF (Built-In Function) spawn is used to create a new process:

spawn(Module, Exported Function, List of Arguments).
This function creates a new process executing the function Exported Function of
the module Module with the given list of arguments.

Processes can be registered with a given name using the built-in function call
register(Name, Pid). After registration, the process can be addressed, either with
its PID or with its registered name. The process can be unregistered with the built-
in function unregister(Name). The registered process is automatically unregistered
when the process terminates.

3.2 Server processes

When implementing client-server behaviour, clients and servers are represented as
Erlang processes. Processes – including server processes – have common charac-
teristics and follow similar patterns. As a result of this, they share a similar code
base. Regardless of their function, processes must first be spawned and possibly
initialised. A process can be addressed by using its PID, but a server process is also
usually registered. After that, we have to initialise the state of the process. The
state is specific to the function of our process. This step handles all initialisation
of data required for the main loop function to work well. Once the process has
been initialised, it is ready to communicate with other processes. The main loop
is a tail-recursive function that handles the events, it usually has a receive block
and is used to process messages and send replies. A special message can be used
to terminate the process when needed. In the case of a normal termination when
necessary a cleanup procedure is completed.

Figures 1 and 2 show a general server process skeleton – a general, reusable
structure for implementing a process in a concurrent or distributed system. It

Identifying Client-Server Behaviours in Legacy Erlang Systems 411

Start

Initialise

Receive-evaluate loopStop

Terminate

Figure 1: A process skeleton

start(Args) ->

register(server, spawn_link(?MODULE, init, [Args])).

stop() -> server ! stop.

init(Args)->

InitState = initialise_state(Args),

loop(InitState).

loop(State)->

receive

stop -> terminate(State);

{handle, Msg} ->

NewState = handle_req(Msg, State),

loop(NewState)

end.

Figure 2: A server process skeleton source

typically includes the basic components and structure that are common to many
types of processes, such as initialisation, message handling, and termination. A
general process skeleton typically includes the following components:

412 Zsófia Erdei, Melinda Tóth, and István Bozó

• Initialisation: This is the first step in the process, where the process is set
up and initialised. This may include allocating resources, setting up data
structures, and starting any other necessary sub-processes.

• Message handling: This is the core component of the process, where the
process waits for and handles incoming messages. This may include perform-
ing calculations, updating data structures, and sending messages to other
processes.

• Termination: This is the final step in the process, where the process is
cleaned up and resources are deallocated. This may include stopping sub-
processes and closing any open files or connections.

While the general process skeleton fits server processes of the client-server be-
haviour very well, the communication pattern of this behaviour is unique (see Fig-
ure 3). In the next section, we describe the main characteristics of the client-server
process architecture and its implementation in Erlang.

3.3 Client-server behaviour

The client-server model describes a way of distributing tasks and services within a
network. It is characterised by a central server and an arbitrary number of clients.
The client-server model is often used for resource management operations, where
several different clients share a resource. Clients implemented as Erlang processes
use these resources by sending the server requests.

Figure 3 shows the typical process architecture and communication of a client-
server model. Most often there are multiple instances of the client and a single
server. The server process receives requests, handles them, and can respond with
an acknowledgement and a return value if the request was successful, or with an
error if the request did not succeed. Interaction between them takes place through
message sending and receiving. If a client using the service or resource handled by
the server expects a reply to the request, the call to the server has to be synchronous.
If the client does not need a reply, the call to the server can be asynchronous.

The gen server behaviour module provides the server of a client-server rela-
tion. A generic server process (gen server) implemented with this behaviour has a
standard set of interface functions and includes functionality for tracing and error
reporting. The process can be divided into a generic part (a behaviour module) and
a specific part (a callback module). The behaviour module contains all the generic
functionality reused from one implementation to another. The specific parts of the
process implemented by the user are located in the callback module exporting a
predefined set of functions.

4 Motivating example

In Figure 4 an example server implementation is shown. In Figure 5 an equivalent
server implementation is presented using the generic server library of Erlang/OTP.

Identifying Client-Server Behaviours in Legacy Erlang Systems 413

Clients Server

Request

Reply

Re
que

st

Re
ply

Figure 3: The client-server process architecture

The goal of our work is to identify codes similar to the code fragment shown in
Figure 4 as a candidate and later transform them into an application of a client-
server design pattern, as presented in the example in Figure 5.

In Figure 4 a simple job server is demonstrated that waits for {job, ReqId,
{M, F, A}} messages where the third element of the tuple represent a function by
the name of the implementing module, the name of the function and the list of
arguments of the function call to be evaluated. The server spawns a new worker
process to evaluate the function. The worker sends the calculated result to the
server as a message tagged with the result atom. The server adds the result to its
state when a result message arrives. Once a reply message arrives from a client, the
server searches the result in its state and sends the value to the client. If the result
is not ready yet, the server sends a pending answer. The stop message terminates
the server.

As the simple server implementation example shows, the server module pro-
vides interface functions for starting (start/0) and stopping (stop/0) the server
process. The start function spawns and registers the process with the name jobsrv.
The server implements the function init/0 to initialise the server process with a
state and the iterating function (loop/1) that receives messages and performs the
requested tasks. Creating a process that calls the init/1 function can be generic.
The arguments passed to the call and the implementation of the function that ini-
tialises the main loop are specific to the task. The function loop(State) stores the
connected clients in the server state variable (State) and handles incoming messages

414 Zsófia Erdei, Melinda Tóth, and István Bozó

-module(server).

-export([start/0, stop/0]).

start() -> register(jobsrv, spawn(fun init/0)).

stop() ->

jobsrv ! stop.

init() ->

loop(#{}).

loop(State) ->

receive

stop ->

io:format("Server stopped in state: ~p~n", State);

{job, ReqId, {M, F, A}} ->

spawn(fun() ->

jobsrv ! {result, ReqId, apply(M, F, A)}

end),

loop(State);

{reply, ReqId, To} ->

case State of

#{ReqId:=Data} -> To ! {final, ReqId, Data};

_ -> To ! {pending, ReqId}

end,

loop(State);

{result, ReqId, Result} ->

loop(State#{ReqId => Result})

end.

Figure 4: Non gen-server implementation

in the receive block. All incoming messages are matched against the patterns in
the receive and the corresponding branch is executed. Storing the loop data in be-
tween calls is the same from one process to another, but the loop data itself will be
different depending on the function of the process. Sending requests to the server
process will also be generic, but the types and contents of the messages and how
they are handled will differ depending on the task. While each response is specific,
the method of sending it back to the client process is handled in a generic way.
When a stop message is received, the process calls the terminate function, which
is responsible for a clean termination. While sending a stop messageis generic, the
steps to clean up the state prior to termination will be specific.

The previously described generic parts of the server could be separated and
reused for many different applications, and only the specific parts of the code would

Identifying Client-Server Behaviours in Legacy Erlang Systems 415

have to be reimplemented. The Erlang/OTP module solves this with the gen server
library that formalizes the general server behaviour of a client-server model. The
gen server module contains the generic part of server implementation and the user
only has to implement a callback module to define the specific behaviour.

-module(gserver).

-export([start/0, stop/0, init/1,

handle_call/3, handle_cast/2, handle_info/2]).

-behaviour(gen_server).

start() ->

gen_server:start({local, jobsrv}, gserver, [], []).

stop() ->

gen_server:cast({local, jobsrv}, stop).

init(_) ->

{ok, #{}}.

handle_cast({job, ReqId, {M, F, A}}, State) ->

spawn(fun() ->

jobsrv ! {result, ReqId, apply(M, F, A)}

end),

{noreply, State};

handle_cast(stop, State) ->

io:format("Server stopped in state: ~p~n", State),

{noreply, stop, State}.

handle_info({result, ReqId, Result}, State) ->

{noreply, State#{ReqId => Result}}.

handle_call({reply, ReqId}, _, State) ->

case State of

#{ReqId:=Data} -> {reply, {final, ReqId, Data}, State};

_ -> {reply, {pending, ReqId}, State}

end.

Figure 5: Gen-server implementation

With the gen server behaviour (Figure 5), instead of using the spawn and
spawn link BIFs, the gen server:start/4 and gen server:start link/4 functions are
used. In the example shown here, the server can be started by calling the
gserver:start() function call, which then calls the gen server:start link/4 function.
This function spawns and links to the created server process. The first argument
of the function specifies the name in the form of a tuple, in this case, {local,jobsrv}.

416 Zsófia Erdei, Melinda Tóth, and István Bozó

The server is then locally registered as jobsrv1. The second argument is the name of
the callback module, which is the module where the callback functions are located.
The third argument is a list of arguments that are passed to the init/1 callback
function when the process is started. Usually, lists are used to pass multiple argu-
ments. These arguments can be used to initialise the process’s state or to configure
its behavior. Here, init does not need any data and ignores the argument. The
fourth argument is a list of options, for example, it enables the user to set memory
management flags as well as tracing and debugging flags. Most behaviour imple-
mentations, like in the example, just pass the empty list as an argument.

The gen server start functions will spawn a new process that calls the init/1
callback function from the callback module, with the arguments supplied. The task
of the init function in the gserver module (Figure 5) is same as it was in the server
module (Figure 4): to initialise the state of the server. Synchronous communication
can be initialised by calling the gen server:call/2 function that sends a message to
the server, while gen server:cast/2 calls are responsible for asynchronous commu-
nication. When a client sends a message to the server process by calling these
functions, the handle call/3 or handle cast/2 callback function is called. The han-
dle call/3 function is used to handle synchronous requests, where the client expects
a reply. The handle cast/2 function is used to handle asynchronous requests, where
the client does not expect a reply. Stopping the server can be handled synchronously
or asynchronously by calling gen server:call/2 or gen server:cast/2. Messages that
are not sent to the server through gen server:call/2 or gen server:cast/2 function
calls can be handled in the handle info/2 function definitions.

In our example, job messages and the stopping are asynchronous request, reply
messages are synchronous, and the result messages sent from the worker processes
are handled by the handle info definition.

4.1 Other server-like processes

In Erlang, a process can be identified with its evaluating function. The process is
created when we spawn the function and the process is alive until the evaluation of
its function is finished. Long-living processes usually evaluate recursive functions.
Thus when we are identifying server processes we need to identify recursive function
definitions. However, we do not want to consider all recursive definitions which were
spawned in the program as server processes. In this subsection, we will introduce
a few counterexamples.

4.1.1 Taskfarm

Let us consider the code skeleton on Figure 6 that implements a parallel taskfarm
in Erlang: where we want to evaluate a function on the elements of a list. We
start a dispatcher, a collector process and some worker processes to evaluate the
function depending on the number of available resources. The dispatcher and the

1The first argument can be omitted, so the server might not be registered. In this case, the
process id of the newly created process could be used to refer to the server.

Identifying Client-Server Behaviours in Legacy Erlang Systems 417

collector are registered processes. The dispatcher waits for free messages from the
workers and sends an element of the list back. The collector waits for results from
the workers and stores those in its state. It also notifies about the collected data
on request. Workers are notifying the dispatcher if they are free to work and send
the result of the computation to the collector process.

run(F, L) ->

register(disp, spawn(fun() -> dispatcher(L) end)),

register(coll, spawn(fun() -> collector([]) end)),

N = erlang:system_info(logical_processors_available),

[spawn(fun() -> worker(F) end) || _ <- lists:seq(1, N)].

dispatcher([H|T]) ->

receive

{free, Worker} -> Worker ! {data, H}, dispatcher(T)

end;

dispatcher([]) ->

receive

stop -> terminate

end.

collector(Acc) ->

receive

{result, Result} -> collector([Result | Acc]);

{give_me, From} -> From ! Acc, collector(Acc)

end.

worker(F) ->

disp ! {free, self()},

receive

{data, Data} -> coll ! {result, F(Data)}, worker(F)

end.

Figure 6: Parallel taskfarm implementation

The most important characteristic of a server process is a containing receive
expression to handle messages from client processes and answering to them. If we
consider only this condition, we might say that all the processes in this example
could be server processes. However, we do not want to consider worker processes as
server processes in client-server behaviour. We might have the expectation that a
server process is unique in the system, it has some special role. Thus when we create
multiple instances of an actor we do not want to consider those as servers. We can
delete some processes from our server candidate list based on the context of the
initialisation. The worker processes are spawned in a list comprehension, therefore
we can assume that multiple occurrences exist, and thus we will not consider them.

418 Zsófia Erdei, Melinda Tóth, and István Bozó

The dispatcher process could be considered as a server where the clients are the
worker processes. Later we might prioritise our candidate list and put functions
like dispatcher at the end if we want our servers to do more work.

4.1.2 Timeout looping

Server processes have to be tail-recursive. However, we do not want to consider
all of them. The code snippet on Figure 7 shows a process definition which waits
for cancelling messages and terminates. Otherwise, it waits for T seconds and
recursively calls itself if there is no more event to handle. We do not want to
consider the recursion in the after branch of the receive expression as a proper
server behaviour. It would not fit the client-server behaviour, thus we cannot
transform it.

loop(S = #state{server=Server, to_go=[T|Next]}) ->

receive

{Server, Ref, cancel} -> Server ! {Ref, ok}

after T*1000 ->

if Next =:= [] -> Server ! {done, S#state.name};

Next =/= [] -> loop(S#state{to_go=Next})

end

end.

Figure 7: An event handler [14]

4.1.3 Multiple recursive calls

Figure 8 contains a parallel implementation of the Fibonacci number calculation
based on a caching optimisation to store the already calculated values. The cache
process has no termination branch, it is an infinite recursive definition. However,
we might consider it a server process. On the other hand, the process evaluating
the fib function could not be considered a server process. It has multiple recursive
calls in its body, thus it would not be possible to transform it into a gen server
behaviour-based process.

5 RefactorErl

The RefactorErl tool uses a directed, rooted graph, with typed nodes and edges as
an internal representation to store the source code. The graph is called Semantic
Program Graph (SPG) [13]. The SPG stores lexical, syntactic and semantic in-
formation about the source code, calculated by various static semantic analysers.
Every module, function, and expression is a node with a unique identifier and a
set of properties. Figure 9 shows a small part of a generated SPG. Besides the

Identifying Client-Server Behaviours in Legacy Erlang Systems 419

fib(0) -> 1;

fib(1) -> 1;

fib(N) when is_integer(N), N > 1 ->

cache ! {fib, N, self()},

receive

{value, N, FibN} -> FibN;

no_value ->

Fib1 = fib(N-1),

Fib2 = fib(N-2),

Fib = Fib1+Fib2,

cache ! {store, N, Fib},

Fib

end.

start_cache() ->

register(cache, spawn(fun() -> cache(#{}) end)).

cache(State) ->

receive

{fib, N, From} ->

case State of

#{N := Fib} -> From ! {value, N, Fib}, cache(State);

_ -> From ! no_value, cache(State)

end;

{store, N, Fib} -> cache(State#{N=>Fib})

end.

Figure 8: Fibonacci calculation

syntactic (black) nodes and edges, various semantic (coloured) and lexical (blue)
information are presented there.

Based on the initial static analyser framework provided by RefactorErl, various
complex static analysers have been implemented. For example, the tool provides
control flow, control dependence, data-flow, data-dependence analysis, dynamic
function reference analysis, concurrent message flow analysis, etc [19].

RefactorErl supports the analysis of concurrent programs as well. It is able
to identify the spawned processes and the communication between them based on
data-flow analysis and expression value calculation. RefactorErl builds a commu-
nication graph as a result of the analysis [20]. The nodes of the graph represent
the processes in the system. The edges represent various forms of communication
between the processes, for example, process creation, process name registration,
message passing, ETS table creation and reading from or writing into an ETS
table.

ETS (Erlang Term Storage) [8] tables are a built-in feature of the Erlang/OTP

420 Zsófia Erdei, Melinda Tóth, and István Bozó

Figure 9: Part of a Semantic Program Graph

system that allows for fast and efficient storage and retrieval of data among mul-
tiple processes. They are similar to hash tables or key-value stores, but they are
implemented in the Erlang virtual machine and are designed to work well with
the Erlang concurrency model. Since one process can put some data into the ta-
ble that others can read, thus it can be considered as a special form of process
communication.

The root of the communication graph is a ‘super process’ (SP) node which
represents the runtime environment. It represents the fact that the communicating
functions can be called from the currently running process, for example from the
Erlang shell.

Figure 10 shows an example communication graph [20]. These graphs can be
useful when we want to find client/server communication in the code as the first
step in our analysis. This helps us to find potential candidates and narrow the
scope of the analysis. Figure 11 contains an even more detailed communication
graph with hidden communication through ETS tables [20].

6 Identifying server processes

In this section, we present our approach to detecting one of the Erlang design pat-
terns, the generic server process. The proposed method is built on the capabilities
of the RefactorErl tool introduced in the last section. The method can be divided

Identifying Client-Server Behaviours in Legacy Erlang Systems 421

SP

client:start/1

server:start/0

server:stop/0

client:input/1

spawn

server:init/0 job_sever

{send, {connect, Cli}}

{send, {disconnect, Cli}}

{send, {do, Mod, Fun, Tab}}

spawn_link

register

{send, stop}

{send, {job, Job}}

{send, quit}

Figure 10: Communication graph [20]

SP

client:start/1

server:start/0

server:stop/0

client:input/1

spawn

server:init/0 job_sever

{send, {connect, Cli}}

{send, {disconnect, Cli}}

{send, {do, Mod, Fun, Tab}}

ets:new/2 data

create

{read, {result, ’$1’}}

spawn_link

register

{send, stop}

{send, {job, Job}}

{send, quit}

{write, Data}

{read,
[{{’$1’,’$2’},

 [{’/=’, ’$1’, result}]},
[’$$’]}]

{write,
{result, Result}

Figure 11: Communication graph with hidden data sharing [20]

into two major steps. We use initial filtering based on the communication graph
to reduce the search space and eliminate processes not matching the client-server
behaviour. To identify possible candidates, we use data-flow analysis to examine
relations between processes. After the initial filtering, we use the Semantic Pro-
gram Graph to identify functions that match the structure of the generic server
design pattern. To do this we have developed a set of rules that the previously
determined candidates must comply with.

422 Zsófia Erdei, Melinda Tóth, and István Bozó

6.1 Detecting candidates

For the first part of the method, the communication graph is used to find the
possible candidate processes. First, we are looking for processes that start and
possibly register a process. This can be achieved by examining the communication
graph and filtering nodes that are connected with an edge that signifies process
creation. The process nodes of the communication graph and the data associated
with them are stored in the “processes” ETS table.

We can use the match object(Table, Pattern) function from the ets module to
find edges that represent process creation, from this we can determine our set of
candidate functions.

After the initial filtering of the candidates, we use a set of rules to identify
the ones that match the patterns we are looking for. Since the communication
graph does not provide enough information for this we use the SPG built by the
RefactorErl tool. The information we need to check if a candidate satisfies the rules
can be gathered efficiently from the SPG using the query language RefactorErl
provides.

6.2 Filtering the initial candidates

To effectively recognize server processes, we need to examine their structure. The
Figure 1 shows an example skeleton for a general server process [6]. After the
process has been spawned and possibly registered, it initialises the process loop
data. The loop data is often the result of arguments passed to the spawn function.
The receive-evaluate function receives messages and handles them, updates the
state, and passes it back as an argument to a tail-recursive call. If one of the
messages it handles is a stop message, the receiving process will clean up after
itself and terminate.

Based on this general behaviour we determined a set of rules that candidates
must comply with to be considered to be equivalent to the gen server behaviour.
These criteria mostly apply to the structure of the processes and can be checked
based on the syntactic and semantic information contained in the SPG.

We consider to server processes those functions that satisfy the following criteria:

• the spawned function must be tail-recursive;

• it must contain a receive block;

• one of the branches of the function must be non-recursive to ensure the process
can terminate;

• the receive block might contain a reply (synchronous), or no reply (asyn-
chronous) branch;

• the recursive call cannot be in an after block;

• the spawned process is registered; and

Identifying Client-Server Behaviours in Legacy Erlang Systems 423

• the process is unique.

The first rule comes from a common behaviour of processes, which is typical
not only for server processes but also for many other types. Since processes can
handle thousands of messages per second over sustained periods of time, using
tail-recursion, where the very last thing the function does is to call itself, we can
ensure that it executes in constant memory space without increasing the recursive
call stack every time a message is handled. To determine whether the candidate
complies with this rule, we have to examine the spawned function. It either has
to be a tail-recursive function, or the last expression has to be a function call such
that the called function itself complies with this rule. Using the SPG and following
the function calls we must ultimately check if the last function on the chain is a
tail-recursive function. If it is not, we can rule it out from our set of candidates.

If we have established that our function is tail-recursive, the second rule can also
be checked in the same step. For this, we only need to examine whether the last
expression of the path we followed is a receive block or not. This rule differs from
the first one in that it is not a strict rule. We can implement a process complying
with the generic server pattern such that it does not have receive block, but it
would be incredibly uncommon in practice.

Often one of the messages handled by the server process is a ‘stop‘ message
that when received the process will clean up after itself and terminate. For this
behaviour, the spawned function must have a non-recursive branch in the receive
block. This is also not a strict rule, but using this, we can rank the results according
to how well they match the general behaviour. Usually, the function of a server is
to receive requests, handle them, and respond with some appropriate message. In
order to do this, the receive block must contain replies. Similar to the second rule
a process complying with the gen server behaviour can be implemented without
this rule being met, but it would not be general use of a server. This rule can be
checked by examining the receive block found during the checking of the first rule.

When a process is spawned, it can be registered with a name. After registration,
the process can be addressed with its registered name or if registration was omitted
with its PID. Not every process needs to be registered, as we have shown previ-
ously in the task farm example 4.1.1 where only the dispatcher and collector were
registered processes but the workers were not. In contrast to this server processes
are almost always registered, so checking if a given process is registered can help
us filter the candidates.

Server processes have a special role in the system, they communicate with mul-
tiple clients receiving, processing and handling multiple requests. Some server-like
processes exist that comply with most of our structural requirements but still cannot
(or should not) be considered server processes. A good example of such processes
is the worker processes of the task farm. When we create multiple instances of
an actor we do not want to consider those as servers. For this reason, it is worth
examining if there are multiple instances spawned from a given candidate process.

A process being tail-recursive in itself is not enough for it to be a valid server
process. There can be a special case where the tail-recursive call of the spawned

424 Zsófia Erdei, Melinda Tóth, and István Bozó

function is in an after block. We have to filter out such cases because they would
not fit the client-server behaviour. An example of such a process is shown in Section
4.1.2.

It can be the case that a process has multiple recursive calls in its body. Since
types of processes would be not transformable to a gen server behaviour-based
process, so they cannot be considered server processes despite being structurally
similar. Such an example can be found in Section 4.1.3 where a parallel implemen-
tation of the Fibonacci number calculation is shown. These types of processes have
to be also filtered out from our results.

To refine the set of candidates, it might also be worth examining if the re-
ceive block has branches for certain special messages that a server usually han-
dles, for example an ‘EXIT’ or ‘DOWN’ messages sent to the server process when
linked/monitored processes exit2.

7 Evaluation

Our method for identifying source code fragments in legacy Erlang systems that can
be transformed into client-server Erlang behaviors is based on the static source code
analysis and transformation tool RefactorErl. We present examples of server-like
processes we found in some analysed projects that could have been implemented
using the gen server behavior.

We analysed example source codes and solutions3 to the exercises to the books
Erlang Programming [6], Programming Erlang: Software for a Concurrent World [3]
and Learn You Some Erlang for Great Good [11]. We found snippets that match
the pattern of the client-server behaviour.

The first server-like process we identified is the basic server implementation ex-
ample from the book Learn You Some Erlang for Great Good. The kitty server is
a simple Erlang application that demonstrates the use of the client-server pattern
and message-passing between processes. The example is a simulation of a server
that manages a collection of ‘kitty’ objects, which are represented as Erlang pro-
cesses. Clients can interact with the kitty server process by sending messages to
it, such as requesting to create a new kitty, or asking for the status of a particular
kitty. The kitty server process then communicates with the appropriate process to
fulfill the request, and sends a response back to the client. The prototype algorithm
identifies the loop function shown in Figure 12 as a server-like process as it satisfies
all the established criteria.

From the example codes provided to Erlang Programming the prototype al-
gorithm found multiple server-like processes. In Chapter 4 of [6] there are two
small examples (Figure 13) demonstrating message passing between processes (the
loop function is the same in both). While it might be unnecessary because of the
simplicity of the example, it would be possible to convert both to a gen server

2 https://learnyousomeerlang.com/errors-and-processes
3 https://github.com/francescoc/erlangprogramming, https://github.com/Stratus3D/

programming_erlang_exercises, https://learnyousomeerlang.com/

https://learnyousomeerlang.com/errors-and-processes
https://github.com/francescoc/erlangprogramming
https://github.com/Stratus3D/programming_erlang_exercises
https://github.com/Stratus3D/programming_erlang_exercises
https://learnyousomeerlang.com/

Identifying Client-Server Behaviours in Legacy Erlang Systems 425

loop(Cats) ->

receive

{Pid, Ref, {order, Name, Color, Description}} ->

if Cats =:= [] ->

Pid ! {Ref, make_cat(Name, Color, Description)},

loop(Cats);

Cats =/= [] -> % got to empty the stock

Pid ! {Ref, hd(Cats)},

loop(tl(Cats))

end;

{return, Cat = #cat{}} ->

loop([Cat|Cats]);

{Pid, Ref, terminate} ->

Pid ! {Ref, ok},

terminate(Cats);

Unknown ->

%% do some logging here too

io:format("Unknown message: ~p~n", [Unknown]),

loop(Cats)

end.

Figure 12: Main loop function of the kitty server [11]

implementation4. In the modules provided to Chapter 5 the algorithm identified
several examples where a process could be implemented with the gen server be-
haviour. For example in the module frequency a server process is responsible for
managing radio frequencies on behalf of its clients, the mobile phones connected to
the network. The phone requests a frequency whenever a call needs to be connected,
and releases it once the call has terminated. This is an example that demonstrates
the client-server design pattern and the loop/1 function fits the criteria perfectly.

Although in the analysed simpler examples we successfully found the possible
server-like processes with the help of the implemented prototype algorithm, not
all rule-checks have yet been fully implemented, so we also received a few false
positives. Such an example was the loop/1 function shown in Figure 14 (Exercise
3 from Chapter 12 of [3]). The example code implements a process ring, where a
number of Erlang processes are connected in a ring-like structure, with each process
communicating with one neighbor in the ring. The process with ID 1 then sends a
message to the process with ID 2, which in turn sends the message to the process
with ID 3, and so on, until the message has been passed around the entire ring.
At first this process seems like a server based on its structure and communication
but it does not comply with the rule of uniqueness. Such candidates have to be
eliminated in the future.

4In the future, we might implement a prioritisation to present the results in the order of
relevance. Simple candidates might be listed at the end of the candidate list.

426 Zsófia Erdei, Melinda Tóth, and István Bozó

loop() ->

receive

{From, Msg} ->

From ! {self(), Msg},

loop();

stop ->

true

end.

Figure 13: Loop function from the simple example in Chapter 4 of [6]

loop(NextPid) ->

receive

stop ->

NextPid ! stop,

ok;

Value ->

NextPid ! Value,

loop(NextPid)

end.

Figure 14: Loop function from a process ring in Chapter 12 of [3]

In Exercises 5 and 6 from Chapter 13 of [6] (Figure 15) the prototype algorithm
identified the spawned handle crashes/1 function as a server-like process. The
example code implements a supervisor process which is responsible for starting,
stopping, and monitoring the other processes. The worker processes are respon-
sible for performing specific tasks, and the supervisor process is responsible for
monitoring and managing the worker processes. When a worker process crashes
or exits, the supervisor process is notified and restarts the worker process. This
could be potentially implemented with the gen server behaviour, but there exists
a separate behaviour for exactly this type of process, the supervisor behaviour. In
this case, it would be preferable to use the latter behaviour. However, we would
like to note here that the supervisor behaviour is implemented as a server using a
gen server behaviour. Thus our result is correct.

We examined the edge cases presented in Section 4.1. The prototype imple-
mentation had a false positive hit, the worker function (Figure 6). This is a known
limitation, since the uniqueness check is not yet implemented.

8 Conclusions

Design patterns provide solutions to recurring issues in software development. For
object-oriented languages, various tools exist that use different approaches and

Identifying Client-Server Behaviours in Legacy Erlang Systems 427

handle_crashes(WorkerData) ->

receive

{get_workers, Pid} ->

Pid ! {self(), workers, WorkerData},

handle_crashes(WorkerData);

{'DOWN', Ref, process, Pid, Why} ->

...

% Recursively call this function to handle later crashes

handle_crashes(NewWorkerData)

end.

Figure 15: Function handle crashes from the example in Chapter 13 of [6]

methods to identify these patterns. In Erlang, behaviours are the formalised ver-
sions of these design patterns. In this paper, we proposed a method for identifying
a specific design pattern, the client-server behavior, in legacy Erlang systems.

In this paper, we proposed a method based on static analysis of Erlang programs
to identify processes complying with the client-server behaviour. The method is
based on the analyses provided by the RefactorErl tool and can be divided into two
major steps. Initial filtering based on the communication graph is used to reduce
the search space and eliminate processes not matching the server behaviour. After
the initial filtering, the Semantic Program Graph, an intermediate representation
of the source code built by the RefactorErl tool is used to identify functions that
match the structure of the generic client-server design pattern. To achieve this,
we have developed a set of rules that the previously determined candidates must
comply with.

We implemented the prototype algorithm and tested it on small open-source
examples. Using this prototype implementation, we identified basic server processes
that could be turned to equivalent gen server process. We also examined a few edge
cases where the described rules might fail. In the future, we would like to analyse
further open-source projects and refine the rules based on the findings.

References

[1] Al-Obeidallah, M., Petridis, M., and Kapetanakis, S. A survey on de-
sign pattern detection approaches. International Journal of Software Engi-
neering, 7:41–59, 2016. URL: https://www.cscjournals.org/manuscript/
Journals/IJSE/Volume7/Issue3/IJSE-163.pdf.

https://www.cscjournals.org/manuscript/Journals/IJSE/Volume7/Issue3/IJSE-163.pdf
https://www.cscjournals.org/manuscript/Journals/IJSE/Volume7/Issue3/IJSE-163.pdf

428 Zsófia Erdei, Melinda Tóth, and István Bozó

[2] Arcelli Fontana, F., Perin, F., Raibulet, C., and Ravani, S. Design pattern
detection in Java systems: A dynamic analysis based approach. Commu-
nications in Computer and Information Science, 69:163–179, 2010. DOI:
10.1007/978-3-642-14819-4_12.

[3] Armstrong, J. Programming Erlang: Software for a Concurrent World. Prag-
matic Bookshelf, 2007. DOI: 10.1017/S0956796809007163.

[4] Arts, T., Benac Earle, C., and Derrick, J. Development of a verified Erlang
program for resource locking. International Journal on Software Tools for
Technology Transfer, 5(2):205–220, 2004. DOI: 10.1007/s10009-003-0114-

9.

[5] Brown, K. Design reverse-engineering and automated design-pattern detection
in smalltalk. Technical report, North Carolina State University at Raleigh,
USA, 1996. URL: https://repository.lib.ncsu.edu/items/ec9a80d5-

c9c6-47c5-afd5-03f21a36bb63.

[6] Cesarini, F. and Thompson, S. Erlang Programming: A Concurrent Approach
to Software Development. O’Reilly Media, Inc., 2009. URL: https://www.
oreilly.com/library/view/erlang-programming/9780596803940/.

[7] Cole, M. Algorithmic Skeletons: Structured Management of Parallel Compu-
tation. MIT Press, Cambridge, MA, USA, 1991. URL: https://dl.acm.org/
doi/10.5555/128874.

[8] Ericsson AB. Erlang Reference Manual: ets module. URL: https://www.
erlang.org/doc/man/ets.html.

[9] Gaitani, M., Zafeiris, V., Diamantidis, N., and Giakoumakis, E. Automated
refactoring to the Null Object design pattern. Information and Software Tech-
nology, 59:33–52, 2015. DOI: 10.1016/j.infsof.2014.10.010.

[10] Guéhéneuc, Y.-G., Sahraoui, H., and Zaidi, F. Fingerprinting design patterns.
In 11th Working Conference on Reverse Engineering, pages 172–181. IEEE,
2004. DOI: 10.1109/WCRE.2004.21.

[11] Hebert, F. Learn You Some Erlang for Great Good! A Beginner’s Guide. No
Starch Press, USA, 2013. URL: https://learnyousomeerlang.com/.

[12] Heuzeroth, D., Holl, T., Högström, G., and Löwe, W. Automatic design pat-
tern detection. In 11th IEEE International Workshop on Program Compre-
hension, pages 94– 103, 2003. DOI: 10.1109/WPC.2003.1199193.

[13] Horváth, Z., Lövei, L., Kozsik, T., Kitlei, R., Nagyné Vı́g, A., Nagy, T., Tóth,
M., and Király, R. Modeling semantic knowledge in Erlang for refactoring.
In Knowledge Engineering: Principles and Techniques, Proceedings of the In-
ternational Conference on Knowledge Engineering, Principles and Techniques,
Volume 54 Special Issue of Studia Universitatis Babeş-Bolyai, Series Informat-
ica, pages 7–16, Cluj-Napoca, Romania, 2009.

https://doi.org/10.1007/978-3-642-14819-4_12
https://doi.org/10.1017/S0956796809007163
https://doi.org/10.1007/s10009-003-0114-9
https://doi.org/10.1007/s10009-003-0114-9
https://repository.lib.ncsu.edu/items/ec9a80d5-c9c6-47c5-afd5-03f21a36bb63
https://repository.lib.ncsu.edu/items/ec9a80d5-c9c6-47c5-afd5-03f21a36bb63
https://www.oreilly.com/library/view/erlang-programming/9780596803940/
https://www.oreilly.com/library/view/erlang-programming/9780596803940/
https://dl.acm.org/doi/10.5555/128874
https://dl.acm.org/doi/10.5555/128874
https://www.erlang.org/doc/man/ets.html
https://www.erlang.org/doc/man/ets.html
https://doi.org/10.1016/j.infsof.2014.10.010
https://doi.org/10.1109/WCRE.2004.21
https://learnyousomeerlang.com/
https://doi.org/10.1109/WPC.2003.1199193

Identifying Client-Server Behaviours in Legacy Erlang Systems 429

[14] Learn you some Erlang. An event module. URL: https:

//learnyousomeerlang.com/designing-a-concurrent-application#an-

event-module.

[15] Li, H. and Thompson, S. Similar code detection and elimination for Erlang
programs. In International Symposium on Practical Aspects of Declarative
Languages: Practical Aspects of Declarative Languages, Volume 5937 of Lecture
Notes in Computer Science, pages 104–118. Springer Berlin Heidelberg, 2010.
DOI: 10.1007/978-3-642-11503-5_10.

[16] Li, H., Thompson, S., Orosz, G., and Tóth, M. Refactoring with Wrangler,
updated: Data and process refactorings, and integration with Eclipse. In
Proceedings of the 7th ACM SIGPLAN Workshop on ERLANG, ERLANG ’08,
page 61–72, New York, NY, USA, 2008. Association for Computing Machinery.
DOI: 10.1145/1411273.1411283.

[17] skel: A streaming process-based skeleton library for Erlang, 2012. URL:
https://github.com/ParaPhrase/skel.

[18] Tóth, M., Bozó, I., and Kozsik, T. Pattern candidate discovery and paral-
lelization techniques. In Proceedings of the 29th Symposium on the Imple-
mentation and Application of Functional Programming Languages, IFL 2017,
New York, NY, USA, 2017. Association for Computing Machinery. DOI:
10.1145/3205368.3205369.

[19] Tóth, M. and Bozó, I. Static analysis of complex software systems implemented
in Erlang. In Central European Functional Programming School, Volume 7241
of Lecture Notes in Computer Science, pages 451–514. Springer Berlin Heidel-
berg, 2012. DOI: 10.1007/978-3-642-32096-5_9.

[20] Tóth, M. and Bozó, I. Detecting and visualising process relationships in Erlang.
Procedia Computer Science, 29:1525–1534, 2014. DOI: 10.1016/j.procs.

2014.05.138.

[21] Yu, D., Zhang, P., Yang, J., Chen, Z., Liu, C., and Chen, J. Efficiently detect-
ing structural design pattern instances based on ordered sequences. Journal of
Systems and Software, 142:35–56, 2018. DOI: https://doi.org/10.1016/j.

jss.2018.04.015.

[22] Zafeiris, V., Poulias, S., Diamantidis, N., and Giakoumakis, E. Automated
refactoring of super-class method invocations to the Template Method design
pattern. Information and Software Technology, 82:19–35, 2017. DOI: 10.

1016/j.infsof.2016.09.008.

https://learnyousomeerlang.com/designing-a-concurrent-application#an-event-module
https://learnyousomeerlang.com/designing-a-concurrent-application#an-event-module
https://learnyousomeerlang.com/designing-a-concurrent-application#an-event-module
https://doi.org/10.1007/978-3-642-11503-5_10
https://doi.org/10.1145/1411273.1411283
https://github.com/ParaPhrase/skel
https://doi.org/10.1145/3205368.3205369
https://doi.org/10.1007/978-3-642-32096-5_9
https://doi.org/10.1016/j.procs.2014.05.138
https://doi.org/10.1016/j.procs.2014.05.138
https://doi.org/https://doi.org/10.1016/j.jss.2018.04.015
https://doi.org/https://doi.org/10.1016/j.jss.2018.04.015
https://doi.org/10.1016/j.infsof.2016.09.008
https://doi.org/10.1016/j.infsof.2016.09.008

Acta Cybernetica 26 (2024) 431–454.

Using Version Control Information to

Visualize Developers’ Knowledge∗

Anett Feketeab and Zoltán Porkolábac

Abstract

It is not always clear in case of a software project who has the right amount
of knowledge concerning a certain module or file. Programmers frequently ask
questions like ”Who knows the most about this code?” or ”Who can I ask for
help when I work on this module?”. In a large, long-term software product,
knowledge is distributed in an uneven way among developers. Developer
fluctuation during the product lifetime might cause some parts of the code
to be known very well by a multitude of developers, while other parts might
sink to the ”gray zone”, where developer competence is dangerously scarce.
It is important for the project management to identify such critical points, to
avoid the complete loss of competence. Version control repositories contain
loads of useful information about the evolution of a software project. This
paper presents a novel developer-centered method implemented as a plugin
in the open-source code comprehension tool, CodeCompass. The method is
intended to detect individual, team-bound and company-bound knowledge
of large legacy projects. The competence information is computed from the
extracted version control information from Git repositories. The calculated
competence value is based on the number of commits per developer and their
significance. The method weighs all changes according to their added value
computed by a plagiarism detection software. Aggregated views for teams and
companies are available based on various heuristics. The results are visualized
as graph-based diagrams. Project managers and individual developers may
both profit from the tool, whether it concerns software evolution, human-
resource management, architecture, knowledge catch-up, or blame.

1 Introduction

In case of long-running software projects, the fluctuation of developers is inevitable.
This is true for smaller projects with only a few developers at once, such as a uni-

∗Prepared with the professional support of the Doctoral Student Scholarship Program of the
Co-operative Doctoral Program of Ministry of Innovation and Technology financed by the National
Research, Development and Innovation Fund.

aFaculty of Informatics, Eötvös Loránd University, Budapest, Hungary
bE-mail: afekete@inf.elte.hu, ORCID: 0000-0001-8466-7096
cE-mail: gsd@inf.elte.hu, ORCID: 0000-0001-6819-0224

DOI: 10.14232/actacyb.299322

mailto:afekete@inf.elte.hu
https://orcid.org/0000-0001-8466-7096
mailto:gsd@inf.elte.hu
https://orcid.org/0000-0001-6819-0224
https://doi.org/10.14232/actacyb.299322

432 Anett Fekete and Zoltán Porkoláb

versity lab project, or large, industrial projects that count tens or hundreds of de-
velopers. When fluctuation is so great, there is always risk that certain components
of the software suffer neglect. If all or even most developers that have knowledge
about a component leave the project, maintenance problems might emerge, and it
will cause much more problems to debug or develop the component than it would
be in possession of decent expertise [3].

During development, lots of questions emerge that concern other developers,
like ”Who wrote this code?”, ”Why did they decide to write this code like that?”,
”Who understands this code the best?” and so on. These questions might be hard
to answer, especially in large companies, where dozens of programmers develop a
software. Nowadays, using some type of version control system for our projects
like Git or SVN is fundamental. Repositories are able to store every piece of
information that is bound to development since the start of the project. Naturally,
the information we need is not stored explicitly but in the form of commits that
can be processed and analyzed.

In this paper, we present the competence plugin, a tool that is capable of an-
alyzing the commit history of a Git repository and tell various information about
the project files and developers as graph-based visualizations. The plugin serves
multiple different developer-related purposes with its visualizations. We would like
to facilitate code comprehension for programmers by providing them a visualiza-
tion that methodizes the obtained knowledge about project files. Observing the
already familiar part of the code and the unknown territories, the programmer can
consciously select the next comprehension target. It is also our goal to provide
useful team- and company-level information, thus we present the team view and
the affiliation views. They tell about the most competent developer on a certain file
and their affiliation. They also provide information about the teams or companies
who have the most code-related knowledge. The calculations and visualizations are
all handled on file level.

For ethical reasons, all data in this paper has been anonymized. The original
research has been done in a real industrial software development environment with
actual development teams and programmers. We replaced the email addresses,
usernames, and team or company names. We use the form Dev email x and Team
y in place of the original names.

The rest of the paper is structured as follows: Section 2 describes the various
methods and approaches for code comprehension supporting visualization, paying
particular attention to version control related software. Section 3 presents our
methodology of version control data analysis. Section 4 describes the visualization
of the version control data. Section 5 provides a report of the details of implemen-
tation. In Section 6 we present the results of our work on some well-known open
source projects. Section 7 discusses the possible threats to the method’s validity.
Finally, in Section 8 we give a heads-up about future work and conclude our paper.

Using Version Control Information to Visualize Developers’ Knowledge 433

2 Related work

There has been much research done before about code comprehension supporting
visualization possibilities [6,32,41], and using version control data for visualizations
in particular. Code comprehension supporting tools usually focus on a group of
important and coherent aspects of a software, which means they do not cover every
need of a developer that seeks deeper knowledge of the project. Visualization tools
generally stick to 2D or 3D imaging exclusively, thus they can be divided in these
two groups.

In this section, we give an overview of recent visualization tools that support
code comprehension, and then we discuss tools that use version control information
in their visualizations in detail.

2.1 Visualization for code comprehension support

Ever since large software projects started spreading, the need for reliable, trans-
parent, informative code comprehension tools and visualizations has been grow-
ing [4, 30]. There are several software to facilitate source code comprehension, in
the form of plugins (e.g. in IDEs) and standalone tools [8, 46]. These software
always have some focus points that they put the most emphasis on, usually code
metrics based on structure or content [44].

A returning approach is displaying source code metrics in the form of some type
of map view, created with complex geoinformatical methods [20]. Tools with this
approach usually represent source code as continents, states, cities, and buildings on
a map. Metrics can be diversely shown by the size, color, borders and surroundings
of the representing shapes. This technique guarantees that abstract modularity
levels are depicted correctly, and transparency is provided for the user. Code
comprehension software with map views can be divided into 2D and 3D tools.
A couple 2D software include CodeSurveyor [20], Software Cartography [26], 3D
software include CodeCity [47, 48] and CityVR [33] which is also a modern step
towards code comprehension supporting visualization with an experimental usage of
VR technology and gamification. Even more recent approaches combine traditional
visualization techniques with virtual and augmented reality [25].

Another commonly used visualization method includes using simple shapes,
such as rectangles or circles [2], and diagrammatic figures (e.g. UML diagrams,
statistic diagrams) to represent code metrics. We can also apply grouping the tools
by their dimensions; 2D software include CodeCrawler [28], ExplorViz [15], and
CommunityExplorer [35], 3D software include sv3D [31] and TraceCrawler [19]. er
erom

2.2 Usage of version control information

Version control information is used for various software research areas. Most fre-
quently, in the center of these researches is the connection between commit actions
and software quality, and the cost of maintenance. Naturally, this is used as the

434 Anett Fekete and Zoltán Porkoláb

prediction of distribution of software bugs. In [37], the authors developed a regres-
sion model that accurately predicts the likelihood of post-release defects for new
entities. Similarly, in his PhD thesis [12] the author describes the connection be-
tween code maintenance activities as it is reflected by version control information
and the deterioration of the code quality. In a related paper [13] the authors show
that a connection between version control operations and maintainability really
exists, in spite of the fact that the data is coming from different sources.

Apart from software quality, other researches target the developer’s team. The
authors of [22] utilize version control information for mining and visualizing net-
works of software developers. They detect similarities among developers based on
common file changes, and construct the network of collaborating developers. The
authors show that this approach performs well in revealing the structure of develop-
ment teams and improving the modularity in visualizations of developer networks.

Unfortunately, information retrieved from version control systems has its lim-
itations. As an example, attempts to predict code quality or developer efficiency
cannot be achieved according to a research described in [36].

A frequent problem with information mining from version control systems is that
they store only atomic information. In [23], the authors suggest a set of heuristics
for grouping change-sets files that frequently change together. The results show
that the approach is able to find sequences of changed-files.

Version control information can be used not only for extracting data from the
source code for code comprehension purposes, but it is also a frequent research
target for analyzing comments – either structured, or natural language text – in
order to get additional information about the system [42].

Version control information is used for code comprehension purposes to connect
related code modifications submitted in the same commit as described in [5].

2.3 Version control data visualization

Utilizing version control data forms a subset of code visualization techniques. While
repositories contain lots of valuable information, repository mining and data anal-
ysis is an additional challenge in visualization pursuits [49].

Alcocer et al. [2] created a circular visualization called Spark Circle to visualize
the changes in various source code metrics between commits. The visualizations
vary based on the number of different metrics calculated. A spark circle consists of
one annulus if only one metric is applied or multiple annulus sectors in case of mul-
tiple metrics. They also boost the visualization by using different filler and border
colors and different shape sizes according to the concrete metric data. Spark Circle
is a useful tool for the analysis of software evolution based on commit difference.

Not only commits, but entire Git repositories and the branches they contain
can be effectively analyzed and visualized. Elsen [11] has proposed VisGi, a ver-
sion control visualization software that is capable of displaying detailed graphs of
Git branches and version structures. The software highlights structural and code-
related differences. It also shows that time-bound visualization provides valuable
information about software and repository evolution.

Using Version Control Information to Visualize Developers’ Knowledge 435

Greene et al. [17, 18] developed a browser tool that intends to give answers to
collaborator- and repository-related questions among others, named ConceptCloud.
They put focus on identifying abstract relations between objects and attributes.
Their tag cloud visualization is mainly text-based, and capable of handling multiple
selected tags for more accurate search results. Naturally, this method provides the
user with an opportunity to find answers for code-related questions as well.

There are also attempts for the integration of version control data visualization
into the development environment. The Eclipse IDE has a plugin which calculates
the number of changes of methods during a given amount of time [45]. Another,
less recent Eclipse plugin supports data visualization from the CVS version control
system [7].

There can be correlation detected between the changes made to source code and
performance. In order to facilitate discovering changes and their causes, Alcocer
et al. [1] developed Performance Evolution Matrix which is capable of comparing
multiple versions of the same software. The tool helps the user notice the modifi-
cations that might have caused changes in performance. The visualizations mostly
aim changes in software metrics, such as additions and deletions to source code,
call graph changes, and execution time differences.

As mentioned above, besides traditional 2D visualization techniques, modern
approaches are becoming more widespread in version control visualization methods,
such as virtual reality [38].

Apart from version control repositories, data from the supporting project host-
ing systems (e.g. GitHub, GitLab) is also useful for understanding software. Kumar
et al. use Elastic search and Kibana for data visualization through mining GitHub
for further information that cannot be found in plain repositories [27].

3 Methodology

3.1 Background

Repositories, especially those of long-running projects tell lots about development
history and workflow. It creates an image of the gradual changes in the architectural
design of the software. When it comes to maintenance and debugging, the first
questions that usually emerge are ”Who can I turn to for explanation of the logic,
structure and objective behind this code? Who is the expert in it?”. Version control
systems contain all the answers to these questions in their commit history in an
implicit way that requires meticulous analysis to be brought to surface. Commits
provide all the information about who is responsible for each line of code ever
written for that repository in their blame data. This information can be easily
obtained and used in various different visual depictions. Our visualization intends
to present the developer data to facilitate source code comprehension by providing
developer statistics for the software.

In the competence computing, we consider one commit as a unit, this is why the
plugin parses a given part of the commit history commit-by-commit, which is then

436 Anett Fekete and Zoltán Porkoláb

divided into deltas that are equivalent to the files that were modified by the commit
author. The most important factor of developer competence in our calculation is the
significance of modifications which is calculated using JPlag1 [40], a code similarity
checker. The idea is that we want to measure how important is a change and
want to ignore irrelevant formal modifications. We compare the modified version
of a file to its previous version in the commit history. JPlag returns a percentage
value applying token-based comparison. When comparing different versions of a
file, JPlag breaks down the file to tokens, and checks the changes between versions.
To minor changes that do not affect the actual file content, such as adding or
removing comments, or renaming identifiers, JPlag returns a 100% match. We use
this number in our calculation as a threshold to detect relevant changes in the source
code. If the compared versions are not 100% equal, then relevant modifications were
committed to the code. This way minor changes are filtered, and the focus is put
on actual content change.

3.2 Data parsing

The competence plugin consists of a parser and a service component. The parser
performs code analysis, repository mining, and information extraction. Figure 1
shows the parser workflow.

The first and most important precondition of parsing is for the project to have
a Git repository. Without one, the parser will finish parsing without processing
any information. This is why the very first step during parsing is to find the .git
directory. Since this directory is usually placed in the root directory of the source
code, the parser looks for it in the user-provided source path. The parser can be
provided with an optional input variable, n, the number of commits to parse. If n
is not provided, the entire commit history is parsed.

Once the repository is found, we need to collect information about the modi-
fications done in the commits. We traverse through each commit on the current
branch, starting from HEAD, look through the list of modified files and calculate
actual developer competence data. For this, we need to traverse all relevant com-
mits to obtain the blame data. In order to traverse the commits, we need a revision
walker that is sorted in a backward sequence in time and in topological order. The
walker provides the next commit. Commit history processing is done as follows:

1. Let C be the commit history, and let cj be the current commit that is retrieved
from the walker (C = c1, c2, ..., cj , ..., cn). If n is provided, we check if cj meets
the conditions. If not, execution is terminated.

2. Let pcj be the direct parent of cj which is retrieved from the repository. If
pcj does not exist, we are at the beginning of the commit history (cj = cn),
and execution is terminated.

3. Let dcj ,pcj
be the difference between the two Git trees built from cj and pcj .

1GitHub repo: https://github.com/jplag/JPlag

https://github.com/jplag/JPlag

Using Version Control Information to Visualize Developers’ Knowledge 437

Figure 1: The methodology of commit history parsing. The commit history of a
Git repository is parsed commit-by-commit. We take the diff of each consecutive
pair of commits, and analyze every file that was modified in the latter one. The file
versions are compared with a software similarity checker to determine the struc-
tural significance of modifications as a percentage value. The summarized data is
persisted into the database.

4. As mentioned before, dcj ,pcj
consists of deltas, each of which contains the

modifications in one file. Let fi be an individual file that has been modified
in a commit (F = {f1, f2, ...fk}).

5. ∀fi ∈ dcj ,pcj
we compare fi with its previous version in pcj using JPlag. The

returned percentage value shall be the competence data of the author for fi.

6. Go to 4): move on to the next delta if it exists, otherwise, go to 7).

7. Go to 1), and start over with cj+1, if all the conditions are met (i.e. there are
further commits to parse), otherwise, go to 8).

8. Persist the calculated data in the database for every file and every commit
author.

Despite not being able to extract usernames, we can, however, use author email
addresses to extract affiliation, i.e. company or team names. Large companies
usually have their own domain name and give a workplace email address within
this domain to their employees (e.g. microsoft.com, ericsson.com). Based on this
convention, we can assume, that if a developer authors their commits with a certain
email address, we can conclude their affiliation.

438 Anett Fekete and Zoltán Porkoláb

The competence plugin automatically extracts well-known company names from
email addresses during parsing time. It works with a list of possible domain names
mapped up with company names prepared in advance. When the plugin is done
with competence data calculation, all email addresses are checked for company
name extraction. Private email addresses and others not in the company list can
be completed with affiliation manually.

4 Visualization

The competence plugin is implemented as a part of CodeCompass2 [39], which is
an LLVM/Clang based open-source code comprehension framework developed by
Eötvös Loránd University and Ericsson. The CodeCompass parser applies static
analysis on the given source code and the corresponding build commands that are
logged during compilation. Various information is stored about the project includ-
ing structural data, code metrics, version control information, etc. This information
is stored in the workspace database which is then accessed by the CodeCompass
webserver. The webserver provides several various textual and graphic services
through a web browser, such as detailed searching, structural and code-level visu-
alizations, and Git blame data.

CodeCompass has a pluginable framework. Plugins work independently, thus a
certain plugin can be easily skipped from the parsing process if it is not needed.
Plugins consist of a parser and a service component. The parser component takes
care of the analysis, while the service component is responsible for constructing
the visualizations based on the stored information in the database and displaying
it through the CodeCompass webserver. Currently, there are 4 different available
diagram types.

4.1 Personal view

When browsing software components or learning the source code, it is useful for the
user to keep track of which parts in the code base they have reasonable knowledge
about, and what else is there to investigate and learn. The personal view intends to
show this information. CodeCompass is capable of text-based authentication, thus
it is possible to show the user their personal information stored in the database.

The personal view diagram shows the maximum competence percentage that
belongs to the authenticated user for every file in the project. The percentage is
converted to a color code that appears in the corresponding node in the diagram.
Generated colors are on a scale from red, assigned to 0%, to green, assigned to
100%. Figure 2 shows an example of the personal view about the structure of the
competence plugin.

This view is also useful for project managers to decide who to assign a certain
task, or for other teammates to see who they can ask if a question emerges or a

2GitHub repo: https://github.com/Ericsson/CodeCompass

https://github.com/Ericsson/CodeCompass

Using Version Control Information to Visualize Developers’ Knowledge 439

F
ig

u
re

2:
T

h
e

p
er

so
n

al
v
ie

w
of

a
d

ev
el

op
er

co
n

ce
rn

in
g

th
e

so
u

rc
e

co
d

e
o
f

th
e

co
m

p
et

en
ce

p
lu

g
in

.
T

h
e

n
o
n

-w
h

it
e

n
o
d

es
re

p
re

se
n
t

fi
le

s
in

th
e

p
lu

gi
n

.
T

h
ey

ar
e

co
lo

re
d

on
a

sc
a
le

fr
o
m

re
d

to
g
re

en
,

a
cc

o
rd

in
g

to
th

e
co

m
p

et
en

ce
p

er
ce

n
ta

g
e

o
f

th
e

d
ev

el
op

er
.

T
h

e
co

n
ta

in
in

g
d

ir
ec

to
ri

es
ar

e
le

ft
w

h
it

e
as

th
ey

h
av

e
n

o
a
ss

ig
n

ed
d

a
ta

.

440 Anett Fekete and Zoltán Porkoláb

bug is found etc. However, the plugin is now only capable of showing the user their
own information.

4.2 Team view

If we are looking to see who the most competent developer is in the current state of
a file, it is likely the one who recently committed a larger significant modification
to the file in question. The investigated number of commits can be set by the user
before parsing. This way, the last n commits will be parsed, starting from the very
last one. Team view displays the most competent developer of every file, based on
the parsed information. It selects the maximum percentage stored for the file. The
diagram nodes are colored according to the color code map that was previously
calculated from the developers’ email addresses. An example of the team view is
shown in Figure 3.

4.3 Affiliation views

In case of a collaboration project or an open-source software, it is useful if we
are aware which unit is the most competent in a software module. This is why
it is advantageous to display affiliation-focused diagrams. The competence plugin
provides 2 different affiliation views:

4.3.1 Individual affiliation view

In its logic, this type of diagram is similar to team view, but it is focused on
affiliations. We calculate who the most competent developer is in a file, but instead
of coloring the node with the personal color of the developer, we color it with the
assigned color of their company or team.

4.3.2 Accumulated affiliation view

In order to learn which team is the most competent in a file, we need to consider
all data that belongs to the file in question. In this diagram, we group the records
of a file by developer affiliations, and take the average competence of every team.
A diagram node gets the color of the team with the maximum average value.

Although they derive from the same data, the affiliation views might display
different results for the same file: the first diagram focuses on the individual com-
petence rate and the corresponding affiliation, while the second one calculates the
average competence rate of the members of each team that worked on the examined
file, and shows which team has the highest competence in that file. An example of
the two views and their comparison is shown in Figure 4.

The latter 3 visualizations can be displayed without authentication.

Using Version Control Information to Visualize Developers’ Knowledge 441

F
ig

u
re

3:
T

h
e

te
am

v
ie

w
of

th
e

co
m

p
et

en
ce

p
lu

gi
n

.
L

ik
e

in
F

ig
u

re
2
,

th
e

w
h

it
e

n
o
d

es
re

p
re

se
n
t

d
ir

ec
to

ri
es

,
a
n

d
th

e
co

lo
re

d
n

o
d

es
re

p
re

se
n
t

th
e

co
n
ta

in
ed

fi
le

s.
T

h
e

fi
le

n
o
d

es
a
re

gi
ve

n
th

e
co

lo
r

o
f

th
e

m
o
st

co
m

p
et

en
t

d
ev

el
o
p

er
in

th
a
t

fi
le

.
T

h
e

co
lo

rs
ar

e
au

to
m

at
ic

al
ly

ge
n

er
at

ed
fr

om
h

as
h

in
g

em
ai

l
ad

d
re

ss
es

.

442 Anett Fekete and Zoltán Porkoláb

F
ig

u
re

4
:

C
om

p
ariso

n
o
f

th
e

in
d

iv
id

u
al

(1)
an

d
th

e
accu

m
u

lated
(2

)
a
ffi

lia
tio

n
d

ia
g
ra

m
fo

r
th

e
so

u
rce

co
d

e
of

th
e

com
p

eten
ce

p
lu

gin
.

(1)
sh

ow
s

th
e

affi
liation

of
th

e
m

ost
com

p
eten

t
d

evelo
p

er
in

a
fi

le,
w

h
ile

(2
)

sh
ow

s
th

e
m

ost
com

p
eten

t
team

in
a

fi
le

o
n

averag
e.

Using Version Control Information to Visualize Developers’ Knowledge 443

4.4 Coloring

In the personal view, node coloring is trivial, since a node is assigned a color on
the scale from red to green depending on the corresponding competence percentage
from 0% to 100% respectively. In the affiliation diagrams, each team is assigned
a random color. However, node color generation in the team view is based on the
corresponding email address. Email addresses are hashed, and the hash code is
converted to a unique color.

5 Implementation

CodeCompass provides a stable core for a pluginable framework. The backend
(parser and web server) is written in C/C++, while the frontend is written in
JavaScript, using the dojo.js library. The competence plugin is implemented as an
extension of CodeCompass as a new plugin. It relies entirely on version control
data and supports only Git. Repository mining and data analysis is implemented
using the libgit2 API library. The graph-based visualizations are generated using
GraphViz [10]. Since JPlag is capable of parsing several popular programming
languages, we consider the plugin fairly language-independent, meaning that the
competence calculation is applicable to all languages supported by JPlag.

6 Case studies

The plugin was tested on multiple long-running open-source projects: Google Test3,
libgit2 4, and LLVM-Clang5 [29]. All of these projects are continuously developed
with hundreds or even thousands of commits a month, and their developer teams
consist of large numbers of programmers from several different companies. We
also took CodeCompass itself6 into the test projects, since we thoroughly know its
history and structure, and it facilitated the evaluation of the results. The tests
were run on an average personal computer with 16 GB RAM and 3 CPU cores.

Table 1 shows the results of parsing the test projects. All of their repositories
contain hundreds, thousands, or even hundreds of thousands of commits. In order
to provide easily comparable information, we parsed the latest few hundred commits
of every project. Average execution time was calculated considering that 3 cores
were used.

We can see significant difference in execution time, the number of modified
files, and the number of committer developers between the projects. The most
spectacular difference is the execution time of LLVM which can be measured in
hours, compared to the other projects where hundreds of commits have been parsed

3GitHub repo: https://github.com/google/googletest
4GitHub repo: https://github.com/libgit2/libgit2
5GitHub repo: https://github.com/llvm/llvm-project
6The repository of CodeCompass was migrated from SVN to Git in 2016. The earlier version

control data is not accessible.

https://github.com/google/googletest
https://github.com/libgit2/libgit2
https://github.com/llvm/llvm-project

444 Anett Fekete and Zoltán Porkoláb

Table 1: Competence parser results

Project All commits
Parsed

commits
Exec.
time

Modified
files

Devs

CodeCompass 955 500 8m 31s 553 15
Google Test 3,913 500 26m 21s 151 63

libgit2 14,550 500 92m 41s 353 33
LLVM-Clang 425,138 500 15h 34m 1340 159

in less than an hour. The cause of this phenomenon is that, although other test
projects are also open-source and developed by numerous programmers, LLVM is
still an edge-case compared to them; if we take a look at the LLVM’s GitHub
statistics, we can see that over 3000 commits are pushed to master during a single
month, while other continuously developed projects are expanded by only a few
hundreds of commits at most. What’s more, the commits pushed to LLVM are
large ones, affecting many files, and they frequently reach the size of a full value pull
request7, which means parsing one commit in this project means actually parsing
several smaller commits. This also explains why the average execution time of one
commit is significantly higher in LLVM.

Aside from the visualizations, the workspace database also provides a great deal
of information about developers. Table 2 contains the answers to the developer-
related questions asked above, ”Who knows the most about the code?”. In all test
projects, less than a dozen developers can be named who are competent in larger
parts of the code. This circumstance means increased risk from the aspect of the
project’s future. If any of the highly competent programmers leave the developer
team for any reason, the software might suffer serious damage from a code and
software quality perspective among others.

Table 2: Developer data of the test projects

Project
>25
files

known

>50
files

known

Most
competent
developer

Files
known

Most
com-

petent
team

CodeCompass 6 4 user1 399 Company1
Google Test 3 3 user2 87 N/A

libgit2 4 2 user3 200 N/A
LLVM-Clang 15 2 user4 107 Company4

7Commits on LLVM are mostly actual size pull requests where lots of commits are compressed
into a patch file.

Using Version Control Information to Visualize Developers’ Knowledge 445

The ”most competent developer8” at each software, while they possess a large
amount of information and they are very important in the project, still have limited
knowledge about the code. This can be considered a normal situation, since we can-
not expect, even from a lead developer or an architect, to know everything about
every component. The programmers with the highest amount of knowledge sup-
posedly know the entire project thoroughly, and they are aware of all the important
developer decisions.

We are also able to evaluate the results from the affiliations’ aspect. If a project
is developed by multiple teams or companies – which is usually the case in open-
source projects – it might be an interesting and useful information to know which
team is the most competent in certain parts of a software. As mentioned before,
it is not easy to determine a programmer’s affiliation by their commits only, but
we can rely on their committer email addresses for some information. The compe-
tence parser is currently equipped with a list of international companies that give
distinctive workplace email addresses to their employees, e.g. Apple (apple.com),
Ericsson (ericsson.com), and Intel (intel.com). By running simple queries on the
parsed data, we can identify the most competent company or team in a software
project. In this case, ”most competent” means the highest number of develop-
ers from a team that committed modifications to the project in the investigated
time period. Of course, this value can be scaled by considering the amount and
significance of the modifications.

Although the affiliation is obvious in some cases, some companies make their
distinctive email domains accessible for non-employees as well, such as Google
(google.com) and Yahoo (yahoo.com). This makes accurate analysis more difficult,
since we cannot decide by a mere commit if the committer is an actual employee
at one of these companies or not. This is why, even though the natural assumption
is that e.g. Google is the most competent in Google Test, they are not clearly
identifiable.

Another important information concerns the aforementioned risk factor of files
that have not been modified in a long time, thus they are in danger of neglect.
The risk of completely forgetting the purpose and content of these files gets sig-
nificantly lower if their associated files are regularly maintained. However, this
requires further deep analysis of the version control history.

6.1 Validation

The results of the plugin have been verified by applying the calculations on
CodeChecker9, an open-source source code analyzer which also applies static anal-
ysis to detect errors and malfunctions in programs. We conducted an experiment
where we asked the developers of CodeChecker to evaluate their knowledge of the
various modules of the project. The development team of CodeChecker consists of
a small group of full-time developers and students and interns. The project is de-

8Personal names, email addresses and company names are anonymized due to privacy reasons.
9GitHub repo: https://github.com/Ericsson/codechecker

https://github.com/Ericsson/codechecker

446 Anett Fekete and Zoltán Porkoláb

veloped in a multi-language environment with Python, C++ and JavaScript being
the primary languages, which makes CodeChecker an excellent test project.

First, we determined the main modules of CodeChecker, then the entire commit
history of more than 4800 commits was analyzed by the our method. Afterwards,
the participating developers had to answer the question, To what extent do you
know the source code of this module: (module name)?. The participants graded
their knowledge in each module on a five-point scale, from 1 if they were unfamiliar
with the module to 5 if they had detailed knowledge of the source code of the
module. Each point on the scale corresponds to an interval of 20% understanding:
1 corresponds to 0-20% of source code knowledge, 2 to 20-40%, and so on.

After the analysis and the data collection from developers, we accumulated the
results of competence calculation to match modules instead of files, and compared
the results to the data given by developers. The experiment showed that the
tool gave correct results in 48% of cases, with an 18% average deviation from the
answers to our questions. The data indicated that the participants overestimated
their knowledge in 50% of the time, and underestimated in 1.8%. The high value
of overestimation suggests that developers on average have more knowledge of the
source code than the commit history data shows. We also concluded that applying
the results to modules instead of files could provide more useful results in everyday
usage.

The average deviation of 18% indicates that the scale of proportions should be
recalibrated to show more accurate and more detailed representation of knowledge
in a software. We also concluded that the ”unseen” knowledge which is inevitable
for contribution should also be included in the method. More information of de-
veloper knowledge can be extracted from additional input, such as contributions in
the project hosting system (e.g. GitHub, GitLab).

More details of the experiment and its results can be found in our previous
paper [14].

6.2 Evaluation

Considering earlier studies about the possible aspects of data visualization tool
evaluation [21, 24, 34, 43], we evaluated the usefulness of our tool can be evaluated
based on the following criteria system:

Relevance: Most version control visualization tools focus on the actual source
code (its architecture, evolution, change-proneness, etc.), and omits analyzing
developer-related data (see Section 2 for examples). Our tool puts focus on
collecting and visualizing information about the project-related knowledge
of developers and teams, which can be used for developer-centered support
within the development team.

Usability: The user interface of the plugin is integrated with the core frontend
of CodeCompass. The functionalities (diagrams) are available through right-
click menus on the source files, which is intuitive and easy to learn. The
diagrams are generated by the graphic tools of GraphViz, which provides

Using Version Control Information to Visualize Developers’ Knowledge 447

a versatile and clean tool set for graph-based diagrams. However, the en-
tire current frontend of CodeCompass is obsolete. User-friendliness will be
improved by a new, modern web frontend in the near future.

Functionality: The plugin is capable of providing a broad overview of the most
knowledgeable developers and teams in a software project, as well as mapping
the overall familiarity of individuals with every source file. This information
can be used by developers, team leaders, scrum masters, project owners, etc.
to improve the efficiency of task distribution, and provide better support
for less experienced team members. The extracted data leaves more space
for improvement, as the plugin could offer support for further developer-
and knowledge-related questions. For example, based on the frequency of
modifications in a source file, and the number of active developers who have
contributed to the file, the tool could calculate which files are in danger of
forgetting in case some developers leave the team.

Scalability: In Table 1 we can see that 500 commits were parsed from each test
repository. However, the tool was tested on the reopsitory of CodeChecker
which contained more than 4800 commits at the time of testing. Furthermore,
during the development of the plugin, we continuously executed testing on a
larger (10000) set of commits from the repository of LLVM repository. LLVM
receives hundreds of contributions every day which makes it an excellent test
project because the commits include several edge cases and exceptions that
had to be handled to guarantee secure operation. Thus, the plugin is capable
of handling large repositories.

Performance: Table 1 shows the runtime of the tool on the four test projects.
We can see that the larger and the more complex commits get in a project,
the more time the plugin takes to analyze them. The performance of the
plugin can be improved by using an extension or wrapper library instead of
the raw libgit2 API. The API includes many memory issues that wrappers
tackle which may improve performance and reduce runtime significantly.

Flexibility: The plugin itself can be easily switched on and off during the usage
of CodeCompass. On development level, the skeleton of diagram generation
is readily provided in case of implementing new features. However, in order
to improve or extend parsing, the algorithm needs to be understood first.
Currently, commits from one branch can be analyzed at one parse. If a user,
for example, wants to compare branches, the parser component of the plugin
must be extended for which the user has to understand the appropriate libgit2
API elements.

Integration: The plugin is integrated with CodeCompass. The user may provide
the number of commits they wish to analyze, and include the repository
with the source code. This way, the plugin can be easily integrated with
continuous integration systems. Future work includes analyzing data from
project hosting systems.

448 Anett Fekete and Zoltán Porkoláb

7 Threats to validity

Although token-based comparison of edited files guarantees high-level accuracy in
our change analysis, there can be some distorting factors. Just because a program-
mer has committed to a file some time ago in the past, does not mean that they are
still competent in the file in its current state. For example, what if the program-
mer wrote a big chunk of a file, but someone came a couple days later and entirely
refactored it? The two programmers would get similar results for this file, but
the deleted content or overlap of modifications can cause distortions in the results.
Refining the calculations from file level to smaller units, like classes or functions
may help eliminate such anomalies in the future.

Another question that might come up is also content-related: what if someone
modifies every file in a project by adding some minor change, such as license or
copyright information to the comments? This way, this person is granted to have
some percent of comprehension for every file for a while, even though they have not
contributed to the project in its function and might not know anything about the
code at all. Fortunately, software similarity checkers take care of this problem with
token-based comparison. Renaming a variable, reordering a file, or adding com-
ments do not count as significant modifications, there are no semantic differences
are detected between file versions.

A more positively distorting factor lies in the nature of programming, which is
particularly present when a programmer makes changes to the previously written
work of someone else, let that be debugging, maintenance or further development:
programmers can hardly (correctly) contribute to code without understanding at
least some of it. That means actual competence in a file is most likely higher than
our calculations say it to be.

In our calculations, we focus on exclusively the objectively measurable data,
the structural significance of modifications. However, expertise and knowledge cal-
culations include more subjective human factors, such as the capability of memory
retention of a developer. According to the work of Ebbinghaus [9], people tend
to forget detailed information quite quickly after hearing or reading said informa-
tion. The forgetting curve has been tested by making people read and remember
unrelated information like random words. Program code consists of more tightly
connected units to which the forgetting curve may not apply. Future research
includes human factors in the competence calculation.

Another threat to validity is that certain code modifications which seem like
serious modifications to a code similarity checker might not really require deep
knowledge of the code in question. Trivial refactoring patterns such as the extract
function [16] can be applied with minimal understanding of the purpose of the code.
However, we might usually assume that such tasks are assigned to a person who
can take responsibility of the target module.

Using Version Control Information to Visualize Developers’ Knowledge 449

8 Conclusion and future work

In this research, we have developed the competence plugin, a visualization tool
which uses information obtained from version control repositories to make developer-
related information accessible for the user. The plugin answers some frequently
asked questions during development, such as ”Who knows the most about this part
of the code?” and ”Who can I ask for help in this task?”. Also, the tool is essential
to better plan the use of human resources, e.g. detecting when the knowledge in
some part of the code dropped below a certain threshold, or when the knowledge is
unevenly distributed between developers. In such cases, the project management
can apply preventive actions to avoid complete loss of information about certain
parts of the code. Aggregated views can be constructed from individual develop-
ers’ knowledge information, using various heuristics. We tested the plugin as part
of the CodeCompass open-source code comprehension framework, on several long-
term open-source software projects that are continuously developed with frequent
commits in their repositories. Our study has shown that the plugin is an effective
code comprehension supporting tool that is useful for individual developers and
project teams as well.

The competence plugin will be further developed by implementing new visual-
izations focusing on other programmer-related questions and utilizing more infor-
mation from the version control system. Mapping the comprehension visualizations
to project dependency graphs could more effectively help the developer in the pro-
cess of learning about the software in a more conscious way. In the future, we
will develop the calculation to not only apply to files, but modules as well. We
plan to evolve the available visualizations with more subtle coloring, mouse hover
functionality, and some logical diversity in node shapes. We also plan to imple-
ment an interactive interface where the users can map parsed email addresses and
affiliations to their user accounts, and fill in the missing user data.

References

[1] Alcocer, J. P. S., Beck, F., and Bergel, A. Performance evolution matrix:
Visualizing performance variations along software versions. In Proceedings of
the 2019 Working Conference on Software Visualization (VISSOFT), pages
1–11. IEEE, 2019. DOI: 10.1109/VISSOFT.2019.00009.

[2] Alcocer, J. P. S., Jaimes, H. C., Costa, D., Bergel, A., and Beck, F. Enhanc-
ing commit graphs with visual runtime clues. In Proceedings of the Working
Conference on Software Visualization (VISSOFT), pages 28–32. IEEE, 2019.
DOI: 10.1109/VISSOFT.2019.00012.

[3] Bao, L., Xing, Z., Xia, X., Lo, D., and Li, S. Who will leave the company?:
A large-scale industry study of developer turnover by mining monthly work
report. In Proceedings of the 2017 IEEE/ACM 14th International Conference

https://doi.org/10.1109/VISSOFT.2019.00009
https://doi.org/10.1109/VISSOFT.2019.00012

450 Anett Fekete and Zoltán Porkoláb

on Mining Software Repositories (MSR), pages 170–181. IEEE, 2017. DOI:
10.1109/MSR.2017.58.

[4] Bassil, S. and Keller, R. K. Software visualization tools: Survey and analysis.
In Proceedings of the 9th International Workshop on Program Comprehension,
pages 7–17. IEEE, 2001. DOI: 10.1109/WPC.2001.921708.

[5] Brunner, T. and Porkoláb, Z. Advanced code comprehension using version con-
trol information. IPSI Transactions on Internet Research, 16(2):47–54, 2020.
URL: http://ipsitransactions.org/journals/papers/tir/2020jul/p7.

pdf.

[6] Chotisarn, N., Merino, L., Zheng, X., Lonapalawong, S., Zhang, T., Xu, M.,
and Chen, W. A systematic literature review of modern software visualization.
arXiv preprint arXiv:2003.00643, 2020. DOI: 10.1007/s12650-020-00647-

w.

[7] da Silva, I. A., Mangan, M. A., and Werner, C. M. CVS Watch:
A group awareness tool applied to collaborative software develop-
ment, 2004. URL: https://www.researchgate.net/profile/Marco-

Mangan/publication/266471809_CVS_Watch_a_Group_Awareness_

Tool_Applied_to_Collaborative_Software_Development/links/

55a79ec308aea2222c747c4f/CVS-Watch-a-Group-Awareness-Tool-

Applied-to-Collaborative-Software-Development.pdf.

[8] de F Carneiro, G., Magnavita, R., and Mendonça, M. Combining software
visualization paradigms to support software comprehension activities. In Pro-
ceedings of the 4th ACM Symposium on Software Visualization, pages 201–202.
ACM, 2008. DOI: 10.1145/1409720.1409755.

[9] Ebbinghaus, H. Über Das Gedachtnis. 1885. URL: https://home.uni-

leipzig.de/wundtbriefe/wwcd/opera/ebbing/memory/GdaechtI.htm.

[10] Ellson, J., Gansner, E., Koutsofios, L., North, S. C., and Woodhull, G.
Graphviz—open source graph drawing tools. In Proceedings of the Interna-
tional Symposium on Graph Drawing, pages 483–484. Springer, 2001. DOI:
10.1007/3-540-45848-4_57.

[11] Elsen, S. Visgi: Visualizing GIT branches. In Proceedings of the 2013 First
IEEE Working Conference on Software Visualization (VISSOFT), pages 1–4.
IEEE, 2013. DOI: 10.1109/VISSOFT.2013.6650522.

[12] Faragó, C. Maintainability of Source Code and its Connection to Version
Control History Metrics. PhD thesis, Department of Software Engineering,
University of Szeged, Hungary, 2016.

[13] Faragó, C., Hegedűs, P., Végh, A. Z., and Ferenc, R. Connection between
version control operations and quality change of the source code. Acta Cyber-
netica, 21(4):585–607, 2014. DOI: 10.14232/actacyb.21.4.2014.4.

https://doi.org/10.1109/MSR.2017.58
https://doi.org/10.1109/WPC.2001.921708
http://ipsitransactions.org/journals/papers/tir/2020jul/p7.pdf
http://ipsitransactions.org/journals/papers/tir/2020jul/p7.pdf
https://doi.org/10.1007/s12650-020-00647-w
https://doi.org/10.1007/s12650-020-00647-w
https://www.researchgate.net/profile/Marco-Mangan/publication/266471809_CVS_Watch_a_Group_Awareness_Tool_Applied_to_Collaborative_Software_Development/links/55a79ec308aea2222c747c4f/CVS-Watch-a-Group-Awareness-Tool-Applied-to-Collaborative-Software-Development.pdf
https://www.researchgate.net/profile/Marco-Mangan/publication/266471809_CVS_Watch_a_Group_Awareness_Tool_Applied_to_Collaborative_Software_Development/links/55a79ec308aea2222c747c4f/CVS-Watch-a-Group-Awareness-Tool-Applied-to-Collaborative-Software-Development.pdf
https://www.researchgate.net/profile/Marco-Mangan/publication/266471809_CVS_Watch_a_Group_Awareness_Tool_Applied_to_Collaborative_Software_Development/links/55a79ec308aea2222c747c4f/CVS-Watch-a-Group-Awareness-Tool-Applied-to-Collaborative-Software-Development.pdf
https://www.researchgate.net/profile/Marco-Mangan/publication/266471809_CVS_Watch_a_Group_Awareness_Tool_Applied_to_Collaborative_Software_Development/links/55a79ec308aea2222c747c4f/CVS-Watch-a-Group-Awareness-Tool-Applied-to-Collaborative-Software-Development.pdf
https://www.researchgate.net/profile/Marco-Mangan/publication/266471809_CVS_Watch_a_Group_Awareness_Tool_Applied_to_Collaborative_Software_Development/links/55a79ec308aea2222c747c4f/CVS-Watch-a-Group-Awareness-Tool-Applied-to-Collaborative-Software-Development.pdf
https://doi.org/10.1145/1409720.1409755
https://home.uni-leipzig.de/wundtbriefe/wwcd/opera/ebbing/memory/GdaechtI.htm
https://home.uni-leipzig.de/wundtbriefe/wwcd/opera/ebbing/memory/GdaechtI.htm
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1109/VISSOFT.2013.6650522
https://doi.org/10.14232/actacyb.21.4.2014.4

Using Version Control Information to Visualize Developers’ Knowledge 451

[14] Fekete, A., Cserép, M., and Porkoláb, Z. Measuring developers’ expertise based
on version control data. In Proceedings of the 2021 44th International Con-
vention on Information, Communication and Electronic Technology (MIPRO),
pages 1607–1612. IEEE, 2021. DOI: 10.23919/MIPRO52101.2021.9597103.

[15] Fittkau, F., Krause, A., and Hasselbring, W. Software landscape and applica-
tion visualization for system comprehension with ExplorViz. Information and
Software Technology, 87:259–277, 2017. DOI: 10.1016/j.infsof.2016.07.

004.

[16] Fowler, M. Refactoring. Addison-Wesley Professional, 2018. URL: https:
//martinfowler.com/books/refactoring.html.

[17] Greene, G. J., Esterhuizen, M., and Fischer, B. Visualizing and exploring soft-
ware version control repositories using interactive tag clouds over formal con-
cept lattices. Information and Software Technology, 87:223–241, 2017. DOI:
10.1016/j.infsof.2016.12.001.

[18] Greene, G. J. and Fischer, B. Interactive tag cloud visualization of software
version control repositories. In Proceedings of the IEEE 3rd Working Confer-
ence on Software Visualization (VISSOFT), pages 56–65. IEEE, 2015. DOI:
10.1109/VISSOFT.2015.7332415.

[19] Greevy, O., Lanza, M., and Wysseier, C. Visualizing feature interaction in
3-D. In Proceedings of the 3rd IEEE International Workshop on Visualizing
Software for Understanding and Analysis, pages 1–6. IEEE, 2005. DOI: 10.

1109/VISSOF.2005.1684317.

[20] Hawes, N., Marshall, S., and Anslow, C. Codesurveyor: Mapping large-scale
software to aid in code comprehension. In Proceedings of the IEEE 3rd Working
Conference on Software Visualization (VISSOFT), pages 96–105. IEEE, 2015.
DOI: 10.1109/VISSOFT.2015.7332419.

[21] Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., and Möller, T. A system-
atic review on the practice of evaluating visualization. IEEE Transactions
on Visualization and Computer Graphics, 19(12):2818–2827, 2013. DOI:
10.1109/TVCG.2013.126.

[22] Jermakovics, A., Sillitti, A., and Succi, G. Mining and visualizing developer
networks from version control systems. In Proceedings of the 4th Interna-
tional Workshop on Cooperative and Human Aspects of Software Engineering,
CHASE ’11, pages 24––31, New York, NY, USA, 2011. Association for Com-
puting Machinery. DOI: 10.1145/1984642.1984647.

[23] Kagdi, H., Yusuf, S., and Maletic, J. I. Mining sequences of changed-files from
version histories. In Proceedings of the 2006 International Workshop on Min-
ing Software Repositories, MSR ’06, page 47–53, New York, NY, USA, 2006.
Association for Computing Machinery. DOI: 10.1145/1137983.1137996.

https://doi.org/10.23919/MIPRO52101.2021.9597103
https://doi.org/10.1016/j.infsof.2016.07.004
https://doi.org/10.1016/j.infsof.2016.07.004
https://martinfowler.com/books/refactoring.html
https://martinfowler.com/books/refactoring.html
https://doi.org/10.1016/j.infsof.2016.12.001
https://doi.org/10.1109/VISSOFT.2015.7332415
https://doi.org/10.1109/VISSOF.2005.1684317
https://doi.org/10.1109/VISSOF.2005.1684317
https://doi.org/10.1109/VISSOFT.2015.7332419
https://doi.org/10.1109/TVCG.2013.126
https://doi.org/10.1145/1984642.1984647
https://doi.org/10.1145/1137983.1137996

452 Anett Fekete and Zoltán Porkoláb

[24] Kienle, H. M. and Muller, H. A. Requirements of software visualization
tools: A literature survey. In Proceedings of the 2007 4th IEEE International
Workshop on Visualizing Software for Understanding and Analysis, pages 2–9.
IEEE, 2007.

[25] Krause-Glau, A., Bader, M., and Hasselbring, W. Collaborative software vi-
sualization for program comprehension. In Proceedings of the 2022 Working
Conference on Software Visualization (VISSOFT), pages 75–86. IEEE, 2022.
DOI: 10.1109/VISSOFT55257.2022.00016.

[26] Kuhn, A., Erni, D., Loretan, P., and Nierstrasz, O. Software cartography: The-
matic software visualization with consistent layout. Journal of Software Main-
tenance and Evolution: Research and Practice, 22(3):191–210, 2010. DOI:
10.1002/smr.414.

[27] Kumar J., M., Dubey, S., Balaji, B., Rao, D., and Rao, D. Data visualization
on github repository parameters using elastic search and kibana. In Proceedings
of the 2018 2nd International Conference on Trends in Electronics and Infor-
matics (ICOEI), pages 554–558, 2018. DOI: 10.1109/ICOEI.2018.8553755.

[28] Lanza, M., Ducasse, S., Gall, H., and Pinzger, M. Codecrawler: An infor-
mation visualization tool for program comprehension. In Proceedings of the
27th International Conference on Software Engineering, pages 672–673, 2005.
DOI: 10.1145/1062455.1062602.

[29] Lattner, C. and Adve, V. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on
Code Generation and Optimization, pages 75–86. IEEE, 2004. DOI: 10.1109/

CGO.2004.1281665.

[30] Löwe, W., Ericsson, M., Lundberg, J., and Panas, T. Software comprehension-
integrating program analysis and software visualization. Software Engineering
Research and Practice, 2002. URL: http://arisa.se/files/LELP-02.pdf.

[31] Marcus, A., Feng, L., and Maletic, J. I. Comprehension of software analysis
data using 3D visualization. In Proceedings of the 11th IEEE International
Workshop on Program Comprehension, pages 105–114. IEEE, 2003. DOI:
10.1109/WPC.2003.1199194.

[32] Mattila, A.-L., Ihantola, P., Kilamo, T., Luoto, A., Nurminen, M., and
Väätäjä, H. Software visualization today: Systematic literature review. In
Proceedings of the 20th International Academic Mindtrek Conference, pages
262–271, 2016. DOI: 10.1145/2994310.2994327.

[33] Merino, L., Ghafari, M., Anslow, C., and Nierstrasz, O. CityVR: Gameful
software visualization. In Proceedings of the IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 633–637. IEEE, 2017.
DOI: 10.1109/ICSME.2017.70.

https://doi.org/10.1109/VISSOFT55257.2022.00016
https://doi.org/10.1002/smr.414
https://doi.org/10.1109/ICOEI.2018.8553755
https://doi.org/10.1145/1062455.1062602
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
http://arisa.se/files/LELP-02.pdf
https://doi.org/10.1109/WPC.2003.1199194
https://doi.org/10.1145/2994310.2994327
https://doi.org/10.1109/ICSME.2017.70

Using Version Control Information to Visualize Developers’ Knowledge 453

[34] Merino, L., Ghafari, M., Anslow, C., and Nierstrasz, O. A systematic literature
review of software visualization evaluation. Journal of Systems and Software,
144:165–180, 2018. DOI: 10.1016/j.jss.2018.06.027.

[35] Merino, L., Seliner, D., Ghafari, M., and Nierstrasz, O. Communityexplorer:
A framework for visualizing collaboration networks. In Proceedings of the 11th
edition of the International Workshop on Smalltalk Technologies, pages 1–9,
2016. DOI: 10.1145/2991041.2991043.

[36] Mierle, K., Laven, K., Roweis, S., and Wilson, G. Mining student CVS
repositories for performance indicators. In Proceedings of the 2005 Inter-
national Workshop on Mining Software Repositories, MSR ’05, page 1–5,
New York, NY, USA, 2005. Association for Computing Machinery. DOI:
10.1145/1083142.1083150.

[37] Nagappan, N., Ball, T., and Zeller, A. Mining metrics to predict component
failures. In Proceedings of the 28th International Conference on Software En-
gineering, ICSE ’06, page 452–461, New York, NY, USA, 2006. Association for
Computing Machinery. DOI: 10.1145/1134285.1134349.

[38] Oberhauser, R. VR-Git: Git repository visualization and immer-
sion in virtual reality. In Proceedings of the the Seventeenth Interna-
tional Conference on Software Engineering Advances, pages 9–14, 2022.
URL: https://www.thinkmind.org/index.php?view=article&articleid=

icsea_2022_1_20_10032.

[39] Porkoláb, Z., Brunner, T., Krupp, D., and Csordás, M. Codecompass: An open
software comprehension framework for industrial usage. In Proceedings of the
26th Conference on Program Comprehension, pages 361–369, 2018. DOI:
10.1145/3196321.3197546.

[40] Prechelt, L., Malpohl, G., Philippsen, M., et al. Finding plagiarisms among
a set of programs with JPlag. Journal of Universal Computer Science,
8(11):1016–1038, 2002. URL: https://pdfs.semanticscholar.org/6281/

93dbaa4b88101b8d7dd0a7c2eee86af5e32c.pdf.

[41] Shahin, M., Liang, P., and Babar, M. A. A systematic review of software archi-
tecture visualization techniques. Journal of Systems and Software, 94:161–185,
2014. DOI: 10.1016/j.jss.2014.03.071.

[42] Shinyama, Y., Arahori, Y., and Gondow, K. Analyzing code comments to
boost program comprehension. In Proceedings of the 2018 25th Asia-Pacific
Software Engineering Conference (APSEC), pages 325–334, 2018. DOI: 10.

1109/APSEC.2018.00047.

[43] Shneiderman, B. and Plaisant, C. Strategies for evaluating information visual-
ization tools: Multi-dimensional in-depth long-term case studies. In Proceed-
ings of the 2006 AVI workshop on Beyond time and errors: Novel evaluation
methods for information visualization, pages 1–7, 2006.

https://doi.org/10.1016/j.jss.2018.06.027
https://doi.org/10.1145/2991041.2991043
https://doi.org/10.1145/1083142.1083150
https://doi.org/10.1145/1134285.1134349
https://www.thinkmind.org/index.php?view=article&articleid=icsea_2022_1_20_10032
https://www.thinkmind.org/index.php?view=article&articleid=icsea_2022_1_20_10032
https://doi.org/10.1145/3196321.3197546
https://pdfs.semanticscholar.org/6281/93dbaa4b88101b8d7dd0a7c2eee86af5e32c.pdf
https://pdfs.semanticscholar.org/6281/93dbaa4b88101b8d7dd0a7c2eee86af5e32c.pdf
https://doi.org/10.1016/j.jss.2014.03.071
https://doi.org/10.1109/APSEC.2018.00047
https://doi.org/10.1109/APSEC.2018.00047

454 Anett Fekete and Zoltán Porkoláb

[44] Slater, J., Anslow, C., Dietrich, J., and Merino, L. CorpusVis–Visualizing
software metrics at scale. In Proceedings of the 2019 Working Conference
on Software Visualization (VISSOFT), pages 99–109. IEEE, 2019. DOI: 10.

1109/VISSOFT.2019.00020.

[45] Svitkov, S. and Bryksin, T. Visualization of methods changeability based on
VCS data. In Proceedings of the 17th International Conference on Mining Soft-
ware Repositories, pages 477–480, 2020. DOI: 10.1145/3379597.3387451.

[46] Teyseyre, A. R. and Campo, M. R. An overview of 3D software visualization.
IEEE Transactions on Visualization and Computer Graphics, 15(1):87–105,
2008. DOI: 10.1109/TVCG.2008.86.

[47] Wettel, R. and Lanza, M. Visualizing software systems as cities. In Pro-
ceedings of the 2007 4th IEEE International Workshop on Visualizing Soft-
ware for Understanding and Analysis, pages 92–99. IEEE, 2007. DOI:
10.1109/VISSOF.2007.4290706.

[48] Wettel, R. and Lanza, M. Codecity: 3D visualization of large-scale software.
In Companion of the 30th International Conference on Software Engineering,
pages 921–922, 2008. DOI: 10.1145/1370175.1370188.

[49] Williams, C. C. and Hollingsworth, J. K. Automatic mining of source code
repositories to improve bug finding techniques. IEEE Transactions on Software
Engineering, 31(6):466–480, 2005. DOI: 10.1109/TSE.2005.63.

https://doi.org/10.1109/VISSOFT.2019.00020
https://doi.org/10.1109/VISSOFT.2019.00020
https://doi.org/10.1145/3379597.3387451
https://doi.org/10.1109/TVCG.2008.86
https://doi.org/10.1109/VISSOF.2007.4290706
https://doi.org/10.1145/1370175.1370188
https://doi.org/10.1109/TSE.2005.63

Acta Cybernetica 26 (2024) 455–474.

Ontology Supported Domain Knowledge Module

for E-Tutoring System∗

Ghanim Hussein Ali Ahmedab and László Kovácsac

Abstract

E-tutoring Systems are computer applications that provide direct cus-
tomized education to learners. This paper introduces a domain knowledge
module for an E-tutoring system that allows knowledge stored in a well de-
fined form to support reusability, shareability, flexibility, and standardability
and to assists the storage of transfer and prerequisite knowledge relationships.
The introduced knowledge domain module is designed in two ways the general
concepts domain knowledge module and a specific domain knowledge module
ontology. This innovative technique is helpful for students in enhancing their
learning progress. Combining the proposed ontology domain knowledge mod-
ule with an E-tutoring system can enhance the quality of intelligent problem
solving. Also, it will be possible to reuse the knowledge domains. As a result,
the proposal of the domain knowledge module for the E-tutoring system can
enhance the teaching and learning process, support recommendations, gen-
erate hints. In the future the suggested module can be improved by adding
some functionalities and automatically support the generation of problems
and their solutions.

Keywords: E-tutoring system, domain knowledge module, ontology, SPARQL

1 Introduction

E-learning environments are increasingly getting popular in different contexts in
academies, universities, and vocational training [1]. Therefore, suitable support
of learners is also getting great significance. Besides, collaborative learning is also
growing, which puts greater demands on learners, especially when the collaboration
is implemented and tailored to enhance learning and teaching process [1].

∗This work was carried out as part of the EFOP-3.6.1-16-00011 “Younger and Renewing Uni-
versity, Innovative Knowledge City, institutional development of the University of Miskolc aiming
at intelligent specialization” project implemented in the framework of the Szechenyi 2020 pro-
gram. The realization of this project is supported by the European Union, co-financed by the
European Social Fund.

aInstitute of Information Science, University of Miskolc, Hungary
bE-mail: ghanim@iit.uni-miskolc.hu, ORCID: 0000-0001-9582-259X
cE-mail: kovacs@iit.uni-miskolc.hu, ORCID: 0000-0003-2703-7228

DOI: 10.14232/actacyb.297804

mailto:ghanim@iit.uni-miskolc.hu
https://orcid.org/0000-0001-9582-259X
mailto:kovacs@iit.uni-miskolc.hu
https://orcid.org/0000-0003-2703-7228
https://doi.org/10.14232/actacyb.297804

456 Ghanim Hussein Ali Ahmed and László Kovács

In the earlier decades, learning platforms such as e-learning have been con-
trolled by a technology called Learning Management Systems (LMS) [11]. such as
Moodle, ATutor, or Blackboard, these LMS present integrated systems that allow
and support a wide range of academic activities. Thus, instructors can use LMS
to create courses and test suites, communicate with monitor learners, and evaluate
their work. In addition, learners can learn, share, and collaborate through LMS.
The problem is that LMS cannot offer only limited personalized learning services
[12]. All learners are given access to the same learning resources and implements
without considering the differences in knowledge level, interests, and goals.

Regarding this problem, a new learning platform is coming to provide learning
facilities for customizing the education as one-to-one learning. This technology is an
E-tutoring system. An E-tutoring system is defined by [7], as computerbased soft-
ware that provides immediate personalized learning or feedback to learners without
the involvement of humans while conducting a task. According to [14]. E-tutoring
systems commonly involve four modules: the Knowledge Module, which incorpo-
rates content related to the rules and facts for a specific domain of interest to be
given to the learner; the Tutoring Module, which creates and controls instructional
interactions with the learners; the Learner Module, which is a dynamic represen-
tation of the current state of student knowledge; and the Learner Interface, which
governs the interaction between the learner and the system [20].

The creation of an E-tutoring system can concentrate on different issues, in-
cluding the tutoring decisions which will take place in the tutoring module as well
as the rules and facts represented in the knowledge module. The goal of E-tutoring
systems is to allow students to gain knowledge and develop skills in a particular
field of study. However, delivering such tutoring services effectively, these systems
must provide an explicit representation of the domain knowledge module that the
topic of the education activity [21]. It must also be prepared with the tools by
which the representation can be employed on the E-tutoring system for reason-
ing to solve problems in given domain of interest. E-tutoring systems must also
include a domain specific knowledge module capable of generating and resolving
domain problems as well as providing access to such knowledge to promote the
dissemination and acquisition of this knowledge by students [2].

Developing and describing a domain knowledge module is a challenging prob-
lem that has been the issue of many investigations in the disciplines of both arti-
ficial intelligence and artificial intelligence in the educational domain (AIED) [4].
Scholars offered many approaches to expressing the knowledge base explicitly for
domain knowledge modules [17]. The approaches presented have been drawn from
several fields such as artificial intelligence, education science, knowledge engineer-
ing, knowledge management, knowledge representation, and software engineering.
These techniques are semantic networks, frames, knowledge graphs, ontologies,
rulebased, casebased, logicbased and belief networks. In this work, the authors
focus on developing the domain knowledge module using ontology as acknowledge
representation techniques.

Investigation into an ontology is evolving and increasingly becoming widespread
in the computer science community. Its importance is recognized in many research

Ontology Supported Domain Knowledge Module for E-Tutoring System 457

and application areas, including knowledge engineering, database design and inte-
gration, information retrieval and extraction, and educational systems [21]. Ontol-
ogy is a standard structure that offers a shared understanding of a specific area [2].
It represents the domain semantically explicitly, allowing intelligent access to the
knowledge module. Ontology is a building block of semantic technologies. It is a
formal description of the relevant knowledge concepts and their relations. The for-
mal definition of ontology given by Gruber [10] ”ontology is an explicit specification
of a conceptualization”. Ontologies determine or model the domain using concepts,
attributes, and relationships, and this explicit formal representation provides mean-
ing for the vocabulary. In computer and information science, ontology is a formal
concept describing an artifact designed for a purpose, enabling the modeling of the
domain knowledge module [21].

Most of the current E-tutoring systems solutions are developed for a particular
domain, meaning the provided solution of a given knowledge domain will not be
suitable for other knowledge domain [17]. Therefore, these systems developed for
isolated knowledge bases have some limitations and drawbacks to using local knowl-
edge bases. These limitations are limited knowledge base shareability and lack of
standardability, flexibility, reusability, and manual control. Due to this problem,
the solution in this work of the ontology domain knowledge module proposed to
avoid the limitations and drawbacks of using local knowledge bases.

This paper constructs an ontology supported domain knowledge module for an
E-tutoring system that provides help for enhancing the teaching and learning pro-
cess. The applications of this modules are implemented in Python, which can be
used to support the problem solving process. Accordingly, to improve and increase
the learning quality and their processes, a novel ontology domain knowledge mod-
ule develops by defining a set of relationships that would be adequate and clear to
represent all possible relationships for developing and building the ontology domain
knowledge model. In the proposed ontology domain knowledge module, two do-
main ontologies were introduced: a) general concepts for domain knowledge module
ontology and b) specific domain knowledge module ontology. The general concepts
for the domain knowledge module deal with the domain knowledge model concepts
and define the relationship related to these concepts. The ontology of a selected
domain knowledge module deals with the selected subject area that can relate the
selected subject domain to the general concepts for the domain knowledge mod-
ule. It seems like individuals or instances for the general concepts of the domain
knowledge module.

This article is organized as follows: the introduction in the first section. The
second section displays the related work, the third section illustrates the proposed
the domain knowledge module and explains the proposal module in detail, the
fourth section presents the implementation of the proposed module using Python
and Owlready2 module, the fifth section demonstrates the result and discussion,
and the conclusion in the sixth section.

458 Ghanim Hussein Ali Ahmed and László Kovács

2 Related Work

Researchers have followed a modern technology known as an E-tutoring system in
different disciplines such as teaching, psychology, and artificial intelligence. The
aim is to support the benefits of one-to-one education and allow learners to train
their skills by conducting exercises on many interactive learning platforms. E-
tutoring System is a software system developed to support students with immediate
and personalized instruction or feedback, usually without human teacher intrusion.
Several researchers, designers, and developers define E-tutor systems in different
ways according to their interests. According to authors in [14], E-tutoring systems
are intelligent instruction techniques using computer software and communication
technologies their capabilities, practices to improve a human tutor who is an expert
in the subject matter to enhance personalized learning in the form of one-to-one
learning. Scholars have struggled since the early invention of computer applications
to create intelligent learning systems that are more successful than human instruc-
tors [20], The fundamental role of using an E-tutoring system is to facilitate and
customize student learning and achieve their activities effectively [20].

Nowadays, ontologies have become a proper representation scheme, and several
application domains are considering adopting it. Recently, scholars found that the
benefits of using ontologies in the learning field have greater support for designing
and developing the coming E-learning platform [18]. However, concentrating on
this technique is reusing domain knowledge resources for developing domain on-
tologies. Ontologies have been discussed in the context of E-Learning since early
2004 [21]. Ontologies are employed in different ways in E-Learning systems, de-
pending on the E-Learning tasks they perform. Every part of E-learning activities
can represent by a collection of welldefined associated entities that can have the
same semantic representation, especially when dealing with concepts in particular
domain knowledge module.

Ontology is the mostly used approach in the evolution of AI applications to
model concepts in a particular domain of knowledge. In different terms, ontology
is used to represent classes, concepts, and properties that usually exist in a specific
domain and their relations. Ontology is a building block of semantic technologies.
It is a formal description of the relevant knowledge concepts and their relations [2].
Ideally, ontologies should describe these welldefined meanings that can be formal-
ized in languages such as Ontology Web Language (OWL) [4], Resource Description
Framework (RDF) [17], or Resource Description Framework Scheme (RDFS) [17].
The formal nature of ontologies allows intelligent machines to interpret the mean-
ing of concepts. In computer technology and information science areas, Ontology
is the formal description of a specific domain by representing the concepts of a
specific domain their properties and relationships among these concepts [2]. Con-
cepts are usually classified regarding a hierarchical relationship of specialization,
generalization, and containment among these concepts.

Data Model (DM) is a commonly used notion in many disciplines to deliver
an abstract representation of its structure, function, behavior, or others [9]. DM
expresses as a conceptual model that organizes knowledge structure, relationship,

Ontology Supported Domain Knowledge Module for E-Tutoring System 459

semantics, and consistency constraints [9]. According to authors [12]. Domain
Model deals with a collection of knowledge concerning a specific topic, concept,
or domain. Artificial intelligence is a tool that can extract and work with this
data. The data represented in this case relates to the form of knowledge in a given
domain. As an additional point, this model is not designed to replace the role of
the instructor.

Domain knowledge module (DKM) introduces as a knowledge base for courses,
topics, fundamental concepts, teaching units, or knowledge units in the E-tutoring
system. In other terms, the DKM represents the knowledge base structure of a
particular domain in a specific discipline which used as a component in E-tutoring
systems. DKM is essential and valuable to educational communities because it is
usually a targeted skill for developers to build a knowledge base [5]. DKM within the
E-tutoring system describes the course, topics, knowledge domains, key concepts,
teaching units, including the knowledge contents and competencies. However, the
primary role of developing a DKM is to promote and reuse this knowledge on
different E-tutoring frameworks. Domain module is the most significant part of
E-tutoring systems providing a base for operational components such as learning
material, content recommenders, or collaboration tools.

Scholars have investigated practices of knowledge representation such as seman-
tic-based, rule-based, case-based, frame-based, Bayesian network, logic-based, and
ontology-based. Rule-based models are also called Cognitive tutors. The rulebased
models are built from cognitive task analysis, producing problem spaces or task
models. These problem spaces or task models are constructed by observing the
expert and novice users. Task models represent a set of production rules in which
each rule represents an action corresponding to a task [16]. When a user tries to
solve a given task, the user’s reasoning ability is analyzed based on the rules applied
by the user, i.e., the user’s solution is compared step-by-step to the solution given
by the expert.

Case-based is an artificial intelligence problem solving method that records ex-
perience into cases and associates the current problem with an experience [15]. The
Case-based approach is operated in several domains, including pattern recognition,
diagnosis, troubleshooting and planning, and intelligent e-learning.

A logical representation language has some definite rules for dealing with propo-
sitions and reasoning for knowledge and representation. Logical representation
entails deducing a conclusion from many circumstances. This representation estab-
lishes many fundamental communication principles. It is composed of well-defined
syntax and semantics that facilitate sound inference. Each phrase can transform
into a logical form through syntax and semantics.

Frame-Based is one of the artificial intelligence techniques to structure the data,
and it is used to separate information into substructures via the representation of
stereotyped scenarios [3]. Frame-Based seems like a record form build-up of many
characteristics and values used to describe an object in the real world. In addition,
this object contains a collection of slots and their associated values. However, these
slots come in a combination of shapes and sizes. Facets are the names and values
assigned to slots.

460 Ghanim Hussein Ali Ahmed and László Kovács

A Bayesian network is also referred to as a belief network or Bayes net. Bayesian
network is probabilistic and graphical in a form of graph with directed acyclic devoid
of loops and self-connections used for knowledge representation for an uncertain
domain, with each node indicating a random variable [22]. Each edge denotes a
conditional probability associated with the associated random variables.

Semantic-based is a knowledge representation method that enables visualiza-
tion of the knowledge via graphical networks [19]. This network incorporates nodes
representing entities and arcs that reflect their relationships. Moreover, semantic-
based classify concepts in different ways and can also connect them in a form of a
graph. Ontologies, as semantic-based representation, have gained vital significance
as one of the most commonly used techniques to describe and share knowledge in
several disciplines such as E-learning systems, business modeling, software engi-
neering, knowledge engineering [6].

Regarding the continuous development of new technology, it can change the way
of teaching and learning. According to Fensel [23], the primary reason for the pop-
ularity of ontologies is due to providing “a shared and common understanding of a
domain that can be communicated between people and application systems. On-
tology can be constructed as a representation required for scale and variety in the
design of educational frameworks. In the e-learning field, ontologies are employed in
various applications extending from domain knowledge modules representation to
automate generation and assessment of personalized learning materials. The con-
cept of ontology is a useful technology that incorporates related resources, shares
knowledge, and eliminates unnecessary data. Ontology is a fundamental descrip-
tion of the information in the world [13]. The ontology in computing refers to
knowledge representation applying a collection of concepts and connections among
them [8]. In the context of a targeted discipline, ontology is used to rationally
reason and validate concepts in the semantic knowledge model. In theory, ontol-
ogy is a ”formal, explicit specification of a shared conceptualization [10]. It offers a
shared vocabulary that can be employed to construct the domain knowledge model,
involving objects, concepts, properties, and relationships.

A comparison was made using selected criteria according to the representation
schemas used in the current works for representing the domain knowledge mod-
ule as a part of E-tutoring systems. The criteria used to compare the proposed
model with others in the literature covered the terms: standardbility, shareability,
reusability, flexibility, simplicity, and reasoning engine, which are indicated in Table
1. In the columns, the following properties are represented: C1: standardability,
C2: shareability, C3: reusability, C4: flexibility,C5: simplicity and C6: reasoning
engine.

3 Proposed Domain Knowledge Module

Based on the properties of the learning content, two kinds of ontologies were intro-
duced: a) general concepts for domain knowledge module ontology and b) specific
domain knowledge module ontology. The general concepts of the proposed ontology

Ontology Supported Domain Knowledge Module for E-Tutoring System 461

Table 1: Comparison of the models

Representation schema C1 C2 C3 C4 C5 C6
knowledge graph + + + - - +
semantic network + + + - - +
rule-based - - - - - +
case-based - - - - - +
belief network - - - - - -
DITA architecture + + + - - -
ontology-based + + + + + +

domain knowledge module deal with the domain knowledge module’s concepts and
define the relationship related to these concepts. The ontology of a specific domain
knowledge module deals with the selected subject area that can relate the selected
subject domain to the general concepts for the domain knowledge module. It seems
like individuals or instances for the general concepts of the domain knowledge mod-
ule. These modules describe the topic to be learned, provide input to the domain
module, provide specific feedback, select problem topic, generate suggestions, and
support the learner module. The key structure of our proposed domain knowledge
module is shown in Figure 1.

The proposed model is based on topics, attributes, task assessments, material
forms, learning levels, learning rules and relations. To share and reuse the knowl-
edge module in E-tutoring systems, ontology is utilized to manage and represent
the domain knowledge module. The benefit of this model is to personalize the
material forms, make suggestions, and automatic assessments for students.

Figure 1: The proposed domain knowledge module

Based on the general concepts of the proposed domain knowledge module on-
tology displayed in Figure 1, topics, attributes, task assessments, learning levels,

462 Ghanim Hussein Ali Ahmed and László Kovács

learning riles, and material forms terms refer to the following: Topic refers to
knowledge modules as a unit of instruction representing domains, key concepts, or
education units of the learning materials. Attributes refer to slots as an atomic
property of the topics. Every slot has a value domain and concept type. Learning
rule refers to rules or constraints defined on the topics and the attributes. A learn-
ing rule is a group of explicit or implicit ontology constraints or principles managing
behavior or procedure in a particular activity area. Task assessment refers to the
task as an activity related to the topics and attributes/properties. Task assess-
ment describes an activity to be performed by learners. Material forms refers to
teaching material for the topic. Material forms are teaching materials used to learn
the topic. Material forms contain any parts of the academic institution or educa-
tion material. Regarding the primary relationships, the ontology model contains
the following elements: Topics taxonomy relationship: it defines the specialization
among the topics. Topics component relationship: one topic consists of other top-
ics. Topics and competency relationship among the topics. Figure 2. Indicates
the case study structure of a specific domain knowledge module ontology for the
world history domain in the E-tutoring system. We use various kinds of relation-
ships in the case study, such as specialization or generalization, association, and
containment. Containment denotes that a specific topic within a domain includes
different concepts (has-a). The specialization or generalization indicates that topic
has specific topics (is-a). Finally, association means a specific topic associated with
attributes/properties, material forms, and task assessments. Based on Figure 1 and
Figure 2, the following shows a brief description of a subject:

• Topic Concepts: Loop, Condition, Iterative Loop.

• Dependency : Logical Operator, Relational Operator.

• Task Assessments: program output, code review.

• Attributes: syntax, operators.

• Material Forms: Web, Textbook, Media.

4 Implementation of the Proposed Module

The proposed module is implemented as a prototype system includes the back-end,
which is the ontology domain knowledge of the selected module, and the front-end,
which is the interface design of the prototype system that allows the learner to use
the functionality of the proposed module that can integrate the ontology domain
knowledge module with the E-tutoring framework using Python. Python is the
most commonly used language for implementing the ontology domain knowledge
module, which can apply to the E-tutoring system. It is an object-oriented and
extensible programming language [10]. It offers different modules, frameworks, and
packages for handling and implementing ontology. Python can be integrated with

Ontology Supported Domain Knowledge Module for E-Tutoring System 463

Figure 2: Domain knowledge module sample

an OWL ontology using Owlready2 and Flask. Owlready2 was employed to get
transparent access to ontologies, manipulating the classes, object and data prop-
erties, individuals, property domains, ranges, annotations, constrained datatypes,
disjoints, and class expressions. Flask is a Python Web framework that allows the
rapid design of web applications [10]. The domain knowledge module considered
here is ”History,” The ontology created consisted of the ”World History.” Figures
3, 4, 5, 6, 7, and 8 show the implementation of the proposed module. In Figure 3
a snippet shows topic components construction while. Figure 4 displays a snippet
of the object property of the topic module. Figure 7 presents a topic instance.
Checking the consistency of the ontology is shown in Figure 5. Rule construction
and adding new knowledge are indicated in Figure 6. Figure 8 represents the topics
and their task assessments.

Figure 3: Domain knowledge model components

464 Ghanim Hussein Ali Ahmed and László Kovács

Figure 4: Object property of the domain knowledge

Figure 5: Checking the consistency of the ontology

Figure 6: Rule construction for adding new knowledge

Figure 7: A SPARQL query to retrieve the topics

Ontology Supported Domain Knowledge Module for E-Tutoring System 465

Figure 8: A SPARQL query to retrieve the task assessments

5 Functionality tests of the e-tutor module

In the functionality test of the proposed module, a specific field in IT, namely the
loop structure in programming was selected as target domain. The main Topic
Concepts in the corresponding knowledge model are the following elements: itera-
tive loops, conditional loops, while loops, do-while loops, for loops, foreach loops,
conditions, body, loop variable, logical operators (see Figure 9).

The domain knowledge module was extended with a set of task elements, too.
Task assessments (T-assessments) refer to activities related to the T-concepts and
attributes. T-assessments describes an activity to be performed by a student. It
contains a task type followed by a list of arguments. It also can be given as a
question-answer pair. In addition, the T-assessments can be represented in the form
of activities performed by the learners. Syntactically, a T-assessment contains a
task type followed by an argument list. The T-assessments may be either primitive
or compound. A primitive T-assessments was considered to be performed by a
planning operator: the task type is the planning operator’s name to apply. The
task arguments are the parameters for the operator. A compound task requires
separating into smaller tasks using a method; any method whose title unifies the
task type, and its arguments may probably be suitable for satisfying the task unit.
A Task is aimed at a procedure that defines how to accomplish it. A Task is a
combination of steps users follow to produce an expected outcome.

The task can be represented as a pair of questions Q and answer A. The set of
all T-assessments is denoted by T=t where t is a T-assessment, the T-assessment
is given as a question-answer applying as a function form as shown below: Q(S,
Student): list the S of ST ¡S is a field, ST is a table¿ A(S, Student): select S from
Student Another key element in the domain knowledge module is the competency
relationship which is used to link the Topic concepts. Topic T1 is linked to topic
T2 if T1 is a foundation to understand the concept T2. Based on this relation-
ship, if a user fails a test on T2, the engine will suggest studying T1 to the user
before retaking the test. The E-tutoring framework also involves a student model
database, beside the domain models. It will register in this database the progress
and the current knowledge level of the students. The knowledge level indicator is

466 Ghanim Hussein Ali Ahmed and László Kovács

Figure 9: Topic Concepts in Loop Structures domain

given with a pair describing separately the grade of correct and incorrect answers
similar to the intuitionistic logic approach (see Figure 10).

A functional test was done to evaluate the student knowledge level in the pro-
totype system, which is integrated with the ontology domain knowledge module.
Several task assessments with MCQ were performed. According to that, the result
gives feedback according to the student’s answer showing if the answer is correct
or incorrect. The student status will update and offer suggestions. The suggestion
related to task questions, student correct and wrong answers, the student result,
knowledge level progress, and suggested reading materials. Figures 11, 12 display a
test evaluation of the task assessments for different practices that allow the student
to answer the task questions related to the topic concept, and then the student
chooses the correct answer and moves to the next task question. After that, the
prototype system checks whether the answer is correct or not and provides feedback
according to the student’s answer.

Figures 13, 14, 15 shows the generated result in detail for the task assessments,
the selected task question related to the topic concept, and the learner’s answer,
and suggests related material if the learner wants to learn more about the chosen
topic concept.

Ontology Supported Domain Knowledge Module for E-Tutoring System 467

Figure 10: Knowledge level progress

6 Results and Discussions

A proposed model for an ontology domain knowledge module is given in this work.
In Section 3, a theoretical module was described based on two kinds of ontologies.
First, a general domain knowledge module ontology based on topics, attributes,
task assessments, learning rules, learning levels, material forms, and their relations
is indicated in Figure 1. Second, a specific domain knowledge module is designed
as a case study for the History domain using different relationships such as spe-
cialization, generalizations, association, and containment, as shown in Figure 2. In
Section 4, an implementation of the domain ontology using Python and Owlready2.

The current work deals with a knowledge module that helps learners understand
all the key concepts in a specific topic. The future work recommended is coping
with problem solving to support learners in understanding how to use knowledge
modules in solving a practical problem. The majority of the domain knowledge
module uses a separate knowledge base, which can satisfy the features of reusabil-
ity, standardability, open knowledge, and flexibility. By employing ontology in
constructing the domain knowledge module, we can avoid the problem of isolating
knowledge bases, which is the problem of the most current solutions. The domain
ontology can be involved in managing adaptive intelligent E-learning frameworks,
supporting personalized learning, generating tasks, suggesting materials, and giving
hints automatically.

The domain ontology considered in this work has diverse pedagogical goals.
These goals include understanding specific domain facts and solving standard prob-
lems, obtaining a conceptual and intuitive understanding of the material in the

468 Ghanim Hussein Ali Ahmed and László Kovács

Figure 11: Task assessment interface

Figure 12: Task assessment result interface

Ontology Supported Domain Knowledge Module for E-Tutoring System 469

Figure 13: Task results interface

Figure 14: Assessment Ranking

470 Ghanim Hussein Ali Ahmed and László Kovács

Figure 15: Study Ranking

selected domain, and learning general problem solving and metacognitive skills. A
major feature of our model is that the knowledge representation techniques used
have a standard structure. This standard structure allows general representational
inference tools and control mechanisms, facilitating the pedagogical analysis of
knowledge.

Several task assessments were tested with correct and incorrect answers us-
ing list of questions for evaluating the prototype system, which is integrated with
the proposed ontology domain knowledge model. The prototype system gener-
ates feedback for the result according to the student answers, it suggests materials
for learning more about the knowledge units if the answer is correct and it provide
links to related materials if the answer is incorrect. The developed ontology domain
knowledge module integrated with the prototype system can be used in managing
adaptive intelligent e-learning frameworks in the future. Furthermore, the domain
ontology knowledge model can meet various pedagogical goals. These goals include
understanding specific domain facts and solving standard problems, obtaining a
conceptual and intuitive understanding of the material in the selected domain, and
learning general problem solving and metacognitive skills. A significant feature of
the selected module is that the knowledge representation techniques have a stan-
dard structure. However, the standard structure of the proposed model can allow
for general representational inference tools, control mechanisms, and facilitating
pedagogical analysis of knowledge. In addition, combining the proposed ontology
domain knowledge module with an E-tutoring system can enhance the quality of
intelligent problem solving. Also, it will be possible to reuse the knowledge do-
mains. Finally, a proposal of the domain knowledge module for the E-tutoring
system can enhance the teaching and learning process, support recommendations,
generate hints, and automatically support the generation of problems and solutions.

Ontology Supported Domain Knowledge Module for E-Tutoring System 471

7 Conclusion

An E-tutoring requires content-specific knowledge and pedagogical, social, and
technical factors to manage the complicated procedure affected in an E-learning
platform. We first developed general concepts for domain knowledge module on-
tology which deals with the general concepts of the domain knowledge module and
defines the relationship related to these concepts. Secondly, we design a specific do-
main knowledge module ontology that deals with the selected subject area that can
link the selected subject domain to the general concepts for the domain knowledge
module. It seems like an individual or instances for the general concepts of the do-
main knowledge module. Therefore, we created domain ontology for the Knowledge
Module, especially in History Domain, to integrate with E-tutoring System. Using
ontologies is concerned as a knowledge representation for describing the domain
knowledge module, which can provide solutions to fundamental problems in this
subject—also, an approach for organizing the ontology domain knowledge module
presented and discussed. Furthermore, a proposed method explains how the on-
tology domain knowledge module can be combined with an E-tutoring system to
enhance the quality of intelligent problem solving. Also, it will be possible to reuse
the knowledge domains and design E-tutoring frameworks. Finally, a proposal of
the domain knowledge module for the E-tutoring system can enhance teaching and
learning, support recommendations, generate hints, and support the generation of
problems and solutions automatically.

The developed ontology domain knowledge module can be used in managing
adaptive intelligent e-learning frameworks in the future. Furthermore, the domain
ontology knowledge module can meet various pedagogical goals. These goals in-
clude understanding specific domain facts and solving standard problems, obtaining
a conceptual and intuitive understanding of the material in the selected domain,
and learning general problem solving and metacognitive skills. A significant fea-
ture of the selected module is that the knowledge representation techniques have a
standard structure. However, the standard form of the proposed module can allow
for general representational inference tools, control mechanisms, and facilitating
pedagogical analysis of knowledge. In addition, combining the proposed ontology
domain knowledge module with an E-tutoring system can enhance the quality of
intelligent problem solving. Also, it will be possible to reuse the knowledge do-
mains. Finally, a proposal of the domain knowledge module for the E-tutoring
system can enhance the teaching and learning process, support recommendations,
generate hints. In the future the suggested module can be improved by adding some
functionalities and automatically support the generation of problems and solutions.

References

[1] Çağatay Baz, F. New trends in e-learning. In Sinecen, M., editor, Trends in
E-learning, chapter 1. IntechOpen, Rijeka, 2018. DOI: 10.5772/intechopen.

75623.

https://doi.org/10.5772/intechopen.75623
https://doi.org/10.5772/intechopen.75623

472 Ghanim Hussein Ali Ahmed and László Kovács

[2] Abdoune, R., Lazib, L., and Dahmani-Bouarab, F. Disciplinary e-tutoring
based on the domain ontology onto-tdm. In 2022 4th International Conference
on Computer Science and Technologies in Education (CSTE), pages 143–147.
IEEE, 2022. DOI: 10.1109/CSTE55932.2022.00033.

[3] Abu-Dawwas, W. and Abu-Dawas, M. Proposed frame-based expert system to
construct student’s knowledge model in intelligent tutoring systems. Journal
of Mathematical and Computational Science, 10(5):1529–1537, 2020. DOI:
10.28919/jmcs/4567.

[4] Akinwalere, S. N. and Ivanov, V. Artificial intelligence in higher education:
Challenges and opportunities. Border Crossing, 12(1):1–15, 2022. DOI: 10.

33182/bc.v12i1.2015.

[5] Al-Yahya, M., George, R., and Alfaries, A. Ontologies in e-learning: review of
the literature. International Journal of software engineering and its applica-
tions, 9(2):67–84, 2015. DOI: 10.14257/ijseia.2015.9.2.07.

[6] Alshboul, J., Ghanim, H. A. A., and Baksa-Varga, E. Semantic modeling
for learning materials in e-tutor systems. Journal Of Software Engineering &
Intelligent Systems, 6(2):17–24, 2021.

[7] Barnová, S., Krásna, S., and Gabrhelová, G. E-mentoring, e-tutoring, and
e-coaching in learning organizations. In 11th International Conference on Ed-
ucation and New Learning Technologies, Volume 1, page 6488–6493, 2019.
DOI: 10.21125/edulearn.2019.1548.

[8] Chimalakonda, S. and Nori, K. V. An ontology based modeling framework for
design of educational technologies. Smart Learning Environments, 7(1), 2020.
DOI: 10.1186/s40561-020-00135-6.

[9] Gandon, F. L. Ontologies in computer science. DIDACTICA MATHEMAT-
ICA, 31(1):4346, 2013. DOI: 10.4018/978-1-61520-859-3.ch001.

[10] Gruber, T. R. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199–220, 1993. DOI: 10.1006/knac.1993.1008.

[11] Kasim, N. N. M. and Khalid, F. Choosing the right learning management
system (lms) for the higher education institution context: A systematic re-
view. International Journal of Emerging Technologies in Learning, 11(6):55–
61, 2016. DOI: 10.3991/ijet.v11i06.5644.

[12] Kraleva, R., Sabani, M., and Kralev, V. S. An analysis of some learning
management systems. International Journal on Advanced Science, Engineering
and Information Technology, 9(4):1190–1198, 2019. DOI: 10.18517/IJASEIT.

9.4.9437.

https://doi.org/10.1109/CSTE55932.2022.00033
https://doi.org/10.28919/jmcs/4567
https://doi.org/10.33182/bc.v12i1.2015
https://doi.org/10.33182/bc.v12i1.2015
https://doi.org/10.14257/ijseia.2015.9.2.07
https://doi.org/10.21125/edulearn.2019.1548
https://doi.org/10.1186/s40561-020-00135-6
https://doi.org/10.4018/978-1-61520-859-3.ch001
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.3991/ijet.v11i06.5644
https://doi.org/10.18517/IJASEIT.9.4.9437
https://doi.org/10.18517/IJASEIT.9.4.9437

Ontology Supported Domain Knowledge Module for E-Tutoring System 473

[13] Ma, C. and Molnár, B. Use of ontology learning in information system in-
tegration: A literature survey. In Asian Conference on Intelligent Infor-
mation and Database Systems, Volume 1178, page 342–353, 2020. DOI:
10.1007/978-981-15-3380-8_30.

[14] Marouf, A., Yousef, M., Mukhaimer, M. N., and Abu-Naser, S. S. An intelligent
tutoring system for learning introduction to computer science. International
Journal of Academic Multidisciplinary Research (IJAMR), page 1–8, 2018.
URL: https://philarchive.org/archive/MARATS-3.

[15] Masood, M. and Mokmin, N. A. M. Case-based reasoning intelligent tutoring
system: An application of big data and IoT. Proceedings of the 1st Inter-
national Conference on Big Data Research, Part F1325:28–32, 2017. DOI:
10.1145/3152723.3152735.

[16] Mendjoge, N., Joshi, A. R., and Narvekar, M. Review of knowledge representa-
tion techniques for intelligent tutoring system. In 2016 3rd International Con-
ference on Computing for Sustainable Global Development (INDIACom), pages
2508–2512, 2016. URL: https://ieeexplore.ieee.org/document/7724713.

[17] Nkambou, R. Modeling the domain: An introduction to the expert module.
In Advances in Intelligent Tutoring Systems, Volume 308, page 15–32, 2010.
DOI: 10.1007/978-3-642-14363-2_2.

[18] Noy, N., McGuinness, D., Amir, E., Baral, C., et al. Research challenges and
opportunities in knowledge representation. Computer Science and Engineering
Faculty Publications, 2013. URL: http://corescholar.libraries.wright.
edu/cse/218.

[19] Ram, A. Knowledge representation in intelligent tutoring system. In Pro-
ceedings of the International Conference on Advanced Intelligent Systems and
Informatics, Volume 533, 2017. DOI: 10.1007/978-3-319-48308-5.

[20] Ramı́rez-Noriega, A., Mart́ınez-Ramı́rez, Y., Garćıa, J. E. S., Bojórquez,
E. M., Francisco Figueroa Pérez, J., Mendivil-Torres, J., and Miranda, S. To-
wards the automatic construction of an intelligent tutoring system: Domain
module. In New Knowledge in Information Systems and Technologies: Volume
1, pages 293–302. Springer, 2019. DOI: 10.1007/978-3-030-16181-1_28.

[21] Sani, S. M., Aris, T. N. M., Mustapha, N., and Sulaiman, N. M. ” ontol-
ogy”: A tool for managing domain module in an intelligent tutoring system.
International Journal of Advances in Computer Science and Its Applications,
5(2):117–124, 2015. DOI: 10.15224/978-1-63248-056-9-38.

[22] Tato, A., Nkambou, R., Brisson, J., Kenfack, C., Robert, S., and Kissok, P. A
Bayesian network for the cognitive diagnosis of deductive reasoning. In Verbert,
K., Sharples, M., and Klobučar, T., editors, Adaptive and Adaptable Learning,
Volume 9891 of Lecture Notes in Computer Science, pages 627–631. Springer
International Publishing, 2016. DOI: 10.1007/978-3-319-45153-4_78.

https://doi.org/10.1007/978-981-15-3380-8_30
https://philarchive.org/archive/MARATS-3
https://doi.org/10.1145/3152723.3152735
https://ieeexplore.ieee.org/document/7724713
https://doi.org/10.1007/978-3-642-14363-2_2
http://corescholar.libraries.wright.edu/cse/218
http://corescholar.libraries.wright.edu/cse/218
https://doi.org/10.1007/978-3-319-48308-5
https://doi.org/10.1007/978-3-030-16181-1_28
https://doi.org/10.15224/978-1-63248-056-9-38
https://doi.org/10.1007/978-3-319-45153-4_78

474 Ghanim Hussein Ali Ahmed and László Kovács

[23] Verma, A. An ontology of ontological engineering. International Journal
of Engineering Sciences, 24(63019):97–107, 2017. URL: https://ijoes.

vidyapublications.com/paper/Vol24/11-Vol24.pdf.

https://ijoes.vidyapublications.com/paper/Vol24/11-Vol24.pdf
https://ijoes.vidyapublications.com/paper/Vol24/11-Vol24.pdf

Acta Cybernetica 26 (2024) 475–499.

Comparing Structural Constraints for
Accelerated Branch and Bound Solver of

Process Network Synthesis Problems∗

Emília Heincab and Balázs Bánhelyiac

Abstract

The P-Graph methodology can be used to find the optimal solution for
large processing system. This methodology solves the combinatorial part of
the problem more efficiently than the traditional branch and bound method
due to the utilized relationships inherent in the structure. However, reducing
the number of possibilities developed in the constraint functions also plays
a major role in this algorithm. In this publication, we present a new con-
straint function that also takes into account the minimum cost structure and
compares it with earlier versions.

Keywords: P-Graph, Accelerated Branch and Bound, structural constraint

1 Introduction

The task of process network synthesis is to determine the optimal structure of a
process system, the optimal configurations, and operating sizes of the functional
units that make up the system and perform various operations [12]. Process syn-
thesis plays a critical role in reducing material, energy consumption, and negative
environmental impacts, thereby increasing profitability. Several examples in the
literature demonstrate that efficient process synthesis can reduce energy consump-
tion by up to 50% and costs by 35% [13]. Ideally, the structure of a process and the
operational configurations that make up the process could be designed and synthe-
sized simultaneously because their performance interacts. In practice, however, it
is extremely difficult due to the simultaneous continuous and discrete nature of the
task. The discrete nature is caused by the structure of the process, which leads to

∗The research was supported by the Government of Hungary and funded by the European
Union Recovery and Resilience Plan within the framework of the Artificial Intelligence National
Laboratory Program (RRF-2.3.1-21-2022-00004).

aInstitute of Informatics, University of Szeged, Hungary
bE-mail: heincze@inf.u-szeged.hu, ORCID: 0009-0000-2172-505X
cE-mail: banhelyi@inf.u-szeged.hu, ORCID: 0000-0003-4408-9054

DOI: 10.14232/actacyb.297735

mailto:heincze@inf.u-szeged.hu
https://orcid.org/0009-0000-2172-505X
mailto:banhelyi@inf.u-szeged.hu
https://orcid.org/0000-0003-4408-9054
https://doi.org/10.14232/actacyb.297735

476 Emília Heinc and Balázs Bánhelyi

the combinatorial complexity of the problem that makes it complex to find an opti-
mal solution to the problem. The process network synthesis problems formulate a
MILP problem with many binary variables. Finding the optimal subnetwork is an
NP-hard problem. Combinatorial analysis can be applied to this type of problem.
The method is used to reduce the number of possible solutions by exploiting the
unique properties of the so-called PNS (Process Network Synthesis) problems is the
ABB (Accelerated Branch and Bound) method [10]. It is based on the branch and
bound method, i.e. the method uses a lower bound submethod to exclude solutions
that cannot provide a better solution than the currently known best solution. It
is critical for the computation time of solving the problem with the B&B method
to find a tighter lower bounding submethod. The currently available implementa-
tions and the previous studies do not exploit all the information, considering only
the continuous part of the problem by calculating the LP relaxation of the MILP
problem. In this article, we introduce a better lower bounding sub-method taking
into consideration not just the continuous but also the structural nature of the PNS
problem.

2 The Process Network Synthesis

2.1 P-Graph and basic notations methodology

The P-Graph (Process Graph) methodology was developed in the early 1990s for
the complex chemical production system to model and optimize. Its name de-
rives from a directed graph obtained by P-Graph, which provides the ability to
use combinatorially feasible solution structures to determine the optimum for large
tasks [8]. The P-Graph methodology based on graph theory and combinatorial
techniques provides a solution to facilitate finding the optimal Process Network
Synthesis (PNS) subproblem. The P-Graph can be described with (M,O) struc-
tures, where the M is the finite set of materials, and the finite set of operating
units, O ∈ ℘(M)× ℘(M). The two sets are disjoint, i.e. M ∩O = ∅.

Definition 1. The P-Graph(M ′, O′) is the subgraph of the P-Graph(M,O), i.e.
P-Graph(M ′, O′) ⊆ P-Graph(M,O) if M ′ ⊆M and O′ ⊆ O.

The Process Network Synthesis problems, or PNS problems, in short, are defined
as (P,R,O) triplets, where P stands for the set of products, R stands for the set
of resources or raw materials and O is the set of operating units, where P ∩R = ∅,
P ⊆M , R ⊆M , andM ∩O = ∅. If (α, β) ∈ O, then α is the input-set, and β is the
output-set of (α, β). The sets of input and output materials of set o of operating
units are denoted by matin(o) and matout(o) separately, which are defined as:

matin(o) =
⋃

(α,β)∈o α and matout(o) =
⋃

(α,β)∈o β.

Let the either consumed or produced materials by the operating unit o be:

mat(o) = matin(o) ∪matout(o).

Comparing Structural Constraints for Accelerated Branch and Bound Solver 477

M is the set of materials in the PNS problem that are used (consumed or produced)
by at least one operating unit from the set O, i.e. M =

⋃
o∈Omat(o).

In the methodology, a directed bipartite graph was used to represent the struc-
ture of a process system. We distinguish two kinds of nodes, the material (set of
M) and operating units (set of O) in the graph. The directed edges represent the
connection between the operating units and materials. The edges from the mate-
rials to the operating units mark the relation of the operating units that consume
the materials. The edges from the operating units to the materials represent the
relation of producing the given materials. In the PNS problems, costs can be as-
signed to the operating units and raw materials. In the following sections, the fix,
installation cost is denoted by fix_cost(O′) : ℘(O)→ R≥0 and the operating cost
is marked by op_cost(O′) : ℘(O)→ R≥0.

Definition 2. The P-Graph(m, o) is a combinatorially feasible structure or solution
structure, in short of the PNS problem (P, R, O) if it satisfies the following five
listed axioms:

(S1) P ⊂ m

(S2) ∀X ∈ m,X /∈ matout(o) if and only if X ∈ R

(S3) o ⊆ O

(S4) ∀y0 ∈ o,∃ path[y0, yn], where yn ∈ P

(S5) ∀X ∈ m, ∃(α, β) ∈ o such that X ∈ (α ∪ β)

The aim of the problem is that the solution structure with the optimal summed
cost is found, i.e. to produce all of the products from the raw materials at minimum
cost. The algorithm that finds all the possible solution structures, will be the SSG
algorithm, and the method that finds the solution structures with the optimal
summed cost will be the ABB algorithm.

To solve this problem, we have to first find the maximum solution structure
which contains all combinatorially feasible process structures. This method is called
the MSG method (Maximal Structure Generation) [7].

Definition 3. Let ∆ : M → ℘(O), where ∆(X) = {(α, β) : (α, β) ∈ O and X ∈ β}
i.e. determines the set of operating units producing all materials X ∈M .

Definition 4. Let the decision mapping δ(X) be the subset of ∆(X), i.e. δ(X) ∈
∆(X) X ∈M .

Definition 5. Expanding the decision mapping definition for the set of materials
let the δ[m] = (X, δ(X) |X ∈ m).

Let the set of operating units of decision-mapping δ[m] be marked as op(δ[m]),
where

op(δ[m]) =
⋃
X∈m δ(X).

478 Emília Heinc and Balázs Bánhelyi

Let the complement of decision-mapping δ[m] defined by

δ[m] = {(X,Y) |X ∈ m and Y = ∆(X) \ δ(X)}.

Let δ(X) be a set of operating units not included in δ(X):

δ(X) = ∆(X) \ δ(X).

Definition 6. Decision mapping δ[m] is consistent if |m| ≤ 1, or (δ(X) ∩ δ(Y)) ∪
(δ(X) ∩ δ(Y)) = ∆(X) ∩∆(Y)∀X,Y ∈ m.

Definition 7. Let δ1[m1] and δ2[m2] be consistent decision-mappings. Then δ1[m1]
is an extension of δ2[m2], i.e. δ1[m1] ≥ δ2[m2] if m2 ⊆ m1 and δ1(X) = δ2(X) for
X ∈ m2.

It can easily be proved that there is a bijective transition between the consistent
decision mapping δ[m] and the P-Graph (m, o), where m =

⋃
(α,β)∈o(α ∪ β) and

o =
⋃
X∈m δ(X) [6].

Definition 8. Let the set of included operating units in δ[m] decision mapping be
noted as OI , where then

OI = op(δ[m]).

Let the set of excluded operating units in the δ[m] decision mapping be OE, where

OE = op(δ[m]).

2.2 Solution Structure Generation algorithm

Further investigation is aided by the SSG (Solution Structure Generation) algo-
rithm, which generates each combinatorially feasible structure exactly once. The
algorithm is based on decision mappings. Decision mappings involve deciding which
operating units produce the materials, i.e. which operating units are involved in a
given solution structure [9]. Consequently, during decision mapping, we also de-
cide which operating units will be excluded from the given structure. We must
be consistent in our decisions because even if it has already been decided that an
operating unit for one material should not be included in the structure, we cannot
choose again when deciding on another material. All output materials for an oper-
ating unit, if included in the structure, must be specified, an inconsistent decision
would result in certain substances being produced and certain substances not. The
SSG implementation of the decision mapping-based algorithm calls itself recursively
[6, 5].

As we see in the Algorithm 1, the procedure returns with all possible decision
mappings over the PNS(P, R, O) problem. In the further section, the ABB algo-
rithm will be introduced which is based on the SSG algorithm as working over all
the possible decision mappings in the input PNS(P, R, O) problem but it returns
with the optimal cost decision mapping.

Comparing Structural Constraints for Accelerated Branch and Bound Solver 479

Algorithm 1 Main and recursive part of SSG algorithm
Input M,PNS(P,R,O)

procedure SSG(M,PNS(P,R,O))
if P = ∅ then If there is nothing to produce
Stop

end if
SSGD(p, ∅, ∅)
return
procedure SSGD(p, m, δ[m])
if p = ∅ then
write δ[m] δ[m] defines a solution-structure
return

end if
let x ∈ p
C := ℘(∆(x)) \ ∅
for ∀c ∈ C do
if ∀y ∈ m, (c ∩ δ(y) = ∅ and (∆(x) \ c) ∩ δ(y) = ∅) then
δ[m ∪ {x}] := δ[m] ∪ (x, c)
SSGD

((
p ∪matin(c)

)
\ (R ∪m ∪ {x}),m ∪ {x}, δ[m ∪ {x}]

)
end if

end for
return

2.3 Mathematical model for P-Graph

The continuous variables of the model are denoted by x and the binary variables
by y.

These variables are assigned to operating units. The continuous variable xi
indicates the operational size of the operating unit Oi(∈ O), and the binary variable
yi indicates whether the unit is in the structure or not: if the value of the binary
variable yi ∈ {0, 1} is 0, then the operating unit Oi is not in the structure, and if it
is 1, then it is involved. If the operation unit Oi is part of the structure, i.e. yi = 1,
then the operation size of the operation unit, which is a continuous variable xi, can
take any value from 0, and the operation unit between its upper capacity limit, Ui.
Formally: xi ≤ yiUi, where Ui is the upper bound of the capacity of the operating
unit Oi. If nothing of the sort is defined in the task boundary, an arbitrarily large
number M can be used instead of Ui.

The objective function is to minimize cost. The cost is composed of the in-
vestment cost, the operating cost of the operating units, and the price of the raw
material. These components cover the full cost of the network, i.e. the process to
be synthesized considers the full cost. In the model, the costs of the operating units
are simply entered with the relationship a + bx, where x is the size or capacity of
each operating unit, a is the fixed cost, and b is the proportional cost which contains
the price of the raw material.

480 Emília Heinc and Balázs Bánhelyi

In addition to the capacity constraints listed above, additional constraints are
imposed on material balances, products, and raw materials. For products, we
usually set lower limits to determine how much we need to produce at least of a
given product, while for raw materials we may set upper limits if these types of
raw material quantities are not available in unlimited amounts. Material balance
conditions should be defined for intermediate products. These conditions state that
at least as much of each intermediate product must be produced as is necessary
for the operation of the operating units that use it, otherwise the manufacturing
process would come to a standstill.

2.4 Accelerated Branch and Bound method

Since this is a mixed-integer programming problem, a general branch-and-bound-
type method can be used to solve this model. Although the optimal solution to
the problem can also be determined by using these methods, their efficiency can
be further improved since the special properties of the synthesis tasks are not
taken into account in the search for a solution. Accordingly, the P-Graph method
for determining the optimal solution is a special algorithm of the Constraint and
Separation type, ABB is used.

This algorithm uses the previously described decision mappings of the SSG al-
gorithm for binary variables in the branch-and-bound tree. Earlier on, the branch-
and-bound method used continuous relaxation of the mathematical model in ad-
dition to the structural constraints of the constraint SSG. In this relaxed model,
the binary variables (yi) were not considered, and the model was limited to de-
termining the optimal values of the continuous variables (xi). This optimization
task provided a lower bound on the operating costs. In the following section, when
the lower bounds are defined precisely for our branch-and-bound method, the re-
laxation type of the bound is nominated as Lower_Boundrelaxed (see Algorithm
2).

Algorithm 2 Relaxed lower bound algorithm
Input PNS(P,R,O) problem, OI , OE
procedure Lower_Boundrelaxed(PNS(P,R,O), OI , OE)
return LPSolver(PNS(P,R,O), OI , OE)

The ABB algorithm is given as Algorithm 3 below. The method’s inputs
are the PNS(P,R,O) problem in which the algorithm is running over, and the
Lower_Bound function that will be used to prune the branch-and-bound tree.
The M and neutralExtension variables are used implicit by ABB algorithm. The
M denotes the set of materials that will be considered, and the neutralExtension
is a Boolean variable that decides whether the neutral extension acceleration will
be used or not.

The ABBD sub-method is called recursively in the ABB algorithm. It can be
defined as a node from the branch-and-bound tree when it is called. The decision-

Comparing Structural Constraints for Accelerated Branch and Bound Solver 481

Algorithm 3 Main and recursive part of ABB algorithm
Input PNS(P,R,O), Lower_Bound
Global variables R,∆(x), (x ∈M), U, currentbest

procedure ABB(PNS(P,R,O), Lower_Bound)
U :=∞; currentbest :=∞
O := MSG(PNS(P,R,O))
ABBD(P, ∅, δ[∅])
return
procedure ABBD(p, m, δ[m])
if neutralExtension then

let δ̂[m̂] be the maximal neutral extension of δ[m]

p := (matin(op(δ̂[m̂])) ∪ P) \ (m̂ ∪R)

OI := op(δ̂[m̂])

OE = op(δ̂[m̂])
end if
bound = Lower_Bound(PNS(P,R, 0), OI , OE)
if p = ∅ then Halting condition.
if U ≥ bound then
U = bound;
update currentbest;

end if
return

end if
if bound ≥ U then Cutting the branch.
return

end if
x ∈ p;
C := ℘(∆(x)) \ {∅};
for ∀c ∈ C do
if ∀y ∈ m, c ∩ δ(y) = ∅&(∆(x) \ c) ∩ δ(y) = ∅ then
m′ := m ∪ {x};
if S(δ[m′]) = ∅ then
Continue;

end if
δ[m′] := δ[m] ∪ {(x, c)};
p := (matin(op(δ[m′])) ∪ P) \ (m′ ∪R);
OI := op(δ[m′]);
OE := op(δ[m′]);
ABBD(p,m′, δ[m′])

end if
end for
return

482 Emília Heinc and Balázs Bánhelyi

mapping is the fundamental tool for finding the optimal solution structure, as it
defines obviously the node, or partial problem, S of the branch-and-bound tree.
First, the partial problem has to be defined precisely for the algorithm. The defi-
nition of the S will be:

Definition 9. Let S(δ[mi]) be the partial problem of ABB in solving PNS problem
(P,R,O):

S(δ[mi]) := {δ[mk] : δ[mk] ≥ δ[mi] and graph(δ[mk]) ∈ PNS(P,R,O)},
where graph(δ[mk]) ∈ PNS(P,R,O) means that δ[mk] is the combinatorially fea-
sible structure of PNS(P,R,O).

The ABBD(P, ∅, δ[∅]) or S(∅) is called for the root node in the tree. The
first parameter is the set of materials that are obligatory to produce. In the root
node, it is the products from the PNS problem. The second parameter is the set
of materials that have been produced already. The third parameter is the decision
mapping which is valid in the current branch. As there is no material produced in
the root node, the last two parameters are zero in the root node.

As an acceleration of the algorithm, the neutral extension of the current decision
mapping, δ[m] can be used. The method extends the decision mapping with the
materials that have to be produced. If we have one possible way to produce it, then
the decision of which operating unit will produce these materials is straightforward
[10]. It could be either that (1) all of the operating units are included and excluded,
i.e. ∆(m)∩(OI∪OE) = ∆(m), or (2) it is not decided which operating units produce
it, but there is one possible operating unit that could produce it, the other operating
units have already been excluded, i.e.(OI ∩∆(m) = ∅) & (|∆(m) \OE | = 1).

The halting condition has been defined in the ABBD algorithm. If there aren’t
any obligatory products then the algorithm returns with the currently best cost. In
this case from the validity of the lower bound sub-method, the return value equals
the optimal cost of the current examined branch.

In the ABBD sub-method, as we calculate the minimal cost of the sub-tree in
the branch-and-bound tree, the lower bound has to be calculated for the summed
cost. The Lower_Bound must be a valid lower bound sub-method. The validity
of the newly introduced lower bound will be proved in Theorem 1.

If the lower bound is greater than the actual best solution then the branch is
going to be cut because the optimal solution can’t be better than the current best
solution.

After the examination of the halting conditions, the branching part is executed:
as it is introduced in the SSG algorithm, we select a material x from the set of
mandatory products, p that hasn’t been decided which operating units produce
yet. The son of the current partial problem will be the recursive sub-problem.
The recursively called method’s parameter is the decision mapping that consists of
the material x and it is consistent with the current decision mapping in the main
problem. Formally defined as:

son(S(δ[m]), x) := {S(δ′[m′]) : S(δ′[m′]) 6= ∅ & δ′[m′] = δ[m]∪{ (x, c) }
for c ∈ (℘(∆(x))) \ ∅ & δ′[m′] is consistent} .

Comparing Structural Constraints for Accelerated Branch and Bound Solver 483

3 Lower bound submethods in ABB algorithm

In each of our relaxed models in our ABB algorithm with a new lower bound,
the minimum cost of the structurally feasible part of the residual was determined
by the modified SSG algorithm for the free part of the P-Graph. The modified
SSG algorithm is similar to the ABB method that has been called recursively with
the sum of the fixed costs as the lower bound. The combination of these two
optimization models gives a better lower bound for the sub-problems of B&B. Of
course, operational and structural lower bounds need not necessarily come from
the same feasible structure. The general Lower_Bound function inputs are the
PNS(P,R,O) problem the algorithm is running over, and the currently included
and excluded operating units in the branch by the decision mapping δ[m].

3.1 Relaxed lower bound

Let us first consider the well-known and commonly used relaxed model, which is
typically used for B&B algorithms and basic P-Graph solutions.

Definition 10. LPSolver(PNS(P,R,O), OI , OE) is the optimal value of PNS prob-
lem with yi = 0, where oi ∈ OE and yi = 1, where oi ∈ OI .

The most obvious lower bound will be the optimum of the relaxation of the
current MILP model derived from the decision mapping. The relaxed optimum of
the current MILP problem is denoted as LPSolver(PNS(P,R,O), OI , OE), where
OI is the included operating unit, which means that also in the relaxed problem
the yi = 1 | ∀oi ∈ OI is set. As the xi ≤ yiUi constraints have been set for the
operation number of operating unit i.

The same is true for OE which denotes the excluded operating units also in the
relaxed problem, i.e. yi = 0 | ∀oi ∈ OE . In this case, the operating unit i has not
been installed so from the constraints also listed above the operating unit cannot
do any operation. (Also it has been excluded.)

The xi ≤ yiUi relation is excluded from the constraints for all the free operating
units. It means that the yi for the free operating units will be set to 0 in the
optimal solution as all the y variables have non-negative coefficients in the objective
function.

To obtain the optimum of the relaxed LP problem that is get from the trans-
formation of the current decision mapping, δ[m] to an LP problem is essential to
choose a reliable LP solver. These LP solvers could be CPLEX [4], XPress [3], or
Gurobi [11]. The Gurobi was used in our implementation.

3.2 Defining the new lower bound of ABB algorithm

Our aim is to introduce a new lower bound which gives a tighter bound to the
optimum value than the current relaxed lower bound, and the LP solver calling
number is not greater than the total LP callings in the case with the relaxed bound.

484 Emília Heinc and Balázs Bánhelyi

The new lower bound has been improved to take into consideration not only
the currently summed included operating units’ cost, but the remained operating
units’ fix costs as well.

The main idea was that the same ABB algorithm can be used for the calcu-
lation of the free or remained operating units with modified parameters. Both
parameters of ABB, the PNS problem, and the lower bound have been modi-
fied to make the algorithm calculate the optimal structural value. A modified
PNS problem is used to calculate the lower bound of the MILP model’s integer
part. Let PNSδ[m]

IP (P ′, R′, O′) be the new PNS problem derived from the original
PNS(P,R,O) problem, where

• R′ = matout(OI) ∪R

• P ′ =
(
P ∪matin(OI)

)
\R′

• O′ = {(α′, β′) : α′ = α, β′ = β \matout(OI), (α, β) ∈ O \OE}.

In the previously introduced ABB algorithm, the PNSδ[m]
IP problem was formulated

by the get_IP_problem(PNS(P,R,O), OI , OE) method, where OI = op(δ[m])
and OE = op(δ[m]) and δ[m] is the current decision mapping in the original prob-
lem. The second parameter is changed to the Summed_Weight lower bound (listed
in Algorithm 4), which returns the summed cost of the included units. This lower
bound cost gives a lower bound to the actual optimal structural cost of the free
operating units. It will be proved in the Lemma 4.

Algorithm 4 The current summed structural cost
Input PNS(P ′, R′, O′) problem, OI , OE
procedure Summed_Weight(PNS(P,R,O), OI , OE)
return

∑
o∈OI

fix_cost(o)

The optimal free operating units’ structural cost will be added to the previously
defined remained graph’s optimal operating cost.

The detailed method is listed in Algorithm 5. In the rest of the section, the
validity of our new lower bound will be proved.

Definition 11. Let the A be all the possible extensions of decision mapping δ[m]
over arbitrary PNS(P,R,O) problem.

A(δ[m]) = {δ∗[m∗] | δ∗[m∗] ≥ δ[m] and ∃δ+[m+], graph(δ+[m+]) ∈
PNS(P,R,O) where δ∗[m∗] ≤ δ+[m+]}.

Definition 12. Let the δ′ be all the possible decision of materials, and A′ be all δ′

decision mapping over the problem PNS
δ[m]
IP (P ′, R′, O′), i.e. A′ = A(δ′[∅]).

Definition 13. Let the bijective transition F from O\OE to O′\OE be F ((α, β)) =

(α, β \matout(OI)), where O′ is the operating unit set of PNSδ[m]
IP problem, and O

is the operating unit set of the PNS problem.

Comparing Structural Constraints for Accelerated Branch and Bound Solver 485

Algorithm 5 New lower bound algorithm
Input PNS(P,R,O) problem, OI , OE
procedure Lower_Boundnew(PNS(P,R,O), OI , OE)
PNS

δ[m]
IP (P ′, R′, O′) :=get_IP_problem(PNS(P,R,O), OI , OE)

O′ :=MSG(PNSδ[m]
IP (P ′, R′, O′))

IPCurrentBest:=0
if P ′ 6= ∅ ||O′ 6= ∅ then

IPCurrentBest:=
ABB(PNSδ[m]

IP (P ′, R′, O′), Summed_Weight).currentbest
end if
return LPSolver(PNS(P,R,O), OI , OE) + IPCurrentBest

Definition 14. Let the F transition be the following: F : ℘(O \OE)→ ℘(O′ \OE)
F(Op) =

⋃
o∈Op F (o).

Definition 15. Let PNSδ[m]
IP (P ′, R′, O′) derived from PNS(P,R,O) problem,

where the current decision mapping is δ[m], i.e.

PNS
δ[m]
IP (P ′, R′, O′) = get_IP_problem(PNS(P,R,O), op(δ[m]), op(δ[m])).

Definition 16. Let the f be a transition between the PNS(P,R,O) problem’s set of
decision mappings and the PNSδ[m]

IP (P ′, R′, O′) problem’s set of decision mappings.
f is derived from the F in the following way:

fδ[m] : A(δ[m])→ A′, fδ[m](δ
∗[m∗]) := {(X,F(δ∗(X))) | ∃(X,Op) ∈ δ+[m+] and

X ∈ m∗, where graph(δ+[m+]) ∈ PNSδ[m]
IP (P ′, R′, O′)} and Op ⊆ O′.

where δ∗[m∗] ≥ δ[m] and PNSδ[m]
IP (P ′, R′, O′) is calculated over δ[m] and δ[m] ∈

A(δ[∅]) and also the (S4) axiom is satisfied in δ[m].

Example 1. In the example shown in Figure 1, produce D are {o1}, {o2}, {o1, o2}.
If the D is produced by o1, then δ[m] = {(D, {o1})}. If the o1 operating

unit is included, then o2 gets in the excluded unit set. δ∗[m∗] can be {(D, {o1})}
or {(D, o1), (E, o3)}. fδ[m]({(D, {o1})}) := ∅, fδ[m]({(D, o1), (E, o3)}) :=
{(E, {F(o3)})}.

If the D is produced by o2, then δ[m] = {(D, {o2})}. The OE is {o1}. The
δ∗[m∗] can be {(D, {o2})} or {(D, {o2}), (E, {o2})} or {(D, {o2}), (E, {o2, o3})}. In
the last two cases, f returns with ∅ since in the original δ[m], all products have
already been produced by o2, and R′ includes the OI outputs. In the first case,
since all materials have also been produced from m∗, return with ∅.

If the D is produced by o1 and o2, then δ[m] := {(D, {o1, o2})}. The δ∗[m∗]
can be {(D, {o1, o2})}, {(D, {o1, o2}), (E, {o2})}, {(D, {o1, o2}), (E, {o2, o3})}. In
all cases, f returns with ∅ for the same reasons as in the previous case.

486 Emília Heinc and Balázs Bánhelyi

A B C

o1 o2 o3

D E

Figure 1: The illustration of an example for representing all possible cases of
fδ[m](δ

∗[m∗]).

Lemma 1. Let’s suppose that δ∗[m∗] and δ∗∗[m∗∗] are ∈ A(δ[m]) and δ∗∗[m∗∗] ≥
δ∗[m∗](≥ δ[m]). Then fδ[m](δ

∗∗[m∗∗]) ≥ fδ[m](δ
∗[m∗]).

Proof. If δ∗∗[m∗∗] ≥ δ∗[m∗], then m∗ ⊆ m∗∗ and ∀X ∈ m∗ : δ∗(X) = δ∗∗(X). Let’s
suppose that X ∈ m∗ and (X,F(δ∗(X))) ∈ fδ[m](δ

∗[m∗]). Because of the definition
of fδ[m], exists at least one δ+[m+], where δ+[m+] ∈ graph(PNS

δ[m]
IP (P ′, R′, O′))

and X ∈ m+. As X also ∈ m∗∗, then it is also will be produced in fδ[m](δ
∗∗[m∗∗]).

Because δ∗(X) = δ∗∗(X), as (X,F(δ∗∗(X))) ∈ fδ[m](δ
∗∗[m∗∗]), then (X,F(δ∗(X)))

∈ fδ[m](δ
∗∗[m∗∗]).

Lemma 2. Let suppose that δ∗[m∗] ∈ A(δ[m]) and graph(δ∗[m∗]) ∈ PNS(P,R,O).
Then graph(fδ[m](δ

∗[m∗])) ∈ PNSδ[m]
IP (P ′, R′, O′).

Proof. It is wanted to be proven that graph(fδ[m](δ
∗[m∗])) is a solution struc-

ture of the PNSδ[m]
IP (P ′, R′, O′) problem if graph(δ∗[m∗]) is a solution structure

in the PNS(P,R,O) problem. A P-Graphs is considered a solution structure if
and only if it satisfies the five axioms listed previously. In the proof, it is shown
that graph(fδ[m](δ

∗[m∗])) satisfies all the five axioms in the PNSδ[m]
IP (P ′, R′, O′)

problem.
The first axiom is satisfied if P ′ ⊂ matout(fδ[m](δ

∗[m∗])). The P ′ is equal to
(P ∪matin(OI))\ (matout(OI)∪R). The P ′ set is equivalent to (P \matout(OI))∪
(matin(OI) \ (matout(OI) ∪R)), as P ∩R = ∅. It can be divided into two disjoint
sets, P \ matout(OI) and (I ∩ matin(OI)) \ (matout(OI)), where I is the set of
intermediate materials from the original problem (I = M \ (R ∪ P)). Since all
connections to matout(OI) were eliminated in the PNSδ[m]

IP problem, none of the
previously produced materials (i.e. matout(OI)) are chosen in fδ[m](δ

∗[m∗]). All
materials that are in both I and matin(OI) had to be produced. In addition,
all elements of P have already been produced. Therefore, all elements from (P \

Comparing Structural Constraints for Accelerated Branch and Bound Solver 487

matout(OI)) ∪ (matin(OI) \ (matout(OI) ∪ R)) are produced in the resulting P-
Graph.

The second axiom states that ∀X ∈ mf , X /∈ matout(of) if and only if X ∈ R′.
From the proof of the first axiom, it is known that the elements of matout(OI) are
not in matout(fδ[m](δ

∗[m∗])). Based on the second axiom, it can be concluded that
R is also not in the set of produced materials.

The third axiom is satisfied if op(fδ[m](δ
∗[m∗])) ⊆ O′. It is trivially sat-

isfied since the operating units in the P-Graph are determined as (F (o) | ∀o ∈
fδ[m](δ

∗[m∗]).
The fourth axiom states that ∀y0 ∈ op(fδ[m](δ

∗[m∗])),∃ path[y0, yn], where
yn ∈ P ′, i.e. for all operating units there is a path to at least one product. All con-
nections to any operating unit to the previously produced materials (matout(OI))
are eliminated in fδ[m](δ

∗[m∗]). It induced that, if an operating unit only produces
these materials, then it will be left out in fδ[m], as none of the solution structures
in the PNSδ[m]

IP problem contains it. If the operating unit is not eliminated in
the resulting decision mapping, then whether it has a path to a product from P ,
because δ∗[m∗] is a solution structure in the original problem, or if it does not
have a path to any original product, then it has at least one path to material from
matin(OI). From this material from matin(OI) as the fourth axiom also applied
for δ[m], originally, in the δ∗[m∗] has a path to a product from P .

The fifth axiom states that for all materials, there is at least one operating unit
that either produces or consumes them. This axiom is trivially satisfied because
the materials in the P-Graph correspond to the consumed and produced materials
of the decision mapping.

Lemma 3. Images of all extension of δ[m] in the PNS problem are possible decision
mapping in PNSδ[m]

IP problem, i.e. fδ[m](δ
∗[m∗]) ∈ A′ ∀δ∗[m∗] ≥ δ[m].

Proof. The lemma claims that ∃δ+[m+] where δ+[m+] ∈ PNSδ[m]
IP (P ′, R′, O′) and

fδ[m](δ
∗[m∗]) ≤ δ+[m+]. As δ∗[m∗] ∈ A(δ[m]), this implies that ∃δ+PNS [m+

PNS]

where graph(δ+PNS [m+
PNS]) ∈ PNS(P,R,O) and δ∗[m∗] ≤ δ+PNS [m+

PNS]. Because
of Lemma 2, graph(fδ[m](δ

+
PNS [m+

PNS]) ∈ PNSδ[m]
IP (P ′, R′, O′).

From Lemma 1 and δ∗[m∗] ≤ δ+PNS [m+
PNS], fδ[m](δ

∗[m∗]) ≤ fδ[m](δ
+
PNS [m+

PNS]).
As graph(fδ[m](δ

+
PNS [m+

PNS])) ∈ PNSδ[m]
IP (P ′, R,O′), the δ+[m+] is looking for will

be fδ[m](δ
+
PNS [m+

PNS]).

Lemma 4. The summed weight of included units of fδ[m](δ
∗[m∗]) always is a value

less than the summed weight of δ∗[m∗], i.e. Summed_Weight(OI(fδ[m](δ
∗[m∗]))) ≤

Summed_Weight(OI(δ
∗[m∗])).

Proof. Derived from the definition of fδ[m](δ
∗[m∗]), if (X,Op′) ∈ fδ[m](δ

∗[m∗]),
then ∃Op ⊆ O where F(Op) = Op′ and (X,Op) ∈ δ∗[m∗]. It is previously
known from the definition of F that the costs of the operating units have not
been changed by the transition. It induces that the Summed_Weight(Op) =
Summed_Weight(Op′).

488 Emília Heinc and Balázs Bánhelyi

Lemma 5. If there is an optimal solution to the PNS(P,R,O) problem, and sup-
pose it is δ∗[m∗], then fδ[m](δ

∗[m∗]) is also the optimal solution among all possible
fδ[m](δ

∗∗[m∗∗]) where δ∗∗[m∗∗] ∈ A(δ[m]), if the aim of the optimization problem
is to find the minimal fix costed solution structure, i.e. P-Graphs that satisfy only
the axioms.

Proof. The statement that fδ[m](δ
∗[m∗]) is the optimal solution among all pos-

sible fδ[m](δ
∗∗[m∗∗]) where δ∗∗[m∗∗] ∈ A(δ[m]) can be proved indirectly. Sup-

pose that, ∃δopt[mopt](∈ A) where fδ[m](δ
opt[mopt]) is the optimal solution among

the fδ[m](δ
∗∗[m∗∗]) in the sense of summed fix cost. In this case, the materials

from M can be divided into three disjoint categories. The three parts are (1)
m previously produced materials, (2) bp = matout(OI) ∩m set of byproducts, (3)
np = (M \matout(OI)) non-produced materials. It is obvious that np∪bp∪m = m∗,
and the three sets are disjoint.

(1) If mat ∈ m. It is known that δ[m] ≤ fδ[m](δ
∗[m∗]) and also δ[m] ≤

fδ[m](δ
opt[mopt]). This part of the material production will be the same in the

two possible solution structures.
(2) If mat ∈ bp. In this case, the mat can be produced neither in fδ[m](δ

∗[m∗]),
nor in fδ[m](δ

opt[mopt]), as mat ∈ matout(OI) and it implies that none of any
operating units from the possible arbitrary fδ[m](δ

∗∗[m∗∗]) can produce mat. If
δ∗[m∗] is the optimal solution in the PNS problem, then none of any mat from bp
will be produced, as mat ∈ matout(OI), and only the installation costs count when
the objective function was calculated.

(3) If mat ∈ np. In this case, the input and the output materials are remained
the same compared to the F mapping of the operating units from ∆(mat). In
other words, if op ∈ ∆(mat), then matin(op) = matin(F (op)) and matout(op) =
matout(F (op)). This means that the operating units, that can produce the mat
have remained the same in the sense that they can be defined by the same pair
of material sets. It is known that only the materials from np can be produced in
fδ[m](δ

opt[mopt]) and fδ[m](δ
∗[m∗]) because only these materials are produced in

the arbitrary fδ[m] mapping from the possible three categories.
The δ∗[m∗] is the optimal solution of the PNS problem, and op(fδ[m](δ

∗[m∗])) ⊆
F(op(δ∗[m∗])). If the objective function is also divided into three part accord-
ing to the three previously defined disjoint finite sets of materials (m, bp, and
np), then the Summed_Weight(op(δ∗[m∗])) = Summed_Weight(op(δ[m])) +
Summed_Weight(op(δ∗[np ∩ m∗])), as none of any materials from bp has been
produced. Summed_Weight(op(δopt[mout])) = Summed_Weight(op(δ[m])) +
Summed_Weight(op(δopt[bp ∩ mopt])) + Summed_Weight(op(δopt[np ∩ mopt])).
The Summed_Weight(op(δ∗[np∩m∗])) > Summed_Weight(op(δopt[np∩mopt]))
is known from the indirect statement. Only the materials from np are produced
in the fδ[m] mappings, and the summed weight of δ∗∗[m∗∗ ∩ np] is equal to the
summed weight of fδ[m](δ

∗∗[m∗∗ ∩ np]) for arbitrary δ∗∗[m∗∗] ∈ A(δ[m]). It is a
contradiction because ∃δ′[m′] ∈ A(δ[m]) where Summed_Weight(op(δ′[m′])) <
Summed_Weight(op(δ∗[m∗])) and δ′[m′] = δ[m]∪δopt[np∩mopt] is also a possible
solution structure in the PNS problem because bp ⊆ matout(OI). It follows that

Comparing Structural Constraints for Accelerated Branch and Bound Solver 489

bp ⊆ m′.

Lemma 6. ABB(PNS
δ[m]
IP (P ′, R′, O′), Summed_Weight) always returns with a

valid lower bound for the PNSδ[m]
IP (P ′, R′, O′) problem.

Proof. Let’s suppose that, running the ABB algorithm over PNS(P,R,O) problem,
δ[m] is the decision mapping in the current branch, i.e. the PNSδ[m]

IP (P ′, R′, O′)
problem is derived from δ[m]. From Lemma 3 is known that, for all possible sub-
nodes of the current branch-and-bound node δ∗[m∗] (i.e. δ∗[m∗] ≥ δ[m]), the
fδ[m](δ

∗[m∗]) is a possible decision mapping in the PNSδ[m]
IP problem.

It is also known from Lemma 5 that, the optimal solution structure among the
possible fδ[m](δ

∗[m∗]) decision mappings is at least the optimal solution structure
of the PNSδ[m]

IP problem.
From the definition of fδ[m], it is known that, when a (X,F(op(X))) is added to

decision mapping of the current branch, δ∗[m∗] where X ∈M and op(X) ∈ ∆(X),
then in fδ[m](δ

∗[m∗]∪(X, op(X))) is equal to either fδ[m](δ
∗[m∗]) or fδ[m](δ

∗[m∗])∪
(X,F(op(X))).

From Lemma 4 is known that for each step, the summed weight of fδ[m](δ
∗[m∗])

is less than the summed weight of δ∗[m∗].
Summing up the previous claims, it implies that, the decision mappings that

the fδ[m] function returns with are possible decision mapping over the PNSδ[m]
IP

problem. It is also known that among the possible solution structure, there is
an optimal solution structure according to the minimal summed cost. The ABB
algorithm always managed to find it over the PNSδ[m]

IP problem only if the ABB
algorithm over the PNS problem can find the optimal solution, i.e. the optimal
solution exists among the possible fδ[m](δ

∗[m∗]). And it is also known, that solution
structure always gives a lower bound for the optimal solution structure in the
original PNS problem, i.e. it provides a lower bound for all possible solution
structures in the original problem.

Theorem 1. The new lower bound is correct, so

Lower_Boundnew(PNS(P,R,O), OI , OE) :=

ABB(PNS
δ[m]
IP (P ′, R′, O′), Summed_Weight)+

LPSolver(PNS(P,R,O), OI , OE),

if P ′ is not empty, otherwise LPSolver(PNS(P,R,O), OI , OE).

Proof. Let X∗ ∈ Rn≥0 and Y ∗ ∈ {0, 1}n, where (X∗, Y ∗) is the optimal solu-
tion of the PNS(P,R,O) problem and n stands for the number of operating
units when the δ[m] is the current decision mapping in the branch, i.e. OI =
op(δ[m]) and OE = op(δ[m]). Here Y ∗ stands for the selected operating units,
and X∗ marks the operational size in the solution. From Lemma 3 we have that
ABB(PNS

δ[m]
IP (P ′, R′, O′), Summed_Weight) ≤ fix_cost(O)

T
Y ∗. It is known

that LPSolver(PNS(P,R,O), OI , OE) ≤ op_cost(O)
T
X∗. A valid lower bound

490 Emília Heinc and Balázs Bánhelyi

for the proportional part of the cost is given by LPSolver(PNS(P,R,O), OI , OE)
because (1) the excluded units’ proportional costs are not included due to the
constraints x ≤ yM and y = 0, (2) the included units’ proportional costs are
included because of the above-listed constraint with y = 1, (3) the free units’
variables will be set to 0 during the optimization as all the coefficients of the x-s
and y-s are nonnegative numbers in the objective function. Because of the state-
ments above, ABB(PNS

δ[m]
IP (P ′, R′, O′)) + LPSolver(PNS(P,R,O), OI , OE) is a

valid lower bound for the optimal cost in the PNS(P,R,O) problem with OI in-
cluded and OE excluded sets.

Corollary 1. As the fix costs are always non-negative values, our new lower bound
always gives a tighter bound than the relaxed version, i.e.

Lower_Boundnew(PNS(P,R,O), OI , OE) ≥
Lower_Boundrelaxed(PNS(P,R,O), OI , OE)

3.3 Illustration of new constraint and relaxed constraint
The following simple example illustrates the efficiency of our algorithm. In our
example, we want to produce one product (D) from the raw material (A), using
the operating units O1, O2, . . . , O5.

The final product (D) can be produced by either O1 or O2 or both operating
units. If the machine O1 chooses to produce the D final product, the O1 unit
consumes only the A raw material. The total production cost will be the sum of
the fixed and proportional costs of the O1 operating unit. The optimal solution is
y1 = 1, x1 = 1, and the other variables are 0.

Consider another branch that chooses O2. In this case, our previous production
cost is 1 + 4, because y2 = 1 and x2 = 1. In the original version, the operating
cost of producing C is added to this cost. The optimal solution for x3 = 1 and
x6 = 1 is 2 (see Figure 2b). For the lower bound, we obtain a value of 7, which
is smaller than the previous value of 8. That is, this branch is explained by the
previous constraints. However, structurally, the minimum cost of the operating
units needed to produce C is 2, which is the minimum in the y4 = 1 and y5 = 1
case (see Figure 2c). Then the installation cost of 1 + 1 is added to 5 + 2. So, in
total, the lower bound is 9, which is already worse than 8. With this new lower
bound, the ABB algorithm is not explained this case.

The third branch includes both the O1 and O2 operating units. In this case,
the considered inputs of the included units, A and C will be the new materials to
be produced. The recursively called ABB method with modified fix costs for the
C material, as it has been calculated in the second branch, returns 2. The optimal
relaxed operational configuration for the current whole branch is x1 = 1. The sum
with the fixed cost of the included units will be 11 so it is fathomed.

Comparing Structural Constraints for Accelerated Branch and Bound Solver 491

A

4,4
01

2,1
06

1,2
05

B

2,1
03

C

1,4
02

D

1,2
04

(a) Original P-Graph

A

4,4
01

2,1
06

1,2
05

B

2,1
03

C

1,4
02

D

1,2
04

(b) Optimal proportional cost

A

4,4
01

2,1
06

1,2
05

B

2,1
03

C

1,4
02

D

1,2
04

(c) Optimal fix cost

Figure 2: A simple P-Graph in which the fixed and proportional costs are given
above the operating units.

4 Results

To test our new lower bound calculating algorithm running time, we have to gener-
ate some test cases. There are many aspects to examine the performance of our new
development. It is obvious that the CPU time could be taken into consideration
but in this case teh solution of the LP relaxation problem should be added to the
computational time. In a further development, it is not fixed whether we use an
efficient LP solver method or use LP at all. The relationship between the produced
and consumed materials does not have to be linear. It could be nonlinear as well.
Because of these reasons, we preferably examine the total number of LP_solver
executions and not the actual CPU time.

4.1 Result for P-Graphs without circle cases

Firstly, test cases have to be generated according to some predefined metrics to
compare the number of LP_solvers calls in the case of ABB called with the
Lower_Boundrelaxed and Lower_Boundnew. The metrics in the first case will
be the height and the width of the P-Graph. The whole structure of the graph
will be a (height × width) matrix of the operating units. Before the first level of
operating units, there is a level of width the number of raw materials. Between the
operating unit levels, there are also material levels which consist only of the width
number of intermediate materials, and after the last level of operating units, there
is also the width number of products.

In each nth operating unit level (n ∈ {1, . . . , weight}) operating unit consumes
at least one material from the nth material level. In the nth material level (n ∈
{1, . . . , weight}) all the materials consumed by at least one operating unit from the
nth operating unit level.

492 Emília Heinc and Balázs Bánhelyi

The same is true for the produced materials by the operating units in the nth
level: each nth operating unit produces at least one material from the (n + 1)th

material level and each material from the (n + 1)th level is produced at least by
one operating unit from the nth level. Alongside these connections listed above all
the following layers’ nodes (the nth operating unit layer with the nth and (n+ 1)th

material layers) are connected with p probability.
In Figure 4’s first plot this kind of P-Graph is illustrated. It is obvious that

by running the ABB algorithm over these classes of P-Graphs the MSG algorithm
won’t exclude any operating unit from the original graph. It is also evident that
the graph doesn’t contain any operating unit circle because it doesn’t hold edges
that point to previous layers’ elements.

The experiment of running the ABB algorithm and calculating the average
number of LP solver calls according to the lower bound methods was completed,
and the results are summarized and plotted in Figure 3.

The results are grouped by height. If we examine the branching method from
the ABB algorithm, then it is straightforward that the algorithm has to examine all
the possible operating unit combinations which can produce all the x ∈ P material.
The cutting can’t be done on the first level of the tree, all the sub-branches have to

Figure 3: Comparing the ABB algorithm with different lower bounds by the average
number of executed LP-solver calls over 30 generated P-Graphs without circles.

Comparing Structural Constraints for Accelerated Branch and Bound Solver 493

(a) A general example for the P-Graph
without circles with the parameter

setting p = 0.5

(b) A general example for the P-Graph
with circles with the parameter setting

p = 0.5 and pcirc = 0.1

Figure 4: Examples for the randomly generated P-Graphs

be calculated for the cutting, which is in this case one of the first chosen product
production with all the possible cases. The possibility of an operating unit in the
nth level producing the x ∈ P material is constant p beside one operating unit
which surely can produce it. It implies that E(|∆(x)|) = p ∗ width + 1. It means
that beside the same heights, the number of the branch grows as Ω(2width) with
any lower bound.

As the Lower_Boundnew gives a tighter lower bound than the relaxed type of
lower bound with the same height and width, Lower_Boundnew always outper-
forms the Lower_Boundrelaxed. It implies that in all cases the number of LPsolver
function calling in the ABB algorithm is always smaller with the Lower_Boundnew
lower bound, than with the Lower_Boundrelaxed. The reason for it is that the cal-
culation of the structural optimization of the free operating units in our new lower
bound does not call the LPsolver method, and the solver is called exactly once in
the lower bound method. It is also true for the relaxed version of the lower bound.

If the submethod gives a tighter lower bound for the actual optimal value then
the method would be called fewer times. It also means that the LPsolver is called
fewer times.

494 Emília Heinc and Balázs Bánhelyi

4.2 Results for the P-Graphs with circle cases

Considering the previous generated test cases, the P-Graph with circle cases hasn’t
been examined yet. The cases with circles are when the previous P-Graph includes
some directed edges that point to the previous levels. For example, there is an
operating unit in the nth level which produces at least one material in the mth(m ≤
n) level with the probability pcirc. It is easy to prove that a dependency chain
can be formulated when an infinite number of materials should be produced. An
example of the generation logic is shown in Figure 4’s second plot. These chains
evolved when there is no raw materials being part of the chain, just products,
and intermediate materials. As a consequence, the chain will be excluded from
the graph when the MSG algorithm is running over the PNS(P,R,O) problem.
The executions’ results with the parameter settings are pcirc = 0.1 and p = 0.5.
This means that a portion of ≈ 0.1 is erased from the P-Graph while the MSG
algorithm has been running over. The randomly generated summed average LP
solver calling results grouped by the height and width is demonstrated in Figure 5.
Similar to the previous non-circle running comparison, the average number of calls
grows exponentially by increasing the width of the graph. The growth is distorted
by the fact that some operating units are erased randomly because of the circle
cases.

4.3 Result for a specific P-Graph

To test the new lower bound performance on a specific graph, the graph depicted in
Figure 6 is used. The concrete P-Graph is also the maximal structure, as the MSG
algorithm running over it doesn’t exclude any operating unit. The graph has 65
materials, and 35 operating units. The ABB algorithm has been run over the graph
both with our new lower bound, and the relaxed lower bound. The comparison of
the performances is listed in Table 1. To make an extended comparison, the fix
and operating costs are multiplied with constant values. The constant values are
different for the cost types. The first column contains these values. The second
column contains the summed LP_Solver calling number during the running of the
ABB algorithm. If all the constants are 0 then it equals to the case when there
is no costs. In this case the lower bound sub method can’t cut on any branch
at all, because the branch-and-bound algorithms, also like the ABB, always take
advantage of the costs when a cutting is performed. As it is listed in the table’s
first row, all the possible structures are examined. If the fixed cost is multiplied
by 0 and the operational cost by 1, then the ABB algorithm could prune just with
the optimal summed operating cost which is calculated by the LP_Solver in both
lower bounds.

The two constants which are used to multiply the costs control that algorithm
ABB(PNSδ[m]

IP (P ′, R′, O′), Summed_Weight) or LPSolver(PNS(P,R,O), OI , OE)
is more dominant than the fix cost or op cost multiplier was increased in the new
lower bound. As the table shows, the basic case is when the costs are not multiplied
then with the relaxed bound the number of LP calls is 48, and with the new lower

Comparing Structural Constraints for Accelerated Branch and Bound Solver 495

Figure 5: Comparing the ABB algorithm with different lower bounds by the average
executed LP-solver numbers over 30 generated P-Graphs with circles, where pcirc =
0.1 and p = 0.5.

bound the number of calls is 31. That means the number of calls is reduced by
≈ 35% with our new lower bound. With increasing the operational multiplier con-
stant compared to the fix cost multiplier as the fix cost remains the same, but the
operational cost is increased by the multiplication of 101, 102, . . . , 105 the number
of LP calls remains the same. It has happened because the P-Graph costs aren’t
modified to the level when the differences between the structural cost and opera-
tional cost are so large that the algorithm could cut the branches according to the
operational cost. If the operational cost would be significantly larger compared to
the structural cost, the LP calls with the relaxed and the new lower bound converge
to the same value, 1023.

If the fix cost multiplier constant is 1, and the operational cost multiplier is 0
(plotted in the last row in the table) then the free operating units’ summed cost is
0. As a consequence of that, the branch can be cut down by the summed cost of

496 Emília Heinc and Balázs Bánhelyi

Table 1: Comparison of the running of ABB algorithm with different lower bound
functions: in the first columns are the results of running with relaxed LP model
bound, in the second columns are the results with our new lower bound.

Ratio LP Time Comparing the
LP ratio

(fix cost/ Relaxed New lower Relaxed New lower (New lower
op. cost) bound bound bound bound /Relaxed)

0/0 2099 2099 13478 24532 1

0/1 1023 1023 7271 19857 1

1/101...5 48 31 361.6 464.8 0.65

1/1 48 31 352 460 0.65

101/1 48 31 378 475 0.65

102/1 44 27 420 453 0.61

103/1 91 60 837 948 0.66

104/1 95 70 763 1037 0.74

105/1 83 57 669 835 0.69

1/0 80 57 577 740 0.71

already included operating units’ total cost added to the remained graph optimal
structural cost. Then due to this, the relaxed bound functions as Summed_Weight
(Algorithm 4) bound and the newly introduced lower bound uses also the remained
part’s optimal structural cost for the cut branch. This case is interesting when the
structure was to be optimized, and the network wasn’t used, or only rarely [1, 2].

In the previous rows in the table the cases are examined when the fix cost is
multiplied by 10, 100, . . . 105. In these cases the results converge to the case, when
the fix cost has remained the same, and the operating cost was erased.

From the examined cases in the table, the 102/1 case gives the optimal number
of LP solver calls with both kinds of lower bounds, and also the LP ratio is the
smallest in this case. The 1/0 case doesn’t give the optimal ratio. It is caused by
the acceleration of the algorithm with the natural extension.

The next column in the table lists the running time of the algorithm in CPU
seconds multiplied by 1000. Examining this column shows, that the algorithm with
a relaxed lower bound gives almost always a better result than the running with the
new lower bound. It is the case since it is not worth to call the LP solver fewer times
as the calculation of free operating units’ optimal cost is more time-consuming. It
isn’t the case if the calculation of the derived model is more time-consuming. An
example is when the P-Graph isn’t linear.

Comparing Structural Constraints for Accelerated Branch and Bound Solver 497

Figure 6: A specific graph with 65 materials and 35 operating units. The graph
has been generated with the MSG algorithm.

498 Emília Heinc and Balázs Bánhelyi

5 Conclusion

We have created a new constraint calculation procedure for the ABB algorithm
that gives a better one than the previously applied constraints. The computational
cost of the new constraint is higher than the previous one, but we show that the
overall number of linear programming problem solver calls will be reduced. It is
advantageous to run the derived problem solver fewer times if in the operating unit
model, the connection between the consumed and produced materials is nonlinear,
or the variables are stochastic.

References

[1] Aviso, K., Lee, J.-Y., Dulatre, J., Madria, V., Okusa, J., and Tan, R. A p-graph
model for multi-period optimization of sustainable energy systems. Journal of
Cleaner Production, 161:1338–1351, 2017. DOI: 10.1016/j.jclepro.2017.
06.044.

[2] Aviso, K., Yu, K., Lee, J.-Y., and Tan, R. P-graph optimization of energy crisis
response in Leontief systems with partial substitution. Cleaner Engineering
and Technology, 9:100510, 2022. DOI: 10.1016/j.clet.2022.100510.

[3] Berthold, T., Farmer, J., Heinz, S., and Perregaard, M. Parallelization of the
FICO Xpress-Optimizer. Optimization Methods and Software, 33(3):518–529,
2018. DOI: 10.1080/10556788.2017.1333612.

[4] CPLEX, I. I. V12. 1: User’s manual for CPLEX. International
Business Machines Corporation, 46(53):157, 2009. URL: https:
//public.dhe.ibm.com/software/websphere/ilog/docs/optimization/
cplex/ps_usrmancplex.pdf.

[5] Friedler, F., Orosz, ., and Losada, J. P-graphs for Process Systems Engineering.
Springer Cham, London, 2022. URL: https://link.springer.com/book/10.
1007/978-3-030-92216-0.

[6] Friedler, F., Tarjan, K., Huang, Y., and Fan, L. Combinatorial algorithms for
process synthesis. Computers and Chemical Engineering, 16:S313–S320, 1992.
DOI: 10.1016/S0098-1354(09)80037-9.

[7] Friedler, F., Tarjan, K., Huang, Y., and Fan, L. Graph-theoretic approach
to process synthesis: Polynomial algorithm for maximal structure generation.
Computers and Chemical Engineering, 17(9):929–942, 1993. DOI: 10.1016/
0098-1354(93)80074-W.

[8] Friedler, F., Tarján, K., Huang, Y., and Fan, L. Graph-theoretic approach
to process synthesis: axioms and theorems. Chemical Engineering Science,
47(8):1973–1988, 1992. DOI: 10.1016/0009-2509(92)80315-4.

https://doi.org/10.1016/j.jclepro.2017.06.044
https://doi.org/10.1016/j.jclepro.2017.06.044
https://doi.org/10.1016/j.clet.2022.100510
https://doi.org/10.1080/10556788.2017.1333612
https://public.dhe.ibm.com/software/websphere/ilog/docs/optimization/cplex/ps_usrmancplex.pdf
https://public.dhe.ibm.com/software/websphere/ilog/docs/optimization/cplex/ps_usrmancplex.pdf
https://public.dhe.ibm.com/software/websphere/ilog/docs/optimization/cplex/ps_usrmancplex.pdf
https://link.springer.com/book/10.1007/978-3-030-92216-0
https://link.springer.com/book/10.1007/978-3-030-92216-0
https://doi.org/10.1016/S0098-1354(09)80037-9
https://doi.org/10.1016/0098-1354(93)80074-W
https://doi.org/10.1016/0098-1354(93)80074-W
https://doi.org/10.1016/0009-2509(92)80315-4

Comparing Structural Constraints for Accelerated Branch and Bound Solver 499

[9] Friedler, F., Varga, J., and Fan, L. Decision-mapping: A tool for consistent
and complete decisions in process synthesis. Chemical Engineering Science,
50(11):1755–1768, 1995. DOI: 10.1016/0009-2509(95)00034-3.

[10] Friedler, F., Varga, J., Fehér, E., and Fan, L. Combinatorially accelerated
Branch-and-Bound method for solving the MIP model of Process Network Syn-
thesis. In Floudas, C. and Pardalos, P., editors, State of the Art in Global Op-
timization: Computational Methods and Applications, pages 609–626, Boston,
MA, 1996. Springer US. DOI: 10.1007/978-1-4613-3437-8_35.

[11] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL:
https://www.gurobi.com/documentation/current/refman/index.html.

[12] Nishida, N., Stephanopoulos, G., and Westerberg, A. A review of process syn-
thesis. AIChE Journal, 27(3):321–351, 1981. DOI: 10.1002/aic.690270302.

[13] Siirola, J. Industrial applications of chemical process synthesis. Advances in
Chemical Engineering, 23:1–62, 1996. DOI: 10.1016/S0065-2377(08)60201-
X.

https://doi.org/10.1016/0009-2509(95)00034-3
https://doi.org/10.1007/978-1-4613-3437-8_35
https://www.gurobi.com/documentation/current/refman/index.html
https://doi.org/10.1002/aic.690270302
https://doi.org/10.1016/S0065-2377(08)60201-X
https://doi.org/10.1016/S0065-2377(08)60201-X

Acta Cybernetica 26 (2024) 501–528.

Standardized Telemedicine Software Development

Kit with Hybrid Cloud Support∗

Zoltán Richárd Jánkiab and Vilmos Bilickiac

Abstract

In modern Web development, it is expected that systems operating in
the same area can be easily integrated. For common integration points, it
is recommended to use a standardized data model and a common interface
during the development as this will facilitate further integrations. The use
of the cloud infrastructure is increasingly popular in telemedicine, but taking
into account the goals, the productivity of the development, the availability
of the system and the various regulations, choosing the right solution is not
trivial. Inclouded platform consists of numerous currently active telemedical
microservices that are working with a common software development kit.
This tool provides a standardized data model for document-oriented database
systems, has support for public and private clouds by using the classic Data
Access Object (DAO) analogy and contains a lot of convenient functions as
well. Furthermore, it is found that our solutions can significantly increase
development productivity and is confirmed by measurements taken which
involved software developers.

Keywords: telemedicine, hybrid cloud, software development kit, produc-
tivity

1 Introduction

Telemedicine applications are getting more and more attention. Google Trends
shows that after the appearance of coronavirus disease the number of available

∗This research was supported by the EU-funded Hungarian grant GINOP-2.2.1-15-2017-00073,
project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry of
Innovation and Technology of Hungary from the National Research, Development and Innovation
Fund, financed under the TKP2021-NVA funding scheme; project no. II-NKFIH-1528-1/2021 has
been implemented with the support provided by the Ministry of Innovation and Technology of
Hungary from the National Research, Development and Innovation Fund, financed under the II-
NKFIH-1528-1 funding scheme. This study was also supported by the Ministry of Innovation and
Technology NRDI Office within the framework of the Artificial Intelligence National Laboratory
Program (RRF-2.3.1-21-2022-00004).

aDepartment of Software Engineering, University of Szeged, Hungary
bE-mail: jankiz@inf.u-szeged.hu, ORCID: 0000-0003-1829-5663
cE-mail: bilickiv@inf.u-szeged.hu, ORCID: 0000-0002-7793-2661

DOI: 10.14232/actacyb.299460

mailto:jankiz@inf.u-szeged.hu
https://orcid.org/0000-0003-1829-5663
mailto:bilickiv@inf.u-szeged.hu
https://orcid.org/0000-0002-7793-2661
https://doi.org/10.14232/actacyb.299460

502 Zoltán Richárd Jánki and Vilmos Bilicki

telehealth applications increased, not only in the mobile stores but on the World
Wide Web (WWW), too. In telemedicine, electronic healthcare records (EHRs)
are considered as sensitive data, so it is really important to take into account the
regulations.

Since 2018, access to patient healthcare records are governed by the General
Data Protection Regulation (GDPR) [13] and individuals have a right to access
their own healthcare data, but in limited circumstances they can get information
about other people, too. However, the data handlers have to ensure that sensitive
data cannot be transferred outside the country. Sometimes it is required to host
everything within the boundaries of an organization. In some cases, it is allowed
to use the public cloud but data must be stored in an encrypted form. These
are limitations which can affect not only the economic solutions but can affect
the development processes as well. Today, there is no publicly available software
development kit (SDK) that conforms to such requirements and supports both
public and private cloud solutions.

The degree of maturity of a research field can be measured by the number of
available standards and protocols that belong to the given field. In telemedicine,
many standards are adapted from other fields, and only a handful of them are
telemedicine specific [4]. The most well-known standard is called Fast Healthcare
Interoperability Resources (FHIR)1 that provides a data model for real telemedicine
use-cases. Thanks to its practical design and loose structure, it easily fits into any
application.

FHIR defines only the resources that can be present in a medical environment
and lists the attributes that can be used to describe these resources. FHIR itself is
not appropriate to standardize every component of a telemedicine application but
it has recommendations on what and how to use, so it gives vent to other standards,
too.

Since FHIR is not a security protocol, it does not provide ready-to-use solutions
for authorization, synchronization and digital signatures, but has recommendations.
Using OAuth2 for user authentication is suitable for web-centric applications, but
the SMART-On-FHIR3 specification can be used as an alternative solution.

Clinical terms are also managed by different standards. The most widely spread
one is SNOMED CT published by SNOMED International4. Diagnoses, clinical
documents, vital signs and other data that can be measured are systemized in the
so-called LOINC5 standard. Both standards categorize different terms with coding
systems that help group data of the same type. In addition to the recommended
standards, FHIR provides the opportunity to extend the predefined data model
of resources with custom elements that are not originally part of the standard.
However, all extensions must be well defined so that the data stored in an extension

1HL7. Fhir overview. https://www.hl7.org/fhir/overview.html
2OAuth. Oauth 2.0 - oauth. https://oauth.net/2/
3SMART on FHIR. Smart on fhir: Introduction - smile cdr documentation. https://smilecdr.

com/docs/smart/smart_on_fhir_introduction.html
4International, SNOMED. Snomed - home — snomed international. https://www.snomed.org/
5Institute, Regenstrief. Home - loinc. https://loinc.org/

https://www.hl7.org/fhir/overview.html
https://oauth.net/2/
https://smilecdr.com/docs/smart/smart_on_fhir_introduction.html
https://smilecdr.com/docs/smart/smart_on_fhir_introduction.html
https://www.snomed.org/
https://loinc.org/

Standardized Telemedicine Software Development Kit 503

field can be easily identified. Data from special systems such as Enterprise Resource
Planning (ERP) and Customer Relationship Management (CRM) systems do not
have an appropriate place within FHIR, even though these concepts are critical
for performing logistics and health management tasks. FHIR provides a number
of extension profiles but it can be time consuming and difficult to find the one
that describes the data. If there is no suitable extension profile in the standard,
developers have to create a new one.

As the number of EHRs is rapidly increasing, the benefits of cloud solutions can
be utilized. However, as we mentioned earlier, there can be project specific regula-
tions that determine which type of cloud infrastructure can be used. To begin with
using a public cloud, both the development and the maintenance can be convenient
and the performance can be significantly high, but if there are restrictions on the
location of the servers in the project, shared infrastructure cannot be an option.
Private cloud is also a well-scalable solution, but the additional tasks associated
with configuration and maintenance should also be considered. A hybrid solution in
which a combination of private and public cloud services are available, can perform
well because most of the load is on the public cloud and the critical tasks related
to data and security can be handled by the private cloud.

In telemedicine, various data types can be present. An EHR can be a simple
JavaScript Object Notation (JSON) object or it can be a high resolution image. In
some cases, a Relational Database Management System (RDBMS) is sufficient but
if the performance is critical then a non-relational database can be a better choice.
Hence, it is recommended to introduce the so-called polyglot persistence concept so
that we can use different data storage techniques and vary them to meet the needs.
However, it is not trivial how different storages communicate with each other.

In telemedicine, offline capability can be critical. Web applications often go
to offline status for seconds but occasionally they cannot come back online for
hours. Besides offline status, the performance can be increased by adding caches
to the data path. In our recent study, we elaborated a taxonomy for telemedicine
applications and provided an easily tunable solution that helps in the design of
telemedicine systems taking into account their offline capability. There should be
various caching techniques that are available and finely tunable depending on the
use-case.

The rest of the paper is organized as follows. Section 2 provides an overview of
well-known telemedical platforms and the current status of the areas covered by our
SDK. In Section 3, statistical information about FHIR and its prevalence in software
development is presented. Section 4 offers a comprehensive list of challenges that
developers may encounter. Section 5 introduces our SDK as an all-in-one solution
to these challenges. The measurement results that demonstrate the effectiveness
of our SDK in aiding telemedicine system development are discussed in Section
6. Finally, in Sections 7 and 8, we summarize the key aspects of this paper and
highlight potential opportunities for further development.

504 Zoltán Richárd Jánki and Vilmos Bilicki

2 State of the art

In this section, we present the current status of telemedicine platforms and their
applied solutions focusing on the main issues that we may face.

2.1 Telemedicine platforms

• Intelehealth is an open-source telemedicine platform6 that consists of 4 main
components: a web application, an Android mobile application, a middle-
ware layer and a medical record server. The mobile app uses complex data-
gathering flowcharts and combines them to form an assisted history-taking
system, called Ayu, and the web app allows remote doctors to review up-
loaded data and make referrals, offer advice or prescribe. OpenMRS7 is the
EHR server in this architecture that stores patient data, but it has not gained
popularity in Europe and does not offer as many options as FHIR. OpenMRS
can receive and convert data from FHIR-compatible systems, but it is not
the main domain.

• AdvancedMD8 is a more than 20 years old telemedicine platform. Unfortu-
nately, it is not free and open-source but it is known that they store their
data in Amazon Web Services (AWS). Due to storing data in a public cloud,
this platform does not meet European regulations.

• OpenEMR9 is a lightweight project that presents a video conferencing and
chat platform for consultation purposes. Technologically its basics belong
to Danphe Health that provides telemedicine softwares embedded in cloud
services.

• The telemedicine network called Unimed Floripa was established in Brazil
that was first introduced by R. S. Maia, et. al. [15]. Their platform serves
radiological demands by maintaining a Web portal, a medical imaging toolset,
teleconference tools and multiple Digital Imaging and COmmunications in
Medicine (DICOM) and non-DICOM servers. It is obvious that they use
standardized solutions for storing and managing data. Health Level Seven
(HL7) and its standards (e.g. FHIR) play important roles in their telemedi-
cine network. However, the capabilities of the platform are limited and too
use-case specific.

• Inclouded10 is an open-source telemedicine and smart-city platform that con-
forms to a number of standards. Development is based on ISO 13485, domain
models follow HL7’s FHIR and TMForum standards. It provides both pub-
lic and private cloud solutions that are using our SDKs as connectors and

6Intelehealth — Confluence. URL: https://intelehealthwiki.atlassian.net/wiki/spaces/
INTELEHEAL/overview

7URL: https://openmrs.org/
8Cloud-based patient relationship management software –— AdvancedMD. URL: https://

www.advancedmd.com/medical-office-software/cloud/
9URL: https://www.open-emr.org/

10URL: http://inclouded.hu/

https://intelehealthwiki.atlassian.net/wiki/spaces/INTELEHEAL/overview
https://intelehealthwiki.atlassian.net/wiki/spaces/INTELEHEAL/overview
https://openmrs.org/
https://www.advancedmd.com/medical-office-software/cloud/
https://www.advancedmd.com/medical-office-software/cloud/
https://www.open-emr.org/
http://inclouded.hu/

Standardized Telemedicine Software Development Kit 505

helping functions with high-level FHIR support. Inclouded SDK has already
performed well in many currently active telemedicine projects over the years.
It is also proved that the SDK is not only a convenient tool for designing and
managing telemedicine systems that can be easily integrated, but also signif-
icantly speeds up the development processes. This article provides a detailed
introduction to the key components of Inclouded SDK.

Table 1 presents a comparative analysis of the five platforms that have been
introduced. It is seen that none of the platforms are GDPR-compliant except for
Inclouded. Private and public cloud supports vary based on their focus, but hybrid
cloud support is not common. Notably, a majority of the platforms provide support
for FHIR.

Table 1: Comparison of telemedicine platforms

Platform Open-source
Private
cloud

support

Public
cloud

support

FHIR
support

GDPR
compliance

Intelehealth X X
AdvancedMD X

OpenEMR X X
Unimed Floripa X X

Inclouded X X X X X

2.2 FHIR

Before diving deep into the details of the SDK, it is important to see how popular
the standard used is.

Firstly, we have analyzed the available open-source telemedicine projects. We
used GitHub as a datasource because it has the biggest public repository store on
the Web. It consists of millions of public projects and provides an API for filtering
and gathering information regarding repositories. We wrote a GitHub Crawler
for filtering metadata of the repositories and finding specific repositories based on
their content. We were focusing on telemedicine projects and we were searching
for projects with various keywords. By using the term ”health”, we found more
than 100,000 repositories, but unfortunately many of them were useless due to
lack of commits or completely different interests. However, we still found quite
a good number of projects that really deal with telemedicine. After analyzing
these repositories, we can assume that FHIR is the most popular standard used in
telemedicine projects.

FHIR was first released in 2013, but its first presentation was held in 2012
[5]. First three releases were just called Draft Standard for Trial Use (DSTU),
but after DSTU3, it reached a maturity level that could have been considered as

506 Zoltán Richárd Jánki and Vilmos Bilicki

a final version. Since it is an open standard, open-source projects can describe
its popularity well. For our statistics, we used GitHub as the source. Figure
1 presents that from 2014 the number of projects using FHIR started to grow
exponentially and this growth is still continuing. Unfortunately, there are hundreds
of repositories that contain a single readme file or just text files referring to the
standard. Based on this experience, we have filtered out the GitHub repositories
that contain evaluable projects using FHIR. In Figure 2, it is shown that currently
R4 is the most supported version, but the number of new projects are increasing
as the maturity of the standard levels up.

Today, FHIR is the most popular healthcare standard but except for some
interface libraries there is no available toolkit that implements a Representational
State Transfer (REST) endpoint in a typed form with FHIR support.

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Years

0

500

1000

1500

2000

2500

3000

3500

4000

Nu
m

be
r o

f p
ro

je
ct

s u
sin

g
FH

IR

Number of projects using FHIR

Figure 1: Popularity of FHIR in GitHub

2.3 Public and private clouds

Centering on accessing the information anytime and anywhere, encourages moving
the healthcare information towards the cloud. Although the cloud offers several
benefits, it also poses threats to health data in terms of privacy and security [1].
Here, we go through the pros and cons that cloud solutions provide taking into
account the telemedicine use-cases.

Paper [20] presents a detailed comparison of public and private cloud solutions,
highlighting the benefits of the former such as accessibility, scalability, availability,
and reliability. Public cloud typically delivers the so-called pay-as-you-go model in

Standardized Telemedicine Software Development Kit 507

Dstu 1 Dstu 2 Stu 3 R4 R4B R5
FHIR releases

0

300

600

900

1200

1500

1800

2100

2400

Nu
m

be
r o

f p
ro

je
ct

s

251

667

1028

2455

38 95
251

603

864

2197

30 38

Number of projects by FHIR release
Supported
CreatedAt

Figure 2: Popularity of FHIR in GitHub considering the version

which you pay after using the resources. Since public cloud services are ready-to-
use, developers do not have to take care about the time consuming configurations
and the infrastructure below the services. Public cloud services are ready-to-use,
which means that developers do not need to worry about configurations and infras-
tructure. However, public cloud providers such as Amazon, Google, and Microsoft
offer a lower level of security, so it is not recommended to store sensitive data in
them.

Private cloud is usually dedicated to a single organization and it operates within
the network of the organization or company. Thus it is required to buy, build and
manage the cloud infrastructure that needs experts and comes with a higher cost.
In terms of productivity, the development processes are longer in case of private
clouds, but designed services are more use-case specific and they can operate more
efficiently in given circumstances. Moreover, the level of security is higher in private
clouds.

Chen et al. [12] introduced a solution that uses a hybrid cloud approach. Health-
care records stored in public clouds are encrypted with Symmetric Key Algorithm
(SKE) and can be decrypted only through the private content key. Their solution
is a redundant hybrid cloud service that is offered at the cost and scale benefits of
public clouds, while also offering the security and control of private clouds. Nowa-
days, this approach is more and more common in telemedicine projects but there
is no available library that supports hybrid cloud approach with interchangeable
cloud background.

508 Zoltán Richárd Jánki and Vilmos Bilicki

2.4 Serverless development

Startups and smart tech companies have begun to take advantage of serverless
scalability, reliability, and performance for rapid growth - and now serverless de-
velopment is more popular than ever. Moreover, it is also found that the developer
productivity can be increased as well. Here, we consider the word ”serverless” as
a service in which the infrastructure is maintained by the service provider. There
are various serverless services, such as databases, storages, runtime environments
that can be used to run computational tasks and host Web applications. Vadym
Kazulkin [11] collected the main effects that serverless development can have on
productivity. The main advantages are the followings:

• no infrastructure maintenance

• auto-scaling and built-in fault tolerance

• less engineers required

• less code written

• bigger focus on business value and innovation

• shorter time-to-market procedures

ip.labs has been following the concepts of serverless development for years but
in a hybrid form. They still have monolithic Java applications, but two teams are
developing completely serverless. Before they went serverless, they had a central
administration team and prioritized the tasks that lead to increased waiting time.
Serverless development needs no low level administration at networking level, there
are no servers and no operating systems (OS) that developers have to take care
about and there is less interaction between developer and administration teams.
Thus, the development processes become faster, developers write less code and use
managed services.

2.5 Productivity

In Information Communication Technology (ICT) productivity is measured in dif-
ferent fields. Here, we focus on developers’ productivity, show which metrics are
used to measure it and how new techniques and technologies affect productivity in
software development.

Shake [19] collected the most important metrics that can describe the workflows
and measure the productivity of development. Firstly, the code quality is a big hit
to productivity. There are several metrics to measure code quality and reduce
quality defects. Shake is a good tool to create automatic reports that help deal
with bugs efficiently.

Code coverage is a valuable metric for monitoring the development team’s test-
ing activities. It is easy to measure since it has a concrete formula and it gives
feedback about how much of the source code is not covered by test cases. These
metrics do not measure productivity explicitly, they have only effects on it.

Standardized Telemedicine Software Development Kit 509

Cycle time can tell a team a lot about the productivity of developers. It mea-
sures the time taken for a task to move from one phase to another. Cycle time is
broken down into more stages and it gives information about which stage is prob-
lematic and where bottlenecks are. Most of the issue and project tracking softwares
provide data about cycle time, so it is a more and more common metric used to
measure productivity.

Lead time is very similar to cycle time, but it is a more comprehensive metric
that measures productivity from task creation until delivery. So it is a metric for
not individuals but for the development team.

Deployment frequency is measured within a specific period of time and it is
one of the most valuable metrics in terms of productivity. There are 4 software
delivery performance levels: low, medium, high and elite. This level is specified
by the deployment frequency. Software delivery performance is low if deployment
frequency is fewer than once per six months and it is elite if there are multiple
deploys per day. Flickr reported an average of 10 deployments a day in 2009, while
Etsy had 11,000 deployments in 2011 [18]. At Facebook each developer released an
average of 3.5 software updates into production per week. These numbers prove
that Continuous Integration (CI) and Continuous Delivery (CD) can significantly
improve productivity.

The DevOps Research and Assessment (DORA) group published their platform
and introduced 4 key metrics for measuring DevOps performance. These metrics
are deployment frequency, lead time for changes, change failure rate and mean time
to recover. Using this platform, Fin500 was able to increase the number of releases
to production from 40 to over 800 [6].

The above mentioned tools can show only an approximation for the productivity,
based on the committed source codes and the logged work hours, so they do not
perform in a way that produces exact results. We found that using our SDK can
significantly improve developers’ productivity in telemedicine applications and it is
confirmed with metrics too that are measured based on the developers’ activity in
the preferred integrated development environment (IDE).

3 Actuality of using FHIR

To prove that using FHIR is a trend, we analyzed the publicly available teleme-
dicine projects in the world and measured the presence of the standard. We used
GitHub as the main source of our research and using its API, we have collected the
repositories having telemedicine purposes and repositories using FHIR.

We started using general expressions (e.g. health) to find the most repositories
of our interest, but we realized that only a very small part of the results would be
useful for us. Due to the limitations of GitHub API, we had to choose the terms
carefully and analyze the repositories focused on the results.

On GitHub, there are thousands of empty or almost empty repositories that
can be easily found using an expression that is present in its name or description
or in a readme file. The valuable repositories may contain source codes too that

510 Zoltán Richárd Jánki and Vilmos Bilicki

can be analyzed and later compared to each other by using code metrics. GitHub
has several categorizations for the repositories, and most of them are supported by
the API, too.

Based on our experiences, we searched for FHIR-related repositories on GitHub
using search terms listed in Table 2 and filtered by 5 main programming languages:
Java, C#, Python, JavaScript, and TypeScript. Table 3 shows the most popular
packages for these languages that have references to FHIR. HAPI11 is an open-
source FHIR server written in Java, Firely SDK12 is the official .NET SDK written
in C#, FHIR Resources13 is a Python package for creating and validating FHIR
objects, and ts-fhir-types [2] is a TypeScript package for FHIR resources.

Table 2: GitHub crawling terms and the number of found repositories

Term Number of repositories
telemedicine 780

e-health 167
ehealth 703

telehealth 350
teledermatology 5

teleradiology 20
teleeducation 2

healthcare 1795

Table 3: Number of repositories retrieved from a product-based GitHub crawling

Programming
language

Product
Number of
repositories

Java HAPI server 780
C# Firely .NET SDK 167

Python fhir.resources 703
JavaScript/TypeScript @ahryman40k/ts-fhir-types 62

Further analysis was made by filtering the results using the selected 5 program-
ming languages. Firstly, we have inspected how popular FHIR is on GitHub. If we
check the repository names, descriptions and readme files, we can find 5,931 repos-
itories. Comparing this number to the number of retrieved results if we make a
code-based search, it is very few. The number of GitHub code-based search results

11Hapi FHIR — The Open Source FHIR API for Java. URL: https://hapifhir.io/hapi-fhir/
12Firely .NET SDK –— The Official .NET SDK for Hl7 FHIR. URL: https://fire.ly/

products/firely-net-sdk/
13URL: https://pypi.org/project/fhir.resources/

https://hapifhir.io/hapi-fhir/
https://fire.ly/products/firely-net-sdk/
https://fire.ly/products/firely-net-sdk/
https://pypi.org/project/fhir.resources/

Standardized Telemedicine Software Development Kit 511

shows how many files were found on GitHub containing the term. Usually, it is
much more than the number of repositories, so these results need further analysis.
We made a code search for the FHIR term, but due to the high number of results
(2,011,239 occurrences found), we limited them using the 5 language filters. When
TypeScript is selected as the main language, GitHub returns thousands of files that
contain FHIR, but after forming a set from the repositories, only 277 repositories
were left in the end. C# shows similar behavior because code search found about
50,000 files on GitHub but there are only 257 repositories. Python and JavaScript
seem to be more popular in project development using FHIR. There are more than
500 public repositories that have Python and JavaScript as the main languages.
Java is the most popular with 1,679 different repositories. Figure 3 shows the ra-
tio of used main programming languages in FHIR repositories. There were 3,392
repositories found using FHIR and the 5 selected languages. It is also found that
using techniques, frameworks and components like search terms can produce more
focused and more valuable results in such data mining.

TypeScript
8.17%

JavaScript

19.58%

Python

15.18%

Java

49.50%

C#
7.58%

Figure 3: Presence of FHIR on GitHub by programming language categories

It is observed that FHIR is popular in application development but it is not clear
how many telemedicine projects use FHIR. Telemedicine repositories were selected
by using code search with the 8 search terms listed in Table 2 and filtered by the
5 chosen languages. Figure 4 depicts that the expression ”healthcare” is present in
most of the repositories. We found projects from specific areas of telemedicine too
but they do not exceed 1% of the total together.

We have also collected the repositories that use the most common products listed
in Table 3. After seeing that most of the telemedicine-related projects use Java, it

512 Zoltán Richárd Jánki and Vilmos Bilicki

e-health4.37%

ehealth

18.39%

teledermatology

telemedicine

20.41%

telehealth 9.16%

teleeducation

healthcare

46.96%

teleradiology

Figure 4: Presence of telemedicine on GitHub based on search terms

seemed to be obvious that the search term ”HAPI” will return the most records.
After HAPI, the official Python package is the most commonly used resource. Firely
SDK showed a surprisingly significant popularity with 19.46%. Compared to the
number of available public repositories, only 62 (4.68% of) repositories use the ts-
fhir-types package written in TypeScript. The total number of repositories using
the 4 packages was 1,326. Figure 5 shows the ratios.

To see how many telemedicine-related projects use helper packages, libraries and
official solutions, we have inspected the intersections of these sets. We found that
35% of TypeScript projects using FHIR rely on the ts-fhir-types package. However,
this typed version is not so popular in JavaScript-based projects. Unsurprisingly,
HAPI and fhir.resources are used in more than 50% of projects in which Java or
Python are the main programming languages and FHIR is present, too. The results
are presented in Figure 6.

Finally, we found it is important to see how FHIR affects the lifetime of projects.
We measured the freshness of the projects by applying a threshold for the last
commit date. We filtered out repositories with a last commit date older than 3
months and an average size below 68,852 KB. This approach helped us identify
repositories with a high maturity level. Naturally, in order not to distort the
statistics, we applied the language filters, too. It came out that in mature projects
FHIR is really popular, almost 50% of the projects use it as a standard (Figure
7). Here, we found only 326 repositories. Based on this experience, we evaluated
the intersection of the FHIR set and all other telemedicine sets. It is seen that in
the retrieved telemedicine projects with high levels of maturity, FHIR is commonly

Standardized Telemedicine Software Development Kit 513

ts-fhir-types4.68%

Firely SDK

19.46%

fhir.resources

26.09%

HAPI

49.77%

Figure 5: Presence of most common FHIR products on GitHub

ts-
fhi

r-ty
pe

s
 FH

IR_Ty
pe

Scr
ipt

ts-
fhi

r-ty
pe

s
 FH

IR_Ja
va

Scr
ipt

HAPI
 FH

IR_Ja
va

Fir
ely

 SD
K

 FH
IR_C#

fhi
r.re

sou
rce

s
 FH

IR_Py
tho

n
0

20

40

60

80

100

35.48%

1.61%

52.58%

7.36%

53.76%

Figure 6: Intersection of most common products and projects using FHIR with
main programming languages

applied (Figure 8), but some projects have unique data models while others show
similarities to the FHIR model.

514 Zoltán Richárd Jánki and Vilmos Bilicki

e-health1.84%

ehealth
6.13%

telemedicine

7.67%

telehealth

4.91%

healthcare

32.82%

teleradiology

fhir

46.01%

Figure 7: Presence of telemedicine repositories filtered by threshold values

e-h
ea

lth

 FH
IR

eh
ea

lth

 FH
IR

tel
em

ed
icin

e
 FH

IR

tel
eh

ea
lth

 FH

IR

he
alt

hca
re

 FH
IR

tel
era

dio
log

y
 FH

IR
0

20

40

60

80

100

33.33%

15% 20%
12.5%

19.63%

50%

Figure 8: Ratio of telemedicine projects using FHIR filtered by threshold values

Standardized Telemedicine Software Development Kit 515

4 Challenges in telemedicine application develop-
ment

Here, we collected the challenges that we were facing during the development of
telemedicine applications and the Inclouded platform. To ease the development
processes, we have elaborated and implemented an SDK that supports new tech-
nologies, provides extra features that help developers and solves complex problems
as well. In this section, we list the challenges that our SDK provides solutions for.
We will present our solutions in detail later.

• Inclouded supported FHIR since the foundation of the platform but only
relational database systems were used prior. As public cloud solutions became
more and more popular, we found that Not-only Structured Query Language
(NoSQL) databases can perform better in many situations. FHIR offers a
relational data model for handling healthcare resources, so it is a challenge
to have a compatible NoSQL solution, too.

• Using a pre-created domain model, it is not trivial to find the proper entities
and fields to store all necessary data. Standards are sometimes too generic
even if they are practical. FHIR provides a lot of healthcare resources with
a well-defined data model, but in many real telemedicine cases, it is hard
to find the place to store the data. FHIR offers an extension mechanism
for such cases but the extensions must contain a precise description of what
they contain. Our SDK was extended with a Natural Language Toolkit-
based (NLTK) recommendation system that helps to find the best matching
extension for the data to be stored.

• FHIR provides a well-defined domain model but there is no recommendation
on what technologies to use. Since a telemedicine application can contain
not only metadata about healthcare records but binary files too, we decided
to pursue the idea of polyglot persistence where we use different database
systems, but each of them is used for what they are best at.

• In 2016, Google introduced Angular 2 framework that brought a big change
after AngularJS [22]. As they recommended using TypeScript programming
language, everyone felt the lack of a typed version of FHIR client library.
fhir.js14 offers an official solution for using FHIR in JavaScript but it was
not extended to handle interfaces and classes.

• In many telemedicine projects it is limited where data can be stored and
what path data can be transferred through. These limitations can be stated
by owners, organizations or a project. To meet these requirements and run
into less legal issues, a private cloud is recommended to establish. Inclouded
SDK supports hybrid cloud solutions, so developer can choose to use public
or private cloud to store the data.

14URL: https://github.com/FHIR/fhir.js/

https://github.com/FHIR/fhir.js/

516 Zoltán Richárd Jánki and Vilmos Bilicki

5 Our solution

This paper introduces our telemedicine SDK called Inclouded SDK, its importance
in telemedicine application development and all of its features. The basic concept
of our SDK is to provide the capabilities of WebDAO for telemedicine application
developments. Using WebDAO analogy, SDK offers Data Transfer Objects (DTOs)
in form of classes to apply the entire DAO design pattern. Since it is shown that
serverless development increases productivity, we decided to start telemedicine de-
velopments in a public cloud. Google Cloud Firebase platform and its services were
used as a basis, so we built an SDK that can handle FHIR and can conform to the
solutions of Firebase. Here, we used Google Cloud Firestore for storing metadata,
Google Cloud Storage for storing binary files and the Google Authentication ser-
vice for managing users. The SDK is publicly available and installable via Node
Package Manager (NPM).

5.1 SDK structure

As it is shown in Figure 9, Inclouded SDK consists of resource-based application
programming interfaces (APIs) that provide fully FHIR-compatible typed docu-
ment classes, so-called DTOs and a list of queries that implements the necessary
FHIR search parameters in form of independent functions. The basic Create, Read,
Update, Delete (CRUD) operations are implemented in the FhirApi class and all
the FHIR resources are inherited from this class. Besides the CRUD operations
there is an additional id-based query function that is suitable for all resources.
Hence, Inclouded SDK fully implements the DAO design pattern for FHIR and can
be used as a part of the data layer of Clean Architecture [16]. To make Figure 9
more clear, we have only drawn a part of the whole library but the rest of it uses
the same idea.

During the design of SDK, we took into account that FHIR has never had
NoSQL support, however, Firebase provides only NoSQL database systems. FHIR
was designed for RDBMS, but today NoSQL is gaining more and more space.
FHIR defines search parameters that describe the necessary filters if one uses the
standard. Using Google Cloud Firestore we were facing issues that made it hard
to filter data that FHIR supports. Four main problems were:

1. finding a value of a field if it is in an object inside an array,

2. filtering by substrings of a field,

3. extending queries based on access-control rules,

4. and obtaining results that are gathered from multiple collections.

In Section 6, we show our algorithms for these problems and present a logical
model for their specifications and verifications.

Standardized Telemedicine Software Development Kit 517

FhirApi
db
collectionName
documentClass

getAll()
getById(id)
add(data)
update(data)
delete(id)

FhirDocument
id
data

splitNameByVariations(name)

FhirRules
references

processRules(rules, operation,
id, role, resource, referenceType,
query, whereFields?)

PatientApi
db
collectionName
documentClass

getActivePatients(group?)
getInactivePatients(group?)
getPatientsByGender(gender)
getPatientsByTelecom(telecom)
getPatientsByBirthDate(birthDate)
...

FhirPatientDocument
id
data
identifier
generalPractitioner
nameText
nameFamily
nameFamilyGivenText
nameSearchField
...

PractitionerApi
db
collectionName
documentClass

getPractitionersByName(namePrefix?,
nameFamily?, nameGiven?, nameSuffix?,
nameText?)
getPractitionersByAddress(postalCode?,
country?, city?, line?)
getPractitionersByGender(gender)
...

FhirPractitionerDocument
id
data
identifier
nameText
nameFamily
nameFamilyGivenText
nameSearchField
organization
...

OrganizationApi
db
collectionName
documentClass

getOrganizationsByIdentifier(id)
getOrganizationsByName(name)
getOrganizationsByStatus(status)
...

FhirOrganizationDocument
id
data
identifier
addressPostalCode
addressCountry
addressCity
addressLine
nameSearchField
...

Figure 9: SDK structure

5.2 SDK architecture

Since FHIR requires endpoints that return back standard data, there is no restric-
tion on the format in which the data is stored. So, the data is stored in a format
compatible with NoSQL and Firestore concepts, but the data that is retrieved by
the client is fully FHIR compliant. The above mentioned intelligent capabilities
are implemented in the document classes. FhirDocument is the base class of all
resource entities. Here, we have two attributes, one is id, the other is data. To solve
the 4 main challenges, document classes use helper functions that convert data to
a format that makes it searchable in any database system.

Figure 10 shows an architectural map about how SDK takes place in the data
path. It is installed on the client side and processes the data sent by the client and
forwards it to the cloud. If the client operation is an insertion, SDK waits for an
FHIR-compatible object and creates an extended object that makes the original
data NoSQL compatible. If the request is a query, then SDK waits for search
parameters and adds the necessary filters to the query object. Since access control
techniques are different in different database systems, SDK also has an optional rule

518 Zoltán Richárd Jánki and Vilmos Bilicki

processing function that checks the grants based on the database settings. Since
the rule system of Firestore does not work as a filter, it is required to add extra
filters to the query to retrieve the needed objects.

Inclouded SDKClient application

Public cloud

Private cloud

Internet

Sending
FHIR object

Extended
FHIR object

extend

insertionquery

parameters

Retrieving
FHIR object

Stored
FHIR object

map

return

rule
processing

Figure 10: SDK architecture

6 Results

In this section, we will present the main components of our SDK, the formal de-
scriptions of the algorithmic solutions, and the productivity results achieved.

6.1 Main components

Inclouded SDK consists of six core components that support developers in tele-
medicine application development. Here, we provide a detailed description about
these solutions.

6.1.1 Outsourcing non-searchable fields

It is shown that in Google Cloud Firestore, if a field can be found in an object inside
an array, it cannot be filtered. It is also problematic in other NoSQL systems if
only a field value is known, not the whole object. SDK manages such cases by
outsourcing these values into new so-called search-fields created at the top level.
The standard form of the data is also kept, so REST endpoints conform to the
FHIR standard.

Standardized Telemedicine Software Development Kit 519

6.1.2 Rule processor

Access control mechanism of Google Cloud Firestore is so simple that only requested
collections or one document of a collection can be controlled by them. Rules can use
the requester’s sent data, requested data or a preset date to check if the resource
can be given to the client. Since a rule controls the whole request, it is not an option
to retrieve only those documents for which we have permission. To do so, requests
must contain additional filters to start requests only for those documents that we
have permission. If we construct our queries using this structure, we can execute
queries in any NoSQL system. Thus, we elaborated a rule processor algorithm.
Since it is known which FHIR resources can contain data referring to users, groups
or permissions, we made a built-in resource descriptor object that contains the
resources and their fields that may contain references to such entities. The rule
processor waits for a query object, the currently active rule set and the logged in
user’s id, roles and groups. Optionally, the FHIR resource fields that may refer
to permissions can be explicitly set up. By default, SDK uses the basic FHIR
knowledge. After starting a request, – calling an SDK function, – SDK will extend
the query based on the active rules, the user data, the requested resource and the
FHIR resource references. So, developers do not have to take care about how data
can be retrieved under given access control settings because SDK will resolve this
issue and build up a perfect query. Naturally, the rule processor functionality can
be turned off if there are no rules set up in the project. This solution can be applied
in private cloud solutions, too, e.g. in RESTHeart15 with MongoDB.

6.1.3 Collected system codes

FHIR stores quantitative values and values from enumerations in coding systems.
SDK collects the most important and most common codes from the LOINC database
that helps to describe stored data. This component not only provides the codes
and their descriptions, but also creates the necessary FHIR format of the object
that will contain the value. Developers can waste a lot of time by searching for
these codes and finding the best description.

6.1.4 Extension finder

FHIR has an extension mechanism to give the opportunity to place data at a
resource if there is no given field for the data. However, it is not easy to use because
extensions must be well-defined using a FHIR profile that describes the stored
data. We have extended our SDK with a public REST endpoint that can return
a suggestion for data that developers could not find a field in the standard. The
idea came after analyzing open-source projects using FHIR and applying extensions
in the wrong way. Our approach uses NLTK to find the best matching extension
that can define the data. In [10], we have shown our component in detail and
demonstrated that our solution can achieve an 89% success rate.

15SoftInstigate. Restheart - ready to use backend for web and mobile apps. https://restheart.
org/

https://restheart.org/
https://restheart.org/

520 Zoltán Richárd Jánki and Vilmos Bilicki

6.1.5 Support for offline capability

In [8] and [9], we have presented a taxonomy to help design distributed telemedicine
systems. Based on our elaborated taxonomy, we showed how consistency and data
quality changes if the data path is complex and how systems can be configured to
maintain consistency, availability and partition-tolerance at a high level. Inclouded
SDK took a part in that model, and it has the option to easily tune a telemedicine
system so that it remains offline capable without significant data staleness. It was
measured that by allowing data up to 1 version older to be used in the cache, the
system can still provide 83% consistency.

6.1.6 Hybrid cloud support

One of the biggest advantages of using Inclouded SDK is the hybrid cloud capability.
It is a requirement in many projects to store data in a private cloud. However,
public clouds can perform better. The development of Inclouded SDK started
in 2016 and was introduced first in our former paper [7]. That study examined
the concept of WebDAO and highlighted the importance of DAO in telemedicine
application development. Based on our experiences in using Google Cloud, we have
implemented a DAO layer that can substitute Google’s document classes. It is a
modern implementation of the classic DAO layer. Since Google Cloud Firestore is
a document-oriented NoSQL database system, we found MongoDB as the closest
open-source alternative to build a private cloud. Comparing their features, they
operate very similarly, only technical differences can be found. Google is a bit more
limited in filtering and setting up rules to access resources.

RESTHeart is an open-source cloud platform that provides REST API for Mon-
goDB but cannot notify clients about data changes in real time via REST API.
Since RESTHeart HyperText Transfer Protocol (HTTP) endpoints close the con-
nection between the client and the server after responding, a WebSocket connection
is needed to keep the connection alive. We have integrated a WebSocket module
into Inclouded SDK that can establish WebSocket connection to a server. To follow
up real time changes of a MongoDB collection, a Change Stream must be opened
but Change Stream requires a MongoDB Replica Set that is not part of the basic
RESTHeart platform. Hence, we have extended the original RESTHeart project
with a MongoDB Replica Set and added a WebSocket server that can open Change
Streams to collections. The WebSocket connection initiated by the SDK is used
only for notifying the subscribed clients about changes. Every request goes through
the original RESTHeart API.

Inclouded SDK can transform all type of queries that Google Cloud Firestore
can handle including CRUD operations, filterings, ordering and paging. To have an
interchangeable solution, we have created a MongoDBCollection, a MongoDBDoc-
ument and a MongoDBQuery classes that have the same functions as Firestore’s
TypeScript classes have, with the same input arguments and return values. Thus,
a configured Firestore database object and a configured MongoDB DAO object can
be interchangeably used. The database object is an input of FHIR API classes, so

Standardized Telemedicine Software Development Kit 521

developers can decide if a resource should be stored in a private cloud or in a public
cloud.

6.2 Formal definitions of algorithms

In this section, we present our algorithmic solutions for the four main issues that we
were facing by using NoSQL database systems. For three of them, we provided an
algorithmic solution. In the fourth case, if data can be queried only from multiple
collections, developers can start multiple queries to get the needed data but it can
produce a huge load on the client side. A better approach is to collect the data
based on use-cases in result tables. SDK supports two types, these are used for
creating result tables and charts. These are implemented in independent functions,
so here we do not provide an algorithmic solution.

Since FHIR was designed for relational database systems, its applicability in
public cloud databases is limited due to their predominant use of NoSQL database
systems. Glenn Pepito collected the challenges and strategies of RDBMS to NoSQL
migration in [17]. In a recent ScyllaDB guide [21], it is detailed what trade-
offs must be taken when changing from relational to non-relational database sys-
tem. Alachisoft16 collected the key steps for adapting an existing schema to non-
relational databases. All in all, it is commonly recommended that during the data
model transformation process, denormalization and embedding of referenced ob-
jects into the reference location should be employed in most cases. However, in
some instances, a hybrid model may be more effective. Similarly, our algorith-
mic approach also follows a hybrid principle in structuring data by preserving the
standard part intact but outsourcing specific fields due to limitations in filtering
capabilities.

Three algorithmic solutions were modeled in Temporary Logic of Actions (TLA)
using its TLA+ language [14] to provide formal definitions as well. We have also
verified the correctness of algorithms with Temporary Logic of Components (TLC)
model checker. The algorithms and their formal definitions for the mentioned issues
are as follows:

• If a field that must be searchable by the standard is hidden in an object that
is in an array, the field is outsourced to an independent field at the top level
(Algorithm 1).

• If a field containing a string must be filtered by substrings, SDK generates
all the possible variations of the string that may occur and place them in an
independent array field at the top level (Algorithm 2).

• If a rule exists for a given resource, it must be extended in the query to return
back data (Algorithm 3).

16Alachisoft. Migration from sql to nosql databases. https://www.alachisoft.com/resources/

whitepapers/sql-to-nosql-migration.html#json-collections

https://www.alachisoft.com/resources/whitepapers/sql-to-nosql-migration.html#json-collections
https://www.alachisoft.com/resources/whitepapers/sql-to-nosql-migration.html#json-collections

522 Zoltán Richárd Jánki and Vilmos Bilicki

Algorithm 1 Formal definition of ”checking if object is in an array” algorithm

CheckObjInArray(x)

1: if num op[x] < Len(INPUT OBJECT FOR OBJ IN ARRAY) then
2: num op′ = [num op EXCEPT ![x] = num op[x] + 1]
3: head′ = Head(check arr)
4: if head′! = ”elementary” and Head(head′)! =”object” then
5:

6: if Len(head′) > 0 and Head(Head(head′)) =”object” then
7: found arrays′ = TRUE
8: array counter′ = array counter + 1
9: UNCHANGED substr filter vars

10: else
11: UNCHANGED << array counter, substr filter counter,

found arrays, substr filter needed, check substr >>
12: end if
13: else
14: UNCHANGED << array counter, substr filter counter, found arrays,

substr filter needed, check substr >>
15: end if
16: check arr′ = Tail(check arr)
17: else
18: UNCHANGED vars
19: end if

Algorithm models were verified if they work properly. We have developed a
Generator API to all the FHIR Resource APIs and these generators produced
inputs that were passed to TLC Model Checker. We have evaluated the state graph
of the algorithms but none of them produced error or deadlock, and returned the
expected values, so we can conclude that algorithms are working as expected.

6.3 Productivity

In addition to many features that Inclouded SDK carries, we have also taken
measurements on how it influences the development productivity. We have seen
that there are code and project metrics that can be used to measure productivity.
Here, we introduce another technique that measures specifically the coding and
its progress. After testing various tools, we found an open-source, cross-platform
time tracker for operating systems that can profile to output only the time used
for development. Automatic, rule-based time tracker (ARBTT17) is a completely
automatic time tracker that can collect statistics about how users spend their time.
It runs in the background and monitors the computer and saves statistics about

17Breitner, Joachim and et al. arbtt: the automatic, rule-based time tracker. https://arbtt.

nomeata.de/#what

https://arbtt.nomeata.de/#what
https://arbtt.nomeata.de/#what

Standardized Telemedicine Software Development Kit 523

Algorithm 2 Formal definition of ”substring filtering needed” algorithm

CheckIfSubStrF ilterNeeded(x)

1: if num op[x] < Len(INPUT OBJECT FOR SUBSTR FILTER) then
2: num op′ = [num op EXCEPT ![x] = num op[x] + 1]
3: head′ = Head(check substr)
4: if head′! = NEEDED and Head(head′) > 0 then
5:

6: if Head(head′) =NEEDED then
7: substr filter needed′ = TRUE
8: substr filter counter′ = substr filter counter + 1
9: UNCHANGED obj in array vars

10: else
11: UNCHANGED << array counter, substr filter counter,

found arrays, substr filter needed, check arr >>
12: end if
13: else
14: UNCHANGED obj in array vars
15: end if
16: check substr′ = Tail(check substr)
17: else
18: UNCHANGED vars
19: end if

Algorithm 3 Formal definition of ”rule processor needed” algorithm

CheckRules(x)

1: if num op[x] < rules length then
2: num op′ = [num op EXCEPT ![x] = num op[x] + 1]
3: check rules′ =RULES[RESOURCE]
4: head′ = Head(check rules’)
5: if Len(head′) > 0 then
6: query′ = query o << head′ >>
7: else
8: FALSE
9: end if

10: UNCHANGED obj in array vars
11: UNCHANGED substr filter vars
12: UNCHANGED rules length
13: else
14: UNCHANGED vars
15: end if

what windows were open, which one was the most active one in a given interval.
The interval can be configured before starting the tracker.

524 Zoltán Richárd Jánki and Vilmos Bilicki

In our study, we involved 10 university students who have not met FHIR yet, but
completed a Web-development frameworks course where they learnt about Angular
2+ framework and Google Cloud Firebase platform and its services. With this
study, our goal was to measure how productivity can be increased if developers use
Inclouded SDK instead of start using the documentation of FHIR and the original
Firestore SDK. The development phases were the followings:

1. Create an example TypeScript object for the selected FHIR resource.

2. Implement a list of Firestore queries without using Inclouded SDK (CRUD
operations and other queries taking into account the FHIR search parame-
ters).

3. Implement a list of Firestore queries using Inclouded SDK (same list of func-
tions).

ARBTT was started with -r 10 argument, so after every 10 seconds a log was
created in the log file containing the opened windows and puts a flag to the most
active one. Every developer used Visual Studio Code as IDE and installed the
Angular 13 Snippets extension in advance. In the developer’s ticket, it was specified
what name they have to use by creating the file for the functions, so after analyzing
the logs it was easy to determine how much time they spent editing a given file in the
project. Everyone started to work on the same Angular 13 project that contained
the necessary packages with fixed version numbers. The task list and the order of
the tasks were identical, only the operating system was permitted to choose after
the preferences. To verify the accuracy of the ARBTT capture logs, we analyzed
the work logs added to the tickets as part of our quality control measurements.

In Figure 11, it can be seen that in all 4 scenarios the development time is
reduced if developers used SDK. The development time in hours is presented as
an average for each FHIR resource. The time tracker puts a flag to the window
with the highest activity within the last 10 seconds, so it is not obvious how long
the development time really took. We have also validated the time tracker results
with logged work hours, and we found similar ratios between the two types of
development form. After the final analysis of ARBTT logs, we found that the
average activity time of a window in a 10 seconds long interval is 3.51 seconds.
Since Patient was the first resource that developers had to work with, it needed
the most time. Moreover, Patient has the most search parameters as well, so it
needs the longest development time period. Comparing the development times, we
can say that the development with SDK can be at least 2 times better than using
only official documentation with no helper functions. Thus, we found that the
Inclouded SDK can be an important key element not only in ours, but also in other
telemedicine architectures. Moreover, these measurements validate the importance
of DAO pattern from the point of view of productivity as well.

Standardized Telemedicine Software Development Kit 525

Patient Practitioner Device Observation
0

20

40

60

80

100

120

140

160
De

ve
lo

pm
en

t t
im

e
in

 h
ou

rs

127.75h

32.00h 24.92h
36.08h

40.83h

20.58h

10.00h

12.25h

Without SDK
With SDK

Figure 11: Average development time measured using SDK and without SDK

7 Future plans

Inclouded SDK is constantly updated and it is following the innovations of the de-
pendencies. It is planned to integrate more public cloud solutions to support various
systems. With these integrations, more novelties can be added to the package. Af-
ter comparing our Google-based solution to Amazon Web Services and Azure, we
found that all three platforms have common key points that make it possible for
our SDK to be compatible with all public cloud platforms. Naturally, we would
like to provide further support for private clouds as well. Regarding private cloud
solutions, our solution primarily supports NoSQL databases. Since the filtering ca-
pabilities are more limited compared to a relational database, our solution can be
clearly adapted to support relational databases as well. Nevertheless, FHIR defines
a relational domain model, so such a solution can be implemented without the algo-
rithmic solutions we proposed. Our solution and its significance came up with the
idea to support other standards and may focus on other areas as well, not only on
telemedicine. We have already started to develop a SDK with similar capabilities
supporting telecommunication projects and using an acknowledged standard called
TM Forum. In summary, there is a planned effort to assess the productivity of
GitHub projects, supporting the importance of the WebDAO pattern as presented
in [3].

526 Zoltán Richárd Jánki and Vilmos Bilicki

8 Conclusions

This paper presented Inclouded SDK that can be a key component of any teleme-
dicine system. It acts as a link between client-side and server-side in a way that
the backend system can be easily changed. Both private and public clouds are sup-
ported, furthermore it contains several functionalities that help developers to work
efficiently. Here, we support the most popular telemedicine standard, and we made
various statistics to show its actuality. We presented the five main components of
the SDK, in which the algorithmic solutions were formally defined and verified as
well. The significance of Inclouded SDK in telemedicine application development
is proved with different measurements. In terms of productivity, we have shown
that the required development time can be at least two times less with SDK than
without using SDK. Our results based on GitHub analysis and productivity showed
that it is a promising solution. It is open-source and publicly available in NPM,
and the increasing number of downloads denotes that there is a growing demand
on packages and libraries like this.

References

[1] Abbas, A. and Khan, S. A review on the state-of-the-art privacy preserv-
ing approaches in e-health clouds. IEEE Journal of Biomedical and Health
Informatics, 18(4):1431–1441, 2014. DOI: 10.1109/JBHI.2014.2300846.

[2] Baudin, G. Handle FHIR objects with TypeScript (and JavaScript).
URL: https://medium.com/@ahryman40k/handle-fhir-objects-in-

typescript-and-javascript-7110f5a0686f. [Accessed: 2022-09-29].

[3] Choudhary, S., Bogart, C., Rosé, C. P., and Herbsleb, J. D. Modeling coordi-
nation and productivity in open-source GitHub projects, 2018. URL: http://
reports-archive.adm.cs.cmu.edu/anon/isr2018/CMU-ISR-18-101.pdf.

[4] Ferrer-Roca, O. Standards in Telemedicine. In E-Health Systems Quality and
Reliability: Models and Standards, pages 220–243. Medical Information Science
Reference, 2011. DOI: 10.4018/978-1-61692-843-8.ch017.

[5] FHIR version history and maturity. Technical report, The Of-
fice of the National Coordinator for Health Information Technol-
ogy. URL: https://www.healthit.gov/sites/default/files/page/2021-
04/FHIR%20Version%20History%20Fact%20Sheet.pdf.

[6] Forsgren, N., Tremblay, M., Vander Meer, D., and Humble, J. DORA plat-
form: DevOps assessment and benchmarking. In Proceedings of the Inter-
national Conference on Design Science Research in Information System and
Technology, pages 436–440, 2017. DOI: 10.1007/978-3-319-59144-5_27.

[7] Jánki, Z. R. and Bilicki, V. Full-stack FHIR-based MBaaS with server- and
client-side caching capable WebDAO. In Proceedings of the 11th Conference

https://doi.org/10.1109/JBHI.2014.2300846
https://medium.com/@ahryman40k/handle-fhir-objects-in-typescript-and-javascript-7110f5a0686f
https://medium.com/@ahryman40k/handle-fhir-objects-in-typescript-and-javascript-7110f5a0686f
http://reports-archive.adm.cs.cmu.edu/anon/isr2018/CMU-ISR-18-101.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isr2018/CMU-ISR-18-101.pdf
https://doi.org/10.4018/978-1-61692-843-8.ch017
https://www.healthit.gov/sites/default/files/page/2021-04/FHIR%20Version%20History%20Fact%20Sheet.pdf
https://www.healthit.gov/sites/default/files/page/2021-04/FHIR%20Version%20History%20Fact%20Sheet.pdf
https://doi.org/10.1007/978-3-319-59144-5_27

Standardized Telemedicine Software Development Kit 527

of PhD Students in Computer Science, pages 179–183, 2018. URL: https:
//www.inf.u-szeged.hu/~cscs/cscs2018/pdf/cscs2018.pdf.

[8] Jánki, Z. R. and Bilicki, V. Crosslayer cache for Telemedicine. In Proceed-
ings of the 12th Conference of PhD Students in Computer Science, pages
159–163, 2020. URL: https://www.inf.u-szeged.hu/~cscs/cscs2020/

proceedings.php.

[9] Jánki, Z. R. and Bilicki, V. Taxonomy for trade-off problem in distributed Te-
lemedicine systems. Acta Cybernetica, 25(2):285–306, 2021. DOI: 10.14232/

actacyb.290352.

[10] Jánki, Z. R. and Bilicki, V. Domain specific semantic data model integra-
tion. In Proceedings of the 13th Conference of PhD Students in Computer
Science, pages 197–201, 2022. URL: https://www.inf.u-szeged.hu/~cscs/
cscs2022/pdf/cscs2022.pdf.

[11] Kazulkin, V. Measure and increase developer productivity with help of
Severless. URL: https://www.slideshare.net/VadymKazulkin/measure-

and-increase-developer-productivity-with-help-of-severless-

by-kazulkin-and-bannes-sla-the-hague-2020-238115659. [Accessed:
2022-09-29].

[12] Kruse, C. S., Smith, B., Vanderlinden, H., and Nealand, A. Security techniques
for the electronic health records. Journal of Medical Systems, 41(8):127–136,
2017. DOI: 10.1007/s10916-017-0778-4.

[13] Kulakiewicz, A., Parkin, E., and Powell, T. Patient health records: Access,
sharing and confidentiality. Technical report, House of Commons Library, UK
Parliament, 2022. URL: https://researchbriefings.files.parliament.
uk/documents/SN07103/SN07103.pdf.

[14] Lamport, L., Matthews, J., Tuttle, M., and Yu, Y. Specifying and verifying
systems with TLA+. In Proceedings of the 10th Workshop on ACM SIGOPS
European Workshop, pages 45–48, 2002. DOI: 10.1145/1133373.1133382.

[15] Maia, R., Von Wangenheim, A., and Nobre, L. A statewide telemedicine
network for public health in Brazil. In Proceedings of the IEEE Symposium on
Computer-Based Medical Systems, Volume 2006, pages 495–500, 2006. DOI:
10.1109/CBMS.2006.29.

[16] Martin, R. C. Clean Architecture: A Craftsman’s Guide to Software Structure
and Design. Prentice Hall Press, USA, 1st edition, 2017. ISBN: 0134494164.

[17] Pepito, G. RDBMS to NoSQL migration: Challenges and strategies,
2018. URL: https://www.researchgate.net/publication/341294540_

RDBMS_to_NoSQL_Migration_Challenges_and_Strategies.

https://www.inf.u-szeged.hu/~cscs/cscs2018/pdf/cscs2018.pdf
https://www.inf.u-szeged.hu/~cscs/cscs2018/pdf/cscs2018.pdf
https://www.inf.u-szeged.hu/~cscs/cscs2020/proceedings.php
https://www.inf.u-szeged.hu/~cscs/cscs2020/proceedings.php
https://doi.org/10.14232/actacyb.290352
https://doi.org/10.14232/actacyb.290352
https://www.inf.u-szeged.hu/~cscs/cscs2022/pdf/cscs2022.pdf
https://www.inf.u-szeged.hu/~cscs/cscs2022/pdf/cscs2022.pdf
https://www.slideshare.net/VadymKazulkin/measure-and-increase-developer-productivity-with-help-of-severless-by-kazulkin-and-bannes-sla-the-hague-2020-238115659
https://www.slideshare.net/VadymKazulkin/measure-and-increase-developer-productivity-with-help-of-severless-by-kazulkin-and-bannes-sla-the-hague-2020-238115659
https://www.slideshare.net/VadymKazulkin/measure-and-increase-developer-productivity-with-help-of-severless-by-kazulkin-and-bannes-sla-the-hague-2020-238115659
https://doi.org/10.1007/s10916-017-0778-4
https://researchbriefings.files.parliament.uk/documents/SN07103/SN07103.pdf
https://researchbriefings.files.parliament.uk/documents/SN07103/SN07103.pdf
https://doi.org/10.1145/1133373.1133382
https://doi.org/10.1109/CBMS.2006.29
https://www.researchgate.net/publication/341294540_RDBMS_to_NoSQL_Migration_Challenges_and_Strategies
https://www.researchgate.net/publication/341294540_RDBMS_to_NoSQL_Migration_Challenges_and_Strategies

528 Zoltán Richárd Jánki and Vilmos Bilicki

[18] Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., and Stumm, M.
Continuous deployment at Facebook and OANDA. In Proceedings of the 38th
International Conference on Software Engineering Companion, pages 21–30.
ACM, 2016. DOI: 10.1145/2889160.2889223.

[19] Shake Technologies, I. Metrics for measuring the productivity of your
development team. URL: https://www.shakebugs.com/blog/measuring-

developer-productivity/. [Accessed: 2022-09-29].

[20] Solanke, V., Kulkarni, G., Vishnu, M., and Kumbharkar, P. Private vs
public cloud, 2013. URL: https://www.researchgate.net/publication/

258253155_Private_Vs_Public_Cloud.

[21] SQL to NoSQL: Architecture differences and considerations for migration.
Technical report, ScyllaDB, 2020. URL: https://www.scylladb.com/wp-

content/uploads/wp-sql-to-nosql-architectur-differences-

considerations-migration-1.pdf.

[22] Sultan, M. Angular and the trending frameworks of mobile and web-
based platform technologies: A comparative analysis. In Proceedings
of the Future Technologies Conference, pages 928–936, 2018. https:

//saiconference.com/Downloads/FTC2017/Proceedings/128_Paper_264-

Angular_and_the_Trending_Frameworks_of_Mobile.pdf.

https://doi.org/10.1145/2889160.2889223
https://www.shakebugs.com/blog/measuring-developer-productivity/
https://www.shakebugs.com/blog/measuring-developer-productivity/
https://www.researchgate.net/publication/258253155_Private_Vs_Public_Cloud
https://www.researchgate.net/publication/258253155_Private_Vs_Public_Cloud
https://www.scylladb.com/wp-content/uploads/wp-sql-to-nosql-architectur-differences-considerations-migration-1.pdf
https://www.scylladb.com/wp-content/uploads/wp-sql-to-nosql-architectur-differences-considerations-migration-1.pdf
https://www.scylladb.com/wp-content/uploads/wp-sql-to-nosql-architectur-differences-considerations-migration-1.pdf
https://saiconference.com/Downloads/FTC2017/Proceedings/128_Paper_264-Angular_and_the_Trending_Frameworks_of_Mobile.pdf
https://saiconference.com/Downloads/FTC2017/Proceedings/128_Paper_264-Angular_and_the_Trending_Frameworks_of_Mobile.pdf
https://saiconference.com/Downloads/FTC2017/Proceedings/128_Paper_264-Angular_and_the_Trending_Frameworks_of_Mobile.pdf

Acta Cybernetica 26 (2024) 529–542.

Quadratic Displacement Maps for

Heightmap Rendering∗

Mátyás Kiglicsab, Gábor Valasekac, Csaba Bálintad,
and Róbert Bánae

Abstract

We present a higher-order representation of heightfields by constructing
unbounding revolved parabolas about every texel of the height texture. These
surfaces of revolution do not intersect the interior of the volume defined by
the heightfield. We present a simple generation algorithm and show that
these maps can be rendered by computing intersections between lines and
parabolas in the plane. We compare its quality and performance with cone
step mapping.

Keywords: computer graphics, parallax mapping, cone step mapping,
quadric tracing

1 Introduction and Related Work

Heightmaps are two-dimensional textures that store elevation values at each sample
position. These textures are mapped onto simplified base geometries, and the base
shapes are transformed by displacing their points by the corresponding elevations
along a direction. This direction is usually the unit normal of an interpolated
tangent frame over the surface. Geometrically, the heightfield describes a variable
radius offset of the coarse geometry, as shown in Figure 1.

There are two main approaches to the implementation of the above transfor-
mation [8]. A geometric one takes the vertices of the simplified base shape and
translates them according to the heightmap. This mesh-based heightmap requires
a sufficiently dense base geometry to accommodate the heightmap resolution. It
also necessitates carefully crafted level-of-detail (LOD) variations of the base shape

∗Supported by the ÚNKP-22 New National Excellence Program of the Ministry for Innovation
and Technology from the source of the National Research, Development and Innovation Fund.

aEötvös Loránd University, Budapest, Hungary
bE-mail: kiglics@caesar.elte.hu, ORCID: 0000-0003-4957-7495
cE-mail: valasek@inf.elte.hu, ORCID: 0000-0002-0007-8647
dE-mail: csabix@inf.elte.hu, ORCID: 0000-0002-5609-6449
eE-mail: rob.ban@inf.elte.hu, ORCID: 0000-0002-8266-7444

DOI: 10.14232/actacyb.299736

mailto:kiglics@caesar.elte.hu
https://orcid.org/0000-0003-4957-7495
mailto:valasek@inf.elte.hu
https://orcid.org/0000-0002-0007-8647
mailto:csabix@inf.elte.hu
https://orcid.org/0000-0002-5609-6449
mailto:rob.ban@inf.elte.hu
https://orcid.org/0000-0002-8266-7444
https://doi.org/10.14232/actacyb.299736

530 Mátyás Kiglics, Gábor Valasek, Csaba Bálint, and Róbert Bán

Figure 1: Heightfield (center, in blue) applied on top of a coarse geometry (left)
yields a continuous, higher detail surface (right).

so that GPU performance is not wasted by rendering micro-triangles at a distance.
Moreover, the transitions between the LODs should also be seamless.

The screen-space or per-fragment approach does not alter the raw geometry;
instead, it casts a ray through each pixel of the base shape and alters the shading
parameters according to a ray trace against the heightfield. Here, the displaced
geometry is not stored explicitly; it only exists procedurally during ray traversal.

Initial screen-space techniques relied on the linear search along the ray to iden-
tify the ray-heightfield intersection [8]. Dummer proposed a conservative empty
space skipping technique called cone step mapping to accelerate this process [4]
with a different heightmap representation. Unbounding cones replaced the eleva-
tion values. These are the widest cones that are disjoint from the heightfield, have
their apex on the heightfield surface, and their axes of symmetry are the tangent-
space normals. Usually, these cones are stored with two scalars: the height of the
apex and the tangent of the half-cone angle. Other numerical representations have
been proposed as well that improve various numerical properties [5].

The current state-of-the-art in rendering performance is the relaxed cone map
technique of Policarpo and Oliveira [7]. They extended Dummer’s cone step map-
ping by replacing strictly conservative cones with relaxed cones that do not allow
for more than one outside-inside transition between the ray and the heightmap.
This approach guides the tracing inside the volume of the heightfield, so it requires
a robust root refinement process, e.g., binary search, to find the surface point of
the intersection.

Our paper proposes a generalization of cone maps by assigning a surface of
revolution based on a parabola to each heightmap sample. This approach is a
generalization of quadric maps [2]. The resulting surfaces are conservatively un-
bounding in the same sense as Dummer’s, and we refer to them as unbounding
revolved parabolas. Figure 2 illustrates several parabola cross-sections.

Section 2 introduces our proposed representation and specifies our cone-parabola
hybrid model mathematically. We present a construction algorithm in Section 3 and
a new tracing method for our data structure in Section 3.2. We propose generation
and render time optimizations in Section 4. Section 5 contains our empirical results.
We compared our proposed method with cone step mapping. Section 6 concludes
this paper.

Quadratic Displacement Maps for Heightmap Rendering 531

Figure 2: Distance–maximum height histogram for a given texel. The orange points
are the height differences divided by the distance. The blue, red, and green lines
form a convex boundary, and each line corresponds to a bounding parabola.

2 Quadratic displacement maps

The previously mentioned cone step mapping algorithms excel at rendering height-
maps in real-time; their most significant slowdown results from areas with high
tangent slopes in the heightfield. Generally, the generated cones at these texels
have a narrow opening angle, limiting the volume that can be skipped during ray-
marching, therefore, increasing the number of iterations required. While more steps
taken per ray does not necessarily mean worse performance, the cost of multiple
texture read queries on the GPU cause a significant amount of idle processing time,
making the algorithm less effective.

We aim to reduce the number of iterations by generalizing the cones to con-
servative parabolic surfaces, thereby increasing the unbounding volume size where
possible. Quadratic surfaces have a non-constant tangent that allows them not to
be defined only by the closely surrounding height values.

However, surfaces defined by implicit quadratic equations may not be sufficient,
as they cannot generally provide the necessary improvement in step size extension;
hence we complicate the surface to consist of two parts. First, we define a cone with
similar characteristics to Dummer’s cones, although limiting the height of the cone
to a predefined value which we specify as a ratio between the height of the texel
and the maximal heightmap value. Then, we connect a revolution of the parabola
to the edge of the cone to create a continuous surface, allowing the parabola to be
defined by an independent parameter from the cone.

Our representation of the described surface consists of three parameters denoted
by a, b, c ∈ R. The first two values represent the coordiantes of a point on the plane
relative to the position of the texel, defining a line segment as one side of the cone.
The two-dimensional description is sufficient here due to the radial symmetry of
the surface. The third value, c, specifies a parabola starting from (a, b) defined by

532 Mátyás Kiglics, Gábor Valasek, Csaba Bálint, and Róbert Bán

Figure 3: Generated quadratic surfaces with 0.5 (left) and 0.2 (right) height ratio
for sample heightfields. The conic part on the left picture is colored yellow, and
the quadratic parts are red on both sides.

the implicit equation

y = −(x− c)2 + b+ (c− a)2 (a ≥ 0, b ≥ 0) .

Examples of such surfaces are shown in Figure 3. This representation requires
storing three floating point values in addition to the height value for rendering.
Thus, we equip the texture with four channels in our implementation.

3 Proposed algorithms

Our method traverses the empty space between higher heightmap elevations differ-
ently than similar techniques. We propose an algorithm for constructing unbound-
ing parabolas and an efficient way to render heightmaps.

3.1 Generation of quadratic maps

Similarly to cone tracing, our ray tracing technique requires the revolved parabo-
las to be defined for every texel of the heightfield. For large textures, satisfying
this condition demands time-efficient, parallelized construction of the unbounding
surfaces with a small storage footprint.

First, for each (u, v) texel of the heightmap, we generate a radial function muv

that returns the maximal relative height at a given distance from (u, v). An example
of this function is shown in Figure 4. Let this function be defined for each d ∈ N
integer pixel distance by

muv(d) = max
d≤‖(x,y)−(u,v)‖

2
<d+1

{h(x, y)− h(u, v)} (x, y) ∈ Dh.

After this transformation, we only need muv to find the optimal a, b parameters
for a texel by advancing along the maximal height function, and in each step, we

Quadratic Displacement Maps for Heightmap Rendering 533

Figure 4: Generated radial function muv (red line) for a heightfield around the axis
of the current texel (blue line). The value of the function at a given distance from
(u, v) is the maximum height of the texels with the same distance.

choose a ← i and b ← max{i · b
a ,muv(i)}, where i ∈ Dmuv

. We keep progressing

until i · ba exceeds the value of the height ratio parameter or i reaches the maximal
distance. These steps can be pictured as searching for a cone which is a revolution
of the line segment to (a, b) and does not intersect the heightfield but has the
smallest slope possible. The result yields a finite-sized cone defined by the (a, b)
point relative to the texel, as visualized in Figure 5.

With given values of a and b, we connect a revolved parabola to the top of the
cone. Since these parabolas can be defined sufficiently in many ways, we choose a
single equation to reduce the number of required parameters to one. This repre-
sentation allows us to store all data for a parabola efficiently in four channels of a
single texture. Let the implicit equation of the parabola be

y = −(x− c)2 + b+ (c− a)2, (1)

where c ∈ R+ remains to be determined. The global maximum of this curve is at c.
Increasing this value guarantees that every point on the parabola between a and c
will rise; satisfying our initial condition of avoiding intersection with the heightfield
is trivial. This also means that the optimal value of c can be found by fitting a
parabola to each point of muv and finding their global maximum. Thus, we solve
the quadratic equations

muv(j) = −(j − cj)2 + b+ (cj − a)2 j ∈ (a+ 1, a+ 2, . . .) ∩ Dmuv

for cj and let c = max cj .
After determining the a, b, and c parameters for each (u, v) texel, we include

h(u, v) and store the four floating point values in a texture to accelerate ray tracing.
The complexity of the algorithm for a texture of size N ×N is Θ(N4) because the
generation of muv requires checking all texels. However, since these calculations
are independent, they can be parallelized.

534 Mátyás Kiglics, Gábor Valasek, Csaba Bálint, and Róbert Bán

(a) (b)

Figure 5: The two parts of generation of parabolas. First, we find values a and b,
which define a cone (orange). Then, we calculate a parabola from (a, b) above the
heightfield, defining an additional c parameter (green).

3.2 Rendering

During rendering, we cast rays from the geometry surface toward the heightfield,
and our goal is to find their intersection using the quadratic maps described above.
The raymarching algorithm is identical to the cone step mapping apart from the
ray-geometry intersection calculations.

Let us define a ray starting from p0 and direction v by p(t) = p0 + tv, where
t ≥ 0. In each step of raymarching, we load the four values (a, b, c, and h) from
the texel below p(ti) (ti being the current ray parameter), and find t where p(t)
intersects the quadratic surface. We can simplify the problem into two dimensions
due to the symmetry of the revolved geometries while obtaining the same results.
Additionally, we only have to account for one parabola because the travel direction
of the ray is known within the plane.

The entire curve is stitched together from two curve segments. The line segment
and the parabolic curve share a single (a, b) point in the two-dimensional represen-
tation. When looking for an intersection with the ray, we separate these two parts
and look at the line first.

Let us define s(α) = α(a, b), where an s(α) point of the line is on the segment
only if α ∈ [0, 1]. Then, let the intersection of the two lines p(t) and s(α) be (x, y),
we have α = x

a . If α ≤ 1, we have t =
∥∥p(ti)− (x, y)

∥∥ .
If α > 1, then substituting p0 + tv into Equation (1), we get

p0y + tvy = −(p0x + tvx − c)2 + b+ (c− a)2 (2)

a quadratic equation of t. If there is no real solution, then we terminate with
no intersection; otherwise, let t1, t2 be two, not necessarily different, roots, thus
t = min{t1, t2}. The correctness of choosing the smaller value is because vy < 0
and p(ti) > −c2 + b + (c − a)2 holds by definition. For the latter inequality, it is
important that it only holds if the previous α > 1 is also true, although solving
(2) would be unnecessary. Algorithm 1 formalizes this method, and Figure 6 shows
two examples.

Quadratic Displacement Maps for Heightmap Rendering 535

Algorithm 1 Tracing of quadratic map

Input: p0 ray origin, v ray direction, aij , bij , cij , hij parabola parameters stored
in a texture
Output: t distance along the ray

p← p0; s← 0
while s < steps ∧ t > ε ∧ p above heightfield do

(i, j)← texel coordinates of p
(x, y)← intersection point of the ray and the line to (aij , bij)
α← x

a
if α ≤ 1 then . Intersected the line

t←
∥∥p− (x, y)

∥∥
else . Check intersection with parabola

A← v2
x

B ← vy − 2 · cij · vx

C ← py − hij − bij − a2ij + 2 · aij · cij
t← solveQuadratic(A,B,C)

end if
p← p + t · v . Step along the ray
s← s+ 1 . Increase step count

end while
return t

4 Further optimizations

The introduced algorithms above perform similarly to the classic cone step mapping
method in both runtime and error metrics. Naturally, there is always room for
improvement, and we have made some optimizations that we deemed necessary.

4.1 Convex bounds

We have proposed an algorithm for constructing conservative parabolas for a texel
on a heightfield in Section 3. The generation consists of two steps: first, we calculate
the values of the radial function muv, and while this is the more costly of the two
parts in terms of performance, it requires further research. Second, we compute
the a, b, c parameters of the parabola by iterating through every possible value of
this function.

Since this iteration is linear in texture size, it can be more efficient to reduce
the number of values using the same method with less repetition. The mentioned
reduction is made by computing the upper convex bound of the muv values, ex-
cluding a significant number of possible parameters from the search. Upper convex
bounds can be constructed in linear time according to [1].

536 Mátyás Kiglics, Gábor Valasek, Csaba Bálint, and Róbert Bán

(a) (b)

(c) (d)

Figure 6: Ray tracing using quadratic maps. The first three pictures (a-c) show
three tracing steps by reading the stored parabola in the current texel and calcu-
lating its intersection with the ray, resulting in the position of the next iteration.
In picture (d), the ray misses the parabola, thus taking an arbitrarily large step.

This optimization, though not changing the overall complexity of the solution,
allows to more efficiently separate the two phases of generation and reduces the
required number of memory access queries. Additionally, the construction of the
convex bound can be further accelerated and even performed directly from the
heightfield, thus skipping the costly muv generation.

Note that with these changes, we will not always have the same parameters as
a result, as demonstrated in Figure 7; however, it is guaranteed to preserve the
conservative property of the parabolas.

4.2 Numerical stability

Time efficiency and numerical precision are critical during rendering to have the
best results in the shortest possible time. It is known that finding the roots time-
efficiently with minimal numerical error is a difficult task. Since we solve a quadratic
equation in every iteration, we have to ensure that we do so in a numerically stable
way.

Quadratic Displacement Maps for Heightmap Rendering 537

(a) Example for parabola (green) generated
using upper convex bound (orange) of the
heightfield.

(b) Difference between a parabola gener-
ated from the radial muv function (purple)
and from convex bound (green).

Figure 7: Parabola generated from convex bound

Blinn [3] has published a method to solve a general quadratic equation using
homogeneous coordinates. Though robust and has a low error rate, it relies on
several condition elevations, which can be time-consuming for real-time render-
ing. However, we can restrict the coefficients by considering how the values are
computed.

Using the notations of Algorithm 1, it is guaranteed that A ≥ 0 and B < 0,
since vx > 0,vy < 0 and cuv > 0 by definition. These inequalities allow writing
a single conditional operator to yield the sufficient root of the equation, that is,
checking if the root is real or not. The optimized quadratic equation solver is in
Algorithm 2.

Algorithm 2 Numerically stable quadratic equation solver for parabolic maps

Input: A ≥ 0, B < 0, C ∈ R coefficients
Output: smaller real root of Ax2 +Bx+ C = 0

B ← B
2

M1 = C
M2 = −B +

√
B2 −AC

x = M1

M2

if x ∈ R then
return x

end if
return ∞

5 Testing and results

The proposed method aims to reduce the number of steps taken along the rays
during real-time heightfield rendering, thus lowering the GPU processing time of a
single image. In this section, we compare the algorithms to Dummer’s cone step

538 Mátyás Kiglics, Gábor Valasek, Csaba Bálint, and Róbert Bán

mapping by distance taken per iteration and runtime of frame rendering. While
the current state-of-the-art method is the relaxed cone stepping, it fundamentally
differs from our proposed conservative technique. Quadric steps do not require
refinement, as we are not entering the surface during rendering. Thus, the preferred
choice of comparison is the cone step mapping.

These algorithms were implemented and tested in the Falcor framework by
NVIDIA [6] with 1920 × 1080 screen resolution on a GeForce GTX 1060M GPU.
The listed results are the average values of renders on 9 different 1024× 1024 sized
heightmaps from Figure 8.

Figure 8: Heightmap samples used for testing the algorithms. Every texture has
the same resolution of 1024× 1024 pixels.

The height ratio parameter of the constructed quadratic surfaces is 0.2 in the
following sections since this value seems to provide the best performance across our
testing.

5.1 Step size and error

Both methods were analyzed by their performance compared to the same ground-
truth image, a result of 200 iterations of linear search corrected with 20 steps of
refinement. The absolute error for a ray is measured as the difference from this
value. The rendered images are viewed from the same 8 camera positions that differ
in incidence angle.

Quadratic Displacement Maps for Heightmap Rendering 539

As shown in Figure 9, by increasing the number of maximal iterations, the total
absolute error decreases for both algorithms as it is expected. In tests where the
camera angle was below 45◦, taking quadric steps usually gave significantly longer
advancements along the ray because of the broad upper sections of the parabolas.
Viewing the scene from higher than 45◦, we lose some of this improvement; hence,
the rays quickly reach the bottom part of the cones, which are similar in the two
methods. Above 48 iterations, both algorithms seem to halt by reaching the height-
field surface or leaving the geometry, so the difference between their errors becomes
insignificant.

Figure 9: Average error in the distance taken on the ray (vertical axis) by iteration
count (horizontal axis). Quadric stepping has generally lower error than cone step
mapping, more significantly for fewer steps.

Figure 10 compares the average number of steps taken. Both algorithms follow
a decreasing tendency by increasing the angle of the camera. Below 45◦ degrees,
quadric mapping generally requires fewer iterations to converge. However, above
45◦ degrees, the method slows down as it approaches the surface.

5.2 Render time

We compared the two methods by average rendering speed for various heightfields
from several camera angles and iteration numbers. Due to the composite nature
of our representation and the fact that we have to resolve intersections with two
different geometries, a single step of parabola tracing is computationally more ex-
pensive than that of cone step mapping. However, faster convergence properties
allow for taking fewer steps, making our method more performant.

Our test results indicate that we can achieve better performance for view angles
below 45◦ on all textures and maximal iterations. Although less noticeable, the
overall mean rendering time for all angles is also reduced according to Table 1.

540 Mátyás Kiglics, Gábor Valasek, Csaba Bálint, and Róbert Bán

Figure 10: Average number of iterations before terminating of cone step mapping
and quadric stepping (vertical axis). Up until 45◦, quadric stepping performs better
in general. The horizontal axis shows the angle in degrees.

Table 1: Average difference of render times between a single cone step and quadric
steps in milliseconds. Negative values (highlighted) mean faster rendering for a
quadric step. For angles below 45◦, the sum of the values is −0.667, while for all
values, it is −0.32, which means a faster average render time of a single image.

Angle
Cone minus Quadric render time (ms)

4 iters 6 iters 8 iters 12 iters 24 iters 48 iters 200 iters
2.9 -0.023 -0.100 -0.047 -0.107 -0.093 -0.123 -0.260

15.3 0.010 0.000 -0.020 -0.010 -0.017 -0.023 -0.043
27.8 0.027 0.017 -0.003 0.020 0.013 0.007 -0.007
40.2 0.023 0.017 0.013 0.027 0.023 0.013 0.000
52.7 0.020 0.013 0.010 0.023 0.020 0.010 0.010
65.1 0.013 0.010 0.010 0.017 0.020 0.010 0.000
77.6 0.010 0.007 0.010 0.017 0.010 0.000 0.000
90.0 0.010 0.010 0.013 0.027 0.027 0.010 0.010

Total: 0.090 -0.027 -0.013 0.013 0.003 -0.097 -0.290

Quadratic Displacement Maps for Heightmap Rendering 541

There is less than 1% difference in the average runtime ratio between the two
methods, where cone step mapping performed better as in Figure 11.

Figure 11: The average render speed of quadric steps compared to the cone step-
ping. The ratio (vertical axis) is below 1 for smaller angles (faster by 5−20%), and
above 30◦, it becomes 1 − 5% slower. The lines represent different measures with
varying numbers of maximum iterations.

6 Conclusion

We proposed a method for efficient real-time ray tracing of heightfields, utilizing
revolved parabolas stored in a four-channeled texture. We introduced algorithms for
generating these parabolas and rendering the surface with additional optimizations.

The algorithms were compared to the cone step mapping technique in extended
testing by convergence speed and frame render time. The tests showed that our
method performed better in both metrics when the camera view angle was low
and produced similar results otherwise. The slowdown can be originated from the
arithmetic costs of a single ray-parabola intersection computation that we plan to
optimize in the future.

The main improvement of our method showed in faster convergence of rays,
which is achieved by taking longer steps in most of the iterations. This indicates
that it can be efficient for rendering heightfields with more expensive queries such
as procedural textures. We plan to explore these possibilities in the future.

Currently, the generation algorithm of the parabola maps demands high memory
and computing capacity, which requires further optimization. We are currently
experimenting with alternative methods for construction that could radically reduce
the resources needed.

542 Mátyás Kiglics, Gábor Valasek, Csaba Bálint, and Róbert Bán

References

[1] Andrew, A. Another efficient algorithm for convex hulls in two dimensions.
Information Processing Letters, 9(5):216–219, 1979. DOI: 10.1016/0020-

0190(79)90072-3.

[2] Bálint, C. and Kiglics, M. A geometric method for accelerated sphere tracing
of implicit surfaces. Acta Cybernetica, 25(2):171–185, 2021. DOI: 10.14232/

actacyb.290007.

[3] Blinn, H. How to solve a quadratic equation? IEEE computer Graphics and
Applications, 25(6):76–79, 2005. DOI: 10.1109/MCG.2005.134.

[4] Dummer, J. Cone step mapping: An iterative ray-heightfield intersection al-
gorithm, 2006. URL: https://www.scribd.com/document/57896129/Cone-

Step-Mapping.

[5] Halli, A., Saaidi, A., Satori, K., and Tairi, H. Per-pixel displacement mapping
using cone tracing. International Review on Computers and Software, 3(5):1–11,
2008.

[6] Kallweit, S., Clarberg, P., Kolb, C., Davidovič, T., Yao, K.-H., Foley, T.,
He, Y., Wu, L., Chen, L., Akenine-Möller, T., Wyman, C., Crassin, C., and
Benty, N. The Falcor rendering framework, 2022. URL: https://github.com/
NVIDIAGameWorks/Falcor.

[7] Policarpo, F. and Oliveira, M. Relaxed cone stepping for relief mapping. GPU
Gems 3, 3:409–428, 2007. URL: https://developer.nvidia.com/gpugems/
gpugems3/part-iii-rendering/chapter-18-relaxed-cone-stepping-

relief-mappingl.

[8] Szirmay-Kalos, L. and Umenhoffer, T. Displacement mapping on the GPU —
state of the art. Computer Graphics Forum, 27(6):1567–1592, 2008. DOI:
10.1111/j.1467-8659.2007.01108.x.

https://doi.org/10.1016/0020-0190(79)90072-3
https://doi.org/10.1016/0020-0190(79)90072-3
https://doi.org/10.14232/actacyb.290007
https://doi.org/10.14232/actacyb.290007
https://doi.org/10.1109/MCG.2005.134
https://www.scribd.com/document/57896129/Cone-Step-Mapping
https://www.scribd.com/document/57896129/Cone-Step-Mapping
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://developer.nvidia.com/gpugems/gpugems3/part-iii-rendering/chapter-18-relaxed-cone-stepping-relief-mappingl
https://developer.nvidia.com/gpugems/gpugems3/part-iii-rendering/chapter-18-relaxed-cone-stepping-relief-mappingl
https://developer.nvidia.com/gpugems/gpugems3/part-iii-rendering/chapter-18-relaxed-cone-stepping-relief-mappingl
https://doi.org/10.1111/j.1467-8659.2007.01108.x

Acta Cybernetica 26 (2024) 543–562.

The Influence of the Nonfunctional Requirements

on the Data Model∗

Grácián Kokrehelab and Vilmos Bilickiac

Abstract

During the design and development of real-world telemedicine applica-
tions, the data model evolves significantly along the datapath. The model
itself, the storage technique, and the user interface are the most common
contributors. This relates to non-functional requirements. The size and com-
plexity of the domain model may also be significantly influenced by standards.
This phenomenon is distinct from data model erosion, which occurs when the
data model changes due to a software developer’s fault and non-properly
defined interfaces. This is occurring by design. We are unaware of any tech-
nique, including OMG’s Unified Modeling Language (UML), that focuses on
this aspect of complex systems: the change of the data model along the dat-
apath. In this article, we investigate this phenomenon and, in addition to
identifying the locations where this change may occur, we classify the mod-
ifications depending on the possible influence a specific model change may
have on the system’s overall properties. This paper presents a novel method-
ology for complex system datapath analysis and demonstrates its application
to a selection of telemedicine-related applications. This technique illustrates
the possible effect of non-functional requirements on the datapath and the
potential consequences of these modifications.

Keywords: FHIR, telemedicine, GUI, Firebase, Angular, modeling

∗This work was supported by the EU-funded Hungarian grant GINOP-2.2.1-15-2017-00073;
project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry
of Innovation and Technology of Hungary from the National Research, Development and Innova-
tion Fund, financed under the TKP2021-NVA funding scheme; project no. II-NKFIH-1528-1/2021
has been implemented with the support provided by the Ministry of Innovation and Technology
of Hungary from the National Research, Development and Innovation Fund, financed under the
II-NKFIH-1528-1 funding scheme. The research was also supported by the Ministry of Innova-
tion and Technology NRDI Office within the framework of the Artificial Intelligence National
Laboratory Program (RRF-2.3.1-21-2022-00004).

aDepartment of Software Engineering, University of Szeged, Hungary
bE-mail: kokrehel@inf.u-szeged.hu, ORCID: 0000-0002-5074-6033
cE-mail: bilickiv@inf.u-szeged.hu, ORCID: 0000-0002-7793-2661

DOI: 10.14232/actacyb.299253

mailto:kokrehel@inf.u-szeged.hu
https://orcid.org/0000-0002-5074-6033
mailto:bilickiv@inf.u-szeged.hu
https://orcid.org/0000-0002-7793-2661
https://doi.org/10.14232/actacyb.299253

544 Grácián Kokrehel and Vilmos Bilicki

1 Introduction

In the late 1950s, renting an IBM 704 digital mainframe computer cost hundreds
of dollars per minute. Recently, cloud computing as a service with on-demand pay-
per-use is a widely used Information Technology (IT) phenomenon that offers great
economies of scale. In order to make the platform as a service more accessible and
affordable, serverless computing has attracted the interest of both industry and
academia.

Another important trend is the widespread use of Internet of Things (IoT) de-
vices. The Function as a Service (FaaS) and Platform as a Service (PaaS) solutions
provide the de facto backend for IoT solutions. The integration of the IoT to the
cloud/edge node is governed in most cases by the traditional Representational state
transfer (REST) paradigm, implemented on top of the Hyper Text Transfer Proto-
col (HTTP). The data is typically serialized in JavaScript Object Notation (JSON).
On the datapath, data travels through a variety of technology stacks.

Domain model erosion is a phenomenon in which the information model of
an application becomes separated from its actual implementation. When applica-
tions shift from one technology stack to another, causing the information model
to change, or when software engineers contribute changes that are not accurately
reflected in the information model, this might occur. When the data model of an
application is expressed in JSON format, but the actual implementation of the data
model changes without corresponding modifications to the JSON representation,
domain model erosion can occur. This might result in incompatibilities between the
data model and its representation, leading to unanticipated application behavior.

Consider, for instance, a web application that employs a JSON representation
to store user information. If a software engineer adds a new field to the user data
model, such as a new email address, but does not update the JSON representation
to incorporate this information, the program may continue to work but will not
keep the new email address for users.

In addition to the data erosion, which may be viewed as a design flaw (lack
of strong, typed interfaces), the data model change along the datapath may be a
real but little understood phenomenon. A widespread system integration approach
is based on the REST architectural style, therefore there is no absolute domain
model, but rather a given representation on a given portion of the data path. If
we consider the MVVM (Model-ViewModel) architectural pattern, we can observe
that the domain model in a given location/layer may differ dramatically from other
locations. All of these alterations are possible in software systems; a comprehensive
system integration is not required to meet these issues.

Non-functional requirements may also influence this domain model. When an
application needs to grow to accommodate greater traffic, this is a classic example
of non-functional requirements resulting in data model modifications. To accom-
modate the increasing load, it may be necessary to modify the data model for
performance by adding additional indices, denormalizing the data, or sharding it
across different servers. Another illustration is when privacy and security needs
change, resulting in data model modifications. For instance, a new rule may man-

The Influence of the Nonfunctional Requirements on the Data Model 545

date that sensitive data be encrypted at rest, which may necessitate alterations to
the manner in which it is kept within the data model.

In order to conform to non-functional requirements such as standard interfaces
or system extensibility, the data format is governed by the standards of a given
domain. E.g.: In the field of telemedicine the Fast Healthcare Interoperability
Resources (FHIR) [4] standard is widely used. When implementing a system that
is intended to conform to a standard, such as FHIR, the domain model may need
to be extended or updated to comply with the standard. To describe the numerous
healthcare concepts, the domain model may need to incorporate FHIR resources,
such as patients, medications, conditions, and procedures, in the case of FHIR.
Additionally, the domain model may need to be extended to include data elements.

2 Research questions

As stated in the introduction, both functional and non-functional requirements
influence the evolution of data along the datapath. While functional requirements
determine the necessary data transformations, non-functional requirements also
play a significant role in shaping the data evolution process. This is a frequent
practice among software developers, although it has not been properly investigated.
This is a gray area from both a qualitative and quantitative sense. In addition to
defining our study, we posed research questions. The first question discusses the
potential ramifications of the modification. As observed, change occurs, but what
are its consequences? The second research topic concerns the FHIR standard’s
effects on the domain model. FHIR is one of the few practical standards, and as a
result, it is frequently used, making it an excellent candidate for study. The third
study topic focuses on the technical environment’s effects on the data model. In
our situation, we chose Google’s serverless Firebase solution, which is also a good
contender due to its popularity. Within Firebase, the impact of using Firestore as
a database is studied.

• RQ1: What are the dimensions which enable us to measure the impact of
non-functional requirements?

• RQ2: Based on the defined dimensions, what are the impacts of the FHIR
standard and using the Firebase API

3 State-of-the-art

There are numerous articles about software architecture and FaaS best practices.
Wen et al. presented the first comprehensive study on understanding the challenges
in developing serverless-based applications from the developers’ perspective. They
mine and analyze 22,731 relevant questions from Stack Overflow (a popular Q&A
website for developers), and show the increasing popularity trend and the high
difficulty level of serverless computing for developers. Through manual inspection of

546 Grácián Kokrehel and Vilmos Bilicki

619 sampled questions, they constructed a taxonomy of challenges that developers
encounter, and report a series of findings and actionable implications [1].

In a different publication, Wen et al. presents a comprehensive study on char-
acterizing mainstream commodity serverless computing platforms, including AWS
Lambda, Google Cloud Functions, Azure Functions, and Alibaba Cloud Function
Compute. Specifically, they conduct both qualitative analysis and quantitative
analysis. Based on the results of both qualitative and quantitative analysis, they
derive a series of findings and provide insightful implications for both developers
and cloud vendors [2].

Grogan et al. showed the impact of the FaaS on the software architecture. The
analysis of the data path is missing from these articles [3].

On another hand, there is a community focusing on cloud modeling e.g.: Berg-
mayr et al. investigated the diverse features currently provided by existing Cloud
Modeling Languages (CMLs). They classified and compared them according to a
common framework with the goal to support Cloud Service Customers (CSCs) in
selecting the CML which fits the needs of their application scenario and setting.
As a result, not only features of existing CMLs are pointed out for which extensive
support is already provided but also in which existing CMLs are deficient, thereby
suggesting a research agenda [4].

Software architectures allow identifying confidentiality issues early and in a
cost-efficient way. Information Flow (IF) and Access Control (AC) are established
confidentiality mechanisms, so modeling and analysis approaches should support
them. Because confidentiality issues often trace back to data usage, data-oriented
approaches are promising. However, Seifermann et al. could not identify a data-
oriented approach to handling both, IF and AC. Therefore, they present a unified
data-oriented modeling and analysis approach supporting both, IF and AC. They
demonstrated the integration into an existing architectural description language
and evaluated the resulting expressiveness and accuracy by a case study considering
22 cases [5].

The main theoretical results of Stunkel et al. are proofs of the facts that com-
prehensive systems are an admissible environment for (i) applying formal means
of consistency verification (diagrammatic predicate framework), (ii) performing al-
gebraic graph transformation (weak adhesive HLR category), and (iii) that they
generalize the underlying set of graph diagrams and triple graph grammars [6]. The
data path aspect and the evolution of the data are not studied.

From a data modeling perspective there are articles about the effect of the
different storage formats that have been studied [7] or about different binary seri-
alization formats [8]. There are also studies focusing on single system persistence
issues [9] but the impact of the standards and the technical environment has not
been studied.

Ulrich et al. presents a Metadata Repository (MDR) prototype that allows for
the linking and mapping of data elements, enabling relations to be defined semi-
automatically. The system enables the management of all registered data elements
and metadata, allowing for comfortable queries within classified data elements.
The architecture has technical advantages such as fast response times and the

The Influence of the Nonfunctional Requirements on the Data Model 547

ability to search across clinical coding systems. The MDR allows for the reuse of
data elements, simplifying cooperation among research groups. The system was
evaluated with positive results using two methods: usability testing and cross-
validation [10].

4 Typical software in telemedicine stack

A typical software stack consists of an IoT or mobile client and a FaaS backend. In
our case, Firebase is used as a FaaS service while the client side is implemented in
an Angular environment. The data model is implemented in a FHIR conformant
way.

FirebaseAngular Web app

User FHIR model Firebase model

Figure 1: Cloud software stack

4.1 FHIR

The philosophy behind FHIR is to build a base set of resources that, either by
themselves or when combined, satisfy the majority of common use cases. FHIR
resources aim to define the information contents and structure for the core infor-
mation set that is shared by most implementations. There is a built-in extension
mechanism to cover the remaining content as needed [11].

4.2 Firebase

Cloud Functions is another integration of the existing Google product into Firebase.
It is a tool for running back-end code from the cloud on an event-driven basis. The
way Cloud Functions suggests running our app is what is usually called a serverless
architecture. This type of architecture means building applications as a set of
separate functions, isolated in the cloud, and connected between each other via
APIs [12].

Usually, we will use the Realtime Database as our main storage. The main
problem is limited querying capabilities. We cannot query for more than one key
at a time and the service does not provide a way to filter our data. The format

548 Grácián Kokrehel and Vilmos Bilicki

also excludes the option to model the data. We do not host the data, all data is
hosted on Firebase and it is a major problem of using BaaS platforms as our app
backend. Unless Firebase provides a migration tool to enable easy transfer of user’s
data, it strongly limits data migration. It makes users dependent on the platform
and there is no easy way to transfer the app to another source.

5 Methodology

The CAP theorem was utilized as a starting point for defining the dimensions
of impact. We expanded it with security; defining the taxonomy where security
should be associated is not straightforward. The ”C” (Consistency) component
is the first aspect of security to consider within the context of the CAP theorem.
Access restrictions, encryption, and authentication are examples of security controls
and protocols that can be used to maintain data consistency and ensure that only
authorized users have access to critical information. Next, security considerations
can be included into the ”A” (Availability) component by designing redundant
systems and disaster recovery methods that assure the ongoing availability of vital
systems and data in the event of a security breach or other calamity. This may
involve backing up important data to secure off-site locations and deploying network
segmentation to mitigate the impact of any security compromise. Last but not
least, security can be integrated into the ”P” (Partition Tolerance) component by
providing security controls that can detect and respond to network partitions and
other disruptions that may jeopardize the system’s security. Therefore, we decided
to treat it as a distinct dimension. As a consequence, we settled on four major
dimensions or categories for measuring the impact:

• Consistency

• Availability

• Partition tolerance

• Security

We examined the source code of the selected systems in order to determine the
patterns in which a domain model change could affect a certain dimension. We
chose ten sample pilot projects from our telemedicine portfolio as the focus of
our research. From a functional standpoint, these projects adequately address the
requirements of a certain medical field of interest. The target field might be deemed
representative since, from both a modality (e.g., imaging, CT, vital signals, lifestyle,
etc.) and a health sciences perspective, it encompasses a vast array of topics (e.g.:
dermatology, Otology and rhino-laryngology, diabetes care, cohrea surgical planner,
etc).

This was the qualitative portion of our analysis, in which we identified patterns
within the source code that influence system properties along a specific dimension
(CAP + Security).

The Influence of the Nonfunctional Requirements on the Data Model 549

To examine the influence of the technology stack and FHIR (RQ2), we con-
ducted an analysis centered on the domain model. We took the source code and,
beginning with the user interface, traced all affected source code sections until they
reached the backend. This allowed us to extract the data pathways. Then, we
extracted entity-specific subpaths from these datapaths (instances of a given part
of the domain model). We integrated the data paths along the entities along the
dimension, incorporating the discovered pattern-based concerns. Thus, a summary
of the impact of technical infrastructure and FHIR on a given dimension at the
entity level was obtained.

In the case of availability, we extended this analysis to include the average
influence of the standard and the technological environment by collecting the data
(from the databases of the running applications) at the entity level and deleting
each subsequent layer until just the core information remained. The average size
of each entity was then determined for each domain model level.

In the section under ”Threats to Validity,” the statistical importance of our data
collection methods will be examined in detail. Here, we would like to emphasize
that the analyses presented represent simply the first ”sampling approach.” There is
a continuing effort to crawl and automatically analyze a subset of GitHub projects.
The patterns detected by manually analyzing the code will likely be extended, but
the current patterns will remain valid. The results on the data volume inflation
may also be slightly impacted, but we are certain that our results will accurately
reflect the magnitude of change.

6 Results

In this section, we define the dimensions and then show what the overall impact
is based on real world examples. Following that, we will analyze the size problems
and then we will present the structure of the data at a given analysis point.

6.1 Dimensions

RQ1: What are the dimensions which enable us to measure the impact of non-
functional requirements?

As indicated in the methodology section, we decided to choose CAP+ Security
as the primary dimensions. We gathered code patterns that have an effect on one
or more of these dimensions. The patterns are classified into categories, which
are then linked to dimensions. The categories were identified using a pattern-
based grouping strategy. As indicated in the methodology section, we opted to
choose CAP+ Security as the primary dimension. We gathered coding patterns
that influence at least one of these dimensions. The patterns are divided into
categories, and the categories are then linked to dimensions. As an appropriate
grouping technique, the categories were determined based on the patterns. The
following categories have been identified:

550 Grácián Kokrehel and Vilmos Bilicki

1. T(transformation): refers to situations where the domain model transforms
online. Typically, this is the result of employing the MVVM design pattern
or a comparable one. However, this may also occur on the backend, where
some aggregation is required.

2. S(security): this indicates a data leak may occur (e.g.: for a given screen there
could be an aggregated screen specific data containing sensitive information)

3. C(consistency): in this instance, consistency may be at risk (e.g.: aggregation
of data and if the trigger is not executed then the data becomes inconsistent)

4. Pe(performance): data manipulation or access with increased overhead (e.g:
deep data structures).

We can link these categories tha CAP in the following way:

• Consistency: C (Consistency), T (Transformation)

• Availability: Pe (Performance)

• Security: S (Security)

Due to Firebase, there is strong partition tolerance and availability, but in ex-
change, there are significant issues with consistency. During the analysis, we did
not encounter any partition tolerance errors that would affect the data. We devel-
oped a tool for identifying the portion of the data path affected by the given effect.
Table 1 displays the places and categories, with the names of the most significant
patterns identified in each cell.

Table 1: Dimension with patterns

T
sr/mr

(single/multi row)
c(client) s(server)

T 1 - string 2 - number 3 - date 4 - others
S 1 - gdpr

C
1 - id

reference
2 - embedded

data

3 - many
extra
data

4 - data
after
delete

Pe 1 - deep data
2 - multiple

promise
3 - handle null/und

Then, we developed a coding method to enable the efficient and compact coding
of all relevant information. The processed projects were developed using the Angu-
lar framework, therefore the code snippets below will be presented with JavaScript
or TypeScript syntax. Table 1 helps in interpreting the following code snippets.
These are the identified patterns:

The Influence of the Nonfunctional Requirements on the Data Model 551

T SM/MR C/S 1 String transformations happen including the modification
of one or more records on the client or server side. In Firebase there is no way
to order by based on the value of the object that is in the array, so it must be
outsourced to a separate field. In Firebase there is no %like% search option, so
another method can be used to achieve the same effect, which results in having to
organize the text into a string array. The complex FHIR data structure can be
simplified by merging it into one text.

function splitNameByVariations(nameString: string): Array<string> {

const allSubstrings = new Set<string>();

const start = 0;

const splittedName = nameString.split(’ ’);

for (let j = 0; j < splittedName.length; j++) {

for (let i = start + 1; i <= splittedName[j].length; i++) {

allSubstrings.add(splittedName[j].substring(start, i));

}

}

let a = 0;

while (a < splittedName.length) {

let possibleSubStrs = ’’;

for (let i = a; i < splittedName.length; i++) {

possibleSubStrs += splittedName[i];

if (i < splittedName.length - 1) {

possibleSubStrs += ’ ’;

}

}

for (let i = start + 1; i <= possibleSubStrs.length; i++) {

allSubstrings.add(possibleSubStrs.substring(start, i));

}

a++;

}

for (let i = start + 1; i <= nameString.length; i++) {

allSubstrings.add(nameString.substring(start, i));

}

return Array.from(allSubstrings.values());

}

T SM/MR S 2 Often happens that the smart device sends the data in the form
of a string or with an incomplete value (undefined/null). Firebase cannot handle
undefined data. Number transformations happen including the modification of one
or more records on the server side.

552 Grácián Kokrehel and Vilmos Bilicki

getPulse(notFhirFormatData: any) {

// for(data in [pulse, hearthrate, bp])

let pulse = notFhirFormatData.pulse;

if (pulse === undefined) {

return null;

}

pulse = pulse.trim() as unknown as number;

pulse = pulse.toFixed(2);

return this.convertToFHIRFormat(pulse);

}

T SM /MR C/S 3 Date transformations happen including the modification of
one or more records on the client or server side. Date transformation must be
performed before insertion and modification, because Firebase used a unique date
solution. timestamp = nanoseconds: 0, seconds: 0. If this transformation does
not take place and we try to use the data, the client side will fail with an error.
The localization required by the user also takes place here.

function formatPeriodLocal(start: Date, end?: Date) {

const localStartDate = DateTime.fromISO(start.toISOString(),

{ zone: ’Europe/Budapest’});

let formattedLocalDate = localStartDate.year + ’. ’ +

localStartDate.month.toString().padStart(2, ’0’) + ’. ’ +

localStartDate.day.toString().padStart(2, ’0’) + ’. ’ +

localStartDate.hour.toString().padStart(2, ’0’) + ’:’ +

localStartDate.minute.toString().padStart(2, ’0’);

if (end) {

const localEndDate = DateTime.fromISO(end.toISOString(),

{ zone: ’Europe/Budapest’});

formattedLocalDate += ’ - ’ + localEndDate.hour.toString()

.padStart(2, ’0’) + ’:’ +

localEndDate.minute.toString().padStart(2, ’0’);

}

return formattedLocalDate;

}

C 2/3/4 Due to Firebase, numerous attributes and objects must be stored
in the data; if the original data is modified, Cloud Function must be used to up-
date/delete all embedded data, otherwise the data becomes inconsistent.

The Influence of the Nonfunctional Requirements on the Data Model 553

export const onEntity1UpdateOrDelete =

functions.firestore.document(’/Entity1/{cpid}’).onUpdate/onDelete(

async (snap: any) => {

if (snap.after.exists === true) {

const entity1: any = snap.after.data();

const entity2: any = this.get(entity1.referenceToEntity2);

// update/delete the embedded data in entity2 }

});

Pe13 The deep data structure and their non-mandatory attributes place additional
burdens on the client side. So that the application does not stop, we handle all
non-mandatory data elements with the optional chain operator (?).

// reading the patient name

{{ patient?.name?.[0]?.given?.[0] }}

{{ patient?.name?.[0]?.family }}

Pe2 Occasionally, a piece of data contains many references that must all be ac-
cessed on the client side. It can have many sources of error, and it must be treated
as a transaction, if it stops during any step, it must be started again. This can be
extremely burdensome for the client side.

async function getPatient(): Promise<IPatient>

{ /* Handle error, reset on fail, process data... */ }

async function getDevice(): Promise<IDevice> { /* ... */ }

async function getParent(): Promise<IPractitioner> { /* ... */ }

addApointment(){

const [patient, device, parent] =

await Promise.all([getPatient(), getDevice(), getParent()]);

// Do something, create an appointment

}

As a summary, based on the patterns discovered in the source code files along
the datapath, we divided the effects into four groups and, within each category,
determined the exact code patterns responsible for the observed effect. Dimensions
were also tied to the categories.

554 Grácián Kokrehel and Vilmos Bilicki

6.2 Overall impact

RQ2: Based on the defined dimensions, what are the impacts of the FHIR standard
and using the Firebase API?

In order to assess the impact among the dimensions we collected the handled
entities. We analyzed the datapath for each entity in different applications and
created an abstract datapath based on the metrics. The table below contains the
result of this process.

In Table 2, all the models that have been used till now were subjected to the
evaluation points defined in Table 1. In the other columns, three main problem
sources were defined: FHIR, Firebase(CRUD) and GUI. Then the representation
of common errors at given points. Based on the above results, it can be noticed
that the FHIR model alone is not enough, but several transformations have to be
applied during development to get the proper results. If we observe carefully we
can see that the incorrect combinations are repeated column by column, so for e.g.
under Firebase Create we get the same errors, which means that the problems can
be well delimited and thus they can be solved as a group, there is no need to deal
with it specifically by model. The development of solutions to individual problems
can be defined and reused for other models as well. Explanation for Patient row:

1. String transformation must be performed on the server before insertion and
modification, because in Firebase there is no %like% search option, so another
method can be used to achieve the same effect, which results in having to
organize the text into a string array.

2. When reading data, consistency problems arise because of the embedded data.
Because of Firebase, many attributes and objects must be stored in the data,
if the original data is changed, all embed data must also be updated using
Cloud Function.

3. It is a security problem if the patient’s sensitive data (name, social institute
number, birthdate) are also displayed when the view tables are created.

4. It is an extra task to ensure that no reference to the entity remains anywhere
after deletion.

For example, in the Appointment row:

1. Date transformation must be performed before insertion and modification,
because Firebase used a unique date solution. timestamp = nanoseconds: 0,
seconds: 0

2. Because of more than three references and embed data, extra data has to be
retrieved and displayed, which burdens the performance of the GUI.

The Influence of the Nonfunctional Requirements on the Data Model 555

Table 2: Analysis of FHIR models

Model FHIR Firebase GUI
C R U D

Device C2 C3 Pe1 T4s C2 S1 T4s C4
Patient C3 Pe1 T1srs C2 S1 T1srs T1mrs C4 C4 Pe1

Practitioner C3 Pe1 T1srs C2 S1 T1srs T1mrs C4 C4 Pe1
Appointment C1 Pe1 T3s C2 T3s Pe2
Questionnaire C1 Pe1 Pe1
Questionnaire

Response
C2 Pe1 Pe1

Group Pe1 T1s C2 T1s C4 Pe2
CarePlan Pe1 C2 Pe1
Condition Pe1 C2 Pe2

Communication Pe1 C1 Pe1
Goal Pe1 C2 Pe1

Medication
Request

C2 Pe1 C2 Pe1

ServiceRequest C2 C3 Pe1 C2

6.3 Data size evolution

RQ2: Based on the defined dimensions, what are the impacts of the FHIR standard
and using the Firebase API?

The last dimension of the analysis is the data overhead caused by the elements
on the datapath. Out of the 25 deployed telemedicine solutions, we extracted data
of the selected entities. The starting point was the fully extended data stored in
the Firebase, with the help of scripts we were able to remove the firebase specific
field in order to get the simple FHIR conform data, with the help of another script
we were able to extract the core data in order to remove the FHIR overhead, now
we have what is called the basic data. Figure 2 shows the size difference of 16.67
times between the simple and the final state.

Table 3 shows the data overhead for both the clear text and compressed data.
We can conclude that FHIR adds a very significant overhead, while the Firebase
specific data fields also doubles the FHIR data volume. So it is important to remove
this overhead before sending it to the IoT client, the DAO layer has its place in
this case.

In Table 3, we compared the 3 forms of data (Simple, after FHIR conversion and
after transformations required by Firebase) in JSON file size (bytes) and zipped
(bytes) file size. We can observe is that the size of the json files without repetition
does not change as much as expected after compression. Furthermore, it can be
observed that the ratio between the columns is the same or very similar for each
row.

556 Grácián Kokrehel and Vilmos Bilicki

by
te

s

0

250

500

750

1000

1250

Simple FHIR Firebase

Size difference

Figure 2: Size difference

Table 3: Size difference(bytes)

Model Basic
Basic
zip

FHIR
FHIR

zip
Firebase

Firebase
zip

Device 94 36 980 499 1560 602
Patient 220 56 1920 700 3666 937

Practitioner 130 42 1430 628 2080 708
Appointment 84 35 992 518 1410 574
Questionnaire 72 31 985 503 1160 523
Questionnaire

Response
145 46 1653 526 2400 805

Group 47 28 700 412 799 440
CarePlan 49 31 809 426 865 459
Condition 39 23 589 375 659 398

Communication 37 22 581 369 643 388
Goal 44 26 646 388 705 411

Medication
Request

43 25 623 384 716 430

Service
Request

74 37 1180 586 1320 623

The Influence of the Nonfunctional Requirements on the Data Model 557

6.4 Details of the data expansion

In the previous section, we presented the effect of certain parts of the system, now
we will explain step by step how the models look. The comparison is based on
JSON file sizes. In this section, the different stations are introduced and explained,
based on a simple example. Listings 1, 2, and 3 can be found in the Appendix
section. The four analysis condition are as follows:

1. Simple (file size: 75 bytes) [Listing 1]

2. Effects of FHIR (file size: 536 bytes) [Listing 2]

3. Effects of Firebase (file size: 1022 bytes) [Listing 3]

6.5 Effects of Firebase

Due to the use of Firebase, the model went through extra changes in order to be
able to implement certain filtering interfaces. Description of data fields:

• data — The data must be stored according to the FHIR standard and re-
turned to the user in this form.

• email, name — In Firebase there is no way to order by based on the value
of the object that is in the array, so it must be outsourced to a separate field.

• nameText, emailText — In Firebase there is no %like% search option, so
another method can be used to achieve the same effect, which results in having
to organize the text into a string array.

7 Discussion

As indicated in the introduction, our motivation was to observe/study the life/
evolution of the domain model along the datapath as influenced by non-functional
requirements such as technology, standards, and even the use of predefined design
patterns. As we were unable to find appropriate measures in the literature, we
established both the dimension along which we wanted to assess the impact and,
within that dimension, the exact metrics that assist us understand the nature of
the change and its impact. Instead of using a theoretical approach, we began to ex-
amine the source code for patterns that could be utilized as metrics. We were able
to discover categories and groupings of patterns. We uncovered thirteen patterns,
which we presented in the findings section. We supplied a fundamental datapath
map indicating where and why these patterns could be discovered (backend vs.
frontend, which data subpath e.g. CRUD). With this method, it is possible to dis-
cover potential points that are not ”bad smells” from a software quality viewpoint,
but rather key portions of the datapath that require special attention. We believe
that this datapath-oriented perspective could provide important insight into a sys-
tem’s inherent features. Table 2 provides a summary of this map’s typical entity

558 Grácián Kokrehel and Vilmos Bilicki

level pathways. The true potential of an approach will become apparent when de-
fined patterns could be detected automatically. Our ongoing effort is now centered
on this issue. We have also demonstrated how implementing a standard or utilizing
a technology stack affects the data size of the domain model. We agree that we
cannot alter the standard itself, but we would like to provide a suggestion for future
standard’s data structure architecture. If one consults the FHIR documentation,
it is evident that modularity/extensibility, not simplicity, was the driving force be-
hind the domain model. One could argue that with 4G, 5G, and XG technologies,
the amount of data to be transmitted across the line is insignificant due to the large
bandwidth. Here, we would like to emphasize the delay caused by the transfer of
substantially more data. As end users are not patient, delay is a crucial part of the
design of actual user-facing technologies.

8 Threats to Validity

The objective of our research was to determine the domain model’s response to
non-functional needs. We adopted an analytical strategy by identifying and assess-
ing a code basis. We selected 10 telemedicine initiatives (consisting of more than
200 screens, and 300 modules) from our portfolio. Functionally, these projects sat-
isfy the needs of the medical industry. The target field is representative from both
modality (e.g., imaging, CT, vital signals, lifestyle) and health sciences vantage
points (e.g., imaging, CT, vital signals, lifestyle) (e.g.: dermatology, Otology and
rhino-laryngology, diabetes care, cohrea surgical planner, etc). We agree that fur-
ther examples from the open-source community should be included. This is likely
to increase the number of sample patterns and create a more complex depiction of
the problem, but our conclusion and fundamental patterns will remain unchanged.
Consequently, it may be anticipated as the initial result in this field. Concerning
the size-related findings, it is difficult to construct a valid database for a particular
open-source application; thus, we believe that our results are statistically significant
because our system is utilized in routine medical work.

During our research, we made the following decisions:

• The FHIR was used as an example for analyzing the impact. As one of the
most prevalent criteria, we believe this to be a suitable option.

• We chose the Angular - Firebase technology stack to investigate the impact
of technology on the domain model. In this case, we consider that the se-
lection of technological stacks does not reduce the statistical significance of
the study. In the case of web application frameworks (e.g., React, Vue, etc.),
general design patterns (e.g., MV*) may have similar effects. From a backend
perspective, Firestore has the same constraints as other serverless document
stores, therefore it was also a strong contender. We agree that it would be
interesting in the future to categorize the various persistence options and
evaluate the impact of each category separately.

The Influence of the Nonfunctional Requirements on the Data Model 559

9 Conclusions

It is evident from the literature review that there are numerous techniques to in-
vestigate complex software stacks, but there are very few articles that account for
the entire data lifecycle. By evaluating significant issues encountered in the cre-
ation of Telemedicine applications utilizing the FHIR standard, we identified key
evaluation criteria for modern systems. With our methodology, we can determine
how architectural and component-level design patterns are applied. This strategy
will demonstrate its effectiveness if it is accompanied by an automated data life
cycle analysis tool. In our ongoing effort, we have already located more than 9k
GitHub projects, and we are currently creating an NLP-based method for identify-
ing the patterns that match to the requirements. Massive standard objects present
issues when a small IoT device transmits data; in this instance, it is important
to consider a simpler model than FHIR. FHIR adds a large amount of overhead,
and the addition of Firebase-specific data fields increases the FHIR data capacity.
Before providing data to the IoT client, it is crucial to eliminate this overhead; the
DAO layer has a place in this scenario. Even if the system must be standardized,
the DAO layer makes it possible for devices to provide a minimal quantity of data
while the ultimate outcome is still standardized. In the subsequent essay, we will
describe this concept’s capabilities.

References

[1] Altexsoft. What is Firebase: Review, pros and cons, alterna-
tives. URL: https://www.altexsoft.com/blog/firebase-review-pros-

cons-alternatives/. Accessed: 2022-09-26.

[2] Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A., Solberg, A., Wimmer,
M., Kappel, G., and Leymann, F. A systematic review of cloud modeling lan-
guages. ACM Computing Surveys, 51(1):1–38, 2018. DOI: 10.1145/3150227.

[3] Grogan, J., e. a. A multivocal literature review of Function-as-a-Service (FaaS)
infrastructures and implications for software developers. In European Confer-
ence on Software Process Improvement, pages 58–75. Springer, 2020. URL:
https://link.springer.com/chapter/10.1007/978-3-030-56441-4_5.

[4] HL7. Overview — FHIR v4.0.1. URL: https://www.hl7.org/fhir/

overview.html. Accessed: 2022-03-26.

[5] Petković, D. SQL/JSON standard: Properties and deficiencies. Datenbank
Spektrum, 17(3):277–287, 2017. DOI: https://doi.org/10.1007/s13222-

017-0267-4.

[6] Seifermann, S., Heinrich, R., Werle, D., and Reussner, R. A unified model to
detect information flow and access control violations in software architectures.

https://www.altexsoft.com/blog/firebase-review-pros-cons-alternatives/
https://www.altexsoft.com/blog/firebase-review-pros-cons-alternatives/
https://doi.org/10.1145/3150227
https://link.springer.com/chapter/10.1007/978-3-030-56441-4_5
https://www.hl7.org/fhir/overview.html
https://www.hl7.org/fhir/overview.html
https://doi.org/https://doi.org/10.1007/s13222-017-0267-4
https://doi.org/https://doi.org/10.1007/s13222-017-0267-4

560 Grácián Kokrehel and Vilmos Bilicki

In Proceedings of the 18th International Conference on Security and Cryp-
tography, Volume 1, pages 26–37. SCITEPRESS — Science and Technology
Publications, 2021. DOI: 10.5220/0010515300260037.

[7] Stünkel, P., König, H., Lamo, Y., and Rutle, A. Comprehensive systems: A
formal foundation for multi-model consistency management. Formal Aspects
of Computing, 33:1067–1114, 2021. DOI: 10.1007/s00165-021-00555-2.

[8] Swami, D. and Sahoo, B. Storage size estimation for schemaless big data ap-
plications: A JSON-based overview. In Intelligent Communication and Com-
putational Technologies, Volume 19 of Lecture Notes in Networks and Systems,
pages 315–323. Springer, Singapore, 2018. DOI: 10.1007/978-981-10-5523-

2_29.

[9] Ulrich, H., Kock, A.-K., Duhm-Harbeck, P., Habermann, J. K., and Ingenerf,
J. Metadata repository for improved data sharing and reuse based on HL7
FHIR. Studies in Health Technology and Informatics, 281:160–164, 2021.
DOI: 10.3233/978-1-61499-678-1-162.

[10] Viotti, J. C. and Kinderkhedia, M. A survey of JSON-compatible binary
serialization specifications, 2022. DOI: 10.48550/arXiv.2201.02089.

[11] Wen, J., Chen, Z., Liu, Y., Lou, Y., Ma, Y., Huang, G., Jin, X., and Liu,
X. An empirical study on challenges of application development in serverless
computing. In Proceedings of the 29th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 416–428. Wiley, 2021. DOI: 10.1145/3468264.3468558.

[12] Wen, J., Liu, Y., Chen, Z., Chen, J., and Ma, Y. Characterizing commodity
serverless computing platforms. Journal of Software: Evolution and Process,
35(10), 2021. DOI: 10.1002/smr.2394.

https://doi.org/10.5220/0010515300260037
https://doi.org/10.1007/s00165-021-00555-2
https://doi.org/10.1007/978-981-10-5523-2_29
https://doi.org/10.1007/978-981-10-5523-2_29
https://doi.org/10.3233/978-1-61499-678-1-162
https://doi.org/10.48550/arXiv.2201.02089
https://doi.org/10.1145/3468264.3468558
https://doi.org/10.1002/smr.2394

The Influence of the Nonfunctional Requirements on the Data Model 561

Appendix

Listing 1: Simple.json

{

"id": "1",

"email": "jon@doe.mr",

"name": "Mr. Jon Doe"

}

Listing 2: Fhir.json

{

"id": "1",

"telecom": [

{

"system": "email",

"value": "jon@doe.mr",

"use": "home",

"rank": 1,

"period": ""

}

],

"name": [

{

"use": "official",

"text": "Mr. Jon Doe",

"family": "Doe",

"given": [

"Jon"

],

"prefix": [

"Mr."

],

"suffix": [],

"period": ""

}

]

}

Listing 3: Firebase.json

{

"id": "1",

"data": {

"id": "1",

562 Grácián Kokrehel and Vilmos Bilicki

"telecom": [{

"system": "email",

"value": "jon@doe.mr",

"use": "home",

"rank": 1,

"period": ""

}],

"name": [{

"use": "official",

"text": "Mr. Jon Doe",

"family": "Doe",

"given": ["Jon"],

"prefix": ["Mr."],

"suffix": [],

"period": ""

}]

},

"email": "jon@doe.mr",

"name": "Mr. Jon Doe",

"nameText": [

"m", "mr", "mr.", "j", "jo", "jon", "d", "do", "

doe", "mr. j",

"mr. jo", "mr. jon", "mr. jon ", "mr. jon d", "mr

. jon do", "mr. jon doe"

],

"emailText": ["j", "jo", "jon", "jon@", "jon@d",

"jon@do", "jon@doe", "jon@doe.", "jon@doe.m", "

jon@doe.mr"] }

Acta Cybernetica 26 (2024) 563–579.

Integer Programming Based Optimization of Power

Consumption for Data Center Networks

Gergely Kovásznaia and Mohammed Nsaifb

Abstract

With the quickly developing data centers in smart cities, reducing energy
consumption and improving network performance, as well as economic ben-
efits, are essential research topics. In particular, Data Center Networks do
not always run at full capacity, which leads to significant energy consumption.
This paper experiments with a range of optimization tools to find the optimal
solutions for the Integer Linear Programming (ILP) model of network power
consumption. The study reports on experiments under three communication
patterns (near, long, and random), measuring runtime and memory consump-
tion in order to evaluate the performance of different ILP solvers. While the
results show that, for near traffic pattern, most of the tools rapidly converge
to the optimal solution, CP-SAT provides the most stable performance and
outperforms the other solvers for the long traffic pattern. On the other hand,
for random traffic pattern, Gurobi can be considered to be the best choice,
since it is able to solve all the benchmark instances under the time limit and
finds solutions faster by 1 or 2 orders of magnitude than the other solvers do.

Keywords: integer programming, optimization, power consumption, Data
Center Network, solvers

1 Introduction

Data Centers Networks (DCNs) are becoming increasingly significant in daily rou-
tine because of the fast growth of modern information technologies such as the Inter-
net of Things, Big Data, Cloud Computing, and Mobile Sensing Networks [17, 16].
DCNs aim for high reliability and stability with several redundant links and enough
capacity. The network devices usually work at full capacity 24 hours a day, consum-
ing much energy. However, network equipment is underutilized most of the time,
causing extremely low network energy efficiency. As a result, this problem attracts

aDepartment of Computational Science, Eszterházy Károly Catholic University, Eger, Hungary,
E-mail: kovasznai.gergely@uni-eszterhazy.hu, ORCID: 0000-0001-8455-0218

bDepartment of Information Technology, University of Debrecen, Hungary,
E-mail: mohammed.nsaif@mailbox.unideb.hu, mohammed.nsaif@uokufa.edu.iq, ORCID:
0000-0001-6768-4644

DOI: 10.14232/actacyb.299115

mailto:kovasznai.gergely@uni-eszterhazy.hu
https://orcid.org/0000-0001-8455-0218
mailto:mohammed.nsaif@mailbox.unideb.hu
mailto:mohammed.nsaif@uokufa.edu.iq
https://orcid.org/0000-0001-6768-4644
https://doi.org/10.14232/actacyb.299115

564 Gergely Kovásznai and Mohammed Nsaif

many researchers to figure out techniques that save energy while maintaining net-
work performance. For the current DCNs, there are two techniques to save power
consumption: device sleep [1, 7] and adaptive link rate [19]. The device sleeping
technique is based on turning on/off the switches and links that are under a utility
value in a dynamic manner. Whereas the adaptive link rate technique is based on
assigning the fair bandwidth value for each flow passing through the links to control
the ports’ clock rate (operating frequency), leading to lower power consumption.

Because switches are considered to be one of the major devices in DCNs, this
paper focuses on devices’ sleep techniques to save power. This technique appeared
in 2010; Heller et al. [7] introduced three types of optimizers to save power con-
sumption: formal model, greedy bin-packing, and topology-aware heuristic. The
topology-aware heuristic shows good results in saving up to 50%. It is based on
elastic topology, which increases/decreases the size of the topology according to the
size of the traffic.

Our current paper builds upon our last contribution in [14], which proposed an
Integer Linear Programming (ILP) model for traffic and energy-aware routing in
Software-Defined Networking (SDN) based on link utility information, and could
decide many pathways simultaneously. Additionally, it proposed a link utility-based
heuristic algorithm called FPLF, which had the ability to save energy up to 10%
when the traffic load is high (e.g., during rush hour) and 63.3% when the load is
low (e.g., at night). Our current paper aims to explore and examine other ILP
solving tools that can solve convex and non-convex optimization problems, which
we can use in real-time action to find an optimal solution for a large number of
injected flows, instead of FPLF-heuristic solutions.

The rest of the paper is arranged as follows. In Section 2, we review recent
papers and studies that use an ILP formulation to optimize power consumption.
The power optimization problem for DCNs is explained in Section 3. Our ILP model
is described in Section 3.1. Our experiments, benchmarks, ILP solving tools, our
portfolio solver, and the experimental results are detailed in Section 4. Finally, we
summarize all our key contributions and outline some future directions in Section 5.

2 Related Work

This section outlines the robustness and limitations of recent Integer Linear Pro-
gramming (ILP) approaches that address the power consumption decrease challenge
for network routing algorithms.

The authors in [7] developed three methods to calculate a minimum-power net-
work subset; one of them uses a formal model. The objective function consists
of two binary variables for each switch and link. The constraints represent Multi-
Commodity Network Flow, Power Minimization, and Flow Split. At the same time,
the model’s input parameters include the traffic matrix, the switch power model,
and the topology. The model outputs a subset of the original topology and per-flow
route information. While the study focuses on the number of nodes that the model
can manage in the topology, network performance is not taken into consideration.

Integer Programming Based Optimization of Power Consumption for DCNs 565

In contrast, our current model calculates the minimum number of links that satisfy
the traffic matrix, based on the utilization matrix.

The authors in [18] proposed a 0-1 ILP model to minimize the power of idle
line cards and integrated chassis by switching them to sleep, under link utilization
and packet delay constraints. Meanwhile, the study proposes two heuristic algo-
rithms for the same purpose and reports on experiments executed in two scenarios:
synthetic topology and real-life topology named CERNET. In the same context,
another study in [2] proposes an ILP model with a multi-objective function to mini-
mize the sum of the energy consumption of switches and links. The study limits the
links’ maximum and minimum utility to manage the trade-off between the power
consumption and the network performance. Nevertheless, neither study presents
any experimental result with the ILP model, and the algorithms were experimented
outside of any DCN.

[11] proposed a data center scheduling algorithm called FLOWP, besides an
ILP formula, with the aim of optimizing power consumption and Quality of Service
(QoS). The formula considers a minimum threshold for the efficiency of links and
switches. The results show that QoS is improved compared to the approach in [7].
However, similar to [18], the study does not show any experimental result with the
ILP model. Experiments are conducted on a heuristic algorithm only.

Our contribution in [14] presents an ILP model that has the ability to man-
age multiple paths to save power consumption and to balance the load at over-
loaded times. The study experiments with the model using the optimization tool
LINGO [10]. The results show that LINGO could not find the optimal solution in
a reasonable time for high number of flows sent simultaneously. Our current study
shows that more powerful optimization tools can find solutions in a reasonable time.

Finally, we mentioned that various ILP formulations have been proposed to
address the traffic-aware energy consumption challenges. Nevertheless, in many of
them, the results of optimal solutions do not scale to a large number of links, nodes,
line cards, switches, or flows [14]. Some of these ILP formulations are designed for
appointed DCN topologies, i.e., fat-tree and bicubic. On the other hand, some of
them are independent of topology structures. All those facts encouraged the authors
to explore a wide range of state-of-the-art optimization tools and to compare their
experimental results in the current study.

3 Problem Statement and Proposed Solutions

Although the ILP model in [14] can calculate optimal multi-path ways and can
manage the current status of the network, the model was solved by using the
optimization toolkit LINGO, which was costly when the network size and number
of flows were large. It took more than 160 minutes to accommodate only 120 bursts
of flows in the topology (a fat-tree topology with k = 4) at one time. This fact
motivated the authors to propose a heuristic routing algorithm called Fill Preferred
Link First (FPLF) to find feasible solutions.

Figure 1 shows part of the results from [14]. Based on the results, the left figure

566 Gergely Kovásznai and Mohammed Nsaif

shows that LINGO cannot find a solution in reasonable time when sending more
than 100 simultaneous flows, and the runtime dramatically increases. On the other
hand, the right figure shows how the number of active links increases proportionally
to the flows. Therefore, the authors of the current study think that it might be
possible to find more powerful optimization tools that can find the optimal solution
for a higher number of flows in reasonable time.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

Number of flows

T
im

e
(m

)

Runtime vs. Flows

Response time

0 20 40 60 80 100 120

5

10

15

20

25

30

35

40

45

50

Number of flows

N
u
m
b
er

of
th
e
li
n
k
s

Links vs. Flows

Number of the links

Figure 1: Correlation between the number of flows and the runtime of LINGO,
and between the number of flows and the number of active links, respectively.

Our contributions in the current paper are summarized as follows:

• Developing neO-DCN, our network optimizer tool for DCNs.

• Generating more realistic benchmarks to experiment with the proposed ILP
model for three different traffic patterns.

• Evaluating the performance of several solvers with the ILP model on three
different benchmarks.

3.1 DCN Models and Constraints

The DCN is modeled as an undirected graph G = (S,E), where S = {s1, s2, . . . , sn}
is a set of switches and E ⊆ {eij | si, sj ∈ S} is a set of links. The traffic is
represented as a set of flows F, where each flow f = (f.S, f.D, λf) ∈ F consists of
a source f.S ∈ S, a destination f.D ∈ S and a bit rate λf ∈ N.

The power consumption of a DCN is based on the SDN network equipment
S and E. Therefore, the Network Power Consumption (NPC) model is directly
related to the number of active switches and the number of links. The computation
formula for NPC is shown in (1).

NPC = Pswitch

∑
si∈S

Bi + Plink

∑
eij∈E

Lij . (1)

Integer Programming Based Optimization of Power Consumption for DCNs 567

Bi and Lij denote the state of a corresponding switch and link, respectively,
where the value 1 represents the active state, and 0 the passive state. The base
power consumption of switches and links are denoted by Pswitch and Plink.

Links and traffic correlation constraint: This constraint considers the cor-
relation between the traffic volume and the links. Therefore, the constraint defines
the relationship between the traffic volume Tij and the link state Lij to increase
the utility of the link as much as possible.

Links and flows correlation constraint: This constraint represents the cor-
relation between links and flows, such that a link should be active if and only if a
flow passes through it.

Utility constraint: This constraint computes the utility of all the topology’s
links, and limits the link utility to less than or equal to the link’s bandwidth BWij .

Path conservation constraint: This constraint installs the path from the source
f.S to the destination f.D for each flow f .

Flow conservation constraint: This constraint guarantees for any flow f that
the incoming and outgoing flows of the intermediate switches between the source
f.S and the destination f.D should be equal, in order to avoid packet loss.

Network loop avoidance constraint: Since this model computes an acyclic
graph in this context of routing, it is impossible to start at a switch s and to follow
a directed path that returns to s. Thus, this constraint helps to avoid looping
between switches.

3.2 ILP Formulation

This section describes how the DCN optimization model specified in Section 3.1
can be formulated as an ILP model, which computes the minimum number of links
for a given traffic utilization, under the following conditions:

• The optimization model’s parameters refer to a snapshot of the network state.
This means that the model considers the case of the network state in a specific
unit of time.

• The model starts with a standard multi-commodity flow problem. The con-
straints include flow conservation, link capacity, demand satisfaction, and the
total number of active links.

• Splitting a single flow into packets across multiple links in the topology could
save energy by increasing overall link utilization. However, due to varied path
delays, reordered packets at the destination can degrade the performance. As

568 Gergely Kovásznai and Mohammed Nsaif

a result, we incorporate restrictions into our formulation based on the entire
flow.

In this ILP model, all the variables are Boolean, i.e., they are restricted to the
range {0, 1}. We will use the following Boolean variables:

• Lij denotes if the link eij is active;

• FR(f, i, j) denotes if the flow f passes through the link eij .

Additional integer constants are used in the model:

• BWij represents the bandwidth of the link eij ;

• Tij represents the input traffic volume over the link eij .

The model in [14] employed only the second operand from (1), to minimize the
number of the links as shown in (2).

min

 n∑
i=1

n∑
j=1

Lij

 . (2)

The above objective function works against the following constrains:

Links and traffic correlation constraint:

Tij

BWij
≤ Lij , ∀eij ∈ E, (3)

expressing that the traffic volume must not exceed the bandwidth of a link.

Links and flows correlation constraint:

FR (f, i, j) ≤ Lij , ∀f ∈ F, ∀eij ∈ E, (4)

meaning that flows should pass only through active links.

Utility constraint:∑
f∈F

(
FR (f, i, j) + FR (f, j, i)

)
· λf ≤ BWij − Tij , ∀eij ∈ E, (5)

where a flow’s packet rate is counted according to the undirected nature of the
network graph.

Path conservation constraint:

n∑
i=1

FR (f, f.S, i) = 1,

n∑
i=1

FR (f, i, f.D) = 1, ∀f ∈ F. (6)

Integer Programming Based Optimization of Power Consumption for DCNs 569

Flow conservation constraint:

n∑
i=1

i ̸=f.S

FR (f, i, j) =

n∑
i=1

i ̸=f.D

FR (f, j, i) , ∀ f ∈ F, j ∈ S. (7)

Network loop avoidance constraint:

FR (f, i, j) + FR (f, j, i) ≤ 1, ∀f ∈ F, i, j ∈ S. (8)

4 Implementation and Experiments

4.1 Benchmarks

The communication patterns affect performance and power consumption [9]. Based
on the fact that the traffic in a data center swings between peak traffic (e.g., at
daytime) and low traffic (e.g., at nighttime) [3], the traffic matrix for a DCN follows
the sine wave in (9).

Traffic Rate =
1

2
·max rate · (1 + sin(t)) (9)

This paper explores three types of the sine-wave traffic matrix: near, long, and
mixed (i.e., random). The benchmarks build upon what we described in Section 3.2.
Each benchmark is a snapshot of the DCN at the time interval ti , 1 ≤ i ≤ n. This
means that each benchmark captures the state of the traffic matrix at a specific
time.

Near traffic pattern: The traffic is restricted between the servers that reside in
the same PODs (Point of Delivery) of the topology, i.e., the servers that are
connected through the edge layer switches only. The benchmarks aggregate
the flows to a minimum number of links inside the same POD.

Long traffic pattern: The traffic is restricted between the servers that reside in
different PODs of the topology, i.e., the servers that are connected through
the edge, aggregation, and core layer switches. The model saves less power
due to balancing the load between switches and using multiple paths to keep
the QoS at an acceptable level, depending on the utility of links at that time.

Random traffic matrix: The traffic matrix for this pattern is a mixture of the
above patterns, in order to explore how many links we can save with a random
sine-wave pattern.

4.2 ILP Solving Tools

LINGO provides a collection of built-in solutions to handle a wide range of opti-
mization problems. Unlike many modeling products, all of the LINGO solvers are

570 Gergely Kovásznai and Mohammed Nsaif

directly connected to the modeling environment. Instead of using slower intermedi-
ary files, this seamless connection enables LINGO to transmit the issue to the right
solver immediately in memory. This direct connection also reduces the compatibil-
ity issues between the solver and the modeling language components. LINGO is
supported by LINDO Systems Inc. [10]. It is free and available for students and
interested researchers.

Google’s OR-Tools [15] is an open-source toolkit for solving optimization
problems in general. Via the Python package ortools, one can access several
optimization tools, including the following ones. Gurobi [6] provides one of the
most powerful commercial solvers for a wide range of optimization problems, in-
cluding ILP problems, and it is free to use for academics and students. CP-SAT1

is a constraint programming solver that uses SAT methods, and it is part of the
OR-Tools package. SCIP [4] is one of the fastest non-commercial solvers for
Mixed Integer Programming (MIP) and, also, an open-source framework for con-
straint integer programming. CBC [5] (Coin-or Branch and Cut) is an open-source
MIP solver. We will run Gurobi, CP-SAT, SCIP, and CBC from Python code
inside our portfolio solver neO-DCN, as detailed in Section 4.3.

4.3 neO-DCN Portfolio Solver for DCN Optimization

The proposed ILP model has been implemented in our tool neO-DCN, which is
a variant of our open-source tool neO [8] that we adapted to our DCN model.
neO-DCN is publicly available at https://github.com/kovasz/neO-DCN.

neO-DCN is a portfolio solver, meaning that it can execute different ILP
solvers, which were mentioned in Section 4.2, in parallel. The parallel execution is
implemented by instantiating ProcessPool from the pathos.multiprocessing [12]
Python module, which can run jobs with a non-blocking and unordered map.

The OR-Tools package provides two solver interfaces that we can use for ILP
solving: (1) the MPSolver interface for MIP solvers such as Gurobi, SCIP and
CBC, and (2) the CPSolver interface for Google’s Constraint Programming solver
CP-SAT. Both interfaces allow adding ILP constraints in the form

solver.Add(w1 * x1 + . . . + wn * xn <= c)

where each wi and c is an integer, and xi a Boolean variable. Note that although
the interface allows to use relational operators other than ≤, neO-DCN translates
all constraints to “AtMost” constraints for normalization purposes.

For neO-DCN, we introduced a JSON input format to read data about the
configuration of the network as well as the current configuration of flows. The
benchmark files that we used in our experiments apply this input format and can
be found in the repository of neO-DCN.

1https://developers.google.com/optimization/cp/cp_solver

https://github.com/kovasz/neO-DCN
https://developers.google.com/optimization/cp/cp_solver

Integer Programming Based Optimization of Power Consumption for DCNs 571

4.4 Experimental Results

In our experiments, we are dealing with the real-world DCN topology same DCN
topology as in [14]. Figure 2 shows the topology containing 20 switches and 16
hosts, and numerous links between those nodes. The bandwidth of each link is
uniformly set to 1 Gbps.

The ILP solvers that we mentioned in Section 4.2 were run on the benchmark
instances with a wall clock time limit of 1200 seconds. LINGO was run as a
Windows desktop application, while the other ILP solvers as part of neO-DCN
on Linux. During the experiments, we measured the runtime of the solvers and,
also, monitored the memory consumption of solvers by using the memory profiler
mprof. While applying mprof to neO-DCN was successful, we were not able to
apply it to LINGO. This is why we will not provide memory consumption data
for LINGO in the subsequent sections.

Figure 2: DCN topology (fat tree) for experiments.

4.4.1 Near Traffic Pattern

All mentioned solvers converge to the optimal solution for this traffic pattern very
fast. They reduce the topology in Figure 2 to a minimum-tree DCN topology
in Figure 3 by setting all unneeded links to off-state. Figure 3 shows the four
scenarios of the near sine-wave pattern. In the first scenario, we burst roughly
1 Gbps distributed over 20 flows from servers A,B to C,D, i.e, unidirectional
traffic. The optimizer aggregates all flows in six links. On the other hand, in the
second scenario, the number of flows are increased to 30 and the traffic to 1.3 Gbps.
The topology changes because the model balances the traffic over the links, and
the number of links becomes 8 instead of 6. In the third scenario, part of the
traffic is bidirectional, while we keep the traffic volume at 1.3 Gbps. We burst the
same number of flows, 30, distributed as follows: (1) 10 flows from servers A to C,
(2) 10 flows from B to D, and (3) 10 flows in a reverse direction, from server C
to A. The optimizers output the minimum number 10 of the 12 links for the sake
of aggregating as many flows as possible in one path. In the fourth scenario, we
keep all the characteristics of the third scenario, except that we increase the traffic

572 Gergely Kovásznai and Mohammed Nsaif

volume to roughly 2 Gbps by sending new traffic from server D to B. As a result,
the minimum number of active links becomes 40.

∑20
f

∑20
f

A

B

15 1613 C

D

1st scenario.
∑20

f

∑10
f

∑20
f

∑10
f

A

B

15 16

14

13 C

D

2nd scenario.

←−−−−→∑20
f

∑10
f

←−−−−→∑20
f

∑10
f

A

B

15 16

14

13 C

D

3rd scenario.
←−−−−→∑30

f

∑10
f

←−−−−→∑30
f

∑10
f

A

B

15 16

14

13 C

D

4th scenario.

Figure 3: Four near-traffic scenarios, where directed links indicate flow direction.
Undirected links represent bidirectional flows.

Table 1 shows some of the results reported by the ILP solvers, including the
optimum value (e.g., minimum number of active links). In the table, the runtime
of each solver is given in seconds. The results show that the benchmark instances
in all scenarios can be solved in reasonable time by any of the solvers. However,
Gurobi and CP-SAT outperform the other solvers by almost 1 order of magnitude
on this benchmark.

Table 1: Runtimes (s) of ILP solvers for near traffic pattern

Scenario Flows Opt. LINGO Gurobi CP-SAT SCIP CBC

1 20 6 2.11 0.44 0.42 0.63 0.53
2 30 8 4.21 0.53 0.53 0.73 3.03
3 30 10 3.21 0.53 0.52 0.93 0.62
4 40 14 5.01 0.73 0.72 1.33 3.43

4.4.2 Long Traffic Pattern

In this benchmark, we separate the servers from different PODs into two groups:
sender and receiver. Besides that, we set the number of flows to a constant value of
24. Then, we gradually increase the traffic volume roughly from 1 Gbps to 5 Gpbs,
which were captured in 14 benchmark instances, and we burst them into the DCN.
The idea behind this benchmark is to demonstrate how the subset of active links
changes according to the traffic demand when the number of flows is constant.

Integer Programming Based Optimization of Power Consumption for DCNs 573

Table 2 shows the traffic volume in Gbps for each benchmark instances, and the
corresponding optimum values (e.g., minimum number of active links).

While 6 active links are sufficient to use for the initial time interval (representing
low traffic), one needs to activate all the 48 links in the topology for the last
time interval (representing high traffic). In the table, one can definitely see higher
runtimes than those in the near-traffic experiment. LINGO, SCIP, and CBC
even timed out (TO) for some of the benchmark instances, due to the higher level
of difficulty of solving, caused by a high load of traffic.

Table 2: Runtimes (s) of ILP solvers for long traffic pattern

Time
Interval Traffic Opt. LINGO Gurobi CP-SAT SCIP CBC

1 0.91 6 2.81 0.53 0.42 0.62 0.63
2 0.92 12 2.74 0.43 0.43 0.62 0.63
3 1.5 18 2.93 0.53 1.93 0.62 1.73
4 2.15 26 2.96 0.53 28.88 1.32 3.13
5 2.3 28 2.97 0.53 22.57 25.28 19.56
6 2.4 30 2.85 0.53 17.45 54.63 5.53
7 2.7 32 2.73 0.53 12.25 14.76 11.35
8 3 36 27.73 1.74 16.76 146.02 101.21
9 3.4 36 10.83 2.44 11.35 29.31 80.16
10 3.6 40 597.18 141.96 17.69 122.61 406.6
11 3.9 40 566.44 162.26 13.05 951.43 TO
12 4.2 44 TO 425.5 36.6 291.98 TO
13 4.5 44 TO 144.51 28.28 TO TO
14 4.8 48 TO 575.49 45.01 TO TO

The solvers’ runtimes are visualized in Figure 4. Notice that the vertical axis,
that represents the runtimes in seconds, is log-scaled. Up to the 7th time interval,
when the traffic volume is 2.7 Gbps, all the solvers can find the optimum in a short
time and, in particular, Gurobi and LINGO seem to provide a stable performance.
For a higher volume of traffic, however, all the solvers loose efficiency very rapidly,
except for CP-SAT, which keeps a surprisingly stable performance all the way to
the very last time interval.

Figure 5 visualizes the memory consumption of the different ILP solvers. Recall
that we could not apply memory profiling to LINGO. As the chart shows, all
the solvers consume a moderate amount of memory for each benchmark instance.
Most importantly, for CP-SAT, which was proved to be the fastest solver on this
benchmark, memory consumption seems to be constant-like.

4.4.3 Random Traffic Matrix

In the benchmark with random traffic matrix, we inject different burst sizes and
random flows into the DCN. The generated benchmark instances consist of 5, 10,

574 Gergely Kovásznai and Mohammed Nsaif

0 2 4 6 8 10 12 14

100

101

102

103

Time interval

R
u
n
ti
m
e
(s
)

Gurobi
CP-SAT
SCIP
CBC

LINGO

Figure 4: Runtimes of ILP solvers for long traffic pattern.

0 2 4 6 8 10 12 14

100

200

300

Time interval

M
em

or
y
co
n
su
m
p
ti
on

(M
B
)

Gurobi
CP-SAT
SCIP
CBC

Figure 5: Memory consumption of ILP solvers for long traffic pattern.

Integer Programming Based Optimization of Power Consumption for DCNs 575

20, . . . , 200 flows, respectively, where each flow f is given by a random source host
f.S, a random destination hosts f.D and a random packet rate λf .

Table 3 gives several details for each benchmark instance. The number of flows
gradually increases from 5 to 200. Note that benchmark instances up to 110 flows
are satisfiable (SAT), while the ones above that are unsatisfiable (UNSAT), meaning
that there does not exist any solution for them. For the SAT instances, the table
shows the optimum values (e.g., minimum number of active links).

Table 3: Runtimes (s) of ILP solvers for random traffic

Flows Traffic Result Opt. LINGO Gurobi CP-SAT SCIP CBC

5 0.08 SAT 15 0.79 0.24 0.24 0.22 0.24
10 0.21 SAT 19 1.34 0.23 0.33 0.32 0.44
20 0.49 SAT 24 2.22 0.33 0.63 0.53 0.74
30 0.61 SAT 28 3.22 0.53 1.23 0.83 0.83
40 0.92 SAT 28 4.37 0.63 1.63 1.13 1.14
50 1.06 SAT 29 16.89 1.13 3.13 25.68 11.75
60 1.35 SAT 29 12.38 1.54 5.54 7.74 158.31
70 1.35 SAT 31 49 4.54 22.47 185.03 206.83
80 1.67 SAT 30 45.53 3.85 62.25 97.99 158.70
90 1.86 SAT 33 452.84 32.2 83.36 TO TO
100 2.42 SAT 32 219.28 6.85 45.02 1160.16 329.72
110 2.25 SAT 33 275.24 34.92 TO TO 481.98
120 2.71 UNSAT TO 1.93 TO 7.44 42.51
130 8 UNSAT TO 2.14 TO 8.25 41.3
140 7.71 UNSAT TO 2.24 TO 10.25 69.56
150 7.84 UNSAT TO 2.34 TO 9.15 78.88
160 8 UNSAT TO 2.64 TO 7.44 63.04
170 8 UNSAT TO 2.83 TO 10.55 116.14
180 7.81 UNSAT TO 3.04 TO 9.35 136.88
190 7.99 UNSAT TO 3.14 TO 16.16 87.49
200 8 UNSAT TO 4.65 TO 13.66 115.13

Table 3 and Figure 6 show the solvers’ runtimes for each benchmark instance.
Notice that the vertical axis of the chart is log-scaled.

Only Gurobi is able to solve all the benchmark instances under the time limit.
LINGO and CP-SAT times out on all the UNSAT instances, while all the other
solvers are able to recognize the UNSAT case in quite a reasonable timeframe.
CBC and SCIP time out on 1 and 2 SAT instances, respectively, which consist of
a high number of flows.

Regarding runtime, Gurobi outperforms all the other solvers by 1 or 2 orders of
magnitude, especially when comparing to LINGO that was used as an underlying
solver in [14].

576 Gergely Kovásznai and Mohammed Nsaif

0 20 40 60 80 100 120 140 160 180 200

100

101

102

103

Number of flows

R
u
n
ti
m
e
(s
)

Gurobi
CP-SAT
SCIP
CBC

LINGO

SAT UNSAT

Figure 6: Runtimes of ILP solvers for random traffic.

The memory consumption we have recorded is shown in Figure 7. Gurobi,
as the fastest solvers for the current benchmark, consumes a moderate amount of
memory.

5 Conclusion and Future work

With the aim of optimizing the power consumption of a real DCN topology called
the fat tree, we proposed an ILP model in our previous paper [14] and reported
on experiments with the optimization toolkit LINGO. For our current paper, we
have implemented the same model for other ILP solvers. We report on comparative
experiments with them on a wide range of traffic benchmarks for three different
communication patterns: (1) the near traffic pattern results show that Gurobi and
CP-SAT outperform the other solvers regarding runtime for most traffic instances;
(2) the long traffic pattern results show that above a traffic volume of 2.7 Gbps
all the solvers dramatically loose efficiency, except for CP-SAT, which keeps a
good performance and roughly constant memory consumption; (3) the random

Integer Programming Based Optimization of Power Consumption for DCNs 577

0 50 100 150 200
100

200

300

400

Number of flows

M
em

or
y
co
n
su
m
p
ti
o
n
(M

B
)

Gurobi
CP-SAT
SCIP
CBC

SAT UNSAT

Figure 7: Memory consumption of ILP solvers for random traffic.

traffic results show that, for most of the traffic instances, Gurobi outperforms the
other solvers regarding both runtime and memory. We can conclude that, for most
of the benchmark instances, most of the solvers outperform LINGO regarding
runtime. Consequently, it was definitely worth experimenting with those solvers,
with Gurobi and CP-SAT in particular, as part of our new contribution.

As future work, it would be worth investigating how much ILP solvers scale
for certain generalizations of the DCN model, such as using heterogeneous power
consumption values for switches and links. In an ongoing work, we are upgrading
the ILP model to save as much power as possible by adding more parameters, such
as flow type [13]. Additionally, we are planning to experiment with pseudo-Boolean
solvers as well.

References

[1] Al-Tarazi, M. and Chang, J. M. Performance-aware energy saving for data
center networks. IEEE Transactions on Network and Service Management,
16(1):206–219, 2019. DOI: 10.1109/TNSM.2019.2891826.

[2] Assefa, B. G. and Ozkasap, O. Framework for traffic proportional energy effi-
ciency in software defined networks. In Proceedings of the IEEE International
Black Sea Conference on Communications and Networking (BlackSeaCom),
pages 1–5. IEEE, 2018. DOI: 10.1109/BlackSeaCom.2018.8433618.

https://doi.org/10.1109/TNSM.2019.2891826
https://doi.org/10.1109/BlackSeaCom.2018.8433618

578 Gergely Kovásznai and Mohammed Nsaif

[3] Assefa, B. G. and Özkasap, Ö. A survey of energy efficiency in SDN: Software-
based methods and optimization models. Journal of Network and Computer
Applications, 137:127–143, 2019. DOI: 10.1016/j.jnca.2019.04.001.

[4] Bestuzheva, K. et al. The SCIP Optimization Suite 8.0. ZIB-Report 21-41,
Zuse Institute Berlin, 2021. URL: http://nbn-resolving.de/urn:nbn:de:
0297-zib-85309.

[5] Forrest, J. et al. coin-or/cbc: Release releases/2.10.7, 2022. DOI: 10.5281/

zenodo.5904374.

[6] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. URL:
https://www.gurobi.com/documentation/9.5/refman/, 2022.

[7] Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P.,
Banerjee, S., and McKeown, N. Elastictree: Saving energy in data center
networks. In NSDI’10: Proceedings of the 7th USENIX conference on Net-
worked systems design and implementation, Volume 10, pages 249–264, 2010.

[8] Kovásznai, G., Gajdár, K., and Kovács, L. Portfolio SAT and SMT solving
of cardinality constraints in sensor network optimization. In Proceedings of
the 21st International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), pages 85–91. IEEE, 2019. DOI: 10.1109/

SYNASC49474.2019.00021.

[9] Li, X., Lung, C.-H., and Majumdar, S. Green spine switch management for
datacenter networks. Journal of Cloud Computing, 5(1):1–19, 2016. DOI:
10.1186/s13677-016-0058-8.

[10] LINDO Systems Inc. Lingo the modeling language and optimizer. URL: http:
//www.lindo.com, 2020.

[11] Luo, J., Zhang, S., Yin, L., and Guo, Y. Dynamic flow scheduling for power
optimization of data center networks. In Proceedings of the Fifth International
Conference on Advanced Cloud and Big Data (CBD), pages 57–62. IEEE, 2017.
DOI: 10.1109/CBD.2017.18.

[12] McKerns, M. M., Strand, L., Sullivan, T., Fang, A., and Aivazis, M. A. Build-
ing a framework for predictive science. arXiv preprint arXiv:1202.1056, 2012.
DOI: 10.48550/arXiv.1202.1056.

[13] Nsaif, M., Kovásznai, G., Abboosh, M., Malik, A., and Fréin, R. d. ML-
based online traffic classification for SDNs. In Proceedings of the IEEE 2nd
Conference on Information Technology and Data Science (CITDS), pages 217–
222, 2022. DOI: 10.1109/CITDS54976.2022.9914138.

[14] Nsaif, M., Kovásznai, G., Rácz, A., Malik, A., and de Fréin, R. An
adaptive routing framework for efficient power consumption in software-
defined datacenter networks. Electronics, 10(23), 2021. DOI: 10.3390/

electronics10233027.

https://doi.org/10.1016/j.jnca.2019.04.001
http://nbn-resolving.de/urn:nbn:de:0297-zib-85309
http://nbn-resolving.de/urn:nbn:de:0297-zib-85309
https://doi.org/10.5281/zenodo.5904374
https://doi.org/10.5281/zenodo.5904374
https://www.gurobi.com/documentation/9.5/refman/
https://doi.org/10.1109/SYNASC49474.2019.00021
https://doi.org/10.1109/SYNASC49474.2019.00021
https://doi.org/10.1186/s13677-016-0058-8
http://www.lindo.com
http://www.lindo.com
https://doi.org/10.1109/CBD.2017.18
https://doi.org/10.48550/arXiv.1202.1056
https://doi.org/10.1109/CITDS54976.2022.9914138
https://doi.org/10.3390/electronics10233027
https://doi.org/10.3390/electronics10233027

Integer Programming Based Optimization of Power Consumption for DCNs 579

[15] Perron, L. and Furnon, V. OR-Tools. URL: https://developers.google.
com/optimization/, 2019.

[16] Rabee, F., Al-Haboobi, A., and Nsaif, M. R. Parallel three-way handshaking
route in mobile crowd sensing (PT-MCS). Journal of Engineering and Applied
Sciences, 14:3200–3209, 2019. DOI: 10.36478/jeasci.2019.3200.3209.

[17] Rabee, F., Nsaif, M., and Al-Haboobi, A. Reliable compression route protocol
for mobile crowd sensing (RCR-MSC). Journal of Communications, 14:170–
178, 2019. DOI: 10.12720/jcm.14.3.170-178.

[18] Wang, R., Jiang, Z., Gao, S., Yang, W., Xia, Y., and Zhu, M. Energy-aware
routing algorithms in software-defined networks. In Proceedings of IEEE Inter-
national Symposium on a World of Wireless, Mobile and Multimedia Networks
2014, pages 1–6. IEEE, 2014. DOI: 10.1109/WoWMoM.2014.6918982.

[19] Xu, G., Dai, B., Huang, B., Yang, J., and Wen, S. Bandwidth-aware energy
efficient flow scheduling with SDN in data center networks. Future Genera-
tion Computer Systems, 68:163–174, 2017. DOI: 10.1016/j.future.2016.

08.024.

https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.36478/jeasci.2019.3200.3209
https://doi.org/10.12720/jcm.14.3.170-178
https://doi.org/10.1109/WoWMoM.2014.6918982
https://doi.org/10.1016/j.future.2016.08.024
https://doi.org/10.1016/j.future.2016.08.024

Acta Cybernetica 26 (2024) 581–591.

Extracting Line Parameters of Woven Wire Mesh

in Images under Directional Illumination∗

László Körmöcziab and László G. Nyúlac

Abstract

Localizing the wires of a mesh in an image is important in various image
processing applications. This task can be difficult if the wires cannot be de-
tected with simple line detectors, e.g. if corrugated wires of a woven mesh
appear as dark and bright segments under directional illumination. Template
matching is insufficient if the appearance of the wires varies throughout the
image, depending on the viewing angle, and neural networks require com-
putationally expensive training on a well-prepared dataset. We propose an
efficient way to extract the line parameters (position and orientation) of the
wires of a regular mesh from an image by finding meaningful local minima of
a cost function, followed by RANSAC-controlled robust outlier filtering.

Keywords: image processing, wire detection, cage mesh detection, line pa-
rameter extraction

1 Introduction

Detecting wire mesh in an image and extracting the line parameters (i.e. the lo-
cation and orientation of the wires’ projection in the image) is an important task
in various image processing applications. Localising the wires can help in 2D-3D
camera pose estimation, or for inpainting. This is useful when the relative pose
of the camera and the wire mesh (e.g. an animal cage) can change and has to be
known throughout a series of images or a video stream. In such applications, if a
wire mesh (e.g. the front mesh of the cage) is visible in the image, it can be used
for reliable, unsupervised camera pose estimation if a subject (e.g. rodent) is to be
localized in a coordinate system in which the mesh is fixed.

A mesh made of straight wires can easily be detected with line detectors, e.g.
using Canny edge detector [1] followed by Hough transform [2]. Detection of thick

∗Project no. TKP2021-NVA-09 has been implemented with the support provided by the Min-
istry of Innovation and Technology of Hungary from the National Research, Development and
Innovation Fund, financed under the TKP2021-NVA funding scheme.

aDepartment of Image Processing and Computer Graphics, University of Szeged, Hungary
bE-mail: kormoczi@inf.u-szeged.hu, ORCID: 0000-0002-3833-0609
cE-mail: nyul@inf.u-szeged.hu, ORCID: 0000-0002-3826-543X

DOI: 10.14232/actacyb.299046

mailto:kormoczi@inf.u-szeged.hu
https://orcid.org/0000-0002-3833-0609
mailto:nyul@inf.u-szeged.hu
https://orcid.org/0000-0002-3826-543X
https://doi.org/10.14232/actacyb.299046

582 László Körmöczi and László G. Nyúl

lines can be achieved by either downscaling the image or by using thick line de-
tectors [8, 3]. However, these methods fail when the wires are not seen as lines in
the image, like the wires of a welded corrugated mesh that appear as wavy lines
with alternating darker and brighter segments due to directional reflection of their
material.

Different parts of a mesh of corrugated wires are seen from different angles,
as in the examples in Fig. 1, thus have different shape throughout the image, so
template matching cannot be used.

Figure 1: Examples of corrugated wires seen from different angles.

Quasi-periodic wire meshes can be detected in the frequency domain [5]. There
are methods that use machine learning and neural networks to detect and seg-
ment meshes [10], but training neural networks requires a lot of carefully prepared
training data (e.g. precisely segmented samples) and is computationally expensive.

Wire mesh detection can be easily achieved if there is camera motion between
frames [9] or the focusing distance of the lens can be varied [12], but having a
fixed-focus camera in a fixed position requires a different approach.

If the wire mesh fills a large part of the image, we can find “bands” that can be
macroscopically recognised by an average intensity, although having a large local
variation. The regularity of the mesh (i.e. the distance between wires is constant
and the mesh is a rectangular grid) can be utilized without the need to rectify the
image. In this work, we extend the procedure described in [7] and show quantitative
results on test images.

Detection and localisation of a wire mesh is needed in several image processing
applications. In medical experiments, rodents are often used as models for human
diseases. For behavior analysis, the animals are placed in a cage and observed with
cameras outside the cage [6]. Localisation in the image is possible but the subject’s
location is of interest in the cage coordinate system. Reliable pose estimation of
the camera with respect to the cage is needed and can be achieved using the front
wire mesh of the cage.

2 Line parameter extraction for wires

In order to find the line parameters of the wires’ projection in the image, we cal-
culate a cost function in a 2-dimensional parameter space, then find strong local
minima (negative spikes) of the cost function as candidates for detected lines, and
finally apply a robust filtering on the candidates.

Extracting Line Parameters of Woven Wire Mesh in Images 583

2.1 Preprocessing

The algorithm can find projections of wires in a grayscale image that fit in a rect-
angle (“band”) of arbitrary position and orientation. If the source image suffers
from lens distortion (e.g. barrel or pincushion distortion), an undistortion step has
to be performed. Perspective effect does not have to be compensated, since straight
lines remain straight after perspective projection.

The image should be normalized so that the pixel values are in the [0, 1] range.

2.2 Cost function calculation

First, an average intensity value I is to be defined that macroscopically represents
the wires in the image, along with a band width w that covers a wire. We compute
the absolute difference of pixel intensity and I for each pixel of the image I as:

J(x, y) = |I(x, y)− I|

Then the image space of J is transformed into a (ρ, θ) parameter space with a
cost function, where ρ denotes the distance of a line from the image center and θ
denotes the rotation of the line. The calculation is performed separately for finding
the projection of vertical and horizontal wires, and θ represents the deviation from
the vertical or horizontal direction, respectively.

The cost function C is calculated for (ρ, θ) pairs, ρ ranging from ρmin to ρmax

with step size ρstep and θ ranging from θmin to θmax with step size θstep. The C(ρ, θ)
value of C at given ρ and θ is calculated as the sum of the intensity of the pixels of
J that are covered by a w wide band around a line that is at ρ distance from the
image center, rotated with θ (denoted as Bw,ρ,θ), divided by the area of the image
covered by the band (|Bw,ρ,θ|):

C(ρ, θ) =

∑
(x,y)∈Bw,ρ,θ

J(x, y)

|Bw,ρ,θ|

In this approach, the possible values of the cost function lie within the [0, 1]
range, 0 represents a band that has I intensity in each pixel. Furthermore, we do
not consider bands that cover less than half of the area of a vertical band (for the
vertical case) or a horizontal band (for the horizontal case). The function value of
such points of the parameter space are set to 1.

2.3 Finding candidates for lines

Good candidates are negative peaks of C. A negative peak can be defined as being
a local minimum in its (large enough) neighbourhood and deeper than a threshold
compared to its neighbouring baseline.

As C is calculated in a given finite range with a finite step size for both param-
eters, this ordered set of calculated values can be treated as an image, with axes ρ
and θ, and the pixel intensities are values of C at given ρ and θ values.

584 László Körmöczi and László G. Nyúl

We declare the neighbourhood in which the local minimum search is performed
as a rectangle Ndρ,dθ with axes along the parameter space dimensions. For
Ndρ,dθ(ρ, θ), the maximal distance between the (ρ, θ) point and any point in
Ndρ,dθ(ρ, θ) is dρ and dθ along the two dimensions:

Ndρ,dθ(ρ, θ) = { (ρ′, θ′) | |ρ′ − ρ| ≤ dρ ∧ |θ′ − θ| ≤ dθ }

To fulfill the aforementioned two criteria (i.e. having local minimum and suffi-
ciently small value compared to a baseline), we choose (ρ, θ) pairs by two conditions.
We select those in a set L that have local minima in Ndρ,dθ neighbourhood:

L = { (ρ, θ) | C(ρ, θ) = min
(ρ′,θ′)∈Ndρ,dθ(ρ,θ)

C(ρ′, θ′) }

We independently perform a bottom-hat (black-hat or black top-hat) transform
on C treated as an image (as described above) with a rectangle as structuring ele-
ment defined by Ndρ,dθ, followed by thresholding. Bottom-hat transform performs
closing on an image, then subtracts the original image from the closed image, thus
extracts the baseline and transforms negative peaks into positive [11]. For simplic-
ity, denote the structuring element by N and the image representation of C values
by C. Let C ′ be the result of the bottom-hat transform:

C ′ = (C • N)− C = ((C ⊕N)	N)− C

(where • denotes closing, ⊕ is dilation and 	 is erosion).
Thresholding (with a ct threshold) applied to the result of the bottom-hat trans-

form selects (ρ, θ) pairs in a set V that are part of a valley:

V = { (ρ, θ) | C ′(ρ, θ) > ct }

Points of the parameter space that fulfill both criteria are selected as candidates
in a set P:

P = L ∩ V

2.4 Robust filtering

As there is only a perspective projection present in the image after correcting for
optical distortion, and a regular mesh consists of two (usually perpendicular) sets
of parallel wires that are to be detected independently, the lines for the image of
the parallel wires are either parallel or intersect at a vanishing point V (u, v). For
lines that intersect at V (u, v), the following is true for every line, if ρ denotes the
distance of a line from the image center and θ denotes the rotation of the line:

ρ = u cos θ + v sin θ

If a vanishing point exists for a set of lines, solving a linear system for two (ρ, θ)
value pairs referring to two of these lines gives an explicit result, except in the case

Extracting Line Parameters of Woven Wire Mesh in Images 585

when |θ1− θ2| = 180◦ (where θ1 and θ2 belong to the first and second selected line,
respectively) and the equation system has infinite solutions. In this configuration,
the two lines coincide and the vanishing point can be any point on that line.

If the lines in the image are parallel, there is no solution for the equation system,
as there is no vanishing point and the (ρ, θ) pairs representing these lines lie on a
line in the parameter space.

Although the above function is highly non-linear, for many practical applica-
tions, when the vanishing point is outside the image, the (ρ, θ) points representing
the visible lines in the image fit on a line with a small tolerance. Line fitting also
works for those configurations when the equation system does not have one exact
solution.

We use RANSAC [4] to fit a line on the candidates. RANSAC is widely used in
numerous applications for fast and robust selection of inliers, because it can reliably
filter out outliers and is robust for low inlier ratio. We assume that outliers do not
fit another line (e.g. no other strongly visible grid-like structure is present in the
image).

Algorithm 1 Line parameter extraction for wires

Input: I average intensity of the wires in the image
w band width
I grayscale image
H,W height and width of the image
θmin, θmax, θstep as minimal, maximal rotation angle and rotation step size
ρmin, ρmax, ρstep as minimal and maximal signed distance from image center and
distance step size

Output: ρ, θ line parameters of the wires in the image
for x ∈ [0,W], y ∈ [0, H] do

J(x, y) = |I(x, y)− I|
end for
for θ ∈ [θmin, θmax] with θstep step size do

for ρ ∈ [ρmin, ρmax] with ρstep step size do
Let Bw,ρ,θ be a w pixel wide band that is at ρ distance from the image

center and rotated with θ

C(ρ, θ) =

∑
(x,y)∈Bw,ρ,θ

J(x,y)

|Bw,ρ,θ|
end for

end for
Search for candidates with Ndρ,dθ neighbourhood:
L = { (ρ, θ) | C(ρ, θ) = min

(ρ′,θ′)∈Ndρ,dθ(ρ,θ)
C(ρ′, θ′) }

V = { (ρ, θ) | C ′(ρ, θ) > ct }, where C ′ = (C • N)− C = ((C ⊕N)	N)− C
P = L ∩ V
Line fitting and outlier filtering with RANSAC

586 László Körmöczi and László G. Nyúl

3 Experimental results

In the experiments described in [6] we are working with images of 60×60×60 cm
rodent home cages acquired with consumer grade IP cameras having 1/2.7” class
sensors and wide angle lens with 3.6 mm focal length. The resolution of the images
is 1920×1080 px and the cage almost fills the whole image. Each cage is observed
by two cameras in a non-standard vertical stereo configuration, facing the front of
the cage. The angle between the cameras’ optical axis and the axis perpendicu-
lar to the front wire mesh is around 20-30◦. The cages are placed on a movable
platform so that the relative pose of the cameras and the cage can change. The
cameras are mounted on rotatable heads, thus the stereo configuration can also
change. The cameras have 83◦ vertical and 44◦ horizontal angle of view and a
strong barrel distortion can be observed in the images. We calibrated our cameras
and undistorted the images so that barrel distortion is eliminated. Fig. 2 shows
that only a perspective effect remains.

Figure 2: Sample original (left) and undistorted (right) image showing the rodent
home cage

The home cages have a skeleton of square steel tubes and a mesh of corrugated
wires is welded to the inner side of the tubes.

We ran the proposed algorithm on 25 images, 13 taken in daylight conditions
with artificial directional illumination and 12 at night, with the cameras set to
night vision mode and inbuilt infrared LEDs illuminated the scene. The expected
width w was set to 9 px and we observed the effect of varying I in the range from
0 to 1.0 with 0.05 step size. The resolution of the parameter space was 1 px for ρ
and 0.2◦ for θ, ρ swept through the image in both dimensions and θ was limited
between -15◦ and 15◦. dρ was set to 40 px and dθ was set to 8◦ for Ndρ,dθ used in
Section 2.3. Tolerance in RANSAC filtering for a candidate to fit on a line was set
to 2◦ and 10 px.

Filtered candidates (predicted positives) were compared against ground truth
values that were computed from manually assigned lines for each wire in the image.
A predicted positive is considered true positive if θ error is no more than 1◦ and ρ
error is no more than 5 px.

Precision, recall and F1 score (average± standard deviation) are shown in Ta-
bles 1 and 2, for vertical and horizontal lines, respectively. Although the test images

Extracting Line Parameters of Woven Wire Mesh in Images 587

originate from 4 cameras, we aggregated the results because the conditions were
similar for each camera. With I < 0.6 there were no correctly detected wires in
most images, so we excluded these results from the table.

We can see from the results that the algorithm is robust for a large variation
of I, and it can detect almost all wires of the mesh if I is set correctly. The total
number of vertical lines to be detected was 24, and the number of horizontal lines to
be detected was 12 or 14 in most cases. Results for the horizontal wires are better,
as some of the vertical wires near the side of the cage were not detected correctly
due to the background and the side meshes. False positives generally come from
the skeleton of the cages.

Table 1: Precision, recall and F1 score for finding vertical lines.

daylight night
precision recall F1 score precision recall F1 score

I (avg± std) (avg± std) (avg± std) (avg± std) (avg± std) (avg± std)
0.60 0.32± 0.03 0.48± 0.06 0.38± 0.04 0.25± 0.05 0.42± 0.07 0.31± 0.06
0.65 0.51± 0.04 0.66± 0.06 0.58± 0.04 0.35± 0.06 0.48± 0.08 0.41± 0.07
0.70 0.67± 0.06 0.76± 0.03 0.71± 0.03 0.48± 0.06 0.56± 0.05 0.51± 0.06
0.75 0.76± 0.05 0.81± 0.04 0.78± 0.04 0.61± 0.05 0.69± 0.05 0.65± 0.05
0.80 0.80± 0.04 0.82± 0.03 0.81± 0.03 0.65± 0.09 0.72± 0.06 0.69± 0.08
0.85 0.85± 0.04 0.84± 0.01 0.84± 0.03 0.68± 0.06 0.76± 0.05 0.72± 0.06
0.90 0.83± 0.03 0.82± 0.01 0.83± 0.01 0.69± 0.06 0.77± 0.05 0.73± 0.06
0.95 0.82± 0.04 0.82± 0.01 0.82± 0.02 0.70± 0.07 0.78± 0.05 0.74± 0.06
1.00 0.82± 0.05 0.81± 0.02 0.81± 0.03 0.70± 0.06 0.78± 0.04 0.74± 0.05

Table 2: Precision, recall and F1 score for finding horizontal lines.

daylight night
precision recall F1 score precision recall F1 score

I (avg± std) (avg± std) (avg± std) (avg± std) (avg± std) (avg± std)
0.60 0.46± 0.06 0.70± 0.03 0.55± 0.04 0.38± 0.05 0.83± 0.12 0.52± 0.07
0.65 0.53± 0.03 0.71± 0.01 0.61± 0.03 0.47± 0.03 0.87± 0.09 0.61± 0.04
0.70 0.62± 0.08 0.81± 0.06 0.71± 0.07 0.62± 0.07 0.89± 0.09 0.73± 0.06
0.75 0.77± 0.09 0.89± 0.04 0.83± 0.07 0.84± 0.09 0.94± 0.05 0.88± 0.05
0.80 0.84± 0.12 0.90± 0.04 0.87± 0.08 0.92± 0.11 0.92± 0.06 0.91± 0.06
0.85 0.88± 0.07 0.90± 0.03 0.89± 0.03 0.94± 0.07 0.92± 0.06 0.93± 0.03
0.90 0.90± 0.03 0.90± 0.03 0.90± 0.02 0.96± 0.07 0.91± 0.06 0.93± 0.01
0.95 0.93± 0.00 0.90± 0.03 0.92± 0.02 0.97± 0.04 0.90± 0.06 0.94± 0.02
1.00 0.93± 0.00 0.90± 0.03 0.92± 0.02 0.97± 0.04 0.89± 0.05 0.93± 0.01

588 László Körmöczi and László G. Nyúl

An example visualization can be seen in Figs. 3 and 4. Fig. 3 shows the values
of the cost function over the selected (ρ, θ) range for horizontal lines of a test image,
with I = 0.95. Brighter color means higher value, 0 is black and 1 is white. Negative
peaks can be observed as dark spots. After filtering the candidates, inliers that fit
on a line are marked with green, while outliers are marked with blue. Fig. 4 shows
found lines painted over an example image, horizontal lines are red, vertical lines
are green.

We use the proposed method as part of a video processing pipeline, and in-
tersection points of the lines are used for 2D-3D relative pose estimation (i.e. the
transformation between the camera coordinate system and the cage coordinate
system). For that application, not all wires are required to be detected, but the
accuracy of the line parameters is crucial.

Figure 3: Example visualization of C cost function for horizontal wires. Horizontal
axis is ρ and vertical axis is θ. Brighter color means higher function value. Top:
Negative peaks can be seen as dark spots. Bottom: All candidates as described in
Section 2.3, filtered as in Section 2.4. Inliers are marked with green, outliers are
marked with blue.

Figure 4: Found lines painted over the original image, vertical lines in green and
horizontal lines in red.

Extracting Line Parameters of Woven Wire Mesh in Images 589

The parameter w has to be determined for a given experimental setup. The
proposed method is not sensitive to this parameter and can tolerate deviations that
occur in most cases. A problem can arise when there is a large angle between the
image plane and the plane of the mesh, resulting in significantly different distances
between the camera and the two edges of the mesh. As a result, the thickness of
the wires in the image varies within a wide range. In such situations, a band with a
given width can cover more than one wire in some parts of the image while covering
only a small part of a single wire in other areas.

As described in Section 1, other methods cannot be used reliably and easily on
our image set. Line detectors cannot be applied, as the wires do not appear as
lines in the image. For Hough transform, precise binarization of the image would
be needed with a carefully set threshold. However, on our images, especially in
night conditions, a strict threshold results in almost all wires except at the center
of the image not being detected at all. Conversely, by using a more permissive
threshold, the wires of the side and back of the cage, along with other objects,
make detection of the front wires impossible. An example visualization for a night
image is presented in Fig. 5. Pre-trained models of neural network-based methods
are trained on wire mesh samples that differ from the ones present in our images,
and cannot detect the mesh. Training would require a huge number of manually
segmented samples.

Figure 5: Illustration of problems with binarizing for Hough transform shown on
a night image. Left: wires except the central ones disappear with a restrictive
threshold. Right: wires of the side and back of the cage, along with other objects,
make the detection of the front wires impossible with a more permissive threshold.

4 Conclusion

We presented an efficient method for extracting line parameters of the projection
of wires of a woven mesh in an image by transforming the image space into a 2D
parameter space and finding and robustly filtering local minima of the resulting
cost function. Experimental results show that the algorithm is able to accurately
detect wires and filter out false detections in general experimental setups where the
vanishing point is outside the image.

Although the presented method works robustly for the desired application, sev-
eral improvement possibilities could be investigated. An optimizer could be utilized

590 László Körmöczi and László G. Nyúl

to find local minima so that the computational cost could be reduced if the cost
function is not calculated for the entire parameter space. We plan to examine the
effect of running the method on gradient images instead of the original images, so
that I would not have to be defined. We also plan to incorporate a solver for the
linear equation system described in Section 2.4 to make the algorithm usable for
meshes that are seen from a low angle.

References

[1] Canny, J. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986. DOI:
10.1109/tpami.1986.4767851.

[2] Duda, R. and Hart, P. Use of the Hough transformation to detect lines and
curves in pictures. Communications of the ACM, 15(1):11–15, 1972. DOI:
10.1145/361237.361242.

[3] Even, P., Ngo, P., and Kerautret, B. Thick line segment detection with fast di-
rectional tracking. In Image Analysis and Processing, pages 159–170. Springer
International Publishing, 2019. DOI: 10.1007/978-3-030-30645-8_15.

[4] Fischler, M. and Bolles, R. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981. DOI: 10.1145/358669.

358692.

[5] Hettiarachchi, R., Peters, J., and Bruce, N. Fence-like quasi-periodic tex-
ture detection in images. Theory and Applications of Mathematics and Com-
puter Science, 4(2):123–139, 2014. URL: http://cs.umanitoba.ca/~bruce/
papers/periodic.pdf.

[6] Körmöczi, L., Kalmár, G., Adlan, L., Büki, A., Kékesi, G., Horváth,
G., and Nyúl, L. Rágcsálók viselkedésmintázatának kutatása automatizált
videóelemzéssel. In Képfeldolgozók és Alakfelismerők Társaságának 13. kon-
ferenciája, 2021. 17 pages, URL: https://kepaf.njszt.hu/kepaf2021/

submissions/submission_00047.pdf.

[7] Körmöczi, L. and Nyúl, L. Detecting corrugated wire mesh in images.
In Proceedings of the 13th Conference of PhD Students in Computer Sci-
ence, pages 116–120. University of Szeged, 2022. URL: https://www.inf.u-
szeged.hu/~cscs/cscs2022/pdf/cscs2022.pdf.

[8] Lo, R.-C. and Tsai, W.-H. Gray-scale Hough transform for thick line detection
in gray-scale images. Pattern Recognition, 28(5):647–661, 1995. DOI: 10.

1016/0031-3203(94)00127-8.

https://doi.org/10.1109/tpami.1986.4767851
https://doi.org/10.1145/361237.361242
https://doi.org/10.1007/978-3-030-30645-8_15
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
http://cs.umanitoba.ca/~bruce/papers/periodic.pdf
http://cs.umanitoba.ca/~bruce/papers/periodic.pdf
https://kepaf.njszt.hu/kepaf2021/submissions/submission_00047.pdf
https://kepaf.njszt.hu/kepaf2021/submissions/submission_00047.pdf
https://www.inf.u-szeged.hu/~cscs/cscs2022/pdf/cscs2022.pdf
https://www.inf.u-szeged.hu/~cscs/cscs2022/pdf/cscs2022.pdf
https://doi.org/10.1016/0031-3203(94)00127-8
https://doi.org/10.1016/0031-3203(94)00127-8

Extracting Line Parameters of Woven Wire Mesh in Images 591

[9] Lueangwattana, C., Mori, S., and Saito, H. Removing fences from sweep mo-
tion videos using global 3d reconstruction and fence-aware light field rendering.
Computational Visual Media, 5(1):21–32, 2019. DOI: 10.1007/s41095-018-

0126-8.

[10] Matsui, T. and Ikehara, M. Single-image fence removal using deep con-
volutional neural network. IEEE Access, 8:38846–38854, 2020. DOI:
10.1109/access.2019.2960087.

[11] Serra, J. Image analysis and mathematical morphology. Academic Press, 1982.
ISBN: 0126372403.

[12] Yamashita, A., Matsui, A., and Kaneko, T. Fence removal from multi-focus
images. In Proceedings of the 20th International Conference on Pattern Recog-
nition. IEEE, 2010. DOI: 10.1109/icpr.2010.1101.

https://doi.org/10.1007/s41095-018-0126-8
https://doi.org/10.1007/s41095-018-0126-8
https://doi.org/10.1109/access.2019.2960087
https://doi.org/10.1109/icpr.2010.1101

Acta Cybernetica 26 (2024) 593–619.

Overlaying Control Flow Graphs on

P4 Syntax Trees with Gremlin∗

Dániel Lukácsab and Máté Tejfelac

Abstract

Our overall research aim is to statically derive execution cost and other
metrics from program code written in the P4 programming language. For this
purpose, we extract a detailed control flow graph (CFG) from the code, that
can be turned into a full, formal model of execution, to extract properties –
such as execution cost – from the model. While CFG extraction and analysis
is well researched area, details are dependent on code representation and
therefore application of textbook algorithms (often defined over unstructured
code listings) to real programming languages is often non-trivial. Our aim
is to present an algorithm for CFG extraction over P4 abstract syntax trees
(AST). During the extraction we create direct links between nodes of the
CFG and the P4 AST: this way we can access all information in the P4 AST
during CFG traversal. We are utilizing Gremlin, a graph query language to
take advantage of graph databases, but also for compactness and to formally
prove algorithm correctness.

Keywords: control flow graph, static analysis, P4, Gremlin, graph database,
proof of correctness

1 Introduction

Our long-term research goal – that also motivates this current work – is to develop
an adaptable, scalable, and efficient static cost analysis tool for programs written
in the P4 programming language [7]. P4 is a new domain-specific programming
language running on programmable network switches. P4 programs describe net-
work communication protocols: more specifically, a P4 programs tells the switch
how process (transform, forward, or drop) an incoming network packet. Static cost

∗Supported by the ÚNKP-21-4 New National Excellence Program of the Ministry for Innova-
tion and Technology from the source of the National Research, Development and Innovation Fund.
This research is in part supported by the project no. FK 21 138949, provided by the National
Research, Development and Innovation Fund of Hungary.

aFaculty of Informatics, Eötvös Loránd University, Budapest, Hungary
bE-mail: dlukacs@caesar.elte.hu, ORCID: 0000-0001-9738-1134
cE-mail: matej@inf.elte.hu, ORCID: 0000-0001-8982-1398

DOI: 10.14232/actacyb.298770

mailto:dlukacs@caesar.elte.hu
https://orcid.org/0000-0001-9738-1134
mailto:matej@inf.elte.hu
https://orcid.org/0000-0001-8982-1398
https://doi.org/10.14232/actacyb.298770

594 Dániel Lukács and Máté Tejfel

analysis tools – that can estimate performance, energy needs, and other metrics of
a P4 program automatically and without actually executing the program code –
have several industrial use cases. Unfortunately, cost analysis is NP-hard (it solves
the halting problem). While algorithms exist, they do not scale well for large, in-
dustrial size P4 programs: the time it takes to compute the solution exceeds the
bounds of what is considerable usable in the industry.

As we attempted to realise a cost analysis tool for P4, we found that control flow
analysis has a central role in all our efforts. Control flow analysis [1, Chapter 8.4.3.]
concerns discovering the order of execution of the program statements in compile-
time (i.e. based on the source code, or its equivalent representation, the syntax
tree). Due to branching structures, there are usually multiple possible selections of
executable statements, so the appropriate representation of the results is a graph,
called control flow graph (CFG). We refer to paths in the CFG as execution paths.

Cost analysis requires a representation where implementation-dependent in-
formation (abstractions of the implementation, for example, cost formulas) can
be easily inserted. CFGs turned out to be such representations. In our earlier
works [10, 9], we discussed an approach based on enumerating all possible execu-
tion paths in the CFG of a P4 program to produce the average (or minimum or
maximum) cost for that program. Our preliminary measurements have also shown
that CFG path enumeration scales up for CFGs having as much as one hundred-
thousand execution paths.

CFGs can also be considered Kripke-structures or transition systems [5, Chap-
ter 2.1.], with the program counter being the only visible variable in the state, while
the actual program state stays implicit in the start state and its subsequent trans-
formations by the program instructions. A clear consequence of this is that CFGs –
as traditionally understood – are not full program representations, but graphs that
connect program points to program points, mostly with no formal references to the
actual data that is being processed during execution. For example, it may happen
that during execution, we update a variable in a way such that one branch of a
conditional is never executed. Taking the cost of this branch into account in the
average cost then possibly leads to a significant overestimation of the true program
cost.

For this reason, in our latest work [11], we decided to try a new approach instead
of CFG path enumeration and relied on probabilistic model checking to cost analyse
P4 code. Here, we translate P4 code into model checkable representation, and –
together with the specification of cost requirements – we delegate this to a model
checker tool. Yet, even in this approach, we rely on CFGs in order to generate the
model checkable representation. And here as well, we need more information about
the program points than what textbook definition CFGs store.

Thus, our first aim in this paper is to develop a variant of CFG representations
that is also capable of meaningfully representing program data and instructions
over this data. To achieve this, we will define control flow analysis over the abstract
syntax tree (AST) [1, Chapter 2.5.1.] of P4 programs. The AST is a hierarchical
representation of the program sources, describing how various program structures
and expressions are nested into each other. As AST is a full program representation,

Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 595

we can exploit the fact that the AST already has every information about data and
instructions, and to make this information available during control flow analysis,
we just have to establish the links between the corresponding nodes in the AST and
the CFG. As a result, when we traverse the CFG, any further information about
the current program point is just one link away, in the form of an AST subtree.

As it can be seen, interconnected graph representations will be central to our
efforts. To make sure we use graphs in the most efficient way possible, we host
these graphs (AST and CFG) in a graph database (GDB). A GDB is a database
that stores data in graph data structure and provides a query language with graph
semantics. Compared to relational databases (storing data in tables), GDBs elim-
inate the need for expensive join-operations, making them more efficient (both in
terms of computation and usage) for storing and traversing heavily interconnected
data. An extensive meta-analysis on the concept can be found in Angles et al. [3].

Then, our second aim is to address the problem of implementing a CFG al-
gorithm in the form of a Gremlin query. By doing so, we can leverage built-in
optimisations in Gremlin-compatible GDBs, such as parallelisation and bulking
(see Rodriguez [14]). As Gremlin is a domain-specific language with somewhat
unusual syntax and semantics, we found this task challenging enough to deem it
necessary to discuss it in depth. We also hope that this discussion will be helpful
for all future Gremlin programmers aiming to implement non-trivial algorithms in
Gremlin.

Contributions In this work, we present an approach to intraprocedural CFG
extraction from ASTs (formalised as a Gremlin query), and prove its correctness.
At the same time, we explore the expressive power of Gremlin for specifying fairly
complex static analysis procedures. We define both ASTs and CFGs in Section 3.1,
in a way that can handle most of the P4 language control flow, and makes extend-
ing the AST for the rest is a straightforward process. Then, in Section 3.2, we
describe the extraction algorithm in pseudocode. In Section 4.1 we formalised the
semantics of a subset of Gremlin. Section 4.2 contains the extraction algorithm in
Gremlin. We use the formal description to prove the correctness of the algorithm
in Section 4.3. Finally, we conclude the paper with a few words about limitations
and future work.

2 Related work

Recently, Dumitrescu et al. [8] introduced Bf4, a program verification tool for P4
programs, that also builds heavily on the CFG representation of P4. They rely on
a preceding instrumentation step, and extend the CFG with “bug nodes” (nodes,
guarded with a condition that can only be satisfied if there is a bug), and then
perform program slicing (using SSA and various dependency analyses) to compute
reachability of the bug nodes using an SMT solver. They do not discuss their
internal CFG representation, but they do tell that they realised the tool as a P4C
backend, and the size of the implementation is around 25000 lines of C++ code (not

596 Dániel Lukács and Máté Tejfel

counting the P4C infrastructure). We suspect GDB-integrated deep CFGs could
complement the Bf4 implementation in order to reach all necessary the information
more easily than what visitors over the P4C intermediate program representation
can currently provide.

The work of Amighi et al. [2] shares some goals with ours. They extract CFGs
from Java bytecode, which is a more difficult problem since it involves handling
stack (implicit the bytecode) and exception flow as well. First, they translate byte-
code to an intermediate representation that makes the stack explicit. Then, for
each instruction they declaratively define the transition relation between program
points. The final CFG is simply the union of the transitions resulting from evalu-
ating the relation over program points and instructions of a given bytecode. Like
us, they also prove the correctness of the extraction. In their proof, they estab-
lish the existence of a simulation relation between states induced by the bytecode
instructions and states induced by the extracted CFG.

An important application of CFGs is that it is the representation on which
data flow analysis (DFA) [1, Chapter 9.2.] operates. The results of DFA can be
represented e.g. in the form of a definition-use graph, establishing links between
the definitions of variable names and the usages of these names. In turn, it should
be possible to store such a definition-use graph in our GDB, interlinked to AST and
CFG, in order to enable even more applications. For example, Birnfeld et al. [6]
combine CFG and definition-use graphs to discover potential faults in P4 code, to
detect e.g. that there are execution paths where the P4 program processes invalid
packets.

In our work, we extract CFGs from a structured AST, not from unstructured
code (with features such as gotos, no nesting, etc.). This is also the approach
of Söderberg et al. [15], who – analysing Java – recognise that by superimposing
the CFG on the AST, “high-level abstractions are not compiled away during the
translation to intermediate code”. The authors utilise elegant reference attribute
grammars for control flow and data flow analysis. In this approach control-related
AST nodes get a reference attribute (e.g. successor) that points to another AST
node where control is supposed to flow from the previous node. Another interesting
feature of this work is that it is easily extensible to handle new language elements
in novel versions of Java, by incrementally adding new grammar rules.

Another inspiring example for this concept is the RefactorErl framework, that
also superimposes control flow (and many other static analysis results) on the
AST [16] for the Erlang programming language.

3 Problem and solution idea

3.1 Basic definitions

In this section, we define what we mean by ASTs and control flow graphs in the fol-
lowing sections. In the correctness proof in Section 4.3, these definitions constitute
the precondition and postcondition.

Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 597

An illustration of these concepts is depicted by Figure 1. One the left, there
is a simplified excerpt from basic routing-bmv2.p4, a P4 program describing an
L2/L3 routing protocol, used in the testing of the P4 reference compiler, P4C [13].
This code describes a control declaration named ingress. It declares a few match-
action tables (their external definition is linked at compile-time), and then it spec-
ifies the actual control flow determining the (sometimes conditional) invocation of
these tables. In the middle is the corresponding AST with d, b, c, s labelled nodes
denoting control declaration, block, conditional, and statement nodes respectively.
(We do not analyse control flow inside expressions.) On the right is the corre-
sponding CFG with matching node names. The thin lines are the association edges
between AST nodes and CFG nodes.

control ingress(inout headers hdr,
[...]) {

table bd {[...]}
table ipv4_fib {[...]}
table ipv4_fib_lpm {[...]}
table nexthop {[...]}
table port_mapping {[...]}
[...]
apply {

if (hdr.ipv4.isValid()) {
port_mapping.apply();
bd.apply();
if ([...]) {

ipv4_fib_lpm.apply();
} else {}
nexthop.apply();

} else {}
}

}

d

b1

c1

b2

s1 s2 c2 s4

b3

s3 b4

b'1

c'1

b'2 b'3s'1 s'2 c'2

s'3 b'4

s'4

Figure 1: Source code, AST, and CFG of a control declaration

In the rest of this section, we define these concepts based on labelled graphs
and related notations. GDBs support sophisticated attribute-based labelling, but
for ease of understanding we use a simpler scheme in this paper.

Definition 1. A labelled graph is a (V,E, l) tuple of a V node set, an E edge set,
and an l : (V ∪ E)→ L labelling function (where L is an arbitrary set of labels).

Notations. In case a distinction must be made between multiple graphs, we write
e.g. (Vg, Eg, lg) to denote the components of a particular graph g. We use un-
derlined lowercase letters to denote a node with a specific label: for example x
denotes a node n ∈ V for which l(n) = x (a node with label x). We use indexes to
distinguish between multiple nodes: for example, x1 and x2 denotes n1, n2 nodes

for which l(n1) = l(n2) = x. We write n1
x−→ n2 to denote an edge (n1, n2) ∈ E for

which l((n1, n2)) = x. In the case graph g is a tree, rootg denotes the root of tree g,
and childreng(n, x) denotes those child nodes of node n in g whose incoming edge
has label x.

598 Dániel Lukács and Máté Tejfel

Notations. In the AST, we use labels d, b, c, and s to denote control declarations,
blocks, conditionals, and statements, respectively (so e.g. d ∈ V denotes any n ∈ V
node that is a control declaration). Syntactical edges between the AST nodes are
appropriately labelled with labels to distinguish from other edges introduced into G,
e.g. assoc (see later). These edge labels are body (between a control declaration
node and the top-level block forming its body), nest (between a block and its
nested blocks), statement (between a block and its statements), true, and false

(between a conditional node and its branches).

Definition 2. A (V,E, l) graph is an abstract syntax tree (AST), if it is a tree,
and ∀n ∈ V : l(n) ∈ {d, b, c, s}, and

1. If (n1
body−−−→ n2) ∈ E, then l(n1) = d, and l(n2) = b

2. If (n1
nest−−−→ n2) ∈ E, then l(n1) = b, and l(n2) = b

3. If (n1
statement−−−−−−→ n2) ∈ E, then l(n1) = b, and l(n2) = s,

4. If (n1
true−−−→ n2) ∈ E, then l(n1) = c, and l(n2) = b

5. If (n1
false−−−→ n2) ∈ E, then l(n1) = c, and l(n2) = b

6. If s ∈ V , then children(s) = ∅

7. If d ∈ V , then ∃! b ∈ V : (d
body−−−→ b) ∈ E,

8. If c ∈ V , then ∃! b1, b2 ∈ V : ((c
true−−−→ b1) ∈ E ∧ (c

false−−−→ b2) ∈ E),

The definition asserts that all P4 control declaration has an AST made of blocks
(containing 0,1 or more ASTs), conditionals (containing exactly two ASTs, one per
branch), and statements (primitives, along with empty blocks).

In addition, we assume (without explicitly featuring) that all AST nodes have
a unique identifier incremented in depth-first order. Such identifier attributes (la-
bels) can be inserted in the graph straightforwardly (preferably directly after graph
construction). The recursive top-down traversal of ASTs guarantees termination
and allows us to use a common idea in correctness proofs of functional programs.
By inductively assuming that the previous elements were correctly processed, and
applying a proven correct procedure to the current element, we only have to as-
sure that the previous and the current elements are aggregated in an appropriate
manner.

In later sections, we will define our algorithm over ASTs of P4 control declara-
tions. For this reason, we restrict our discussion here to these, and omit discussing
goto-like flows in the P4 packet parser declarations. In P4, packet parsers are de-
fined in the form of state machines. Their control flow analysis is straightforward,
so omit this for simplicity. P4 has no construct for user-defined loops except for
match-action tables (lookup tables that match packet headers to actions). The im-
plementation of these table algorithms is not part of the language, only the node of

Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 599

the table application appears in the syntax tree (and similarly, table applications
will be featured as single nodes in the control flow graph). For languages with
loops, extending the definition is straightforward, albeit cumbersome. P4 also has
one-way and multi-way conditionals, but those are processed similarly to two-way
conditionals, and so we also omit them for simplicity.

Now, we prepare for defining deep CFGs. The main problem we have to solve
as we translate an AST to a CFG is that ASTs give no explicit clue about the
order of execution of its elements, while CFGs aims to describe precisely that. It is
well-known [4], that by transforming CFGs to static single-assigment form, blocks
can be treated as functions, and directed flows as calls between these functions: the
result is a functional program, where the continuation (i.e. the rest of program)
at each program point explicitly appears as a function. While we aim for a more
direct definition, this gives us a clue that a recursive approach can be successful.
Specifically, we will define CFGs as compositions of sub-CFGs, with each sub-CFG
relating to a subtree of the control declaration AST.

Definition 3. Let G = (V,E) contain syntax subtree t and subgraph c. We say
that c is the sub-CFG corresponding to t, with source n ∈ Vc and return points
R ⊆ Vc given the following conditions are satisfied in G:

1. If roott = {s}, then (n
assoc−−−→ s) ∈ E, R = {n}

2. If roott = {b} and childrent(b) = ∅, then (n
assoc−−−→ b) ∈ E, R = {n}

3. If roott = {b} and childrent(b) = {t1, . . . , tk} and ci is the sub-CFG with
source ni, return points Ri corresponding to the subtree rooted in ti (∀i =
1, . . . , k), then

(n
assoc−−−→ b) ∈ E,

(n
flow−−−→ n1) ∈ Ec,

(r
flow−−−→ ni) ∈ Ec (∀i = 2 . . . k, ∀r ∈ Ri−1),

R = Rk

4. If roott = {c} and childrent(c) = {t1, t2}, then

(n
assoc−−−→ c) ∈ E,

ci is the sub-CFG corresponding to ti with source ni,

return points Ri (∀i = 1, 2),

(n
flow−−−→ ni) ∈ Ec (∀i = 1, 2),

R = R1 ∪R2

600 Dániel Lukács and Máté Tejfel

According to the definition, the sub-CFG of statements and empty blocks is a
single node, relating to the syntax node of the statement or empty block itself. The
sub-CFG of non-empty blocks is composed of a CFG node relating to the syntax
node of the block, and the sub-CFGs of its children. We set up flow from the block
to the first child CFG, and also between the siblings. The sub-CFG of a conditional
is composed of a CFG node relating to the syntax node of the conditional, and of
the sub-CFGs of the children. Here, we omitted true and false labels on the flows,
but these can be easily identified by querying the incoming edge (labelled with true

or false) of the associated node in the AST.
We may note that control declaration nodes (d-labelled nodes) are missing from

the sub-CFG definition. This is because the CFG corresponding to such a node is
a top-level CFG, that we call deep CFG. This node does not require much analysis
compared to its descendants, it simply identifies the entry and exit nodes of the
CFG.

Definition 4. Let G = (V,E) contain control declaration AST u and subgraph g.
We say that g is the deep CFG corresponding to u, with entry e ∈ Vg and exit
f ⊆ Vg given the following condition is satisfied in G:
If rootu = d, child(d) = {t} and g is the sub-CFG corresponding to the tree rooted
in t, with source n and return points R, then

(d
entry−−−→ e) ∈ E, (d

exit−−→ f) ∈ E, (e
flow−−−→ n) ∈ Eg, (r

flow−−−→ f) ∈ Eg (∀r ∈ R)

Edges labelled with entry and exit are similar to assoc, linking the AST
declaration node to the CFG entry and exit points. Control will flow from the
entry node to the first block (the source of the sub-CFG corresponding to the
declaration body). From the return points of this first block, control flows into the
exit node. Flows inside the CFG are determined by Definition 3.

3.2 CFG extraction

First, we present the idea of our CFG extraction algorithm by translating the CFG
definition into an informal, imperative description. Later on we formalise this as a
Gremlin traversal. We split the operation in two.

Algorithm 1 iterates over the control declaration nodes in the AST, creates
one entry and one exit CFG node (e and f) for each in graph G, and then calls
Algorithm 2 on b (the top-level block of the declaration). An edge will be sent from
e to b by that other procedure (as b’s CFG is the subsequent continuation of e).
Finally, we send an edge from R (the return nodes returned by that procedure) to
f (as the exit is the final continuation).

Algorithm 2 creates a CFG for the AST of some b, either a block or a conditional.
The algorithm expects a set of predecessor CFG nodes: while ProcNode is initially
called with (a set of) just a single predecessor, later it is called again recursively
with the R set of return points. The resulting CFG is the subsequent continuation
of whatever is in R, and so right after we create its starting point n, we link the
contents of R to n. In case b is a block or a statement, we recursively apply the

Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 601

procedure to the children. R is initially set to n, since the continuation after node
b is the CFG of the first child. After the child CFG was produced, we assign the
return points of that CFG to R as this needs to be linked to the next continuation
(that is either a sibling, or a sibling of an ancestor). Note that in case b is an empty
block or a statement, it has no children and {n} is the returned return point (this
is the node that will be followed by the sibling of an ancestor).

In case b is a conditional, n has to be linked to the two possible subsequent
continuations, and we collect into R the return points of both branch CFGs, as
anything that follows will be the subsequent continuation of both branches. Algo-
rithm 2 always terminates because it is progressing from child to child, and for any
of its calls, the longer the call’s stack trace, the shorter the distance between b and
the AST leaves.

Procedure CFG(G):
Input: G is graph, includes AST
Result: CFG of each control declaration is added to G

begin
forall v ∈ VG do

if v is control declaration then
e := new CFG entry node
f := new CFG exit node
VG := VG ∪ {e, f}
b := childG(v, body)
R := ProcNode(G, b, {e})
forall r ∈ R do

EG := EG ∪ {r
flow−−−→ f}

end

end

end
return

end
Algorithm 1: Control declarations

4 Formalising CFG extraction in Gremlin

4.1 Semantics of Gremlin

To formally prove our CFG extraction operation in Section 4.2, we have to have
a formal semantics for the Gremlin Traversal Machine (GTM). In the white pa-
per [14], the authors give a mathematical description of the GTM, but one of
their goals is to keep it general and enable adapters to implement many possible
– including parallel – evaluation strategies. In this section, we intend to reiterate
this description with two important modifications: we formalise it as an axiomatic

602 Dániel Lukács and Máté Tejfel

Procedure ProcNode(G,b,P):
Input: G is graph, includes AST and CFG
Input: b is block, statement or conditional in the AST
Input: P is set of predecessor CFG nodes
Output: Return points of CFG of b
Result: CFG of b is added to G

begin
n := new CFG node
VG := VG ∪ {n}
forall p ∈ P do

EG := EG ∪ {p
flow−−−→ n}

end
if b is block ∨ b is statement then

R := {n}
forall c ∈ childrenG(b, {nest, statement}) do

R := ProcNode(G, c, R)
end
return R

else
if b is conditional then

R := ∅
forall c ∈ childrenG(b, {true, false}) do

R := R ∪ ProcNode(G, c, {n})
end
return R

end

end

end
Algorithm 2: Blocks, conditionals

semantics so that we can use it in proofs (see Section 4.3), and we restrict the
traverser set (see later) to be an ordered set (or list). This restriction ensures that
sibling nodes are processed sequentially, and in a fixed order. In our experience,
the default evaluation strategy in the native Gremlin Java graph implementation
(called TinkerGraph) satisfies this restriction.

The GTM executes a program called graph traversal, which is effectively a
sequence of instructions (with some higher-order instructions also accepting graph
traversal programs as parameters). While “traversal” is a notion employed in the
Gremlin-literature to denote programs, it may cause some confusion that it is also
used colloquially to denote the execution of such programs. Therefore, in the formal
treatment we use the notion of traversal to denote the program text, and use other
phrases (semantics, state, etc.) to characterise execution. We now proceed first to
define the state of the GTM. The global memory state of the GTM consists of the

Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 603

graph contents and other auxiliary storages. There are stores in the memory that
can store both graph objects (e.g. nodes, edges) and other objects (e.g. collections
of graph objects).

Definition 5. The global memory of the GTM state is a Γ = (V,E,H,K) tuple,
where (V, E) is the graph itself, H is an object heap for processing non-graph
objects during the traversal, and K is a global key-value store (often, referred to as
side-effect store).

Besides the global memory, graph traversals have a current local state called
traverser. A GTM state stores multiple traversers at the same time. Informally, we
can imagine each traversers as a worker (in Gremlin materials often depicted as the
green little monster) that jumps from node to node (as per the instructions of the
traversal program), and collects data about the nodes into various data structures.
In addition, the worker can “clone” itself when the traversal program branches: the
clone starts with the same data as the original, but they will move around following
the instructions of a different program branch.

Definition 6. A traverser is a (p, k, s) triple, where p is a pointer to a graph
element or an object in H, k is a local key-value store, and s is the sack, a local
store for sum-like operations (aggregation).

The white paper [14] lists some other components of traversers as well, but we
will not use those in this work.

Finally, a traversal is effectively a program, whose instructions (called steps and
denoted by σ) transform a Γ global memory (e.g. by changing the graph) and list of
(p, k, s) traversers (e.g. by moving the individual traversers forward in the graph).

Definition 7. A traversal is a program defined by the following simple grammar:

Ψ ::= ε | σ ; Ψ

σ ::= σ1 | σn(Ψ, . . . ,Ψ)

A traversal Ψ may be empty (ε), or it may consist of a step σ, sequentially
followed by the rest of the traversal. Steps are 2Γ × 2T −→ 2Γ × 2T functions, and
come in two variants: higher-order steps (σn(Ψ, . . . ,Ψ)) are parameterised by a
number of different subtraversals and transform the GTM state by executing these
subtraversals in the current GTM state, while first-order and zeroth-order steps
(σ1) take only ordinary parameters to transform the state. In these terms, we can
think of ; as forward function composition.

Notations. In the grammar of Definition 7, σ, σ1, σn and Ψ are non-terminals.
Later in the text, we use them to denote concrete traversals and steps. In particular,
we will use σ to denote steps in the Gremlin language, e.g. σflatMap will denote the
flatMap step of Gremlin.

604 Dániel Lukács and Máté Tejfel

Gremlin defines over 30 type of steps, and we have no place here – nor do we
find it indispensable – to include a formal definition for each of them. After defining
machine state and semantics, we will include in Table 1 short informal descriptions
for the ones we used in our CFG extraction traversal (e.g. σoutE, σinV, σflatMap,
σsideEffect), and hope that our readers can reconstruct a formal definition in case
needed.

Definition 8. The state of the GTM is a triple (Γ, T, Ψ), where Γ is the state of
the global memory, T is a traverser list (storing the current local state of multiple
traversals), and Ψ is a traversal.

Below, we formalise the evaluation of Gremlin traversals as an axiomatic seman-
tics similar to Hoare-logic. A thorough introduction on defining language semantics
with inferential systems and proving it using inferential trees can be found in Niel-
son & Nielson [12, Chapter 6.2].

Note that we intend Rules (4), (5), and (6) as templates that highlight and help
in formalizing the three main categories of concrete steps.

{Γ;∅} Ψ {Γ;∅}
(1)

{Γ;T} ε {Γ;T}
(2)

{Γ;T} σ {Γ1;T1} {Γ1;T1} Ψ {Γ2;T2}
{Γ;T} σ ; Ψ {Γ2;T2}

(3)

σ1(Γ; t1) 7→ (Γ1; R1) · · · σ1(Γn−1; tn) 7→ (Γn; Rn)

{Γ; t1, . . . , tn} σ1 {Γn; R1 ∪ . . . ∪Rn}
(4)

{Γ; t1} Ψ′ {Γ1;R1} · · · {Γn−1; tn} Ψ′′ {Γn;Rn}
{Γ; t1, . . . , tn} σn(Ψ) {Γn; R1 ∪ . . . ∪Rn}

(5)

{Γ;T} Ψ′1 {Γ1;R1} · · · {Γn−1;T} Ψ′′n {Γn;Rn}
{Γ; T} σn(Ψ1, . . . ,Ψn) {Γi; Ri}

i = min
j=1...n

Rj 6=∅∨j=n

j (6)

Axioms (1) and (2) correspond to termination in case the traversal mapped to
an empty traverser list or in case all steps were executed in the traversal.

Rule (3) corresponds to the classic sequencing rule: the first step and the rest
of the traversal is executed in the program state resulting from the first step. What
may not be evident at first glance, is that this step prescribes a breadth-first
traversal: step σ is applied to all traversers in T (possibly modifying the global
state) before the following steps are applied to any of them.

Rule (4) is a template rule for describing how first-order steps are evaluated.
This rule also emphasizes our restriction that traversers are processed in some fixed
order.

Note that some steps may map to any number of traversers (including zero).
Rule (5) is a template rule for higher-order traversals: it goes through the traversers

Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 605

in some fixed order, and applies the subtraversal one-by-one to each traverser (pos-
sibly modifying the global state in the mean time). Additionally, we allow instances
of this rule to apply some modifications to the Ψ traversal (denoting the resulting
traversal as Ψ′) so a large variation of traversals (such as conditional traversals)
can be expressed.

Finally, Rule (6) formalises special higher-order traversals knowns as branching.
This rule executes its subtraversals in a way such that if Ψ1 terminates with an
empty traverser list, then Ψ2 is executed, and so and so on either until one of
the traversers terminates with a non-empty traverser list, or until Ψn is executed.
While failed traversers may modify the state, only the traverser list of the first
successful traverser will be returned. For generality, we also allow instances of this
rule to modify their Ψi subtraversals. Note that higher-order traversals enable us
to define depth-first traversals as well, since subtraversal has to be completely
executed to complete the step.

In Table 1, we informally describe individual Gremlin steps we use in this paper.
For space reasons, we omit formally defining the semantics of each step, and just
highlight some of them to familiarise our readers with the notation. Based on the
white paper [14], the online Gremlin documentation, and our algorithm description
in our algorithm description in Section 4.2, we believe it is not too difficult to
reconstruct the semantics of the steps.

4.2 CFG extraction in Gremlin

It is common for graph procedures (and as such, static analysis procedures as
well) to have a short, intuitive textual specification, that – when implemented
in executable code – blows up into an entangled web of nested loops, custom data
structures, and reliance on language built-in dispatch mechanisms for distinguishing
involved objects.

To avoid the gap between presentation and implementation, we formalised CFG
extraction as a Gremlin (v3.4.4) traversal. The traversal in Figure 2 – consisting
of around 60 steps – can be typed into any Gremlin language variant (e.g. Gremlin
Java) with minimal amount of language-specific modifications (for example defining
a function expression for σclear, using function expressions to enable lazy recursive
calls of subtraversals, using type hints, etc.). In fact, we automatically generated
the formulas in this paper directly from our implementation code, and then manu-
ally simplified the aforementioned elements. (Regarding recursion, see limitations
in Section 5.) Our Gremlin Java implementation – that was extended to handle
a slightly more elaborate graph schema that distinguishes between AST overlays
and CFG overlays –, is slightly below 110 lines of code with each line having one or
two steps. Beyond those mentioned, the requirement of navigating the labels and
properties in the more complex graph schema was solely responsible for having to
add in additional steps.

We show in Section 4.3 that this compact representation combined with Grem-
lin’s simple semantics is very effective for formally deriving its correctness proof
by hand. The alternative – proving a less abstract, less compact executable rep-

606 Dániel Lukács and Máté Tejfel

Table 1: Informal description of selected Gremlin steps

Step Description
σoutE “Moves the traverser forward”, i.e. it replaces the

nodes in the traverser list with their outgoing edges.
σinV “Moves the traverser forward”, i.e. it replaces the

edges in the traverser list with the nodes they enters
σflatMap(Ψ) Applies Ψ to all t ∈ T (see Definition 8) as described

by Rule (5).
σsideEffect(Ψ) Abbreviated as σsEffect(Ψ). Also a Rule (5) step; it

may modify the global state Γ, but it discards the
traverser list produced by Ψ and returns the original
T .

σcoalesce(Ψ1, . . . ,Ψn) A Rule 6 step, that returns the traversers from the
first of traversals Ψ1, . . .Ψn which is successful (has
non-empty result).

σaggregatex Adds the current traverser list into a collection as-
signed in K to name x.

σcapx
Loads the content stored in x into the traverser list.

σunfold Replaces collections in the traverser list with the el-
ements of the collections.

σsEffect(clear) Empties a collection. Useful for discarding the tra-
versers stored earlier in x, before adding a new el-
ement. clear is a custom Java function expression
that empties the collection.

σsackin
Applied to (p, k, s) will put p inside store s. This
step enables additional sum-like operations, that we
will not use.

σsackout
Applied to (p, k, s) will replace p with the content of
store s.

σ@x Given that some σ step produces a (p, k, s) traverser,
σ@x will assign p to name x in local store k.

σtail1 Removes all elements of the traverser list except for
the last one.

resentation (such as direct Java code) with the same level of formality – would
have likely required machine assistance, and in that case it likely would have been
impossible to fit the complete proof of such a representation into this paper.

We now describe how this traversal implements the previously described CFG
extraction procedure. The procedure is a traversal consisting of five subtraversals
depicted in Figure 2. Ψcontrol and Ψicontrol are corresponding to Algorithm 1 in
Section 3.2. Ψcontrol selects nodes in the AST that correspond to a P4 control
declaration d, and then executes Ψicontrol (the internal part of Ψcontrol we separated
for readability). Here, we make use of Rule 5 semantics to make sure that steps in

Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 607

Ψicontrol affect just one control declaration subtree at a time. Ψicontrol clears global
register r, stores the entry CFG node of d into r, invokes subtraversal Ψnode over the
body block of d, and finally sends a flow-edge from the contents of r (supposedly
filled by Ψnode) to the exit CFG node of d. The second and third side-effects
are simply there because we do not need the results from those subtraversals, and
instead we want to continue from the same place they started. The side-effect with
Ψnode simply performs the invocation of the subtraversal. σflatMap(σcapr

; σunfold)
is an idiom that makes the content of r the current traversal. σflatMap here is an
implementation detail: σcap loses the traverser data, but σflatMap reattaches it to
the new traversers.

Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 15

control =

(
VControlDeclaration

; sEffect(icontrol)

)

icontrol =

sEffect(clearr)

; sEffect

outEentry

; inV

; aggregater

; sEffect

outEbody

; inV

; sEffect(node)

; outEexit

; inV@exit

; flatMap

(
capr

; unfold

)

; addE label = flow,

to = exit

node =

@synB

; addVblock@newB

; sEffect

addE label = assoc

from = synB

to = newB

; flatMap

(
capr

; unfold

)

; addE label = flow

to = newB

; coalesce

cond
block(

sEffect(clearr)
; aggregater

)

cond =

sackin

; selectsynB

; haslabel=Conditional

; outE{true,false}

; order{in=asc,by=id}

; inV

; flatMap

sEffect

(
sackout

; aggregater

)

; flatMap(node)

; sEffect(clearr)

; aggregater

block =

sEffect(clearr)

; aggregater

; selectsynB

; outE{nest,statement}

; order{in=asc,by=id}

; inV

; flatMap

flatMap(node)

; fold

; sEffect(clearr)

; sEffect

(
unfold

; aggregater

)

; tail1

; unfold

Figure 2: CFG extraction in Gremlin

the local synB name to the AST node in its traverser (there is always just one) and
creates a new CFG node corresponding to the AST node (again with a name). It
links the two with an assoc-edge, and sends flow-edges from the traversers stored
in r. This is the CFG entry node when Ψnode is called initially, and later in the
recursion r stores those CFG nodes that directly precede newB (see later). Finally,
Ψnode calls σcoalesce (see Rule 6): first, Ψcond is called, if terminates early (newB is
not a conditional), then Ψblock is called, and if that also terminates early (newB is
an empty block), then we simply store newB in register r. This means that newB will
be the direct predecessor of a CFG node created later (or of the CFG exit). The
returned node will be that of σcoalesce (newB in case both subtraversals terminate
early).

Ψcond first stores its traverser (a CFG node) into a path-local store, and makes
synB the current traverser. In case this node is not a conditional, Ψcond terminates

Figure 2: CFG extraction in Gremlin

Ψnode, Ψcond, and Ψblock are corresponding to Algorithm 2 in Section 3.2. Here,
synB and newB are just arbitrary variables (names of local store keys). Ψnode assigns
the local synB name to the AST node in its traverser (there is always just one) and
creates a new CFG node corresponding to the AST node (again with a name). It
links the two with an assoc-edge, and sends flow-edges from the traversers stored
in r. This is the CFG entry node when Ψnode is called initially, and later in the
recursion r stores those CFG nodes that directly precede newB (see later). Finally,

608 Dániel Lukács and Máté Tejfel

Ψnode calls σcoalesce (see Rule 6): first, Ψcond is called, if terminates early (newB is
not a conditional), then Ψblock is called, and if that also terminates early (newB is
an empty block), then we simply store newB in register r. This means that newB will
be the direct predecessor of a CFG node created later (or of the CFG exit). The
returned node will be that of σcoalesce (newB in case both subtraversals terminate
early).

Ψcond first stores its traverser (a CFG node) into a path-local store, and makes
synB the current traverser. In case this node is not a conditional, Ψcond terminates
early, otherwise it processes its branches. Ordering the branches ensures that we
can retrace later which CFG flows correspond to the true and false branches (as
a lengthier alternative we could store the labels and use them to label the flow
appropriately). For each branch, we copy the CFG node (of the conditional) from
the local store to the global r and recursively invoke Ψnode: this means that Ψnode

will create a CFG of the branch, and send a flow from the conditional to the source-
node of the branch CFG. Finally, Ψcond stores into r the traversers returned from
applying Ψnode to the branches, and also returns these.

Finally, Ψblock iterates over all the children (specifically statements and nested
blocks) of the syntactic blocks and sets up the flows between them. It first stores
the current CFG node into r, as this will be the predecessor node for the CFG of the
first child. In case there are no children (the current block is an empty block), the
subtraversal terminates early. Children are traversed in ascending order and per
Rule 5 σflatMap ensures that each child is fully processed before we start processing
the next. After Ψnode was invoked for a child, we store all returned traversers into
r as these will be the preceding CFG nodes for the next child. The only traversers
we want to return are the traversers returned from the processing of the last child
(these will be the predecessors of the continuation CFG). For this reason, each child
is mapped to a collection of all its return nodes (using σfold): the traversers after
σflatMap will be collections of CFG nodes (not just nodes). Then, σtail1 will keep
only the last collection, which is then unfolded so that we return the CFG nodes
instead of a collection. Note that these are also stored in r.

4.3 Proving the algorithm

...
{Γ0; c1} icontrol {Γ1; �} . . .

...

{Γr=[en]
n−1 ; bn} node {∆r=R

n ; �}

...

{∆r=R
n ; cn} outEexit ; . . . {Γn; �}

{Γn−1; cn} icontrol {Γn; �}
{Γ0; ∅} VControlDeclaration ; sEffect(icontrol) {Γn; �}

Figure 3: Structure of the proof tree

In this section, we describe the idea of proving the correctness of our CFG
extraction algorithm in Section 4.2. Using our formalisation of Gremlin semantics in
Section 4.1, we can formally prove that each traversals in the algorithm will result in

Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 609

a state, that can be shown to guarantee correctness inductively. Despite operating
with non-linear data structures, such as graphs, the recursive top-down traversal
of ASTs guarantees termination and allows us to use structured correctness proofs.
We include a complete, semi-formal proof tree in Appendix A, together with an
informal description.

The claim of correctness is that in any Γ0 initial state – containing the correct
AST of each control declaration ci –, the algorithm ultimately produces a Γn state,
that contains also the correct CFG of each ci control declaration.

Figure 3 formally depicts the beginning of the proof, including an inductive
(n− 1) −→ n step. To prove the claim, we construct a proof tree, which consist of
explicitly (formally) writing out the preconditions and postconditions (effects) of
each steps of the algorithm, as dictated by the formal Gremlin semantics.

In the root of the proof tree, we insert the claim itself: starting from Γ0 and
an empty traverser list, the algorithm should lead to Γn and an arbitrary traverser
list (denoted using the wildcard or placeholder symbol �). As per Rule 5, during
this step the ci syntax nodes of each P4 control declarations are stacked into the
traverser list, and Ψicontrol is applied to each of them one by one. Since this step is
using induction, the proof tree depicts only the processing of the last declaration
(cn). The inductive assumption is that the former n − 1 applications of traversal
Ψicontrol result in a Γn−1 state that is already correct, apart from missing the CFG
of the nth declaration. For the last Ψicontrol to be correct, we need to prove that

Ψnode is correct, starting from Γ
r=[en]
n−1 (i.e. the state we get from Γn−1 by storing

CFG entry en in registry r as per the first steps of Ψicontrol). Given that Ψnode

results in some state ∆r=R
n−1 (where R is a variable, denoting – in case Ψnode is

correct – the set of return points), we also need to prove that in this state, the
last steps of Ψicontrol (i.e. the steps that link return points to the exit node) result
in the the expected Γn. In turn, both propositions can be proved by building the
proof tree further. Due to its technical nature, we do not include complete proof
tree here, but for our readers interested in the details, we include it – together with
an informal description – in Appendix A.

5 Conclusion

Summary In this work, we defined deep CFGs, and presented a CFG extraction
algorithm that superimposes CFGs over ASTs inside a Gremlin graph database:
this way all information of the AST is at hand during CFG traversals, and can
be readily accessed through a uniform graph interface. We already rely on deep
CFGs for code generation in our latest paper on P4 cost analysis [11]. There, we
used the CFG to transform P4 code to a custom, low-level instruction language
which is then passed to a sophisticated probabilistic model checker tool. In the
implementation of that transformation, we simply traverse the CFG, and at each
node, we follow the association links in the graph to collect further information
needed to create instructions from the node. Our other goal in the current paper
was to explore how the expressive power of Gremlin can be used for specifying and

610 Dániel Lukács and Máté Tejfel

proving fairly complex static analysis procedures. For this reason, we formalised
our algorithm as an executable Gremlin query, and used the formal semantics of
Gremlin to formally prove the correctness of our CFG extraction algorithm.

Limitations We highlight two limitations of this CFG extraction algorithm.
First, our Gremlin formalisation relies on (shallow) recursion to realise depth-first
traversal. Recursive queries are made possible only by host language features such
as lambdas, and these are not serialisable. This means that in a client-server en-
vironment this query has to be stored on the server-side as a stored procedure.
Second, complex Gremlin traversals are – at least in our experience – not easy
maintain. For example, the graph query in Figure 2 has to keep track of program
state as it stores return points in the global register r. If a developer intends to
extend the algorithm for handling further P4 language elements, they have to un-
derstand how this register is used in the algorithm, in order to make sure not to
cause unintended side effects. For production environments, a simpler – although
less efficient – approach is to iterate over the AST in multiple stages, e.g. first dis-
covering the R return points of each node n, and in a second iteration link R to the
continuation of n. This way the developer can either store global state in the host
language (arguably more suitable for handling global state) or eliminate it entirely
by storing intermediate information in the graph. Even without considering state
and side effects, a sequence of simple, small queries is usually much easier to read,
test, and debug.

Future work We started to utilise the deep CFG concept in this paper in the
code generation phase of our model checking-based cost analysis [11]. One missing
element for this is intraprocedural control flow (i.e. translating function calls),
which we currently handle with an ad-hoc solution. One advantage of the CFG
being superimposed on the AST is that this element can be added in as a separate
analysis on the AST, and we can reach this information in every traversal. We
would also like to explore more of the possibilities this opens up, including graphs
resulting from data flow analysis (see Section 2) as well.

References

[1] Aho, A., Lam, M., Sethi, R., and Ullman, J. Compilers: Principles, Tech-
niques, and Tools (2nd Edition). Addison Wesley, 2006.

[2] Amighi, A., de C. Gomes, P., Gurov, D., and Huisman, M. Sound control-
flow graph extraction for Java programs with exceptions. In Eleftherakis, G.,
Hinchey, M., and Holcombe, M., editors, Software Engineering and Formal
Methods, pages 33–47, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
DOI: 10.1007/978-3-642-33826-7_3.

[3] Angles, R. and Gutierrez, C. Survey of graph database models. ACM Com-
puting Surveys, 40(1), 2008. DOI: 10.1145/1322432.1322433.

https://doi.org/10.1007/978-3-642-33826-7_3
https://doi.org/10.1145/1322432.1322433

Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 611

[4] Appel, A. SSA is functional programming. SIGPLAN Not., 33(4):17–20, 1998.
DOI: 10.1145/278283.278285.

[5] Baier, C. and Katoen, J.-P. Principles of Model Checking (Representation and
Mind Series). ISBN: 978-0-262-02649-9. The MIT Press, 2008.

[6] Birnfeld, K., da Silva, D., Cordeiro, W., and de França, B. P4 switch code data
flow analysis: Towards stronger verification of forwarding plane software. In
Proceedings of the IEEE/IFIP Network Operations and Management Sympo-
sium, page 1–8. IEEE Press, 2020. DOI: 10.1109/NOMS47738.2020.9110307.

[7] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J.,
Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. P4:
Programming Protocol-independent Packet Processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, 2014. DOI: 10.1145/2656877.2656890.

[8] Dumitrescu, D., Stoenescu, R., Negreanu, L., and Raiciu, C. Bf4: Towards
bug-free P4 programs. In Proceedings of SIGCOMM’20, page 571–585, New
York, NY, USA, 2020. Association for Computing Machinery. DOI: 10.1145/

3387514.3405888.

[9] Lukács, D., Pongrácz, G., and Tejfel, M. Are graph databases fast enough for
static P4 code analysis? In Proceedings of the 11th International Conference
on Applied Informatics, pages 213–223. CEUR Workshop Proceedings, 2020.
URL: http://ceur-ws.org/Vol-2650/#paper22.

[10] Lukács, D., Pongrácz, G., and Tejfel, M. Control flow based cost analysis
for P4. Open Computer Science, 11:70–79, 2020. DOI: 10.1515/comp-2020-

0131.

[11] Lukács, D., Pongrácz, G., and Tejfel, M. Model checking-based per-
formance prediction for P4. Electronics, 11(14), 2022. DOI: 10.3390/

electronics11142117.

[12] Nielson, H. and Nielson, F. Semantics with Applications: A Formal Introduc-
tion. John Wiley & Sons, Inc., USA, 1992.

[13] P4 Language Consortium. basic routing-bmv2.p4, a small test case for the of-
ficial P4 reference compiler, P4C, 2018. URL: https://github.com/p4lang/
p4c/blob/master/testdata/p4_16_samples/basic_routing-bmv2.p4.

[14] Rodriguez, M. The gremlin graph traversal machine and language (invited
talk). Proceedings of the 15th Symposium on Database Programming Lan-
guages, 2015. DOI: 10.1145/2815072.2815073.

[15] Söderberg, E., Ekman, T., Hedin, G., and Magnusson, E. Extensible intrapro-
cedural flow analysis at the abstract syntax tree level. Sci. Comput. Program.,
78(10):1809–1827, 2013. DOI: 10.1016/j.scico.2012.02.002.

https://doi.org/10.1145/278283.278285
https://doi.org/10.1109/NOMS47738.2020.9110307
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/3387514.3405888
https://doi.org/10.1145/3387514.3405888
http://ceur-ws.org/Vol-2650/#paper22
https://doi.org/10.1515/comp-2020-0131
https://doi.org/10.1515/comp-2020-0131
https://doi.org/10.3390/electronics11142117
https://doi.org/10.3390/electronics11142117
https://github.com/p4lang/p4c/blob/master/testdata/p4_16_samples/basic_routing-bmv2.p4
https://github.com/p4lang/p4c/blob/master/testdata/p4_16_samples/basic_routing-bmv2.p4
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1016/j.scico.2012.02.002

612 Dániel Lukács and Máté Tejfel

[16] Tóth, M. and Bozó, I. Building dependency graph for slicing Erlang programs.
Periodica Polytechnica Electrical Engineering, 55(3-4):133–138, 2011. DOI:
10.3311/pp.ee.2011-3-4.06.

Appendix A Proof of correctness

In this section, we give a semi-formal proof for the correctness of our CFG ex-
traction algorithm in Section 4.2. Using our formalisation of Gremlin semantics in
Section 4.1, we formally prove that each traversals in the algorithm will result in
a state, that can be shown to guarantee correctness inductively. Despite operating
with non-linear data structures, such as graphs, the recursive top-down traversal
of ASTs guarantees termination and allows us to use structured correctness proofs.
We depict these formal proofs as proof trees in Figures 4, 5, 6, and 7. We describe
the contents of these proof trees, and give the informal induction steps in the course
of this section.

In the proof trees, we heavily rely on the notation introduced in the previous
sections (especially the semantics of Gremlin). In addition to that, we utilize a small
number of additional notations: these are related to the semantics of individual
Gremlin steps, or to the proof tree syntax.

Notations. Earlier, we used Γ and its subscripted variants to denote the state of
global memory: in the proof, we also use ∆ and ∆̃ to denote intermediate memory
states. In the proofs, we rarely write out the state explicitly, rather we treat it
as a set of statements which are true for the state. For example, we write Γ r=R

to highlight the assumption that in Γ, the value of register r is R. synB, newB,
exit are referring to the local store keys assigned in CFG algorithm. In order to
not to waste variable names, we use the “wildcard” variable � as a placeholder,
to denote intermediate values (usually traverser lists) that are not important (not
used elsewhere). Since it is a wildcard symbol, two occurrences of � may contain
different values.

In the proof tree leafs, Xmeans that an axiom has been reached (the tree branch
has been proved); numbers between parentheses (e.g. (1), (2), (3)) mean that the
proof is continued in another proof tree (with the number in its root); dots (. . .)
mean some steps were omitted (we elaborate these in the explanations). Note that
in some cases we compressed multiple steps into one movement, specifically where
effects of the individual steps were simple (e.g. in case of σoutE ; σinV).

As noted before, σcoalesce (Rule 6) is a higher-order step (it is parameterised with
sub-traversals), that returns the traversers from the first successful sub-traversal.
We use the ∨−→ shorthand to denote its semantics: given Ψ,Ψ′ traversals, the propo-

sition ({∆0;T0}Ψ{∆n;Tn})∨−→({∆0;T0}Ψ′{∆n;Tn}) is solved for (∆0, T0, ∆n, Tn)
either by solving the left-hand side operand of ∨−→, or in case this would result in
Tn = ∅, then by solving the right-hand side operand.

https://doi.org/10.3311/pp.ee.2011-3-4.06

Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 613

In the rest of this section, we go through each of the traversals defined in Section
4.2, state its correctness and prove that claim. In each of the proofs, we refer to the
corresponding formal proof tree, include a descriptive commentary to explain and
clarify the proof tree contents, and then finish the proof with an informal argument
about satisfaction of the requirements posed by the proof tree. Our first claim
concerns Ψcontrol and Ψicontrol. The precondition and postcondition posed by this
claim refers to our definition of ASTs and control flow graphs in Section 3.1.

Claim 1. Given that Γ0 contains a correct AST, together with previously prepared
entry and exit nodes (ei and fi) for each control declarations ci in the tree, Γn

contains for each of ci in the tree the CFG of the control declaration, rooted in the
entry node ei and all its return points linked to the exit node fi.

Proof. Figure 4 formally depicts the inductive ((n − 1) −→ n) step of this proof.
The rest of this paragraph is commentary for that diagram. In short, we process
each control declaration one after the other, and for each, we run Ψnode and link
its returned return points to the exit node. In detail, the syntax nodes of each
P4 control declarations are stacked into the traverser list, and Ψicontrol is applied
to each of them one by one (as per Rule 5). Each application is expected to fill
Γ0 with the CFGs of each declaration ci, ultimately reaching Γn containing all the
CFGs. The final contents of the traverser list is irrelevant (we denote it with the
“wildcard” variable � that can match anything). Since this is the inductive step,
the proof tree depicts only the processing of the last declaration (cn). To process
the last declaration, we store the corresponding CFG entry (en) into the global
variable r (used later in n), and move the traverser to the first syntax block (bn)
of the declaration. We expect side effect traversal Ψnode to solve the rest of the
problem, resulting in global state ∆n, in which global variable r is set to the set
of those CFG nodes (R) that are the return points of the CFG built by Ψnode.
After that we move the traverser from cn to the corresponding exit node fn, save
it to path-local name exit, replace the traverser list with R (path-local names are
preserved) and send links from R to fn, and the processing ends.

From this, we can see that the inductive step has two requirements. The first
requirement is that Ψnode produces the correct CFG of the nth declaration apart
from missing the links between the return points and the exit node. The other
requirement (base case) is that the former n − 1 applications of traversal Ψicontrol

result in a Γn−1 state that is already correct, apart from missing the CFG of the
nth declaration.

We give the rest of this proof informally. The first requirement (namely that
node produces ∆r=R

n from Γn−1 by creating the CFG of cn rooted at entry en with
R containing the return nodes of this CFG in R) is satisfied by Claim 2. To see that
the inductive hypothesis (Γn−1 has the correct CFGs for c1, . . . , cn−1) is satisfied,
recognize that c1 is applied in state Γ0, and state Γ0 already has the 0 correct CFGs
for ∅. (For a non-degenerate case, we can build a very similar proof tree for c1,
and see that Γ1 has the correct CFG for {c1}.)

Then, it follows that Γn = ∆
∀r1...rk∈R: ((r1→fn)∈E,...,(rk→fn)∈E)
n , s.t. ri are

614 Dániel Lukács and Máté Tejfel

...
{Γ

0 ;
c
1 }

icon
trol

{Γ
1 ;
�
}

...

(1)

{Γ
r
=

[e
n

]
n
−

1
;
b
n }

n
o
d
e
{∆

r
=
R

n
;
�
}

X

{∆
∀
r
1
...r

k ∈
R

:
((r

1 →
f
n

)∈
E
,...,(r

k →
f
n

)∈
E

)
n

;
�
}

ε
{Γ

n
;
�
}

{∆
n
;
R
×
{
e
x
i
t

=
f
n }}

ad
d
E

la
be

l
=

f
l
o
w

to
=

e
x
i
t

{Γ
n
;
�
}

{
∆

r
=
R

n
;

(c
n
,
e
x
i
t

=
f
n
)}

fl
atM

a
p
(...)

;
...{Γ

n
;
�
}

{∆
r
=
R

n
;
c
n }

o
u
tE

e
x
i
t
;
...

{Γ
n
;
�
}

{Γ
n
−

1 ;
c
n }

ico
n
tro

l
{Γ

n
;
�
}

{Γ
0 ;

∅
}

V
C
o
n
t
r
o
l
D
e
c
l
a
r
a
t
i
o
n
;

sE
ff

ect(ico
n
tro

l)
{
Γ
n
;
�
}

F
igu

re
4:

P
ro

o
f

o
f

C
la

im
1

(2)

{
∆

1 ;(x
,{
s
y
n
B

=
b})}

con
d
{
∆̃

r
=
R

;
R
}

∨−→

(3)

{
∆

1 ;(x
,{
s
y
n
B

=
b})}

b
lo

ck
{
∆̃

r
=
R

;
R
}

∨−→

X

{
∆

r
=

[x
]

1
;x}

ε
{∆̃

r
=
R

;
R
}

{∆
1 ;

(x
,{
s
y
n
B

=
b}

)}
co

alesce(...)
{
∆̃

r
=
R

;
R
}

∆
1

=
∆

x
∈

V
,

∀
u
∈

U
:

(
u

f
l
o
w

−−−→
x
)
∈

E
,

(
b

a
s
s
o
c

−−−−→
x
)
∈

E

{∆

r
=
U
,x∈

V
;

(x
,{
s
y
n
B

=
b,n

e
w
B

=
x}

)}
sE

ff
ect(...)

;
...
{∆̃

r
=
R

;
R
}

{∆
r
=
U

;
b}

n
o
d
e
{
∆̃

r
=
R

;
R
}

(1)

F
igu

re
5:

P
ro

o
f

o
f

C
la

im
2

Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 615

return nodes, and fn is exit node, and so Γn is the correct graph for c1, . . . , cn.

We now continue with stating the correctness of traversal Ψnode. While we
needed this claim in the proof of Claim 1, we will also use this in proving Claim 3
and 4. For this reason, we state it in a more general form than what is used in
Claim 1. We make use of a heuristic, namely the recognition that Ψnode is always
called with one traverser. (On the other hand, r may contain multiple nodes:
Ψblock loads its results into r and may call Ψnode, and Ψnode can call Ψcond which
is guaranteed to have multiple results.)

The returned traversers of Ψnode are used in Ψblock to return the return points
of its last child. The contents of R are used by Ψblock to correctly process the right
sibling of b (we also use it in Ψicontrol to link the exit nodes).

Notice as well that while, at first glance, the proof of Ψnode requires using mutual
induction with the proofs of Ψcond and Ψblock (because of mutually recursive calls),
this can be easily eliminated. To linearise the induction, we just have to inline
traversals Ψcond and Ψblock in traversal Ψnode. (Indeed, we only introduced these
traversals to increase readability.)

Claim 2. Given that U contains the predecessor nodes, then Ψnode produces ∆̃r=R

from ∆ a correct CFG, rooted at some node x of a given syntax block b, links the
predecessor nodes to x, and returns the return nodes of this CFG in R, and returns
these as traversers as well.

Proof. Figure 5 formally depicts the inductive ((n − 1) −→ n) step of this proof.
The rest of this paragraph is commentary for that diagram. Here, we expect that
by calling Ψnode in some state ∆r=U (that is, a global state where global variable
r is set to a set of nodes U) with a traverser pointing to a syntax block b, Ψnode

produces the expected ∆̃ state, with global variable r storing the expected R. We
assign the path-local name synB to b, create a new CFG node x in the graph, and
move the traverser to x in order to assign it to the path-local name newB. Then, in
a σsEffect, we link all the predecessors in U to our new x, and set up the association
between x and b as well, resulting in global state ∆1. (Notice that both block
and cond resets r, and node never directly calls itself, so since its contents are not
used anymore, we can omit it from ∆1.) Then, we call the σcoalesce step in state
∆1. As per the description of the ∨−→ symbol in Rule 6, we call Ψcond which either

correctly creates the rest of this CFG (if b is a conditional), or terminates without
side-effects, in which case we call Ψblock. Again, Ψblock either correctly creates the
rest of this CFG (if b is a non-empty block), or terminates without side-effects, in
which case we expect b to be an empty block, and so our new x is the appropriate
return point. In this last case, we modify ∆1 by storing x in r, it also stays in the
traverser list, and the traversal ends.

From this, we can see that the inductive step has three requirements. The first
two requirement is that both Ψcond and Ψblock continues the correct processing
of b according to its type, and they result in the expected state ∆̃r=R. The third
requirement (posed by Ψcond and Ψblock) is the satisfaction of the base step, i.e. that

616 Dániel Lukács and Máté Tejfel

the last element of the chain is processed correctly. In more precise term, given
b is an empty block such that it is the syntactic child of a previously processed
syntactic node, and U contains the return points of the CFG resulting from this,
then Ψnode ends in the expected state.

We give the rest of this proof informally. The first requirement (namely that in
case b is a conditional, cond produces ∆̃ by including in ∆1 the nodes and edges of
the branches and sets their return nodes as return nodes in R, and returns these as
traversers as well) is satisfied by Claim 3. Then, the claim is true, since {x ∈ V,∀u ∈
U : u

flow−−−→ x ∈ E, b assoc−−−→ x ∈ E} ⊂ ∆1. The second requirement (namely that in
case b is a non-empty block, block produces ∆̃ by including all remaining nodes and
edges of the nested statements and blocks in ∆1, and sets the last nest as the return
node in R, and returns these as traversers as well) is satisfied by Claim 4. Then,

the claim is true, since {x ∈ V,∀u ∈ U : (u
flow−−−→ x) ∈ E, (b assoc−−−→ x) ∈ E} ⊂ ∆1.

The third requirement (base case) is satisfied, because in every step we get closer
to the bottom of the AST (containing only empty blocks or statements), and since
in case b is not a conditional – as Ψcond terminated before doing any side effect
–, and b is an empty block – as Ψblock terminated before doing any side effect –,

then ∆̃ = ∆r=[x], x∈V, ∀u∈U :(u
flow−−−→x)∈E, (b

assoc−−−→x)∈E , and the returned traverser is
x. That is, one CFG node x is created, it is linked from each u ∈ U , and associated
with syntax node b, and finally, R = [x] contains the correct return node since the
only node x should be the return node.

With that, we now proceed to state the correctness of Ψcond and Ψblock, starting
with the former one. As mentioned, these proofs seemingly have mutual depen-
dence with the proof of Ψnode, but we can easily reduce mutual induction to linear
induction by inlining traversals Ψcond and Ψblock into traversal Ψnode.

Claim 3. In case b is a conditional, then cond produces ∆̃r=R by including in ∆
the nodes and edges of the branches, sets their return nodes as return nodes in R,
and returns these as traversers as well. Otherwise terminates without side-effects.

Proof. Figure 6 formally depicts the inductive ((n − 1) −→ n) step of this proof.
The rest of this paragraph is commentary for that diagram. We expect that in
some state ∆, with one traverser standing on a CFG x (created earlier by Ψnode

for syntactical node b), Ψcond produces the expected state ∆̃r=R. We treat the
termination requirement in the informal part of the proof. First, we store in x
in the path-local store, also known as sack (ς(·)) and set the current traverser
to b. (We have to use a path-local store, as the processing of the branches may
modify the global stores (e.g. r), and in that case we would lose our reference to
x after the processing the branch.) We continue the processing in case label(b) =
Conditional (otherwise the algorithm terminates). In this case, it is always true
(by our definition of the AST) that b has two branches: one true-branch starting
in syntactical node y, and one false-branch starting in syntactical node n. We
move a traverser to each of these nodes (the sack is preserved). In the σflatMap

step, we process the two branches (first the branch of y, then the branch of n) by

Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 617

traversal Ψnode (storing x in r, as Ψnode will have to link x to the produced CFG as
predecessor), with the expectation that ∆1 contains the CFG produced for y, and
∆2 contains the CFGs both for y and n, and that Ψnode returns y’s CFG return
points in Ty and n’s CFG return points in Tn. (The processing order of the two
branches does not matter as long as it is consistent across all applications of the
traversal.) After that, we store the return points of both of Ty and Tn in r, and we
also return this return points as traversers.

From this, we can see that the inductive step has two very similar requirements
regarding the correct processing of y and n by Ψnode. It is worth noting the analysis
of the two branches never interferes with each other: r is reseted and node will
traverse different subtrees of the tree. A possible third requirement of a base case
(it is possible that the called Ψnode may call Ψcond again, but ultimately Ψnode will
stop when statements or empty blocks are encountered) was already discussed in
the proof of Ψnode.

We give the rest of this proof informally. The first requirement (namely that
node produces ∆1 from ∆ by creating the CFG of the true branch y, linking it to
the (conditional) CFG node x, and returns in traverser list Ty all the return nodes
of the CFG, is satisfied by Claim 2. Similarly, the second requirement (namely that
node produces ∆2 from ∆1 by creating the CFG of the false branch y, linking it to
the (conditional) CFG node x, and returns in traverser list Tn all the return nodes
of the CFG is also satisfied by Claim 2.

Then it follows, that ∆2 contains CFGs of the branches rooted at x, and R =
Ty ∪ Tn contains the return nodes of the branches, and returns these as traversers
as well.

Regarding the termination requirement of the claim, in case b is not a condi-
tional, the has filter fails and the traversal terminates without side-effects.

Finally, we state the correctness of Ψblock. This is a case where we use induction
in two axes: Ψblock as part of a chain initiated from Ψnode, and at the same time,
use induction in proving that a sequence of sibling nodes are processed correctly.

Claim 4. In case b is a non-empty block, assume that block produces ∆̃r=R by
including all remaining nodes and edges of the nested statements and blocks in ∆,
and sets the last nest as the return node in R, and returns these as traversers as
well. Otherwise terminates without side-effects.

Proof. Figure 7 formally depicts the inductive ((n − 1) −→ n) step of this proof.
The rest of this paragraph is commentary for that diagram. We expect that in
some state ∆, with one traverser standing on a CFG x (created earlier by Ψnode

for syntactical node b), Ψblock produces the expected state ∆̃r=R. We treat the
termination requirement in the informal part of the proof.

First, we store in x in the global store r (we expect this to be modified as
children of b are processed and use its contents to create links between the children),
and set the traverser list to S, denoting the blocks and statements nested in b (in
case there is non, the traversal terminates). Through ordering S we ensure that
σflatMap processes these nested nodes from left-to-right (guaranteed by definition of

618 Dániel Lukács and Máté Tejfel

(1)

{
∆

r
=

[x
];y}

n
o
d

e
{∆

1 ;
T
y }

{
∆

;(y
,ς(x

))}
sE

ff
ect(...)

;
...
{
∆

1 ;
T
y }

(1
)

{∆
r
=

[x
]

1
;n}

n
o
d

e
{
∆

2 ;
T
n }

{∆
1 ;(n

,ς(x
))}

sE
ff

ect(...)
;
...
{∆

2 ;
T
n }

...

X

{∆
r
=
T
y ∪

T
n

2
;T

y
∪
T
n }

ε
{∆̃

r
=
R

;
R
}

...

{∆
;(y

,ς(x
)),(n

,ς(x
))}

fl
a
tM

a
p

(...)
;
...
{∆̃

;
R
}

la
be

l(
b
)

=
C
o
n
d
i
t
i
o
n
a
l
,

y
is

t
r
u
e

b
r
a
n
c
h
,

n
is

fa
ls

e
b
r
a
n
c
h

{∆
;(b,{

s
y
n
B

=
b},ς(x

))}
h

a
s
la
be

l=
C
o
n
d
i
t
i
o
n
a
l
;
...
{∆̃

;
R
}

{∆
;(x

,{
s
y
n
B

=
b})}

co
n

d
{
∆̃

r
=
R

;
R
}

(2
)

F
igu

re
6:

P
ro

o
f

o
f

C
la

im
3

...

{∆
0 ;s

1 }
n

o
d

e
;
...
{∆

r
=
R

1
1

;
F

1 }
...

(1
)

{
∆

r
=
R

m
−

1

m
−

1
;s

m
}

n
o
d

e
{
∆
′m

;
T
m
}

X

{
∆
′
r
=
T
m

m
;
{
T
m
}}

ε
{
∆

r
=
R

m
m

;
F
m
}

...

{∆
m
−

1 ;s
m
}

n
o
d

e
;
...
{
∆

r
=
R

m
m

;
F
m
}

...

X
{∆

r
=
R

m
m

;T
m
}
ε
{∆̃

r
=
R

;
R
}

{
∆

m
;F

1 ∪
...∪

F
m
}

tail(1)
;

u
n

fold
{∆̃

;
R
}

{∆
0 ;S}

fl
a
tM

a
p

(...)
;
...
{
∆̃

;
R
}

∆
0

=
∆

r
=

[x
]

S
6=

∅

S
is

o
r
d
e
r
e
d

b
y

i
d

{∆
r
=

[x
];b}

o
u

tE
{
n
e
s
t
,s
t
a
t
e
m
e
n
t}

;
...
{∆̃

;
R
}

{∆
;(x

,{
s
y
n
B

=
b})}

b
lo

ck
{∆̃

r
=
R

;
R
}

(3
)

F
igu

re
7:

P
ro

o
f

o
f

C
la

im
4

Overlaying Control Flow Graphs on P4 Syntax Trees with Gremlin 619

the AST). σflatMap starts out in state ∆0 when it starts processing the first nested
node, and finishes in state ∆m after processing the last nested node.

We will check that the σflatMap step processes S correctly by induction, and
so we only included the proof tree corresponding to the last child (sm). Here, we
expect that given all previous siblings have their CFGs in global state ∆m−1 with
r storing the return points (Rm−1) of the closest previous sibling’s CFG, and
Ψnode produces ∆′m containing (and properly linking) all the CFGs of the chil-
dren, and returns the return points (Tm) of the last child of b as the traverser list.
Then this nested traversal stores Tm into r and at the same folds Tm into a single
collection-element Fm = {Tm} that is returned in the traverser list. After σflatMap

processed everyone, we are in state ∆m with r storing the return points of the last
child of b, and the traverser list containing all the collection-elements return from
processing the children. Now, keep only the last traverser (a collection), and un-
fold this collection again into the individual traversers (still pointing to the return
points of the last child’s CFG), and return these.

From this, we can see that the inductive step has two requirements. The first
– about ∆′m – is that Ψnode creates a correct node CFG for any child of b, links
this CFGs node from the return points of the previous child’s CFGs, and returns
the return points of the currently processed child’s CFG as the traverser list, while
also storing it in r. The other requirement (base case) is that the former n − 1
applications of traversal Ψnode result in a ∆m−1 state contains the correct CFGs
of all the previous children.

We give the rest of this proof informally. The first requirement (namely that

node produces ∆′m from ∆
r=Rm−1

m−1 by creating the CFG of sm, linking it to the nodes
in R, and returns in traverser list Tm all the return nodes of the CFG) is satisfied by

Claim 2. The next requirement is that the inductive hypothesis (∆
r=Rm−1

m−1 contains
the chain of CFGs produced from the first m − 1 blocks of b, and Rm−1 contains
the return points of the last CFG in this chain) is satisfied. Again, we may consider
the degenerate case (∆0, with R = [x] satisfies the hypothesis) or alternatively, we
can build a very similar proof tree for s1, and from the first requirement it follows
that ∆1 has the correct CFG for {s1}, with r storing its T1 return points, and F1

in the traverser list is T1 folded.
Then, the claim follows, since ∆̃r=R = ∆r=Rm

m = ∆′
r=Tm

m , with R = Rm = Tm
also being returned.

Regarding the termination requirement of the claim, in case b is an empty block,
outE maps to ∅ and the traversal terminates without side-effects.

Acta Cybernetica 26 (2024) 621–636.

Corner-Based Implicit Patches∗

Ágoston Siposa

Abstract

Free-form multi-sided surfaces are often defined by side interpolants (also
called ribbons), requiring that the surface has to connect to them with a
prescribed degree of smoothness. I-patches represent a family of implicit
surfaces defined by an arbitrary number of ribbons. While in the case of
parametric surfaces describing ribbons is a well-discussed problem, defining
implicit ribbons is a different task.

In this paper, we introduce a new representation, corner I-patches, where
implicit corner interpolants are blended together. Corner interpolants are
usually simpler, lower-degree surfaces than ribbons. The shape of the patch
depends on a handful of scalar parameters; constraining them ensures con-
tinuity between adjacent patches. Corner I-patches have several favorable
properties that can be exploited for design, volume rendering, or cell-based
approximation of complex shapes.

Keywords: implicit surfaces, multi-sided patches, volumetric data

1 Introduction

Computer Aided Geometric Design focuses on the mathematical representation
of complex surface geometries. There is a wide variety of side interpolating multi-
sided free-form surfaces in the literature, including both parametric [4, 11, 7, 17, 18]
and implicit [1, 6, 16] patches. They are popular in curvenet-based design, as a
patchwork of smoothly connected complex N-sided patches can be automatically
created from simple ribbon surfaces.

The common concept behind these patches is that ribbons are introduced for
each side, then blending functions, that satisfy prescribed continuity constraints at
the boundaries, mix those together. In the case of parametric multi-sided patches,
ribbons in most cases are tensor-product surfaces. The blend functions are usually
(not always) defined on a polygonal domain and the surface points are calculated
as a weighted sum of the well-parametrized points of the ribbons.

∗This work was supported by the Hungarian Scientific Research Fund (OTKA, No. 124727).
aDepartment of Control Engineering and Information Technology, Faculty of Electrical Engi-

neering and Informatics, Budapest University of Technology and Economics, Hungary, E-mail:
asipos@edu.bme.hu, ORCID: 0000-0002-5562-2849

DOI: 10.14232/actacyb.299598

mailto:asipos@edu.bme.hu
https://orcid.org/0000-0002-5562-2849
https://doi.org/10.14232/actacyb.299598

622 Ágoston Sipos

In the case of implicit surfaces, ribbons and blending functions are represented
by implicit functions, defined on the whole 3D space. This, however, requires careful
construction. An implicit surface, including the ribbons themselves, might interpo-
late the desired patch boundary, and have a very uneven shape inside the relevant
space region at the same time. Sometimes it can have disconnected branches or self-
intersections. However, many operations are computationally less expensive when
using implicit surfaces, including ray tracing, intersections, point classification, or
joining trimmed patches.

For this reason, the polynomial degree of ribbons and blend functions is pre-
ferred to be as low as possible. This poses limitations when used in design, as very
detailed surfaces cannot be represented with a single patch. Locally defined surface
elements are therefore important.

This paper explores the capabilities of a corner-based implicit surfacing scheme,
where the patch is constructed by blending corner interpolants.

2 Previous work

The precursor of research on ribbon-based implicit surfaces is Liming’s work on
interpolating curves [10] and the functional splines [9]. Formally, in the surface
equation, the product of the surfaces to be interpolated is used, which, in the
case of implicit surfaces, means taking their union. Thus, the information we had
while they were separate surfaces is lost. The improved version of the functional
spline, the symmetric functional spline [6] collects the interpolated surfaces into
two categories in its equation, but similarly can take the union of a higher number
of them.

In the case of I-patches [16] the surface equation has an arbitrary number of
sides appearing separately in the equation. This helps ensure that the surface is
consistently oriented and the appropriate sides of the ribbons are joined together.
For details, see Section 3. I-patches were applied for polyhedral design [14] and
approximating triangular meshes [13] while ensuring geometric continuity.

A different way to approach the problem of interpolating implicit surfaces is to
directly solve equations to get a minimal degree surface adhering to point, normal,
curve, and normal fence constraints [2]. Doing this on the whole space may lead to
high-degree, poor-quality surfaces. A scheme similar to the current work, A-patches
[1], prevents this by constraining each surface inside a tetrahedron.

Another aspect of current work relates to the extraction of isosurfaces from dis-
crete data on a regular grid. Generating a mesh is usually performed by derivative
methods of Marching Cubes [12]. Direct rendering generally goes through inter-
polation methods, smooth surfaces can be acquired by tricubic interpolation [8].
There is also a list of enhanced approaches like using a modified (BCC or FCC)
grid structure [15] or storing gradient values and approximating the isosurface by
Taylor polynomials [3].

The potential representation of isosurfaces extracted on a grid by patches was
investigated in [5]. First, a boundary curve network with Hermite interpolation is

Corner-Based Implicit Patches 623

created, then the surface is represented using multi-sided parametric patches.

3 Preliminaries

Implicit surfaces are constant isosurfaces of real-valued functions defined on the 3D
space. Usually the zero-isosurface is used: for a function f : R3 → R the surface
is {(x, y, z) ∈ R3 | f(x, y, z) = 0}. In the following, capital letters in the formulae
will mean implicit functions (R3 → R), but the function arguments (x, y, z) will be
omitted for readability.

Ribbon-based implicit surfaces are usually described in the following way. For
each side, there is a given surface Ri, that the surface should smoothly connect
to, with a given order of continuity. Then, there is a fixed equation of the patch,
combining the Ri-s and other defining surfaces.

In the case of I-patches, which are the basis of the current research, the equation
is

n∑
i=1

wiRi

n∏
j=1
j 6=i

Bk
j

 + w0

n∏
j=1

Bk
j = 0, (1)

where

• n is the number of sides

• Ri are the ribbons, one for each side, to which the patch connects

• Bi are the bounding surfaces, whose intersection curves with the correspond-
ing Ri define the boundaries of the patch

• 0 6= wi ∈ R are scalar parameters and 2 ≤ k ∈ N is an integer parameter
determining the degree of continuity

The patch connects with Gk−1 continuity to the ribbons along the bounding
surfaces, as shown in [16]. It has also been proven that the I-patch represents a
consistent distance function with inside and outside, in case of well-chosen signs of
wi-s [14]. See Figures 1a and 1c for an example.

In the following, we will use k = 2 to keep the polynomial degree as low as
possible, and in this paper, we discuss patches with G1 continuity.

4 Corner I-patch

4.1 Basic equation

A corner I-patch is composed of corner interpolants S1,2, S2,3, ..., Sn,1 and bounding
surfaces B1, B2, ..., Bn (neither of them coincides with another one), such that Si,i+1

denotes the corner interpolant between the ith and the (i + 1)th boundaries.

624 Ágoston Sipos

(a) Input (ribbons and
bounding surfaces) for an
I-patch

(b) Input (corners and
bounding surfaces) for a
corner I-patch

(c) Approximate shape of re-
sulting patches

Figure 1: I-patch and corner I-patch

Then, the equation of the corner I-patch is

n∑
i=1

wi,i+1 · Si,i+1 ·
n∏

j=1
j 6=i,j 6=i+1

B2
j

 +

n∑
i=1

wi ·
n∏

j=1
j 6=i

B2
j

 + w

n∏
i=1

B2
i = 0, (2)

where the wi,i+1 scalars can be merged into Si,i+1, as multiplying with a nonzero
number does not change the implicit isosurface, only its distance metric. See an
example of corner interpolants and bounding surfaces in Figure 1b.

Some important properties of this representation are:

• In each corner, the patch connects with G1 continuity to the corner inter-
polants. (This means that the gradient vectors of the surface have the same
direction as the gradients of the interpolants there.)

• Along the ith boundary, the shape of the surface does not depend on w and
wj for j 6= i.

The wi,i+1 coefficients will be called corner coefficients, wi-s are the side coeffi-
cients and w is the central coefficient.

4.2 Comparison to (side-based) I-patches

A disadvantage of I-patches is that their gradient is a zero vector in the corner
points. This may lead to poor surface quality and generally should be avoided.
However, the gradient of the corner I-patch can easily be proven to be the gradient
of the corner interpolant times a nonzero number.

Corner-Based Implicit Patches 625

The corner I-patch along the ith boundary connects smoothly to the implicit
surface

Si−1,i ·B2
i+1 + Si,i+1 ·B2

i−1 + wi ·B2
i−1 ·B2

i+1 = 0. (3)

This itself is a 2-sided I-patch. Corner I-patches are thus similar (but not
equivalent) to I-patches defined by ribbons that are themselves I-patches. (Such
surfaces were described in [14].) This is because the I-patch defined by the ribbons
in Equation 3 would be

n∑
i=1

Si,i+1(B2
i+1B

2
i−1 + B2

i B
2
i−2)

n∏
j=1

j 6=i,j 6=i+1

B2
j

+

+

n∑
i=1

wiB
2
i−1B

2
i+1

n∏
j=1
j 6=i

B2
j

 + w

n∏
i=1

B2
i = 0,

(4)

which is not equivalent to Equation 2. Indeed, the factor (B2
i+1B

2
i−1 + B2

i B
2
i−2)

causes the I-patch’s gradient to be zero at the corner points. Accordingly, corner
I-patches have a lower degree of 2n, as opposed to the 2n + 2 for this kind of
I-patches.

4.3 Setting coefficients

The wi and w parameters can be set in a process similar to I-patches [16] forcing
the patch to interpolate one point on each boundary and one point in the interior
of the patch. As the shape of the surface on the ith boundary depends only on
wi, each of those can be set separately, and finally, w can be set to interpolate an
interior point. I.e.:

wi := −
Si−1,i(pi) ·B2

i+1(pi) + Si,i+1(pi) ·B2
i−1(pi)

B2
i−1(pi) ·B2

i+1(pi)
(5)

w := −

n∑
i=1

Si,i+1(p0) ·
n∏

j=1
j 6=i,j 6=i+1

B2
j (p0)

 +

n∑
i=1

wi ·
n∏

j=1
j 6=i

B2
j (p0)

n∏

i=1

B2
i (p0)

, (6)

where pi is a point on the ith side, p0 is a point in the interior to interpolate. The
parameters can be computed in this order, i.e. first all wi, then w.

See examples later, in Figure 4.

626 Ágoston Sipos

4.4 Limitations

When connecting neighboring patches with geometric continuity, we need them to
coincide at their common boundary in both a positional and a differential sense.
As the corner I-patch along Bi connects to the surface defined by Equation 3, the
patch on the other side of Bi also has to connect to it. This, however, only happens
if Bi−1 and Bi+1 are identical to the corresponding bounding surfaces for the other
patch.

This is not easily fulfilled when creating a general topology patchwork, but it
is straightforward if the space is subdivided by planes, creating finite volume cells.
Any such cell structure could theoretically work with corner I-patches, however,
the most practical and useful is a regular grid of cubes.

5 Corner I-patch with multiple loops

5.1 Motivation and equation

In some cases, an isosurface must be represented by several disjoint surface ele-
ments. In Marching Cubes [12] for example, 7 of the 15 basic configurations result
in a surface represented by more than one polygon. These surface elements could be
represented separately, but in an implicit representation, it is advantageous to have
the same implicit function on a well-defined 3D volume, otherwise, the piecewise
implicit function would likely have discontinuities.

Fortunately, corner I-patches are capable of achieving this with a little modifi-
cation. Consider m separate boundary loops where the lth of those is nl-sided and
for each of them the previously defined corner interpolants Sl

1,2, S
l
2,3, ..., S

l
nl,1

and

the bounding surfaces Bl
1, B

l
2, ..., B

l
nl

. Then the new equation is

m∑
l=1

nl∑
i=1

wl,i,i+1 · Sl
i,i+1 ·

m∏
k=1

nk∏
j=1

k 6=l∨(j 6=i∧j 6=i+1)

(Bk
j)2

+

+

m∑
l=1

nl∑
i=1

wl,i ·
m∏

k=1

nk∏
j=1

k 6=l∨j 6=i

(Bk
j)2

 + w

m∏
l=1

nl∏
i=1

(Bl
i)

2 = 0.

(7)

The meaning of this is that for each corner interpolant, the bounding surfaces
not multiplied to it are the two ones beside it, corresponding to the next and
previous boundaries of the patch. A simple multiloop surface can be seen in Figure
2a, with two loops each composed of three corners.

5.2 Coinciding bounding surfaces

In a multiloop setting, especially if working in a grid of cubes, some bounding
surfaces will likely coincide. Consider, for example, the configuration in Figure 2b

Corner-Based Implicit Patches 627

(a) Two 3-sided loops (b) A 3- and a 4-sided loop

Figure 2: Multiloop patches

(a configuration of Marching Cubes), where one of the boundings for the 3-sided
loop coincides with one of those of the 4-sided loop. The problem with that is
that when two bounding surfaces coincide, they will be in all the members of the
weighted sum and thus can be factored out from the equation.

With regard to I-patches, a modified equation for this problematic case has been
proposed in [14], however, it takes advantage of the 1-to-1 relation between ribbons
and bounding surfaces which is not applicable to corner patches.

In this paper, the following solution is proposed. When computing the product
of the bounding surfaces not neighboring the respective corner, omit those as well
which coincide with one of the neighboring ones.

The formalized equation is:

m∑
l=1

nl∑
i=1

wl,i,i+1 · Sl
i,i+1 ·

m∏
k=1

nk∏
j=1

Bk
j
6≡Bl

i
,Bk

j
6≡Bl

i−1

(Bk
j)2

+

+

m∑
l=1

nl∑
i=1

wl,i ·
m∏

k=1

nk∏
j=1

Bk
j
6≡Bl

i

(Bk
j)2

 + w

m∏
l=1

nl∏
i=1

(Bl
i)

2 = 0.

(8)

What this means is that each corner is multiplied with the product of all bound-
ing surfaces (regardless of which loop they are in) unless they coincide with one
of its neighbors. Side components for a given side are the product of all bounding

628 Ágoston Sipos

surfaces, other than those coinciding with the bounding surface representing that
side. This formulation keeps the properties highlighted about the original equa-
tion (G1 continuity to corner interpolants, and sides being only affected by the
corresponding coefficient).

A practical implementation for evaluating this is to store all bounding surfaces
in an array, and only store indices for them in the loops. When computing the
products, we only have to check for the non-equality of the indices.

6 Use in cell structures

When used in regular cell structures, the Si,j and Bi surfaces are all planes. Thus,
the patch itself is a polynomial surface, with a degree of twice the number of sides
(see Equation 2).

In Figures 3 and 4 corner patches are defined inside the unit cube. Figure 3a
is a 3-sided surface near a corner of the cube. Figure 3b is a 6-sided patch that
intersects all faces of the cube.

In Figure 4, three patches with the same corners but different coefficients can
be seen. They are set using the algorithm presented in Section 4.3, i.e. on each
side and in the interior one point is fixed and respective coefficients are calculated
from them. Between Figures 4a and 4b, two side points; between Figure 4a and 4c,
the interior point is changed. The numerical data for these patches can be found
in Table 1.

The possible topological configurations are similar to those of Marching Cubes
[12]. The multiloop scheme also works for topologically disjoint isosurfaces (Figure
3c).

(a) A 3-sided patch (b) A 6-sided patch (c) A patch consisting of
two disjoint components

Figure 3: Corner I-patches inside the unit cube

Corner-Based Implicit Patches 629

(a) Base patch (b) Changing boundaries (c) Changing the interior

Figure 4: Corner I-patches with the same corner interpolants and different coeffi-
cients

Table 1: Points and coefficients for the patches in Figure 4. All patches are in the
[0; 1]3 cube. Differences from Patch #1 are bold.

Corner points
[0, 0.5, 1] [0, 0.8, 0] [1, 0.5, 0] [1, 0, 0.5] [0.5, 0, 1]

Patch #1
Side points

[0, 0.6, 0.5] [0.5, 0.6, 0], [1, 0.35, 0.35] [0.65, 0, 0.65] [0.35, 0.35, 1]
Side coefficients

0.6 0.6 −2.34 2.34 −2.34
Interior point: [0.5, 0.5, 0.5] Central coefficient: −7.77

Patch #2
Side points

[0, 0.6, 0.5] [0.5,0.8, 0] [1, 0.35, 0.35] [0.55, 0,0.55] [0.35, 0.35, 1]
Side coefficients

0.6 2.2 −2.34 0.45 −2.34
Interior point: [0.5, 0.5, 0.5] Central coefficient: −8.94

Patch #3
Side points

[0, 0.6, 0.5] [0.5, 0.6, 0], [1, 0.35, 0.35] [0.65, 0, 0.65] [0.35, 0.35, 1]
Side coefficients

0.6 0.6 −2.34 2.34 −2.34
Interior point: [0.5,0.2, 0.5] Central coefficient: 55.83

630 Ágoston Sipos

7 Discussion

7.1 Methodology

The examples were generated in the following way. The input was a voxel array
of floating point isovalues. Then, for each cell, based on the eight isovalues in
the corner, polyline loops were generated from the estimated edge intersections.
Ambiguities (when on a face all four edges have an intersection) were resolved by
minimizing the sum of distances between the two pairs. This resulted in one or
more loops of closed polylines.

Then, in each of the isovertices, a plane was introduced, with its normal pointing
towards the positive cell corner. From those, and the cube’s faces, corner I-patches
were generated. Coefficients for the corner components were set to 1, and side
coefficients were calculated with the triangle rule or the tetragon rule (see Appendix
A). The central coefficient was set to 0.

Rendering was done using raycasting, neighboring patches have an alternating
texture color. Phong shading is used, and normal vectors are calculated from the
exact gradients of the surface.

7.2 Single cell examples

The flexibility of the corner I-patch representation can be shown in Figure 5 where
patches are generated from the corner sign settings corresponding to the 14 non-

Figure 5: The 14 non-empty basic configurations of Marching Cubes represented
with corner I-patches (in the same order as in [12])

Corner-Based Implicit Patches 631

empty basic configurations of Marching Cubes. The patches were created using the
formulation in Equation 8, as in cases where there were two boundary curves on
the same side of the cube, boundary surfaces coincided.

7.3 Multi-cell examples

In these examples, a sparse (9×9×9) voxel array was created and the patches were
automatically generated from it. In the first example (Figure 6) two sphere-like
objects can be seen which are close to each other. Notice that the brown surfaces
at their closest points are represented with the same corner I-patch. In the second
example (Figure 7) a voxel value was modified, extending the volume of the bigger
object. In Figure 8 a hole was put into the object by modifying isovalues in a line.

7.4 Examples with exact vertices and gradients

Here, the scheme was modified so that when introducing the corner planes, an exact
implicit function is used for both exactly calculating the isovertex and using an
exact gradient. This can be useful in cases where evaluating the original functions
would be very costly but approximating them with piecewise polynomial surfaces
could bring a reduction in both storage and computation costs.

In Figures 9 and 10 an ellipsoid can be seen with a lower and a higher resolution
cell structure. It can be observed that although the boundary curves approximate

Figure 6: Disjoint surfaces generated from voxel data

632 Ágoston Sipos

the original surface well, the interior of some surfaces is less smooth. Optimization
of the coefficients is therefore an important area of future research.

Figure 7: Enlarging the object by modifying a voxel value

Figure 8: Putting a hole inside the object by modifying voxel values

Corner-Based Implicit Patches 633

Figure 9: Ellipsoid with lower resolution

Figure 10: Ellipsoid with higher resolution

8 Conclusion

We have presented corner I-patches, a class of implicit surfaces with several ad-
vantages over existing representations. Patches can be defined by combining only
planes, in contrast to the relatively more complicated ribbons needed to define I-
patches. They can be used to create complex piecewise surfaces. Unlike I-patches,

634 Ágoston Sipos

corner I-patches have no singularities in the corners. Several scalar coefficients can
be used to optimize a target function on the patch for approximation or surface
fairing purposes.

The figures in the paper have been produced by raytracing, however, an effective
implementation (possibly a GPU one) can be an important goal. Finding good
target functions for optimizing the coefficients is a possible area of improvement.
Detecting poor-quality patches and automatically adjusting the surface coefficients
would also enhance the scheme.

Acknowledgements

This research would not have been possible without the help of Tamás Várady
who guided the author for several years and raised many important issues. The
author would like to also thank the interesting discussions with Alyn Rockwood,
Péter Salvi, and Márton Vaitkus as well as the interesting questions raised by the
audience of the CSCS 2022 conference.

References

[1] Bajaj, C. L., Chen, J., and Xu, G. Modeling with cubic A-patches. ACM
Transactions on Graphics (TOG), 14(2):103–133, 1995. DOI: 10.1145/

221659.221662.

[2] Bajaj, C. L. and Ihm, I. Algebraic surface design with Hermite interpolation.
ACM Transactions on Graphics (TOG), 11(1):61–91, 1992. DOI: 10.1145/

102377.120081.

[3] Bán, R. and Valasek, G. First order signed distance fields. In Eurographics
(Short Papers), pages 33–36, 2020. DOI: 10.2312/egs.20201011.

[4] Charrot, P. and Gregory, J. A. A pentagonal surface patch for computer
aided geometric design. Computer Aided Geometric Design, 1(1):87–94, 1984.
DOI: 10.1016/0167-8396(84)90006-2.

[5] Chávez, G. and Rockwood, A. Marching surfaces: Isosurface approximation
using G1 multi-sided surfaces. arXiv preprint arXiv:1502.02139, 2015. DOI:
10.48550/arXiv.1502.02139.

[6] Hartmann, E. Implicit Gn-blending of vertices. Computer Aided Geometric
Design, 18(3):267–285, 2001. DOI: 10.1016/S0167-8396(01)00030-9.

[7] Krasauskas, R. Toric surface patches. Advances in Computational Mathemat-
ics, 17(1):89–113, 2002. DOI: 10.1023/A:1015289823859.

[8] Lekien, F. and Marsden, J. Tricubic interpolation in three dimensions. Inter-
national Journal for Numerical Methods in Engineering, 63(3):455–471, 2005.
DOI: 10.1002/nme.1296.

https://doi.org/10.1145/221659.221662
https://doi.org/10.1145/221659.221662
https://doi.org/10.1145/102377.120081
https://doi.org/10.1145/102377.120081
https://doi.org/10.2312/egs.20201011
https://doi.org/10.1016/0167-8396(84)90006-2
https://doi.org/10.48550/arXiv.1502.02139
https://doi.org/10.1016/S0167-8396(01)00030-9
https://doi.org/10.1023/A:1015289823859
https://doi.org/10.1002/nme.1296

Corner-Based Implicit Patches 635

[9] Li, J., Hoschek, J., and Hartmann, E. Gn−1-functional splines for interpolation
and approximation of curves, surfaces and solids. Computer Aided Geometric
Design, 7(1-4):209–220, 1990. DOI: 10.1016/0167-8396(90)90032-M.

[10] Liming, R. A. Conic lofting of streamline bodies: The basic theory of a phase
of analytic geometry applicable to aircraft. Aircraft Engineering and Aerospace
Technology, 19(7):222–228, 1947. DOI: 10.1108/eb031528.

[11] Loop, C. T. and DeRose, T. D. A multisided generalization of Bézier surfaces.
ACM Transactions on Graphics, 8(3):204–234, 1989. DOI: 10.1145/77055.

77059.

[12] Lorensen, W. E. and Cline, H. E. Marching Cubes: A high resolution
3D surface construction algorithm. ACM SIGGRAPH Computer Graphics,
21(4):163–169, 1987. DOI: 10.1145/37402.37422.

[13] Sipos, Á., Várady, T., and Salvi, P. Approximating triangular meshes
by implicit, multi-sided surfaces. Computer-Aided Design and Applications,
19(5):1015–1028, 2022. DOI: 10.14733/cadaps.2022.1015-1028.

[14] Sipos, A., Várady, T., Salvi, P., and Vaitkus, M. Multi-sided implicit surfacing
with I-patches. Computers & Graphics, 90:29–42, 2020. DOI: 10.1016/j.

cag.2020.05.009.

[15] Vad, V., Csébfalvi, B., Rautek, P., and Gröller, E. Towards an unbiased
comparison of CC, BCC, and FCC lattices in terms of prealiasing. Computer
Graphics Forum, 33(3):81–90, 2014. DOI: 10.1111/cgf.12364.

[16] Várady, T., Benkő, P., Kós, G., and Rockwood, A. Implicit surfaces revisited
– I-patches. In Geometric Modelling, pages 323–335. Springer, 2001. DOI:
10.1007/978-3-7091-6270-5_19.

[17] Várady, T., Rockwood, A., and Salvi, P. Transfinite surface interpolation over
irregular n-sided domains. Computer Aided Design, 43(11):1330–1340, 2011.
DOI: 10.1016/j.cad.2011.08.028.

[18] Várady, T., Salvi, P., and Karikó, G. A multi-sided Bézier patch with a
simple control structure. Computer Graphics Forum, 35(2):307–317, 2016.
DOI: 10.1111/cgf.12833.

A Auxiliary point calculation

Side coefficients in the examples are calculated such that the boundary curve in-
terpolates a given point. That point is computed with either the triangle rule or
the tetragon rule.

There are two cases: the two corner planes and the bounding face either have
an intersection point inside the face, or it does not. If that point exists, we have a

https://doi.org/10.1016/0167-8396(90)90032-M
https://doi.org/10.1108/eb031528
https://doi.org/10.1145/77055.77059
https://doi.org/10.1145/77055.77059
https://doi.org/10.1145/37402.37422
https://doi.org/10.14733/cadaps.2022.1015-1028
https://doi.org/10.1016/j.cag.2020.05.009
https://doi.org/10.1016/j.cag.2020.05.009
https://doi.org/10.1111/cgf.12364
https://doi.org/10.1007/978-3-7091-6270-5_19
https://doi.org/10.1016/j.cad.2011.08.028
https://doi.org/10.1111/cgf.12833

636 Ágoston Sipos

triangle (Figure 11a) and we take its centroid as the point to interpolate. Otherwise,
we have a tetragon (Figure 11b), by intersecting each corner plane with the opposite
corner’s cube edge. We then take the centroid of this polygon.

(a) Triangle rule (b) Tetragon rule

Figure 11: Rules for computing interpolated points. Blue points and lines represent
corner points and planes.

The side coefficient can then easily be calculated by evaluating Equation 5 for
each wi, as the other side coefficients do not affect the current boundary.

Acta Cybernetica 26 (2024) 637–669.

Patient Flow Analysis with a

Custom Simulation Engine∗

Zoltán Szabóab, Emőke Adrienn Hompothac, and Vilmos Bilickiad

Abstract

Patient flow simulation and analysis is one of the oldest IT -based methods
used to optimize patient care processes and hospital management. During the
pandemic, interest in this domain suddenly increased due to the various con-
straints and recommendations to reduce the likelihood of further infections
in the hospital. Suddenly, metrics such as the number of patients waiting in
the same area, the maximum time a patient could stay in a single room, and
the minimum distance between patients became important issues to moni-
tor and optimize. Using data and modelling concepts from various hospitals,
our team developed a simulation tool that used bpmn models to define an
emergency department. We then modified a single day’s usual patient flow
with various real-world inspired edge cases to evaluate how the simulated flow
would change and which stations would become bottlenecks, where the qual-
ity of patient care would deteriorate and rooms would become overcrowded.
To execute the models, we developed our own tool based on the open-source
Camunda modeling tool and the Business Process Model Notation (BPMN)
file format. To execute the generated models, we use our own Python-based
execution environment based on the SpiffWorkflow library, which permits ex-
tensive logging and extensive customization of the attributes analysed. In
addition, the modelling toolkit of Camunda was narrowed down and com-
piled so that it could be easily used by researchers who are not programmers.
In the paper, we present both the modeling process and the scenario de-
sign process, as well as the results obtained through the runs, including the
maximum waiting times during the model runs and the maximum number of

∗This research was supported by the EU-funded Hungarian grant GINOP-2.2.1-15-2017-00073;
project no. TKP2021-NVA-09 has been implemented with the support provided by the Ministry
of Innovation and Technology of Hungary from the National Research, Development and Innova-
tion Fund, financed under the TKP2021-NVA funding scheme; project no. II-NKFIH-1528-1/2021
has been implemented with the support provided by the Ministry of Innovation and Technology
of Hungary from the National Research, Development and Innovation Fund, financed under the
II-NKFIH-1528-1 funding scheme. The research was also supported by the Ministry of Innova-
tion and Technology NRDI Office within the framework of the Artificial Intelligence National
Laboratory Program (RRF-2.3.1-21-2022-00004).

aDepartment of Software Engineering, University of Szeged, Hungary
bE-mail: szaboz@inf.u-szeged.hu, ORCID: 0000-0003-3863-7595
cE-mail: hompothemoke@gmail.com, ORCID: 0000-0002-7085-3901
dE-mail: bilickiv@inf.u-szeged.hu, ORCID: 0000-0002-7793-2661

DOI: 10.14232/actacyb.299391

mailto:szaboz@inf.u-szeged.hu
https://orcid.org/0000-0003-3863-7595
mailto:hompothemoke@gmail.com
https://orcid.org/0000-0002-7085-3901
mailto:bilickiv@inf.u-szeged.hu
https://orcid.org/0000-0002-7793-2661
https://doi.org/10.14232/actacyb.299391

638 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

patients waiting at once, which allowed us to validate the effectiveness of the
framework.

Keywords: healthcare, telemedicine, patient flow, simulation, covid, model-
ing

1 Introduction

As can be read in the NEJM Catalyst short article [18], patient flow technically de-
fines the total time frame that patients spend in and move through the healthcare
system from arrival to discharge. In general, we want this time to be as minimal as
possible, apart from the time required for the actual examination, diagnosis, and
care processes, without compromising patient and provider quality and satisfaction.
Improving the flow is essential as it can reduce the workload of medical staff and
patient waiting times, but otherwise overcrowding can occur, patient health can
deteriorate, while readmission and mortality rates can increase [18, 9]. Improving
patient flow was also an area of research in the 1990s. The World Health Orga-
nization (WHO) published a study using patient flow analysis (PFA), which helps
researchers examine staff utilization, key patient flow characteristics, resource and
financial needs, and emerging problems [20]. Another approach has been variability
analysis, which involves dividing variables into groups and then determining how
to measure them (e.g., severity of illness can be described as the deviation from a
perfectly healthy state). The next step is to reduce or even eliminate any variabil-
ity that is artificial, as it usually arises from dysfunctional processes. This should
already lead to an improvement in patient flow. Further progress can be expected
if natural variability is also measured and optimally managed [17]. Our approach
was to create a patient flow simulation framework that could account for different
variables to calculate and measure potential patient flow. To do this, we collected
information on commonly used patient flow measures and the variables that may
affect patient numbers in the Emergency Department (ED).

In the State of Art section of this study, we provide a summary of numerous
research papers that investigate techniques for quantifying the efficacy of ED. Then,
in the Motivation section, we review the modeling methodologies and requirements
that have arisen throughout the COVID-19 pandemic, summarize the parameters
and elements that have been investigated, and highlight those that are pertinent to
our simulation. This is followed by the Methodology section, which describes the
operation of the ED we aim to represent as well as the modeling and simulation tools
produced. In the Simulation section, we first list the scenarios that we planned and
then present and analyze their running results, in each case based on the longest
waiting times, the greatest number of patients waiting simultaneously, the trends in
patient numbers at each station, the average waiting time per triage level, and the
relative duration of each waiting time per triage level. The results of the research
are reviewed in the Discussion section. Finally, we present an outlook on future
goals for the framework in the Conclusion section.

Patient Flow Analysis with a Custom Simulation Engine 639

2 State of Art

According to the literature, different patient flow patterns occur under different
circumstances. Kang and Park [12] studied the hourly visit pattern and found a
bimodal distribution: the peak flow was from 10:00 to 11:00 and from 20:00 to
21:00. The lowest number of visits was between 02:00 and 08:00. In one Hungarian
hospital, patient volumes increase from 8:00 and peak around 12:00. Late night
hours are the least visited times, but the workload for staff is fairly constant [26].
When daily visit patterns were the focus, Hitzek et. al. [9] found that the peak
in patient numbers occurred on weekends (starting on Fridays, with the highest
numbers on Saturdays), holidays, and school vacations. The authors suggest that
the explanation may be that people tend to engage in risky activities at these times.
Varga et al. [26] also examined the difference between patient numbers on weekdays
and weekends: They found similar trends, except that weekend nights were slightly
more demanding.

There are also seasonal patterns of visits: Hitzek et. al [9] found the highest
numbers of patients in spring and the lowest in fall. In contrast, Won, Hwang, Roh,
and Chung [27] found the highest number of asthma patients in the fall, especially
in September and October, and the lowest from June to August. They also found
that more patients visit the ED in spring from year to year.

Linked to seasonality, but with more focus on the actual temperature Otsuki,
Murakami, Fujino, Matsumura and Eguchi [19] found that during cold winters less
non-urgent patients visited the ED, suggesting that people are less active in the
cold weather. In contrast the warmer summer weather raised the patient numbers.

Heat waves can also impact visits to ED. Schramm et. al [22] published a study
of the likely impact of a June 25-30, 2021 heat wave, affecting 10 regions of the U.S.
that contain 4% of the population but accounted for 15% of heat-related ED visits.
From May to June, there were 3,504 heat-related cases at the ED, 79% of which
occurred during the heat wave. The peak was on June 28, when 1,038 patients
arrived. In comparison, 2 years earlier on the same day, 9 patients had heat-related
problems at the ED.

The usual measures of patient flow are bed occupancy rate (it is also suggested
to consider the number of outgoing and incoming patients) [13, 8], transfer time
(i.e., the time to prepare the bed for a new patient), and patient transfer (how
many patients had to be transferred, how much time and phone calls were required
to transfer, etc.). Other ED related measures may include: the time a patient
spends in the department from admission to discharge, the actual time it takes to
discharge a patient and/or refer them to another department, how many patients
were treated in a given time interval, the wait time to see a physician or receive
treatment, the number of ambulances transferred to another ED, etc. [8].

For example, Varga et. al. [26] measured how much time elapsed before medical
care was initiated between different triage levels. The results showed 3.6 ± 5.8
minutes at the first triage level, 7.0 ± 11.8 and 23.2 ± 26.1 minutes at the second
and third triage levels, and 37.8 ± 38.3 and 44.2 ± 43.5 minutes at the fourth and
fifth triage levels.

640 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

Patient flow analysis has also been used as the basis for many research projects
using genetic algorithms and in some cases, machine learning, to solve or optimize
scheduling issues at various parts of the hospital process.

Yousefi et al. [28] conducted an evaluation of 38 simulation-based optimization
experiments for the ED, published between 2007 and 2019. They have given a bib-
liographic foundation on the topics discussed, compiled data on the methodologies
and tools used, and identified significant trends in the area of simulation-based op-
timization. They have stated that future research should concentrate on improving
the effectiveness of multi-objective optimization problems by reducing their time
and labor requirements.

In their study, Yang-Kuei Lin and Yin-Yi Chou [16] examined the difficulty of
allocating a set of surgical procedures to many multipurpose operating rooms. They
have suggested a redesigned mathematical model and four simple heuristics that
ensure the efficient discovery of viable solutions to the examined issue. In addition,
they provided four local search processes that may greatly enhance a given solution
and used a hybrid genetic algorithm (HGA) that combines initial solutions, local
search procedures, and an elite search technique to the examined issue.

El-Bouri et al. [7] conducted a literature study on the use of Artificial Intelli-
gence (AI) to hospital patient scheduling. They addressed the many AI strategies
described in the literature, such as rule-based systems, decision trees, artificial neu-
ral networks, and evolutionary algorithms. In addition, they have examined the
many sorts of patient scheduling challenges that have been investigated, including
surgery scheduling, appointment scheduling, and emergency department schedul-
ing.

Seunghoon Lee and Young Hoon Lee [14] have suggested using reinforcement
learning (RL) to schedule emergency department (ED) patients. They have de-
veloped a mathematical model and a Markov decision process (MDP). Then, they
developed an RL algorithm based on deep Q-networks (DQN) to identify the ideal
scheduling strategy for patients. In the provided cases, they have shown that deep
RL outperforms dispatching rules in terms of reducing the weighted waiting time
of patients and the penalty score for emergency patients.

Haya Salaha and Sharan Srinivas [21] investigated the usage of a hybrid artificial
intelligence system to solve the issue of hospital patient scheduling. To enhance
patient scheduling, they have presented a mix of genetic algorithms and an Artificial
Neural Network (ANN). They have shown that their hybrid approach can find
superior schedules than either Generic Algorithm (GA) or ANN alone, and it has
been applied to actual hospital data.

3 Motivation

Research, optimization, and various IT solutions played an important role during
the COVID-19 pandemic. While various impacts and metrics of the pandemic
itself are still being researched and evaluated by various research teams, another
very active area is focused on preparing existing systems to work better and more

Patient Flow Analysis with a Custom Simulation Engine 641

efficiently in the event of another pandemic.
One need that most research teams agree on is the need for modeling and simula-

tion tools. Currie et. al [4] in their work emphasized the importance of simulations
to reduce the impact and severity of the epidemic COVID. They identified the
following decision areas as appropriate for optimizing their effectiveness through
simulations: the selection of quarantine and isolation strategies, the development
of social distancing rules, the construction of lockdown release scenarios, the ap-
propriate method for test distribution and transport, the identification of the most
critical demographic groups for vaccine distribution, and the appropriate expansion
and allocation of hospital resources.

Similar comments were made by Dieckmann et al. [5], whose work focused on
the resources needed for effective simulation and how they can be used. In their
view, simulations should focus on three main areas: educating workers about the
epidemic, optimising the process of care at the system level, and assessing the needs
and mental health workload of health care workers.

Improving hospital systems and patient flow to provide faster patient treatment,
efficient resource allocation, and the development of techniques to avoid future
infections lies at the junction of the two fields of study. Tavakoli et al.[24] recently
published their results on a simulation methodology similar to ours. Although the
model and triage levels are much simpler than they should be to prove accurate
in simulations of Hungarian hospitals, the metrics and principles established can
serve as a model for similar simulations. Terning et al.[25] had similar elements
in mind, and although the simulation from their published work is still relatively
rudimentary, the formulas and conditions used to evaluate their results provide a
very good basis for initial validation of a similar simulation.

One of these key parameters, perhaps the easiest to follow in simulations, is
to avoid overcrowding, i.e., to avoid the kind of patient flow where many patients
are waiting in an area at the same time. Dinh et al. [6] specifically focused on
this importance in their work, attempting to establish principles and rules to avoid
unnecessary hospitalizations during an epidemic and to reduce the length of stay
in the hospital. In their brief review, Janbabai et al. [10] focused on protecting
hospital staff in addition to patients, focusing on preoperative, intraoperative, and
postoperative processes within the patient flow. Of course, other approaches have
been explored in addition to simulation-based patient flow study and analysis. For
example, Arnaud et al, [2] have attempted to use machine learning based on patient
flow metrics to determine how to optimise the number of hospital beds and expedite
the triage process, to name a few examples.

In the development of various healthcare applications for hospitals and research
teams, our team has used the work of Prof. Jose L. Jimenez & Dr. Zhe Peng
[11] who, based on various peer-reviewed research, developed an easy-to-use tool
to measure the likelihood of COVID infection in different environments based on
the size and type of the area in question, as well as the number, behaviour, and
condition of the people in it. Based on these results, and taking into account the
fact that patients and staff wear masks in the hospital and hospitals use various
distancing measures and restrictions, including a strong emphasis on ventilation,

642 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

our team calculated that the probability of infection for a number of 10 to 20
patients in the area was only 4.39 % after one hour, and even after six hours it
only increased to 5.96 %. This means that one of the most important aspects of
optimising patient flow for COVID prevention is to keep the number of patients in
a given range around or below 10 while trying to speed up the flow itself to avoid
congestion.

4 Methodology

4.1 Introduction of the ED

During the early phases of our research, we used the ED model of Leva and Sulis
[15], as it proved to be the model most similar to the Hungarian ones based on
comparisons between this model and our team’s experience and knowledge of the
structure and functioning of the ED. Differences include minor changes in terms of
which station is served by which staff member, and the introduction of an additional
fifth triage level as mandated in the Hungarian system. The model includes 7
different lanes and a sub-process for handling the complex visit process if required
by the patient’s condition. The first lane is the registration process, where patients
are admitted to the hospital and treated according to the severity of their condition
upon arrival. They are then admitted to the triage lane where they await initial
assessment. For less urgent cases, they may voluntarily leave the process at this
stage if they wait too long.

After leaving triage, the triage nurse may decide to refer the patient to an
internal clinic; otherwise, the visit process takes place, where the nurse or physician
takes a history, takes blood, performs a radiology referral, and then decides the
patient’s fate based on the results. The outcome of the process may be referral to
an internal clinic, admission to the emergency department, referral to an outside
facility, discharge, or in a small percentage of cases, death of the patient.

4.2 Modeling and Simulation Tools

To create the hospital simulation, we chose the open-source Camunda Modeler [1],
which allows us to create arbitrary processes in a parameterizable, editable, and
executable format. The output of Camunda modelling is the BPMN (Business
Process Model and Notation) file [3], a text file based on the XML standard that is
displayed by Camunda-compatible tools and execution environments with a visual
representation.

However, Camunda and BPMN modelling do not always prove suitable. In
our various healthcare projects, the issue of clarity and complexity of modelling
has often arisen in similar cases, especially when some clinicians and researchers
wanted to model and describe processes in a way that was transparent to them,
but the Camunda elements were considered too broad and complex. Our goal,
therefore, was not only to accurately model the model we created, but also to make
it understandable to researchers outside of IT and be able to create similarly simple

Patient Flow Analysis with a Custom Simulation Engine 643

processes, leaving the more complex parts to scripts and programmers running in
the background.

While developing the simulation, we considered using the official Camunda sim-
ulation tools and Visual Paradigm, among others. However, we ultimately decided
to create our own simulation environment using open source tools to ensure that
the simulation settings, configurations, and types of metrics collected were cus-
tomizable for us.

Our custom simulation is based on the Python library SpiffWorkflow [23], which
can process and run bpmn models created with Camunda, among many other
inputs. Scalability and robustness were key elements of the hospital workload
modelling operating environment. The principle is based on the idea that each
patient is a parallel running SpiffWorkflow thread sharing common resources for
which we implemented waiting, handover and reservation using semaphores. The
measurement and logging of wait and turnaround times in the system is differential,
with each thread regularly logging its timestamps as it arrives at and departs from
the stations. Our approach was initially based on the naive assumption that the
bottleneck is the availability of staff in the ED, and that if the required physician,
nurse, or nursing staff is available to perform the task, then the space and equipment
are available as well.

Figure 1 illustrates the components of the framework and their precise relation-
ships. The model defining the ED is provided in two bpmn files: Visit.bpmn for
the visit subprocess and EDAsIs.bpmn for the ED architecture, which references
Visit in the correct place. The framework’s starting point is runner.py, which spec-
ifies how many patients must be allowed into the system for the simulation, what
stop condition must be satisfied to terminate the simulation, and also manages the
extraction of the various metrics at the conclusion of the simulation (the latter
activity is expected to be handled by a separate module in a future version). The
runner.py parses the contents of the bpmn files and utilizes them to generate run-
ner threads for each patient that will execute the steps specified in the bpmn files.
The simulations employ playbook.py to execute the simulation of each step and
simulation.py to indicate when a shared resource (e.g., doctor, nurse) is required,
lock it using semaphore, or set a triage level-based queue if there are no available
instances of that resource.

4.3 Modeling

The following section presents the model and elements of the Camunda workflow
based on the combination of the Leva and Sulis paper with elements from the Hun-
garian hospital system. Table 1 shows the content of the first two lanes, registration
and triage, the first stations that are the same for every patient in the hospital. The
elements of the simulation script are handled either as events, where patients must
acquire a shared resource and then perform some processing before proceeding, or
as end states, which, when reached, terminate the patient’s simulation thread. The
required resource in the simulation is a member of the ED staff: Generic Nurse
(GN), Hospital Employee (HE), Specialized Nurse (SN), Doctor (DR) and Generic

644 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

Figure 1: Flowchart of the simulation framework

Operator (GO).
Note that due to the deterministic nature of the simulation, these stations and

steps model how a patient is admitted to the hospital and then treated, with the
environment assigning almost the entire pathway to the patient at the beginning of
the simulation with all the important attributes. Our research team had two main
reasons for this: On the one hand, the methodology gives researchers who might
use our tools in the future the ability to analyze and debug the expected runtime
of the simulation without having to wait for the entire simulation to run. On the
other hand, it also gives us the ability to manually enter patients into tables in
order of arrival with their severity, and even to examine specific cases in minute
detail using the tools. The modeling of these pathways raised a serious research
question at the beginning, as the international literature and the original source
of this model indicated that the necessary personnel for these pathways are the
general nurses, and in order to keep the simulation accurate, we decided to stick
with this version. However, in Hungarian hospitals it is much more common to
have at least one physician present during these phases. In our further research,
collecting more specific information from Hungarian hospitals, including those we
have conducted research with, we want to test different modifications of this trace
and see how they might change some of the results and trends we have obtained
during our previous research. The next major step is the Visit, which is modeled as
a separate subprocess. The elements of the Visit model can be seen in Table 2. The
main difference from the main lanes is the need for specialized nurses and doctors,
and the many optional pathways depending on whether blood tests or radiological
examinations are required.

After the Visit subprocess, the only step left in the simulation is the processing
of the outcome, which is usually performed by a specialised nurse (SN). There are
five possible outcomes defined both in the paper containing the basic version of this
model and in the papers analysing Hungarian hospitals: Death, Hospitalisation on

Patient Flow Analysis with a Custom Simulation Engine 645

Table 1: Major events of the main ED flow

Name ID Description Type Req
Patient
Registration

register patient Admitting the pa-
tient to the hospital

event HE

Evaluate
Urgency

evaluate urgency The urgency, as a
binary information
is determined for
the patient. Urgent
cases are immedi-
ately forwarded to
pre-visit

event GN

Abandon abandon The patient decides
to leave the hospital
before pre-visit

end state -

Pre-visit pre visit Quick measurements
and examination by
a nurse to determine
the triage level and
severity of the case.

event GN

Assign ESI assign esi Emergency severity
index is assigned to
the patient, who is
either transferred to
internal clinic or sent
to the full visit pro-
cess

event GN

Manage
outcome

manage outcome Management of re-
sults and outcomes
resulting from the
visit process.

event SN

Ward, Discharge, Transfer to External Facility, or Transfer to Internal Clinique.

We also achieved the desired simplification in modelling. Since the model was
not overly complex, we used only four elements that were visually and practically
comprehensible: the start point, the end point, the event, and the decision point.
These were simply augmented during design with information about which event
gave the patient which additional attributes, and the decision points were then
used to select exactly what criteria the patient should use to choose the direction
of travel in the simulation. The entire modelling process thus consisted of a total
of four elements, plus a few lines of pseudocode description for the events, which is
not only simple, but also compatible and interoperable with many other modelling
tools. The timer event was considered as a fifth element type, but it was ultimately

646 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

Table 2: Elements of the Visit subprocess

Name ID Description Type Req
Collect His-
tory

collect history The nurse collects
and organizes the
healthcare history of
the patients via di-
rect interview with
the patient and/or
database queries

event SN

Hypothesize
Diagnosis

hyp diag The doctor evalu-
ates the results so
far, examines the pa-
tient and either es-
tablishes a diagno-
sis or may require
further tests (blood
tests and X-rays) be-
fore doing so.

event DR

Take Blood
Sample

take blood Taking a blood sam-
ple as prescribed by
the doctor.

event SN

Laboratory laboratory The blood sample is
transferred to labo-
ratory examinations.
If there is any in-
formation available
quickly, it is sent
back to the doctor.

event DR

Transfer to
radiology

trans rad The patient is trans-
ferred to radiology
and prepared for the
X-ray recordings.

event GO

Radiology radiology Usage of diagnostic
imaging procedures,
such as ultrasound,
CT, MR.

event SN

Establish
diagnosis

estab diag Based on the results
and the information,
diagnosis is estab-
lished

event DR

Define ther-
apy

def therap If possible, therapy
is defined by the doc-
tor

event DR

Patient Flow Analysis with a Custom Simulation Engine 647

ruled out due to the system’s standardized time management. All wait periods
are supplied to the framework as arguments or thresholds with defined values.
SpiffWorkflow’s scripting and customisation options are restricted in this domain,
and the timer event would be conducted in real time regardless of the simulation’s
time format.

5 Simulation

Our goal was to study how an emergency department ideally operates and how
unexpected events can occur, using this operating environment and the modelled
emergency department with the number of patients arriving, the severity of their
cases, the probabilities and rates for each branch from real data. Or in the case of
an epidemic, how to optimise turnaround and wait times (since similar studies in
many cases have only looked at similar models in terms of staff time or budget):
Is it clearly a good idea to increase staff and the number of rooms and equipment
needed to perform each activity?

5.1 Scenarios

To be able to create different situations and scenarios to analyze how small changes
in patient flow, staffing, or processing time of the different stages affect the simu-
lation throughput and metrics, we first created a baseline scenario based on real
data from the ED of Somogyi Kaposi Mór Practicing Hospital [26] to estimate the
rates of patient arrival and distribution between the five triage levels (i.e., the ur-
gency of each case) to model. According to their data from 2015 statistics, the ED
sees approximately 90 patients per day. In terms of triage levels, 0.67% of patients
had triage level 1, 1.24% had triage level 2, 23.35% had triage level 3, 40.17% had
triage level 4, and 34.54% had triage level 5. Triage levels 1 and 2 require immedi-
ate treatment, level 3 can tolerate waiting times up to 30 minutes, level 4 up to 60
minutes while level 5 even up to 2 hours.

As for the fate of the incoming patients after treatment: 20.9% were hospitalised,
2.7% voluntarily discharged, 1.5% were referred for triage, 0.4% were transferred
to another inpatient facility, 0.4% died and 73.5% were discharged to their home.

The baseline scenario was based on the work of Leva and Sulis and was run
with 3 doctors, 2 generic nurses, 3 specialist nurses, 2 clinical staff and 4 generic
operators, with a 20% chance of a new patient arriving every minute - this resulted
in the most even distribution, the element of the simulation to handle increasing
or decreasing patient arrival density at given times is currently being tested and
will be included in a next pilot phase. The turnaround times at each station,
which depend on the triage level, follow the one-to-one model of Leva and Sulis,
considering triage level 3 as the dividing line between urgent and less urgent cases.
For all other scenarios, these original distributions and proportions were shifted
through a type of exacerbated bias. In some cases, we increased the severity of
incoming patient cases, in others we reduced the number of emergency department

648 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

staff, and in still other scenarios, to approximate the impact of COVID, we used
estimations of the need for and duration of decontamination to increase wait and
turnaround times at each station in the simulation. The type and number of staff in
the emergency department was based on the paper by Leva and Sulis. The various
scenarios, their specific configurations and expected results are listed below.

• SC0: This is the basis of comparison made by merging of the Somogyi Hos-
pital and the Italian sample. Patients are rarely admitted for urgent triage
1 or 2. The time spent at each station follows the original pattern drawn
from the papers. Specification: 3 doctors, 3 generic nurses, 2 specialized
nurses, 2 clinical staff, 4 generic operators; regular processing times; triage
distribution: l1-0.00673, l2-0.01241, l3-0.23359, l4-0.40175, l5-0.34549; 20%
patient arrival chance. Expectation: Patients with lower triage levels have
to wait longer at common stations (registration, triage), where congestion
and waiting times increase, but the time spent in the system remains within
acceptable limits.

• SC1: Scenario inspired by red letter holidays. The staff in the Emergency
Department has been significantly reduced, the density of incoming patients
is lower, but the incoming patients are almost without exception more urgent,
with a triage level higher than 3. Specification: 1 doctor, 1 generic nurse, 1
specialized nurse, 1 clinical staff, 2 generic operators; regular processing times;
triage distribution: l1-0.0873, l2-0.1241, l3-0.23359, l4-0.00417, l5-0.00345;
20% patient arrival chance. Expectation: Even for triage level 3 patients,
waiting and turnaround times will increase, while for triage level 1 and 2
cases, times will not be dramatically reduced.

• SC2: Summer heat, heatwave inspired scenarios. Patient arrival density
is doubled compared to SC0, with a significantly higher probability of ar-
riving triage level 1 and 2 patients. Specification: 3 doctors, 2 generic
nurses, 3 specialized nurses, 2 clinical staff, 4 generic operators; regular pro-
cessing times; triage distribution: l1-0.1873, l2-0.2241, l3-0.43359, l4-0.00417,
l5-0.00345; 20% patient arrival chance but checked at every half minute in-
stead of every minute. Expectation: Significant congestion at higher triage
levels, with waiting times of several hours for patients at lower triage levels.

• SC3: An epidemic-inspired scenario. With only urgent patients coming to
the hospital (less urgent cases are not even admitted), the number of staff
in the Emergency Department has been increased, but also the minimum
waiting and turnaround times due to disinfection procedures. Specification:
6 doctors, 4 generic nurses, 6 specialized nurses, 8 clinical staff, 4 generic
operators; processing times are increased with a few minutes to simulate
disinfection; triage distribution: l1-0.1873, l2-0.2241, l3-0.13359, l4-0.00417,
l5-0.00345 ; 20% patient arrival chance. Expectation: Barely any patients
from lower triage levels, but significantly increased times for higher levels.

Patient Flow Analysis with a Custom Simulation Engine 649

• SC4: A benchmarking scenario, using the staff number of SC3 to handle the
patient load of SC2 Specification: 6 doctors, 4 generic nurses, 6 specialized
nurses, 8 clinical staff, 4 generic operators; regular processing times; triage
distribution: l1-0.1873, l2-0.2241, l3-0.43359, l4-0.00417, l5-0.00345; 20% pa-
tient arrival chance but checked at every half minute instead of every minute.
Expectation: Critical waiting and turnaround times decreased, the churn
and trends of the flow will be similar to the ones of SC0

5.2 Results

Each scenario was run with a load of 90 patients (the daily average based on
Somogyi Hospital data) and was intended to fill a 7-8 hour shift in the emergency
department.

5.2.1 Scenario0

At SC0 we immediately noticed some interesting differences compared to our first
hypothesis. As seen in Figure 2, the Diagnosis Establishment phase had the longest
combined times (i.e., waiting and execution combined), while other elements of the
first two lanes, such as registration and urgency evaluation, were relatively short.

Figure 2: Longest combined times in SC0

Similarly, the maximum number of patients either waited or were studied at the
same stage of their simulation. As shown in Figure 3, the longest queues were in

650 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

Radiology, Diagnosis Establishment, and Manage Outcomes after the visit.
A more detailed trend chart showcasing the top 3 stations based on maximum

number of waiting patients and variability can be seen in Figure 4, which shows
how the number of patients at the stations with the strongest bottleneck effect in
the given scenario has changed over time in the simulation.

Figure 3: Maximum number of waiting patients in SC0

As for the comparison between the various triage levels, these values can be
seen on Figures 5 and 6.

Based on the distributions and probabilities of the Hungarian hospital, not a
single triage level 1 patient was admitted to ED during the simulated day. Triage
stage 2, of course, had the shortest average time, while others had significantly
longer times, with a bottleneck in the outcome management phase after the visit
process.

Patient Flow Analysis with a Custom Simulation Engine 651

Figure 4: Patient number trends in SC0

Figure 5: Average times spent in the simulation per triage level in SC0

652 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

Figure 6: Distribution of times spent at the various stations per triage level in SC0

Patient Flow Analysis with a Custom Simulation Engine 653

5.2.2 Scenario1

As with Scenario 1, reducing emergency department staffing and increasing the
proportion of urgent patients has led to some interesting results in waiting and
turnaround times. As can be clearly seen in Figure 7, the difference from the
SC0 results is that the maximum aggregate waiting and turnaround times at each
station are almost minimal.

Figure 7: Longest combined times in SC1

The durations hold despite the fact that, as shown in Figure 8, the number
of patients waiting at the same time has almost halved compared to the outliers
in SC0 due to lower arrival times (with the outliers being the Pre-Visit, Manage
Outcome, and Diagnosis Establishment).

Examining the top 3 trends in Figure 9 supports our hypothesis that lower
arrival density reduced the number of patients waiting at a site, even at higher
triage levels. Here, the peaks occurs when most patients need a clinician (in the
simulated case, when preparing or performing radiology examination and during
the outcome management), as only one of the clinicians in each role (except the
generic operator) is on call during SC1. However, even at the peak, the weighted
trend reaches a lower maximum compared to SC0.

The averaged times per triage stage in Figure 10 also confirm one of the key
expectations of the simulation. While triage stages 1 and 2 are proportionally faster
than the other stages, they are not exceptionally fast-for example, the average
duration of Triage Level 5 is not significantly higher than Triage Level 1 (the high

654 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

Figure 8: Maximum number of waiting patients in SC1

Figure 9: Patient number trends in SC1

values for Triage Levels 3 and 4 may be due to the longer path they follow in the
simulation in addition to the arrival time).

They are treated earlier than other patients, they have to wait much less at

Patient Flow Analysis with a Custom Simulation Engine 655

Figure 10: Average times spent in the simulation per triage level in SC1

many bottleneck stations, as can be seen in Figure 11, but their waiting times are
not much shorter than those of other patients, and due to congestion and resource
constraints, it is not even fully guaranteed that, for example, a level 1 patient will
be treated faster than a level 2 patient, because some critical processes cannot be
interrupted.

Figure 11: Distribution of times spent at the various stations per triage level in
SC1

656 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

5.2.3 Scenario2

Scenario 2 represented the next level of workload complexity in patient flow. The
goal was to see if the occurrence of higher triage levels and the reduction in hospital
staffing would have better highlighted and made visible certain bottlenecks in the
model, what the effect would be if more urgent triage levels were more likely than
average, and if, despite being fully staffed, the mass of patients arrived in the ED
much faster, about twice as fast as normal. And the effect proved to be very
interesting. As can be seen immediately in Figure 12, wait times for the stations
identified as bottlenecks in the previous scenarios shrink to nearly insignificant
amounts compared to registration, where some patients would have to wait up to
an almost unrealistic four hours to even be admitted.

Figure 12: Longest combined times in SC2

This shift is also reflected in the maximum number of patients waiting at the
same time, as shown in Figure 13. Diagnosis Establishment, Manage Outcome, and
Pre-Visit stations in the simulation can still be considered as outliers, but due to
crowding at patient admission, they are significantly exceeded by register patient
and evaluate urgency.

The exact cause and trajectory of overcrowding are also clearly evident in the
weighted trends shown in Figure 14. The number of patients waiting at the same
time was slightly higher at the beginning than in the previous scenarios, but around
the middle of the simulation there was a huge increase in overcrowding that affected
subsequent phases.

Patient Flow Analysis with a Custom Simulation Engine 657

Figure 13: Maximum number of waiting patients in SC2

Figure 14: Patient number trends in SC2

However, Figures 15 and 16 also show that prioritisation of triage levels was
adhered to despite system congestion. The average turnaround time for patients in
triage levels 1 and 2 was remarkably fast in the simulation, spending a relatively
large amount of time primarily at the Register and Define Therapy stations, while

658 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

patients in less urgent cases were in the simulation for up to three to four hours,
with a significant amount of waiting time spent at the registration desk.

Figure 15: Average times spent in the simulation per triage level in SC2

Figure 16: Distribution of times spent at the various stations per triage level in
SC2

Patient Flow Analysis with a Custom Simulation Engine 659

5.2.4 Scenario3

Scenario 3 was the most critical simulation and the most important for our further
research, as we attempted to create a patient flow whose points and biases reflected
the characteristics of an actual epidemic compared to the base case. In this case,
the emergency department was visited only by urgent patients, typically with a
triage level of 3 or higher, and the flow was slowed by the fact that although the
number of staff was increased, the passage through the phases was much slower
because of mandatory decontamination. Figure 17 shows the primary consequence:
average wait and turnaround times per station are significantly longer than for the
original cases (especially considering that the majority of cases here required urgent
care).

Figure 17: Longest combined times in SC3

The number of patients waiting at the same time has also increased significantly,
as can be seen in Figure 18. In addition to the bottlenecks defined so far, the one
that stands out is the Hypthosize, the step in the visit process where the patient
is first seen by a physician in our model rather than by various nurses and generic
operators.

This increase can also be seen in the top 3 trends in Figure 19, which are not
only much higher than the results in the previous scenarios, but the peak is not as
much of an outlier point as in previous scenarios, but an extended phase that takes
up a significant portion of the simulation runtime. In other words, the congestion
problem started much earlier, and as the later phases slowed, the number of patients

660 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

Figure 18: Maximum number of waiting patients in SC3

in the backlog did not start to decline as much as in the earlier cases, even though
there should have been more staff available and the patients would have warranted
a faster process due to the high triage levels.

Figure 19: Patient number trends in SC3

Patient Flow Analysis with a Custom Simulation Engine 661

Figures 20 and 21 also confirm that, as expected, almost exclusively patients
with a triage level of 3 or more were admitted to the emergency department. On
average, levels 1 and 2 were completed within an hour. As for the time distribution,
it is interesting to note that it is quite similar for the three triage levels, with a
significant proportion being spent in Register Patient, Define Therapy and Establish
Diagnosis.

Figure 20: Average times spent in the simulation per triage level in SC3

Figure 21: Distribution of times spent at the various stations per triage level in
SC3

662 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

5.2.5 Scenario4

Based on Scenario3, then, it looked strongly as if simply increasing staffing would
not lead to proportionally faster patient flow in the emergency department model.
However, in our analyses, we felt that this should not be a generalisation. Therefore,
for the fourth scenario, we essentially combined two earlier scenarios by combin-
ing the most extreme and in some respects worst Scenario2 with the significantly
increased staffing of Scenario3. Figure 22 already shows that the average waiting
and turnaround times are much more similar to the baseline Scenario0 than to the
original Scenario2.

Figure 22: Longest combined times in SC4

As can be seen in Figure 23, the metric of most patients waiting in one place at
one time have also changed: Although most stations still have 4-6 patients waiting
at the same time, the number is much more balanced because bottleneck stations
no longer have as many patients stopped at the same time as they did originally.

This smoothing and apparent reweighting is also reflected in the top 3 trends
in Figure 24. The trend almost follows a pattern, with patient peaks at each phase
pccuring in a nearly synchronous manner, rather than showing larger and more
severe outliers as the simulation nears its end.

Looking at the metrics in Figures 25 and 26, it is noticeable that this time we
had no patients in triage level 5, i.e., the least severe patient category, which makes
the improved results in the previous figures even more obvious. Triage levels 1 and
2 took almost half as much time as the least severe patients. In addition, the first

Patient Flow Analysis with a Custom Simulation Engine 663

Figure 23: Maximum number of waiting patients in SC4

Figure 24: Patient number trends in SC4

two triage levels are similar in their time distribution, compared to levels 3 and
4, where several factors contributed to a longer duration relative to each other.
Thus, while in Scenario3 the increase in staffing did not appear to reduce phase
wait and turnaround times as much proportionately due to longer durations, here

664 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

the increase proved to be significantly effective.

Figure 25: Average times spent in the simulation per triage level in SC4

Figure 26: Distribution of times spent at the various stations per triage level in
SC4

Patient Flow Analysis with a Custom Simulation Engine 665

5.3 Discussion

In reviewing the simulation results, we found the following. First, the expectations
for each scenario were either met or deviations occurred that can be interpreted
based on the simulation run. Thus, despite the fact that the modelling toolbox itself
has been simplified in line with our original objective, the model functions with
the same accuracy. For example, with input from Hungarian and Italian hospital
sources, the results of Scenario0 meet all specifications, from patient waiting times
through triage level prioritisation to the maximum number of patients waiting at
any one location. For the additional scenarios, the biases also yielded the expected
results, so we can say that the reduced modelling toolkit, supported by scripts
based on the SpiffWorkflow library, met our expectations and can be used
for further simulations.

The second most important observation from the results is that an increase
in the number of staff in the emergency department does not necessarily
mean an automatic acceleration of patient flow (and at this point, the sim-
ulation has not even been extended to include elements such as the limited space
available for equipment and testing). However, there are some points where
increased staffing does provide a boost, such as in patient registration
and emergency assessment , where increased staffing not only prevents these
stations from becoming bottlenecks, but also helps prevent overcrowding in later
stages of patient flow.

Examination of the trend plots for each scenario also shows that overcrowding
does not start immediately, with the exception of SC3, where overcrowding was
much more continuous due to the time gained from decontamination, with the
peak typically occurring in the middle of the Emergency Department simulation,
typically at points where throughput was already more critical. So, if the goal
is to allocate resources more efficiently, it is certainly worthwhile to
increase staffing during these periods and decrease it thereafter .

Finally, in all scenarios, it has been shown that the most problematic phases in
the patient flow are determining therapy and waiting for the visit to be evaluated.
If the goal is to comply with COVID recommendations and reduce potential in-
fection rates, these are the stages of patient flow where it is worth either reducing
the time spent in the waiting room or, if this is not possible, providing pa-
tients with more separate, well-ventilated waiting rooms where they can
wait for results without risking an extended stay that could reduce the
effectiveness of infection prevention .

Moreover, unlike many commercial solutions such as Visual Paradigm1, Simcad
Pro Health Simulation Software2, or Simul83, our solution is a significant improve-

1Visual Paradigm — How to Create BPMN Diagram? URL: https://www.visual-paradigm.
com/tutorials/how-to-create-bpmn-diagram/. [Accessed 24-Jan-2023]

2Simcad Simulation Software — Patient Flow Simulation: Predictive Modeling and Analytics,
URL: https://www.createasoft.com/patient-flow-simulation. [Accessed 24-Jan-2023]

3Simul8 — Improve patient flow and enhance service quality. URL: https://www.simul8.com/
applications/healthcare/improving-emergency-department-processes-with-simulation.
[Accessed 24-Jan-2023]

https://www.visual-paradigm.com/tutorials/how-to-create-bpmn-diagram/
https://www.visual-paradigm.com/tutorials/how-to-create-bpmn-diagram/
https://www.createasoft.com/patient-flow-simulation
https://www.simul8.com/applications/healthcare/improving-emergency-department-processes-with-simulation
https://www.simul8.com/applications/healthcare/improving-emergency-department-processes-with-simulation

666 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

ment in that it provides both free modeling and model execution, the source code of
the modules used can be modified freely, as can the simulation’s exact elements and
output. In addition, the simplified modelling toolset and the BPMN file format do
not restrict the usage of the created model, so if a research team has access to alter-
native simulation systems, the generated model may be utilized as-is or with minor
modification. And its usage in its current form, maybe with minor enhancements,
enables it to be utilized in conjunction with other simulation and assessment tools
or by other processes. For instance, the data may be automatically merged with the
hospital’s measurements, which can then be run through Jimenez and Peng’s tool
[11] to create an accurate picture of the possibility of COVID spreading in a par-
ticular department or institution. Since the output is customizable, it may be used
to study a broad variety of optimisation tasks, answering the demand mentioned
by Yousefi et al [28]. The output and Python-based framework will presumably be
of great value for reinforcement learning.

6 Conclusions

Our research is therefore currently at a stage where we have a modelling toolkit that
can be readily used by researchers in other fields, as well as a simulation environ-
ment built from open-source components that can capture metrics and observations
according to our needs, and which has already been able to provide valuable obser-
vations in its current form. There are, of course, a number of active directions in
which we would like to develop this simulation solution further. The first and most
obvious would of course be to obtain real Hungarian hospital data, with particular
emphasis on data collected during the pandemic, to refine and improve the simu-
lation, which is subject to ethical approval, and the application process is already
underway. In addition, we plan to extend the simulation in its current form to
include additional agents, such as constraints on equipment and rooms and more
complex manipulation of patient arrival density using distribution and probability
methods published in literature. We hope that the tools, method, and model re-
sulting from our research will advance to the point where they become a valuable
source of information for healthcare professionals to reduce the impact of cases such
as COVID and improve hospital efficiency and patient care.

References

[1] About Modeler — Camunda Platform 8 Docs. URL: https://docs.camunda.
io/docs/components/modeler/about-modeler/. [Accessed 15-Sep-2022].

[2] Arnaud, E., Elbattah, M., Ammirati, C., Dequen, G., and Ghazali, D. Use
of artificial intelligence to manage patient flow in emergency department dur-
ing the COVID-19 pandemic: A prospective, single-center study. Interna-
tional Journal of Environmental Research and Public Health, 19(15):9667,
2022. DOI: 10.3390/ijerph19159667.

https://docs.camunda.io/docs/components/modeler/about-modeler/
https://docs.camunda.io/docs/components/modeler/about-modeler/
https://doi.org/10.3390/ijerph19159667

Patient Flow Analysis with a Custom Simulation Engine 667

[3] Business Process Model And Notation Specification Version 2.0. URL: https:
//www.omg.org/spec/BPMN/2.0/. [Accessed 10-Sep-2022].

[4] Currie, C., Fowler, J., Kotiadis, K., Monks, T., Onggo, B., Robertson, D., and
Tako, A. How simulation modelling can help reduce the impact of COVID-19.
Journal of Simulation, 14(2):83–97, 2020. DOI: 10.1080/17477778.2020.

1751570.

[5] Dieckmann, P., Torgeirsen, K., Qvindesland, S., Thomas, L., Bushell, V., and
Langli Ersdal, H. The use of simulation to prepare and improve responses to
infectious disease outbreaks like COVID-19: Practical tips and resources from
Norway, Denmark, and the UK. Advances in Simulation, 5(1):1–10, 2020.
DOI: 10.1186/s41077-020-00121-5.

[6] Dinh, M. and Berendsen Russell, S. Overcrowding kills: How COVID-19 could
reshape emergency department patient flow in the new normal. Emergency
Medicine Australasia, 33(1):175–177, 2021. DOI: 10.1111/1742-6723.13700.

[7] El-Bouri, R., Taylor, T., Youssef, A., Zhu, T., and Clifton, D. Machine learning
in patient flow: A review. Progress in Biomedical Engineering, 3(2):022002,
2021. DOI: 10.1088/2516-1091/abddc5.

[8] He, L., Madathil, S., Oberoi, A., Servis, G., and Khasawneh, M. A sys-
tematic review of research design and modeling techniques in inpatient bed
management. Computers & Industrial Engineering, 127:451–466, 2019. DOI:
10.1016/j.cie.2018.10.033.

[9] Hitzek, J., Fischer-Rosinskỳ, A., Möckel, M., Kuhlmann, S., and Slagman, A.
Influence of weekday and seasonal trends on urgency and in-hospital mortality
of emergency department patients. Frontiers in Public Health, 10, 2022. DOI:
10.3389/fpubh.2022.711235.

[10] Janbabai, G., Razavi, S., and Dabbagh, A. How to manage perioperative
patient flow during COVID-19 pandemic: A narrative review. Journal of
Cellular & Molecular Anesthesia, 5(1):47–56, 2020. DOI: 10.22037/jcma.

v5i1.29789.

[11] Jimenez, J. and Peng, Z. Covid-19 airborne transmission tool avail-
able. URL: https://cires.colorado.edu/news/covid-19-airborne-

transmission-tool-available, 2020.

[12] Kang, S. and Park, H. Emergency department visit volume variability. Clinical
and experimental emergency medicine, 2(3):150, 2015. DOI: 10.15441/ceem.

14.044.

[13] Karakusevic, S. Understanding patient flow in hospitals. URL:
https://www.abhi.org.uk/media/1215/understanding_patient_flow_

in_hospitals-nuffield-trust.pdf, 2016.

https://www.omg.org/spec/BPMN/2.0/
https://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.1080/17477778.2020.1751570
https://doi.org/10.1080/17477778.2020.1751570
https://doi.org/10.1186/s41077-020-00121-5
https://doi.org/10.1111/1742-6723.13700
https://doi.org/10.1088/2516-1091/abddc5
https://doi.org/10.1016/j.cie.2018.10.033
https://doi.org/10.3389/fpubh.2022.711235
https://doi.org/10.22037/jcma.v5i1.29789
https://doi.org/10.22037/jcma.v5i1.29789
https://cires.colorado.edu/news/covid-19-airborne-transmission-tool-available
https://cires.colorado.edu/news/covid-19-airborne-transmission-tool-available
https://doi.org/10.15441/ceem.14.044
https://doi.org/10.15441/ceem.14.044
https://www.abhi.org.uk/media/1215/understanding_patient_flow_in_hospitals-nuffield-trust.pdf
https://www.abhi.org.uk/media/1215/understanding_patient_flow_in_hospitals-nuffield-trust.pdf

668 Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki

[14] Lee, S. and Lee, Y. Improving emergency department efficiency by patient
scheduling using deep reinforcement learning. Healthcare, 8(2):77, 2020. DOI:
10.3390/healthcare8020077.

[15] Leva, D. and Sulis, E. A business process methodology to investigate or-
ganization management: A hospital case study. WSEAS Transactions on
Business and Economics, 14:100–109, 2017. URL: https://www.wseas.org/
multimedia/journals/economics/2017/a225807-059.php.

[16] Lin, Y.-K. and Chou, Y.-Y. A hybrid genetic algorithm for operating room
scheduling. Health Care Management Science, 23(2):249–263, 2020. DOI:
10.1007/s10729-019-09481-5.

[17] Litvak, E. and Long, M. Cost and quality under managed care: Irreconcilable
differences. American Journal of Managed Care, 6(3):305–12, 2000. URL:
https://pubmed.ncbi.nlm.nih.gov/10977431/.

[18] NEJM Catalyst. What Is Patient Flow? URL: https://catalyst.nejm.org/
doi/full/10.1056/CAT.18.0289. DOI: 10.1056/CAT.18.0289, [Accessed
29-Sep-2022].

[19] Otsuki, H., Murakami, Y., Fujino, K., Matsumura, K., and Eguchi, Y. Analysis
of seasonal differences in emergency department attendance in Shiga Prefec-
ture, Japan between 2007 and 2010. Acute Medicine & Surgery, 3(2):74–80,
2016. DOI: 10.1002/ams2.140.

[20] Patient flow analysis: An overview of national and international appli-
cation. URL: https://apps.who.int/iris/handle/10665/59190?locale-
attribute=es&. [Accessed 29-Sep-2022].

[21] Salah, H. and Srinivas, S. Predict, then schedule: Prescriptive analytics ap-
proach for machine learning-enabled sequential clinical scheduling. Computers
& Industrial Engineering, page 108270, 2022. DOI: 10.1016/j.cie.2022.

108270.

[22] Schramm, P., Vaidyanathan, A., Radhakrishnan, L., Gates, A., Hartnett, K.,
and Breysse, P. Heat-related emergency department visits during the north-
western heat wave—United States, June 2021. Morbidity and Mortality Weekly
Report, 70(29):1020–1021, 2021. DOI: 10.15585/mmwr.mm7029e1.

[23] SpiffWorkflow 1.1.6 documentation. URL: https://spiffworkflow.

readthedocs.io/en/latest/, 2014. [Accessed 22-Sep-2022].

[24] Tavakoli, M., Tavakkoli-Moghaddam, R., Mesbahi, R., Ghanavati-Nejad, M.,
and Tajally, A. Simulation of the COVID-19 patient flow and investigation
of the future patient arrival using a time-series prediction model: A real-case
study. Medical & Biological Engineering & Computing, 60(4):969–990, 2022.
DOI: 10.1007/s11517-022-02525-z.

https://doi.org/10.3390/healthcare8020077
https://www.wseas.org/multimedia/journals/economics/2017/a225807-059.php
https://www.wseas.org/multimedia/journals/economics/2017/a225807-059.php
https://doi.org/10.1007/s10729-019-09481-5
https://pubmed.ncbi.nlm.nih.gov/10977431/
https://catalyst.nejm.org/doi/full/10.1056/CAT.18.0289
https://catalyst.nejm.org/doi/full/10.1056/CAT.18.0289
https://doi.org/10.1056/CAT.18.0289
https://doi.org/10.1002/ams2.140
https://apps.who.int/iris/handle/10665/59190?locale-attribute=es&
https://apps.who.int/iris/handle/10665/59190?locale-attribute=es&
https://doi.org/10.1016/j.cie.2022.108270
https://doi.org/10.1016/j.cie.2022.108270
https://doi.org/10.15585/mmwr.mm7029e1
https://spiffworkflow.readthedocs.io/en/latest/
https://spiffworkflow.readthedocs.io/en/latest/
https://doi.org/10.1007/s11517-022-02525-z

Patient Flow Analysis with a Custom Simulation Engine 669

[25] Terning, G., Brun, E., and El-Thalji, I. Modeling patient flow in an emer-
gency department under COVID-19 pandemic conditions: A hybrid modeling
approach. Healthcare, 10(5):840, 2022. DOI: 10.3390/healthcare10050840.

[26] Varga, C., Lelovics, Z., Soós, V., and Oláh, T. Betegforgalmi trendek mul-
tidiszciplináris sürgősségi osztályon. Orvosi Hetilap, 158(21):811–822, 2017.
DOI: 10.1556/650.2017.30749.

[27] Won, Y., Ho Hwang, T., Roh, E., and Chung, E. Seasonal patterns of asthma
in children and adolescents presenting at emergency departments in Korea.
Allergy, asthma & immunology research, 8(3):223–229, 2016. DOI: 10.4168/

aair.2016.8.3.223.

[28] Yousefi, M., Yousefi, M., and Fogliatto, F. Simulation-based optimization
methods applied in hospital emergency departments: A systematic review.
Simulation, 96(10):791–806, 2020. DOI: 10.1177/0037549720944483.

https://doi.org/10.3390/healthcare10050840
https://doi.org/10.1556/650.2017.30749
https://doi.org/10.4168/aair.2016.8.3.223
https://doi.org/10.4168/aair.2016.8.3.223
https://doi.org/10.1177/0037549720944483

Acta Cybernetica 26 (2024) 671–711.

Towards Abstraction-based
Probabilistic Program Analysis˚

Dániel Szekeresab and István Majzikac

Abstract

Probabilistic programs that can represent both probabilistic and non-
deterministic choices are useful for creating reliability models of complex
safety-critical systems that interact with humans or external systems. Such
models are often quite complex, so their analysis can be hindered by state-
space explosion. One common approach to deal with this problem is the appli-
cation of abstraction techniques. We present improvements for an abstraction-
refinement scheme for the analysis of probabilistic programs, aiming to im-
prove the scalability of the scheme by adapting modern techniques from qual-
itative software model checking, and make the analysis result more reliable
using better convergence checks. We implemented and evaluated the improve-
ments in our Theta model checking framework.

Keywords: probabilistic systems, stochastic games, abstraction, reliability
analysis

1 Introduction

Probabilistic programs are models specified using a software source code syntax,
extended with special statements that sample values from probability distributions.
Their similarity to program source code makes them easy to use to describe complex
probabilistic systems, especially for engineers already familiar with programming.

Probabilistic programs are able to describe both probabilistic and proper non-
deterministic behavior, which is useful for creating models for reliability analysis of
complex safety-critical systems that interact with humans or external systems with
unknown behavior. In such models, the probabilistic behavior described using sam-
pling statements comes from the uncertainty inherent in the physical environment

˚Project no. 2019-1.3.1-KK-2019-00004 has been implemented with the support provided from
the National Research, Development and Innovation Fund of Hungary, financed under the 2019-
1.3.1-KK funding scheme.

aDepartment of Measurement and Information Systems, Budapest University of Technology
and Economics, Budapest, Hungary

bE-mail: szekeres@mit.bme.hu, ORCID: 0000-0002-2912-028X
cE-mail: majzik@mit.bme.hu, ORCID: 0000-0002-1184-2882

DOI: 10.14232/actacyb.298287

mailto:szekeres@mit.bme.hu
https://orcid.org/0000-0002-2912-028X
mailto:majzik@mit.bme.hu
https://orcid.org/0000-0002-1184-2882
https://doi.org/10.14232/actacyb.298287

672 Dániel Szekeres and István Majzik

of the system and the uncertain failures of hardware components of the system.
Proper non-determinism comes from the behavior of humans and external systems
interacting with the system under analysis, for which we do not have statistical
information to base probabilistic modeling on.

There are two main use cases for formulating reliability models as probabilistic
programs:

• The expressivity makes it comfortable to use programs for describing the
reliability model when the engineers are already familiar with standard pro-
gramming languages. The advantages of program code compared to other
formalisms (like the compositional language of the PRISM tool [23]) are es-
pecially apparent when the process described by the model is more complex
than the compositional structure of the model.

• The program-based approach can be advantageous when a modeling formal-
ism for which standard code generation is already available is extended with
probabilistic semantics. As an example, our Gamma tool [14] supports mod-
eling by statecharts and offers program code generation from these models.
Extending the statecharts with stochastic concepts for dependability model-
ing leads to the generation of probabilistic programs that fit for analysis.

The analysis of such models is often hindered by state-space explosion: even
when the program describing the model is relatively short, its actual state space
can become intractable large. Abstraction is a widespread approach to counteract
this problem: instead of analyzing the original model, an abstract model is created
by ignoring some information present in the original. As the abstract model is
constructed as a conservative approximation of the original, proving that a property
is satisfied by the abstract model also proves satisfaction for the original model.

The most successful implementation of the idea of abstraction is a scheme called
Counterexample-Guided Abstraction Refinement (CEGAR) [10], which automati-
cally finds the appropriate level of abstraction. It starts with a very coarse model,
analyzes it, and in case the property is violated, it generates an abstract counterex-
ample. This counterexample is checked to decide whether it appeared only because
of ignoring some information (spurious counterexample), or it actually proves vio-
lation in the original model (concretizable counterexample). In the spurious case,
a refinement of the abstraction is computed based on the counterexample, and the
CEGAR loop starts over.

In this work, we focus on the game-based framework proposed in [25] and ex-
tended in [18], and present improvements to it. We chose this approach because of
its relative success and its ability to provide both upper and lower bounds for the
analysed numeric property, giving a metric for measuring how precise the current
abstraction is with respect to the property we are trying to check. [13] extended this
scheme to domains used in classic abstract interpretation while also switching to
an abstract interpretation framework instead of the CEGAR loop. We stayed with
the original CEGAR-like refinement loop scheme. Most of the enhancements we

Towards Abstraction-based Probabilistic Program Analysis 673

implemented are based on our experiences in qualitative software model checking
[28, 15].

The game-based abstraction scheme is applicable to any analysis question that
can be formulated as computation of expected total rewards on a Markov Deci-
sion Process, which is the underlying low-level formalism we use for the semantics
probabilistic programs in this work. Our proposed changes do not constrain the
generality of this scheme any further, but in this paper, we will only focus on check-
ing probabilistic reachability properties, i.e. computing the probability of reaching
a specific set of target states.

Our contributions are the following:

1. We improved the scalability of the scheme by adapting modern techniques
from qualitative software model checking:

a) Adapted a version of Large Block Encoding to the probabilistic case.
b) Adapted the usage of inexact transition functions and formally proved

that the abstraction scheme remains sound when employing them.
c) Extended the possible abstract domains with the explicit value domain

(also known as visible variables domain).

2. We tackled the problem of convergence checking for the abstract model using
bounded value iteration, and gave an example where using standard value
iteration can lead to problems with the refinement loop.

3. We performed numerical measurements to answer research questions related
to how our improvements and extensions affect performance.

These enhancements make the probabilistic analysis of a larger set of complex
safety-critical systems possible. As these techniques are heuristic, they do not
promise to enhance performance on every reliability model used in practice, but
they give new options, which perform better on a set of practical models, some of
which are not analysable without them.

The application of bounded value iteration is a semi-exception to this: the over-
all analysis result will always be more reliable, than with standard value iteration,
while the potential performance gain from performing better refinements matters
only for some (non-empty, as we show in our measurements) subset of analysis
cases, similarly to the other enhancements.

We implemented enhancements these as a probabilistic extension of our open-
source Theta model checking framework1. The implementation only supports prob-
abilistic reachability properties for now, and for this reason, the benchmarks we
performed are also constrained to this analysis task.

Section 2 introduces the necessary mathematical and formal modeling back-
ground along with the game-based abstraction refinement scheme. Section 3 de-
scribes the main idea of bounded value iteration and shows why a reliable conver-
gence check is especially important in the abstraction refinement scheme. Section

1https://github.com/ftsrg/theta

https://github.com/ftsrg/theta

674 Dániel Szekeres and István Majzik

4 describes the technique of Large Block Encoding in general and how we incorpo-
rated it for probabilistic program analysis. Section 5 describes the Explicit Value
abstract domain and elaborates on our adaptation method. Section 6 introduces
the general idea of inexact abstract transition functions, and proposes a way to ap-
ply them in the game-based scheme. Section 7 describes our numerical experiments
and the related research questions, along with plots of the results and answers to
the research questions. Conclusions and proposals for future work can be found at
the end of the paper. The appendix contains proofs for the soundness theorems
stated in Section 6.

1.1 Related work

Here, we present the general relations between our contributions and previous
works. The formalisms used in this work are presented in Section 2. Details regard-
ing the background algorithms can be found in their respective sections (Sections
3, 4, 5 and 6).

Several different abstraction approaches have been proposed for probabilistic
systems [12, 21, 27, 17, 9, 25, 29]. Our work builds on the game-based abstraction
refinement algorithm presented in [25, 18].

Cartesian abstraction and explicit abstraction have already been applied suc-
cessfully to non-probabilistic model checking in [4] and [7, 15] respectively. We
build on these results and adapt the corresponding algorithms to the analysis of
probabilistic systems. We incorporate ideas from [19] to prove the soundness of
using these domains (the proofs can be found in the appendix). [13] extended
the same abstraction refinement algorithm to numerical abstract domains used in
abstract interpretation, similarly to our extensions. While they switched to an ab-
stract interpretation approach, we stayed with the original abstraction refinement
loop.

Large block encoding has been used in non-probabilistic model checking for
example in [6]. We use a simpler version of it to make sure that the resulting model
satisfies the constraints required by the abstraction refinement algorithm of [18].

It has been shown in [3], that employing the classic stopping criterion of value
iteration can lead to arbitrarily wrong results. We build on this result to show
that this stopping criterion can even lead to performance degradation when the
MDP is analysed using abstraction refinement. [3, 24] proposed a bounded ver-
sion of value iteration to solve the problem of convergence checking, which [20]
extended to stochastic games. We incorporated this algorithm in our abstraction
refinement implementation, and evaluated its impact on the overall performance of
the analysis.

2 General Background and Formalisms

This section introduces the necessary mathematical and formal modeling back-
ground and describes the abstraction framework that the paper builds upon.

Towards Abstraction-based Probabilistic Program Analysis 675

2.1 Probabilistic Programs
Probabilistic programs are syntactically similar to standard structured program
code with basic features, like ANSI C or lisp, but are extended with features making
them suitable for the description of random processes and probabilistic models.

The most important such feature is sampling, which draws a sample from a given
probability distribution - syntactically similar to calling pseudorandom number gen-
erators, but with different semantics. When analyzing a probabilistic program, a
sampling statement is treated as a random variable with the given distribution, and
can be either discrete or continuous with any support, even an infinite one. Prob-
abilistic program interpreters and analyzers can then simulate sample trajectories,
compute moments of expressions over program variables, etc.

In our current work, we use a probabilistic extension of ANSI C to specify
probabilistic programs. The extension means that there are some predefined func-
tions with special semantics: these functions are interpreted as proper probabilistic
sampling when analyzed.

Only discrete distributions with finite support are in the scope of this work.
Handling infinite and continuous distributions are possible future extensions planned
to be implemented in the probabilistic module of our Theta framework.

Some modern probabilistic programming constructs, like higher-order proba-
bilistic functions and observe statements are out of scope for this paper, our current
work focuses on a basic set of features that cover the most important aspects.

Example. The code of a simple running example we will use throughout this paper
can be seen in Listing 1. The program has two integer variables, x and y, both
initially set to 0. When we show different kinds of state spaces for this program,
we will restrict their domain to the set t0, 1, 2, 3u, instead of the complete set of
integers.
main() {

int x = 0, y = 0;
while(y <= x) {

// probabilistic assignment with a biased coin -flip
x = x + coin (0.4);
if(x > 2) {

//havoc: assignment to a non -deterministic value
y = *;

}
}
assert (!(x < 3));

}

Listing 1: Probabilistic C code of a simple probabilistic program

These variables are repeatedly changed in a loop while the value of y is less than
or equal to the value of x. In this loop, we first “flip a biased coin” by calling a
sampling function, and increment x by the result (1 with probability 0.4, 0 with the
remaining probability 0.6). If x is greater than 2, we set y to a non-deterministic
value from its domain. In software model checking, this action is called havoc, and
we denote it as y “ ˚ here.

676 Dániel Szekeres and István Majzik

After exiting the loop, we assert that x is less than 3. Assert calls lead to
an error state if the expression they contain evaluates to false. When analysing
this probabilistic program, we will be interested in the probability of violating this
assertion.

2.2 The Probabilistic Control Flow Automaton formalism
The control flow automaton (CFA) formalism is a widespread formal model used
for the qualitative analysis of software source code. Probabilistic programs have
similar structure to classical source code, but some functions are equipped with
special probabilistic semantics. To enable the analysis of such programs, we use
an extension of the CFA formalism: the Probabilistic Control Flow Automaton
(PCFA).

The definition we give for this formalism is similar to the definition of proba-
bilistic programs in [18], but we would like to keep the notion of the program itself,
and the analysis formalism used for model checking separate, as is standard in
classical software model checking. Treating it as an extension of the classical CFA
formalism also makes the relationship between techniques used in this paper and
techniques of classical software model checking clearer.

Definition 1 (Probabilistic Control Flow Automaton). A Probabilistic control
flow automaton (PCFA) is a tuple P “ ppL,Eq, linit, V ar, vinit, S, Stmtq, where:

• pL,Eq is a finite directed control-flow graph; the nodes of the graph are called
the locations of the PCFA, and the edges represent successor relationships
between them

• linit P L is the initial location

• V ar is a finite set of variables

• vinit P UV ar is the initial valuation (described below)

• S is a set of statements (described below)

• Stmt : E ÝÑ S is a function mapping each edge to an associated statement

The definition uses a set of variables to represent the data state of the program.
Each variable v has a type, or equivalently, a countable domain denoted byDompvq,
which is the set of values it can take. The set of valuations UV ar for the variable
set V ar consists of functions mapping every variable v P V ar to an element of their
domain Dompvq.

Although this definition allows only a single initial valuation, non-deterministic
variable initialization can be modeled by using HAVOC statements at the beginning
of the program.

A statement s : UV ar á 2DpUV arq is a probabilistic valuation transformer: given
the current valuation, it returns a set of distributions of resulting valuations after
applying the statement. It is a partial function, which is how we handle conditional

Towards Abstraction-based Probabilistic Program Analysis 677

statements (ASSUMEs, see below): a statement is enabled by a valuation v, if it is
defined at v. The result is a set of valuations, to make the representation of non-
deterministic statements possible. In this paper, this is only used in the case of
HAVOC statements, which result from calling functions with unknown results (e.g.
asking for user input).

We use the following types of statements:

• ASSIGN(v P V ar, e : UV ar ÝÑ Dompvq): The result is a singleton set of a dirac
distribution of a single resulting valuation. This valuation maps the variable
v to the result of applying the function e to the original valuation, and maps
all other variables to their value in the original valuation. Used for assign-
ment statements, where the right-hand side can be any (type-compatible)
expression.

• ASSUME(e : UV ar ÝÑ tJ,Ku): The partial function is defined exactly for those
valuations that the function e maps to J. For these valuations, it is basically
an identity function, the returned set is a singleton set of a dirac distribution of
the original valuation. Used for conditions in the program, like if statements
and loop condition checks.

• HAVOC(v P V ar): The resulting valuation set is t diracpU rvÝÑvis
orig q | vi P Dompvq u,

where U rvÝÑvis
orig is a valuation that maps v to vi and any other variable to its

value in the original valuation. This statement is used for assigning a to-
tally non-deterministic value to a variable from its domain. Combined with
an assume statement, it can be used to assign non-deterministic values to a
variable from a constrained set of its full domain.

• PROB(d : DpSdetq): This is the only statement that produces a distribution
that is not a dirac distribution. It is parameterized by a distribution over
other deterministic statements – Sdet is the set of statements that map only to
singleton sets. This is needed as we defined the result of applying a statement
as a set of distributions, not distributions of sets. The resulting set has a single
distribution in it. This distribution over valuation sets can be derived from
the parameter distribution by computing the resulting valuation set from
each statement with non-zero probability in the parameter distribution, and
assigning the same probability to the resulting valuation as the statement.
If multiple substatements lead to the same valuation, their probabilities are
summed.

• SKIP: Enabled in any valuation, and does not change the valuation. Used for
simplifying control flow structures like loops.

In most cases the code under analysis contains assert calls, which check the
truth of a Boolean expression. If it evaluates to true, the program continues nor-
mally. If the expression is false, an error is raised. When transforming the code to
a (P)CFA, assert calls are transformed to two ASSUME edges, one of them leading to
the next location in the normal flow of the program, and the other one entering an

678 Dániel Szekeres and István Majzik

ASSIGN(x, 0)

ASSIGN(y, 0)

ASSUME(y<=x)

PROB
0.6: ASSIGN(coin_return, 0)

0.4: ASSIGN(coin_return, 1)

ASSIGN(x, x+coin_return)

ASSUME(¬(y<=x)) ASSUME(x<3)

ASSUME(¬(x<3))

0

1

2

init

3

4

5 6
ASSUME(x>1)

7
HAVOC(y) SKIP

8 X

error

✓

final

ASSUME(¬(x>1))

Var={x, y, coin_return)

(a) Single-block encoding

0

1

ASSIGN(x, 0)
ASSIGN(y, 0)

ASSUME(y<=x)

PROB(...)
ASSIGN(x, x+coin_return)

ASSUME(¬(y<=x))

ASSUME(¬(x<3))

ASSUME(x<3)

init

3 ASSUME(x>1) 5HAVOC(y) SKIP

6 X
error

✓
final

ASSUME(¬(x>1))

Var={x, y, coin_return)

2

4

(b) Large-block encoding

Figure 1: PCFA of the running example

error location. Checking the probability of failing an assertion thus can be reduced
to computing the probability of entering an error location.

We will describe the formal semantics of PCFA models denotationally by de-
riving a Markov Decision Process from them later, but for intuitive understanding,
we describe the operational semantics of a PCFA can be described semi-formally
here:

• The model starts in the location linit with the valuation vinit.

• In each step, an outgoing edge e is selected non-deterministically from the
outgoing edges of the current location such that Stmtpeq is enabled by the
current valuation vcurr.

• An element of the set Stmtpeqpvcurrq is selected non-deterministically, which
is a distribution over the possible next valuations.

• A valuation vnext is sampled from this distribution. The location of the
model in the next step is the location at the end of the selected edge, and the
valuation in the next step is vnext.

• If the current location has no outgoing edges, the model stops.

Precise formal denotational semantics can be found for example in [5].

Example. The PCFA of our running example can be seen in Figure 1a. Although
we did not need it in the code, an auxiliary variable coin_return is added to keep

Towards Abstraction-based Probabilistic Program Analysis 679

track of the value returned from the coin function call. This is needed because we
need to separate the sampling call and the assignment to two edges.

Deciding whether the body of the loop should be executed or skipped is done
using two edges with opposing ASSUME statements. The PROB statement corresponds
to the call to the special sampling function coin in the code. This statement sets
the coin_return variable to either 1 with probability 0.4 or to 0 with probability
0.6. After this, an ASSIGN increments the value of the variable x by the value of
coin_return.

The if statement of the code is converted to two edges with opposing ASSUMEs,
similarly to the while loop. Non-deterministic assignment is done through an edge
with a HAVOC statement. The body of the loop ends with a SKIP statement leading
back to the head of the loop. The assert call in the code is converted to two ASSUMEs,
one leading to the (non-erroneous) final state, the other leading to the error state.

Figure 1b shows another possible PCFA for the same program, where large block
encoding is used to create a more compact model: a single transition here applies
multiple statements in succession. This will be explained in detail in Section 4.

2.3 Markov Decision Processes
Definition 2 (Markov Decision Process). A Markov Decision Process (MDP) is a
tuple M “ pS, sinit, A,Av, δq where

• S is a finite set of states

• sinit P S is the initial state

• A is a finite set of actions

• Av : S ÝÑ 2A is a function mapping states to the set of available actions in
the state

• δ : S ˆ A á DpSq is the transition function of the MDP. It is a partial
function, which must be defined for every ps, aq where a P Avpsq. For such a
pair, it gives the distribution of successor states after taking the action a in
state s.

The transition notation s
a
ÝÑ µ is used for δps, aq “ µ. We will also use the

notation δps, a, s1q “ δps, aqps1q for the probability of transitioning from s to s1

when taking the action a.
A lot of analysis tasks on MDPs use the notion of reward functions on the MDP.

A state reward function on an MDP is a function r : S ÝÑ Rě0 that assigns rewards
to each state in the MDP.

A strategy on an MDP is a function S˚ ÝÑ DpAq that assigns a distribution over
actions to all possible state sequences. A memoryless strategy depends only on the
last state. A deterministic strategy uses only dirac distributions.

In this paper, we will focus on probabilistic reachability properties: computing
the probability of reaching a given set of target states. Such properties can be

680 Dániel Szekeres and István Majzik

formulated using rewards: the reward function assigns 1 to the target states, and
0 to all others. The target states must be made absorbing. The expected value of
the accumulated reward until absorption with a fixed strategy gives the probability
of reaching one of the target states. Computing optimal strategies thus can give
the maximal or minimal probability of hitting an error if the targets are the error
states of the system.

2.4 MDP semantics of probabilistic programs
The denotational semantics of probabilistic programs can be defined by deriving
an MDP from the probabilistic control flow automaton of the program.

Definition 3 (MDP of a PCFA). The MDP describing the semantics of the PCFA
P “ ppL,Eq, linit, V ar, vinit, S, Stmtq is M “ pS, sinit, A,Av, δq, where

• S “ Lˆ UV ar

• sinit “ plinit, vinitq

• @e “ pl, l1q P E, v P Uvar : pv enables Stmtpeqq ðñ p@d P Stmtpeqpvq : D!a P
A : a P Avppl, vqq ^ δppl, vq, aq “ joinpl1, dqq,
where the distribution joinpl, dq P DpLˆUvarq is defined by joinpl, dqppl, vqq “
dpvq, and for any other location, it is 0. This condition defines A,Av, δ.

A state can be identified by selecting the location of the program and the value
of each variable. Therefore, the state-space of the derived MDP is the Cartesian
product of the set of program locations and valuations of the variable set. The
initial state of the MDP is derived from the initial location and initial valuation of
the PCFA.

The edges of the PCFA are transformed to actions of the MDP. For each state
s “ pl, v0, ..., v|V ar|q of the MDP, we take the edges whose statement is enabled by
the valuation of the state. For each such edge, we compute the possible distributions
resulting from applying the statement of the edge. Let l1 denote the ending location
of the edge. For each computed distribution, we assign a new action to s leading
to that distribution, with l1 added as the location part of the states.

Example. The MDP obtained from the semantics of our running example can be
seen in Figure 2. For the sake of readability, we used the PCFA with large-block
encoding (Figure 1b) to reduce the number of states. The value of each variable is
unknown at the beginning, so the initial data state can be anything. To make the
figure easier to read, the possible initial states are merged and the unknown values
are indicated by question marks. As a statement cannot lead to both probabilistic
and (proper) non-deterministic choice in the next state, we have either only a single
action optionally with multiple states in the next state distribution or multiple
actions, each leading to dirac distributions in each state. Green nodes highlight
the states where a probabilistic decision is performed, the red node highlights the
non-deterministic decision (multiple possible actions).

Towards Abstraction-based Probabilistic Program Analysis 681

0
x=?, y=?

c_r=0

0
x=?, y=?

c_r=1

2
x=0, y=0

c_r=0

3
x=0, y=0

c_r=0
0.4

3
x=1, y=0

c_r=1

2
x=1, y=0

c_r=1

3
x=1, y=0

c_r=0

3
x=2, y=0

c_r=1

4
x=2, y=0

c_r=1

2
x=1, y=0

c_r=0

4
x=2, y=1

c_r=1

4
x=2, y=2

c_r=1

2
x=0, y=0

c_r=1

2
x=2, y=0

c_r=1

2
x=2, y=1

c_r=1

2
x=2, y=2

c_r=1

4
x=2, y=3

c_r=1

1
x=2, y=3

c_r=1

6
x=2, y=3

c_r=1

...

...

...

X

0.6

0.4

0.6

0.4

0.6

0.4

0.6

0.4

0.6

0.4

0.6

0.4

0.6

1
x=?, y=?

c_r=0

1
x=?, y=?

c_r=1

5
x=0, y=0

c_r=0

5
x=1, y=0

c_r=1

5
x=1, y=0

c_r=0

5
x=2, y=0

c_r=1

5
x=2, y=1

c_r=1

5
x=2, y=2

c_r=1

5
x=2, y=3

c_r=1

1
x=1, y=0

c_r=1

1
x=1, y=0

c_r=1

1
x=2, y=0

c_r=1

1
x=2, y=1

c_r=1

1
x=2, y=2

c_r=1

Figure 2: MDP of the running example corresponding to the PCFA in Figure 1b.
c_r stands for the auxiliary variable coin_return.

2.5 Stochastic Games
Stochastic games are an extension of MDPs where instead of a single agent, two
different players make decisions. This allows representing two separate kinds of non-
determinism, which are resolved according to two separate strategies with different
objectives. The relevance of Stochastic Games to this work is that they are used
as abstract models for abstraction-based analysis of probabilistic programs.

Definition 4. A Turn-Based Stochastic Two-Player Game is a tuple G “ pS “
S1 Z S2, sinit, A,Av, δq, where:

• S is a finite set of states, partitioned into the sets of Player 1 (S1) and Player
2 (S2) states

• sinit P V is the initial state

• A is the set of actions

• Av : S ÝÑ 2A is a function mapping each state to the set of available actions.

• δ : S ˆ A á DpSq is the transition function of the game. It is a partial
function, which must be defined for every ps, aq where a P Avpsq. For such a
pair, it gives the distribution of successor states after taking the action a in
state s.

682 Dániel Szekeres and István Majzik

Definition 5 (Play). A play ω in a two-player simple stochastic game G “ pS “
S1 Z S2, sinit, A,Av, δq is a (possibly infinite) sequence of state-action pairs ω “
ps11, a

1
1qps

2
1, a

1
2qps

1
2, a

1
2qps

2
2, a

2
2q . . . such that

• s11 “ sinit

• @sij : aij P Avpsijq

• @si2 : δpsi1, a
i
1, s

i
2q ą 0

• @si1 : δpsi´1
2 , ai´1

2 , si1q ą 0

In most applications, the goal of one player is to minimize the (expected) reward
gathered during a play according to a specified reward function, while the other
player aims to maximize it. A reward function assigns rewards to states or transi-
tions. When the game enters a state or takes a transition, the reward associated
with that state or transition is collected.

Probabilistic reachability properties can be formulated as a total reward com-
putation problem the same way as for MDPs: the reward function assigns 1 to the
target states, and 0 to all others, and the target states must be made absorbing.

Throughout this work, the shortened name Stochastic Game (SG) will refer to
turn-based stochastic two-player games.

A special case is when the goals of the two players coincide, which is equivalent
to an MDP. Here, we will consider only those cases when the players have opposite
goals, as the cooperative case can be analysed as an MDP.

Definition 6 (Strategy). A Player 1 (resp. Player 2) strategy in a stochastic
game G “ pS “ S1 Z S2, sinit, A,Av, δq is a function Strat : S˚S1 ÝÑ DpAq (resp.
S˚S2 ÝÑ DpAq) from the set of finite plays ending in a Player 1 (resp. Player 2)
state to the set of distributions over Player 2 (resp. Player 1) states, such that
@p P S˚S1presp.@p P S

˚S2q : Stratppqpaq ą 0.0 ùñ a P Avpendppqq.

For probabilistic reachability properties, there always exists a pair of memory-
less deterministic Player 1 and 2 strategies that are optimal among all strategies
[11]. This means that we can focus only on this finite subset of strategies, making
synthesis of optimal strategies much easier than in the general case. We only need
to determine a single optimal action to take for each state, not a distribution over
actions for every possible state sequence.

If a fixed strategy is considered for each player, we can equip the set of plays
on the game with a probability measure derived from the strategies and the prob-
abilistic transition function of the game. Informally, the probability of a play is
product of the probability of each transition taken in the play. The probability of
a transition is the probability that the player takes an action that can lead to the
given transition according to the fixed strategy multiplied by the probability that
the action results in the given transition. A more precise formal specification of the
probability measure can be found e.g. in [2, Chapter 10].

The reachability probability of a set of target states is the probability measure
of the set of all plays that contain at least one target state.

Towards Abstraction-based Probabilistic Program Analysis 683

From now on we will assume that the game is played by a maximizer and
minimizer (referring to their goals with respect to the reward function), and refer
to their state sets as Smin and Smax respectively.

Definition 7 (Value Function for reachability properties). The value function
V : S ÝÑ R for a game G “ pS “ Smax Z Smin, sinit, A,Av, δq with respect to a set
of target states T Ă S is the least solution to the Bellman equations:

V psq “

$

’

’

’

&

’

’

’

%

maxaPAvpsq V ps, aq if s P Smax

minaPAvpsq V ps, aq if s P Smin

1 if s P T
0 if T is unreachable from s

The importance of the value function comes from the fact that a strategy is
optimal if and only if it always chooses an optimal action with respect to the value
function.

The value of a state is equal to the expected accumulated reward if the cor-
responding optimal strategies are used. If the reward function is derived from a
reachability property, the value of a state is equal to the probability that a target
state is reached from that state if the players follow the optimal strategies, which
is exactly what we aim to calculate for the initial state.

2.6 Abstraction-based analysis
The aim of abstraction is to make the analysis of a model or program tractable
by analyzing an abstract model with a smaller state-space than the original model
under analysis. This is done by discarding information which is deemed not useful
for proving or disproving the target property.

The resulting state-space is called the abstract state-space, while the original one
is called the concrete state-space. As a new state space is created, the transition
relation of the system is also lifted to this state space, resulting in the abstract
transition function.

Discarding information must be performed in a conservative way: the abstract
model must be built in such a way that the property being checked is satisfied by
the abstract model only if it is satisfied by the original system.

The reverse need not be true. If the target property is disproved in the abstrac-
tion, we can try to concretize the proof of non-satisfaction, mapping the abstract
counterexample back to the concrete state-space, thereby proving that the original
system does not satisfy the target property either. Obviously, this can only be done
if the original system does not satisfy it.

Different approaches for retaining only a fraction of the original information
is captured by different abstract domains. Abstract domains define what kind of
information can be contained in an abstract state and specify the correspondence
between concrete and abstract states.

The notion of abstraction precision is used to differentiate between retaining
different parts of the originally available information.

684 Dániel Szekeres and István Majzik

Abstract domains can have a convenient property called disjointness, which
means that for a given precision, exactly one abstract state corresponds to each
concrete state. In other words, the abstract states considered as sets of concrete
states are disjoint for a fixed precision. This makes soundness proofs often much
simpler than the general case.

2.7 Predicate Abstraction

Predicate abstraction can be applied to systems described symbolically using a set
of state variables. It creates an abstract state-space by defining a set of predicates:
Boolean expressions over these variables. The precision of the abstraction is the
set of predicates.

As the concrete states assign exactly one value to each program variable, each
predicate can be evaluated unambiguously for a concrete state. The abstract state
corresponding to the concrete state is the Boolean vector resulting from evaluating
all of the predicates in the precision against the variable valuation of the concrete
state.

Although we can always evaluate the predicates for the concrete states, ab-
straction is often used exactly because exploration of the concrete state-space is
intractable. Instead of exploring the full concrete state-space and mapping the
concrete states, abstraction-based analysis techniques explore only the abstract
state-space.

Exploration of the abstract state space needs a method for determining which
actions are available in a given abstract state, and generating the possible next
states after applying one of these actions. This is generally done by solving some
form of a SAT (satisfiability) problem. As software involve not only Boolean vari-
ables, but other types like integers as well, their operations also have to be encoded
into the SAT problem. One option for this is to use bitwise encoding of all types
and use standard SAT solvers. This was the approach used in [18].

However, modern model checkers mostly employ Satisfiability Modulo Theories
(SMT) solvers to handle non-Boolean variables [1]. In this case, the logic is aug-
mented with theories that can handle the operations of variable types. In our
implementation, we rely on SMT encoding instead of bitwise SAT.

Example. If in the current state we know that the predicate x ă 3 is true and
y “ 0 is false, and we apply the statement ASSIGNpx, x ` 1q, the SMT problem
for the next state computation is:

x0 ă 3^ py0 “ 0q ^ x1 “ x0 ` 1^ px1 ă 3 ðñ a1q ^ py0 “ 0 ðñ a2q

The first underlined part corresponds to the current state, the second underlined
part to the statement applied, and the third part is a representation of the next
state.

The Boolean literals a1 and a2 are called activation literals. All satisfying models
of the above expression are computed, and the next abstract states are derived from

Towards Abstraction-based Probabilistic Program Analysis 685

the values of a1 and a2 in each model: the truth value of each predicate is set to
the value of the corresponding activation literal.

When the model under analysis is a control flow automaton, abstraction is
commonly applied to the data variables, and the location is also added to the
abstract states (i.e. it is always precisely tracked).

2.8 Game-based Abstraction Refinement

The game-based abstraction refinement framework for probabilistic systems has
been proposed in [25], and its application to probabilistic programs described in
[18].

The main idea of this abstraction scheme is to use a stochastic game as the ab-
stract model of an MDP, which allows introducing a second kind of non-deterministic
choice which is resolved using a different objective than the one in the original
model. This way we can introduce an “abstraction player” (referred to as Player A
from now on), whose responsibility will be intuitively to resolve the choice of which
concrete state we are in when we know only the abstract state (which represents a
set of possible concrete states). The other player will be referred to as Player C, as
its responsibility is resolving the original non-determinism already present in the
concrete model.

By setting the objective of Player A to minimizing the probability of reaching
the target state set, we can compute a lower bound for the original probability. By
maximizing it instead, we get an upper bound. By computing both bounds, we get
not only a conservative approximation of the error probability, but also a measure
of how precise the current abstraction is with respect to the property of interest.

Refinement is performed based on the difference between the minimizing and
the maximizing strategies of Player A. A state is refinable if the minimizing and the
maximizing strategies choose a different action in it. The new precision is computed
such that it prevents making this choice.

Two different strategies were proposed in [19] for choosing the state to base the
refinement on. We can choose the coarsest refinable state, for which the difference
between the upper and the lower abstraction values is the highest (hoping that
this will have the largest effect on the precision of values), or choose the refinable
state nearest to the initial state (hoping that this will make the abstraction precise
enough early in the state space exploration process).

After a refinable state has been chosen, a new predicate is computed to elimi-
nate the choice of the abstraction player in this state using weakest precondition
computation.

When analysing a PCFA, it is possible to use a different precision for abstracting
the data state in each location. This is called local precision, while using a single
one for the whole model is called global precision. When local precision is used,
the new predicate that was computed is added only to the location corresponding
to the chosen state to refine. However, propagating the newly chosen predicate
to other locations using weakest precondition computation can lead to a much

686 Dániel Szekeres and István Majzik

lower number of refinement steps needed. [19] proposed two different strategies for
this propagation, one based on the explored abstract state space, the other based
directly on the CFA model.

2.8.1 Computing the abstraction game

Here we will briefly describe how the abstraction game is built in the case of predi-
cate abstraction applied to probabilistic programs. An example step of building the
game can be seen in Figure 3 for each statement type. A more detailed description
and the SMT formulae used can be found in [19].

l=1
x<5

l=2
x<5

l=2
¬(x<5)

ASSIGN(x, x+1)

l=1
x<5

l=2
x<5

l=3
x<5

1 2

ASSUME(x<3)

1
2

3
ASSUME(¬(x<3))

HAVOC(x)
1 2

l=1
x<5

l=2
x<5

l=2
¬(x<5)

HAVOC(x)
1 2

l=1
x<y

l=2
x<y

l=2
¬(x<5)

x>=max of dom(y)

x<max of dom(y)

l=1
x<5

l=2
x<5

l=2
¬(x<5)

PROB(
0.2: ASSIGN(x, x+1),
0.8: ASSIGN(x, 0))

1 2

1.0

0.8

0.2

Figure 3: Example PCFA components and the resulting game parts. Circles rep-
resent Player A nodes, rectangles represent Player C nodes.

The construction method assumes the following constraints to be true for the
model, which are always satisfied by PCFA models created using single-block en-
coding, and are also satisfied by our large-block encoding implementation:

• If multiple outgoing edges are present in a location, then only one of them
can be enabled in any valuation. Because of this, the only source of non-
determinism in the model can be HAVOC statements.

• If there is a PROB or HAVOC statement present on an outgoing edge of a location,
then there must be no other outgoing edges.

The game used as abstract model alternates between Player A and Player C
nodes. Player A nodes correspond to abstract states. For each Player A node
(starting with the node corresponding to the initial abstract state), we need to
compute groups of next states resulting from applying a statement available in the
current state.

A-nodes are labeled by abstract states, while C-nodes get their identity from
the set of A-node distributions it can choose from. When building the abstraction
game, we take an A-node that has not been expanded yet, take a statement available
in it, and compute the result of the statement.

ASSIGN and ASSUME statements When the statement to apply is an ASSIGN or an
ASSUME statement, only the abstraction player has power over the resulting state.

Towards Abstraction-based Probabilistic Program Analysis 687

The result of an assignment and the satisfaction of the assumption depends on the
current values of the variables, but we might not know all variables that affect the
result exactly with the currently used precision. Thus the abstraction player can
select these values arbitrarily as long as they do not contradict what we know from
the currently tracked predicates. As there is no concrete non-determinism involved
with these statement types, Player C has no power in this state.

PROB statements Similarly to non-probabilistic assignments and assumes, only
Player A has any power over choosing the result of a PROB statement (as we dis-
allowed non-deterministic statements inside probabilistic statements in the defini-
tion). In this case however, we have to compute a set of distributions over abstract
states from which the abstraction player can choose, not stand-alone states. Be-
cause of this, the successor states must be computed in groups, all elements of a
possible distribution at a time. For the example in Figure 3, we need the following
query:

x0 ă 5^ px
p1q
1 “ x0 ` 1^ px

p1q
1 ă 5 ðñ a

p1q
1 qq ^ px

p2q
1 “ 0^ px

p2q
1 ă 5 ðñ a

p2q
1 qq

We are interested in all satisfying models that differ in at least one of ap1q1 and
a
p2q
1 , because these models encode different next state distributions. The satisfying

models in this example are tap1q1 , a
p2q
1 u, representing the dirac distribution t1.0 :

pl “ 2, x ă 5qu, and tap1q1 , a
p2q
1 u representing the distribution t0.2 : pl “ 2, x ă

5q, 0.2 : pl “ 2, px ă 5qqu.
We cannot simply evaluate the possible successors for the statements indepen-

dently: the results of applying the statements depend on each other through the
unknown variable values. Computing the possible results of the statements, and
then composing them into a set of distributions by taking a Cartesian product would
lead to “hallucinating” some successor distributions over the abstract states that
cannot result from applying the PROB statement to any concrete state. This would
be conceptually similar to the inexactness that Cartesian abstraction introduces,
described in Section 6.

General HAVOC statements Handling HAVOCs is the most problematic part, as
in the general case, both players can have power over the resulting abstract state.
To compute the set of possible next states and group them appropriately, we have
to introduce a term in the SMT query for each possible new value of the variable
modified by the HAVOC, similarly to what we do for each substatement of a PROB.
This is intractable if the domain of a variable is large.

Simplifiable HAVOC statements However, if we can split the information tracked
by the current precision so that the predicates one partition depends only on the
variable modified by the HAVOC, and the ones in the other partition do not depend
on that variable at all, then the computation can be simplified: in this case, only
Player C has any actual power over next state selection: it can decide how the first

688 Dániel Szekeres and István Majzik

partition changes, while the second partition must stay the same as it was. Thus
we know that only one group has to be computed, making a standard flat list of
successor states sufficient. For this, a standard SMT query for the successors is
enough.

3 Incorporating Bounded Value Iteration

Value iteration (VI) computes an optimal strategy by iteratively approximating
the value function of the game. The resulting strategy is derived from the value
function using the fact that any strategy that always chooses an optimal action
with respect to the value function is optimal.

The algorithm iteratively refines a lower bound approximation to the value
function using the Bellman equations. The initial approximation is set to 1 for
every target state, and 0 everywhere else.

The approximate value function computed during value iteration converges to
the real value function only asymptotically. Because of this, unlike for strategy
iteration, it is not guaranteed that the algorithm terminates in a finite number
of steps. However, the value function often becomes good enough to compute the
optimal strategy in much less time than it would take strategy iteration to converge.
Value iteration is often preferred in practice for this reason.

The problem of determining when the value function is good enough still re-
mains. A very basic, but often used approach is to stop value iteration when the
difference between two consecutive value function approximations becomes smaller
than a predefined threshold. This stopping criterion cannot actually give any guar-
antees about the optimality of the resulting strategy: as long as the change of the
value function is not exactly zero in an iteration, the chosen transition can change
in any state, potentially leading to a vastly different mean reward [3].

Bounded Value Iteration (BVI) [24, 3] is a modified version of value iteration
originally proposed for Markov Decision Processes. It has been extended to Stochas-
tic Games in [20]. BVI computes both a lower and an upper approximation for the
value function. The reason for this is that the difference between the upper and
the lower bound can be used as stopping criterion. As the two approximations
are constructed in such a way that the real value function is known to be between
them, the error is no longer totally unknown, we have an upper bound for it, and
can thus be controlled. This leads to a guaranteed ε-optimal strategy as a result.
Making the upper approximation converge on stochastic games is non-trivial - for
a detailed explanation of the algorithm, see [20].

Having more control over the optimality of strategies computed using the ap-
proximate value function has two advantages in the game-based abstraction scheme:
apart from the general advantage of making the end result more precise, the refine-
ment step is also enhanced by having a more reliable value function.

We constructed a simple example, where the problem of ineffective refinement
can be easily seen to highlight the importance of more reliable convergence checks
when computing values in the game-based abstraction refinement scheme.

Towards Abstraction-based Probabilistic Program Analysis 689

Based on the model given in [3] as an example for when the standard VI con-
vergence check can lead to a wrong result, we can construct an example for any
ε, where a seemingly coarse abstract state is actually perfectly precise: the values
of a state with maximizing and minimizing abstraction choices coincide, the differ-
ence between lower and upper abstraction comes only from the imprecision of value
computation.

Example. An example where the unreliable result of standard value iteration can
be problematic for refinement can be seen in Figure 4. The only non-determinism in
the abstract state space is an abstraction choice in s0. As there is no concrete non-
determinism, the Player C nodes between the Player A nodes have been omitted
from the figure. The target states are cn and s1.

Figure 4: Example model for refinement problem with standard value iteration

The upper part of the model is the chain from [3]. The parameters n and p can
be chosen appropriately for any ε such that if standard value iteration is stopped
when the latest change was smaller than ε, then the final approximation of the
probability of reaching a target from s0 is less than 5

8 , while the real probability is
1.

The lower part of the model is simply an instant target state, so both the
approximate computed probability and the real probability of reaching a target by
choosing the lower action are 1.

If the approximate values computed with standard VI are used to compute the
refinement, the abstract state s0 seems to be quite coarse: the computed value
difference between the maximizing and the minimizing action is greater than 3

8 . In
reality, though, s0 is perfectly precise with respect to the property of interest, as
both actions eventually lead to a target state with probability 1. This can lead to
sub-optimal refinement if the refinable state selection strategy is set to coarsest : if
the given example is only a part of the state space, an actually coarsely abstracted
part would be much more important to refine.

If qualitative pre-analysis is used to determine almost sure reachability precisely
before running VI, the example model can be modified to “leak” some probability
from the chain before reaching the target.

We have also implemented the topological version of VI and BVI [22]: this ap-
proach splits the game into the strongly connected components of its edge relation
graph, and computes the value function for each component in reverse topological

690 Dániel Szekeres and István Majzik

order. This change can often speed up the convergence of value iteration for struc-
turally problematic models, as it enforces propagation of already converged values
instead of propagating non-converged values through the whole state-space.

4 Adapting Large-block Encoding
When creating a (P)CFA from the source code of a computer program, the most
obvious approach is to create an edge for every atomic statement in the code, as
seen in the example in Figure 1a. A disadvantage of this conversion is that it
introduces a high number of locations, leading to a wastefully large state-space.
This version is called single-block encoding (SBE).

Another possibility is large-block encoding (LBE). There are several possible
versions of this, but the general idea is that an edge is associated with multiple
statements. By allowing a single edge to hold multiple statements, we can reduce
the number of edges and locations, making the graph of the (P)CFA much smaller.
This can both speed up the analysis, and make the results easier to interpret. We
can introduce composite statements to be able to do this while staying with our
original definition of PCFA.

There are multiple variants of composite statements with different semantics,
but our current work uses only sequence statements (SEQ) representing a sequen-
tial composition of other statements (the statements given in an ordered list are
executed one after another according to their order in the list).

A SEQ statement is enabled by a valuation if and only if its first substatement
is enabled by the valuation, and each substatement is enabled by the result of
transforming the valuation through all substatements before it.

An example PCFA with large-block encoding can be seen in Figure 1b.
The idea of large block encoding can be implemented in several different ways.

For example, the authors in [6] used it for standard qualitative software model
checking and merged both sequential and parallel (non-deterministic and if-else)
edge combinations into single edges.

However, in the probabilistic abstraction case, doing this would prove problem-
atic: using a non-deterministic statement to combine guarded choices would make
the edge look like a concrete non-deterministic choice, while it is actually an ab-
straction choice, or it could merge the choices of the two players into a single edge
making building the game much more complex depending on the implementation.
Another difference from the qualitative case is that the game construction algo-
rithm of [18] needs all locations of the PCFA to be either choice, non-deterministic
or probabilistic, clearly separating ASSUME statements from HAVOCs and PROB.

Accordingly, we decided to implement only sequential LBE for the probabilistic
case, and defer the exploration of possibilities for merging parallel edges to future
work, and we split the LBE at PROB and HAVOC statements, making those have
their own edges separated from the sequences between them. This sequential LBE
is implemented as a simple preprocessing step on the PCFA: l1

stmt1
ÝÝÝÝÑ l2

stmt2
ÝÝÝÝÑ l3

patterns, where l2 has no other edges are merged to l1
SEQtstmt1,stmt2u
ÝÝÝÝÝÝÝÝÝÝÝÝÑ l3. These

Towards Abstraction-based Probabilistic Program Analysis 691

statements can be converted to SMT expressions by converting each substatement
into an expression with the appropriate indexing, and taking the conjunction of
these expressions.

5 Adapting Explicit Abstraction

Explicit abstraction (also called explicit-value abstraction and visible variables ab-
straction) [7] chooses for each variable if it is visible or not. This means that for
each variable, its value is either tracked exactly, or it is not tracked at all. The
precision of the abstraction is the list of tracked variables. Each abstract state
assigns an exact value to each variable tracked according to the precision used.

To use the explicit domain, we needed to adapt the game construction algorithm
of [18] to it. Constructing the abstraction game was originally formulated only
for predicate abstraction, so we needed to apply the main ideas of the grouped
successor computation to the explicit domain. Classical software model checking,
which explicit abstraction was previously used for, did not need grouped successor
computation in the abstract model construction, as the abstraction-induced non-
determinism did not need to be handled separately from the original (concrete) non-
determinism. Because of this, implementing the game-based abstraction scheme
with explicit abstraction involved determining how the flat successor computation
must be modified for the grouped computation needs.

One advantage of the explicit domain is that instead of always relying on expen-
sive SMT solver calls to compute the successor states, we can often simply evaluate
the program statements after all variables currently tracked have been substituted
with their values in the current abstract state. SMT calls are needed only if an
important variable is missing, and even then, the SMT query often contains much
fewer variables than without substituting the known ones.

For deterministic (ASSIGN and ASSUME) and HAVOC statements, explicit abstraction
can be used the same way as in the qualitative case, as we compute only a flat list of
next states, and assign the choice between them either to Player A (for deterministic
statements) or Player C (for HAVOC statement). In the case of HAVOC, this is correct
because the simplification described earlier is always applicable when using explicit
abstraction: a HAVOC statement always affects only one variable, and no matter
what it was, Player C can set it to any value. For PROB statements, we simply use
the same approach as in predicate abstraction: the state is converted to a Boolean
expression as a conjunction of equalities for the known variable values, and then
we can solve the same SMT problem as in the predicate case. When LBE is used,
SEQ statements are handled the same ways as deterministic statements, as they can
contain only ASSIGNs and ASSUMEs in our version.

Refinement is also similar to the predicate case, first discovering new predicates
using weakest precondition computation for splitting the state selected for refine-
ment and propagating if needed. The states are converted to Boolean expressions
for this computation by taking a conjunction of equalities for the known variable
values. Then, instead of adding the newly discovered predicates to the precision, we

692 Dániel Szekeres and István Majzik

add all variables contained in them - just like in the qualitative version of explicit
abstraction.

6 Inexact Abstract Transition Functions for Game-
based Abstraction

The exact computation of the abstract transition relation is often computationally
very expensive, sometimes infeasible. Because of this, inexact transition functions
are often used in standard software model checking that conservatively overapprox-
imate the original relation. Two examples of this are Cartesian abstraction in the
case of predicate abstraction and limiting the number of next states enumerated
for a single successor state set computation in the case of explicit abstraction.

Here, we will first describe these and their application in the game-based ab-
straction scheme for probabilistic programs, then state two theorems related to
the correctness of using them. The proofs of these theorems are relegated to the
appendix.

The approximation introduced by these techniques can be considered a second
layer of abstraction. Instead of abstracting the state-space itself, it abstracts the
transition function, as it discards some information about the original relation.

Inexact transition functions need more flexible abstract domains than the ones
described before, which allow on-demand omission of information during explo-
ration. These domains do not have the disjointness property: for a given precision,
multiple abstract states can correspond to the same concrete state, as the preci-
sion is not strictly respected by all abstract states. Thus, the correctness of the
abstraction scheme must be reevaluated when using inexact transition functions.

We first describe the two inexact abstract transition functions that we imple-
mented, Cartesian abstraction [4] for predicate abstraction and limited enumeration
[15] for explicit abstraction, along with how we adapted them to the game-based
abstraction refinement scheme. After that, we elaborate on the correctness of their
usage.

6.1 Cartesian abstraction

In Section 2, we described the standard version of predicate abstraction, where
each predicate in the current precision must be stated to either hold or not in each
abstract state. A more general version of predicate abstraction uses three-valued
logic for the predicates: true, false and unknown/any.

The generalized version makes it possible to use (conservative) approximations
of the exact abstract transition relation which leave predicates unknown instead of
branching in both directions during exploration.

One such approximate computation of the abstract transition relation is Carte-
sian abstraction. Instead of evaluating the SMT problem with the whole Boolean
vector of the next state, it computes for each predicate whether it or its negation
is implied by applying a statement to the current abstract state. If none of these

Towards Abstraction-based Probabilistic Program Analysis 693

is implied, the predicate is set to unknown in the subsequent abstract state. If the
predicate itself is implied, it is set to true, if the negation is implied, the predicate
is set to false. Implying both means that the conjunction of the current state ex-
pression and the statement expression is unsatisfiable, leading to an empty set of
next states (as the statement is not enabled by the current state).

This is an over-approximation of the exact abstract transition function. Con-
sider the case for example when two predicates must be the opposite of each other
in the subsequent abstract state, but we do not know which one of them is true.
Because of this, both are set to unknown. This abstract state contains all of the
possible concrete states, but also contain states where both of the predicates are
true or both are false.

Our proposed adaptation of Cartesian abstraction is applying it only partially
in the game construction. As Cartesian abstraction modifies the method which we
use for the next state computation, we needed to decide how to use that in the
game construction.

For deterministic statements and simplified HAVOC statement computation, Carte-
sian abstraction can be used the same way as in the qualitative case, as we compute
only a flat list of next states, and assign the choice between them either to Player A
(for deterministic statements) or Player C (for HAVOC statement when simplification
is applicable).

For PROB statements and general HAVOC statements, we cannot break the grouped
SMT problem into atomic implications without introducing a high number of spu-
rious distribution choices (it would still be a conservative abstraction, but a very
imprecise one). Because of this, we propose to use Cartesian abstraction in the
probabilistic case only partially, and use the precise computation for PROB and non-
simplifiable HAVOC statements.

As most probabilistic programs have only a small amount of PROB statements,
and HAVOC statements are simplifiable in most cases, Cartesian abstraction can still
be much more efficient than the precise abstract transition relation.

Another possibility would be to compute an implication for each predicate for all
next states in one SMT problem. In this case, instead of computing if the negated
or ponated version is implied, we would need to check if any combination of ponated
and negated versions of the given predicate in each element of the next state group
is implied. This is tractable for PROBs with a small number of substatements (like
coin()), but the number of SMT problems for each predicate blows up exponentially
with the number of substatements, so we decided against this option.

Investigating other ways to apply the idea of Cartesian abstraction to the next
state computations used in the abstraction game construction is part of our future
plans, as the grouped computation parts could also benefit from the idea, but care
has to be taken to not make the abstraction either unsound or too coarse.

6.2 Explicit abstraction with limited enumeration

The version of explicit abstraction described earlier has the disjointness property.
However, there is a more general version of explicit abstraction, which is much more

694 Dániel Szekeres and István Majzik

useful: in an abstract state, a variable which is tracked according to the precision
can also be set to J, meaning that the value is unknown in that state. This is
useful for example for HAVOC statements, where the abstract state space could be
infinite, or at least intractably large.

In this generalized domain, the abstract state space exploration can set the
value of a variable to unknown when there would be too many possible values to
evaluate. It is often possible to encounter an ASSUME statement or ASSIGN statement
somewhere after the HAVOC, which constrains the possible values of the variable to
a set of manageable size again.

The technique of limited enumeration for explicit abstraction means that we
set a limit for how many possible successor states we are willing to compute in
a single successor set computation. If the number of states would exceed this
limit, we merge them into a single state by selecting all the variables that have
different values in the possible next states, and set their value to J, even though
they should be tracked according to the precision. Unlike in the predicate case,
explicit abstraction can be used only for a very small subset of programs without
this generalization.

Using explicit abstraction with limited enumeration in the game-based abstrac-
tion refinement scheme is quite straightforward.

Similarly to the unlimited explicit case, when computing ASSIGN, ASSUME and
HAVOC statements, the successor computation is done the same way as in the quali-
tative case, no adaptation is needed, as a non-grouped list of successors is sufficient
for the construction. In the case of HAVOC, although Player C has full power in
theory, limited enumeration will lead to Player A having full power over the value
of the variable in practice if its domain is larger than the enumeration limit.

PROB statements are computed similarly to the unlimited explicit case, but be-
cause of the enumeration limit, resulting states might have to be merged. If the
states that would be merged are in the same distribution, we can merge them in the
distribution by replacing them with a single next state with original probabilities
summed. If the enumeration that must be limited is in the different distribution
choices, then we can instead merge them into a single distribution, where the vari-
able is set to J in the next state for the corresponding substatement which caused
the enumeration exceeding the limit.

6.3 Correctness

Here, we analyze the correctness of applying these techniques in the game-based
scheme.

For an abstraction-based analysis scheme to result in a correct verdict about
the analyzed property, the construction used for the abstract model must be sound,
meaning that whenever the property is provable for the abstract model, it is true
in the original model. In the context of game-based abstract analysis of stochastic
models, this means that analyzing the game with the abstraction player aiming to
minimize/maximize the objective results in valid lower and upper bounds respec-
tively.

Towards Abstraction-based Probabilistic Program Analysis 695

The original soundness proof in [25] assumed that the abstract domain used
for the abstraction has the disjointness property. However, this does not allow
the usage of generalized predicate and explicit abstraction, which Cartesian ab-
stracion and limited enumeration depend on. [13] proved that the approach can
be extended to non-disjoint domains. However, the context in that work was ab-
stract interpretation with widening, and they used a slightly different construction
for the abstraction game. Because of this, a new proof of soundness is necessary
for the adaptation of Cartesian abstraction and explicit abstraction with limited
enumeration described above.

Here, we only state the soundness theorems formally, and the proofs themselves
are relegated to the appendix.

Theorem 1 (Soundness of Cartesian abstraction). Given a PCFA P with a set of
target locations LT , optimal strategies on the game abstraction of its MDP seman-
tics using Cartesian abstraction to compute the abstract transition relation gives
lower and upper bounds on the reachability probability of LT . The optimal strate-
gies are understood w.r.t. the reward function that assigns 1 to states with a location
in LT and 0 to all other states.

Theorem 2 (Soundness of limited enumeration). Given a PCFA P with a set
of target locations LT , optimal strategies on the game abstraction of its MDP se-
mantics using explicit abstraction with limited enumeration to compute the abstract
transition relation gives lower and upper bounds on the reachability probability of
LT . The optimal strategies are understood w.r.t. the reward function that assigns
1 to states with a location in LT and 0 to all other states.

These correctness proofs make it possible to use Cartesian abstraction and ex-
plicit abstraction with limited enumeration in the game-based abstraction refine-
ment scheme, guaranteeing that the maximizing and minimizing strategies lead
to upper and lower approximations of the concrete value function respectively,
which result in a correct final verdict. Keep in mind, that these results only state
soundness, not completeness: using inexact transition functions without any other
modifications to the overall scheme does not lead to a complete decision procedure,
the verification might get stuck in the refinement loop, as the information that
would be needed for more precise abstraction might be discarded by the transition
function itself, which we do not refine.

7 Implementation and Numerical Experiments
We performed numerical experiments to evaluate our modifications: using large
block encoding (LBE) in the PCFA model, using the explicit abstract domain,
applying inexact abstract transition functions (Cartesian abstraction and limited
enumeration), and enhancing the reliability of strategy computation using bounded
value iteration (BVI). We used models from [18] which are standard benchmark
model in this area. Some of the models are direct implementations of probabilistic

696 Dániel Szekeres and István Majzik

protocols, while others are standard stochastic analysis benchmark models con-
verted from PRISM models to probabilistic C code.

These models are scalable using scaling parameters, which makes it possible to
analyze how the analysis approach scales with model size. Multiple properties to
check are given for each model.

We used only a subset of the benchmark models, because the C frontend of
Theta does not support multiple compilation units yet - this feature is work in
progress, and further measurements are planned to be performed in the future.
Applying the GCC preprocessor to create a single compilation unit was enough for
some models originally given as multiple source files, but not all of them.

Our aim with the numerical experiments was to answer the following research
questions:

RQ1. How does using large block encoding affect the running time of the analysis?

RQ2. How does using BVI instead of standard VI affect the running time? Is the
impact on the running time sufficiently small to be an acceptable cost for
higher reliability?

RQ3. How does the running time with the explicit domain differ from the predicate
domain? What is the effect of using limited enumeration?

RQ4. How does applying Cartesian abstraction affect the running time?

RQ5. How prevalent is the problem of the refinement loop getting stuck with inexact
transition functions on practical models?

The measurements were performed with our prototype implementation in the
Theta model-checking framework. The following aspects of the analysis are con-
figurable: abstract domain (including abstract next state computation method),
refinable state selection strategy, precision locality (local: each PCFA location has
its own precision, global: a single global precision is used), predicate propagation
strategy (only applicable with local precision), stochastic game solver (VI, topo-
logical VI, BVI, topological BVI), SBE/LBE. Local precision (and because of this,
refinement propagation) is not implemented for explicit abstraction yet. For enu-
meration limits in the explicit domain, we used 8, 1, and 2.

We measured the performance of all possible configurations on all input models.
Analyzing the effect of precision locality, refinement propagation strategies and
refinable state selection strategies was not among the goals of these experiments.
Therefore, we merged those configurations in the analysis results that differed only
in these parameters by taking the smallest running time among them to reduce
clutter in the plots. This results in an analysis where these parameters are always
assumed to be chosen optimally.

The benchmarks were executed using BenchExec [8], the official tool used for the
Software Verification Competition (SV-COMP) 2, providing reliable measurements

2https://sv-comp.sosy-lab.org/2022/

https://sv-comp.sosy-lab.org/2022/

Towards Abstraction-based Probabilistic Program Analysis 697

on resources. The experiment was executed on virtual machines running Ubuntu
20.04.2 LTS with Java OpenJDK 11.0.13. There was a memory limit of 15GB
and a CPU core limit of 6 cores set. A timeout of 6 minutes was set for each
input-configuration pair.

Figures 5, 6 and 7 show our measurement results with different groupings, aim-
ing to make the effect of different features observable on each plot. The horizontal
axis shows the value of the scaling parameter, while the vertical axis shows running
time of the analysis. Each subplot has its own y scale in seconds, as the running
time can differ greatly depending on inputs and configuration, so having a common
scale would make data points with shorter running times incomparable.

Data points with 360s running time are timeouts, as that was the time limit.
The results provided the following answers for the research questions:

RQ1: Effect of LBE In general, LBE increased performance of the analysis.
240 input-configuration pairs succeeded before timing out with LBE, and only 154
input-configuration pairs without it. The difference can be easily seen in Figures 5
and 6 by comparing the blue (SBE) and red (LBE) data points, and in Figure 7
by comparing the number of not timed out data points in the two facet rows. LBE
was beneficial regardless of the other configuration parameters. On the herman_P3
input, it even meant a difference between timing out or not.

RQ2: Effect of BVI The running time of BVI was close to the running time of
standard VI, when the best refinable state selection strategy was chosen. This can

Figure 5: Strip plot showing the measured running times in seconds (note the
different scaling in case of brp_P1) grouped by the input (model and analyzed
property together) and the application of BVI. Color shows whether LBE was on
(red) or off (blue)

698 Dániel Szekeres and István Majzik

Figure 6: Strip plot showing the measured running times in seconds grouped by
the input (model and analyzed property together) and the domain used (including
the next state computation method). Color shows whether LBE was on (red) or
off (blue)

Towards Abstraction-based Probabilistic Program Analysis 699

Figure 7: Strip plot showing the measured running times in seconds grouped by
the input (model and analyzed property together) and whether LBE was used or
not. Color shows which domain was used.

be seen most clearly in Figure 5, by comparing the two facet rows. We observed
though that with other refinable state selection choices, BVI can be unacceptably
slow compared to standard VI.

RQ3: Efficiency of the explicit domain Explicit abstraction performed better
than predicate abstraction on some models. Neither is clearly better than the
other, but having both option increases the number of models we can analyze. The
unlimited version can often be problematic because of the infinite number of possible
next states, and limit 1 often gets stuck, but explicit abstraction with enumeration
limit 2 was able to analyze the most models without timing out among all the
domain configurations. The different domain configurations can be compared on
Figure 6 by comparing the facet rows (but the different y-axis scales might make
exact comparison a bit harder), and in Figure 7 by comparing the differently colored
data points. In the latter figure, we decided to not distinguish between the limits
in the color to not clutter the plot with too many different colors.

RQ4: Effect of Cartesian abstraction Whenever Cartesian abstraction did
not get stuck, it was often faster than exact predicate abstraction, but not signif-
icantly. In some cases, it was even slower and, unfortunately, the refinement loop
did become stuck in a lot of cases. Because of this, these measurements did not
lead to any significant answer for this research question. Cartesian abstraction can
be compared to the other options in Figures 6 and 7.

700 Dániel Szekeres and István Majzik

RQ5: Refinement getting stuck Inexact next state computations were very
prone to getting stuck in the refinement loop, because they dropped the information
that would have been needed for refining based on the selected state.

Explicit abstraction with limit 2 is an exception when combined with LBE:
it performed well on a lot of models, and it was able to solve the most analysis
tasks overall among all domains. More precisely, if we count the number of solved
inputs for each domain disregarding all other configuration parameters, Explicit
abstraction with limit 2 was able to solve the highest number of tasks without
timing out. With this limit, Boolean variables are always tracked exactly, while
other variables are abstracted when multiple values are possible. This limit is also
able to not merge probabilistic choices with two branches, while limit 1 will merge
them, basically getting rid of probabilistic choices in the abstract model.

The problem of getting stuck might be mitigated by different refinable state se-
lection approaches, or by on-demand refinement of the post operator itself. Further
research is needed in this area.

8 Conclusions and Future Work

In this work, we set out to (1) improve the scalability of game-based abstraction
of probabilistic programs by adapting modern techniques from qualitative software
model checking, and to (2) tackle the problem of convergence checking for the
abstract model.

Regarding (1) we can conclude the following based on our numerical evaluation:

• Introducing the explicit abstraction and limited enumeration options made
the analysis of more models possible.

• Using large block encoding generally resulted in faster analysis.

• Cartesian abstraction and limited enumeration often get stuck in the refine-
ment loop, so more sophisticated techniques are needed to make them usable.

Regarding (2), we can say that applying BVI does not incur a significant in-
crease in running time, making it worth to use the more reliable version instead
of standard VI. Performance of BVI was highly dependent on the refinable state
selection strategy. We plan to investigate this phenomenon in detail in the future.
We also plan to implement optimistic value iteration [16] and sound value iteration
[26] adapted to stochastic games as abstract model solvers to compare them with
BVI in the game-abstraction context.

Building on the conclusions we have drawn from these experiments, we plan to
make inexact post operators more stable by introducing partial switching to exact
computation as a refinement option.

Towards Abstraction-based Probabilistic Program Analysis 701

References

[1] Armando, A., Mantovani, J., and Platania, L. Bounded model checking of
software using SMT solvers instead of SAT solvers. International Journal on
Software Tools for Technology Transfer, 11(1):69–83, 2009. DOI: 10.1007/
11691617_9.

[2] Baier, C. and Katoen, J.-P. Principles of model checking. MIT Press, 2008.

[3] Baier, C., Klein, J., Leuschner, L., Parker, D., and Wunderlich, S. Ensuring
the reliability of your model checker: Interval iteration for Markov decision
processes. In International Conference on Computer Aided Verification, pages
160–180. Springer, 2017. DOI: 10.1007/978-3-319-63387-9_8.

[4] Ball, T., Podelski, A., and Rajamani, S. K. Boolean and Cartesian abstrac-
tion for model checking C programs. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 268–283.
Springer, 2001. DOI: 10.1007/s10009-002-0095-0.

[5] Barthe, G., Katoen, J.-P., and Silva, A. Foundations of Probabilistic Program-
ming. Cambridge University Press, 2020. DOI: 10.1017/9781108770750.

[6] Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M. E., University, S. F.,
and Sebastiani, R. Software model checking via large-block encoding. In
Formal Methods in Computer-Aided Design, pages 25–32, 2009. DOI: 10.
1109/FMCAD.2009.5351147.

[7] Beyer, D. and Löwe, S. Explicit-state software model checking based on CE-
GAR and interpolation. In International Conference on Fundamental Ap-
proaches to Software Engineering, pages 146–162. Springer, 2013. DOI:
10.1007/978-3-642-37057-1_11.

[8] Beyer, D., Löwe, S., andWendler, P. Reliable benchmarking: requirements and
solutions. International Journal on Software Tools for Technology Transfer,
21(1):1–29, 2019. DOI: 10.1007/s10009-017-0469-y.

[9] Chadha, R. and Viswanathan, M. A counterexample-guided abstraction-
refinement framework for Markov decision processes. ACM Transactions on
Computational Logic (TOCL), 12(1):1–49, 2010. DOI: 10.1145/1838552.
1838553.

[10] Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. Counterexample-
guided abstraction refinement for symbolic model checking. Journal of the
ACM (JACM), 50(5):752–794, 2003. DOI: 10.1145/876638.876643.

[11] Condon, A. The complexity of stochastic games. Information and Computa-
tion, 96(2):203–224, 1992. DOI: 10.1016/0890-5401(92)90048-K.

https://doi.org/10.1007/11691617_9
https://doi.org/10.1007/11691617_9
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/s10009-002-0095-0
https://doi.org/10.1017/9781108770750
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1145/1838552.1838553
https://doi.org/10.1145/1838552.1838553
https://doi.org/10.1145/876638.876643
https://doi.org/10.1016/0890-5401(92)90048-K

702 Dániel Szekeres and István Majzik

[12] De Alfaro, L. and Roy, P. Magnifying-lens abstraction for Markov decision
processes. In International Conference on Computer Aided Verification, pages
325–338. Springer, 2007. DOI: 10.1007/978-3-540-73368-3_38.

[13] Esparza, J. and Gaiser, A. Probabilistic abstractions with arbitrary domains.
In International Static Analysis Symposium, pages 334–350. Springer, 2011.
DOI: 10.1007/978-3-642-23702-7_25.

[14] Graics, B., Molnár, V., Vörös, A., Majzik, I., and Varró, D. Mixed-
semantics composition of statecharts for the component-based design of reac-
tive systems. Software and Systems Modeling, 19(6):1483–1517, 2020. DOI:
10.1007/s10270-020-00806-5.

[15] Hajdu, Á. and Micskei, Z. Efficient strategies for CEGAR-based model
checking. Journal of Automated Reasoning, 64(6):1051–1091, 2020. DOI:
10.1007/s10817-019-09535-x.

[16] Hartmanns, A. and Kaminski, B. L. Optimistic Value Iteration. In Interna-
tional Conference on Computer Aided Verification, pages 488–511. Springer,
2020. DOI: 10.1007/978-3-030-53291-8_26.

[17] Hermanns, H., Wachter, B., and Zhang, L. Probabilistic CEGAR. In Interna-
tional Conference on Computer Aided Verification, pages 162–175. Springer,
2008. DOI: 10.1007/978-3-540-70545-1_16.

[18] Kattenbelt, M., Kwiatkowska, M., Norman, G., and Parker, D. Abstraction
refinement for probabilistic software. In International Workshop on Verifica-
tion, Model Checking, and Abstract Interpretation, pages 182–197. Springer,
2009. DOI: 10.1007/978-3-540-93900-9_17.

[19] Kattenbelt, M. A. Automated quantitative software verification. PhD thesis,
University of Oxford, 2010.

[20] Kelmendi, E., Krämer, J., Křetínskỳ, J., and Weininger, M. Value iteration for
simple stochastic games: Stopping criterion and learning algorithm. In Inter-
national Conference on Computer Aided Verification, pages 623–642. Springer,
2018. DOI: 10.1007/978-3-319-96145-3_36.

[21] Komuravelli, A., Păsăreanu, C. S., and Clarke, E. M. Assume-guarantee
abstraction refinement for probabilistic systems. In International Confer-
ence on Computer Aided Verification, pages 310–326. Springer, 2012. DOI:
10.1007/978-3-642-31424-7_25.

[22] Křetínskỳ, J., Ramneantu, E., Slivinskiy, A., and Weininger, M. Comparison
of algorithms for simple stochastic games. Information and Computation, page
104885, 2022. DOI: 10.1016/j.ic.2022.104885.

https://doi.org/10.1007/978-3-540-73368-3_38
https://doi.org/10.1007/978-3-642-23702-7_25
https://doi.org/10.1007/s10270-020-00806-5
https://doi.org/10.1007/s10817-019-09535-x
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-540-93900-9_17
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-3-642-31424-7_25
https://doi.org/10.1016/j.ic.2022.104885

Towards Abstraction-based Probabilistic Program Analysis 703

[23] Kwiatkowska, M., Norman, G., and Parker, D. PRISM 4.0: Verification of
probabilistic real-time systems. In Gopalakrishnan, G. and Qadeer, S., ed-
itors, Proc. 23rd International Conference on Computer Aided Verification
(CAV’11), Volume 6806 of LNCS, pages 585–591. Springer, 2011. DOI:
10.1007/978-3-642-22110-1_47.

[24] McMahan, H. B., Likhachev, M., and Gordon, G. J. Bounded real-time dy-
namic programming: RTDP with monotone upper bounds and performance
guarantees. In Proceedings of the 22nd International Conference on Machine
Learning, pages 569–576, 2005. DOI: 10.1145/1102351.1102423.

[25] Parker, D., Norman, G., and Kwiatkowska, M. Game-based abstraction for
Markov decision processes. In Third International Conference on the Quanti-
tative Evaluation of Systems-(QEST’06), pages 157–166. IEEE, 2006. DOI:
10.1109/QEST.2006.19.

[26] Quatmann, T. and Katoen, J.-P. Sound value iteration. In Chockler, H.
and Weissenbacher, G., editors, Computer Aided Verification, pages 643–661,
Cham, 2018. Springer International Publishing. DOI: 10.1007/978-3-319-
96145-3_37.

[27] Song, L., Zhang, L., Hermanns, H., and Godskesen, J. C. Incremental bisim-
ulation abstraction refinement. ACM Transactions on Embedded Computing
Systems (TECS), 13(4s):1–23, 2014. DOI: 10.1145/2627352.

[28] Tóth, T., Hajdu, Á., Vörös, A., Micskei, Z., and Majzik, I. Theta: A frame-
work for abstraction refinement-based model checking. In Formal Methods
in Computer Aided Design (FMCAD), pages 176–179. IEEE, 2017. DOI:
10.23919/FMCAD.2017.8102257.

[29] Wachter, B. and Zhang, L. Best probabilistic transformers. In International
Workshop on Verification, Model Checking, and Abstract Interpretation, pages
362–379. Springer, 2010. DOI: 10.1007/978-3-642-11319-2_26.

A Proofs of Soundness

A.1 Notions used in the proofs

Here we show that both Cartesian abstraction with the generalized predicate do-
main and the usage of the generalized explicit abstraction domain with limited
enumeration of values lead to sound abstractions. We will use the abstraction
game simulation approach that was proposed in [18] for the proofs.

As abstract states in the same model are no longer disjoint when considered
as sets of concrete states, we will use the notion of covering when analyzing the
resulting abstraction game and the construction algorithm: an abstract state S1

covers another abstract state S2, when the set of concrete states corresponding to

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1145/1102351.1102423
https://doi.org/10.1109/QEST.2006.19
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1145/2627352
https://doi.org/10.23919/FMCAD.2017.8102257
https://doi.org/10.1007/978-3-642-11319-2_26

704 Dániel Szekeres and István Majzik

S2 is a subset of the set corresponding to S1. Covering between A-nodes can be
defined using the abstract states of the A-nodes.

By describing abstract states via SMT formulae, cover checking can be for-
mulated using the language of logic: a state A covers the state B if and only if
ExprpBq ùñ ExprpAq, where Exprp¨q denotes the SMT formula describing the
state.

In the case of (P)CFA analysis, the location is also retained by the abstraction.
Covering in this case also requires that the two states have the same location. We
will omit mentioning this from now on, but it is always an implicit requirement of
covering.

An example game with covering can be seen in Figure 8. It can be seen on
this example that whenever an A-node covers another one, the set of C-nodes that
can be chosen from it is a superset of the C-nodes that can be chosen from the
covered node. This property is ensured by the construction method. This leads to
the more abstract A-node having more choices, and thereby its associated abstract
state having less strict lower and upper value bounds, as expected.

l = 1
x=?

<cover>

l = 2
x=1

<cover>

l = 2
x=2

l = 3
x=?

l = 2
x=?

✓ X

Figure 8: Example of an abstraction game on a domain without the disjointness
property (generalized explicit domain).

This intuitively leads to conjecturing that the abstraction is sound, which we
will formally prove in the next subsection.

Covering can also be used between states of different abstractions of the same
MDP.

We will need to extend the notion of covering to C-nodes as well to simplify
the wording of the proofs. In order to do this we first need to define the process of
lifting a relation to distributions.

Towards Abstraction-based Probabilistic Program Analysis 705

Definition 8 (Lifting a relation to distributions). For a relation R P S1 ˆ S2, the
lifting of the relation to distributions is a relation DpRq P DpS1q ˆ DpS2q, defined
by:

pd1, d2q P DpRq ðñ Dδ : S1 ˆ S2 ÝÑ r0, 1s, such that:

@s1 P S1 : d1ps1q “
ÿ

s2PS2

δps1, s2q

@s2 P S2 : d2ps2q “
ÿ

s1PS1

δps1, s2q

ps1, s2q R R ùñ δps1, s2q “ 0

Unlike for A-nodes which are identified by an associated abstract state, the
identity of C-nodes comes from their available choices, which are distributions over
A-nodes. Therefore, covering is also determined by the available choices. Let us
take the covering relation over A-nodes R “ tpŝ, sq | ŝ covers su. We say that a C-
node ĉ covers another C-node c if for all A-node distributions d that can be chosen
in c, there is an A-node distribution d̂ available in ĉ such that pd̂, dq P DpRq.

The covering C-node thus does not have to have a superset of the exact choices
of the covered C-node: A-nodes can be replaced by others that cover them. This
means that for example, if the covering C-node has a single choice p0.5 : s1, 0.5 : s2q,
and there is an A-node s3 covering both s1 and s2, another C-node with the choice
p1 : s3q covers it.

To prove the soundness of our inexact abstract transition functions, will make
use of the notion of strong probabilistic game simulation proposed in [19]. Its aim
was to define a relation that can be used to decide if a game is more abstract than
another one.

The definition is asymmetric for the players, as it was defined specifically for
game-based abstractions, where Player 1 is the abstraction player, with all of its
actions leading to dirac distributions.

When defining the simulation relation for stochastic games, the simulating game
is allowed to use combined actions to simulate actions of the other game, not only
existing pure actions. Intuitively, this is similar to using probabilistic strategies
when a player plays the game: instead of choosing a specific action, a distribution
over the available actions can be chosen.

Although we adopt the full definition of strong probabilistic game simulation
from [19] to be able to directly reference the proofs therein, we do not need the full
power of this notion. Specifically, we will not need combined transitions to prove the
soundness of Cartesian predicate abstraction and explicit abstraction with limited
enumeration.

Combined actions will introduce “virtual states” for the players: the result of
using a combined action will be treated similarly to existing nodes of the game,
although it is not originally in the set.

Definition 9 (Virtual state). Given a game G “ pS “ S1 Z S2, sinit, A,Av, δq, a
virtual state is a formal sum

řn
i“1 pisi, where si P S,

řn
i“1 pi “ 1, 0 ă p ď 1 and

706 Dániel Szekeres and István Majzik

i ‰ j ùñ si ‰ sj. All component states must belong to the same player, and the
resulting virtual state also belongs to that player.

The set of available actions in a virtual state is given by: Avp
řn

i“1 pisiq “
Śn

i“1Avpsiq.
The transition function of the game is extended to virtual states as:

δp
n

ÿ

i“1

pisi , pa1, . . . , anqq “
n

ÿ

i“1

piδpsi, aiq.

The resulting sum is not only a formal one: it is a sum over functions and addition
is understood pointwise. The constraints on the weights pi ensure that the result is
a probability distribution over states.

Intuitively, a virtual state is a probabilistic superposition of states correspond-
ing to the same player. The available (virtual) actions in the virtual state are
combinations of real actions that can be considered one-step strategies: the player
does not know which state they are actually in from the superposition, but it can
decide which action it would choose in each of the component states.

Definition 10 (Combined actions). Given a stochastic game G “ pS “ S1 Z

S2, sinit, A,Av, δq, the set of combined transitions available in a state s P S is
Cmbpsq “ t

ř

i αiai|ai P Avpsq, 0 ď αi ď 1,
ř

i αi “ 1u. We also extend the
transition function δ to accept inputs with combined transitions. For any s P S, a “
ř

i αiai P Cmbpsq, δps, aq “
ř

j pjsj.

Combined actions are also available in virtual states as a similar combination
over the virtual actions.

Definition 11 (Strong Probabilistic Game Simulation).
Let G “ pS “ S1 Z S2, sinit, A,Av, δq be a stochastic game where all actions of
Player 1 lead to dirac distributions on S2 and let R Ă S∞ ˆ S∞ be a relation on
S1. δ̃ : S1 ˆ A á S2 will denote a deterministic version of the transition function
constrained to Player 1, meaning that δ̃ps, aq “ s1 ðñ δps, aq “ diracps1q.

R is a strong probabilistic game simulation on G if for all pŝ, sq P R all of the
following conditions hold:

• @a P Avpsq : Dâ P Cmbpŝq : s2 “ δ̃ps, aq ^ @a2 P Avps2q : ŝ2 “ δ̃pŝ, âq ^ Dâ2 P
Cmbpŝ2q : pδpŝ2, â2q, δps2, a2qq P DpRq

• @a P Avpsq : Dâ P Cmbpŝq : ŝ2 “ δ̃pŝ, âq ^ @â2 P Avpŝ2q : s2 “ δ̃ps, aq ^ Da2 P
Cmbps2q : pδpŝ2, â2q, δps2, a2qq P DpRq

A relation between the Player 1 states of two different games is a strong proba-
bilistic game simulation if it is a strong probabilistic game simulation on the disjoint
union of the two games, and the pair of the two initial states is in the relation.

The two required properties of the relation intuitively mean that the abstraction
has a choice both to limit the choice of the concrete non-determinism at least as

Towards Abstraction-based Probabilistic Program Analysis 707

much as in the simulated state (underapproximation of the choice set), and to make
the choice at least as free as in the simulated state (overapproximation of the choice
set).

Being able to convert and MDP to an abstraction game without ignoring any
information will also help with the proof. The game embedding of an MDP captures
this notion.

Definition 12 (Game embedding of an MDP). The game embedding of an MDP
M “ pS, sinit, A,Av, δq is the abstraction game ρpMq “ pŜ “ SaZSc, ŝinit, Â, Âv, δ̂q,
where

• Sa “ S (there is exactly one A-node for each state of the MDP)

• There is a single C-node in Sc for each A-node s P S, which will be denoted
by cpsq

• @ŝ P Sa : D!a P Â : â P Âvpŝq ^ δ̂pŝ, âq “ diracpcpsqq

• @s P S, a P Avpsq, d P δps, aq : D!â P Â : â P Âvpcpsqq ^ δ̂pcpsq, âq “ δps, aq
(and Â is the smallest set satisfying this constraint)

Game embeddings make it possible to use strong stochastic game simulation to
define when a game correctly abstracts an MDP. As Player A has at most one choice
in each A-node of a game embedding, there is exactly one Player A strategy on this
game. This means that the lower and upper bounds for probabilistic reachability
properties coincide when using this game as an abstraction, giving exact results.
Figure 9 shows a simple MDP and its game embedding as an example.

Figure 9: An MDP (left) and its game embedding (right)

Theorem 1. Given two stochastic games Ĝ and G such that there is a strong
probabilistic game simulation relation R between Ĝ and G and two sets of target
states T̂ , T on them respectively such that pŝ, sq P R ùñ pŝ P T̂ ðñ s P T q, we
have that

Prob´,´pĜ, T̂ q ď Prob´,´pG,T q ď Prob`,´pG,T q ď Prob`,´pĜ, T̂ q

Prob´,`pĜ, T̂ q ď Prob´,`pG,T q ď Prob`,`pG,T q ď Prob`,`pĜ, T̂ q,

708 Dániel Szekeres and István Majzik

where Proba,bpG,T q denotes the probability of eventually reaching a state in the
target set T when playing the game G with optimal strategies, pa, bq denoting the
optimization objectives of the two players (+: maximize, -: minimize).

Proof. See Theorem 6.18. in [19].

This means that computing the reachability probabilities with optimal strate-
gies in a more abstract game provide upper and lower bounds on the reachability
probabilities of a less abstract game.

The original version of the theorem in [19] is a bit stronger as it allows the
usage of abstract reward functions. For us this version will be enough, as we only
care about the analysis of PCFA for now, where the target states of a reachability
property are always based on the location, and the location is always exactly known
in the abstraction.

A.2 Soundness of Cartesian abstraction

Theorem 1 (Soundness of Cartesian abstraction). Given a PCFA P with a set of
target locations LT , optimal strategies on the game abstraction of its MDP seman-
tics using Cartesian abstraction to compute the abstract transition relation gives
lower and upper bounds on the reachability probability of LT . The optimal strate-
gies are understood w.r.t. the reward function that assigns 1 to states with a location
in LT and 0 to all other states.

Proof. It is shown in [19] that strong probabilistic game simulation is transitive,
meaning that given a strong probabilistic game simulation R̂ between the games
Ĝ and G1 and another one R1 between G1 and G, then R “ R1 ˝ R̂ is a strong
probabilistic game simulation between Ĝ and G. It is also proved that there is
a strong probabilistic game simulation between an abstraction game of the MDP
semantics computed using exact predicate abstraction and the game embedding of
the MDP semantics.

These two facts mean that it suffices to show only that there is a strong prob-
abilistic game simulation between the abstraction game computed using Cartesian
abstraction and the one using the exact abstract transition function.

Let Ĝ “ pŜ “ Ŝa Z Ŝc, sinit, Â, Âv, δ̂q be the abstraction game computed using
Cartesian abstraction and let G “ pS “ S1ZS2, sinit, A,Av, δq be the one computed
using the exact transition function. We will show that R “ tpŝ, sq | ŝ P Ŝ1, s P
S1, ŝ covers su is a strong probabilistic game simulation relation between Ĝ and G.

Recall that to prove that R is a strong probabilistic game simulation, we need
to show that two properties hold for all pŝ, sq P R:

• @a P Avpsq : Dâ P Cmbpŝq : s2 “ δ̃ps, aq ^ @a2 P Avps2q : ŝ2 “ δ̃pŝ, âq ^ Dâ2 P
Cmbpŝ2q : pδpŝ2, â2q, δps2, a2qq P DpRq

• @a P Avpsq : Dâ P Cmbpŝq : ŝ2 “ δ̃pŝ, âq ^ @â2 P Avpŝ2q : s2 “ δ̃ps, aq ^ Da2 P
Cmbps2q : pδpŝ2, â2q, δps2, a2qq P DpRq

Towards Abstraction-based Probabilistic Program Analysis 709

The difference between Cartesian abstraction and the precise abstract transition
function is that a Cartesian abstraction might set a subset of the predicates to
unknown. Let s be an abstract state in the stricter predicate domain, where all
predicates in the precision are assigned to be either true or false, and let nextpsq
denote the exact next states available from s. Let ŝ denote an abstract state in the
generalized predicate abstraction domain with the same precision such that ŝ covers
s, and let nextpŝq denote the set of next states available from ŝ using Cartesian
abstraction.

From the covering relation we know that predicate assignments in s and ŝ never
contradict each other: if a predicate is not unknown in ŝ, it has the same truth
value in ŝ as in s. This also leads to the fact that @s1 P nextpsq : Dŝ1 P nextpŝq :
ŝ1 covers s1.

To see why this is true, let us examine the interaction between next state compu-
tation and the covering relation. In the exact case, we compute all satisfying mod-
els for the SMT formula exprpsq^ exprpstmtq^activationps1q, where activationp¨q
stands for the activation literal representation of the next state. From the logic-
based formulation of covering, we know that exprpsq ùñ exprpŝq, from which

pexprpsq^exprpstmtq^activationps1qq ùñ pexprpŝq^exprpstmtq^activationps1qq

follows. This means that any model that satisfied the SMT formulation of the step
from the covered state also satisfies it from the covering state, so if we used exact
computations, at least the same next states are available from the covering state.

Now we have to show that the approximate computation of Cartesian abstrac-
tion retains this property, modulo covering, as it suffices if a covering state is avail-
able instead of exactly the states available from the covered state. If there exists
a satisfying model for exprpŝq ^ exprpstmtq ^ activationps1q, where the activation
literal of a predicate is set to true, than exprpŝq ^ exprpstmtq cannot imply the
negation of the predicate, as that would lead to a contradiction. A similar state-
ment is true for a false activation literal and the ponated version of the predicate.
Because of this, for each resulting state of the exact computation, there is always
a state in the result of the Cartesian computation that is consistent with it: each
predicate is either the same as in the exact one, or unknown. This state covers the
exact state.

Now we have to prove that an extension of this holds for the case when we use
Cartesian abstraction with grouped transition functions (when the abstract state
is in the generalized domain, but the transition is computed exactly, as explained
above), as we want to show that the resulting C-nodes also cover the original ones.

The same reasoning can be used here as above for the flat list of states by simply
replacing the single exprpstmtq^activationps1q by

Ź

ipexprpstmtiq^activationps
1
iqq

with i ranging over the indices of the substatements. By doing this we can see that
the same groups (leading to the same distributions) are obtained from the covering
state, as well as some additional choices. As these groups are all Player A choices,
we only give the abstraction player more choices, but the original choices are still
available. Here we do not even have to take the “modulo covering” into account,

710 Dániel Szekeres and István Majzik

as the exact computations can result only in states that do not contain unknown
predicates.

This means that for all A-nodes s of G, if an A-node ŝ of Ĝ covers it, than
for every C-node directly available from s, there is a C-node directly available
from ŝ covering it. This leads to the satisfaction of both properties required for
the simulation: under and overapproximation of the choice sets modulo covering
are both satisfied by actually having the same choice sets with some states in the
distributions replaced by another state covering the original one.

A.3 Soundness of limited enumeration
Theorem 2 (Soundness of limited enumeration). Given a PCFA P with a set
of target locations LT , optimal strategies on the game abstraction of its MDP se-
mantics using explicit abstraction with limited enumeration to compute the abstract
transition relation gives lower and upper bounds on the reachability probability of
LT . The optimal strategies are understood w.r.t. the reward function that assigns
1 to states with a location in LT and 0 to all other states.

Proof. Although explicit abstraction was not mentioned in [19], it can be regarded
as a special case of predicate abstraction where all predicates are equalities, and we
have one equality for each possible assignment of a tracked variable. This means
that the proof of predicate abstraction being sound also extends to exact explicit
abstraction.

Now, similarly to the Cartesian abstraction case, we only have to show that
there is a strong probabilistic game simulation between the game constructed us-
ing limited enumeration and the one constructed using precise explicit abstraction
(without limiting enumeration).

The same reasoning is used here as above: we can show that the covering relation
R “ tpŝ, sq | ŝ P Ŝ1, s P S1, ŝ covers su is a strong probabilistic game simulation
relation between the game Ĝ computed with limited enumeration and G compute
using the exact abstract transition relation.

For the generalized explicit domain, a state ŝ covering another state s means
that for all tracked variables if its value is known in ŝ, it must be the same as it is
in s. Now we proceed similarly to the Cartesian abstraction case.

We can see that

pexprpsq ^ exprpstmtq ^ exprps1qq ùñ pexprpŝq ^ exprpstmtq ^ exprps1qq.

For explicit abstraction, we can use the expression form of the next state instead
of a formulation based in activation literals. This shows that if we used the exact
next state computation from a covering state, the set of available next states would
contain the set of states available from the covered state.

Now we have to show that using limited enumeration instead of this does not
cause any problems. With limited enumeration, whenever we encounter a situation
where the number of possible next values for a variable grows over a limit, instead
of enumerating all possible next states, we merge these into a single one with the

Towards Abstraction-based Probabilistic Program Analysis 711

variable set to unknown. This merged state will then cover all of the originally
available ones where the value of the variable is exactly known.

This means that for each state available from s computed using the exact next
state relation, there is always a state available from s1 computed using limited
enumeration that covers it.

From this, the theorem can be proven using the same reasoning as in the previous
proof.

Acta Cybernetica 26 (2024) 713–747.

Uncovering Hidden Dependencies:

Constructing Intelligible Path Witnesses using

Dataflow Analyses∗

Kristóf Umannab, Gábor Horváthac, and Zoltán Porkolábad

Abstract

The lack of sound, concise and comprehensive error reports emitted by a
static analysis tool can cause increased fixing cost, bottleneck at the avail-
ability of experts and even may undermine the trust in static analysis as a
method. This paper presents novel techniques to improve the quality of bug
reports for static analysis tools that employ symbolic execution. With the
combination of data and control dependency analysis, we can identify the
relevance of particular code snippets that were previously missing from the
report. We demonstrated the benefits of our approach by implementing an
improved bug report generator algorithm for the Clang Static Analyzer. Af-
ter being tested by the open source community our solution became enabled
by default in the tool.

Keywords: static analysis, symbolic execution, control dependency analysis,
reaching definitions analysis, Clang Static Analyzer, report generation, code
comprehension

1 Introduction

Maintenance costs take a larger part of the price of the software systems. Most of
these expenses are spent fixing bugs. The earlier a bug is detected, the lower the cost
of the fix [12]; therefore, various efforts are applied to speed up the development–
bug detection–bug fixing cycle. The classical test-based approach – although still
important – is insufficient on its own. Writing meaningful tests requires high code
coverage and takes substantial development workload and time. Another approach,

∗This work is supported by the European Union, co-financed by the European Social Fund
(EFOP-3.6.3-VEKOP-16-2017-00002).

aDepartment of Programming Languages and Compilers, Faculty of Informatics, Eötvös
Loránd University, Budapest, Hungary

bE-mail: szelethus@caesar.elte.hu, ORCID: 0000-0002-6679-5614
cE-mail: xazax@caesar.elte.hu, ORCID: 0000-0002-0834-0996
dE-mail: gsd@caesar.elte.hu, ORCID: 0000-0001-6819-0224

DOI: 10.14232/actacyb.299805

mailto:szelethus@caesar.elte.hu
https://orcid.org/0000-0002-6679-5614
mailto:xazax@caesar.elte.hu
https://orcid.org/0000-0002-0834-0996
mailto:gsd@caesar.elte.hu
https://orcid.org/0000-0001-6819-0224
https://doi.org/10.14232/actacyb.299805

714 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

the dynamic analysis method using tools like Valgrind [38], or Google Address san-
itizer [47] which work runtime, evaluates the correctness only those parts of the
system which have been executed. Although such dynamic analysis methods are
precise and could catch real errors with a very low rate of false reports, they re-
quire carefully selected input data, and can also easily miss certain corner cases.
Dynamic analysis trades coverage for precision, and reaching even a close to full
coverage is usually infeasible.

Contrary to testing and dynamic analysis methods, static analysis techniques
do not require the concrete execution of the program, and are often based only
on the program’s source code, and do not require any input data. It is a popular
method for finding bugs and code smells [10, 50, 42, 17]. They do not depend on the
selection of input data while they can (at least theoretically) provide full coverage
of the code. Compiler warnings are almost exclusively based on various static
analysis methods. Many of the applied techniques are fast enough to be integrated
into the Continuous Integration (CI) loop, therefore, they have a positive impact on
speeding up the development–bug detection–bug fixing cycle. Another advantage
of the static analysis method is that it is in many cases applicable for parts of the
code. This is useful when we have no full control over the system, e.g. we use third
party libraries, not all source is available, or we just have no resources to check the
whole system.

Most static analysis methods apply heuristics, which means that often they
may underestimate or overestimate the program behavior [3]; in other words, static
analysis trades precision for coverage. In practice, this means static analysis tools
sometimes do not report existing issues which is called a false negative, and some-
times they report correct code erroneously as a problem, which is called as false
positive. There is a continuous struggle to improve tools and methods, but there is
a theoretical limitation: paraphrasing Rice’s theorem [44] from ’53: all non-trivial
properties of a program are undecidable at compile time. Therefore, at the end all
reports need to be reviewed by a professional who has to decide manually whether
the report stands, and if so, fix it. This, however, creates a serious bottleneck in
the otherwise automated process as humans who are experts both in the problem
domain and in the implementation techniques are usually the most expensive and
the least available resources. It has the uttermost importance to maximize the
effectiveness of the step where humans involved [28]. Considering the mentioned
theoretical limitations, the best possible way to do it is to improve the communi-
cation between the automated analysis tool and the human actor: i.e., to teach the
analysis tool to provide sound, concise and comprehensive reports.

While more complex static analyses can detect even deep-rooted programming
errors, the construction of intelligible bug reports also gets much more difficult. In
this paper, we present the report generation challenges faced by a technique called
symbolic execution. Symbolic execution explores a high number of execution paths
within the program and can constrain the values of runtime variables, allowing it
to gain a considerable understanding of the program’s runtime behavior. However,
after finding a bug, it usually struggles to relate back to the source code and many
time is unable to consider the proper context broader than the actual path of

Uncovering Hidden Dependencies 715

execution leading to the bug.

We discuss possible new techniques to allow a symbolic execution tool to better
understand of code contexts outside a given path of execution. We also demonstrate
one of these techniques implemented as an extension to the open-source analyzer
tool Clang Static Analyzer. As one of the more mature and popular static analyzer
tools that implement symbolic execution for C, C++ and Objective C languages, it
is considered stable and reliable to be used on large code-bases for both academic
and industrial purposes. Our report generation improvement was tested by the
open source community and accepted to merge into the tool since version 10.0.0.
As this improvement has been enabled in the releases since1, we feel there is a real
world benefits to our results. We documented our research, implementation, and
some of the evalution processes leading up to this paper in [54].

This paper is structured as follows. In Section 2 we overview the technical
background related to symbolic execution and its implementation in the Clang
Static Analyzer tool. In Section 3, we discuss our expectations for an intelligible bug
report, and present techniques to generate them and their shortcomings. Section 4
details our proposals and implementations. We evaluate our solution implemented
for the Clang Static Analyzer in Section 5. Related work is surveyed in Section 7.
Future areas of research and implementation are discussed in Section 8. Finally,
we conclude our paper in Section 9.

2 Technical background

An often celebrated advantage of static analysis is its greater code coverage com-
pared to most dynamic analyses. However, this does not come without a cost;
arguing about runtime values is often difficult or impossible with only static infor-
mation. More complex analyses also tend to be expensive in terms of computing
resources, and are often several times slower than compilation and consume more
memory.

Various techniques approach these challenges from different angles – abstract
syntax tree analysis (AST analysis) [16] and control flow analysis trade under-
standing of runtime behavior for faster analysis speed. Dataflow analyses [43] are
able to argue about the flow of information within the bounds of a given function,
and most variants strike a middle ground in terms of space and time complexity
and the effectiveness of the analysis. Symbolic execution [30] takes a rather radical
approach, by essentially interpreting the source code, and analyze a large number
of execution paths in the program. This leads to a combinatorial explosion ac-
cording to the number of possible program states, which makes the analysis rather
expensive, but provides more information about runtime behavior.

This section discusses symbolic execution and its implementation in the Clang
Static Analyzer [15].

1As of the writing of this paper, the latest Clang release is 12.0.0.

716 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

2.1 Symbolic execution

Concrete execution, what we would consider the “normal” execution of the program
or the simulation of such, is done by a specific input set to exercise a single path of
execution. In contrast, most forms of symbolic execution need no input values and
explore multiple paths of execution, covering entire classes of inputs [33]. These in-
put values, and runtime variables of the program are assigned symbolic rather than
concrete values. An analysis engine models the program behavior with a store,
which is a mapping of variables to symbolic values, and a constraint solver, which
contains constraints on symbolic values [7, 59]. The store is updated when a mem-
ory location is written, and the constraint solver is updated after each evaluation
of a conditioned branch.

The Clang Static Analyzer [15, 14, 20, 60] is an open-source tool that implements
symbolic execution on the C family of languages. Over the course of a decade,
it grew to be regarded as a stable and reliable tool for academic and industrial
purposes. It enjoys a variety of advantages of being built directly into the Clang
compiler, such as a thoroughly tested and up-to-date abstract syntax tree (AST)
and control flow graph (CFG, pictured in Figure 1a). Clang [34] is a compiler
frontend for LLVM, the umbrella project that offers a wide selection of algorithms
that are useful for optimization. For the remainder of the paper, we refer to the
Clang Static Analyzer under the term analyzer.

Symbolic execution in Clang starts after the conclusion of syntactic and semantic
analysis, and the construction of the AST and the CFG. The analyzer then creates a
call graph for the input file’s translation unit. The call graph’s nodes are functions,
and directed edges describe function invocations from one function to another. If
possible, symbolic execution starts from functions with no ingoing edges in the call
graph, otherwise in some other function. From this initial function, called the top-
level function, the analyzer will explore paths of execution using the CFG. For the
code snippet in Figure 1a, f will be the top-level function, and a possible path of
execution would be B5 B4 B3 B2 B0. The CFG describes one specific function
at a time yet both B4 and B2 contain function calls. This obstacle is resolved by
the analyzer “jumping” from the invocation site to the entry blocks of the callee
function’s CFG. We call this process inlining. Should we denote the symbol Bifoo
as the ith block of foo’s CFG, the path of execution mentioned above is as follows:

B5f B4f B3g B2g B1g B4f B3f B2f B3g B2g B1g B2f B0f

2.2 The ExplodedGraph

During analysis, the analyzer builds a data structure to keep track of the program
state (most notably the store and the constraint manager) at each point of symbolic
execution. This data structure is called the ExplodedGraph, which is pictured in
Figure 2. The ExplodedGraph is a different data structure to the CFG because
it contains far more information (assumptions on values, memory regions) [52]. It

Uncovering Hidden Dependencies 717

is not even isomorphic with it; a path of execution on which the body of a loop
is visited four times, each visit would be represented with a linear path, instead
of a directed loop. Also, while a CFG is built for each function, only a single
ExplodedGraph is built for the entire analysis. With that said, it is possible to
map each ExplodedNode (a node of the ExplodedGraph) to a specific CFGBlock
(or simply block, a node of the CFG), or CFGEdge (a directed edge of the CFG).

Mind that the analyzer does not view the path of execution from a “human”
perspective. It processes these nodes from the ExplodedGraph unaware of contex-
tual information in the source code, or even nodes on other paths of execution. For
instance, the path in red in Figure 2 does not include any information about user’s
intent to assign x a non-null object, and will not be considered.

3 Report generation

A frequently researched problem of static analysis is to discover as many real bugs
as possible while keeping their false positive rate within a margin of error [41,
28]. However, making the generated reports intelligible and easily digestible is
rarely discussed. However, many researches [28, 29, 36, 45] point to the fact, that
understanding the error report and converting it to an executable action by the
developer is crucial for the acceptance and the effective use of static analysis tools.

In this section, we define a non-comprehensive set of guidelines on an ideal bug
report, and overview how the analyzers approach this issue, and struggle relating
to the limitations of the ExplodedGraph.

Bug report generation is done after the entire analysis is concluded by the
inspecting nodes of the ExplodedGraph. To avoid confusion, we define the following
terms:

• An (explored) path of execution is a directed path in the ExplodedGraph
starting from the root terminating in one of its leaves.

• A bug path is the shortest path of execution, which terminates in an error
node. Error nodes in the ExplodedGraph are the program points where a
bug was discovered (the red path seen in Figure 2).

• A bug report is a user-readable set of messages and notes that explains the
control flow leading to the bug, and the values of related variables (see Figure
1b-1c).

3.1 Goals

The bug path is a collection of all events on a given path of execution and is not
a user-readable set of events. Some nodes describe relatively low-level actions, like
an lvalue-to-rvalue cast, the cleanup of local variables, or other events that may
not be relevant to the actual bug. Hence, we define the ideal bug report to be:

718 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

• Minimal, so that it is void of events that are irrelevant to the comprehension
of the bug report,

• Complete, so that it highlights every relevant event.

In a sense, an ideal bug report tells how to reproduce the bug. Unfortunately,
these goals are rather vague and leave room for subjectivity. For instance, control
flow through a constexpr-conditioned branch is obvious from the compiler’s per-
spective but may or may not be obvious to a reader. To keep our study free of
personal preference, we precisely define the vaguest word of these goals: relevance.

Definition. We say that statement a is relevant to statement b, if for a given (b,
{set of variables}) pair, a is a control dependency of b, or contains an expression
that is a data dependency of any of the variables in the pair’s set. We call a
(statement, {set of variables}) pair a slicing criterion.

3.2 Report generation techniques prior to our research

To construct a bug report, the analyzer, starting from the error node, inspects
the bug path’s nodes individually all the way to the root of the ExplodedGraph,
looking for noteworthy events to the slicing criterion (error location, {bug causing
variables}). Two techniques are employed for each of the goals mentioned above.
Bug path visitors add user-readable messages and notes to the final bug report, and
interestingness propagation helps to discard of a portion of these.

3.2.1 Bug path visitors

Contrary to their name, bug path visitors function as callbacks. As the analyzer
visits a new node in the bug path, it notifies each visitor to inspect it. If a visitor
finds a noteworthy event, they may construct a diagnostic message. For instance,
ConditionBRVisitor is responsible for constructing a message for each evaluated
condition. When a condition is seen by this visitor in an ExplodedNode, for in-
stance, if (coinflip()), the message “Assuming the condition is true” may be
constructed.

Visitors greatly expand the number of variables and values to consider for ex-
plaining. Data dependence is a great example; if variable x caused a bug, we could
register FindLastStoreBRVisitor to find x’s last write preceding the error node
(e.g., “Value assigned to ’x’ ”). Visitors can themselves create new visitors, if war-
ranted. Suppose that that last write is in the form of an assignment (x = y;),
FindLastStoreBRVisitor would register a new instance of itself to explain y.

3.2.2 Interestingness propagation

By design, visitors cannot always be aware of whether the constructed message is
relevant to the bug report. In anticipation, the analyzer marks some entities (such
as the denominator for a division-by-zero bugs) interesting. Just as visitors may
themselves create new visitors during bug report construction, they may also mark

Uncovering Hidden Dependencies 719

new entities interesting, or propage interestingness from one entitity to another. In
a later stage, after all diagnostics have been constructed, messages in function calls
not describing any interesting entity are pruned.

At last, these two techniques are combined in what we call expression tracking.
A common desire for bug report generation is to explain all events relating to
a variable: why it holds a specific value, control flow around the usages of said
variable, and other properties. This is achieved by registering a set of visitors
relating to that variable, and mark it interesting. We call this process the tracking
of said variable.

3.3 Deficiencies

Even when describing multiple iterations of a loop, bug paths contain no directed
cycles. They are a sequence of program states, leading to a node where the program
state is erroneous. This linearity and the lack of information on code not explored
by the analyzer on that bug path can make it challenging to understand the intent
of the programmer.

Figure 1a shows a code snippet where the global variable flag controls whether
x will be initialized, and whether x will be dereferenced. Function g sets flag

to some unknown value, and the lack of parameter passing makes this a non-
trivial realization from a user’s perspective. Figure 1b shows a report from the
analyzer displayed by CodeChecker [21] before our research: the analyzer failed
to understand that x’s value, and its dereference depends on flag and is worth
explaining. As a result, it pruned diagnostic messages relating to function calls to
g. In a later section, we will discuss our results to improve this bug report as shown
in Figure 1c.

For each example in Figure 3, the analyzer can discover a null dereference bug
on line 21, but will also fail to find all relevant statements to it during bug report
construction. These examples correspond to four classes of problems2, which we
discuss in further detail as follows:

3.3.1 Figure 3a: Control dependency is not recognized

Analysis starts at line 14, noting variable x to be a null pointer, and the global
variable flag to be 1. Then, the function call to g() will appropriately set flag’s
value to unknown. On line 20, the analyzer will explore a path of execution on
which flag’s new value is 0, and one where it is not. On the former, a dereference
of x is found on line 21, which is known to be null. The analyzer will cut a bug
path out of the ExplodedGraph which terminates in this erronous program state,
and configure its bug report generation facilities to start tracking x.

During bug report generation, the analyzer can find the relevant statement to x

regarding data dependencies, which is its initialization on line 14. It will, however,
fail to recognize a relevant statement to the bug – namely, had flag not been 0 on
line 20, the bug would not have occurred. We will define it more precisely in later

2Figure 1a combines the classes of problems displayed in Figure 3a and Figure 3b

720 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

1 int flag;

2 bool coin();

3

4 void g() {

5 flag = coin();

6 }

7

8 int f() {

9 int *x = 0;

10 flag = 1;

11 g();

12 if (flag)

13 x = new int;

14 g();

15 if (flag)

16 *x = 5;

17 }

[B5 (ENTRY)]

[B4]
int *x = 0;
flag = 1;

g();
if (flag)

[B3]
x = new int;

[B2]
g();

if (flag)

[B1]
*x = 5

[B0 (EXIT)]

(a) A code snippet and function f’s control flow graph.

(b) Before
(c) After

Figure 1: A code snippet and analysis results demonstrating how the analyzer
struggles to realize that x’s value and derefence depends on flag, and as a result,
will not construct diagnostic messages to explain relevant events to it.

Uncovering Hidden Dependencies 721

flag = 1
x = nullptr

(after the call to foo)
flag ∈ (−∞,∞)

x = nullptr

flag ∈ (−∞, 0) ∪ (0,∞)
x = nullptr

flag ∈ (−∞, 0) ∪ (0,∞)
x = (heap allocated object)

*x = undefined

(after the call to foo)
flag ∈ (−∞,∞)

x = (heap allocated object)
*x = undefined

flag ∈ (−∞, 0) ∪ (0,∞)
x = (heap allocated object)

dereference of x!
*x = 5

flag = 0
x = (heap allocated object)

*x = undefined

flag = 0
x = nullptr

(after the call to foo)
flag ∈ (−∞,∞)

x = nullptr

flag ∈ (−∞, 0) ∪ (0,∞)
x = nullptr

dereference of x!

flag = 0
x = nullptr

Figure 2: A simplified ExplodedGraph after analyzing Figure 1a.

section, but this property makes line 20 a control dependency of line 21. Control
dependency is defined on the CFG, not the bug path, hence the analyzer being
oblivious to it at this phase. Note that flag’s value was set to 1 a few lines earlier,
and should g()’s definition be unavailable or obscured, it would not obvious why
flag’s value is assumed to be 0 on line 20.

3.3.2 Figure 3b: Reaching definition is not in the bug path

The analysis, and the eventual costruction of the bug path is done similarly to
Figure 3a. The analyzer can again find x’s initialization as important, but as
line 18 is not on the bug path, the analyzer fails to recognize that the user likely
intended to set x’s value properly. This assignment and x’s initialization are so-
called reaching definitions to x on line 21 – loosely, there exists a path in the CFG
from them to line 21 without any interleaving assignments to x. flag’s value on
line 17 is no longer a control dependency to the CFG block in which the bug is
found, yet it is clear that should flag’s value be non-zero on line 17, the bug would
not have occurred. Reaching definitions is also a property of the CFG, so line
18 is not recognized as important, leading the analyzer to believe that its control
dependency, line 17, which is on the bug path is not worth explaining in further
detail either.

3.3.3 Figure 3c: Reaching definition is in a different, but inlined stack
frame

This example presents another layer of difficulty to Figure 3b – the statement on
which x could have obtained a non-null value is not only outside the bug path, but
is in another function call. In the previous cases, control dependency and reaching

722 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

1 int flag;
2 bool coin();
3
4 void g() {
5 flag = coin();
6 }
7
8
9
10
11
12
13 int f() {
14 int ∗x = 0;
15 flag = 1;
16 g();
17
18
19
20 if (!flag)
21 ∗x = 5;
22 }

(a)

1 int flag;
2 bool coin();
3
4 void g() {
5 flag = coin();
6 }
7
8
9
10
11
12
13 int f() {
14 int ∗x = 0;
15 flag = 1;
16 g();
17 if (flag)
18 x = new int;
19
20
21 ∗x = 5;
22 }

(b)

1 int flag;
2 bool coin();
3
4 void g() {
5 flag = coin();
6 }
7
8 void h(int ∗∗x) {
9 if (flag)
10 ∗x = new int;
11 }
12
13 int f() {
14 int ∗x = 0;
15 flag = 1;
16 g();
17
18 h(&x);
19 g();
20 if (flag)
21 ∗x = 5;
22 }

(c)

1 int flag;
2 bool coin();
3
4 void g() {
5 flag = coin();
6 }
7
8 void h(int ∗∗x) {
9
10 ∗x = new int;
11 }
12
13 int f() {
14 int ∗x = 0;
15 flag = 1;
16 g();
17 if (flag)
18 h(&x);
19 g();
20 if (flag)
21 ∗x = 5;
22 }

(d)

Figure 3: Code snippets that highlight deficiencies in the analyzer’s understanding
of bugs when generating reports.

Uncovering Hidden Dependencies 723

definitions could have been recognized within f itself; here, an interprocedural
technique is required, whereas a CFG is constructed for only a single function at
a time. While we can say that the assignment to x in h is a reaching definition
to x on line 21, this information needs to be carried from one CFG to another.
Although symbolic execution is interprocedural, control dependency analysis and
reaching definitions analysis (and many similar lightweight techniques) are not.

3.3.4 Figure 3d: Reaching definition is in a different and not inlined
stack frame

A relevant statement, line 10, is not only outside the bug path, but the containing
function g was not inlined either (the analyzer has not entered this function on
the path where the bug is discovered). Inlining functions can demand non-trivial
modeling, such as lifetime extension, moves, and the evaluation of arguments. This
makes bridging the gap in between CFGs all the more difficult. Generally speaking,
the “further” the analyzer has to stray from the bug path, the more challenging
bug report construction becomes.

4 Proposed solution

Program slicing is a field of study about creating a program slice, which is a subset
of the program’s statements, relevant to a point of interest, usually defined by a
(statement, {set of variables}) pair, called a slicing criterion. Relevance in this
context is defined by whether a statement could influence the value of one of the
variables in the slicing criterion. Program slicing combines data and control de-
pendency analysis in a fix-point algorithm to slice irrelevant statements away from
the program, converging to a minimal, but complete slice.

The original program slicing algorithm [57] was intraprocedural, and aimed at
monolithic, single-procedure programs [40]. Interprocedural variants are explored
in numerous studies [26, 11, 56], but they demand the existence of a data structure
that describes data and control dependencies across function calls, most commonly
a system dependence graph, which at the time of writing was absent from Clang,
and its implementation would be a challenging task with the current Clang’s AST
and CFG design.

As feasible implementations of slicing algorithms are confined to the bounds of
a single function, and most bug paths span multiple functions in the source code,
adjustments would be required to make program slicing a valuable part of Clang’s
bug report generation facilities. A great candidate to bridge this gap might be bug
reporter visitors, as they can reason about data dependencies with rather great
precision across function calls. However, they would be partially redundant with
the data dependency analysis built into program slicing. For these reasons, we
approached slicing in terms of its core components, not in its entirety.

In Section 3.3, we have shown four classes of problems the analyzer could not
tackle prior to our research. We propose two techniques as a potential solution, as

724 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

well as how they can be incorporated into the existing bug report generation infras-
tructure: control dependency analysis and reaching definitions analysis. While we
are cautious about unforeseen challenges, we feel confident that these would solve
three of the four cases, and pave the way to approach the fourth. As a demon-
stration, we implemented control dependency analysis and observed measurable
improvements for the first case.

4.1 Control Dependence Analysis

On most occasions, control dependence center around conditional statements (e.g.,
if, for, switch), where the value of the condition dictates which part of the
code (e.g., branches of if statements) will be executed next. For instance, cases
of a switch-case statement are control dependent on the expression in the switch
statement.

We defined relevance in part such that slice a := (stmta, varsa) is relevant to
slice b := (stmtb, varsb), if stmta is a control dependency of stmtb. The following
exercise demonstrates why this is reasonable: Suppose that we constructed b after
discovering a null pointer dereference error (for instance, (line16, {x}) for Figure
1a), and have already marked stmtb as interesting. We argue that regarding its
control dependency, stmta, as relevant enables the analyzer to better understand
the context of this bug; had control not flown from stmta to stmtb, the bug would
not have occurred.

In this section, we overview our proposal and implementation of adding control
dependency analysis to bug report construction.

4.1.1 Defining Control Dependence

We define control dependence on the CFG with the help of dominance and postdom-
inance. We say that block A dominates block B (A domB), if every path from the
entry block to B must go through A. We say A strictly dominates B (A sdomB),
if A dominates B and A 6= B. We say B postdominates A (B pdomA), if every
path from A to the exit block must go through B, and similarly, B strictly post-
dominates A (B spdomA) if B postdominates A and B 6= A [1]. An example can
be seen regarding dominance in Figure 4.

We say that block B is control dependent on block A (B cdA) if there exists
an edge from A to C such that B postdominates C, and if B is not equal to
C, B doesn’t postdominate A. In looser terms, this expresses that B is control
dependent on A if B doesn’t postdominate A, but post dominates all blocks “in
between them”. As an example, in Figure 1a, B1 is control dependent on B2, but
B0 is not control dependent on B2, as B0 post dominates B2. We extend control
dependency to statements as follows: If block B is control dependent on block A, we
also say that all statements in B are control dependent on the condition expression
in A, if such exists.

Control dependencies can be calculated with post dominance frontier sets [19].
The post dominance frontier set of block A (PDF (A)) is the set of B nodes from

Uncovering Hidden Dependencies 725

[B5 (ENTRY)]

[B4]

[B3]

[B2]

[B1]

[B0 (EXIT)]

Figure 4: A simple control flow graph. The entry block (strictly) dominates every
(other) block, and the exit block (strictly) postdominates every (other) block. B4
dominates B3, but B3 does not dominate B2, since the path B5 → B4 → B2
excludes B3. B2 postdominates B4, but B3 does not postdominate B4.

the inverse CFG3 such that A dominates a predecessor of B but does not strictly
dominate B:

PDF (A) := {B|(∃P ∈ Pred(B))∧
∧ (ApdomP ∧ ¬A spdomB)}

Calculating PDF sets quickly yields control dependence:

A cdB ⇔ B ∈ PDF (A)

We implemented dominance frontier sets with the algorithm described in [48].
For a CFG with E edges and N CFGBlocks, calculating PDF sets has a worst-

case complexity of O(E + N2), but is often linear in practice [19].

4.1.2 Integration of control dependence

As bug path visitors continously expand the code contexts (values, variables) to
explain, we chose to weave our control dependency calculator into a new visitor.
A new instance of our visitor is registered for each new tracked expression value.
As a new node in the bug path is visited, the visitor checks whether the statement
described in the node is a control dependency of the location where the tracking
started. If so, it will instruct the analyzer to track the condition of that statement.
Essentially, each visitor instance holds a (statement where tracking starts, {tracked
variable}) slicing criterion.

Figure 3a demonstrates a code snippet where the analyzer can detect a null
pointer dereference of x, but fails to realize that had the value of flag may have
been a guard of this error. With our improvement, the bug report generation
would work as follows: The analyzer would start tracking x, registering several

3An inverse of a CFG is constructed by reversing all of its edges in the graph.

726 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

visitors, including our own. As it ascends the bug path and finds the ExplodedNode
describing the evaluation of !flag on line 20, our visitor checks whether line 20 is
a control dependency of where it started tracking from (line 21). As a result, it will
instruct the analyzer to track flag. FindLastStoreBRVisitor would find flag’s
last store on line 5, and a diagnostic message will be constructed to describe it.
Since flag is tracked, it is also an interesting variable and the analyzer will prevent
the pruning of messages inside g().

While this information was indeed found on the bug path, inspection of its
nodes alone did not reveal the relevance in between flag and x, and led to the
analyzer discarding information about g() to keep the bug report minimal. Control
dependence analysis unearthed and preserved the importance of this function call.

In application, we employ a number of heuristics to limit the impact of our
solution to only display diagnostics when they provide a meaningful addition to the
bug report. When displaying a bug report to the user, the source code is decorated
with diagnostic messages and notes, and often relevant information about condition
values is readily available in the same function as the condition itself. We found that
additional notes in the same function did not add much value the user experience,
and on occasion needlessly polluted the report. We chose to display new diagnostic
messages only when information relating to a condition was found in a function call
that would otherwise be disregarded.

4.2 Data Dependence Analysis

Data dependency analysis on the bug path (done by FindLastStoreBRVisitor)
benefits from all the information the analyzer gathered during symbolic execution.
Common obstacles in this realm might already be resolved: the analyzer’s memory
model keeps track of pointers and their pointees, and if possible, function calls are
inlined and evaluated. The linearity of the bug path makes this kind of analysis
also relatively efficient. Data dependence analysis on the CFG, which is done with
a dataflow algorithm, is not in such a privileged position. However, as we have
demonstrated before, analyses on the CFG could yield information on code outside
of what the bug path that can be valuable.

In this section, we discuss a dataflow algorithm called reaching definitions.
When inquiring about which parts of the program was meant to affect the value of
a bug causing variable, reaching definitions is an elegant solution to find relevant
statements.

4.2.1 Dataflow analyses

As the name suggests, control flow analyses describe the flow of control within a pro-
gram by inspecting the structure of the CFG; dataflow analyses complements this
by analyzing how information (e.g., values of variables, state of mutexes, whether a
value will be read from in a later basic block) flows, changes, and is accessed from
one node to another by inspecting the contents of the CFG. Many notable dataflow
analyses are defined by calculating an initial set of properties for each basic block,

Uncovering Hidden Dependencies 727

and propagating these properties along the edges of the CFG, so that properties
“flow” from one block to another. Propagations may be described with dataflow
equations; these are then repeatedly solved until these property sets change no
more, reaching a fixpoint. Common initial property sets include GEN and KILL.
Though might be defined somewhat differently from algorithm to algorithm, they
are usually similar to the following: for basic block B, GEN [B] is the set of variables
read in B, and KILL[B] is the set of variables written in B.

As an example, live variable analysis [18] calculates the set of live variables in a
given basic block. A variable is live if its value may be read in subsequent blocks.
Formally, a variable x is live in block i, if block j uses the value of x, and there
exists a path from i to j without any interleaving assignments to x. LIV Ein[B] is
the set of variables live at the beginning of block B, and LIV Eout[B] is the set of
variables live at the end of B. 4 In Figure 1a, x is live in blocks B4, B3 and B2, but
not in B1 and B0. It is indeed possible to express liveness with dataflow equations:

LIV Ein[B] = GEN [B] ∪ (LIV Eout[B] \KILL[B])

LIV Eout[B] =
⋃

S∈succ[B]

LIV Ein[S]

This definition overapproximates the actual set of live variables. Suppose in
Figure 1a g() is known to always set flag’s value to false. Although x would
be a dead variable throughout the entire function, liveness analysis, and dataflow
analyses in general are incapable of telling whether a path of execution in the CFG
is feasible.

C/C++ presents several challenges to overcome in calculating GEN/KILL sets.
Due to the aliasing problem presented by pointers, it can be difficult or impossible
to tell which variables are read or written through aliasing. Another significant
obstacle is posed by function calls, as dataflow analyses are defined to reason about
a single CFG at a time. These limiting factors force the analysis to over- or under-
estimate its results even further. Clang in particular faces a number of additional
problems; its AST, to which the CFG links back to, was designed for diagnostics
construction, not for such an analysis [53]. While lacking an intermediate represen-
tation higher than LLVM IR but lower then Clang AST makes it rather difficult to
implement in Clang for the purpose of finding programming errors, there are a few,
such as Clang’s thread safety analysis [27] and lifetime analysis [49, 24, 25, 32].

4.2.2 Reaching definitions analysis

We call the write of variable x a definition of x. Any statement that may write
x (e.g. through aliasing) is also regarded as a definition of x. When describing
analyses concerning definitions, we define GEN [B] sets such that they contain

4As basic blocks are sequences of operations executed sequentially, they might not be granular
enough, as the same variable may be written multiple times in a given block. In such a case,
valuable liveness information is lost inside the block. This problem can be solved by splitting up
basic block to only contain a single statement.

728 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

the set of definitions present in basic block B (,,B writes x”), and KILL[B] sets
such that they contain every other definitions in the CFG that generate the same
variables as B (,,B overwrites the value x may have gotten in other blocks”).

The ingoing reaching definitions [18] set of B (REACHin[B]) is the set of defini-
tions reaching B. The outgoing reaching definitions set of B (REACHout[B]) is the
incoming set minus the definitions killed by B, as well as the definitions generated
by B. We can define reaching definitions with the following dataflow equations:

REACHin[B] =
⋃

P∈pred[B]

REACHout[P]

REACHout[B] = GEN [B] ∪ (REACHin[B] \KILL[B])

If the set of definitions to x at block B (a subset of REACHin[B]) contains no
elements, that means x is first defined in B, or not yet defined. If the set contains a
single element, that means we can precisely tell which statement defines x’s value
in B. If it has two or more elements, then x’s value might be different if different
execution paths are chosen to reach B. In Figure 1a, if we denote definitions by a
(variable, line number) pair, B1’s reaching definitions set would be the following:

REACHin[B1] = {(flag, 15), (x, 9), (x, 13)}

4.2.3 Integration of reaching definitions

The reaching definition set of B1 is very telling: it highlights that the definition of
x in B3 reaches the block where x was a cause of a bug, which could be a hint that
the developer intention to prevent the bug from occuring. Although the analyzer
did not visit B3 on this path of execution and is absent from the bug path, one
can tell that a control dependency of B3, namely the evaluation of the condition
in B4, is. This realization could trigger the analyzer to start tracking flag on line
12. This would force the creation of diagnostic messages for the last store to flag,
which is in a function called on line 11.

With reaching definitions, we would be able to find a point of interest to the bug
but outside the bug path, and could instruct the analyzer to explain control flow
around these points better. This would theoretically solve the class of problems
demonstrated in Figure 3b. Reaching definitions analysis overapproximates the set
of statements that are considered definitions, meaning that the analyzer should
keep track of whether a definition was found as a result of overapproximation.
With that said, the analyzer might be able to fill the gaps of information dataflow
algorithms usually struggle with; suppose a pointer is written right before a division-
by-zero error is discovered. Reaching definitions might be forced to conservatively
assume that said pointer points to the denominator; however, it could ask the
analyzer whether this aliasing is possible, and might be able to disregard the pointer
assignment.

The class of problems displayed in Figure 3c is more difficult to detect accurately.
Reaching definitions is confined to the bounds of f’s CFG, and will not detect x’s

Uncovering Hidden Dependencies 729

potential write on line 10. One aspect that makes this case approachable is the fact
that the function call to h is present on the bug path, and the analyzer will resolve
that the parameter of h will alias with x in f. This won’t make reaching definitions
interprocedural but would grant a limited toolset to reason across a limited set of
functions present on the bug path. Nonetheless, we would need to enhance our
reaching definitions algorithm with some pointer aliasing capabilities.

For the last class of problems demonstrated in Figure 3d, we lose the ability
to ask the analyzer to resolve parameter passing. While reaching definitions would
find that x might be written on line 18, it will be a result of overapproximation, so
the analyzer might not trust is enough to explain control flow around it. To reason
about h, we are forced the reimplement some of the analyzers inlining technology to
make reaching definitions to understand more than one function on its own. Should
such a technology exist, we would need to survey how deep of a function call chain
should we investigate to look for points of interest. This highlights how much more
difficult it is to discover relevant information from the program the further we stray
from the bug path.

The concept behind the interaction of reaching definitions with control depen-
dency analysis displays the many of the characteristics of static backward program
slicing.

5 Results

We evaluated our work from two perspectives. First, we gathered data on open
source projects by running the Clang Static Analyzer on their source code before
and after our improvements. We inspected almost all reports individually and tried
to subjectively argue for or against whether the reports’ readability improved. We
also tried to find certain objective metrics to measure the impact of our work.

Second, we sent out surveys to participants with varying degree of expertice
in C/C++ and static analysis to learn whether other developers would find our
improvements beneficial.

5.1 Measurements on open source projects

We tested our solution on, as seen in Table 1, the following open-source C and
C++ projects: Bitcoin [51], CppCheck [37], Gravity [8], gRPC [23], LLVM and
Clang [35], OpenSSL [39], Protobuf [22], Rtags [6], S2N [2], TinyVM [31], Xerces [4]
and XGBoost [58]. Combined, these projects cover a wide variety of coding tech-
niques, codebase sizes, and different versions of the languages’ standards.

In Table 1 we show how many reports did our contribution affect. Out of the 12
open source projects, reports remained unchanged in 7. Out of 1096 bug reports,
2.4% received additional notes. We intentionally fine tuned our solution to limit its
impact, and have observed that preserved information from previously disregarded
function calls always meaningfully added to the intelligility of the analyzed path of
execution.

730 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

Table 1: Evaluation of control dependency tracking in terms of how many reports
received additional notes. The last row shows findings every other project other
than the first five remained unchanged.

Total reports Changed % of changed

CppCheck 44 7 15.9 %
Gravity 16 1 6.3 %
gRPC 229 15 6.6 %
LLVM + Clang 249 2 0.8 %
Xerces 106 1 0.9 %
Others combined 451 0 0 %

In the case for Xerces, Gravity, some of the CppCheck reports, we were especially
pleased on how the extra information on conditions provided further high-level
information. We found that conditions closer to the bug point are more likely to
be directly data dependent on the bug causing variable. Upon learning more about
the condition, we also learned of more high-level properties on the bug causing
variable.

In the case for LLVM, gRPC, and the other half of the CppCheck reports, when
the pivotal point (like assigning null to a pointer) was very close to the bug point,
the extra information did not add much to the already decent report. Even in these
cases however, the rest of the report (altough not important to understand why the
bug occured) were easier to understand.

In the context of how memory and runtime intensive static analysis is, the costs
of bug report construction are usually assumed to be negligable. We expect our
contribution in particular to very little impact even in the context of bug report
construction, as all of the control flow analyses are calculated at a prior step in the
compilation process, and we simply reuse it.

5.2 Survey

We sent out surveys 11 people to measure whether a developer not taking part in
our research would find our improvements beneficial. Out of them, 9 participated
All of them were male, their avarage age was 30 at the time of the survey, ranging
from 24 to 56. Participation was free and voluntary.

While all of our participants were software developers, 3 of them mainly wrote
code in Python, 2 of them were teaching C++ at our university but wrote little
C/C++ code outside the classroom. The remaining 4 were full-time C++ devel-
opers.

All of the participants were familiar with static analysis, with 4 of them being
active contributors to Clang itself (but to our research). The remaining 5 worked
on visualizer tools for static analyzers, but not the analyzers themselves.

We selected 11 bug reports from those that we collected on analyzing open
source projects. After our contribution, all of these reports contained additional

Uncovering Hidden Dependencies 731

information than prior to it. We will call these versions of the same bug report the
“after” and the “before” versions.

All surveys contained all of the bug reports, but each report was only presented
in either “before” or “after” state. Each survey way unique in terms of which reports
were shown in which state, but all survey contained roughly the same number of
“before” and “after” reports.

In total, we received 99 bug report evaluations. On the following question:
“Sometimes, I was unsure how the analyzer analyzed this path of execution, and
wished for more explanation.”, answers could be given on a range from 1 to 5, with 1
strongly disagreeing and 5 strongly agreeing. As seen in Figure 5, on avarage, before
our contribution users answered with 2.901/5, but this desire was somewhat lower
after our contribution, a 2.804/5, while users rated “Some notes were annoying and
made it more difficult to understand the bug.” with the same score before and
after our improvement.

Figure 5: Responses to the question “Sometimes, I was unsure how the analyzer
analyzed this path of execution, and wished for more explanation.”. 1 strongly
disagrees, 5 strongly agrees. The columns in grey display the score on bug reports
prior to, and the columns in green display the score after our improvement.

5.3 Threats to validity

As for the evaluations on open source projects, our selection lacks meaningful
amount of modern C++ code, specifically, C++14 or newer.

As for our survey, while in terms of expertise in C/C++, our participants varied
in range, they were are rather knowledgable about the Clang Static Analyzer, with
7 of the 9 having made at least one contribution to it. Our survey could have
benefitted from a greater range on familiarity with static analyzers. All of the

732 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

participants that responded to our survey were male, a fact that could also use
some diversifying.

Most importantly, our sample size of 9 participants and 11 bug reports is small.
It is our view that a participant should have at least an intermediate C/C++
knowledge, and at least some familiarity with the concept of static analysis in real
world applications, and it proved difficult to find people who met these criteria.

6 Notable examples

In this section, we highlight a few bug reports where control dependency tracking
made a poor bug report significantly more readable.

While evaluating a large number of reports during static analysis, it is a good
idea to read from the bottom up, as the root cause of the bug, for instance the
last assignment to a variable before it participates in a division by zero error, may
be close to the error point. This means essential part of the bug report might be
shorter than the full report. Starting from the bottom allows the user to disregard
the first few of the report as non-consequential.

In the following examples, we advise to read the reports from the top down,
unless stated otherwise.

6.1 Example 1

This example is from the project CppCheck, in the file lib/symboldatabase.cpp.
In Figure 6, the bug report is shown which was generated without our improvement.
At one point, variable tok2 is assumed to be null, which eventually leads to a null
dereference bug. To decide whether this report is a true positive, and if so, how to
fix it, a good question to ask is “Are there any interleaving condition points that
should’ve prevented the flow of control from reaching a derefence of tok2 while its
null?”.

This is rather challenging in this bug report: at one point, the local variable
new scope is defined, and is already known to be null in the next condition (if the
analyzer would have assumed its value on the condition point, it would have placed
a note there, implying that the analyzer learned of its value earlier). Is this because
findScope unconditionally returns a null pointer, and its effect is only observable
on its parameters? If not, why are there no explanations?

In Figure 7, we show the relevant part of the bug report, but after our improve-
ments. A pair of new notes appeared on the function call to findScope, and leads
to its definition. It forwards us to a call to a non-cost member function with the
same name. There, we learn that this function can indeed return non-null values,
but the analyzer managed to find a path of execution where this function returns
null.

Our improvement recognized that new scope is a control dependency to the bug
point, and information about it should be presented.

Uncovering Hidden Dependencies 733

BEFORE:

...
<numerous lines of code>

...

...
<numerous lines of code>

...

Figure 6: Bug report before our improvement from CppCheck

734 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

AFTER:

...

...

Figure 7: New notes after our improvement in the report from CppCheck

Uncovering Hidden Dependencies 735

6.2 Example 2

This example is from the project Xerces in the file TraverseSchema.cpp. Reading
the report in Figure 8 from the bottom up shows that the first parameter on
reportSchemaError is dereferenced as a null pointer. Moving up, we can see that
the null pointer originated from the caller function’s local variable, content. We
entered this code block because simpleTypeRequired is true, which was set because
a chain of conditions, among them the fact that baseTypeInfo is non-null, lead
to that assignment. Earlier, we can see that the execution was not halted by an
exception, in part because baseValidator is null (shown by the flow of control,
which is visualized by the arrows). content’s last store is present in the full the
bug report, but we omitted it on this figure.

It is clear why simpleTypeRequired is known to be true at the condition point,
but as to why were both baseTypeInfo and baseValidator known to be non-null
and null respectively, is not explained by the report. Their definition gives a clue,
it is related to typeInfo, but how does the analyzer know the values returned by
those getter functions so precisely?

In Figure 9, which displays parts of the bug report after our improvement, we
are greeted by new notes explaining what happens inside processBaseTypeInfo.
Inside the function, we see two variables with the same types that baseTypeInfo

and baseValidator had being initialized to null. Later, baseComplexTypeInfo’s
value changes, and is assumed to be non-null, while baseDTValidator’s value re-
mains unchanged. The last two statements of the function uses setter functions on
typeInfo with these variables.

Upon reviewing the definition of baseTypeInfo and baseValidator, we can see
that the getter functions they are initialized with pair with these setter functions,
explaining how the analyzer knew their precise value.

Our improvement saw that simpleTypeRequired is a control dependency to
the bug-causing function call, and started tracking it. Its last store was control de-
pendent (in part) by baseTypeInfo, which initiated its tracking. baseValidator

is tracked as it played a part in preventing the program from throwing an excep-
tion, but this could have been omitted, as the value of baseTypeInfo would have
prevented that anyways.

6.3 Example 3

This example is from LLVM, in the file clang/lib/CodeGen/CGObjCGNU.cpp. In
Figure 11, we see a bug report before our solution. Reading from the bottom
up, we see that OID is dereferenced as a nullpointer. In a branch inside a range-
based for loop, we see the only statement that could have written this variable
before its definition. II seems to play an important role in the retrieved range,
which is initialized based on the parameter of the function, Name. Following the
flow on control up, we see that isWeak is known to be false. Notably, we see
GetClassVar being initialized by a call to SymbolForClassRef, which takes both
Name and isWeak as parameter.

736 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

BEFORE:

...

...

...

Figure 8: Bug report before our improvement from Xerces

Uncovering Hidden Dependencies 737

AFTER:

...

...

...

Figure 9: New notes after our improvement in the report from Xerces.

738 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

To decide whether this bug report is a true positive or not, we must, in part,
show that Name can hold values that allows the flow of control to reach the range-
based for loop, but never reach the assignment to OID inside it. Since the return
value of SymbolForClassRef seems to influence whether the function returns early,
the intention could have been that problematic values of Name should result in this
early exit. It is also unclear why isWeak is known to be false, the intention of the
programmer could have been to prevent the flow on control reaching the error point
with its value as well.

In Figure 11, we see the relevant parts of the bug report after our improvement.
A pair of notes around the call to SymbolForClassRef link to the function’s defini-
tion. There, we learn where isWeak’s value was assumed, and we get a better picture
of the return value that was later provided for the initialization of ClassSymbol.
Also, the correlevance of Name, isWeak and the early return is proven, so an expert
on this domain can likely judge the validity of the report.

7 Related work

In 2008, the authors of paper [5] reported that while the static analysis methods are
frequent research areas in the academy, there are no many usage examples in the
industry. Current trends show a growing industrial interest of the static analysis
tools [9, 61].

Industry leader software companies show the most positive approach towards
static analysis and its application in every day development. Google, Apple, Mi-
crosoft, Facebook, and others also participate in the development of such tools.
Paper [45] reports about the lessons learned while developing static analysis tools
at Google. The authors list the most frequent problems resulting in the developers
not using static analysis tools or ignoring their warnings. These are the lack of
tool integration into the developer’s workflow; the fact that many warnings are not
actionable; the high number of false positives; situations where the bug is theoreti-
cally possible but in practice it does not manifest; the possibly high cost of the fix;
and that the users do not understand the warnings.

The authors emphasize the importance of actionable messages: the warnings
should include a suggestion to the (possible) fix, which in the best case could be
applied mechanically. However, the authors state that many serious issues cannot
be detected correctly or automatically fixed. In that case of the latter, the fix
depends on the correct understanding of the report. They also claim that the
developer’s happiness is a crucial factor for the successful introduction of static
analysis on an organizational level. Non-understandable reports cause frustration
among engineers and work against trust in static analysis tools.

The authors in [28] investigate why the use of static analysis tools is not as
widespread as it would be possible. Unlike earlier studies, they focused on the
developer’s perception on using the tools, including the interaction with the user
interface. The research was conducted via 40-60 minutes long semi-structured in-
terviews with 20 developers with experience ranging from 3 to 25 years. Among

Uncovering Hidden Dependencies 739

BEFORE:

...

Figure 10: Bug report before our improvement from LLVM.

these 20 developers, 14 people expressed negative impact on the way in which the
warnings are presented. Apart from the possibility of overwhelming false positive
warnings they mentioned that the reports are non-intuitive.

740 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

AFTER:

...

Figure 11: New notes after our improvement in the report from LLVM.

As the result of their research, they conclude that the developers are not able
to understand what the tool is telling her, and it is a definite barrier to use static
analysis tools. Nineteen of our 20 participants, felt that many static analysis tools
do not present their results in a way that gives enough information for them to
assess what the problem is, why it is a problem and what they should be doing
differently.

We discussed that in the general case, the more complex a static analysis system
is, the harder it is to construct intelligible reports for them. The authors in [46]
discuss a static analysis technique with the usage of the preprocessor – a historically
difficult concept to write good diagnostics around.

Uncovering Hidden Dependencies 741

A similar methodology was conducted in the research published in paper [55].
The authors surveyed 40+ developers and interviewed 11 industrial experts to un-
derstand the possibilities of better prioritization of static analysis tool reports.
Among other interesting results, they found that ... warnings hard to integrate in
case they do not have teammates having enough expertise for fixing them. However,
those warnings can be easily understood if the tools provide exhaustive descriptions.

8 Future work

We feel cautiously optimistic about our proposal regarding reaching definitions
analysis, though we are yet to implement it and gather real world-results. This links
back to the problems posed by Clang’s infrastructure: its AST was constructed to
make the construction of user-readable diagnostics easy, not so much for dataflow
analysis. We made considerable progress in implementing a reaching definition
analysis but paused to reflect on whether changes to the current repertoire inter-
mediate representations are in order. Creating a new IR is a large undertaking, so
we are researching the best course of action to take on this front.

The analyzer is aware that it is limited in terms of the information it can harness.
For instance, calling functions with unavailable definitions often force a clear of its
constraints on a subset of variables. Similar events are often large contributors
to the appearance of false positive reports. After the analysis is concluded, the
analyzer will inspect each bug find whether they are likely false positives, and
regularly suppresses a portion of them. The more the analyzer understands what
parts of the program are relevant to a bug, the more precisely it can suppress such
reports; we are currently researching how to integrate our results and proposals
into this library.

Reaching definitions analysis could be a valuable component for new checkers to
find even more intricate bugs by complementing symbolic execution with dataflow
information.

The authors in [13] discuss combining the Clang Static Analyzer with the dy-
namic symblic analyzer KLEE to refine the analysis. They highlight that traces
provided by Clang are not that useful, and that Clang struggles to find non-trivial
true positive. Maybe if the communication in between these tools improves (with
the help of Clang itself better understanding the intetion of the programmer), re-
search in this area could show new results as well.

9 Conclusion

Static analysis and symbolic execution specifically is a powerful technique to find
deeply rooted programming errors. As an interprocedural path sensitive analysis,
it gains a sophisticated understanding of how values would behave in a runtime
environment without actually executing the program. However, it often struggles
to turn these discoveries to easily comprehensible bug reports, demanding even

742 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

more of the most expensive resource and least available in a software development
project: human experts.

In this paper, we demonstrated that the root cause of poor bug reports to
otherwise valuable discoveries are caused by the fact symbolic execution can only
reason about a single path of execution at a time. After the analysis is concluded,
tools such as the Clang Static Analyzer inspect the sequence of program states
leading to the error, and construct a set of diagnostic messages and notes to explain
the flow control and change of values. However, these program states are oblivious
to what could have happened on alternative paths of execution, as well as control
dependence.

We propose two techniques to complement bug report generation. Control de-
pendency analysis can tell that a condition point may have played a large part in the
bug’s occurrence. Reaching definitions analysis finds parts of the code could have
changed the value of a bug causing variable had control flown there. We project the
interaction of these techniques to replicate a program slicing-like behavior, signifi-
cantly increasing an analyzer tools’ understanding of the causes behind a bug. Our
improved bug report generation facilities, which has been a part of the Clang Static
Analyzer stable releases since version 10.0.0., demonstrates how the discovery of
such information allows a tool to construct more comprehensive bug reports.

Acknowledgment

We would like to extend our heartfelt gratitude towards Artem Dergachev, who ac-
tively participated in every part of this research, including planning, implemeneting,
measuring and evaluating.

References

[1] Aho, A., Sethi, R., and Ullman, J. Compilers principles, techniques, and tools.
Addison-Wesley, Reading, MA, 1986.

[2] Amazon Web Services. S2n, 2022. URL: https://github.com/awslabs/s2n/.

[3] Anders, M. and Michael, I. Static program analysis, 2012. URL: https:

//users-cs.au.dk/amoeller/spa/spa.pdf.

[4] Apache Software Foundation. Apache Xerces, 2022. URL: https://xerces.
apache.org/.

[5] Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J., and Penix, J. Using
static analysis to find bugs. IEEE Software, 25(5):22–29, 2008. DOI: 10.

1109/ms.2008.130.

[6] Bakken, A. Rtags, 2022. URL: http://www.rtags.net.

https://github.com/awslabs/s2n/
https://users-cs.au.dk/amoeller/spa/spa.pdf
https://users-cs.au.dk/amoeller/spa/spa.pdf
https://xerces.apache.org/
https://xerces.apache.org/
https://doi.org/10.1109/ms.2008.130
https://doi.org/10.1109/ms.2008.130
http://www.rtags.net

Uncovering Hidden Dependencies 743

[7] Baldoni, R., Coppa, E., D’Elia, D., Demetrescu, C., and Finocchi, I. A survey
of symbolic execution techniques. ACM Computing Surveys, 51(3):1–39, 2018.
DOI: 10.1145/3182657.

[8] Bambini, M. Gravity, 2022. URL: https://github.com/marcobambini/

gravity.

[9] Beller, M., Bholanath, R., McIntosh, S., and Zaidman, A. Analyzing the
state of static analysis: A large-scale evaluation in open source software. In
Proceedings of the IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 2016. DOI: 10.1109/saner.2016.105.

[10] Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros,
C., Kamsky, A., McPeak, S., and Engler, D. A few billion lines of code later:
Using static analysis to find bugs in the real world. Communications of the
ACM, 53(2):66–75, 2010. DOI: 10.1145/1646353.1646374.

[11] Binkley, D. and Harman, M. A large-scale empirical study of forward and
backward static slice size and context sensitivity. In Proceedings of the In-
ternational Conference on Software Maintenance, pages 44–53. IEEE, 2003.
DOI: 10.1109/ICSM.2003.1235405.

[12] Boehm, B. and Basili, V. Software defect reduction top 10 list. Computer,
34(1):135–137, 2001. DOI: 10.1109/2.962984.

[13] Busse, F., Gharat, P., Cadar, C., and Donaldson, A. Combining static analysis
error traces with dynamic symbolic execution (experience paper). In Proceed-
ings of the 31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, pages 568–579. ACM, 2022. DOI: 10.1145/3533767.3534384.

[14] Checker Developer Manual. Clang Static Analyzer: Checker Developer Man-
ual, 2019. URL: https://clang-analyzer.llvm.org/checker_dev_manual.
html (last accessed: 24-04-2023).

[15] Clang Static Analyzer, 2019. URL: https://clang-analyzer.llvm.org/.

[16] Clang-Tidy, 2019. URL: https://clang.llvm.org/extra/clang-tidy/ (last
accessed: 24-04-2023).

[17] CodeSecure. CodeSonar, 2019. URL: https://codesecure.com/our-

products/codesonar/ (last accessed: 15-02-2024).

[18] Cooper, K. and Torczon, L. Engineering a compiler. Elsevier, 2011. ISBN:
9780120884780.

[19] Cytron, R., Ferrante, J., Rosen, B., Wegman, M., and Zadeck, F. Efficiently
computing static single assignment form and the control dependence graph.
ACM Transactions on Programming Languages and Systems, 13(4):451–490,
1991. DOI: 10.1145/115372.115320.

https://doi.org/10.1145/3182657
https://github.com/marcobambini/gravity
https://github.com/marcobambini/gravity
https://doi.org/10.1109/saner.2016.105
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1109/ICSM.2003.1235405
https://doi.org/10.1109/2.962984
https://doi.org/10.1145/3533767.3534384
https://clang-analyzer.llvm.org/checker_dev_manual.html
https://clang-analyzer.llvm.org/checker_dev_manual.html
https://clang-analyzer.llvm.org/
https://clang.llvm.org/extra/clang-tidy/
https://codesecure.com/our-products/codesonar/
https://codesecure.com/our-products/codesonar/
https://doi.org/10.1145/115372.115320

744 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

[20] Dergachev, A. Clang Static Analyzer: A checker developer’s guide, 2016. URL:
https://github.com/haoNoQ/clang-analyzer-guide (last accessed: 24-04-
2023).

[21] Ericsson. CodeChecker, 2022. URL: https://github.com/Ericsson/

codechecker.

[22] Google. Protobuf, 2022. URL: https://github.com/protocolbuffers/

protobuf.

[23] gRPC Authors. grpc, 2022. URL: https://grpc.io/.

[24] Horváth, G. and Gehre, M. Implementing the C++ Core Guidelines’ lifetime
safety profile in Clang. European LLVM Developers Meeting, Brussels, 2019.
URL: https://llvm.org/devmtg/2019-04/talks.html#Talk_18.

[25] Horváth, G. and Pataki, N. Categorization of C++ classes for static lifetime
analysis. In Proceedings of the 9th Balkan Conference on Informatics, pages
1–7. ACM, 2019. DOI: 10.1145/3351556.3351559.

[26] Horwitz, S., Reps, T., and Binkley, D. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, 12(1):26–
60, 1990. DOI: 10.1145/77606.77608.

[27] Hutchins, D., Ballman, A., and Sutherland, D. C/C++ thread safety analysis.
In Proceedings of the IEEE 14th International Working Conference on Source
Code Analysis and Manipulation. IEEE, 2014. DOI: 10.1109/scam.2014.34.

[28] Johnson, B., Song, Y., Murphy-Hill, E., and Bowdidge, R. Why don’t software
developers use static analysis tools to find bugs? In Proceedings of the 35th
International Conference on Software Engineering, pages 672–681. IEEE, 2013.
DOI: 10.1109/ICSE.2013.6606613.

[29] Khoo, Y., Foster, J., Hicks, M., and Sazawal, V. Path projection for user-
centered static analysis tools. In Proceedings of the 8th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineer-
ing, PASTE ’08, pages 57—-63, New York, NY, USA, 2008. Association for
Computing Machinery. DOI: 10.1145/1512475.1512488.

[30] King, J. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, 1976. DOI: 10.1145/360248.360252.

[31] Kogut, J. TinyVM, 2022. URL: https://github.com/jakogut/tinyvm.

[32] Kovács, R., Horváth, G., and Porkoláb, Z. Detecting C++ lifetime errors
with symbolic execution. In Proceedings of the 9th Balkan Conference on
Informatics, pages 1–6, 2019. DOI: 10.1145/3351556.3351585.

https://github.com/haoNoQ/clang-analyzer-guide
https://github.com/Ericsson/codechecker
https://github.com/Ericsson/codechecker
https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf
https://grpc.io/
https://llvm.org/devmtg/2019-04/talks.html#Talk_18
https://doi.org/10.1145/3351556.3351559
https://doi.org/10.1145/77606.77608
https://doi.org/10.1109/scam.2014.34
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/1512475.1512488
https://doi.org/10.1145/360248.360252
https://github.com/jakogut/tinyvm
https://doi.org/10.1145/3351556.3351585

Uncovering Hidden Dependencies 745

[33] Kremenek, T. Finding software bugs with the Clang Static Analyzer.
Apple Inc., 2008. URL: https://llvm.org/devmtg/2008-08/Kremenek_

StaticAnalyzer.pdf.

[34] Lattner, C. LLVM and Clang: Next generation compiler technology, 2008.
Lecture at BSD Conference. URL: https://llvm.org/pubs/2008-05-17-

BSDCan-LLVMIntro.html.

[35] Lattner, C. and Adve, V. LLVM: A compilation framework for lifelong pro-
gram analysis & transformation. In Proceedings of the International Sym-
posium on Code Generation and Optimization: Feedback-Directed and Run-
time Optimization, pages 75–86. IEEE Computer Society, 2004. DOI:
10.1109/CGO.2004.1281665.

[36] Layman, L., Williams, L., and Amant, R. Toward reducing fault fix time:
Understanding developer behavior for the design of automated fault detection
tools. In Proceedings of the First International Symposium on Empirical Soft-
ware Engineering and Measurement, pages 176–185. IEEE Computer Society,
2007. DOI: 10.1109/ESEM.2007.82.

[37] Marjamäki, D. CppCheck: A tool for static C/C++ code analysis, 2013. URL:
http://cppcheck.sourceforge.net/.

[38] Nethercote, N. and Seward, J. Valgrind: A framework for heavyweight dy-
namic binary instrumentation. ACM SIGPLAN Notices, 42(6):89–100, 2007.
DOI: 10.1145/1273442.1250746.

[39] OpenSSL Software Foundation. OpenSSL, 2022. URL: https://openssl.

org/.

[40] Ottenstein, K. and Ottenstein, L. The program dependence graph in a software
development environment. In Proceedings of the first ACM SIGSOFT/SIG-
PLAN Software Engineering Symposium on Practical Software Development
Environments, pages 177–184. ACM Press, 1984. DOI: 10.1145/800020.

808263.

[41] Park, J., Lim, I., and Ryu, S. Battles with false positives in static analysis of
Javascript web applications in the wild. In Proceedings of the IEEE/ACM 38th
International Conference on Software Engineering Companion, pages 61–70.
IEEE, 2016. URL: https://ieeexplore.ieee.org/document/7883289.

[42] Perforce. Klocwork, 2024. URL: https://www.perforce.com/products/

klocwork (last accessed: 15-02-2024).

[43] Reps, T., Horwitz, S., and Sagiv, M. Precise interprocedural dataflow analysis
via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 49–61. ACM,
1995. DOI: 10.1145/199448.199462.

https://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf
https://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf
https://llvm.org/pubs/2008-05-17-BSDCan-LLVMIntro.html
https://llvm.org/pubs/2008-05-17-BSDCan-LLVMIntro.html
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/ESEM.2007.82
http://cppcheck.sourceforge.net/
https://doi.org/10.1145/1273442.1250746
https://openssl.org/
https://openssl.org/
https://doi.org/10.1145/800020.808263
https://doi.org/10.1145/800020.808263
https://ieeexplore.ieee.org/document/7883289
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/klocwork
https://doi.org/10.1145/199448.199462

746 Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth

[44] Rice, H. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74:358–366, 1953. DOI:
10.2307/1990888.

[45] Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., and Jaspan, C.
Lessons from building static analysis tools at Google. Communications of the
ACM, 61(4):58–66, 2018. DOI: 10.1145/3188720.

[46] Schubert, P., Gazzillo, P., Patterson, Z., Braha, J., Schiebel, F., Hermann, B.,
Wei, S., and Bodden, E. Static data-flow analysis for software product lines
in C. Automated Software Engineering, 29(1), 2022. DOI: 10.1007/s10515-

022-00333-1.

[47] Serebryany, K., Bruening, D., Potapenko, A., and Vyukov, D. AddressSan-
itizer: A fast address sanity checker. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference, USENIX ATC’12, Berkeley, CA,
USA, 2012. USENIX Association. URL: http://dl.acm.org/citation.cfm?
id=2342821.2342849.

[48] Sreedhar, V. and Gao, G. A linear time algorithm for placing ϕ-nodes. In
Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 62–73. ACM Press, 1995. DOI: 10.1145/

199448.199464.

[49] Sutter, H. Lifetime safety: Preventing common dangling. Technical report,
Microsoft Corporation, 2018. URL: https://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2019/p1179r1.pdf.

[50] Synopsys. Coverity, 2019. URL: https://scan.coverity.com/ (last accessed:
24-04-2023).

[51] The Bitcoin Core. Bitcoin Core, 2022. URL: https://bitcoincore.org/.

[52] Umann, K. The penultimate challange: Constructing bug reports in the
Clang Static Analyzer. LLVM Developers’ Meeting, San Jose, CA, 2019. URL:
https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech17.

[53] Umann, K. Enhancing bug reports in the Clang Static Analyzer, 2019. URL:
https://szelethus.github.io/gsoc2019/ (last accessed: 24-04-2023).

[54] Umann, K. A survey of dataflow analyses in Clang, 2020. URL: https://
lists.llvm.org/pipermail/cfe-dev/2020-October/066937.html (last ac-
cessed: 24-04-2023).

[55] Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Zaidman, A., and Gall,
H. Context is king: The developer perspective on the usage of static analysis
tools. In Proceedings of the IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering, pages 38–49. IEEE, 2018. DOI: 10.

1109/SANER.2018.8330195.

https://doi.org/10.2307/1990888
https://doi.org/10.1145/3188720
https://doi.org/10.1007/s10515-022-00333-1
https://doi.org/10.1007/s10515-022-00333-1
http://dl.acm.org/citation.cfm?id=2342821.2342849
http://dl.acm.org/citation.cfm?id=2342821.2342849
https://doi.org/10.1145/199448.199464
https://doi.org/10.1145/199448.199464
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://scan.coverity.com/
https://bitcoincore.org/
https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech17
https://szelethus.github.io/gsoc2019/
https://lists.llvm.org/pipermail/cfe-dev/2020-October/066937.html
https://lists.llvm.org/pipermail/cfe-dev/2020-October/066937.html
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1109/SANER.2018.8330195

Uncovering Hidden Dependencies 747

[56] Vidács, L., Beszédes, ., and Gyimóthy, T. Combining preprocessor slicing with
C/C++ language slicing. Science of Computer Programming, 74(7):399–413,
2009. DOI: 10.1016/j.scico.2009.02.003.

[57] Weiser, M. Program slicing. IEEE Transactions on Software Engineering,
SE-10(4):352–357, 1984. DOI: 10.1109/tse.1984.5010248.

[58] XGBoost Contributors. XGBoost, 2022. URL: https://xgboost.ai/.

[59] Xu, Z., Kremenek, T., and Zhang, J. A memory model for static analysis of
C programs. In Proceedings of the 4th International Conference on Leveraging
Applications of Formal Methods, Verification, and Validation — Volume Part
I, ISoLA’10, pages 535–548, Berlin, Heidelberg, 2010. Springer-Verlag. URL:
http://dl.acm.org/citation.cfm?id=1939281.1939332.

[60] Zaks, A. and Rose, J. Building a checker in 24 hours, 2012. URL: https:
//www.youtube.com/watch?v=kdxlsP5QVPw.

[61] Zampetti, F., Scalabrino, S., Oliveto, R., Canfora, G., and Di Penta, M. How
open source projects use static code analysis tools in continuous integration
pipelines. In Proceedings of the IEEE/ACM 14th International Conference on
Mining Software Repositories. IEEE, 2017. DOI: 10.1109/msr.2017.2.

https://doi.org/10.1016/j.scico.2009.02.003
https://doi.org/10.1109/tse.1984.5010248
https://xgboost.ai/
http://dl.acm.org/citation.cfm?id=1939281.1939332
https://www.youtube.com/watch?v=kdxlsP5QVPw
https://www.youtube.com/watch?v=kdxlsP5QVPw
https://doi.org/10.1109/msr.2017.2

Contents

Conference of PhD Students in Computer Science 293
Preface . 295
Modafar Al-Shouha and Gábor Szűcs: Single and Combined Algorithms for

Open Set Classification on Image Datasets 297
Amirreza Bagheri and Péter Hegedűs: Towards a Block-Level ML-Based

Python Vulnerability Detection Tool . 323
Péter Bereczky, Dániel Horpácsi, and Simon Thompson: A Formalisation of

Core Erlang, a Concurrent Actor Language 373
Zsófia Erdei, Melinda Tóth, and István Bozó: Identifying Concurrent Be-

haviours in Erlang Legacy Systems . 405
Anett Fekete and Zoltán Porkoláb: Using Version Control Information to

Visualize Developers’ Knowledge . 431
Hussein Ali Ahmed Ghanim and László Kovács: Ontology Supported Domain

Knowledge Module for E-Tutoring System 455
Emília Heinc and Balázs Bánhelyi: Comparing Structural Constraints for

Accelerated Branch and Bound Solver of Process Network Synthesis
Problems . 475

Zoltán Richárd Jánki and Vilmos Bilicki: Standardized Telemedicine Soft-
ware Development Kit with Hybrid Cloud Support 501

Mátyás Kiglics, Gábor Valasek, Csaba Bálint, and Róbert Bán: Quadratic
Displacement Maps for Heightmap Rendering 529

Grácián Kokrehel and Vilmos Bilicki: The Influence of the Nonfunctional
Requirements on the Data Model . 543

Gergely Kovásznai and Mohammed Nsaif: Integer Programming Based Op-
timization of Power Consumption for Data Center Networks 563

László Körmöczi and László G. Nyúl: Extracting Line Parameters of Woven
Wire Mesh in Images under Directional Illumination 581

Dániel Lukács and Máté Tejfel: Overlaying Control Flow Graphs on P4 Syn-
tax Trees with Gremlin . 593

Ágoston Sipos: Corner-Based Implicit Patches 621
Zoltán Szabó, Emőke Adrienn Hompoth, and Vilmos Bilicki: Patient Flow

Analysis with a Custom Simulation Engine 637
Dániel Szekeres and István Majzik: Towards Abstraction-based Probabilistic

Program Analysis . 671
Kristóf Umann, Zoltán Porkoláb, and Gábor Horváth: Uncovering Hidden

Dependencies: Constructing Intelligible Path Witnesses using Dataflow
Analyses . 713

ISSN 0324—721 X (Print)
ISSN 2676—993 X (Online)

Editor-in-Chief: Tibor Csendes

