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Preface

The Summer Workshop on Interval Methods (SWIM) is an annual scientific
meeting initiated in 2008 with a special focus on promoting interval analysis tech-
niques and their applications to a broader community of researchers. Since 2008,
SWIM has become a multi-disciplinary keystone event for researchers dealing with
various aspects of interval and set-based methods.

In 2022 and 2023, the 13th and 14th editions in this workshop series were held
at the Leibniz Universität Hannover (Germany) and at Polytech Angers (France),
respectively. Both events had a focus on research topics in the fields of (control)
engineering, computer science, and mathematics. A total of almost 50 talks were
given during both workshops, covering the following areas:

• verified solution of initial value problems for dynamic system models,

• scientific computing with guaranteed error bounds,

• design of robust and fault-tolerant control systems,

• modeling and quantification of errors in engineering tasks,

• implementation of software libraries, and

• usage of the aforementioned approaches for system models in various fields of
application such as control engineering, robotics, navigation, data analysis,
machine learning, and signal processing.

After a peer-review process, 10 high-quality articles were selected for publica-
tion in this special issue. These contributions cover set-valued approaches for the
online identification of battery systems, interval-based implementations of nonlin-
ear model-predictive control, robust control and actuator fault detection based on
linear matrix inequalities, verified bit and power allocation for MIMO systems, the
implementation of software libraries for contractor-based modeling, constraint pro-
gramming for the simulation of ordinary differential equations, GPU-accelerated
interval-based parameter identification, hardware acceleration of interval contrac-
tor primitives, and the design of novel approaches for the implementation of com-
plementary contractors as well as asymptotically minimal contractors based on
centered form representations.

Luc Jaulin, Sébastien Lahaye,
Andreas Rauh, Steffen Schön

Guest Editors
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In memoriam of Nicolas Delanoue

1980–2023

This special issue is dedicated to the memory of Nicolas Delanoue, a brilliant
mathematician and good friend, who was the first to propose the use of inter-
val methods for topology with applications to robotics and more generally to the
analysis and control of dynamical systems.

Many of us, in the interval community, had the privilege to work with him,
to listen to his wonderful seminars and to have long and fruitful discussions with
Nicolas.

His sudden departure leaves a void that will never be filled.
However, his availability and talent for explaining mathematical concepts and

making them intuitive (using pictures and programs), his willing to formalize com-
plex problems in a simple manner, the passion he shared for the beauty of mathe-
matics, and his positive spirit, will remain a model for many of us.

May his legacy continue to inspire curiosity, creativity, and the promotion of
interval tools to solve ambitious problems.
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A Constraint Programming Approach for Polytopic

Simulation of Ordinary Differential Equations —

A Collision Detection Application∗

Julien Alexandre dit Sandrettoab, Alexandre Chapoutotac,
Christophe Garionde, and Xavier Thiriouxdf

Abstract

This paper presents a constraint-based approach to compute the reachable
tube of nonlinear differentiable equations. A set of initial values for the equa-
tions is considered and defined by a polytope represented as intersections of
zonotopes. Guaranteed numerical integration based on zonotopic computa-
tion is used to compute reachable tubes. In order to efficiently build polytopes
defined by the intersection of several zonotopes, we use a previously developed
abstract domain [27] to represent reachable tubes. The proposed contribution
allows to compute more expressive reachable tubes more efficiently than meth-
ods based only on boxes, and therefore could improve verification/validation
processes in robotics application for example. The approach is evaluated on
examples taken from literature and we present two applications of this work.

Keywords: constraint programming, abstract domains, ordinary differential
equations, cyber-physical systems, abstract interpretation

1 Context and state of the art

Cyber-physical systems (CPS) are systems in which software and physical parts
interoperate deeply. The physical part of these systems is often modeled by differ-
ential equations. When properties have to be verified on these systems, for instance
the feasibility or the safety of a mission assigned to a robot, the solution of such
differential equations is generally required. Even if Ordinary Differential Equations
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eE-mail: garion@isae-supaero.fr, ORCID: 0000-0002-4467-2939
fE-mail: thirioux@isae-supaero.fr, ORCID: 0009-0002-1126-6835

DOI: 10.14232/actacyb.300771

mailto:alexandre@ensta.fr
https://orcid.org/0000-0002-6185-2480
mailto:chapoutot@ensta.fr
https://orcid.org/0000-0002-7230-0710
mailto:garion@isae-supaero.fr
https://orcid.org/0000-0002-4467-2939
mailto:thirioux@isae-supaero.fr
https://orcid.org/0009-0002-1126-6835
https://doi.org/10.14232/actacyb.300771


756 J. Alexandre dit Sandretto et al.

(ODE) are mostly considered to model cyber-physical systems, obtaining an an-
alytical solution to this class of equations is a complex issue and approximations
obtained with numerical methods are sometimes sufficient to check a given prop-
erty. However, for some applications, such as [9, 14, 17, 23], an approximation is
not enough and an enclosure of the exact solution is required.

Starting from a set of possible initial points, the solution of an ODE can be
represented by a reachable tube describing the evolution of the system from this
initial set. To ease the computation of such a tube, abstract domains can be
used to enclose it: boxes, zonotopes, ellipsoids, and nonconvex sets such as Taylor
models (see [6] for a recent review of the use of such abstract domains in set-
based simulation). The more accurate an abstract domain is, i.e. the smallest the
difference between the hull of the abstraction and the abstracted set is, the more
accurate the enclosure of the reachable tube will be and therefore will be useful for
verification purposes for instance.

However, only few of these set abstractions come with an associated arithmetic
which is mandatory to evaluate nonlinear expressions1. Among such abstractions,
boxes are mainly used because the underlying computation process, i.e., interval
arithmetic, is easy to use [19]. Zonotopes are also a good representation choice
because they rely on affine arithmetic [13] which is also efficiently computable.
Polytope enclosure is a promising approach as it is more precise than boxes and
zonotopes, but suffers from the expensiveness of its geometrical computation as
many linear programs need to be solved to obtain the set described by the sides of
the polytope. Considering a polytope as an intersection of zonotopes and therefore
benefiting from affine arithmetic is a possible solution to overcome the limitations
of polytopes. To do so, two main techniques exist: i) zonotope bundles [7], i.e., a
set of zonotopes is used so the intersection is not computed; or ii) the intersection
is computed when necessary [4].

In this paper, we propose a novel approach based on constraint programming to
compute polytopes-based reachable tubes of ODEs in two phases. First a constraint
satisfaction problem (mixing disjunctions and conjunctions) is generated from the
tubes computed with zonotopes-based simulation. This CSP is thus a novel way
to describe a reachable tube (that may or not be evaluated). Our proposed CSP
approach also simplifies the computation of intersection of zonotopes. Second, these
CSPs can be combined to represent intersection or union of trajectories, collision
with obstacles, or other kind of properties that can be modelled by constraints.
Finally, the global CSP is solved using a previously designed abstract domains that
take advantage of the specificities of ODEs [27], i.e., their continuous aspect and
the fact that their abstractions as tubes can be naturally expressed as disjunctions.
This approach allows to solve nonlinear ODEs with uncertain initial conditions, and
can address several types of problems such as optimal control or safety verification.

However, while several papers deal with constraint programming combined with
differential equations, such as [12, 16, 18] which address parameter identification,

1Minkowski sum may be then used but comes with all its limitations: only for linear operations,
based on convex decomposition, etc
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[22] which proposes to solve more complex differential equations, or [3] which con-
siders problems in robotics, we propose in this paper to exploit the CSP framework
to obtain a more expressive representation of sets to enclose reachable tubes.

This paper is organized as follows. Section 2 presents the main mathematical
tools used in the remaining of the paper. Section 3 presents how to compute
intersection of zonotopes using the Constraint Programming framework. Section 4
details experiments on three small size problems and two applications. Finally,
Section 5 gives some perspectives for future work.

2 Prerequisite concepts

2.1 Polytopes and zonotopes

Considering the Euclidean space Rn, a convex hull of a finite set {v1, . . . , vN} of

points in Rn is defined as conv(v1, . . . , vN ) =
{
x ∈ Rn : x =

∑N
i=1 eivi, ei ≥

0,
∑N

i=1 ei = 1
}

.

A convex polytope in Rn is denoted by P = conv(v1, . . . , vN ) where each vi
represents a vertex of the polytope. In the following, polytopes are considered as
convex by default. A polytope is a bounded (convex) polyhedron P ⊂ Rn, which
can be also defined as P = {x ∈ Rn|Hx ≤ k} where H is a matrix of size m × n
and k is a column vector of dimension m. This latter can be rewritten as a set of
constraints P = {x ∈ Rn : 〈li, x〉+ai ≥ 0, i = 1, . . . ,m} where 〈., .〉 is scalar product
in Rn, li ∈ Rn and ai ∈ R. P has exactly m facets which are the intersections of P
with the hyperplanes defined in the previous definition. These facets (or similarly
the vertices vi) can be computed with a geometrical approach while the set defined
by P can be paved using a classical branch and prune algorithm.

A zonotope is a centrally symmetric polytope. The main advantage of zonotopes
is that its set computation (operations, such as addition or product, on variables
with zonotopic domains) can be implemented using affine arithmetic [13]. A set of
values in this domain is represented by an affine form x̂, which is a formal expression
of the form x̂ = α0 +

∑n
i=1 αiεi where the coefficients αi are real numbers called

noise symbols, α0 the center of the affine form, and the εi are formal variables
ranging over the interval [−1, 1]. Affine forms encode linear dependencies among
variables: if x ∈ [a1, a2] and y = 2x, then x will be represented by the affine form x̂
above and y will be represented as ŷ = 2α0 + 2α1ε.

2.2 Polytopes as intersection of zonotopes

A polytope can be represented exactly by the intersection of some zonotopes as
proposed in [4, 24]. Once a polytope P has been represented exactly by the inter-
section of zonotopes, i.e., P = Z1 ∩ · · · ∩Zn, the image of a function f on P can be
computed as f(P) = f(Z1∩· · ·∩Zn) ⊆ f(Z1)∩· · ·∩f(Zn) where f(Z1), · · · , f(Zn)
can be computed using affine arithmetic.
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A general procedure to exactly represent a polytope P ⊂ Rn by the intersection
of zonotopes is presented in [24]: randomly select n inequality constraints from the
pool of all inequality constraints representing the polytope and then use these n
inequality constraints to construct a zonotope with the minimal volume containing
the polytope until all inequality constraints for the polytope have been used up.

Notice that an intersection of zonotopes is not a zonotope in general. Such
an intersection can be computed, or enclosed, with the help of a box based paver
or a polytope based method, but the computation cost is usually expensive and
prohibitive [15].

2.3 Set-based simulation of ODEs

An Initial Value Problem (IVP) for ODEs is defined by2

{
ẏ(t) = f(t,y(t)),

t ∈ T := [0, tend] and y(0) ∈ Y0,
(1)

with a nonlinear function f : R × Rn → Rn. More precisely, IVP for ODEs are
considered over a finite time horizon [0, tend]. Note that a bounded set Y0 of initial
values is considered in this framework. This implies that solution of Equation (1) is
a set of trajectories. We assume classical hypotheses on f to ensure the existence and
uniqueness of the solution of Equation (1). The set Y(T ,Y0) stands for Y(T ,Y0) =
{y(t;y0) : t ∈ T ,y0 ∈ Y0} .3 Intuitively, Y(T ,Y0) gathers all the points reached by
the scalar solution y(t;y0) of Equation (1) starting from all scalar initial values
y0. Note that Y(T ,Y0) is hardly computable in general. The goal of a validated
or rigorous numerical integration methods is to characterize the set of functions
satisfying (1). These functions are represented by the set of values they can reach
with their associated time instants, i.e., {y(t;y0) : y0 ∈ Y0, t ∈ [0, tend]}. A
convenient and often used way to access these values is to use the abstract domain
of intervals which uses interval analysis to compute an over approximation of this
set [10, 19, 20]. In the following, we consider Lipschitz and continuous ODEs.

Different set abstractions can be considered to tackle the problem of simulation
for IVP (boxes, zonotopes, ellipsoids, etc). The main challenge is to be able to
compute arithmetic operations with the chosen abstraction, even for nonlinear op-
erations. Box representation is often preferred because of its very simple arithmetic
which is also available in many tools. When considering the set of initial condi-
tions as a box [y0] ⊃ Y0, the use of the interval framework to solve Equation (1)
makes possible the design of an inclusion function [y] (t; [y0]) for the computation
of an over approximation of y(t; [y0]). To build it, a sequence of time instants
t1, . . . , ts such that t1 < · · · < ts and a sequence of boxes [y1] , . . . , [ys] such that
[y] (ti+1; [yi]) ⊆ [yi+1] for all i ∈ [0, s− 1] are computed using a classic iterative

2Notice that the f function generally takes a q ∈ Rp argument representing parameters. We
omit it in the current paper as we do not consider parameterized differential equations.

3y(t;y0) is a notation representing the function y(t) with fixed initial values y0.
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two-steps methods [20] producing a reachable tube {[ỹ0] , . . . , [ỹs]} where each [ỹi]
is the state interval containing all the values reachable in the time interval [ti, ti+1].

Zonotopes are another abstraction used in set based simulation. Indeed, zono-
topes being the geometrical concretization of affine arithmetic, simulation com-
puted with affine arithmetic allows to obtain a reachable tube made of zonotopes
T ≡ {([t1] , Z̃1), . . . , ([tend] , Z̃end)} which is a time-sorted list of pairs (time inter-
val × zonotope). Tools such as DynIbex [1] or CORA [5] implement this feature.
The main advantages of zonotopes are the wrapping effect4 reduction and a more
precise set representation. Considering a closed set S, its optimal box-hull B, its
optimal zonotope-hull Z and its optimal polytope-hull P, the following property
holds: S ⊂ P ⊂ Z ⊂ B.

2.4 From reachable tubes to constraint programming

The solution of an IVP-ODE which is given as a set of timed zonotopes in the
form {([t1] , Z̃1), . . . , ([tend] , Z̃end)} can easily be transcribed as a disjunction of
constraints since each pair ([ti] , Z̃i) corresponds to a quantified proposition ∀t ∈
[ti] y(t) ∈ Z̃i.

5 Eventually, the abstraction of the set of trajectories can be consid-
ered as a disjunction of all these constraints since at each time t ∈ [t0, tend], y(t)
verifies exactly one of them6.

3 CP for polytopic integration

Computing the intersection of zonotopic tubes is a hard task: zonotopes are not
closed under intersection or union, and thus computation of the intersection of tubes
of zonotopes can be very expensive using a geometrical approach. We propose in
this section to tackle this problem from the constraint solving point of view, as the
intersection of zonotopic tubes resulting from ODEs can be seen as a Constraint
Satisfaction Problem (CSP). Because enumerating all solutions of CSPs is generally
impossible when the domains of the variables are continuous, CSP solvers generally
compute a set of abstract elements that covers the solution space.

We have proposed in [27] a tree abstract domain T(D). This domain can be
viewed as a k-d tree [8] in which leaves are defined using the numerical abstract
domain D used (e.g. zonotopes) and internal nodes, also called summaries, give
information about their subtrees. The tree abstraction exploits the continuous
aspect of ODEs solutions to propose a fast pre-computation of the intersection
of zonotopes (see Figure 1). It can thus be seen as an incremental powerset that
gradually increases its precision (i.e. decreasing over-estimation), starting from the

4Wrapping effect is the overestimation induced by set abstractions in some iterative computa-
tions.

5t ∈ [ti] means [ti] 6 t 6 [ti] with [ti] and [ti] the lower and upper bounds of [ti] respectively.
6As two consecutive time intervals [ti, ti+1] and [ti+1, ti+2] shared one bound (a floating point

value ti+1), y(ti+1) is verified for two constraints. However, as y(ti+1) is unique, this degenerated
case is not an issue for the following.
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a1

a2

b1 b2

a2∩b2 6= ⊥, we split them into

{a3, a4} and {b3, b4}

time

a1

a3

a4

b1 b3
b4

a4∩b4 6= ⊥, we split them into

{a5, a6} and {b5, b6}

time

a1

a3

a5
a6

b1 b3
b5 b6

a6∩b6 6= ⊥, and are leaves, we stop

time

Figure 1: Recursive intersection computation (boxes for illustration).

precision of a base abstract domain D to the precision of its powerset P (D) only if
needed. This greatly speeds up the solving process in our experiments.

A tube T can be defined using a disjunction of predicates as described in Sub-
section 2.4. T = ([t1] ∧ e1) ∨ ([t2] ∧ e2) · · · ∨ ([tn] ∧ en) where each ei represents
the set of values of solution functions within time frame [ti], can be read as: the
solution is either in set e1 during the time frame [t1], or in set e2 during the time
frame [t2], etc. This property is always true, as exactly one of its atoms will be
true at a given time (cf. Footnote 6 on Page 759) and defines the reachable tube.

Considering initial values given as a polytope P, P is decomposed as an inter-
section of s zonotopes Zi as described in Subsection 2.2. The reachable tube of the
ODE is therefore described by the conjunction of s tubes T 1 ∧ · · · ∧ T i ∧ · · · ∧ T s,
each tube T i being obtained by the zonotopic simulation of the ODE with initial
value taken as a zonotope Zi (cf. Section 2). As the initial polytope is not empty,
the s tubes obtained with validated simulation have a non empty intersection due
to the Lipschitz and continuous properties of ODEs. This intersection is a correct
enclosure of the theoretical tube computed with initial value as polytope P.

Note that there is no synchronization between the tubes, i.e. the time frames
ti∗ of tube T i may be different than the time frames tj∗ of tube T j , but each time
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frame [ti∗] of T i intersects with at least one time frame [tj∗] of T j .
Figure 2 shows that the intersection of two zonotope-based tubes T 1 (in blue)

and T 2 (in red) produces the polytope-based tube shown in green. Using our
proposed tree abstraction we are able to efficiently compute the polytope-based
tube from the two zonotope-based tubes without having to explicitly define the
constraints corresponding to such an intersection.

t11 t12

t13

t21

t22

t23

Figure 2: Polytopes as intersections of zonotopes with their own time frames.

Such a CSP C, declared as the intersection of the CSPs describing T 1 and T 2,
can be used to:

• pave the reachable tube (with a branch and prune algorithm for example).
Notice that such paving may be computationally demanding.

• detect collision with obstacles or other tubes representations by adding con-
straints. Let us suppose that that we want to verify that the previous tube
does not intersect a given obstacle, defined by a polytope Po. We build the
CSP C∧ (t ∈ [t0, tend ]∧Po) and ask our solver to solve the CSP: if there is no
solution, then the tube does not intersect the obstacle, otherwise the solver
should give us a collision example.

4 Experiments

The following experiments have been conducted using the open-source library Dyn-
Ibex [1] to compute the zonotope-based reachable tubes and the open-source con-
straint solver AbSolute [21] equipped with the tree domain presented in Section 3
to check if constraints over the computed tubes hold (no intersection for instance).
AbSolute is also used to pave intersections of zonotopes to visualize the correspond-
ing polytope.
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4.1 First experiments

We first choose the two classic problems presented in [4] in order to validate our
approach. In a third experiment we also compare our polytope based technique
with a pointwise Monte-Carlo approach. We analyze these three experiments in
Paragraph 4.1.4.

4.1.1 The circle problem

The circle problem is defined by the following equation:{
ẏ1 = −y2
ẏ2 = y1

(2)

The initial condition is taken in a polytope given by the five vertices (−1,−3),
(−1.5, 3), (0, 6), (1.5, 4), and (1,−4) at t0 = 0. This polytope can be defined as
the intersection of three zonotopes. The simulation with these three zonotopes
as initial conditions is performed with Kutta’s third order validated method (also
called RK32 in [11]), with absolute error tolerance 10−6and till t = 20 seconds.

Figures 3a shows the last zonotopes of the three reachable tubes. The polytope
defined as the intersection of these three zonotopes is guaranteed to contain the
reachable state at the end of simulation horizon (t = 20). To compute this polytope,
AbSolute is used with a reduced domain for time: we consider t ∈ [19.99, 20.00].
Figure 3b presents the results using the box abstract domain to pave the solution
while Figure 3c presents the results using the polytope abstract domain as base
domain to pave the solution. The full reachable tube can also be computed with
AbSolute (with time domain t ∈ [0, 20]) and is depicted in Figure 4a and Figure 4b.

4.1.2 The Lotka-Volterra problem

The Lotka-Volterra problem is defined by the following equation:{
ẏ1 = 2y1(1− y2)
ẏ2 = −y2(1− y1)

(3)

The initial condition is taken in a polytope given by the eight vertices
(1.1035, 3.0457), (1.1041, 3.0386), (1.0981, 3.0366), (1.1039, 3.0358), (1.0983, 3.0339),
(1.1020, 3.0320), (1.0989, 3.0498) and (1.0995, 3.0510). This polytope is covered by
three zonotopes. Simulations with these three zonotopes as initial conditions are
performed with Kutta’s third order validated method with absolute error tolerance
10−6 and till t = 6 seconds. The reachable tube is computed as the intersection of
the three zonotope-based reachable tubes. The result is shown on Figure 5a and
Figure 5b and corresponds to the classic solution of the problem.

4.1.3 Comparison on the Van der Pol problem

The last problem aims to compare the results obtained with our polytope based
technique and a pointwise integration obtained with a Monte-Carlo approach (154
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(a) Zonotopes with DynIbex

(b) Polytopes with AbSolute and box domain (c) Polytopes with AbSolute and polytope domain

Figure 3: Last solution of the tube for Example 4.1.1.
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Figure 4: Reachable tube obtained with box domain for Example 4.1.1.
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(a)

(b)

Figure 5: Reachable tube obtained with box domain for Example 4.1.2.



766 J. Alexandre dit Sandretto et al.

points from a regular mesh of the initial polytope, depicted in blue in the following
figures). The chosen problem is the Van der Pol oscillator, known to be interesting
to challenge tools, as it has a limit cycle which attracts pointwise trajectories but
can stress set-based simulators because of system rotation. It is defined by:{

ẏ1 = y2
ẏ2 = y2(1− y21)− y1

. (4)

Initial conditions are defined as the intersection of three zonotopes and are
plotted in Figure 6 and the whole tube computed with our technique is shown in
Figure 7.

Figure 6: Initial condition, given as the intersection of three zonotopes, for polytope
based simulation and initial points for pointwise simulation.

Figures 8a, 8b and 8c present respectively at time t = 1, t = 3 and t = 7
the polytope computed by AbSolute and points obtained with pointwise initial
conditions and validated simulation by DynIbex. All simulations (zonotopes-based
and pointwise) are performed with Runge-Kutta four order validated method with
absolute error tolerance 10−8 and till t = 7 seconds (time for a revolution).

4.1.4 Appraisal

The circle problem presented in Subsection 4.1.1 shows the results of the polytope
computation at some instants and on a whole tube. At a chosen instant, the
obtained polytope is similar to the one obtained in [4]. The full tube shows a good
stability as the circle is well depicted with a restrained overestimation (property
of Hamiltonian conservation is preserved). To verify this conservation, we have
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Figure 7: Van der Pol oscillator limit cycle computed with initial condition as a
polytope.

computed the maximal distance to the frame center such as max
√
y1(t)2 + y2(t)2

at different instants (t = 0, 5, 10, 15, 20) and we obtained 6.0, 7.58, 6.40, 8.16, 7.63.
The values oscillate as selected times do not follow the system period, but do not
show any divergence.

The Lotka-Volterra problem confirms that the contracting instant (bottom left
on Figure 5a) is preserved, and that the dissipative instant (top right) has restrained
effect on the size of polytopes. The Van der Pol oscillator problem shows that
wrapping effect has small effect and that polytopes are able to preserve, at least
better than boxes, a limit cycle.

4.2 Application on collision detection and rendez-vous

4.2.1 Collision detection

In our previous work [2], we have applied the CP approach with interval domains to
check a collision-free property on a state of the art distributed multi-agent formation
control protocol [26], briefly recalled in the following.

Consider n agents in Rd (n > 2 and d > 2). Their position at time t is denoted
by pi(t) ∈ Rd with i ∈ {1, . . . , n}. Interactions between agents are described by a
graph G with a vertex set V = {1, . . . , n} and an edge set E . An edge (i, j) ∈ E
means that agent i can measure the relative bearing of agent j so is a neighbor of
Agent j. The set of all neighbors of agent i is denoted by Ni = {j ∈ V : (i, j) ∈ E}.
Edges are not directed: if i is a neighbor of j, then j is also a neighbor of i. A
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(a) t = 1

(b) t = 3

(c) t = 7

Figure 8: Comparison between the polytope obtained with AbSolute and Monte-
Carlo approach.
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formation denoted by G(p) is a graph G such that each vertex i of G is associated
to pi(t). The relative bearing of pj with respect to pi is defined by eij := pj − pi,
gi,j :=

eij
‖eij‖ , with ‖ . ‖ being the Euclidean norm.

Suppose the velocity of n` agents is given. Such agents are called leaders and the
other nf agents are called followers. The dynamics of leaders and followers follows
a single integrator model that can be used to follow a predefined plan made of
different way-points. When dealing with a formation of n agents, we have to define
n trajectories r1, . . . rn and the constraint corresponding to the possible collision
between agents is expressed by (r1 ∧ r2)∨ . . . (r1 ∧ rn)∨ (r2 ∧ r3)∨ · · · ∨ (rn−1 ∧ rn):
there is a collision if two constraints representing two trajectories are true at the
same time and therefore the global formula is true.

We perform a new verification with our polytopic approach. As in [2], we only
consider a set of four agents using displacements respecting a square-based forma-
tion: translation, scaling and rotation. Composition of these three displacements
is performed to generate trajectories for the agents following algorithm presented
in [26]. A finite number of values for each displacement is considered: north, south,
east, west direction for translation; contraction and dilation for scaling; rotations
with angles π/4, π/2, 3π/4 and π over the centroid. 108 atomic displacements
are thus considered. Two different sources of uncertainties are taken into account:
uncertainties on initial positions of agents and on inter-agent distances, allowing
four different scenarios.We aim to detect which combination of displacements may
generate a collision.

A summary of the verification of collision-free property on atomic displacements
is given in Table 1: NO stands for no uncertainty, EI stands for uncertainty on initial
conditions, ED stands for uncertainty on distance measure and EID stands for uncer-
tainties on both initial position and distance measures. Two values are considered
for uncertainties, namely 0.01 and 0.1. The number of satisfiable, unsatisfiable and

Table 1: Collision-free checking on atomic displacements for robot formation.

T1T2 T1T3 T1T4 T2T3 T2T4 T3T4

NO 27/81/0 1/107/0 4/104/0 3/105/0 3/105/0 4/104/0
0/107/1 0/108/0 0/107/1 0/106/2 0/108/0 0/106/2

EI 0.01 27/81/0 1/107/0 9/99/0 9/99/0 3/105/0 17/91/0
0/107/1 0/108/0 1/105/2 0/108/0 0/108/0 0/105/3

EI 0.1 27/81/0 12/96/0 41/67/0 52/56/0 26/82/0 54/54/0
0/105/3 0/108/3 1/101/6 0/108/0 0/108/0 0/97/11

ED 0.01 27/81/0 3/105/0 16/92/0 19/89/0 11/97/0 52/56/0
0/108/0 0/108/0 0/107/1 0/108/0 0/108/0 0/107/1

ED 0.1 27/81/0 31/77/0 80/28/0 48/60/0 50/58/0 65/43/0
0/107/1 0/108/0 0/107/1 0/108/0 0/108/0 0/106/2

EID 0.01 27/81/0 4/104/0 22/86/0 28/80/0 11/97/0 54/54/0
0/105/3 0/108/0 1/105/2 0/108/0 0/108/0 0/107/1

EID 0.1 27/81/0 38/70/0 92/16/0 70/38/0 56/52/0 69/39/0
0/106/2 0/108/0 1/106/1 0/108/0 0/108/0 0/107/1
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inconclusive problems (read SAT/UNSAT/MAYBE) is reported for each scenario
and each pair of trajectory between agents (T1T2 stands for trajectory of agent 1
and agent 2). An UNSAT scenario means that no collision have been found and
so the atomic displacement is safe while a SAT scenario implies that a potential
collision has been found. No conclusion can be done with a MAYBE result.

Looking at this experimental evaluation of the bearing-based formation control,
we note that increasing uncertainties increases the number of possible collisions
for interval domain but the polytopic approach seems more robust with respect to
uncertainties. Moreover, polytopic approach provides sharper trajectory tubes and
so reduce the number of possible collisions.

4.2.2 Location of a rendez-vous area

As a second application, we consider the problem of the location of a meeting point
or a rendez-vous area. In a mathematical point of view, it is equivalent to the
detection of a global attractor, which is a difficult problem. This application could
be used to simulate a crowd behavior [25] or study risk of contamination during an
epidemic (as where people meet is an important question in epidemiology).

We build a domain with a limit cycle (from Van Der Pol oscillator), a repulsor
at position (1, 1) and an attractor at position (−1,−1). The resulting ODE is:{

ẏ1 = αy2 − β(y1 + 1) + γ(y1 − 1)
ẏ2 = α(y2(1− y21)− y1)− β(y2 + 1) + γ(y2 − 1)

(5)

with α = 1, β = 0.8 and γ = 0.3. We randomly drop 10 particles in the correspond-
ing vector field and we detect if a rendez-vous occurs (on a 30 seconds horizon),
i.e., if two particles are at the same place at the same time. This is the opposite of
the previous problem of collision detection, but the technique is the same.

A zonotopic tube is computed for each particle and two CSP are solved: 1) a
disjunction of tubes to depict the trajectories, and 2) a conjunction of tubes to
locate a possible rendez-vous area. Results are shown in Figure 9.

An inner region is tagged as a rendez-vous for all the particles in the interval
[−1.69944786755, −1.69888555045]; [0.252656244732, 0.253503277614] during in-
stant [11.152624717, 11.1533191391], while, between t = 10.35 and t = 30, a meet-
ing is possible between at least two particles, without certitude, around (−1.70; 0.25)
(inside the penumbra). This place seems to be an attractor.

5 Discussion and conclusion

In this paper, we presented a method based on Constraint Programming to compute
reachable tubes of Ordinary Differential Equations in the particular case where the
initial domain is given as a polytope. This polytopic approach is of interest in
the field of cyber-physical system verification, because polytopes offer in general a
sharper enclosure than classical boxes. Moreover, initial domains are often defined
in engineering processes with constraints producing in general a polytope. The
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Figure 9: The result for the disjunction of the trajectories of the ten particles.

proposed approach is therefore related to engineering requirements. Our method
has been experimented using two open-source tools known to be efficient in their
respective communities: DynIbex and AbSolute. The results obtained are good and
promising for many applications such as control synthesis (for example with respect
to some safety constraints even with uncertainties in sensors), motion planning (for
example with respect to uncertainties and obstacle avoidance), etc.

Concerning computation time, the circle problem is solved on a basic laptop
with few seconds for the three zonotopic simulations, between few seconds and a
minute for the CSP generation (depending on required precision) and few seconds
for the CSP solving, which is globally reasonable. CSP generation may be included
to the simulation step to optimize execution time.

As future work, even if the method does not present any limitation in term of
problems that can be handled, we plan to test and compare it on more complex and
higher dimensional problems. After this first step, applications such as properties
verification for cyber-physical systems, invariant computation for ODEs or hybrid
system simulation will be considered.
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With GMD
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Abstract

Methods with result verification have been applied in different practical
contexts, for example, in such diverse areas as robotics, computer graphics, or
chemistry. Such methods help to verify the result of a computer simulation,
additionally taking into account possibly present bounded uncertainty in a de-
terministic way. Modeling and simulation of multiple-input multiple-output
(MIMO) systems has not received much attention from this angle. Nowa-
days, increasing the capacity of communication links by using the MIMO
mechanism is an essential part of various wireless communication standards.

In this paper, we consider the channel separation stage in the overall
modeling and simulation process for MIMO systems and compare the sin-
gular value decomposition (SVD) and the geometric mean decomposition
(GMD) based approaches from the point of view of the achievable bit er-
ror ratio (BER) under good and poor scattering conditions. As a special
focus, we use interval methods to verify the result and to deal with the ap-
pearing epistemic uncertainty. Additionally, we consider resource allocation
in detail, which mostly makes sense only for the SVD approach since the goal
of the GMD based one is to avoid it. However, this has been studied only
asymptotically until now and needs confirmation. We propose a combined
analytical-numerical approach to simulate resource allocation relying on ver-
ified techniques. The theoretical results are illustrated and the comparison is
performed using simulated data for an uncorrelated and a correlated MIMO
system with four receiving and four transmitting antennas.
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1 Introduction

In the last decades, the multiple-input multiple-output (MIMO) method for trans-
mitting information has become an essential mechanism in wireless communica-
tions. This strategy of placing multiple antennas both at the transmitter and
receiver sides can be shown to improve the capacity and the integrity of wireless
systems [4, 7, 21]. In this paper, we work with simulated systems relying on a
simple linear stochastic model for a frequency flat1 MIMO link consisting of nT

transmitting and nR receiving antennas given as

~y = H · ~a+ ~n, ~y, ~n ∈ CnR , ~a ∈ CnT , H ∈ CnR×nT . (1)

Here, ~y is the received data vector, ~a is the transmitted signal vector, ~n is the vector
of the additive white Gaussian noise at the receiver side with the zero mean and the
standard deviation σ in both real and imaginary parts. The investigated (frequency
flat) channel profile generates interferences between the different antenna’s data
streams but no intersymbol interference is present at the receiver input. We assume
that the standard deviation of the noise is computed as

σ =

√
Ps

2 · 10
Es
N0
/10

.

In this formula, Ps is the available transmit power and Es

N0
in dB is the signal-to-

noise ratio (SNR), where Es denotes the symbol energy and N0 the noise power
spectral density. Additionally, we assume that the throughput of the MIMO system
is fixed at a certain desired value.

The channel matrix H from Eq. (1) describes each individual path from every
transmitting antenna to every receiving antenna. In order to simulate the actual
paths, the Rayleigh distribution is used in wireless communications. That is, the
coefficients of the (nR×nT) matrix H are simulated as independently and identically
distributed Rayleigh fading channels [20] with the equal standard deviation δ.

In Figure 1, the general modeling and simulation process for a MIMO system
is shown. The first step is to define the structure of the MIMO system. The
spatial placement of the antennas is responsible for scattering conditions being
good or poor, or, in other words, for creating an uncorrelated (good conditions)
or correlated system. In the next step, the channel matrix of the link needs to
be identified, which can be done, for example, via least squares optimization using
pilot sequences [23]. In this paper, we rely on simulated matrices obtained by
the Rayleigh distribution as described, for example, in [1]. The last two steps in
the process are in the focus of the present study: interference suppression (channel
separation) and resource allocation with the goal of optimizing the quality criterion
of the bit error ratio (BER). Additionally, we consider the influence of the scattering
conditions.

1i.e., a single filter channel tap is enough to represent it; the channel can be described by a
single matrix H [22]
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System
configuration

nT, nR antennas
other hardware

low/high
correlation effect

Channel
modeling/estimation

H ∈ CnR×nT

~y = H · ~a + ~n

LS optimization
(via pilot sequences)

Interference
suppression

ul = λlal + wl, 1 . . . L
(non-interfering)

SVD / GMD

Resources’
allocation

bit or power
allocation

Lagrange multipli-
ers optimization

InformationInformation Quality criterion: BER

Figure 1: General stages in the MIMO modeling and simulation process. The stages
this paper focuses on are shown in green.

The intention behind the interference suppression is to create n = min {nR, nR}
separate single-input single-output (SISO) communication channels (ideally, with-
out interference) corresponding to the original MIMO channel H using the appro-
priate precoding and postcoding techniques [9, 18]. The usual approach here is
to employ the singular value decomposition (SVD) of the matrix H creating SISO
channels of unequal weights, which, therefore, have different performance wrt. the
BER. However, it is also possible to use the geometric mean decomposition (GMD)
technique producing n identical separate channels at the cost of remaining inter-
ferences which can be, however, removed from the system by using interference
cancellation schemes [10].

Whereas it is advantageous to optimize allocation of resources in the last step
of the process in case of the SVD [18], the GMD based approach is reported to be
optimal for high SNR, that is, low σ, meaning that resources such as bits per symbol
and power can be distributed uniformly among the (active) SISO channels [10].
To our best knowledge, there is no systematic comparison between the SVD and
GMD based approaches wrt. the best achievable BER, which additionally considers
the difference between correlated and uncorrelated systems. Our intention in this
paper is to close the gap with a further focus on verifying the obtained results and
quantifying bounded uncertainty via an additional deterministic approach, namely,
interval analysis [15].

Interval analysis and other methods with result verification can describe and
forward-propagate2 bounded uncertainty in parameters deterministically if an ap-
propriate implementation of a mathematical model is possible. This computerized
model can be symbolic (mathematical equations describing the system of interest)

2Although approaches for inverse propagation exist (a good overview is in [19]), the more usual
application is for the forward problem
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or algorithmic (code). There are many ready-made implementations of interval
counterparts to the usual floating point based software: set arithmetic [5, 13] (ba-
sic operations +,−, ·, /; elementary functions such as the sine) and more complex
methods such as those for solving linear and non-linear systems of equations or
initial value problems [8, 16]. Many more references can be provided in each case.
Originally, methods with result verification were developed to address the question
of reliability by proving formally that the outcome of a simulation implemented
on a computer was correct (assuming that the underlying implementation was cor-
rect). The results are usually sets of floating point numbers which with certainty
contain the exact solution to the computerized model. The advantage is that usual
numerical assumptions such as truncation or discretization cannot lead to a wrong
solution and their negative influence does not remain undetected if result verifica-
tion is used. A common drawback is the possibility of too conservative bounds for
the solution sets (e.g., between −∞ and +∞) caused by the dependency problem or
the wrapping effect [14]. Aside from previous work by the authors, interval analysis
has been applied to MIMO systems in [24], however, in the context of identification.

The structure of the paper is as follows: In Section 2, the mathematical back-
ground of the SVD and GMD decomposition is briefly outlined along with the
formulas for the corresponding BER (including quantification of possible bounded
epistemic uncertainty). In Section 3, the process of resource allocation is consid-
ered from the mathematical point of view. In Section 4, we apply the suggestions
from Section 3 to a benchmark MIMO system with four receiving and four trans-
mitting antennas for which a correlated and uncorrelated situations are simulated.
We consider bit and power allocation for this system and compare the SVD and
GMD channel separation, especially detailed for two active layers. Conclusions are
in the last section.

2 Interference Suppression: SVD, GMD, BER

The channel matrix H identified at the second stage in the MIMO modeling and
simulation process from Figure 1 is usually dense so that it is not possible to dis-
tinguish separate SISO layers. In this section, we give a brief outline of common
techniques to determine the non-interfering SISO layers corresponding to the chan-
nel described by H using the singular value and the geometric mean decompositions
in Subsections 2.1 and 2.2, respectively. The description in Subsection 2.1 relies
on [18], in Subsection 2.2 on [11]. Note that the SVD based technique is at the mo-
ment the standard one. Moreover, the interference suppression between the SISO
channels described here is ideal and works in theory. In practice, there can still
be residual interference. In Subsection 2.3, we provide the formulas for the corre-
sponding BER along with its upper bound for the case that certain parameters are
not known exactly.
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2.1 SVD Based Channel Separation

The channel matrix from Eq. (1) is decomposed as H = U ·Σ · V †, where U and V
are unitary matrices, Σ is the diagonal matrix with real elements and V † denotes
the Hermitian transpose of V . The matrix Σ contains the positive square roots
of the eigenvalues ξl of H†H in descending order on the main diagonal (singular
values denoted by λl =

√
ξl throughout the paper). If a pre-processed data vector

~x := V · ~a is considered and the corresponding receive signal ~z := H~x + ~n is post-
processed by U†, then the new receive signal is

~u := U†~z = U†
(
UΣV †

)
V~a+ U†~n = Σ~a+ ~w , (2)

where the vector ~a is the transmitted signal vector and ~n is the Gaussian noise
vector as explained in the Introduction. In this way, the MIMO link is transformed
(ideally) into n = min{nT, nR} independent, non-interfering SISO layers ul having
(unequal) weights λl (satisfying the condition λ1 > λ2 > . . . > λn):

ul = λlal + wl for l = 1 . . . n . (3)

Out of those, only L = 2, . . . , n layers need to be actively used while transmitting
information. Since the weights for each layer are different, it is profitable to optimize
the allocation of such resources as transmit power. In poor scattering conditions
with high antenna correlation, where the weighting of the SISO channels might
turn strongly unequal, such optimization gains in importance but is challenging. A
unique indicator of the unequal weighting of the MIMO layers is the ratio ϑ between
the smallest and the largest singular value which characterizes the correlation effect
(and is also the condition number of the matrix H).

2.2 GMD Based Channel Separation

The channel matrix from Eq. (1) is decomposed as H = Q · R · P †, where P
and Q are semiunitary3 matrices, R ∈ Rn×n is an upper triangular matrix with
identical diagonal elements. After precoding the signal ~a by P at the transmitter
side (~x = P~a) and postcoding ~z = H~x+ ~n by Q† at the receiver side, the model in
Eq. (1) turns into

~u = R~a+Q†~n = R~a+ ~ν . (4)

By using appropriate nulling and cancellation approaches [9], it is possible to obtain
n parallel, non-interfering SISO links of the form

ul = λ · al + νl with equal weights λ =

(
n∏
l=1

λl

) 1
n

. (5)

Since all SISO layers are equal, it should not be necessary to optimize wrt. the
amount of bits per symbol or power, which can be chosen to be the same for each

3that is, non-square matrices either the rows or columns of which are orthonormal
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active layer [10]. However, as will be described in Subsection 2.3, it might still be
advantageous to select the number of active layers (i.e., the number of activated
MIMO layers L = 2, . . . , n for the data transmission within an nT × nR MIMO
system) to be less than n. The actual value of λ strongly depends on L and can be

computed as λ =

(
L∏
l=1

λl

) 1
L

.

Note that we do not consider explicitly the added uncertainty appearing due
to the use of precoding/postcoding (SVD) or nulling/cancellation (GMD) in this
paper. This point has been addressed, for example, in [3].

2.3 BER for SVD and GMD Separated Channels

For simple MIMO transmission channel and data source models, the BER can
be computed analytically [3]. In particular, for quadrature amplitude modulated
signals, the bit error probability for a transmission SISO layer l is given as

p
(l)
b =

2

ml

(
1− 2−

ml
2

)
· erfc

 λl
2σ

√
3 · P (l)

s

2ml − 1

 (6)

if the SVD is used. It depends on the amount of bits per symbol ml (and the con-
stellation size Ml = 2ml), the noise standard deviation σ, the available transmission

power per layer P
(l)
s and the singular value λl corresponding to the considered layer;

erfc(·) is the complementary error function. The desired throughput is denoted by

T =

L∑
l=1

log2Ml =

L∑
l=1

ml (7)

and considered to be constant throughout the paper. The BER for the whole MIMO
link is the sum of probabilities per layer modified with the respective number of
bits per layer and the throughput:

pb =
1

T

L∑
l=1

ml · p(l)b =
2

T

L∑
l=1

(
1− 2−

ml
2

)
· erfc

 λl
2σ

√
3 · P (l)

s

2ml − 1

 . (8)

The weights λl are not necessarily equal for each SISO layer if the SVD is used,
which is usually countered by assigning power to layers in the optimal way instead

of uniformly (P
(l)
s = Ps

L → P
(l)
s = π2

l ·
Ps

L ). That is, employing the analytical
BER representation as a cost function, a MIMO system can be optimized wrt. the
parameters πl, for example, with the help of the Lagrange multipliers approach.
The noise variance σ2 is usually considered to be fixed, but it is possible to optimize
the BER still further with the help of bit allocation. Here, the number of bits
per symbol ml for L active layers is computed such that the BER is minimized.
Since ml are natural numbers, the integer optimization problem needs to be solved.
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The BER of a correlated system can become significantly higher than that of an
uncorrelated one.

Another possibility to deal with the unequal weights and to minimize the BER is
to use GMD as described in Subsection 2.2. The formula in Eq. (8) remains almost
the same except that, instead of the singular values λl of the channel matrix H,

their geometric mean λ is used for each active layer to compute p
(l)
b . Additionally, if

the number of bits per symbol is chosen to be the same (m = m1 = m2 = . . . = mL)
and the overall power Ps is equally distributed among the L active layers, the BER
in Eq. (8) simplifies to

pb,GMD =
mL

T
p
(∗)
b =

2L

T

(
1− 2−

m
2

)
· erfc

(
λ

2σ

√
3 · Ps

L(2m − 1)

)
. (9)

Note that if T is constant, m = T
L . Since m ∈ N, the number of active layers L

should be chosen such that T
L ∈ N.

Since the BER in both (8) and (9) is essentially a sum of positive values of the

corresponding p
(l)
b , it might be profitable to choose the number of active layers L

to be less than n, possibly switching off the layer with the highest p
(l)
b in the case

of SVD.

If the formula in Eq. (8) (or Eq. (9)) is used to compute the overall BER, it
is obvious that the major characteristics influencing this quality criterion are the
singular values λl (layer weights), the standard deviation of the noise σ, the numbers

of bits per symbol ml, the transmit power per layer P
(l)
s and the number of activated

layers L. As already mentioned, the throughput T is assumed to be constant.

Initially, P
(l)
s = Ps/L is equal for each layer and is optimized during the stage of

power allocation. Optimizing wrt. ml is the purpose of bit allocation. Choosing
the number of active layers L also belongs to the stage of resource allocation. If
it holds for the remaining parameters that λl ∈ [ λl, λl ], where λl, λl are known
lower and upper bounds, respectively, and the standard deviation σ ∈ [ σ, σ ], then
a conservative upper bound on the BER can be obtained using the rules of interval
arithmetic as

pb(σ, λ1 . . . λL) ≤ 2

T

L∑
l=1

(
1− 2−

ml
2

)
· erfc

 λl
2σ

√
3 · P (l)

s

2ml − 1

 (10)

(cf. [2]). That is, due to monotonicity of the involved functions, it is not necessary
to work with actual ranges but with their bounds only, which makes verified opti-
mization easier. Note that the upper bound for σ would be achieved, theoretically,
at the SNR below 1dB, which is of no practical interest since the signal would be
too ‘noisy’ to be considered useful. Therefore, it is common practice to choose a
certain fixed SNR Es

N0
in dB (e.g., between 5dB and 20dB) at which the behavior

of the MIMO system is studied.
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3 Bit and Power Allocation

If the SISO channels are separated via the SVD, the overall system can be optimized
wrt. the quality criterion of the BER by appropriate allocation of resources. The
first factor to consider is the number of active layers L to use. Next, the amount
of information that should be put through each of the active layers l = 1 . . . L can
be optimized (bit allocation). Finally, the power assigned to each active layer can
optimized (power allocation). In this section, we consider these processes in detail.
Where necessary, we mention the behavior of the GMD separated MIMO system
in the context.

3.1 Bit Allocation

3.1.1 Bit Allocation with Non-Linear Mixed-Integer Programming
(Exact)

The number of bits per transmitted symbol and layer influences the overall BER
as can be seen from Eq. (8). Optimizing with respect to bits per symbol (that is,
with power equally distributed among the L active layers) is not trivial since ml

should be positive integers fitting the desired throughput T from Eq. (7), which
leads to a non-linear mixed-integer programming problem [12]. For small numbers
of active layers L and constant throughputs T , the problem can be treated by
considering all admissible combinations of ml ∈ {1, 2, . . . , T − L + 1} satisfying
the constraint in Eq. (7) and choosing the combination with the smallest pb [1].
For small T , it is easy to implement a routine checking the BER produced by all
admissible constellations of ml. For example, an overall of 21 combinations needs to
be tested for T = 8 (bit/s)/Hz and three active layers (L = 3). For high numbers
of antennas and higher throughput, this simple routine would be too inefficient
wrt. computing time. Even increasing the number of active layers by one (to
L = 4) results in an increase by 14 combinations (i.e., there are 35 combinations to
check). Since λ1 > λ2 > . . . > λL, that is, the first layer is the strongest (has the
smallest BER), the second is the second strongest and so on, it is usually assumed
that also m1 ≥ m2 ≥ . . . ≥ mL, which corresponds to the practical consideration
that stronger layers should transmit more information. This assumption reduces
the number of combinations from 21 to five for the example with the three active
layers.

As is obvious from Eq. (6), the error probability p
(l)
b , considered as a function of

λl > 0, decreases monotonically and has a positive range. It is not easy to answer

the same question for p
(l)
b as a function of ml, even over the limited definition

domain [1, T − L + 1]. It can be monotonically increasing or decreasing with ml

for some values of λl, or not be monotonic at all (cf. the example in Figure 2).
However, the range is always positive over [1, T −L+1], as can be easily seen from
Eq. (6). The behavior wrt. monotonicity is explained by the derivatives wrt. to ml

and λl:
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∂p
(l)
b

∂ml
=− 2

m2
l

(
1− 2−

ml
2

)
· erfc

 λl
2σ

√
3 · P (l)

s

2ml − 1

+

ln 2

ml
·
(

2−ml/2 · erfc

 λl
2σ

√
3P

(l)
s

2ml − 1

+ (11)

λl
σ

√
3P

(l)
s

π
· 2ml/2

√
2ml − 1

(
2ml/2 + 1

) · exp

(
− λ2l

4σ2

3P
(l)
s

(2ml − 1)

))
∂p

(l)
b

∂λl
=− 2

mlσ

√
3P

(l)
s

π (2ml − 1)
·
(

1− 2−
ml
2

)
· exp

(
− λ2l

4σ2

3P
(l)
s

(2ml − 1)

)
. (12)

It holds that
∂p

(l)
b

∂λl
< 0 for ml ≥ 1, σ > 0 (which is the case). No such simple

statement can be derived for
∂p

(l)
b

∂ml
in Eq. (11) since it contains both positive and

negative terms depending on the same parameters and variables. Therefore, it is,
strictly speaking, not clear that taking m1 ≥ m2 ≥ . . . ≥ mL would produce the
minimal value for the BER in Eq. (8) under the constraint (7). However, if the BER

is computed according Eq. (8), where p
(l)
b is multiplied by the corresponding ml,

the negative term disappears from the derivative
∂pb
∂ml

making it always positive (cf.

Eq. (15)). That is, the overall BER is a sum of functions monotonically increasing
with ml. Since erfc(λ1) <erfc(λ2) < . . . <erfc(λL), taking m1 ≥ m2 ≥ . . . ≥ mL

(and therefore M1 ≥M2 ≥ . . . ≥ML) seems a good choice, which is also confirmed
experimentally in the next Section.

3.1.2 Bit Allocation with Lagrange Multipliers (Approximate)

Another approach to bit allocation is to approximately solve the problem by the
Lagrange multipliers method. The task is

pb(m1, . . . ,mL) −→
m1...mL

min s.t.

L∑
l=1

ml = T where P (l)
s =

Ps

L
. (13)

The cost function to consider is then

J(m1, . . . ,mL, µ) = pb(m1, . . . ,mL) + µ ·

(
−T +

L∑
l=1

ml

)
(14)

if we are interested in the number of bits per symbol ml. This formulation disre-
gards that the numbers ml should be positive integers and would possibly compute
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Figure 2: BER p
(l)
b per layer l with P

(l)
s = 1

3 as a function of ml (left) and its
derivative wrt. ml (right) for an example system from Subsection 4.1 for λl = 1.3791
(orange), λl = 0.1609 (blue) and λl = 0.0013 (green).

approximate real values for them. The system we need to solve to obtain candidates
for the optimal sets of bits per symbol ml for l = 1 . . . L is

∂J

∂ml
=

ln 2

T
·
(

2−ml/2 · erfc

 λl
2σ

√
3P

(l)
s

2ml − 1

+ (15)

λl
σ

√
3P

(l)
s

π
· 2ml/2

√
2ml − 1

(
2ml/2 + 1

) · exp

(
− λ2l

4σ2

3P
(l)
s

(2ml − 1)

))
+ µ = 0

∂J

∂µ
=− T +

L∑
l=1

ml = 0 (16)

Having computed the enclosures of the approximate real values for ml, for example,
using a solver for systems of non-linear equations based on methods with result
verification (e.g., C-XSC Toolbox [8]), we can choose positive integer values that
are the closest to them. Here, rounding to the nearest integer number actually
provides the results that fulfil the constraint (cf. Table 1). However, we can also
round the first L− 1 powers only and then subtract their sum from T .

Both bit and power allocation are theoretically unnecessary for the GMD. Since
all weights are the same for the SISO channels obtained by the GMD, the power can
indeed be equally distributed if also all ml are the same. However, it is not imme-
diately clear why the bit allocation is unnecessary, aside from the practical reason
that equally strong layers can transmit the equal amount of information. Besides,
these statements are usually true only asymptotically (for high SNRs). Therefore,
we seek to study how the GMD behaves under bit allocation also experimentally
in Section 4.
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3.2 Power Allocation

Once the number of transmitted bits per symbol is fixed, a further approach to
BER minimization is to reassign the initially uniformly distributed transmission
power. Assigning more power to layers with small λl seems a good strategy to
improve the overall BER since small λl lead to large values of bit error probability

p
(l)
b per MIMO layer l as implied by the upper bound in Eq. (10) (which is however

not always true if both bit and power allocation are performed, cf. Page 793). The
task here is

pb(π1, . . . , πL) −→
π1...πL

min s.t.

L∑
l=1

π2
l = L where P (l)

s =
π2
l Ps

L
. (17)

The Lagrange multipliers method is formulated for this task using the following
cost function:

J(π1 . . . πL, µ) =
2

T

L∑
l=1

(
1− 2−

ml
2

)
(18)

· erfc

(
πlλl
2σ

√
3 · Ps

L(2ml − 1)

)
+ µ

(
L∑
l=1

π2
l − L

)
−→ min,

where π1 > 0, . . . , πL > 0 are the power allocation parameters with which we

modify the initially assigned power P
(l)
s in order to improve pb from Eq. (8). With

the notations

kl = kl(ml, T ) :=
2

T
·
(

1− 2−
ml
2

)
, (19)

cl = cl(ml, σ, Ps, L) :=
1

2σ

√
3 · Ps

L(2ml − 1)
, l = 1...L , (20)

the Lagrange multipliers approach produces the nonlinear system of equations (21)
for the minimizer candidates of the cost function (18) :

∂J(π1 . . . πL, µ)

∂πl
= − 2kl√

π

(
clλle

−c2l λ
2
l π

2
l

)
+ 2µπl = 0,

L∑
l=1

π2
l − L = 0 , (21)

where πl > 0, l ∈ {1, . . . , L}. It is clear from the first L equations that µ must

be positive. Additionally, the second derivative
∂2J

∂πl∂πm
= 0 for l 6= m and is

positive for l = m. The bordered Hessian is symmetric and has the form
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0 2π1 · · · 2πL

2π1 2µ+
4k1c

2
1λ

2
1√

π
π1e
−c21λ

2
1π

2
1 · · · 0

2π2 0 . . . 0
...

...
. . .

...

2πL 0 . . . 2µ+
4kLc

2
Lλ

2
L√

π
πLe

−c2Lλ
2
Lπ

2
L


.

It could be shown that the determinants of all relevant L−1 leading principal minors
are always negative [1]. For one constraint, this means that a stationary point is a
local minimum. Using again the solver for systems of non-linear equations from C-
XSC Toolbox, we can compute guaranteed enclosures for all stationary points in the
search interval (0, L] for each πl from the system in Eq. (21). Working in a verified
way has the advantage of taking care of numerical errors. For power allocation,
it has an additional benefit of proving that the solution is really unique if only
one possibility is suggested. Combined with the analytical conclusions above, this
leads to the computer-assisted proof that the candidate obtained by solving (21) is
actually the global minimum.

3.3 Bit and Power Allocation

The approximate bit and exact power allocation can be performed simultaneously:

pb(π1 . . . πL,m1, . . . ,mL) −→
π1...πL,m1,...,mL

min s.t.

L∑
l=1

ml = T,

L∑
l=1

π2
l = L ,

(22)

where P
(l)
s =

π2
l Ps

L . The cost function combining those from Eq. (14) and (18)

J(π1 . . . πL,m1, . . . ,mL, µ1, µ2) =
2

T

L∑
l=1

(
1− 2−

ml
2

)
· erfc

(
πlλl
2σ

√
3 · Ps

L(2ml − 1)

)

+ µ1

(
L∑
l=1

ml − T

)
+ µ2

(
L∑
l=1

π2
l − L

)
(23)

needs then to be minimized. The corresponding non-linear system for the stationary
points is

∂J

∂πl
=− 2kl√

π

(
clλle

−c2l λ
2
l π

2
l

)
+ 2µ1πl = 0 (24)

∂J

∂ml
=

ln 2

T
·

(
2−ml/2 · erfc (clλlπl) +

2clλlπl2
ml/2(

2ml/2 + 1
) · exp

(
−c2l λ2l π2

l

))
+ µ2 = 0

∂J

∂µ1
=

L∑
l=1

π2
l − L = 0,

∂J

∂µ2
= −T +

L∑
l=1

ml = 0 for l = 1 . . . L
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having now double the number of equations compared to problems in (14) or (18)
individually. In Subsection 4.3, we compare this approach to the approach com-
bining exact power allocation by Eq. (18) and exact bit allocation by brute-force
combinatorial approach from points of view of both the BER and computing time
for a system with two active layers.

Note that it is possible to solve the problems in Eq. (14) or (18) directly (without
having to formulate the respective non-linear systems of equations for the candi-
dates) in the verified way by using global optimization algorithms implemented,
for example, within the same C-XSC Toolbox. However, the achieved parameter
enclosures are too wide as discussed in [3]. That is why we concentrate on solving
the systems of non-linear equations in (15)-(16), (21), (24) using verified methods
in this paper, which produces almost point enclosures.

4 Numerical Results

In this section, we first take a closer look at the bit allocation for both SVD and
GMD based approaches, since it does not seem to be inherently clear that GMD
requires the uniform bit distribution in all cases (Subsection 4.2). For this purpose,
we consider both an uncorrelated and correlated MIMO system, with 5000 channel
realizations each, this benchmark described in Subsection 4.1. After that, we focus
on the case of two active layers and compare both approaches in more detail,
including power allocation (Subsection 4.3).

4.1 The Benchmark System

The practical problem we consider in this paper is a wireless frequency flat MIMO
link with nT = nR = 4 antennas, the desired constant throughput T = 8 (bit/s)/Hz
and the available transmit power Ps = 1W. In this setup, correlated and uncor-
related data sets with 5000 realizations for λ1, . . . , λ4 each were generated in a
non-verified simulation with δ2 = 1

2 . The correlation coefficients at the transmitter

and receiver sides were chosen as ρ(RX) = ρ(TX) = 0.2375 (see [1] for details as well
as [6] for an overview on models and [17] for validity areas of the employed Kro-
necker channel model). If not mentioned otherwise, we provide results at the SNR
of Es

N0
= 10dB (σ2 = 0.05). All simulations in this paper are carried out using Intel

i7-4790K @ 4.00GHz (8 cores) CPU under Ubuntu 20.04 LTS and are implemented
using C++.

4.2 SVD vs GMD: Bit Allocation

In [1], we tested the correlated and uncorrelated MIMO systems described above
with their 5000 realizations using verified power allocation and manual bit alloca-
tion for the SVD based approach under the restriction m1 ≥ m2 ≥ . . .mL with
two, three or four active layers. In this subsection, we take a closer look at the bit
allocation for both the SVD and GMD based approach, considering two versions.
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The first variant (denoted ‘NLI’ for convenience in the following) implements the
brute force approach of computing the BER using interval arithmetic for all possi-
ble combinations of ml = log2Ml (cf. Section 3.1.1). The second variant (denoted
‘OPT’) solves the system of non-linear equations in Eqs. (15)–(16) using the corre-
sponding verified solver from C-XSC Toolbox to obtain enclosures of approximate
real values for ml (cf. Section 3.1.2). Using methods with result verification, we
can, in a guaranteed way, rule out the situation that there exist different, better
local minimizers in the considered search interval if the unique solution is obtained.

In Table 1, the results are summarized for four representative examples. First,
we consider a randomly chosen uncorrelated data set (№4998, Case 1) and a ran-
domly chosen correlated data set (№101, Case 3) from the available 5000 realizations
for each case. For both uncorrelated and correlated MIMO systems, we examine
additionally the worst case by taking the smallest values for every of the four λl out
of the 5000 realizations (Case 2 and 4, respectively). By the formula in Eq. (10),
these values provide an upper bound for the achievable BER for all the 5000 real-
izations considered. Note that this conservative upper bound on the BER of our
realizations is not attained by any of the actual realizations since the lower bounds
on each of λi are not necessarily contained in a single set λ1, . . . , λL. All possible
values of the BER are below this bound. In Columns 2–6 of the Table, the values of
ml and the BER for the SVD based approach are given for a predefined number of
active layers L (Column 1) and both variants OPT (the first of the corresponding
lines) and NLI (where the integer numbers are given). The structure of Columns
7–11 describing the GMD based approach is the same aside from the additional
BER value in parentheses showing, as a comparison, the SVD based BER for the
ml values optimal for the GMD. The results are computed for the SNR of 10dB.

We reproduce the midpoints of the obtained enclosures for ml and the upper
bounds of the obtained intervals for the BER; all values are rounded to five digits.
The solver in OPT is used with the tolerance of 10−10 and the search interval of
[0.9, 8.1] for each of the ml along with the [−2, 0] for the µ. The width of the
obtained intervals has the maximum order of magnitude of 10−10. Sometimes,
OPT could not verify a solution in the chosen search interval (denoted by – in
the Table). One reason is that values below one are suggested for weaker layers
(agreeing also with the results from non-verified solvers). However, this would
correspond to switching the weaker layer off, which we want to explicitly control by
choosing the number of active layers L manually. That is why we do not provide
an OPT solution in these cases.

The values computed by OPT always agree with NLI in the sense that positive
integers closest to the real values from OPT are also suggested for ml by the NLI.
This indicates that the system in Eqs. (15)–(16) can be used in combination with
verified or non-verified solvers to compute approximate values for ml if the NLI
approach takes too long for the given number of active layers and the throughput.
Obviously, the OPT based BER is somewhat better than the corresponding NLI
based one. Verified computations using both NLI and OPT confirm that the GMD
based approach is indeed on average at its optimal for equal numbers of bit per
symbol ml. Using three active layers L = 3 is not a good scenario for GMD for our
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benchmark systems since we cannot achieve the throughput of T = 8 with equal
ml that are positive integers. It is nonetheless interesting that ml = T

3 is indeed
the best choice at a relatively low SNR of 10dB as confirmed by the OPT solution.

In the last example of correlated worst case there were 4 candidates for the
system’s solution for L = 3 (in italics) if the OPT was used. The expected solution
ml = T/L is actually not the only one producing the minimum for the BER, there
are three more. Since the real solution needs to be rounded to positive integers,
those further candidates can be taken as corresponding to 3 possibilities to assign
the numbers 3,3,2 to the three ml. The order is not important for the GMD based

approach since the parameters of the p
(l)
b are otherwise equal. The BER for the

GMD is the same for all possibilities and is given in the Table. The best BER for
these ml with SVD is actually produced by the sequence 3−2−3 (1.9214·10−1). It
is, however, higher than that for the optimal set 5− 2− 1 reproduced in the Table.

Bit allocation does not bring improvement for the GMD in most of the cases
from Table 1 at 10dB. However, the best BER under GMD is achieved for 1,1,1,5 (or
any other permutation of these numbers) in the uncorrelated and correlated worst
case (0.2990 and 0.3633, respectively). As will be shown in the next subsection,
there is also one case at 5dB where bit allocation makes sense for the GMD with
L = 2 active layers. That is, the bit allocation cannot be ruled out for the GMD
and low SNRs.

If bit allocation is performed, the SVD is mostly better than the GMD wrt. the
BER at 10dB for the considered examples (if we take into account only positive
integer values ml relevant in the practice). Without the bit allocation, the GMD
can be better on average, especially, in the “normal” cases 1 and 3, where it is
so independently of the number of the activated layers. Bit allocation is demon-
strated to significantly improve the SVD based BER for both uncorrelated and
correlated cases. Without bit allocation, the GMD based approach improves the
BER especially in the normal uncorrelated case. In the next subsection, we offer
a broader comparison taking into account all 5000 realizations of the uncorrelated
and correlated system for two active layers.

As a general observation from this subsection, it could be mentioned that it
does not make sense to use all four available layers as also followed from our study
of SVD under bit and power allocation in [1]. Employing GMD instead of SVD
does not seem to change the situation. It is necessary to perform more experiments
to substantiate this claim, which is the subject of our future work.

4.3 Detailed Comparison of SVD and GMD for Two Active
Layers

In this subsection, we compare in detail how the GMD and SVD based approaches
perform for different possibilities in case two layers are switched off in the example
system described in Subsection 4.1 (L = 2). We consider the same example cases
as in the previous subsection at different SNRs. Additionally, we analyze all 5000
realizations of the uncorrelated and correlated channel at different SNRs.
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From Figure 3, it can be seen that the GMD approach is better than the one

based on the SVD if resources are allocated uniformly (P
(l)
s = 1

2W,ml = 4, l = 1, 2).
The Figure shows the comparison for the example systems with 5000 realizations
each (uncorrelated on the left, correlated on the right) at 10dB and 15dB. For
clarity of the representation, only every 100th result is shown. For frequency plots
on λl, see [1].
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Figure 3: BER for SVD and GMD without any resource allocation for 5000 real-
izations (with every 100th result shown) of an uncorrelated (left) and correlated
(right) MIMO link at 10dB (above) and 15dB (below).

In Figure 4, the comparison between the BER for the GMD based approach
with uniformly allocated resources and SVD without power allocation but with bit
allocation by OPT is shown, again for 5000 realizations of the uncorrelated and
correlated MIMO channels at 10dB and 15dB. The SVD based approach with bit
allocation is always better than the GMD one in this case. The unique optimum
for ml cannot always be verified. While optimal solutions can be verified for all
5000 channel realizations in the non-correlated case, 10 cases are not solved for the
correlated channel. At 15dB, the corresponding numbers for unsolved cases are
2435 and 3661, respectively. In this subsection, the optimum was considered as not
verified if there was no solution to the system in Eqs. (15)–(16) with L = 2 in the
considered search interval or if there were multiple solutions.
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Figure 4: BER for SVD with bit allocation and GMD for 5000 realizations (with
every 100th result shown) of an uncorrelated (left) and correlated (right) MIMO
link at 10dB (above) and 15dB (below).

Next, we consider how the examples from Table 1 behave if both bit and power
allocation (BPA) are performed for the SVD separated channels using the NLI and
OPT approaches at different SNRs. Here, NLI means that the system in Eqs. (15)–
(16) is solved by C-XSC for each admissible combination of ml computed by a brute
force approach to identify the combination leading to the smallest BER. For OPT,
we solve the system in Eq. (24) using C-XSC. In case of the GMD, we perform only
bit allocation as a comparison and for the sake of completeness. There is only one
case where non-uniform bit allocation is better for the GMD. Therefore, we provide
the numbers for ml in this case only. The results are given in Table 2. For BPA
with OPT, the numbers given for ml are the closest integers. We see that there
is no difference in ml if we do bit and parameter allocation separately by verified
non-linear equations solver and optimization (NLI) or together using the system in
Eq. (24) by a non-linear solver (OPT) as long as T is fixed. There is, as expected,
a difference in the BER, although not very large. From Table 2, it is evident that
not only power but also bit allocation depend on both σ and λl and cannot be
precomputed. Although, at least for smaller σ, the BER of GMD is sometimes
better than that of SVD after bit allocation, power allocation makes the BER for
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the SVD separated channels the best in all of the considered cases.
Note that the assumption that power allocation assigns more power to weaker

layers is not always correct as demonstrated for L = 2. For example in Case 3,

the power π2 · P (1)
s assigned to the first (and strongest) layer with λ1 = 3.9493 is

approximately 0.54361 W (π1 ≈1.0427), whereas the second layer with λ2 = 1.6891
is assigned 0.45639 W (π2 ≈0.95539) to achieve the minimal BER of 3.2192·10−3

at m1 ≈5.2254, m2 ≈2.8871 and the SNR of 10dB given in Table 2 if OPT is
used. This is true for all 5000 data sets and is similar for the uncorrelated channel
(0.53164 W for the first layer, 0.46836 W for the second in Case 1): the stronger
layer is always assigned more power for two active layers at 10dB.

Table 2: Comparison between the GMD and SVD based BER under bit and power
allocation for two active layers and the examples from Table 1.

BER SVD BER GMD

dB BA BPA (NLI) BPA (OPT) BA (4-4)

C
a
se

1 5 3.0196·10−2(5-3) 2.9767·10−2(5-3) 2.9767·10−2(5-3) 3.1398·10−2

10 7.5104·10−4(5-3) 7.0689·10−4(5-3) 7.0686·10−4(5-3) 7.8821·10−4

15 1.8489·10−8(5-3) 1.2815·10−8(5-3) – 1.6971·10−8

C
a
se

2 5 1.4185·10−1(6-2) 1.3980·10−1(6-2) 1.3933·10−1(6-2) 1.5070·10−1

10 4.7907·10−2(5-3) 4.7895·10−2(5-3) 4.6371·10−2(5-3) 5.1015·10−2

15 3.2918·10−3(5-3) 2.8633·10−3(5-3) 2.5074·10−3(5-3) 3.0105·10−3

C
a
se

3 5 5.1756·10−2(5-3) 5.1672·10−2(5-3) 5.1168·10−2(5-3) 5.4896·10−2

10 3.4050·10−3(5-3) 3.3502·10−3(5-3) 3.2192·10−3(5-3) 3.6753·10−3

15 1.9868·10−6(5-3) 1.3623·10−6(5-3) – 1.6392·10−6

C
a
se

4 5 1.9676·10−1(7-1) 1.9618·10−1(7-1) – 2.0156·10−1(7-1)

2.3381·10−1

10 1.3667·10−1(6-2) 1.3441·10−1(6-2) 1.3440·10−1(6-2) 1.4350·10−1

15 4.2405·10−2(5-3) 4.2404·10−2(5-3) 4.1433·10−2(5-3) 4.5213·10−2

The fact that SVD is better than the GMD if both bit and power allocation
is performed using OPT at all SNRs, observed for the four examples in Table 2,
is confirmed by the simulation considering all 5000 realizations of the uncorrelated
and correlated channel (cf. Figure 5). At 10dB, the minimum could not be verified
for 11 data sets in the correlated case using OPT. SVD with BPA is better than
GMD in all the remaining cases. At 15dB, the result could not be verified for
3667 (correlated) and 2441 (uncorrelated) data sets using OPT. For the remaining
data sets, SVD is better. Note that, although the OPT approach is quite helpful
if only bit allocation is performed since it identifies the optimal ml constellations
reliably, it is purely theoretical if both bit and power allocation are combined as in
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Eq. (24). The optimal power parameters πl obtained for the real values of ml do
not necessarily retain their optimality for the corresponding positive integer ml.

1.0×10
−5

1.0×10
−4

1.0×10
−3

1.0×10
−2

1.0×10
−1

 0  1000  2000  3000  4000  5000

B
E

R
, 
u
n
c
o
rr

e
la

te
d
, 
L
=

2

Data set number

BER SVD, BPA
BER GMD

1.0×10
−5

1.0×10
−4

1.0×10
−3

1.0×10
−2

1.0×10
−1

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

B
E

R
, 
L
=

2

Data set number

BER SVD, BPA
BER GMD

1.0×10
−6

1.0×10
−5

1.0×10
−4

1.0×10
−3

 0  1000  2000  3000  4000  5000

B
E

R
, 
u
n
c
o
rr

e
la

te
d
, 
L
=

2

Data set number

BER SVD, BPA
BER GMD

1.0×10
−6

1.0×10
−5

1.0×10
−4

1.0×10
−3

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

B
E

R
, 
L
=

2

Data set number

BER SVD, BPA
BER GMD

Figure 5: BER for SVD with bit and power allocation and GMD without resource
allocation for 5000 realizations (with every 100th result shown) of an uncorrelated
(left) and correlated (right) MIMO link at 10dB (above) and 15dB (below).

Using NLI for both bit and power allocation is more relevant in practice. On the
one hand, more information can be gained with respect to GMD/SVD comparison
since a verified proof of uniqueness is possible for almost all data sets4. The reason
for this is that only two equations need to be solved for each m1−m2 combination
in the verified way. On the other hand, the NLI approach uses only positive integer
constellations of ml, leading to realistic values of πl and the BER.

If BPA for the SVD case is performed via NLI, the SVD based channel separation
is not always better as demonstrated in Figure 6, on the left. There, the normalized
ratio is shown between the number of cases in which the BER under SVD is better
for 5000 realizations of uncorrelated/correlated MIMO systems and the overall
number of successful cases. Note that the resources are allocated uniformly in the
GMD case. At lower SNRs, SVD is better, especially in the correlated case. At

4For example, a verified result cannot be produced for overall 79 combinations in the correlated
case using NLI at 15dB, which also includes combinations possibly not leading to the minimal
BER
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higher SNRs, GMD is better, especially in the uncorrelated case. On the right
of Figure 6, the best and worst computed values of the BER are shown at each
SNR for correlated and uncorrelated MIMO system under SVD and GMD for 5000
realizations each. We observe that the GMD is mostly better in terms of the upper
and lower bounds. That is, out of 5000 realizations, the smallest best case bound
(lower) and the smallest worst case bound (upper) are provided by GMD (starting
at 12.5dB, at the latest). This does not mean that this is so on average (cf. the
Figure on the left). Additionally, it can be seen that the correlated MIMO system
has a much broader intervals between the best and the worst achievable BER within
the same channel.
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Figure 6: On the left, the normalized number of cases of better BER under SVD
and NLI. On the right, lower and upper BER bounds under SVD (solid) and GMD
(dashed). In both figures, 5000 realizations of the uncorrelated (black) and corre-
lated (blue) MIMO systems are considered.

To give an idea about the computing times, we provide the user CPU time
supplied by the Ubuntu function time for the slowest simulation variant (5000 re-
alizations, BPA). While the simulations are run as a matter of seconds for variants
with only bit or only power allocation (or, of course, without any resource allo-
cation), the user time is 80 minutes for OPT in the correlated, 52 minutes in the
uncorrelated case and on average 17 seconds both for correlated and uncorrelated
case using NLI if BPA is performed at 10dB. This time includes output operations
(creating a text file with data for Figures 5 or 6, respectively). Note that NLI is
much faster because there are only seven possibilities to check for two active layers.

5 Conclusions

In this paper, we studied bit and power allocation for the SVD based channel sep-
aration from the verified point of view. Additionally, we compared the results to
the GMD-based approach, not only from the theoretical side but also using 5000
realizations of an uncorrelated and correlated MIMO channel. Although the GMD
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based approach is considered to require no resource allocation, at least asymptot-
ically for high SNR, it is not always so at lower SNRs, where bit allocation might
be profitable in isolated cases. Experimentally, we demonstrated that the GMD
is definitely an alternative if no optimization of resource allocation can be carried
out. Besides, it is competitive even if there is enough capacity to perform bit and
power allocation for the SVD separated channel, at least, for higher SNRs, espe-
cially under good scattering conditions. However, the SVD outperforms the GMD
wrt. to the quality criterion of the BER on average in bad scattering conditions
and lower SNRs. As concerns the SVD based channel separation, we observe that
using only bit allocation improves the BER significantly for both uncorrelated and
correlated MIMO systems. The BER can be improved even further by subsequent
power allocation, the adjustment for the better more visible in the uncorrelated
than in the correlated case.

Some of the results suggest that employing GMD instead of SVD does not
change the fact that the weakest layer should be switched off, at least, at lower
SNRs. More experiments are necessary to substantiate this suggestion, which is
the topic for our future work. Additionally, it is not clear beforehand for given
singular values and an SNR whether the BER would be better if SVD or GMD is
employed. A comprehensible criterion depending on these parameters would help
to optimize MIMO systems further wrt. their BER. To study if it is possible to
devise such a criterion is a further subject for our future work.
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Robust Control and Actuator Fault Detection

Based on an Iterative LMI Approach:

Application on a Quadrotor

Oussama Benzinaneab and Andreas Rauhac

Abstract

Linear Matrix Inequalities (LMIs) have recently gained momentum due to
the increasing performance of computing hardware. Many current research
activities rely on the advantages of this growth in order to design controllers
with provable stability and performance guarantees. To guarantee robustness
despite actuator faults, model uncertainty, nonlinearities, and measurement
noise, a novel iterative LMI approach is presented to design an observer-based
state feedback controller allowing for simultaneous optimization of the con-
trol and observer gains. A comparison with a combination of an Extended
Kalman Filter (EKF) and a Linear-Quadratic Regulator (LQR) has been
conducted, inherently providing guaranteed stability for the closed loop only
when the separation principle holds, which is not the case in this study. Both
approaches are applied on a quadrotor, where reliable detection and compen-
sation of the faults in the presence of measurement noise is demonstrated.

Keywords: robust control, linear matrix inequalities, interval methods, ex-
tended Kalman Filter, linear-quadratic regulator

1 Introduction

Stability, robustness, and fault tolerance are the most challenging purposes that the
researchers have tackled by developing different control and estimation techniques.
One of the domains of application is aeronautics, where flight control systems play
a major role in ensuring the safety of drones when tracking desired trajectories.
During the flight, quadrotors face many issues that originate from the inside (such
as a suddenly broken rotor or a failed transmission of measurements from GPS) or
from the surrounding environment (e.g., lateral wind). Unavoidably, detection and
compensation of faults should take place to reduce the effects of such issues.
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In the literature, see [1], [7], [2] and [16], many researchers have exploited bene-
fits of fault-tolerant methods. Particularly, some attention has been paid to the use
of the LMI approach for detecting and compensating actuator faults. For instance,
in the paper [12], the authors have investigated the LMI approach to reconfigure
the controller parameters for a discrete-time switched system in the presence of
actuator faults, unstructured uncertainties, and time delay.

Since systems in the real world are nonlinear, the use of a linear control system,
tuned for a single operating point, might not ensure stability and performance.
Hence, reformulating the modeled nonlinear system into a quasi-linear form, and
based on this, into a polytopic representation with bounded parameter uncertainty
allows for exploiting LMI approaches during the design of the control system. In
[11], the authors have presented a joint optimization of the combination of control
laws and filters taking into consideration bounded uncertainty and noise. In [10],
the authors have developed a strategy for desensitization of the closed-loop be-
havior towards stochastic noise in continuous-time scenarios. Then, exploiting the
ideas published in the paper [4], the present paper constitutes a contribution to the
design of a discrete-time observer-based state feedback controller in the presence
of both bounded parameter uncertainty and stochastic noise in order to guarantee
robust performance despite actuator faults, model uncertainty, nonlinearities, and
measurement noise. The proposed design procedure allows for optimizing controller
and observer gains simultaneously. It consists of the following two phases: (i) place-
ment of poles into a desired area within the complex z -plane and (ii) desensitization
of the closed loop to stochastic noise.

From the literature, a huge amount of research has been conducted to exploit the
Extended Kalman Filter (EKF) to accurately estimate state variables. Moreover,
they are often combined with linear-quadratic regulators (LQR) c.f. [8] and [15].
Hence, for the purpose of comparison, the actuator faults are not only estimated
in this paper but also using the EKF. To compensate the actuator faults and for
stabilizing the system states, a combination with the LQR is further investigated.

This paper is organized as follows. In Section 2, a mathematical model is formu-
lated by employing a first principle approach based on the Newton-Euler equations
for the description of the dynamic characteristics of a quadrotor. Section 3 describes
the design of the controller and observer based on a polytopic representation. The
fourth section introduces the synthesis of the controller and observer gains. The
fifth section presents the adapted EKF-LQR method. In Section 6, results are pre-
sented with comments before conclusions and an outlook of future work are given
in Section 7.

2 Modeling of the Quadrotor

In the literature, research has been conducted to build quadrotor models that take
into consideration some parts of the knowledge that humans have acquired about
the aerodynamic phenomena, see e.g. [6]. Such models allow designing a corre-
sponding controller using one or a mixture of the control methods that exist in the
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literature.

According to [13], we consider the quadrotor in the earth-fixed inertial coor-
dinate frame (e1I, e2I, e3I) and body-fixed frame (e1B, e2B, e3B) whose origin is at
the center of gravity of the quadrotor as shown in Figure 1. The position of the
quadrotor is described by its coordinate vector pT = (x , y , z ). For the rotation
from the earth’s inertial frame to the body frame, the ZYX convention for roll,
pitch, and yaw angles (φ, θ, ψ) is chosen. Indeed, there are several existing conven-
tions to describe the transformation based on the successive rotation about these
three axes, see e.g. [5].

Figure 1: Earth- and body-fixed frame of the quadrotor as introduced in [13].

By applying Newton’s law for the rotational and translational motions, the
kinematic and dynamic expressions are derived while making the hypothesis that
the quadrotor is a rigid body. Considering some assumptions such as neglecting
the ground effects and ignoring gyroscopic moments, a set of nonlinear ordinary
differential equations is obtained.

After rewriting the previously derived equations into a corresponding state-
space form ẋ = f(x,u), the model can be decomposed into two parts, as addressed
in [13], thus describing the attitude dynamics and the velocity dynamics. However,



802 Oussama Benzinane and Andreas Rauh

in this paper, only the first part is treated according to

φ̇ = φ̇

φ̈ = θ̇ψ̇
Iy−Iz
Ix
− JR

Ix
θ̇ωd + l

Ix
τφ

θ̇ = θ̇

θ̈ = φ̇ψ̇ Iz−Ix
Iy

+ JR

Iy
φ̇ωd + l

Iy
τθ

ψ̇ = ψ̇

ψ̈ = φ̇θ̇
Ix−Iy
Iz

+ l
Iz
τψ ,

(1)

with the state vector x = [φ, φ̇, θ, θ̇, ψ, ψ̇]T ∈ Rn and the input vector u = [τφ, τθ, τψ]T

∈ Rm , representing respectively the roll, pitch, and yaw torque, all depending on
the rotor speeds; ωd is a fictitious disturbance that depends on the speeds of the
four rotors, and JR is the rotor inertia, while Ix , Iy , Iz are the diagonal entries of
the quadrotor’s inertia matrix.

Using an optimized factorization, where β1, β2, and β3 ∈ R are free optimization
variables, the quasi-linear model

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6


︸ ︷︷ ︸
ẋ(t)

=


0 1 0 0 0 0
0 0 0 β1I1x6 0 (1− β1)I1x4
0 0 0 1 0 0
0 β2I2x6 0 0 0 (1− β2)I2x2
0 0 0 0 0 1
0 (1− β3)I3x4 0 β3I3x2 0 0


︸ ︷︷ ︸

Ac(x(t))

·


x1
x2
x3
x4
x5
x6


︸ ︷︷ ︸
x(t)

+



0 0 0
l
Ix

0 0

0 0 0
0 l

Iy
0

0 0 0
0 0 l

Iz


︸ ︷︷ ︸

Bc(x(t))

·

u1

u2

u3


︸ ︷︷ ︸
u(t)

+



0
−JR

Ix
x4

0
JR

Iy
x2

0
0


︸ ︷︷ ︸
Gc(x(t))

·ωd

(2)

has been obtained, where x1 ∈ [φ, φ], x3 ∈ [θ, θ], x5 ∈ [ψ,ψ], x2 ∈ [φ̇, φ̇], x4 ∈ [θ̇, θ̇],

and x6 ∈ [ψ̇, ψ̇] are assumed to be bounded by a-priori known intervals. Moreover,
u1,u2,u3 are respectively the control signals τφ, τθ, τψ. The parameters I1, I2, and
I3 depend on the inertia matrix entries; Ac is the system matrix, Bc is the state-
independent input matrix, and Gc is the disturbance input matrix, coupling the
process noise with the system dynamics.

The exploitation of the optimization variables introduced above allows the com-
putation of an adequate system matrix of the quasi-linear realization in each iter-
ation of the control and observer design in the following section to maximize the
provable domain of attraction of the operating point (the equilibrium). For fur-
ther information, where a similar approach was also used for stability analysis, the
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reader is referred to [9]. The obtained model in Eq. (2) represents the exact non-
linear dynamics and is used in the simulation as shown in Figure 2 as well as in the
controller and observer design phase.

3 Controller and Observer Design

In the obtained model, the appearance of nonlinearities in the system matrix leads
to the fact that the separation principle of control and observer design is no longer
valid as explained in the paper [10], which means that the controller and observer
can influence each other’s stability and, therefore, they must be designed simulta-
neously.

Consider the discrete-time quasi-linear state-space representation{
xk+1 = A(xk )xk + B(xk )(uk + dk ) + Gpωk

yk = Cxk ,
(3)

where yk ∈ Rp , ωk , and dk ∈ Rm are respectively the output vector, process noise
vector, and actuator fault vector. The faults could manifest themselves in different
manners like a blocking, saturation, or efficiency loss of the physical actuators.
Finally, C is the output matrix.

3.1 Design for Model-Based Actuator Fault Compensation

To be able to detect actuator faults, an augmented system model

[
xk+1

dk+1

]
︸ ︷︷ ︸

zk+1

=

[
A(xk ) B(xk )
0(m,n) I(m,m)

]
︸ ︷︷ ︸

Ae(xk )

·
[
xk

dk

]
︸ ︷︷ ︸

zk

+

[
B(xk )
0(m,m)

]
︸ ︷︷ ︸

Be(xk )

·uk +

[
Gp

0(m,1)

]
︸ ︷︷ ︸

Ge

·ωk

yk =
[
C 0(p,m)

]︸ ︷︷ ︸
Cc

·
[
xk

dk

]
︸ ︷︷ ︸

zk

(4)

is formulated by appending a discrete-time integrator disturbance model dk+1 = dk

for each of the independent faults to the original state vector.
On this basis, a linear time-invariant full-state observer is designed with the

discrete-time state-space representation[
x̂k+1

d̂k+1

]
︸ ︷︷ ︸

ẑk+1

=

[
Ã B̃

0(m,n) I(m,m)

]
︸ ︷︷ ︸

Ãe

·
[
x̂k

d̂k

]
︸ ︷︷ ︸

ẑk

+

[
B̃

0(m,m)

]
︸ ︷︷ ︸

B̃e

·uk +

[
Hi

Hf

]
︸ ︷︷ ︸
He

·Ce · (zk − ẑk ), (5)

where He ∈ R(n+m)×p is the constant observer gain; Ã and B̃ are, respectively,
the nominal dynamics and input matrices that are chosen in this current paper as
the matrices of A(xk ) and B(xk ) evaluated for the chosen operating point which
corresponds to the hovering state.
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The estimated states ẑk are fed back by the control law

uk = −
[
K I(m,m)

]︸ ︷︷ ︸
Ke

·ẑk , (6)

where the multiplication by Ke ∈ Rm×(m+n) includes the actual state feedback by
means of the gain K and the compensation of the actuator faults.

The architecture of the closed loop is illustrated in Figure 2. For simulation
purposes, it has been implemented in Simulink with ode1 as a solver with a small
fixed integration step size.

Figure 2: Structure of the linear observer-based state feedback controller

In Figure 2, the block A/D represents the digital-to-analog converter in a first-
order-hold mode, and the D/A block is the corresponding analog-to-digital con-
verter.

Considering the error ek = zk − ẑk , an augmented closed-loop system represen-
tation has been obtained according to

[
zk+1

ek+1

]
︸ ︷︷ ︸
wk+1

=


A(xk )−B(xk )K B(xk ) B(xk )K 0(n,m)

0(m,n) ξ · I(m,m) 0(m,n) 0(m,m)

A31 (B̃−B(xk )) A33

0(m,n) I(m,m) −HfC I(m,m)


︸ ︷︷ ︸

A(xk )

·
[
zk
ek

]
︸ ︷︷ ︸
wk

+

[
Ge

Ge

]
︸ ︷︷ ︸
G(xk )

·ωk ,

(7)

with A31 = A(xk )− Ã− (B(xk )− B̃)K and A33 = Ã−HiC+ (B(xk )− B̃(xk ))K.
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Remark. To avoid a pure integrator of the actuator fault dk , a multiplication of
the identity matrix by a number 0 < ξ < 1 is performed during the synthesis
stage so that the corresponding mode becomes stabilizable. This parameter choice
corresponds to

ξ =

{
1 : used for modeling and simulation,
< 1 : used during synthesis.

(8)

Note that this modification only influences the convergence of the following itera-
tive LMI-based control design but leaves the eigenvalues of the closed-loop system
model, represented conservatively in a polytopic form, unchanged.

3.2 Simplification of the Augmented System Model for a
Control Without Actuator Fault Detection

For the purpose of comparison with the synthesis in which the actuator fault de-
tection is not taken into consideration, the fault dk is not estimated and hence not
included in the vector zk but instead appended to the disturbance vector ωk . This
modification leads to the augmented model[

xk+1

ek+1

]
︸ ︷︷ ︸
wk+1

=

(
A(xk )−B(xk )K B(xk )K

A(xk )− Ã− (B(xk )− B̃)K Ã−HiC + (B(xk )− B̃)K

)
︸ ︷︷ ︸

A(xk )

.

[
xk

ek

]
︸ ︷︷ ︸
wk

+

(
B(xk ) Gp

B(xk ) Gp

)
︸ ︷︷ ︸

G(xk )

.

[
dk

ωk

]
︸ ︷︷ ︸
ωp

,

(9)

which replaces the use of Eq. (7), when required in the following synthesis.
For the same reason, and also during simulation, the fault dk is then also

removed from ẑk . Therefore, the state observer that replaces Eq. (5), turns into

x̂k+1 = Ã · x̂k + B̃ · uk + HiC · (xk − x̂k ), (10)

with the simplified control law

uk = −K · x̂k (11)

that replaces Eq. (6).

3.3 Polytopic Uncertainty Representation of the Augmented
Closed-Loop System

For control and observer design, the state variables are assumed to be constrained.
By chosen limits, the entries of the system matrix and the disturbance input matrix
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are also bounded, so that a polytopic domain can be determined to enclose the ma-
trices A(xk ) and G(xk ) which belong to the convex combination of nv independent
extremal vertex matrices Av and Gv according to

[A(xk ),G(xk )] ∈
{

[A(ζ),G(ζ)] =

nv∑
v=1

ζv · [Av ,Gv ];

nv∑
v=1

ζv = 1; ζv ≥ 0

}
. (12)

Here, ζv are the scheduling variables.
During this formulation, identical dependencies in the matrix entries should be

identified to reduce the conservativeness of the polytopic model as far as possible.

4 Optimization of the Control and Observer Gains

In the paper [4], the authors have developed an iterative LMI tool that is briefly
explained in the following sub-sections. It serves as the basis for the optimization
of the gains of the fault-tolerant control structure developed in this paper.

4.1 Eigenvalue Domain Assignment

To realize certain closed-loop characteristics (such as the settling time or maximum
overshoot) in combination with robustness against the uncertainty represented by
the previous polytopic model, an eigenvalue domain assignment is performed for
all extremal system matrices introduced in Eq. (12) with the help of a common
Lyapunov function candidate.

Figure 3: Desired stability domain in the interior of the unit circle of the complex
z -plane.

The parameterized sub-region inside the unit circle of the z -plane with radius
r and midpoint α, as illustrated in Figure 3, can be expressed according to [4] by
the LMI condition [

L (Av − αI)
(Av − αI)T r2P

]
� 0, v = 1, ...,nv . (13)
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Here, the positive-definite matrix P = PT is a free decision variable and param-
eterizes a common Lyapunov function for all realizations of the polytopic model.
Its inverse, is expressed in terms of P−1 � 2P̂−1 − P̂−1PP̂−1 =: L. This approxi-
mation has been obtained by a linearization approach using a first-order Neumann
series, cf. [3].

In the absence of stochastic noise, a successful solution of Eq. (13) ensures
asymptotic stability of the observer-based closed-loop control structure. This solu-
tion can be obtained by means of the first algorithm in [4], in which the matrix P is
updated in each iteration step l . Ending with admissible values for rend (typically
a predefined value) and α, leading to stability domains in the interior of the unit
circle, a preliminary controller and observer design is obtained.

4.2 Desensitization Towards Noise

In the presence of stochastic noise, the solution of Sec. 4.1 is improved in the sense
of desensitization towards noise. For that purpose, the discrete-time version of the
Itô differential operator has been used to expand the Lyapunov conditions and to
express the size of the domain around the equilibrium for which stability cannot
be proven due to noise excitation. After some mathematical reformulation, an
iteration rule for the optimization task has been derived in [4] that uses a cost
function subject to LMI constraints in the form

min J =

nv∑
v=1

trace{N}
det(−M̂v )

, (14)

with

P � 0, (15)

N � 0, (16)[
L Gv
GTv N

]
� 0, v = 1, ...,nv , (17)

[
L (Av − αI)

(Av − αI)T r2P

]
� 0, v = 1, ...,nv , (18)

and M̂v = ÂT
v P̂Âv−P̂, where the optimization variables β1, β2, and β3 introduced

in Eq. (2) are included as further decision variables. The free matrix variable N
is automatically determined by means of an LMI solver so that N � GTv PGv holds
for all v = 1, ...,nv .

In all expressions in this subsection, the symbol (̂.) means the updated variable
from the previous iteration.

Note that a successful minimization of the cost function in Eq. (14) leads to
a reduction of sensitivity of the closed-loop system against noise, as it has been
originally derived in [10], [11], and [4].
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4.3 Summary of the Design Procedure

The procedure to find suitable controller and observer gains and to optimize their
numerical values according to the desensitization criteria described in the previous
subsection is summarized in the following Nassi-Shneiderman diagram.

Construction of the nonlinear system model Eq. (1)

Derive the quasi-linear model according to Eq. (2)

Discretization using the explicit Euler method

Build the polytopic domain of Eq. (12) for the aug-
mented closed-loop model in Eq. (7)

Initialization with r = 2 and the step size ∆r = 0.2
and P̂−10 = I, Here: use a fixed value α = 0

while r > rend

Decrease r := r −∆r

Generate Eqs. (2), (7)

Compute the gains K, Hi and Hf , and the matrix
P by solving the LMI in Eq. (13)

Checking the feasibility

Feasible Infeasible

Update P̂ and store the
matrices

Re-increase r := r + ∆r
and reduce ∆r by half

Initialization with the most recent successfully com-
puted matrices obtained from the previous part of the
algorithm

Keep rend and α = 0 fixed and initialize M̂v = I

while trace(Nl) − trace(Nl−1)> 10−7

Generate Eqs. (2), (7)

Optimize the cost function in Eq. (14) subject to
Eqs. (15), (16), (17), (18)

Update P̂−1 and M̂v if an admissible solution has
been found, and store the matrices

Use the final controller and observer gains in the closed-
loop structure shown in Figure 2

Remark. In this work, the construction of the polytopic representation as seen
in the diagram above is made only by a choice of intervals for the state variables.
Uncertainty of the system parameters (e.g. the inertia) can be included analogously,
leading to an increase in the number of vertices.



Robust Control and Fault Detection Based on an Iterative LMI Approach 809

5 Alternative Control Parametrization: Extended
Kalman Filter-Based Linear Quadratic Regula-
tor Design

In order to analyze the efficiency of the iterative LMI-based method, an LQR ap-
proach is implemented additionally that uses states and actuator fault estimates ob-
tained from an EKF as a stochastic filter approach applicable to nonlinear systems.
Such an approach does not prove stability in contrast to the iterative LMI-based
approach.

5.1 The Extended Kalman Filter

An extension of Eq. (3) with additive Gaussian system and measurement noise wk

and vk is given as xk+1 = A(xk )xk + B(xk )(uk + dk ) + Gpωk + Wwk

yk = Cxk + vk

dk+1 = dk + Egk ,
(19)

with their expected mean values and covariance matrices µw,k = 0, Cw, µv,k = 0
and Cv. Here, W is the additive disturbance input matrix.

To be able to detect actuator faults, an augmented system model

[
xk+1

dk+1

]
︸ ︷︷ ︸

zk+1

=

[
A(xk ) B(xk )
0(m,n) I(m,m)

]
︸ ︷︷ ︸

Ae(xk )

·
[
xk

dk

]
︸ ︷︷ ︸

zk

+

[
B(xk )
0(m,m)

]
︸ ︷︷ ︸

Be(xk )

·uk

+

[
Gp W 0(n,m)

0(m,1) 0(m,n) E

]
︸ ︷︷ ︸

Gd

·

ωk

wk

gk



yk =
[
C 0(p,m)

]︸ ︷︷ ︸
Ce

·
[
xk

dk

]
︸ ︷︷ ︸

zk

(20)

is formulated by appending discrete-time integrator disturbance models to the orig-
inal state vector, where E is the input matrix of the additive actuator faults and gk

is a noise term representing their dynamics by an additive Gaussian noise process;
Cg is its covariance matrix.

The EKF approach consists of two parts. In the prediction part, the prior mean
and covariance are computed according to[

µp
x,k

µp
d,k

]
︸ ︷︷ ︸
µp
z,k

=

[
A(µe

x,k−1) 0(n,m)

0(m,n) I(m,m)

]
·
[
µe
x,k−1
µe
d,k−1

]
︸ ︷︷ ︸
µe
z,k−1

+

[
B(µe

x,k−1)

0(m,m)

]
· (uk + µe

d,k−1), (21)
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and

Cp
z,k =

[
Ã B̃

0(m,n) I(m,m)

]
︸ ︷︷ ︸

Ãe

·Ce
z,k−1 ·

[
Ã B̃

0(m,n) I(m,m)

]T
︸ ︷︷ ︸

ÃT
e

+Gd ·

 Cω 0(1,n) 0(1,m)

0(n,1) Cw 0(n,m)

0(m,1) 0(m,n) Cg

 ·GT
d .

(22)

In the equation above, Ã and B̃ are, respectively, the nominal dynamics and
input matrices that are chosen in this current paper as the matrices of A(xk ) and
B(xk ) evaluated for the chosen operating point which corresponds to the hovering
state. Here, Cω is the variance of the process noise that reflects the influence of
the rotor speed-dependent nonlinearity in the system model. The superscripts (.)p

and (.)e, respectively, denote the computed prior and posterior values with respect
to the current measurement.

The second part is the update of the predicted mean and covariance in the
innovation stage which starts with the computations of the Kalman gain

Lk = Cp
z,k ·C

T
e · (Ce · Cp

z,k ·C
T
e + Cv)−1. (23)

Then, estimates for the states and actuator faults are obtained with the following
equation

µe
z,k = µp

z,k + Lk · (Cxk −Ceµ
p
z,k ), (24)

besides its corresponding covariance

Ce
z,k = (I(n+m,n+m) − LkCe) · Cp

z,k , (25)

which are both fed back to the prediction part to be used for the next step.

5.2 The Linear Quadratic Regulator

For the control implementation, the mean value of the state estimates obtained in
Eq. (24) is fed back by using the control law

uk = −
[
K I(m,m)

]︸ ︷︷ ︸
Ke

·µe
z,k , (26)

where the controller gain

K = (B̃TSB̃ + R)−1 · (B̃TSÃ) (27)

depends on the matrix S obtained by solving the algebraic Riccati equation

ÃTSÃ− S− (ÃTSB̃) · (B̃TSB̃ + R)−1 · (B̃TSÃ) + Q = 0(n,n). (28)
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The positive-definite symmetric matrices R and Q are the weighting matrices
chosen by a trial-and-error approach for the cost function

J (uk ) =

∞∑
k=1

(xT
k Qxk + uT

k Ruk ) (29)

to be minimized.

6 Simulation Results

This section presents the simulation results of the quadrotor model as shown in
Figure 2 with the nominal matrices corresponding to the hovering state. The
sample time for discretization is set to 1 ms. The initial states are set to π/4 rad
for each angle. As a control goal, the desired hovering state [φd, θd, ψd]T = [0, 0, 0]T

shall be reached.
For the LMI-based approach, the eigenvalue locations are determined by the

predefined sub-circle that is chosen with α as the origin of the z -plane and rend =
0.999. For the LQR, the weighting matrices are chosen as R = diag([2, 2, 2]) and
Q = diag([50, 10, 50, 10, 50, 10]).

The values of the parameters that were used are listed in Table 1.

Table 1: Values of the parameters of the quadrotor model.

Parameter Values
l [m] 0.2
JR [kg·m2] 3.36·10−5

Ix=Iy [kg·m2] 4.85·10−3

Iz [kg·m2] 8.81·10−3

m [kg] 0.5

6.1 Simulation Without Output Noise and Without Detec-
tion of Actuator Faults

In the first stage, the simulation was made without taking into consideration any
disturbances ωk = 0. Moreover, also the detection of the actuator faults was
deactivated. After 3 seconds, an actuator fault occurs, which leads to a deviation
in the yaw torque τψ of −12 Nm and in the pitch torque τφ with −9 Nm.

Figure 4 shows a convergence to the steady hovering state after the initial de-
viation within the first 3 s. At t = 3 s, the occurrence of the actuator fault causes
a deviation with an oscillatory behavior of the roll and pitch angles before ending
in a non-desired attitude and orientation. The same figure shows the temporal
evolution of the roll, pitch, and yaw torques. After the time of 3 s, they show a
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strong oscillation before converging to zero, however, without bringing the system
to the desired goal.
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Figure 4: Regulation of the quadrotor’s attitude without actuator fault detection

6.2 Simulation With Output Noise and With Compensation
of Actuator Faults

To evaluate the robustness against the disturbances, a Gaussian distributed random
process noise was taken into consideration with the standard deviation matrix Ge

in Eq. (4), together with a Gaussian distributed measurement noise with a mean
of 0 and a standard deviation of π

1200 rad. The same actuator fault magnitude as
in Sec. 6.1 is applied in the current section.

The bounds chosen for the angular velocity states specified in rad/s are θ̇ ∈
[−8π, 8π], φ̇ ∈ [−8π, 8π], ψ̇ ∈ [−8π, 8π].

Figure 5 shows a convergence in a short time for the Euler angles even with
the stochastic noise in response to the initial states. The deviations of the angular
velocities caused by the actuator fault remain within the predefined bounds as seen
in Figure 6. The associated control signals are shown in the same Figure.

6.3 Simulation with LQR based on an EKF

With the same noise used for the simulation of the iterative LMI-based method,
and choosing Cω = 5, Cg = diag([10, 10, 10]), Cv = diag([4, 4, 4]), and Cw =
diag([2, 2, 2, 2, 2, 2]) besides initializing the filter with Cd,0 = diag([10, 10, 10]) and
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Figure 5: Regulation of the quadrotor’s attitude in the presence of Gaussian output
noise and actuator faults.
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Figure 6: Response of the quadrotor’s angular velocities in the presence of Gaussian
output noise and actuator faults

Cx,0 = diag([80, 50, 80, 50, 80, 50]), a simulation of the attitude response and the
corresponding control signals is obtained.

Figure 7 depicts the convergence of the Euler angles in a smooth way in response
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to the initial states. After the actuator fault at 3s, the state variables converge
within 2s but with a larger amplitude deviation than obtained for the robust LMI
solution. The same Figure shows the corresponding control signals.
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Figure 7: Regulation of the quadrotor’s attitude in the presence of Gaussian output
noise and actuator faults with EKF-based LQR method

In summary, the response of the LMI-based method takes a shorter time to con-
verge compared with the EKF-based LQR. Additionally, dealing with the actuator
fault was better. Due to the fact that the filter gain needs to be recomputed in
the update step of the EKF-based LQR, in contrast to time-invariant gains in the
LMI-based method, the novel approach helps to significantly reduce the computa-
tional effort despite its inherent proof of stability over the operating domain chosen
for the parameterization of the polytopic uncertainty model.

7 Conclusions and Outlook on Future Work

The computation of controller and observer gains taking into consideration actuator
faults, process noise, and nonlinearities has been possible thanks to the developed
iterative LMI approach. In addition to the guaranteed stability, satisfactory time
domain behavior has been achieved by a choice of the location of the eigenvalues
within the z -plane. The resulting time-domain performance outperformed the one
obtained with the EKF-based LQR method which in addition does not inherit a
proof of stability for nonlinear models and includes much more parameters to tune.
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Although the computation for the iterative LMI-based approach is made offline,
attention should be paid to the computational effort. It may turn into an issue if the
order of the closed loop and the number of uncertain parameters become larger. To
overcome such an obstacle, the following paths can be investigated in future work:
On the one hand, the pure polytopic uncertainty model can be replaced by a norm-
bounded one. On the other hand, to reduce the conservativeness of the realizations,
Chebyshev points can be determined for determining tighter enclosures of nonlinear
dependencies. Fundamental work in this direction is published in [14]. Finally,
research on using a flatness-based approach for the computation of a feedforward
control together with a feedback linearization of the nonlinear plant with nominal
parameters is promising to reduce the width of the polytopic domain that needs to
be stabilized by a robust feedback controller.
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A New Interval Arithmetic To Generate the

Complementary of Contractors

Pierre Filiolab, Theotime Bollengierac, Luc Jaulinad,
and Jean-Christophe Le Lannae

Abstract

Contractor algebra is used to characterize a set defined as a composition
of sets defined by inequalities. It mainly uses interval methods combined with
constraint propagation. This algebra includes the classical operations we have
for sets such as the intersection, the union and the inversion. Now, it does
not include the complement operator. The reason for this is probably related
to the interval arithmetic itself. In this paper, we show that if we change the
arithmetic used for intervals adding a single flag, similar to not a number, we
are able to include easily the complement in the algebra of contractors.

Keywords: intervals, contractors, complement, Not a Number

1 Introduction

Interval analysis [11] is a numerical tool used to solve nonlinear problems such
as non convex optimization [7] or solving nonlinear equations [13]. In control or
robotics, it is often needed to compute inner and outer approximations for sets [9]
[16].

The algorithms we use to characterize a set X are pavers that classify areas of
the search space using contractors [4]. A contractor C for the set X ⊂ Rn is an
operator IRn 7→ IRn which satisfies

C([x]) ⊂ [x] (contractance)
[x] ⊂ [y] ⇒ C([x]) ⊂ C([y]) (monotonicity)
C([x]) ∩ X = [x] ∩ X (consistency)

, (1)

where IRn is the set of axis-aligned boxes of Rn. The paver bisects boxes and uses
C to eliminate parts of the search space that are outside X.In this paper, sets X of
Rn will be represented in mathbb font and intervals [x] or boxes [x] within brackets.
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If C1 and C2 are two contractors, we define the following operations on contractors:

(C1 ∩ C2)([x]) = C1([x]) ∩ C2([x]), (2)

(C1 ∪ C2)([x]) = C1([x]) ⊔ C2([x]), (3)

where [a] ⊔ [b] is the smallest box which contains both [a] and [b].
We also use the contractors to eliminate parts that are inside the solution set,

but we observe some problems in existing solvers as soon as the domains of the
functions involved in the problem are restricted. We now illustrate thus on a simple
example.

Consider the set

X = {(x1, x2) |x2 +
√
x1 + x2 ∈ [1, 2]}. (4)

and let us try to compute an inner and outer approximations of X using an existing
solver. For instance, if we use Codac [15] with the following script:

from codac import *

from vibes import *

X0=IntervalVector ([[ -10 ,10] ,[ -10 ,10]])

f = Function(x1,x2 ,x2+sqrt(x1+x2))

S=SepFwdBwd(f,sqr(Interval (1,2)))

vibes.beginDrawing ()

SIVIA(X0,S ,0.01)

We get the paving illustrated by Figure 1 where the blue boxes are proved to be
outside X and the magenta boxes are supposed to be inside. We observe that this
is not the case. Indeed some boxes are wrongly classified as inside whereas they are
outside. This phenomenon occurs for all existing solvers which are able to provide
an inner approximation. The reasons for this is that contractor-based methods
obtain an inner approximation by considering a contractor for the complementary
of X as

{(x1, x2) |x2 +
√
x1 + x2 /∈ [1, 2]}, (5)

whereas it should be

X = {(x1, x2) |x2 +
√
x1 + x2 /∈ [1, 2] or x1 + x2 < 0}. (6)

In the figure, some magenta zones are wrongly classified as inside because in
these zones,

√
x1 + x2 is not defined. The goal of this paper is to provide a rigorous

way to build contractors associated with the complementary of a set in the case
where functions involved in the constraint are not defined everywhere.

The paper is organized as follows. Section 2 explains the approach that will
motivate a new arithmetic. Section 3 presents an extension of the arithmetic on
real numbers, named total real arithmetic, and shows the role of a flag named ι
in the case where partial functions are involved. Section 4 introduces the notion
of the total interval arithmetic. Section 4 provides the notion of total contractors
and extends the classical forward-backward contractor to total intervals. Section 6
concludes the paper.



A New Interval Arithmetic To Generate the Complementary of Contractors 819

Figure 1: Left: Paving obtained by classical methods to approximate X; Right: A
zoom on the red box

2 Approach

Contractor algebra as defined in [4] does not allow any non-monotonic operation.
It means that if a contractor C is defined by an expression E of other contractors
Ci then we always have

∀i, Ci ⊂ C
′

i ⇒ E (C1, C2, . . . ) ⊂ E
(
C

′

1, C
′

2, . . .
)
. (7)

As a consequence the complementary C of a contractor C or the restriction C1 \ C2
of two contractors C1, C2 (which both correspond to non-monotonic operations) is
not defined.

To be more precise, contractor algebra allows us to construct a contractor for
expressions of sets defined by union, intersection and inversion of other sets. Take
for instance the set

X = X1 ∪ f−1(X2 ∩ X3). (8)

We can represent its expression by the tree of Figure 2 or equivalently by the
following expressions

X = X1 ∪ B
B = f−1(A)
A = X2 ∩ X3

. (9)

The intermediate sets A and B correspond to nodes of the tree. In practice, the
leaves Xi of the tree are set reverse (or equivalently inequality constraints) of the
form

Xi = φ−1
i ([yi]) = {xi |φi(xi) ∈ [yi]} , (10)

where φi is a function defined by an algorithm and [yi] is a box of Rn. A contractor
for Xi is usually built by a forward-backward procedure as for instanceHC4-revised

[1]. The contractor associated with the constraint φ(x) ∈ [y] is denoted by C↕φ−1([y]).
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Figure 2: Contractor tree for X1 ∪ f−1(X2 ∩ X3)

Once the contractor for X is built from the tree, a paver [9] is called to provide
an outer approximation for X. More precisely, the paver generates boxes [x] of Rn

that have to be contracted by the available contractors. The resulting procedure
for contracting the set X defined by (8) is given by Algorithm 1.

Algorithm 1 Contractor for X = X1 ∪ f−1(X2 ∩ X3)

Input: [x]

1: [x1] = CX1
([x])

2: [b] = [x]
3: [a] = f([b])
4: [x2] = CX2([a])
5: [x3] = CX3

([a])
6: [a] = [x2] ∩ [x3]

7: [b] = C↕f−1([a])([b])

8: [x] = [x1] ⊔ [b]
9: return [x]

This procedure is approximately what is performed by Ibex [3] even if Ibex
does not admit a set expression as an input.

To express the complement X we need to use the De Morgan’s laws which states
that:

• the complement of the union of two sets is the same as the intersection of
their complements

• the complement of the intersection of two sets is the same as the union of
their complements



A New Interval Arithmetic To Generate the Complementary of Contractors 821

We get
X = X1 ∩

(
f−1(X2 ∪ X3) ∪ domf

)
. (11)

Note that we had to introduce the domain of f , denoted by domf , to take into
account the fact that f may be a partial function (i.e., not defined everywhere).

If we define the set-valued function f̊−1 : P(Rm) 7→ P(Rn) as

f̊−1(Y) = f−1(Y) ∪ domf , (12)

then we have
X = X1 ∩

(̊
f−1(X2 ∪ X3)

)
. (13)

The decomposition for X is defined by

X = X1 ∩ B
B = f̊−1(A)
A = X2 ∪ X3

(14)

which corresponds to the tree of Figure 3.

Figure 3: Contractor tree for the complementary of X1 ∪ f−1(X2 ∩ X3)

Since the sets Xi were defined by φi(xi) ∈ [yi], the complement is by

Xi = φ̊−1
i ([yi]). (15)

To implement, the complementary of a contractor using the De Morgan’s low,
the only brick we need is the forward-backward contractor for the set

f̊−1([y]) = f−1([y]) ∪ domf . (16)

Now, the set f̊−1([y]) is not a set reverse as defined by (10) and thus we cannot
apply a forward-backward contractor without an extension which will be proposed
in this paper.
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3 Total extension

3.1 Definitions

In mathematics, a function f : X 7→ Y which is defined for all x ∈ X is said to be
total. Equivalently, a function f : X 7→ Y is total if

∀x ∈ X,∃y ∈ Y such that f(x) = y. (17)

A function f which is not defined for all x is said to be partial. Given a partial
function f , the total extension is obtained by adding an element to Y , say ι which
collects all x /∈ domf. To be more precise, we give the following definition.

Definition. The total extension of the partial function f : X 7→ Y is f̊ = X∪{ι} 7→
Y ∪ {ι} with

f̊(x) =

{
f(x) if x ∈ domf
ι otherwise.

(18)

Note that since ι /∈ domf , we have f̊(ι) = ι.

3.2 Illustration

Consider the partial function f as given in Figure 4. We have

f−1(Y) = {β, γ, ε}
f−1(Y) = {α}
domf = {α, β, γ, ε}

. (19)

Now, since f({γ, δ}) ⊂ Y, some would classify δ inside f−1(Y) which is wrong.
This is would be true if f were total.

Figure 4: A partial function f

Introducing the indeterminate NaN (Not a number), denoted by ι, in the sets
allows us to get rid of the problem involved by the partiality of f .
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Given a set A, we define the extended total set as Å = A∪{ι}. Thus, f̊ : Å 7→ B̊
is the total extension of f : A 7→ B as illustrated by Figure 5. Following Definition
1, extended functions can be used to set as follows:

f̊(X) =
{

f(X) if X ⊂ domf
f(X) ∪ {ι} otherwise

, (20)

where X ⊂ Å. Note that, in the figure, whereas f({γ, δ}) = {3} ⊂ Y, we have

f̊({γ, δ}) = {3, ι} ̸⊂ Y.

Figure 5: Introduction of Not a Number ι

3.3 Properties

For total functions, we have some properties that will be useful in our algorithms.

Proposition. If f̊ is a total extension of f , we have

f̊−1(Y) = f̊−1(Y) (i)

f̊(X) ⊂ Y⇒ X ⊂ f̊−1(Y) (ii)

f̊ ◦ f̊−1(Y) = Y (iii)

. (21)

Proof. Let us prove (ii) only. We have:

f̊(X) ⊂ Y ⇔ f̊(X) ∩ Y = ∅
⇔ f̊−1 ◦ f̊(X)︸ ︷︷ ︸

⊃X

∩ f̊−1(Y)︸ ︷︷ ︸
=f̊−1(Y)

= ∅

⇒ X ∩ f̊−1(Y) = ∅
⇔ X ⊂ f̊−1(Y).

(22)
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Proposition. If f̊ , g̊ are total extensions of f , g then the total extension of f ◦ g
is f̊ ◦ g̊.

Proof. If h = f ◦ g, we have

f̊ ◦ g̊(x) =
{

f ◦ g(x) if x ∈ domg and g(x) ∈ domf
ι otherwise.

(23)

Now, since
domh = domf ◦ g = domg ∩ g−1(domf) (24)

we get

f̊ ◦ g̊(x) =
{

h(x) if x ∈ domh
ι if x /∈ domh

(25)

which corresponds to h̊(x).

Example. To illustrate the proposition, take

f(x) =
√
1− x

g(x) =
√
x− 1

. (26)

Note that
domf = (−∞, 1]
domg = [1,∞)

. (27)

We have

h(x) = f ◦ g(x) =
√
1−
√
x− 1. (28)

Since
domh = domg ∩ g−1(domf)

= [1,∞) ∩ g−1((−∞, 1])
= [1,∞) ∩ [0, 2] = [1, 2]

(29)

we get

h̊(x) =

{ √
1−
√
x− 1 if x ∈ [1, 2]

ι otherwise
. (30)

3.4 Total real arithmetic

We define the total extension of the classical arithmetic on real numbers. Consider
the extended total set of reals:

R̊ = R ∪ {ι}. (31)

Adding such a special value for real numbers is now classical since it has been
introduced by the IEEE 754 floating-point standard in 1985. Operations on real
numbers can be extended to R̊ as follows:

f(x) = ι if x /∈ dom(f)
f(ι) = ι
ι ⋄ x = ι

, (32)
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where f is any partial function and x ∈ R and any binary operator ⋄.
Note that we do not define comparisons, which means that if we have the relation

a ≤ b then both a and b belong to R (or equivalently neither a nor b can be equal
to ι).

Proposition. Consider a partial function f : Rn 7→ Rm given by an expression
f(x1, . . . , xn) including elementary functions (sin,

√
, log,. . . ) and elementary op-

erators (+,−, ∗, /, . . . ). An expression for f̊ can be obtained by the total real arith-
metic.

Proof. The proof is a direct consequence of the fact that the total extension is
preserved by composition.

An element of the Cartesian product R̊n = R̊× · · · × R̊ is called a total vector.

3.5 Link with the complex number i

The set of complex numbers C extends the set of real numbers by adding a number
i such that i2 = −1. The extension preserves some properties such that the fact C
is a group with respect to the addition. Due to this, i has an opposite: −i. Indeed,
i+ (−i) = 0.

Take now the set R̊ and let us check if ι has an opposite. We solve ι + x = 0
and we get no solution for x. This means that R̊ is not anymore a group and
many properties we had for R are lost. As a consequence, symbolic resolution and
group-based simplifications are not allowed in R̊.

Moreover, adding i to build C involves the addition of many numbers of the
form a+ ib. In R̊, we just add a single number: ι.

There exists a tiny link between R̊ and C in the construction since we add one
number. But the link stops here. Whereas complex numbers can be used to build
a huge numbers of theorems and theories, the total numbers will be used as a tool
to build the complementary of contractors.

4 Total intervals

In this section, we introduce the notion of intervals for R̊, called total intervals.

4.1 Intervals in unions of lattices

On a lattice (A,≤A) , we can define the notion of intervals, interval hull and con-
tractors. This has been used for several types of lattices such as real numbers,
integers, trajectories, graphs, etc. To be able to use interval methods, the lattice
structure is required. We show here that it is not strictly necessary by considering
union of lattices.
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Definition. Consider two lattices (A,≤A) and (B,≤B) that are disjoint. Denote by
IA and IB, the set of all intervals of A and B. We can define intervals of C = A∪B
as subsets C which have the form

[c] = [a] ∪ [b], (33)

where [a] ∈ IA and [b] ∈ IB.

Indeed, the set (C,≤C) can be equipped with an order relation:

x ≤C y ⇔
{

x ∈ A, y ∈ A, x ≤A y
or x ∈ B, y ∈ B, x ≤B y

. (34)

Now, C is not a lattice, i.e., if x ∈ A, y ∈ B we cannot define x∧ y and x∨ y. This
is due to the fact that we cannot provide a common lower or upper bounds for x, y.

Example. Consider the case where A = R the set of real numbers and B =
{a, b, c, . . . , z} the set of letters. Both can be equipped with an order relation and
both are lattices. Examples of intervals for the set C = A ∪ B are

[c1] = [2, 5]
[c2] = {e, f, g, h}
[c3] = [2, 5] ∪ {e, f, g, h}
[c4] = [4, 9] ∪ {g, h, i}
[c5] = ∅
[c6] = A ∪ B

. (35)

It is easy to check that the intervals of C is closed under intersection. It is thus
a Moore family [2, 10]. As a consequence, contractor methods can be used.

4.2 Total intervals

Consider the singleton {ι} which is equipped with the trivial order relation: ι ≤ ι.

The set of all intervals of {ι} is {∅, {ι}}. The set R̊ can be equipped with a partial
order relation ≤R̊ derived from R:

ι ≤R̊ ι
a ∈ R, b ∈ R then a ≤R̊ b iff a ≤R b

. (36)

Total intervals are denoted by [̊x].

Examples of intervals of R̊ are:

[̊a] = [1,∞)

[̊b] = [−1, 0] ∪ {ι}
[̊c] = {ι}
[d̊] = ∅,

(37)

as illustrated by Figure 10.
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Figure 6: Total intervals are intervals of R̊ = R ∪ {ι}

The set of total intervals is denoted by IR̊. We define the hull of a subset of X̊
of R̊ as the smallest total interval [̊x] which encloses X̊. We will write [̊x] = X̊. For
instance

{1, 2, 3} = [1, 3]
{1, 2, 3, ι} = [1, 3] ∪ {ι}
{ι} = {ι}

. (38)

4.3 Total interval arithmetic

Consider a partial function f : R 7→ R. We define its total interval extension as
follows

[f̊ ] = {f̊ (̊x), x̊ ∈ [̊x]}. (39)

For instance
√

[−1, 4] = [0, 2] ∪ {ι}.
In the same manner, if ⋄ ∈ {+,−, ·, /}, we define

[̊a] ⋄ [̊b] = {̊a ⋄ b̊, å ∈ [̊a], b̊ ∈ [̊b]}. (40)

4.4 Total interval vector

The set of interval vectors R̊n is a lattice [5]. We can thus define intervals of R̊n.

The set of interval vectors has the form IR̊n = IR̊ × · · · × IR̊. We define the hull
of a subset of X̊ of R̊n as the smallest [̊x] which encloses X̊. We will write [̊x] = X̊.
For instance,

([1, 2]× {ι}) ∪ ([3, 4]× [5, 6]) = [1, 4]× ([5, 6] ∪ {ι}). (41)

5 Total contractors

This section extends the notion of contractor to total intervals. We first consider the
case of elementary contractors built from elementary functions. Then, we consider
the case of contractors defined from elementary operators.
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5.1 Total directed contractor for a binary constraint

Consider a constraint of the form y = f(x), where f : R 7→ R: is a partial function

with domain domf . We can extend the constraint to R̊ by the following decompo-
sition 

ẙ = f (̊x)

x̊ ∈ R̊
ẙ ∈ R̊

⇔

 ẙ = f (̊x), x̊ ∈ domf, ẙ ∈ R
or x̊ ∈ R \ domf , ẙ = ι
or x̊ = ι, ẙ = ι

. (42)

This means that ι = f(x) is considered as true only if and only if x = ι or if
x /∈ domf . We define the forward directional contractor as

−→
Cf ([̊x]) = {ẙ | ∃x̊ ∈ [̊x], ẙ = f (̊x)} (43)

and the backward directional contractor

←−
Cf ([̊x], [̊y]) = {x̊ ∈ [̊x] | ∃ẙ ∈ [̊y], ẙ = f (̊x)}. (44)

Proposition. The forward directional contractor associated with f is

−→
Cf ([̊x]) = f([̊x] ∩ R),∪ ([̊x] ∩ {ι}) ∪ ι([̊x] ∩ (R \ domf)), (45)

where ι is the constant function ι, i.e,

ι(A) =
{

ι if A ̸= ∅
∅ if A = ∅ . (46)

Proof. Since

x̊ ∈ domf ⇒ ẙ = f (̊x)
x̊ = ι ⇒ ẙ = ι

x̊ ∈ R \ domf ⇒ ẙ = ι
(47)

we have

f([̊x]) = f([̊x] ∩ dom f)︸ ︷︷ ︸
f([̊x]∩R)

∪ ι([̊x] ∩ {ι})︸ ︷︷ ︸
=[̊x]∩{ι}

∪ ι([̊x] ∩ (R \ domf)). (48)

Thus
−→
Cf ([̊x]) = {ẙ | ∃x̊ ∈ [̊x], ẙ = f (̊x)}

= f([̊x] ∩ R) ∪ ([̊x] ∩ {ι})
∪ ι([̊x] ∩ (R \ dom f))

. (49)

As a consequence, Algorithm 2 implements
−→
Cf ([̊x]):
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Algorithm 2 Forward directional contractor
−→
Cf

Input: f, [̊x]

1: [̊y] = f([̊x] ∩ R)
2: [̊y] = [̊y] ∪ ([̊x] ∩ {ι})
3: if [̊x] ̸⊂ dom f then
4: [̊y] = [̊y] ∪ {ι}
5: end if
6: return [̊y]

Proposition. The backward directional contractor associated with f is

←−
Cf ([̊x], [̊y]) = [̊x] ∩

(
f−1([̊y] ∩ R) ∪ I([̊y])

)
, (50)

where

I([̊y]) =
{
{ι} ∪ (R \ dom f) if ι ∈ [̊y]

∅ otherwise
. (51)

Proof. We have
ẙ ∈ R ⇔ x̊ ∈ f−1({ẙ})
ẙ = ι ⇔ (̊x = ι) ∨ (̊x ∈ R \ dom f)

⇔ x̊ ∈ {ι} ∪ (R \ dom f)
. (52)

This leads to Algorithm 3 which implements
←−
Cf ([̊x], [̊y]):

Algorithm 3 Backward directional contractor
←−
Cf

Input: f−1, [̊x], [̊y]

1: [̊r] = ∅
2: if [̊y] = ∅ then
3: return [̊r]
4: end if
5: [̊r] = f−1([̊y] ∩ R)
6: if ι ∈ [̊y] then
7: [̊r] = [̊r] ∪ (R \ dom f) ∪ {ι}
8: end if
9: return [̊r] ∩ [̊x]

Example. Total contractor for the square root. Consider the constraint

y =
√
x, (53)

where all variables belong to R̊. The values (9, 3), (−4, ι), (ι, ι) for (x, y) are consis-
tent with the constraint (53) whereas (9, 2), (−4, 2), (9, ι), (ι, 2) are inconsistent.
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For instance, assume that we have x ∈ [̊x] = [−2, 9], y ∈ [̊y] = [−1, 2] ∪ {ι}. We
obtain −→

C√·([̊x]) =
√
[−2, 9] = [0, 3] ∪ {ι}

−→
C√·([̊x]) ∩ [̊y] = ([0, 3] ∪ {ι}) ∩ ([−1, 2] ∪ {ι})

= [0, 2] ∪ {ι}
←−
C√·([̊x], [̊y]) = [−2, 4]

. (54)

It means that x ∈ [−2, 4] and y ∈ [0, 2] ∪ {ι}.
Assume now that x ∈ [̊x] = [4, 9], y ∈ [̊y] = [3, 15] ∪ {ι}. We obtain

−→
C√·([̊x]) =

√
[4, 9] = [2, 3]

−→
C√·([̊x]) ∩ [̊y] = [2, 3] ∩ ([3, 15] ∪ {ι}) = {3}
←−
C√·([̊x], [̊y]) = {9}

. (55)

It means that x = 9 and y = 3.

5.2 Total directed contractor for a ternary constraint

Consider the ternary constraint of z = x + y. The case of constraints involving
−, ·, / can be defined from + and binary constraints already treated in the previous
section. The following reasoning can also be done for these operators.

We can extend the constraint z = x+ y to R̊ by the following decomposition
z̊ = x̊+ ẙ

x̊ ∈ R̊
ẙ ∈ R̊
z̊ ∈ R̊

⇔
{

z̊ = x̊+ ẙ, x̊ ∈ R, ẙ ∈ R, z̊ ∈ R
or (̊x = ι ∨ ẙ = ι) ∧ z̊ = ι

. (56)

Note that in R̊, we do not have

z̊ = x̊+ ẙ ⇔ x̊ = z̊ − ẙ. (57)

Indeed, take x̊ = 1, ẙ = ι, z̊ = ι. We have z̊ = x̊ + ẙ whereas x̊ ̸= z̊ − ẙ. As a
consequence, the values (2, 3, 5), (2, ι, ι), (ι, ι, ι) for (x, y, z) are consistent with the
constraint whereas (2, 3, 6), (2, ι, 4), (2, 3, ι) are inconsistent.

We define the forward directed contractor

−→
C+([̊x], [̊y]) = {z̊ | ∃x̊ ∈ [̊x],∃ẙ ∈ [̊y], z̊ = x̊+ ẙ} (58)

and the backward directed contractor

←−
C+([̊x], [̊y], [̊z]) = {(̊x, ẙ) ∈ [̊x]× [̊y] | ∃z̊ ∈ [̊z], z̊ = x̊+ ẙ}. (59)

We get Algorithms 4 and 5 for
−→
C+ and

←−
C+.
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Algorithm 4 Forward directed contractor
−→
C+

Input: [̊x], [̊y]

1: [̊z] = ([̊x] ∩ R) + ([̊y] ∩ R)
2: [̊z] = [̊z] ∪ ([̊x] ∩ {ι}) ∪ ([̊y] ∩ {ι})
3: return [̊z]

Step 1 computes to the interval containing of all feasible z ∈ R.
Step 2 adds ι when ι ∈ [̊x] or when ι ∈ [̊y].

Algorithm 5 Backward directed contractor
←−
C+

Input: [̊x], [̊y], [̊z]

1: if ι /∈ [̊z] then
2: [̊x] = [̊x] ∩ ([̊z]− [̊y])
3: [̊y] = [̊y] ∩ ([̊z]− [̊x])
4: end if
5: return [̊x], [̊y]

The implementation for
←−
C+ is simplified by the fact that it is called after

−→
C+.

Remark. The contractor
←−
C+ is often minimal, but not always. Indeed, there exist

some rare counterexamples. Consider for instance the case

x ∈ [1, 2]
y ∈ [3, 4] ∪ {ι}
z ∈ [6, 9] ∪ {ι}

. (60)

If we call
−→
C+, we get

x ∈ [1, 2]
y ∈ [3, 4] ∪ {ι}
z ∈ [6, 6] ∪ {ι}

. (61)

The backward contractor
←−
C+ (see Algorithm 5) yields no contraction for x and y

whereas it should conclude the following contraction for y :

y ∈ [4, 4] ∪ {ι}.

An optimal backward contractor could be obtained by Algorithm 6:
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Algorithm 6 An optimal backward contractor

Input: [̊x], [̊y], [̊z]

1: [̊rx] = ∅, [̊ry] = ∅
2: [x] = [̊x] ∩ R; [y] = [̊y] ∩ R; [z] = [̊z] ∩ R;
3: if [x] ̸= ∅ and [y] ̸= ∅ and [z] ̸= ∅ then
4: [̊rx] = [x] ∩ ([z]− [y]);[̊ry] = [y] ∩ ([z]− [x])
5: end if
6: [y] = [̊y] ∩ {ι}; [z] = [̊z] ∩ {ι};
7: if [x] ̸= ∅ and [y] ̸= ∅ and [z] ̸= ∅ then
8: [̊ry] = [̊ry] ∪ {ι}
9: end if

10: [y] = [̊y] ∩ R; [x] = [̊x] ∩ {ι}; [z] = [̊z] ∩ {ι};
11: if [x] ̸= ∅ and [y] ̸= ∅ and [z] ̸= ∅ then
12: [̊rx] = [̊rx] ∪ {ι}
13: end if
14: [x] = [̊x] ∩ {ι}; [y] = [̊y] ∩ {ι}; [z] = [̊z] ∩ {ι};
15: if [x] ̸= ∅ and [y] ̸= ∅ and [z] ̸= ∅ then
16: [̊rx] = [̊rx] ∪ {ι}; [̊ry] = [̊ry] ∪ {ι}
17: end if
18: return [̊rx], [̊ry]

Now, this algorithm improves the efficiency of a propagation only for rare situa-
tions. This is why we will preferred the use of the backward contractor of Algorithm
5, even if not fully minimal.

5.3 Total forward-backward contractor

We show how the forward-backward contractor works on two test-cases.

Test-case 1. Consider the set

S = {(x, y) | y +
√
x+ y ∈ [1, 2]}. (62)

We built the AST (Abstract Syntax Tree) associated with S as shown in Figure
7(a). We also build the AST for S as in Figure 7(b). Note that the two trees are

identical except the images that are complementary in R̊, i.e.,

[1, 2] ∪ ((−∞, 1] ∪ [2,∞) ∪ {ι}) = R̊. (63)

A forward-backward contractor yields Algorithm 7. Note that below the set Z
is not the set of integers (as often used in math books), but an interval of R.
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Figure 7: AST for the constraint y +
√
x+ y ∈ [1, 2] (left) and its complementary

(right)

Algorithm 7 Contractor for the constraint y +
√
x+ y ∈ Z

Input: [̊x], [̊y],Z

1: [̊b] =
−→
C+([̊x], [̊y])

2: [̊a] =
−→
C√ ([̊b])

3: [̊z] =
−→
C+([̊a], [̊y])

4: [̊z] = [̊z] ∩ Z
5: [̊a], [̊y] =

←−
C+([̊z], [̊a], [̊y])

6: [̊b] =
←−
C√ ([̊b], [̊a])

7: [̊x], [̊y] =
←−
C+([̊b], [̊x], [̊y])

8: return [̊x], [̊y]

To have a contractor for S we call Algorithm 7 with Z = [1, 2]. To get a
contractor for S, we call the algorithm with Z = (−∞, 1] ∪ [2,∞) ∪ {ι}. Using
a paver with these two contractors, we are able to generate the approximation
illustrated by Figure 8. The frame box is [−10, 10]× [−10, 10].

An implementation is given in [6].

Test-case 2. Consider the discrete-time state space system, inspired from Henon
map, of the form x(k + 1) = f(x(k)) with

f(x) =

(
bx1

1 + ax2
1 +

√
x2
2 + c

)
, (64)

where a = −1.4, b = 0.3 and c = 0.075. The behavior of this system may not lead
to a well defined state x(k) if the initial state vector x(0) is not chosen properly.
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Figure 8: Paving obtained using the contractor for S and its complementary

We want to compute the set S of all initial vectors x(0) which lead to a state vector
of R2 when k = 5. We define

f0(x) = x
fk+1(x) = fk ◦ f(x) . (65)

We have

S = {x ∈ R2 | f5(x) ∈ R2}. (66)

The forward backward contractor (see Algorithm 8) associated to the constraint
f(x) ∈ Y is based on the AST of Figure 9.
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Figure 9: AST for the constraint f(x) ∈ Y

Algorithm 8 Contractor for a constraint f(x) ∈ Y for Test-case 2

Input: [̊x1], [̊x2],Y
1: [̊a] = −1.4; [̊b] = 0.3; [̊c] = −0.075
2: [̊v1] =

−−→
Csqr([̊x1])

3: [̊v2] =
−→
C×([̊a], [̊v1])

4: [̊v3] = 1 + [̊v2]

5: [̊v4] =
−−→
Csqr([̊x2])

6: [̊v5] =
−→
C+([̊v4], [̊c])

7: [̊v6] =
−→
C√ ([̊v5])

8: [̊y1] =
−→
C×([̊x1], [̊b])

9: [̊y2] =
−→
C+([̊v3], [̊v6])

10: [̊y1]× [̊y2] = ([̊y1]× [̊y2]) ∩ Y
11: [̊v3], [̊v6] =

←−
C+([̊y2], [̊v3], [̊v6]) (see Step 9)

12: [̊x1], [̊b] =
←−
C×([̊y1], [̊x1], [̊b]) (see Step 8)

13: [̊v5] =
←−
C√ ([̊v5], [̊v6]) (see Step 7)

14: [̊v4], [̊c] =
←−
C+([̊v5], [̊v4], [̊c]) (see Step 6)

15: [̊x2] =
←−−
Csqr([̊v4], [̊x2]) (see Step 5)

16: [̊v2] = ([̊v3]− 1) ∩ [̊v2] (see Step 4)

17: [̊a], [̊v1] =
←−
C×([̊v2], [̊a], [̊v1]) (see Step 3)

18: [̊x1] =
←−−
Csqr([̊x1], [̊v1]) (see Step 2)

19: return [̊x1], [̊x2]
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To have a contractor for S we call Algorithm 8 with Y = R2. To get a contractor
for S, we call the algorithm with Y = (R×{ι})∪ ({ι}×R)∪ ({ι}×{ι}) which is the
complementary of R2 in (R ∪ {ι})2 Using a paver with these two complementary
contractors, we are able to generate the approximation illustrated by Figure 10.
The frame box is [−5, 5]× [−5, 5].

Figure 10: Paving representing the solution set for Test-case 2

6 Conclusion

In this paper, we have proposed to extend the interval arithmetic developed by
Moore [12] in order to facilitate the implementation of complementary of contrac-
tors. For this purpose, we proposed to add a flag ι to each interval to form total
intervals. The associated arithmetic has been derived. In our our new interval
arithmetic, we have

√
[−1, 1] = [0, 1] ∪ {ι} instead of

√
[−1, 1] = [0, 1]. This is due

to the fact that
√
·, which is a partial function, has been made total. The ι number

is not seen anymore as an exception, but as a possible value.
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The flag ι has similarities with some decorations already used in the context
of interval computation [14], [8]. The main advantage of our extension is to allow
the interval propagation when some partial functions are involved in the definition
of the constraints. We have presented a generalization of the forward-backward
propagation to total intervals. The efficiency has been illustrated on two test-cases.
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Exponential State Enclosure Techniques
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Validated Model Predictive Control

Mohamed Fnadia and Andreas Rauhb

Abstract

The design task of predictive controllers for uncertain systems is com-
monly formulated on the basis of their kinematic and/or dynamic models.
These models are assumed to be expressed as initial value problems (IVPs)
for finite-dimensional sets of nonlinear ordinary differential equations (ODEs).
If constraints for the admissible state trajectories are formulated, bounds for
these trajectories need to be computed by numerical procedures to obtain
guaranteed enclosures of all possible states at each time step that contain the
solution of the exact IVP-ODEs. Uncertainties in both the initial states and
system parameters are considered in this paper by means of bounded interval
variables. For this kind of system representation, we apply an exponential
enclosure approach to determine guaranteed enclosures of all reachable states.
This approach is embedded in a novel manner into the framework of a guar-
anteed nonlinear model predictive control (NMPC) to acquire optimal and
safe control domains along a receding horizon. The NMPC problem is solved
at each time step considering several constraints which are crucial for the sys-
tem’s safety and stability, namely, bounds on the state trajectories and the
control signals. The capabilities of the combination of the exponential en-
closure technique with the set-based NMPC strategy are illustrated through
simulations using a nonlinear inverted pendulum.

Keywords: exponential enclosure, ordinary differential equations, model
predictive control, guaranteed numerical integration

1 Introduction

Guaranteed numerical integration is a fundamental tool to solve initial value prob-
lems of ordinary differential equations (IVP-ODEs) with uncertain initial conditions
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and parameters in a reliable and validated way1. Providing guaranteed solution
enclosures to these IVP-ODEs is essential for designing and verifying linear and
nonlinear feedback controllers, mainly for predictive control approaches. In the
literature, several validated approaches have been designed for systems with uncer-
tain initial conditions and uncertain parameters to compute state enclosures which
are guaranteed to contain all possible IVP-ODEs solutions (under the assumption
of correct models and correct bounds of all uncertain parameters involved). For
instance, set-valued integration methods exploiting interval Taylor series and Tay-
lor model-based techniques (e.g., the solvers Vnode-LP or COSY VI) were used
for the verification of uncertain systems [9, 15]. Moreover, Runge–Kutta schemes
(implemented in the DynIbex library) have been used to obtain tight state enclo-
sures [1, 2].

Nevertheless, it has been shown that — due to the computational complex-
ity of Runge–Kutta methods, as used in the previous work of the first author [4]
— fast convergence and high accuracy of the computed enclosures are not always
guaranteed for finitely long integration time spans, possibly leading to an excessive
duration to get the IVP-ODEs’ solutions. Similar statements also hold for other
state-of-the-art techniques exploiting interval-based methods for solving IVP-ODEs
in a guaranteed and validated way (e.g., RealPaver [8], CAPD [10]). This leads to
the observation that these solvers may become impractical for the task of control
optimization in an NMPC framework due to their high computation time. In other
words, fast convergence of this kind of solvers cannot be guaranteed over a finite
time and extremely long response times may be exhibited when searching for tight
enclosures of the solutions for the problem and hand. To tackle this issue of the
computational burden, exponential enclosure techniques for IVP-ODE problems
seem to be attractive to remarkably reduce the computing time of validated meth-
ods and to approach real-time capability [18, 19]. Compared to Taylor series or
Runge–Kutta model-based techniques, the exponential enclosure approach allows
contracting the computed state enclosures over time for asymptotically stable dy-
namics, which prevents growing diameters of the interval enclosures [16]. However,
the computed interval bounds may be wider than those determined by alternative,
more complex, solution techniques.

The primary goal of an NMPC strategy is to deploy a plant model to predict
the system behavior along a receding horizon. At each sampling point, the NMPC
technique computes the optimal control input that minimizes a cost function and
satisfies all safety constraints (e.g., bounds for the actuator outputs as well as con-
straints for internal system variables such as position, speed, and acceleration).
Among the existing works, real-time, constrained NMPC approaches with safety
and stability constraints were proposed in [3,6], where all constraints are expressed

1Due to the fact that these integration routines provide guaranteed state enclosures, they are
typically denoted as verified in the literature. Throughout this paper, however, we use the term
validated to point out that the underlying models are approximations to the actual dynamics
for which parameters are determined by means of experimental identification. Therefore, a full
verification of state bounds is not possible but rather only the computation of state enclosures
that contain the true reachable sets with a high level of confidence.
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in terms of inequalities with respect to the optimization variables. This approach
is based on the exact linearization of the nonlinear model so as to formulate the
optimization problem completely as a quadratic programming task. Such kind of
problem can be handled easily by linear solvers to obtain the optimal control vari-
ables. Nevertheless, most of the existing predictive control techniques assume that
uncertainties, related to internal parameters of the system model as well as to sen-
sor measurements with bounded accuracy, are neglected. To solve this problem,
guaranteed control strategies were developed in recent work to ensure robustness
toward all the uncertainties occurring in dynamic parameters. Despite the capa-
bility to handle constraints in a reliable manner, they need huge time to compute
the state enclosures [4, 14]. The time aspect is especially crucial, because at each
sampling instant a validated NMPC needs to compute optimal and guaranteed sys-
tem inputs along a receding horizon that minimize some interval cost function and
ensure compatibility constraints (such as the aforementioned actuator saturations
and safety constraints on the state trajectories).

Our motivation is to interface the exponential enclosure techniques published
in [18, 19] with the validated NMPC developed in [4], which is based on Runge–
Kutta schemes, to remarkably speed up the solution. The NMPC combined with
exponential state enclosures will allow to speed up the search for admissible control
sequences based on tight enclosures of the dynamic model considering bounded
uncertainties on both initial conditions and dynamic parameters. The goal of the
proposed controller is twofold: First, a branching procedure enables one to find
safe control domains that obey the state constraints and ensure the convergence
to reference intervals. Second, the optimization procedure allows the computation
of an optimal and point-valued control input that will finally be applied to the
system’s actuators.

The remainder of this paper is organized as follows. Firstly, an overview of the
exponential state enclosure technique is given in Sec. 2. Secondly, Sec. 3 introduces
the guaranteed NMPC approach based on interval arithmetic and a validated ex-
ponential state enclosure approach. Thirdly, simulation results and discussions are
reported in Sec. 4, before Sec. 5 gives conclusions and an outlook on future work.

2 An Exponential Enclosure Technique for Com-
puting Guaranteed Solution Enclosures for IVP-
ODEs

Classical numerical integration methods compute approximations of solutions of
IVP-ODEs, however, without guarantees on the accuracy of the approximation.
Thus, verified approaches have been developed that are supposed to compute guar-
anteed enclosures of the solution. Firstly, we give an overview of general validated
numerical integration methods in Sec. 2.1. Secondly, we present the concept of
exponential enclosures in Sec. 2.2. Finally, techniques for stability analysis and an
underlying stabilization of open-loop unstable plants are presented in Sec. 2.3 to
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achieve a cascaded control architecture that allows for using exponential enclosures
efficiently in the frame of NMPC.

2.1 Verified Computation of Enclosures of IVP-ODEs

Consider an uncertain dynamical system defined by the IVP-ODEs
ẋt = f(t,xt,u,p)
x0 ∈ [x0] ⊆ IRn
u ∈ [u] ⊆ IRm
p ∈ [p] ⊆ IRp,

(1)

where the state vector is denoted by xt, the vector of dynamic parameters by

p, and the control vector by u. The sets [x0] =
[
[x10] . . . [xn0]

]T
, [u] =[

[u1] . . . [um]
]T

, and [p] =
[
[p1] . . . [pp]

]T
, expressed as interval boxes, are

respectively the initial condition of the state vector, the interval-bounded input,
and the set of feasible dynamic parameters. This IVP-ODE has a unique solution
xt(t,x0,u,p) at t > 0 since f : R × Rn × Rm × Rp → Rn is continuous in t and
Lipschitz in xt (assuming that u and p are known and constant). For our purpose,
we assume additionally that f is sufficiently smooth, i.e., of class Ck.

Compared to the classical numerical integration for an IVP-ODE problem, val-
idated approaches consist of solving this problem in a complete and validated way
(i.e., each actual solution is rigorously returned and enclosed in a (sufficiently) tight
interval). These methods are commonly based on Taylor series [15] or Runge–Kutta
methods [2]. Basically, the main principle of validated integration methods is to
obtain the tight enclosure of the IVP-ODE problem.

As presented in [1], the purpose of a validated numerical algorithm is to solve
Eq. (1) so as to obtain a sequence of boxes [x0], . . . , [xK ] at the time instants
t0 = 0 < . . . < tK = T . At each guaranteed integration step, it is assumed
that input and parameter boxes ([uj ] and [pj ]) are known to compute the state
sequences. It is achieved in such a way that the inclusion function, denoted by [F],
satisfies the property

[xj+1] ⊇ [F] (tj , [xj ] , [uj ], [pj ]) , ∀j ∈ {0, . . . ,K}. (2)

Such approaches work in two stages at each integration step to compute the
guaranteed solutions. These steps are:

i) Computation of a prior enclosure of the solution [x̃j+1], such that for all t in
the time interval t ∈ [tj ; tj+1], the inclusion property

F (tj , [xj ] , [uj ], [pj ]) ∈ [x̃j+1] (3)

is satisfied. This stage enables proving the existence and the uniqueness of
the solution.
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ii) Computation of a tight enclosure of the state [xj+1] at the time instant tj+1,
such that F (tj+1, [xj ] , [uj ], [pj ]) ∈ [xj+1]. This step makes use of the solution
[x̃j+1] to bound the truncation error, i.e., the distance between the exact
solution and the numerical approximation.

Figure 1: Prior and tight enclosures computed along a single discretization interval
using a validated method.

The tight and prior enclosures calculated along one integration step between tj and
tj+1 (step size hj = tj+1 − tj > 0) are visualized exemplarily in Fig. 1.

2.2 Exponential Enclosure Technique

Guaranteed numerical integration methods aim at computing the state enclosure
sequence (tj , [xj ])j∈N, assuming that the input and parameter boxes [u] and [p],
respectively, are piecewise constant and known for each run of the validated sim-
ulation. To avoid the two-stage evaluation, resulting from a truncated series rep-
resentation of the solution to the IVP-ODE (1), the exponential enclosure tech-
nique [18, 19] is applied to approximate the solutions in a verified manner. It
has been shown that this method may improve the accuracy of the computed state
enclosures while simultaneously reducing the required computation time for asymp-
totically stable systems [18,19].

The dynamic model (1) can be reformulated by considering that the dynamic
parameters are represented by constant intervals, and the input variables are as-

sumed to be included in an augmented state vector, i.e.,
[
xTt uT (xt)

]T
, denoted
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for brevity again as xt with

ẋt = f(xt). (4)

To ensure the (local) asymptotic stability of the system model in the neighbor-
hood of a desired terminal state, we assume — as a prerequisite for the exponential
enclosure approach — that a feedback controller ufb(xt) is included in a cascaded
manner in the control law

u(xt) = ufb(xt) + uff(t) (5)

so that the NMPC effectively computes a kind of feedforward control sequence
uff(t) as shown in Fig. 2.

Reference set-point
[𝐱r]

Guaranteed NMPC

Validated Simulation:
Exponential Enclosures

IVP-ODE
[𝐮1]

IVP-ODE
[𝐮2]

IVP-ODE
[𝐮𝑁p−1]

[𝐔𝑘] = 𝐮1 ×⋯× [𝐮𝑁p−1]

Interval Optimization
Optimal box 𝐔𝑘

⋆

𝐱0

𝐩

𝐮min ; 𝐮max 𝐱min ; 𝐱max

𝑁p

𝑇c

[𝐱𝑘]

Uncertain 
Environment

Plant,
including

LMI-based
pre-stabilization

Sensors

Feedforward

control 𝐮ff

Figure 2: Overall structure of the validated NMPC.

To prevent the growth of the diameters of the intervals (tj , [xj ])j∈N for asymp-
totically stable systems with a minimum computational effort, the exact solution
x?t can be bracketed by the following exponential state enclosure

x?t ∈ [xe](t) = exp
(

[Λ]t
)

[xe](0) , [xe](0) = [x0], (6)

where Λ represents a yet unknown matrix after a translation of the state space so
that the origin x = 0 corresponds of the system’s (asymptotically stable) equilib-
rium. By choosing [Λ] = diag{[λi]}, i = 1, . . . , n, as a diagonal matrix, its elements
λi need to have negative real parts to describe contracting state enclosures.
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Using the exponential state enclosures (6) and a Picard iteration with the iter-
ation index κ, we obtain

x?t ∈ [xe](κ+1)
= exp

(
[Λ]

(κ+1)
t
)

[xe](0)

= [xe](0) +

t∫
0

f
(

exp
(

[Λ]
(κ)
s
)

[xe](0)
)

ds.
(7)

The differentiation of (7) with respect to time, belonging to the integration interval
t ∈ [0 ; T ], leads to

ẋ?[t] ∈ [Λ]
(κ+1)

exp
(

[Λ]
(κ+1)

[t]
)

[xe](0) = f
(

exp
(

[Λ]
(κ)

[t]
)

[xe](0)
)
. (8)

Assuming a converging iteration with [Λ]
(κ+1)

⊆ [Λ]
(κ)

and, thus, [λi](κ+1)
⊆ [λi](κ) ,

the iteration formula for [λi](κ+1)
can be expressed as

[λi](κ+1)
=
fi

(
exp

(
[Λ]

(κ)
[t]
)

[xe,i](0)
)

exp
(

[Λ]
(κ)

[t]
)

[xe,i](0)
, i = 1, . . . , n. (9)

The guaranteed state enclosure at the time instant T = sup([t]) (the chosen end of
the prediction window) is given by

x?t ∈ [xe](t) = exp
(

[Λ]T
)

[xe](0), (10)

where [Λ] is the final result of the iteration (9). For a suitable step size control
strategy, allowing for a reduction of overestimation in the computed solutions for
systems with non-negligible nonlinearities, the reader is referred to [11, Sec. III.C].

2.3 Design of the Subsidiary Robustly Stabilizing Feedback
Controller

To design a linear, robustly stabilizing subsidiary feedback controller

ufb(xt) = −Kxt, (11)

we assume that the state equations

ẋt = f(t,xt,u,p) (12)

can be reformulated into a quasi-linear form

ẋt = A(xt,u,p)xt + B(xt,p)u. (13)

As in the previous subsection, we assume for simplicity of the notation that
the state space has been translated so that x = 0 corresponds to the desired
equilibrium.
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Then, a robust linear state feedback controller (11) can be designed by a linear
matrix inequality approach on the basis of the Lyapunov function candidate

V (xt) = xTt Pxt (14)

with the yet unknown symmetric, positive-definite matrix P = PT � 0. For
asymptotic stability, the property

V̇ (xt) < 0 (15)

needs to hold for xt 6= 0. To ensure a minimum decay rate γ, this inequality can
be replaced by

V̇ (x) ≤ −γV (x) with γ > 0. (16)

Assuming further that the quasi-linear system model can be embedded into a
convex polytopic uncertainty representation

D =

{
[A(ξ),B(ξ)] | [A(ξ),B(ξ)] =

nv∑
v=1

ξv [Av,Bv, ] ;

nv∑
v=1

ξv = 1; ξv ≥ 0

}
, (17)

the bilinear matrix inequalities (v = 1, . . . , nv)

(Av −BvK)
T

P + P (Av −BvK) ≺ 0 , P � 0 (18)

need to be solved for the state-independent gain K to ensure asymptotic stabil-
ity according to (15). This is typically done by means of a linearizing change of
variables such as described in [21].

The more strict condition (16) is satisfied if

(Av −BvK)
T

P + P (Av −BvK) ≺ 2γP , P � 0 (19)

holds.
A drawback of this polytopic model approach is a certain degree of conservative-

ness introduced by treating all matrix entries as independent. This can be reduced
by a norm-bounded uncertainty representation similarly used in [17].

In this case, robust asymptotic stability is achieved by satisfying the matrix
inequality[

AnomP−BnomZ + PAT
nom − ZTBT

nom PNT + ZTDT
12

NP + D12Z −µI

]
+ µ

[
MMT MQT

QMT QQT

]
≺ 0

(20)

with Anom = mid([A]),Bnom = mid([b]),N = rad([A]),M = I,Q = 0, D12 =
rad([B]),P � 0,K = ZP−1, where [A] and [B] represent interval enclosures of the
respective matrices in the polytopic model (17).
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Remark. A means for further reduction of conservativeness, to be investigated in
future work in combination with the validated NMPC, is the use of parameter-
dependent Lyapunov function candidates, leading typically to larger regions of at-
traction for the equilibrium to be stabilized. In addition, it can be expected that
parameter-dependent Lyapunov functions will allow for a more efficient use of the
control effort [21]. Moreover, approaches for introducing hard saturations of the
control signal and its variations rates as described in [13] can be investigated in
future work.

Using the linear matrix inequality approach above, the following conclusions can
be drawn:

• The feedforward term uff is mandatory for states outside the polytopic do-
main (17), where the stability of the feedback controller is not proven and
this control part is, therefore, deactivated;

• The feedback controller can be activated as soon as states corresponding to
the interior of the polytope (17) are attained;

• The exponential enclosure approach can be expected to find contracting so-
lutions in the interior of this polytope, especially in combination with the
comparison lemma [12] detailed subsequently.

The comparison lemma can be exploited to compute bounds for the Lyapunov
function V (xt) according to

λmin(P)‖xt‖22 ≤ xTt Pxt ≤ λmax(P)‖xt‖22, (21)

0 ≤ xTt Pxt ≤ xT (0)Px(0), (22)

where λmin(P) and λmax(P) are the smallest and largest eigenvalues of the matrix
P = PT � 0.

The enclosure (21) can be refined to

λmin(P)‖xt‖22 ≤ xTt Pxt ≤ e−γtλmax(P)‖x(0)‖22 (23)

by exploiting the decay rate defined in (16). It immediately leads to the a-priori
state enclosures

‖x‖2 ≤

√
λmax(P)

λmin(P)
e
−
γ

2
t
‖x(0)‖2 (24)

that can always be intersected with the exponential enclosures (6) during the iter-
ative computation of the parameters [λi](κ+1)

.

Remark. Pessimism in this a-priori enclosure can be reduced by a computation of
P after an (approximate) decoupling of the quasi-linear state equations by means
of a suitable change of coordinates.
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Remark. Due to the fact that the validated NMPC approach described in further
detail in the following section performs a bisection of the control intervals, it is
always possible to initialize the exponential enclosures’ iteration formula (9) with
the result obtained for the non-bisected interval. This is an obvious result of the
enclosure property of interval analysis and helps to speed up the iteration procedure.

3 Validated Nonlinear Model Predictive Control

The purpose of this section is to review the work conducted in [4] where a new val-
idated NMPC was developed on the basis of a Runge–Kutta method for validated
integration. The approach uses interval analysis tools to compute a guaranteed
control sequence over a receding horizon, taking into account the bounded uncer-
tainties in the parameters of the dynamic system model and the measured data.
Control intervals are computed in such a way that convergence to the set-point in-
terval is ensured (i.e., xj → [xr], ∀j, which must be included in the interior of the
state box from which the polytopic uncertainty model has been constructed in the
previous section), and all the state and input constraints are satisfied (i.e., xi ∈ [xi]
and uj ∈ [uj ], ∀i, j). In summary, the proposed guaranteed NMPC encompasses
two stages [4],

• Filtering and branching: This first step provides a sequence of guaran-
teed input interval boxes at each time-step k over the prediction horizon Np,
denoted as [Uk] = [uk]×[uk+1]×. . .×[uk+Np−1]. Branching and filtering pro-
cedures allow the computation of safe input intervals along the receding time
horizon that satisfy the state constraints (i.e., ∀j, [xj ] ⊆ [xmin,j ,xmax,j ], where
xmin,j and xmax,j are the bounds for the admissible domain for each state vari-
able) and ensure convergence to the reference interval2 (i.e., [xk]→ [xr]).

From the methodological point of view, the state limits should be verified
at each validated simulation of the dynamic model using the exponential
enclosures technique. If these limits are not satisfied, the initial input interval
is further bisected and the validated simulations are relaunched. Subintervals
after the bisection are kept according to the following criteria for selection:

1. A branch leading to unsafe states is eliminated, i.e., if

[xt+Tc
] ∩ [xmin ; xmax] = ∅;

2. A branch leading to a state far from the reference interval [xr] is also
eliminated. The same holds for candidates partially having a cost greater
than the other branch(es).

2Although only temporally constant reference values are discussed subsequently, time-varying
reference trajectories [xr,k] can be handled by the same algorithm.
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• Interval optimization: The optimization algorithm computes safe inputs
over a finite time horizon by minimizing a newly formulated interval objective
function. This function aims to reduce the norm of the input intervals and
the error between the predicted and reference outputs as much as possible,
resulting in the computation of a sub-optimal input box [U]?k.

4 Application: Control of an Inverted Pendulum

4.1 Dynamic Modeling of the Inverted Pendulum

The control framework based on validated simulations presented in this paper is
applied to the stabilization of the nonlinear inverted pendulum shown in Fig. 3. The
pendulum is actuated by a DC motor whose angular speed is the input variable.

Following an Euler–Lagrange equation-based modeling procedure as described,
for example, in [7], the dynamics of the rotary nonlinear inverted pendulum can be
described by the ODEs

ẋ1 = x2,

ẋ2 =
1

∆

{
− µ3 cos(x3)

(
µ1 sin(x3) cos(x3)x2

2 + Γ2 − µg sin(x3)
)

+

µ4

(
µ3 sin(x3)x2

4 − µ1 sin(2x3)x2x4 + Γ1

)}
,

ẋ3 = x4,

ẋ4 =
1

∆

{(
µ1 sin(x3)2 + µ2

) (
µ1 cos(x3) sin(x3)x2

2 + Γ2 − µg sin(x3)
)
−

µ3 cos(x3)
(
µ3 sin(x3)x2

4 − 2µ1 cos(x3) sin(x3)x2x4 + Γ1

)}
,

(25)

where x1 and x2 are, respectively, the angular position and velocity of the rotatory
arm. Likewise, x3 and x4 are the angle and angular velocity of the pendulum arm.
All of these variables are summarized in the state vector x = [x1, x2, x3, x4] ∈ R4;
Γi = fviẋi is the viscous friction torque at the joint i. Finally, the following state-
and parameter-dependent terms are included in the system model (25)

∆ = −µ2
3 cos(x3)2 + µ1µ4 sin(x3)2 + µ2µ4,

µ1 = l2p

(mp

4
+M

)
, µ2 = l2a(mp +M) +

Jm

N2
g

+ Ja,

µ3 = lpla

(mp

2
+M

)
, µ4 = l2p

(mp

4
+M

)
+ Jp, µg =

(mp

2
+M

)
lpg,

where ma and Ja denote the horizontal arm’s mass and its inertia, respectively.
Similarly, the mass and inertia of the pendulum arm are given by mp and Jp; M is
the mass of the load attached to the pendulum arm, Jm is the DC motor inertia,
and Ng its gear ratio; la, lp, and r0 are the system’s geometric parameters, and g
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is the gravitational acceleration. A guaranteed identification of these parameters
was performed in [5] with the help of interval methods. The corresponding results
are summarized in Tab. 1.

r0

la

lp

~z1

~y1

~z0

~x0

~x2

~z2

~x3

~z3S0

S1

S2

S3

S0

S1

S2

S3

Figure 3: Left: Definition of links frame (configuration x1 = x3 = 0◦); Right:
representation of the nonlinear inverted pendulum.

Table 1: Interval bounds for the dynamic parameters of the inverted pendulum [5].

Symbol Interval Enclosure Measurement Unit

µ1 [9.63318 · 10−4 ; 1.22604 · 10−3] kg ·m2

µ2 [2.19585 · 10−3 ; 2.79471 · 10−3] kg ·m2

µ3 [7.227 · 10−4 ; 8.833 · 10−4] kg ·m2

µ4

[
1.08271 · 10−3 ; 1.37799 · 10−3

]
kg ·m2

µg [6.24299 · 10−2 ; 8.44641 · 10−2] kg ·m2 · s−2

fv1 [0.043012 ; 0.13002] Nm · s · rad−1

fv2 [0.000454 ; 0.001174] Nm · s · rad−1

4.2 Simulation Results

In [4], the NMPC was implemented for the following settings: prediction horizon
Np = 10, control sampling time Tc = 16 ms and the final time of the simulation
Tf = 0.3 s. The safety limits of all state variables are: x1 ∈ [−2π ; 2π], x2 ∈
[−52.4 rad s−1 ; 52.4 rad s−1], x3 ∈ [−2π ; 2π], x4 ∈ [−100 rad s−1 ; 100 rad s−1];
the DC motor’s torque is limited by the constraints τ ∈ [−8.05 Nm ; 8.05 Nm].
The reference interval of the desired pendulum arm is xr ∈ [π− 0.1 ; π+ 0.1]. The
tolerance parameter applied for the bisection procedure is adjusted as tol = 0.25.
Since the filtering and branching algorithm begins from the admissible input domain
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[−8.05 Nm ; 8.05 Nm], it can lead to approximately 6410 branches with Np = 10.
The interval cost function is computed only in the optimization process using the
weighting matrices Q = diag [1000, 1000, 1000, 1000] and R = 1.

Figure 4: Simulation of the open-loop model using the exponential enclosure ap-
proach. Left: Pendulum angle [x3]; Right: Pendulum arm velocity [x4].

Figure 5: Simulation of the closed-loop model using the exponential enclosure ap-
proach. Left: Pendulum angle [x3]; Right: Pendulum arm velocity [x4].

The exponential enclosure approach is now applied to the following two use
cases:

1. Simulation of the open-loop dynamics (NMPC-based feedforward controller
is switched off) and the pendulum’s free motion shall be stabilized at the
angle x3 = 0;
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2. Simulation of the influence of the subsidiary controller according to Sec. 2.3,
after the NMPC has brought the pendulum arm close to its upright position.

For the simulation, the exponential enclosure technique has been implemented
in the INTLAB library [20]. Figs. 4 and 5 display the open-loop and closed-loop
simulation results of the combination of the exponential state enclosures approach
with the control strategy. In Fig. 4, the length of the simulation time horizon is
limited to half of the prediction window used for the NMPC.

As it can be seen in Fig. 4, the enclosures of the pendulum angle and its velocity,
computed in the open-loop setting, converge to the open-loop stable equilibrium.
Moreover, Fig. 5 shows the closed-loop system behavior, for which the computed
enclosures of the pendulum angle and its velocity have a tolerable growth of pes-
simism over time. As already discussed in Sec. 2.3, future work will address the
use of parameter-dependent Lyapunov functions for the subsidiary control design
to enlarge the region of attraction of the desired equilibrium state and to limit the
control effort by an explicit consideration of input and input rate constraints [13].

5 Conclusion and Future Works

This paper focuses on combining a reliable and validated nonlinear model predictive
control (NMPC) with an exponential state enclosure technique which is advanta-
geous for the simulation of uncertain dynamic systems with provably asymptotically
stable dynamics. The efficiency and robustness of the proposed method were inves-
tigated through several numerical simulations using a nonlinear inverted pendulum.

In ongoing works, we focus on studying the following two issues: firstly, the ex-
tension of the exponential enclosure technique to ellipsoidal state domain represen-
tations, both for real- and complex-valued exponential enclosures, in combination
with the extensions of the subsidiary control law discussed in this paper. Secondly,
the application of the proposed approach on a real system. For the latter, it will
also be required to estimate non-measured system states reliably by means of non-
linear robust observers which exploit interval methods not only to estimate bounds
for the states at a specific point in time but also to reconstruct the influence of
external disturbances.
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Set-Valued Approach for the Online Identification of

the Open-Circuit Voltage of Lithium-Ion Batteries

Marit Lahmeab and Andreas Rauhac

Abstract

To describe the dynamic behavior of lithium-ion batteries using the ter-
minal current and the terminal voltage as input and output of the battery,
equivalent circuit models are used, which comprise series resistances, RC sub-
networks and a state of charge dependent voltage source. The parameters of
the battery model are influenced by aging effects as well as other factors such
as the state of charge and the cell temperature. Although those variations
can be estimated with the help of an augmented state vector, the typically
applied approaches do not allow for a direct identification of nonlinear depen-
dencies of circuit elements on the state of charge or other influence factors.
Therefore, a two-stage identification routine for identifying those nonlinear
dependencies using an interval observer and an interval contraction scheme
is proposed in this paper. The identification routine was successfully applied
to identify the open-circuit voltage characteristic of a lithium-ion battery.
Numerical simulations are used to evaluate the identification quality of the
identification routine.

Keywords: online identification, interval methods, lithium-ion batteries

1 Introduction

The charging/discharging dynamics of lithium-ion batteries can be approximated
by using equivalent circuit models. According to [4, 7, 15], these models consist
of a finite number of RC sub-networks as well as series resistances and a state of
charge (SOC) dependent voltage source which represents the open-circuit voltage.
In classical state estimation approaches, the parameters are identified beforehand
(cf. [4, 7, 15]). However, the parameters of battery models are subject to aging and
temperature induced variations, which is shown in [4]. The aging of battery cells
leads to a loss of the total capacity, an increasing Ohmic cell resistance and changes
in the charging/discharging efficiency as well as changes of the delay parameters of
the aforementioned RC sub-networks. Additionally, many degradation mechanisms
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of lithium-ion batteries that lead to capacity or power fading are highly dependent
on the cell temperature [3]. Many of these parameter variations can be mapped
onto the open-circuit voltage and estimated during system operation with the help
of an augmented state vector, but this approach does not allow for estimating
nonlinear functional dependencies of the circuit elements on the SOC or other
influence factors. The above-mentioned variations can alternatively be detected
offline using electrochemical impedance spectroscopy (EIS), as mentioned in [1, 12,
13]. The EIS method is to apply a sinusoidal current (sinusoidal voltage) to the
battery over a wide frequency range and to measure the terminal voltage (terminal
current). The spectroscopic features of the resulting impedance spectrum can be
assigned to the components of the corresponding equivalent circuit model. The
impedance is affected by a variety of factors such as the cell temperature, aging,
or the SOC. Accordingly, variations resulting from these influence factors can be
detected using EIS. The drawback of this method is that it takes a long time
typically in the range of hours to days because of the gradual charging/discharging
process and resting periods that might be necessary.

To address these difficulties, we propose a two-stage identification of nonlinear
dependencies in this paper with the dependency of the open-circuit voltage on the
SOC as an example. This two-stage identification is based on interval analysis,
which has already been used successfully in parameter estimation, for example in
[2]. Therefore, it is a promising method for this online identification routine. The
state variables of the dynamic system are estimated in the first stage with an interval
observer. In the second stage, the a-priori knowledge of the open-circuit voltage
characteristic is corrected using the estimated state variables. For the identification
of the nonlinear dependency of the open-circuit voltage on the SOC with underlying
aging and temperature induced variations, it is assumed that the other equivalent
circuit parameters are known and not yet affected by aging.

This paper is structured as follows. Section 2 outlines the modeling of lithium-
ion batteries based on equivalent circuit models. In Section 3, the design of the
interval observer is described which is used for the identification routine shown in
Section 4. The results of the numerical simulation for evaluating the performance
of this set-valued identification approach are presented in Section 5. The paper is
concluded with a brief summary of the proposed identification routine as well as
with an outlook on future work in Section 6.

Notation. In this paper, matrices and vectors are denoted by bold letters to
distinguish them from scalar variables. The notations M and M for an interval
matrix M denote the element-wise lower and upper bounds.

2 Equivalent Circuit Model of Lithium-Ion Bat-
teries

In this paper, an equivalent circuit model containing one series resistance and two
RC sub-networks representing processes with short (τTS) and large (τTL) time con-
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stants resulting from polarization effects and concentration losses is considered as
shown in Fig. 1 [4, 15]. Here, vOC is the open-circuit voltage. The terminal current
iT is used as the input to charge or discharge the battery and the terminal voltage
vT can be measured. The instantaneous voltage drop of the terminal voltage is
caused by the serial resistance RS. The two RC sub-networks consisting of CTS,
CTL, RTS, and RTL are used to describe the transient behavior. First, the model-
ing of lithium-ion batteries is introduced with point-valued state variables and crisp
equivalent circuit parameters. At the end of this section, the model is extended to
interval values.

+

Figure 1: Equivalent circuit model of a lithium-ion battery (modified from [15]).

The SOC σ(t) and the voltages across the RC sub-networks vTS(t) and vTL(t) are
chosen as the state variables. Hence, the state vector

x(t) =
[
σ(t) vTS(t) vTL(t)

]T
(1)

and the quasi-linear, continuous time state equations

ẋ(t) = A (σ(t)) · x(t) + b (σ(t)) · u(t) (2)

=

0 0 0

0 −1
CTS(σ(t))·RTS(σ(t))

0

0 0 −1
CTL(σ(t))·RTL(σ(t))

 · x(t) +


−1
CBat

1
CTS(σ(t))

1
CTL(σ(t))

 · u(t)

are obtained, where the system input is given as the terminal current u(t) := iT(t).
The SOC as well as vTS(t) and vTL(t) can be point-valued or interval values. The
first state equation represents the integrating behavior

σ̇(t) = − iT(t)

CBat
(3)

between the SOC σ(t) ∈ [0 ; 1] and the charging/discharging current iT(t). Here,
the SOC is a normalized value, so that σ = 0 corresponds to the completely dis-
charged battery and σ = 1 represents the fully charged battery with the nominal
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capacitance CBat. The other two state equations represent the first-order lag be-
havior of the RC sub-networks

v̇ι(t) =
−vι(t)

Cι(σ(t)) ·Rι(σ(t))
+

iT(t)

Cι(σ(t))
, ι ∈ {TS,TL} (4)

where the equivalent circuit parameters and the delay parameters are dependent
on the SOC according to

Rι(σ(t)) = Rιa · eRιb·σ(t) +Rιc , ι ∈ {TS,TL} , (5)

Cι(σ(t)) = Cιa · eCιb·σ(t) + Cιc , ι ∈ {TS,TL} , (6)

τι(σ(t)) = Cι(σ(t)) ·Rι(σ(t)) , ι ∈ {TS,TL} . (7)

The SOC-dependent parameters have been identified in [17] using experimental pa-
rameter identification. The identified parameters are shown in Tab. 1. By applying
Kirchhoff’s voltage law, the terminal voltage is obtained as

vT(t) = vOC(σ(t))− vTS(t)− vTL(t)− iT(t) ·RS (σ(t)) , (8)

with the Ohmic resistance

RS(σ(t)) = RSa · eRSb·σ(t) +RSc . (9)

Based on the experimental parameter identification in [17], the open-circuit voltage
is assumed to be represented by the nonlinear expression

vOC(σ(t)) = v0 · ev1·σ(t) +

3∑
i=0

vi+2 · σi(t) , (10)

which can be rewritten in the quasi-linear form

ṽOC(σ(t)) = ηOC (σ(t)) · σ(t) = vOC(σ(t))− v0 − v2 (11)

=

(
v0 ·

ev1·σ(t) − 1

σ(t)
+ v3 + v4 · σ(t) + v5 · σ2(t)

)
· σ(t) (12)

by subtracting the constant, state-independent terms from the expression for the
open-circuit voltage [15]. Using (8) and (12), the output equation can be obtained
as

y(t) = ṽT(t) = C (σ(t)) · x(t) + D (σ(t)) · iT(t) (13)

= ṽOC(t)− vTS(t)− vTL(t)− iT(t) ·RS(t) ,

and can be rewritten in the quasi-linear input-independent form

y∗(t) = y(t)−D (σ(t)) · iT(t) = C (σ(t)) · x(t) (14)

=
[
ηOC (σ(t)) −1 −1

]
· x(t) ∈ [ym] ,
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with the output matrix C (σ(t)) =
[
ηOC (σ(t)) −1 −1

]
(which is a row vector in

the special case of this paper) and the feedthrough matrix D (σ(t)) = −RS(σ(t)).
In (14), y∗(t) represents the measurement that is provided to the observer. It is the
terminal voltage of the battery, adjusted in a way that it is expressed according to
the quasi-linear output equation. Furthermore, the measurement noise (assumed to
be bounded) has to be considered, so that y∗(t) is an element of the measurement
interval [ym], defined in (22). Outliers, for example measurements that are wrong,
may affect the estimation quality of the interval observer designed in Section 3
and therefore may also affect the identification quality of the open-circuit voltage
characteristic. In this paper, we assume that there are no outliers, but managing
outliers can be done in future work with applying relaxed set inversion techniques
as shown in [2] and [8].

To implement the proposed identification approach, the continuous time system
is temporally discretized with a constant step size T and approximated with the
help of the explicit Euler method. Because of the small sampling time T com-
pared to the delay parameters τTS and τTL, this method is sufficiently accurate.
The discretization errors are assumed to be included in the measurement uncer-
tainty. With xk and σk approximating the exact state values x(tk) and σ(tk) in
the discretization points, the discretized state equations are then obtained as

xk+1 = Ad (σk) · xk + bd (σk) · uk , (15)

Ad (σk) = I3×3 + T ·A (σk) , (16)

bd (σk) · uk = T · b (σk) · uk . (17)

In this paper, interval state variables are considered, so that x(t) ∈ [x(t) ; x(t)]
is a vector consisting of intervals for each component. Therefore, also the equiv-
alent circuit parameters become intervals, which leads to interval-valued matri-
ces A (σ(t)) ∈

[
A (σ(t)) ; A (σ(t))

]
, b (σ(t)) ∈

[
b (σ(t)) ; b (σ(t))

]
, C (σ(t)) ∈[

C (σ(t)) ; C (σ(t))
]

and D (σ(t)) ∈
[
D (σ(t)) ; D (σ(t))

]
. This also applies to the

discretized system.

3 Design of the Interval Observer

The proposed identification approach for nonlinear dependencies of the circuit ele-
ments on state variables is a two-stage procedure. In the first stage, state estimation
is performed with an interval observer in each time step. Therefore, the most recent
estimate for the state vector is used which consists of intervals for each component.
The estimated values are then used in the second stage to correct the a-priori
knowledge for the open-circuit voltage characteristic. The estimation of the state
variables and the open-circuit voltage is shown in Fig. 2.

A prerequisite for this identification approach is that all state variables can be
estimated. Hence, the system has to be observable or identifiable. The observer
gain matrix H is designed in such a way that the stability is ensured for the assumed
open-circuit voltage characteristic. The system matrix A (σ(t)) from equation (2)
has the following sign pattern
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Battery

Figure 2: Estimation of the open-circuit voltage and the state of charge.

A (σ(t)) =

 ≤ 0 ≥ 0 ≥ 0
≥ 0 ≤ 0 ≥ 0
≥ 0 ≥ 0 ≤ 0

 ∈ [
A ; A

]
. (18)

Based on the design of a robust interval observer shown in [7], the observer matrix
H is hereby assigned as

H =
[
h1 0 0

]T
, h1 > 0 , (19)

where h1 is a scalar.
With the bounding systems x ∈ [x ; x] for the true states and x̂ ∈ [x̂] :=

[
x̂ ; x̂

]
for their estimates, respectively, x is given as x ∈

[
x̂ ; x̂

]
and the interval observer

is obtained according to [7] and [14] as

AOx̂ + bu + Hy
m
≤ ˙̂x ≤ AOx̂ + bu + Hym , x̂ ∈ [x̂] (20)

with the observer system matrix

AO = A−HC ∈
[
AO ; AO

]
(21)

and the uncertain measurements

[ym] :=
[
y
m

; ym

]
= ym + [−∆ym ; ∆ym] . (22)

The observer is parameterized in a cooperativity preserving way [6, 9]. Coop-
erative dynamic systems have state trajectories that are monotonic with respect to



Set-Valued Approach for the Online Identification of Lithium-Ion Batteries 861

the initial conditions. Lower and upper bounds for the states of uncertain cooper-
ative systems can be calculated by solving two independent initial value problems,
one for each bound. Hence, the computational effort to determine these lower and
upper bounds is reduced in comparison to a non-cooperative model. A system

ẋ(t) = f(x(t)), x ∈ Rn, (23)

has to fulfill the following two conditions to be cooperative. All off-diagonal ele-
ments of its Jacobian

J =
∂f(x)

∂x
(24)

have to be non-negative

Ji,j ≥ 0, i, j ∈ {1, ..., n}, i 6= j (25)

and all state variables have to be non-negative [6, 9]

x ∈ R≥0 . (26)

Due to the design of the observer gain matrix, the observer system matrix AO and
the system matrix A have the same sign pattern. Therefore, adding this interval
observer to a cooperative system preserves the property of cooperativity.
For cooperative systems, guaranteed state enclosures are found by considering AOx̂
and AOx̂ for the lower and upper bound respectively in equation (20), if all state
variables are element wise non-negative. The system in equation (2), however, does
not satisfy the conditions (25) and (26). Hence, it is not cooperative in this simplest
form [6]. Therefore, guaranteed lower and upper bounds for all state variables of
the system (2) have to be calculated according to Müller’s theorem [5], without
taking advantage of the property of cooperativity. This is done by considering the
infimum (supremum) of AOx̂ for the lower bound (upper bound) in equation (20).

Like the continuous time system (2), the observer is also discretized with a
constant step size T and with the help of the explicit Euler method. This leads to
the following equations:

x̂k+1 = AOd (σ̂k) · x̂k + bd (σ̂k) · uk + Hd · ym,k , (27)

AOd (σ̂k) = I3×3 + T ·AO (σ̂k) , (28)

bd (σ̂k) · uk = T · b (σ̂k) · uk , (29)

Hd · ym,k = T ·H · ym,k . (30)

In order to guarantee stability for the discretized observed system, the magnitudes
of all eigenvalues of the matrix AOd have to be less than one. To preserve the
derivation of lower and upper bounding systems, the system matrix in (28) needs to
be element wise non-negative. The evaluation of this discretized model is performed
in analogy to equation (17) in [16].
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4 Identification of the open-circuit voltage

With the help of interval methods, the nonlinear dependency of the open-circuit
voltage on the SOC can be identified as visualized in Fig. 3. During the charg-
ing/discharging process of the battery, the values of the open-circuit voltage and
the state of charge are estimated by the interval observer resulting in axis-aligned
interval boxes for the SOC and the open-circuit voltage. An interval box [Γ]
is defined as the Cartesian product of closed intervals. Here, [Γ] is an element
of IR2 and is defined as [Γ] = [σ(t)] × [ṽOC(t)] with σ(t) ∈ [σ(t) ; σ(t)] and
ṽOC(t) ∈

[
ṽOC(t) ; ṽOC(t)

]
. The open-circuit voltage is calculated based on the

estimated state variables and equation (14)

ṽOC(t) = y∗
m(t) + vTS(t) + vTL(t) . (31)

The intersections of those interval boxes are utilized to improve the approximation
of the true vOC(σ(t)) characteristic.

1 3,2999997749 -2
0,9 2,7549988852 -16
0,8 2,3119944785 1
0,7 1,9589726516 0,6
0,6 1,6838645425 -0,3
0,5 1,4743290747 2
0,4 1,3166768855
0,3 1,1905405059
0,2 1,042475592
0,1 0,655206964
0 -1

Figure 3: Identification of nonlinear dependencies using interval methods.

To keep the computational effort that is required for this intersection process
feasible, merging strategies are necessary. A certain number of overlapping interval
boxes are combined with the help of their convex interval hull as shown in Fig. 4.
The resulting convex hulls are intersected with each other. The convex interval hull
of two interval boxes [Γ1] and [Γ2] is denoted by

[Γhull] = [Γ1] ∪ [Γ2] . (32)

The overapproximation of two interval boxes with the convex interval hull results
in an overestimation of the magnitude

δhull =
area{[Γhull]} − (area{[Γ1]}+ area{[Γ2]}) + area{[Γ1] ∩ [Γ2]}

area{[Γ1]}+ area{[Γ2]} − area{[Γ1] ∩ [Γ2]}
· 100% ,

(33)
where the area of an interval box is equal to the product of the interval widths
of all components [10]. The overestimation for combining more than two interval
boxes with the help of the corresponding convex interval hull can be calculated by
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recursively applying equation (33), where δhull represents the exact overestimation,
when two interval boxes are combined. Otherwise, it represents the upper bound on
the overestimation. During the numerical simulation shown in this paper, the num-
ber of interval boxes that are approximated with the convex interval hull is defined
beforehand. At the end of the simulation, the overestimation δhull is calculated for
each convex interval hull.

Remark. Instead of using a preset, constant number of interval boxes that should
be merged before the intersection process, a limit on the overestimation can be
introduced. In this case, the interval boxes are recursively merged as long as the
overestimation remains below the threshold δhull ≤ δhull,max.

Figure 4: Combining interval boxes with the help of their convex interval hull.

5 Numerical Simulation

To evaluate the identification quality of the proposed identification routine, a nu-

merical simulation was performed for the initial state x0 =
[
0.9 0 0

]T
and the

system parameters shown in Table 1. The discretization step size and the observer

gain matrix are chosen as T = 10 ms and H =
[

0.2 0 0
]T

. The magnitude
of the bounded measurement noise is set to ∆ym = 2.5 mV. The measurements
are generated in a simulation using y and uniformly distributed random numbers
in the interval of [−∆ym ; ∆ym]. The input current has an amplitude of 5 A and
a period length of 1 h and is given as shown in Fig. 5. To reduce the uncertainty
and improve the estimation results, the input current consists of an alternating
sequence of sine half-waves and periods where the current is constant and equal to
zero. The number of interval boxes that are combined with the help of their convex
interval hull is chosen as 6000. This corresponds to merging the interval boxes in a
time span of one minute and leads to an overestimation of each interval hull of less
than 3.73 %. The true values are calculated based on point-valued state variables,
point-valued equivalent circuit parameters and the system parameters shown in
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Table 1: System parameters according to the experimental parameter identification
in [17].

CBat 3.100 Ah RTSa 1 Ω RTLa 0.01 Ω v0 −1 V
RTSb −30 RTLb −4 v1 −23

RSa 0.25 Ω RTSc 0.015 Ω RTLc 0.05 Ω v2 3.255 V
RSb −20 CTSa −900 F CTLa 25000 F v3 0.8342 V
RSc 0.07 Ω CTSb −2 CTLb −2 v4 −0.2905 V

CTSc 1000 F CTLc 2000 F v5 0 V

Tab. 1. The simulation is implemented in MATLAB. The single core simulation of
the interval observer and the intersection process is approximately four times faster
than real time, so that this implementation is applicable for online identification
purposes.

Figs. 6 and 7 show the estimation results for the three state variables. During
the simulation, the estimation uncertainty increases but can be reduced by the
periods of constant current, because the integrating behavior between the SOC and
the terminal current is the main contribution to the uncertainty. It can only be
reduced if the constant current is equal to zero. Otherwise, the uncertainty increases
instead of being reduced. The uncertainty of the voltage vTS decreases faster than
the uncertainty of the voltage vTL because of the smaller delay parameter τTS

compared to the delay parameter τTL. The frequency of the input current also
affects the estimation uncertainty. This is shown in Figs. 8 and 9. Here, the input
currents iT(t) = 5 A · sin

(
2π

3600 t
)

and iT(t) = 5 A · sin
(

10π
3600 t

)
are compared. With

increasing frequency, the estimation uncertainty decreases. However, the achievable
SOC range also decreases, which in turn influences the identification process.

The identification result is shown in Fig. 10. Fig. 10(a) shows the identification
result after the first sine half-wave of the input current (discharging process). It is
obvious that the increasing uncertainty leads to an increasing width of the interval
boxes. As mentioned before, the uncertainty is then reduced due to the constant
current period so that, during the following charging process (second sine half-
wave), the width of the interval boxes is further reduced (Fig. 10(b)). Here, the
identification result of the discharging process serves as the a-priori knowledge for
the characteristic to be identified. The true value of the vOC(σ(t)) characteristic
can be approximated well in the range of the SOC that can be achieved during
both discharging and charging processes.

6 Conclusions and Future Work

In this paper, a set-valued approach for the online identification of state-dependent
characteristics was presented. This identification routine consists of two stages.
At first, the state variables of the dynamic system are estimated with an interval
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Figure 5: True output value y∗(t) in comparison with the estimated lower and
upper bounds resulting from the terminal current iT(t).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.5

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.1

0

0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.2

0

0.2

Figure 6: True value of the state variables in comparison with the estimated lower
and upper bounds.
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(a) Estimation error of σ(t).
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Figure 7: Estimation errors of the state variables.
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(a) Low frequency input current.
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(b) High frequency input current.

Figure 8: Comparison of the estimated state variables resulting from low or high
frequency input currents.
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Figure 9: Comparison of the interval diameters of the estimated state variables
resulting from the input currents according to Fig. 8.
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(a) Discharge process (first sine half-wave). (b) Charge process (second sine half-wave).

Figure 10: Approximation of the vOC(σ(t)) characteristic.

observer, afterwards the estimated values are used to correct an a-priori knowledge
for the characteristic to be identified. The proposed identification routine was
successfully applied to the identification of the open-circuit voltage characteristic
of a lithium-ion battery.

The estimation quality has a major influence on the identification results. It
is therefore necessary to reduce the estimation uncertainty as much as possible.
As shown above, the input current strongly affects the estimation quality. So
the design of optimal experiments by tuning the input current is very important.
Furthermore, the design of the interval observer can be optimized to improve the
estimation results. For example, a cascaded observer design or a TNL observer
design as shown in [18] could be investigated.

In addition, our future work will deal with the extension of this approach to the
identification of characteristics that depend on multiple variables (e.g. the open-
circuit voltage characteristic of lithium-ion batteries that depends on the SOC and
the temperature) and with the investigation of possible combinations of set-valued
and stochastic approaches (cf. [11]).
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The Codac Library:

A Catalog of Domains and Contractors

Simon Rohouab, Benôıt Desrochersac, and Fabrice Le Barsad

Abstract

Codac (Catalog Of Domains And Contractors) is a C++/Python library
providing tools for constraint programming over reals, trajectories and sets.
It has many applications in parameter estimation, guaranteed integration or
robot localization and provides reliable outputs by computing sets of feasible
solutions according to the constraints defining the problem. This paper pro-
vides a brief overview of the library and its Contractor Network approach,
illustrated on a convincing robotic application.

Keywords: constraint programming, interval analysis, state estimation, dy-
namical systems, solver, robotics, Contractor Network, SLAM

1 Introduction

This paper provides an overview of the Codac library1 (http://codac.io), that
aims at providing a catalog of tools based on interval analysis and constraint pro-
gramming. The toolbox allows to approximate feasible solutions of non-linear
and/or differential systems. Since the solution of these complex systems cannot gen-
erally be calculated exactly, Codac uses numerical analysis to compute the bounds
of sets of feasible solutions. The assets are guarantee (computations are guaranteed
to never lose solutions, due to the rigorous interval arithmetic) and exhaustiveness
(if multiple values are possible, all of them are characterized). In the same way,
obtaining an empty set allows to safely disprove properties of a system. In Codac,
the variables can be of different types, such as reals, vectors [2], trajectories [35],
uncertain sets [9], graphs [18], etc., in order to address a wide range of problems.

Intervals are used to reliably propagate uncertainties (from sensors, models, dis-
cretizations), even in the case of non-linearities, provided that they are bounded.
Coupled with constraint programming, these methods have been shown to be effec-
tive for solving complex problems involving constraints that are generally difficult to
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handle (strong uncertainties, differential equations, temporal delays [39], indistin-
guishable data, inter-temporal measurements [36], hybrid systems, etc.). Classical
robotic applications such as Simultaneous Localization And Mapping (SLAM), the
kidnapped robot problem, or the exploration of unstructured environments, can be
formalized as such systems, and are still challenging issues. Conventional methods
such as Kalman or particle filters are commonly used for tackling these problems.
However, they have limitations related to the context of use, the propagation of
error distributions, the reliability of the outputs, or the involved equations describ-
ing the system. Besides, constraint programming coupled with interval methods
allows to handle a wider class of systems and has been shown to be comfortable
with solving several problems known to be difficult, in a very few steps with the
simplicity offered by constraint programming [7].

Recent advances in interval methods have been done by the community, and the
Codac library gathers a part of related state-of-the-art implementations with the
objective to make them easy to combine. This paper provides an overall picture of
the library and proposes an application on an academic problem of SLAM.

2 Constraint programming

Constraint programming is a paradigm in which users concentrate on the proper-
ties of a solution to be found (e.g. the pose of a robot, the location of a landmark,
the orbit of a satellite) by stating constraints on variables. Constraints usually
come from the equations of the problem, inequalities, or measurements from sen-
sors. The variables appear in the equations. Then, a solver performs constraint
propagation on the variables and reliably provides feasible solutions corresponding
to the problem. In this approach, the user concentrates on what the problem is
instead of how to solve it, thus leaving the computer to deal with the how. The
strength of this declarative paradigm lies in its simplicity, as it allows one to de-
scribe a complex problem without requiring knowledge of resolution tools and their
specific parameters to tune. The second asset is genericity: a situation is seen from
a high-level point of view and this abstraction enables the resolution of a wide range
of problems. The energy is mainly spent on the description of the problem.

Since several decades, the community of constraint programming has brought
numerous contributions for dealing with discrete problems. The Prolog language [3]
appears to be one of the most famous outcomes with free implementations available
to the community. Classical applications of these developments lie in automated
planning or interactive theorem proving. While a major effort from the community
has been undertaken around this concept, other studies appeared in order to tackle
continuous problems with this paradigm [17]. For both discrete and continuous
problems, constraint programming can be applied by defining a Constraint Network
involving variables Vi, domains Di, and constraints Lj [25].

Variables In continuous problems, the members of a system, including the un-
known solutions, are reals x ∈ R or vectors x ∈ Rn. Recent advances have led to
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the extension of Constraint Networks in order to tackle a larger number of types of
variables, such as sets X ∈ P(Rn) [11], graphs [18], paths [23], etc. In particular,
dynamical systems can be drawn as Constraint Networks by introducing so-called
trajectories variables, denoted by x(·) : R → Rn, thus allowing to consider the
solution of a dynamical system as a single and continuous item.

Domains A variable Vi is known to be enclosed in some domain Di on which we
will apply constraints Lj via some operators. Domains define non-empty ranges
of feasible values. For instance, domains can be intervals, polytopes, ellipsoids,
subpavings, tubes, etc.

Constraints Elementary facts and rules apply on variables: so-called constraints.
There are very few restrictions on the forms of the constraints: they are understood
as the expression of any relation that binds variables, which are known to belong
to some domains. In the continuous and differential context, constraints may be
non-linear equations such as x3 = cos(x1+exp(x2)), inequalities, quantified param-
eters [13], differential systems expressed as ẋ(t) = f(x(t),u(t)), etc. For instance,
in the context of robotics, constraints will come from state equations, numeri-
cal models, or measurements. Uncertainties from sensors are specified either by
other constraints (e.g. x > 0) or by restricting the domains of the variables (e.g.
[x] = [0,∞], where [x] is the interval domain known to enclose the variable x).

Constraint propagation Elementary constraints are relations that cannot be
decomposed, such as c = a + b. Then, complex constraints can be considered by
combining simpler constraints, in order to increase in complexity, while preserv-
ing simplicity. This leads to a propagation process, due to dependencies between
constraints sharing the same variables.

The aim of Codac is to easily deal with constraints in order to eventually char-
acterize sets of values compliant with the defined rules. This is done by providing
implementations of operators for elementary constraints as well as algorithms for
their combination. The related domains and operators depend on tools from inter-
val analysis.

3 Interval methods for constraint programming

In the constraint programming approach, the estimation of a variable consists in
reducing its domain. The obtained set is said to be reliable: the resolution must
guarantee that no solution will be lost during the solving process, according to
the constraints defining the problem. In practice, domains and constraints have to
be numerically computed. The use of interval methods is perfectly suited for this,
providing intervals for domains and a rigorous arithmetic to implement constraints.
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Intervals domains An interval [x] is a closed and connected subset of R. The
set of all intervals is denoted IR. An interval vector (a box) [x] of IRn is an axis-
aligned box, a closed and connected subset of Rn. These interval sets can be easily
represented in a computer. For instance, a box [x] = [x−,x+] will be defined by
its two bounds x− and x+, that are representable vectors of Rn. Intervals can be
extended to trajectories: we then define a tube [x](·) : R→ IRn as an interval of two
trajectories x−(·) and x+(·) such that [x](·) = [x−(·),x+(·)]. They have also been
extended to sets with thicksets denoted by JXK = [X−,X+] where X± ∈ P(Rn).

Contractors A contractor C for a constraint L is an operator designed to reduce
a domain without losing any solution consistent with L. A contractor is thus an
algorithm that can act on an interval domain for narrowing its bounds in a reliable
way. The following definition applies for contractors on boxes [7], and can be easily
extended to tubes, thicksets, etc.

X∗

X+
X−

Figure 1: A contractor CX related to a constraint representing a set X is applied
on several boxes. Hatched parts correspond to vectors that are removed after the
contraction.

Definition. A contractor C, associated with a constraint L, on a box [x] ∈ IRn is
a mapping from IRn to IRn such that:

(i) ∀[x] ∈ IRn, C([x]) ⊆ [x], (contraction)

(ii)

(
L(x)

x ∈ [x]

)
=⇒ x ∈ C([x]). (consistency)

The use of contractors allows to enclose complex algorithms in simple black boxes
that are only used to contract a domain according to a constraint, in a reliable
way. The reliable property (expressed by the consistency rule of Definition 3) is
important as it allows to combine contractors, call them in any order and as much
as necessary, without running the risk of losing solutions. This allows to deal
with complex problems providing that contractors are at hand and sufficient to
address elementary constraints obtained from a decomposition. Finally, domains
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and contractors can be combined in propagation algorithms in order to implement
an interval solver.

One may emphasize that interval methods have the reputation of being limited
to problems of low dimensions, due to usual bisections of the domains which leads
to an exponential complexity order. Contractors may overcome this problem: they
are usually given by polynomial-time algorithms and can be employed without
performing bisections, which allows to tackle problems of higher dimensions.

Separators A contractor Cout associated with a set X aims at removing infea-
sible solutions (i.e. vectors that are not in X) from a domain. When employed
in a branch-and-contract algorithm, it allows to compute an outer approximation
X+ ⊃ X. However, the same contractor cannot be used for inner approximations
X−, that are sets in which any vector is solution, that is X− ⊂ X. For instance,
when no contraction happens on a given box, i.e. Cout([x]) = [x], it is not possible
to know if [x] is completely included in X (see the yellow box on Fig. 1) or if there
may exist vectors in [x] that do not belong to X (see the red dot in Fig. 1). Inner
approximations are particularly important for proving the existence of solutions.
Their computation can be done by using a contractor Cin consistent with the com-
plementary X that removes vectors of X, as depicted in Fig. 2. The pair {Cin, Cout}
defines a new operator called a separator [19], which can be employed in a branch-
and-contract algorithm in order to characterize simultaneously an inner X− and an
outer approximation X+ and therefore enclose X in a thickset JXK = [X−,X+].

X∗

X+
X−

(a) X∗ ∈ [X−,X+].

X∗

Cout([x])

(b) Illustration of Cout.

X∗

C in([x])

(c) Illustration of Cin.

Figure 2: Enclosure of a set X∗ ⊂ R2 by two approximated inner and outer sets
X− and X+, computable using a pair of contractors (a separator) involved in a
branch-and-contract algorithm. Note that any vector of X− also belongs to X+. For
computing X+, resp. X−, a Cout contractor, resp. Cin, can be employed as pictured
in Subfig. 2b–2c. The green hatched areas are part of X−while the blue ones belong
to X+. In practice, these algorithms output subpavings made of non-overlapping
boxes, not represented in Subfig. 2a.

Interval domains, contractors and separators form a set of items that one can
combine in order to describe continuous nonlinear equations, dynamical systems,
or measurements, that are usually encountered in physics or robotics. They are the
basic components of the Codac library.
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4 The Codac library

4.1 A framework of domains and contractors

The API of Codac can be broken down into three layers: (i) a list of implemented
domains such as intervals, boxes, tubes, thicksets, etc.; (ii) a catalog of contractors
and separators for dealing with a wide variety of constraints; (iii) a top-level system
solver called Contractor Network. Recent efforts from the community [30, 39, 19]
have led to new domains, contractors and separators. The objective of Codac is
to gather the related implementations and form a catalog of algorithms associated
with publications from the literature.

4.2 Other libraries

Several libraries, see for instance filib++ [27], MPFI [32] and GAOL [14], provide
low-level features related to interval arithmetic, most of them including reliable
numerical operations with outward rounding. For its interval arithmetic computa-
tions, Codac currently stands on GAOL that has shown good performances and a
large portability on operating systems. At a higher level of abstraction, the contrac-
tor programming approach [7] deployed in Codac is also a cornerstone of the IBEX
library [8]. Codac is, however, not limited to constraint processing over reals and
is inspired by robotic applications, including the capacity to deal with dynamical
systems, inter-temporal constraints and thicksets.

The guaranteed simulation of dynamical systems is also the topic of several
set-based libraries, namely Vnode [26], Cosy [31], DynIBEX [1] or CAPD [41].
These libraries have applications in robotics and automatic control, by verifying
dynamical properties of non-linear systems [28] or for the computation of reachable
sets [15]. They are also used by mathematicians to prove conjectures [12]. While
they offer good performances for guaranteed integrations, they are mainly suited
for systems expressed under the form of Initial Value Problems (IVPs), that is
{ẋ = f(x), x(0) ∈ [x0]}, which does not represent the diversity of state estimation
problems. This limitation motivated new constraint-based approaches in order to
assess for instance inter-temporal relations, time uncertainties, delays, or hybrid
systems. Robotics also requires to mix various uncertainties, not only related to
dynamical systems, but also involving sets, graphs, paths, to name but a few.
Nonetheless, future work may focus on building bridges between these libraries in
order to benefit from good performances from each specific tool. The contractor
framework could ease the use of these state-of-the-art contributions by enclosing
them in contractor operators compatible with each other.

Finally, the above-mentioned libraries are mainly available in C++. The core
of Codac is also developed in C++ for performance and historical reasons, and
in order to be compliant with many robotic frameworks. In addition, a Python
wrapper of the library allows to use Codac in Python 3 while benefiting from C++
performance. The library is actively supported on Ubuntu derivatives, Windows
and macOS, with pre-built packages available.
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4.3 Implemented domains

The building blocks of this library are intervals and the above-mentioned domains
(boxes, tubes, thicksets, etc.) are mainly designed as compositions of intervals.
However, for specific computation needs and in order to avoid as much as necessary
wrapping effects, that are pessimism drawbacks induced by the use of inaccurate
enclosures, some implementations in Codac rely on more specific domains, such as
cuboids [24], polytopes [40] or ellipsoids [21, 29]. For instance, it has been shown
in [33] that the integration of continuous-time linear systems could be computed
exactly without pessimism by using polytopes instead of boxes, at the expense of
longer computation times. A good trade-off has been studied in [30] with the use
of ellipsoids for enclosing the continuous states. These are specific domains also
available in Codac, and relevant for guaranteed integration purposes.

Domains for trajectories: tubes X(·) In Codac, a tube is implemented as a
temporal sequence of sets Xi, where the Xis can be intervals, boxes, ellipsoids [30],
polytopes, subpavings, or any domain2 for which set operations can be computed.
More precisely, a tube X(·) with a sampling time δ > 0 is implemented as a set-
valued function which is constant for all t inside intervals [kδ, kδ + δ], k ∈ N. The
set [kδ, kδ+ δ]×X (tk), with tk ∈ [kδ, kδ+ δ], is called the kth slice of the tube X(·)
and is denoted by X(k). For instance, when the Xis correspond to intervals, the
implementation amounts to an interval of step functions [x−(·), x+(·)] such that
∀t, x−(t) 6 x+(t), as pictured by Fig. 3.

δ

·

[x](·)

tf

t1 t3
t0

x∗(·)

· δ

·

[x](·)

tf

t1 t3
t0

x∗(·)

·

output gate of [x](k3)

slice [x](k3)

Figure 3: An interval-tube [x](·) implemented as a list of interval-slices. In practice,
the sampling δ is not necessarily constant.

2Generic programming is enabled for tubes thanks to their C++ implementation providing
compile-time templates.
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This implementation then takes rigorously into account floating point precision
when building a tube, thanks to reliable numerical libraries. Further computations
involving X(·) will be based on its slices, thus giving an outer approximation of the
actual solution set. For instance, the lower bound of the integral of a boxed-tube
[x](·) is simply computed as the signed area of the region in the tx-plane that is
bounded by the graph of x−(t) and the t-axis. The lower the slice width δ, the
higher the precision of the approximation. Note that the current implementation
allows a variable sampling, as well as input and output gates on each slice as
pictured in Fig. 3 in the case of interval slices. In the literature, these gates are
classical restrictions used when dealing with IVPs.

Other representations of tubes are available in Codac, and provide faster evalu-
ations than with a simple sequence of slices. For instance, the computer evaluation[
X([t])

]
=
[
{x(t) | x(·) ∈ X(·), t ∈ [t]}

]
, with [t] a large interval over several slices,

can be optimized with a redundant data structure such as binary trees [36, pp. 54–
55] or polynomial approximations of the bounds of the tubes. This is relevant
when many evaluations have to be performed on tubes that have non-updated
values, namely integral calculations or tube inversions [35].

Domains for sets: thicksets JXK A set X ⊂ Rn can be bracketed between
two sets X− and X+, forming a so-called thickset JXK = [X−,X+], [11]. The ap-
proximation of X− and X+ is possible using subpavings [20] that are unions of
non-overlapping boxes of Rn. As for tubes, optimized implementations based on
binary trees allow to speed up evaluations of subpavings. Fig. 4 illustrates an appli-
cation of Codac involving tubes and thicksets for the computation of the guaranteed
zone explored by a robot [9]. This example typically illustrates the need to couple
various domains for robotic applications.

4.4 Contractors and separators

A list of contractors (or separators for approximating sets) is available in the li-
brary. They aim at contracting domains in a reliable way and do not need to be
configured. Most of them implement elementary constraints. Other contractors
are compositions of primitive contractors based on syntax trees, see for instance
the HC4revise contractor [2] available in IBEX and Codac. This allows one to
obtain a high-level contractor built from an analytical expression, and automati-
cally involving primitive contractors. Besides, avoiding constraint decompositions
can provide better results if one relies on a dedicated and optimized contractor.
For instance, in the case of the polar equation (x = ρ cos(θ), y = ρ sin(θ)), the
contractor Cpolar([x], [y], [ρ], [θ]) provided by [10] allows a minimal contraction for
[x], [y], [ρ] and [θ]. Additional contractors are designed to deal with inter-temporal
and differential constraints, such as linear systems ẋ = Ax + Bu ([33]), temporal
delays x(t) = y(t−a) ([39]), time uncertainties {y = x(t), t ∈ [t]} ([35]), differential
nonlinear equations ẋ = f(x) ([5, Chap. 4]), to name but a few. Other contractors
focus on geometric constraints [16], or allow contractions robust to outliers [6].
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Figure 4: Guaranteed zone explored by a robot [9]. A robot equipped with a side-
scan-sonar (the scope of which is pictured by red lines) evolves along a trajectory
x∗(·) (white line) estimated with uncertainties (blue tube [x](·)). The problem
consists in computing the explored space X. Taking into account the increasing
uncertainty of localization, X cannot be computed exactly. However, an inner
set X− (in white) can be approximated, and corresponds to the part that has
been surely observed with the sonar. Also, the black set (i.e. X+) is computable
and related to parts of the environment for which we can reliably state that no
observation has been done, for any feasible trajectory x(·) ∈ [x](·). The gray part
corresponds to the penumbra in which observations may have been done, or not.

5 Contractor Networks (CN)

5.1 Higher degree of abstraction

When several contractors are at stake, there may be interactions between them: a
contraction from one contractor may trigger another one, which reveals a constraint
propagation process [4, 7]. It becomes necessary to call some contractors several
times in order to converge to the best contraction of the domains. This number of
contracting iterations cannot be known in advance. It depends on the contractors
at stake, their efficiency and their sequencing. Classically, one can implement a loop
of contractions in order to process the contractors as long as there is a contraction
on one of the domains. The iteration stops when a fixed point has been reached:
when nothing can be contracted anymore. Note that because a computer uses
floating point numbers, the iterative fixed point will be necessarily reached in a
finite number of steps [22, p. 42]. In practice, we may stop the iteration as soon
as the contractions are not significant anymore. In any case, even if the algorithm
stops before reaching the fixed point, the actual solution will always be enclosed in
the domains.

Codac provides a high-level propagation tool, called a Contractor Network (CN),
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that aims at managing the propagation process automatically. This simplifies the
use of contractors: the user does not have to implement contracting loops and to
manage stopping conditions. Instead, he/she only has to design a CN by connecting
contractors and domains together. This approach allows to take a higher degree
of abstraction by hiding the propagation part. What remain are the domains and
contractors, which correspond to the variables and their related rules, as in a pure
declarative paradigm.

5.2 Refined propagation process

In addition, the propagation process can be enhanced: some heuristic encoded
in the CNs can allow a better sequence of the contractors calls. While the user
only states the relations between contractors and domains, the CN defines by itself
the sequence of contractions to be run, depending of the types of domains and
contractors and some empirical models encoded in the library. The result is a
global contraction that runs faster than with a random sequence of contractors.

Numerically, a contractor on a complex domain (such as a tube, a thickset)
may amount to several contractors on subdomains (such as a slice, a box). For
instance, the C+ contractor for the constraint a = b+ c can be extended to tubes:
C+
(
[x1](·), [x2](·), [x3](·)

)
, [35]. This does not correspond to inter-temporal or dif-

ferential equations: the related constraint applies for all t. This amounts to calling
C+ for all tuples of slices

(
[x1](k), [x2](k), [x3](k)

)
. In practice, some parts of the

tube may not be updated during a propagation and it becomes relevant to avoid
further calls of contractors on the involved slices, if we can state that they will be
ineffective. While it would be cumbersome to tune a propagation algorithm at this
level of granularity, it becomes worthwhile to rely on an automatic tool that will
call the contractors only on relevant parts of the complex domains. Hence, CNs are
also used to break tubes down into graphs of slices, each of them being connected to
the former contractors related to the tube itself. The propagation algorithm then
naturally calls the contractors if necessary. It leads to faster computations. To
our knowledge, this is the first time that contractors are involved in a propagation
network with heterogeneous domains such as tubes or thicksets.

5.3 Graphs of contractors and domains

A Contractor Network is a graph of domains and contractors. Fig. 5 provides an
illustration of such graph, with domains pictured by circles and contractors drawn
by boxes. A possible propagation sequence is the following: assume that C3 is first
triggered, either manually or because the contractor has been newly added in the
graph. C3 is added in a stack of contractors L that was empty so far. Then C3 is
called as it is the first (and only) item in the stack. This results in a contraction
of [b], which induces the addition of the connected contractors C2, C4, C3 in L . C2
is then called (first item in the stack), which contracts again [b]: C2 is added again
in L . C4 is now called and contracts [a], which adds C1, C4 in the stack. This
sequence runs until L becomes empty; a fixed point has been reached. One can
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note that the graph may also be made of directed arcs, depending on the involved
constraints. This enhances the propagation and so computation times.

C4[a]C1

C3C2[d]

[b] [c]

C1([a])
C2([b], [d])
C3([b], [c])
C4([a], [b])

⇔

Figure 5: A CN corresponding to four contractors and four domains.

6 Example of use: a SLAM problem

6.1 Formalism

In robotics, Simultaneous Localization And Mapping (SLAM) [37] is a topic that
ties together the problem of state estimation and that of mapping an unknown
environment. A robot exploring its surroundings will associate localization uncer-
tainties to the observed features of the environment, assigning their location with
some error. However, a scene of the environment may be seen several times during
the exploration, thus leading to an inter-temporal measurement which could benefit
both localization and mapping procedures. Indeed, a robot that recognizes a part
of the environment will deduce to be close to a previous position. This chicken-and-
egg problem is difficult to solve with recursive algorithms such as Kalman filters,
due to inter-temporal relations between the states, corresponding to so-called loop
closures [38]. Because SLAM requires a capacity to manage equations involving
states from different times and strong uncertainties, it can be more easily dealt
with tubes and contractors.

We propose to solve a classical range-only SLAM problem using CNs. Let us
consider a robot measuring distances from landmarks for which the position is
unknown. This can be formalized with the following state equations:

x(0) = 0,

ẋ(t) = f(x(t),u(t)),

y(i) = g(x(ti),b
(j)),

(1a)

(1b)

(1c)

with x(t) ∈ Rn and u(t) ∈ Rm, the state and input vectors, y(i) ∈ R a distance
measurement and b(j) ∈ R2 the related landmark of the environment. f and g
are nonlinear functions depicting the evolution of the states and distance measure-
ments. Both u(t) and y(i) are measured with some bounded errors.

6.2 Building a SLAM-CN

In a few steps, the problem is solved with Codac by (i) defining the initial domains
(boxes, tubes) of our variables (vectors, trajectories); (ii) taking contractors from a
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catalog of already existing operators, provided in the library, or building contractors
for specific constraints; (iii) binding the contractors and domains in a CN; (iv)
letting the CN solve the problem by contracting the sets of feasible values.

Eq. (1b) is a differential equation difficult to solve in the nonlinear case. We will
therefore decompose the equation into two constraints v = f(x,u) and ẋ = v in
order to use available contractors, respectively Cf [2] and C d

dt
[34]. Involved domains

are intervals [y](i), boxes [b](j) and tubes [x](·), [u](·), [v](·). The resulting CN is
pictured in Fig. 7, providing an illustration of the decomposition of tubes into
graphs of slices for allowing a finer propagation. The source code of this SLAM-CN
is available on http://codac.io/slam for encouraging future comparisons. The
SLAM-CN runs contractions in less than 1s, providing the results pictured by Fig. 6.
In this example, inter-temporal relations between the states are implicitly managed
by the SLAM-CN. The landmarks are first localized and then used to improve the
localization of the robot. This scenario is automatically managed by the CN.

Figure 6: Contracted tube of positions (in blue) resulting from the SLAM-CN.
The gray tube provides a reference corresponding to the localization drift without
measurements. The estimated position of the landmarks is depicted by black boxes.

http://codac.io/slam
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Figure 7: Illustration of a SLAM-CN associated with System (1) and some mea-
surements from two landmarks b(1), b(2). The contractors and domains, formalized
in a declarative way on the right-hand side, are transformed into a CN partially
pictured on the left-hand side. For ease of reading, [u](·) is not represented on this
figure. The graph reveals how inter-temporal relations are implicitly built.

7 Conclusion

The Codac library offers a catalog of domains and contractors that one can com-
bine into Contractor Networks in order to build interval solvers using a declarative
paradigm. The assets lie both in the simplicity of the approach and the reliability of
the results. It also allows to deal with a wide class of constraints that are classically
encountered in real applications. Future work will concentrate on the development
of the catalog of domains, contractors and separators, as well as improvements of
CNs for real-time implementations.

The library is released under LGPLv3. The list of contributors of Codac is
available on the website of the library, with related publications associated with the
provided tools: http://codac.io. We encourage anyone interested in contributing
to this open-source project to contact us.

References

[1] Alexandre dit Sandretto, J. and Chapoutot, A. Validated explicit and implicit
Runge-Kutta methods. Reliable Computing, 22, 2016. URL: https://hal.
archives-ouvertes.fr/hal-01243053.

[2] Benhamou, F., Goualard, F., Granvilliers, L., and Puget, J. F. Revising hull
and box consistency. In Proceedings of the International Conference on Logic
Programming, pages 230–244, Las Cruces, NM, 1999. DOI: 10.5555/341176.

341208.

[3] Benhamou, F. and Touraivane, T. Prolog IV : langage et algorithmes. In
JFPLC, pages 51–64, 1995. URL: https://www.mcours.net/cours/pdf/

leilclic2/leilclic294.pdf.

http://codac.io
https://hal.archives-ouvertes.fr/hal-01243053
https://hal.archives-ouvertes.fr/hal-01243053
https://doi.org/10.5555/341176.341208
https://doi.org/10.5555/341176.341208
https://www.mcours.net/cours/pdf/leilclic2/leilclic294.pdf
https://www.mcours.net/cours/pdf/leilclic2/leilclic294.pdf
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[23] Le Mézo, T., Jaulin, L., and Zerr, B. Bracketing the solutions of an ordinary
differential equation with uncertain initial conditions. Applied Mathematics
and Computation, 318:70–79, 2018. DOI: 10.1016/j.amc.2017.07.036.

[24] Lohner, R. J. Enclosing the solutions of ordinary initial and boundary value
problems. Computer Arithmetic, pages 225–286, 1987.

[25] Mackworth, A. Consistency in networks of relations. Artificial Intelligence,
8(1):99–118, 1977. DOI: 10.1016/0004-3702(77)90007-8.

[26] Nedialkov, N. and Jackson, K. ODE Software that computes guaranteed
bounds on the solution. In Advances in Software Tools for Scientific Comput-
ing, Lecture Notes in Computational Science and Engineering, pages 197–224.
Springer, Berlin, Heidelberg, 2000. DOI: 10.1007/978-3-642-57172-5_6.

[27] Nehmeier, M. and von Gudenberg, J. W. filib++ , expression tem-
plates and the coming interval standard. Reliable Computing, 15:312–
320, 2011. URL: https://interval.louisiana.edu/reliable-computing-
journal/volume-15/no-4/reliable-computing-15-pp-312-320.pdf.

https://theses.hal.science/tel-00961501
https://theses.hal.science/tel-00961501
https://doi.org/10.1007/s10601-015-9231-9
https://doi.org/10.1007/s10601-015-9231-9
https://doi.org/10.1016/j.engappai.2014.04.010
https://doi.org/10.1016/0005-1098(93)90106-4
https://link.springer.com/book/9780817636999
https://link.springer.com/book/9780817636999
https://doi.org/10.1016/j.amc.2017.07.036
https://doi.org/10.1016/0004-3702(77)90007-8
https://doi.org/10.1007/978-3-642-57172-5_6
https://interval.louisiana.edu/reliable-computing-journal/volume-15/no-4/reliable-computing-15-pp-312-320.pdf
https://interval.louisiana.edu/reliable-computing-journal/volume-15/no-4/reliable-computing-15-pp-312-320.pdf
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RISC-V Based Hardware Acceleration of Interval

Contractor Primitives in the Context of

Mobile Robotics

Pierre Filiolab, Theotime Bollengierac, Luc Jaulinad,
and Jean-Christophe Le Lannae

Abstract

Localization tasks, generally modeled as Constraint Satisfaction Problem
(CSP), are recurring problems in mobile robotics. Known approaches rely on
software libraries which all have their advantages but also their limitations,
among which non-optimal computing performances. This paper proposes a
different approach which consists in extending the RISC-V ISA to provide
hardware support for interval primitives.

Keywords: intervals, contractor programming, RISC-V, IEEE-1788, mobile
robotics, FPGA

1 Introduction

A lot of recurring mobile robotics tasks, such as robust-control or localization, can
be modeled as a Constraint Satisfaction Problem (CSP) and solved by characteriz-
ing the corresponding solution set S. A common way to achieve this is to compute
an inner and outer approximation of S, which is usually done with the help of
contractor algebra and a paving algorithm such as SIVIA [21]. The paver classifies
the search space by recursively calling a contractor to discard parts outside of the
target set. In [7, 15, 20] this formalism is illustrated in real-world robotics examples.

A contractor C for the set X ⊂ Rn is an operator IRn −→ IRn which satisfies:

C([x]) ⊂ [x] (contractance), (1)

[x] ⊂ [y] =⇒ C([x]) ⊂ C([y]) (monotonicity), (2)
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C([x]) ∩ X = [x] ∩ X (consistency), (3)

where IRn is the set of axis-aligned boxes of Rn.

Let C1 and C2 be two contractors. The union and intersection operators are
defined as follows:

(C1 ∩ C2)([x]) = C1([x]) ∩ C2([x]), (4)

(C1 ∪ C2)([x]) = C1([x]) t C2([x]), (5)

where [a] t [b] is the smallest box which contains both [a] and [b].

The members of the robotics community usually rely on the use of existing soft-
ware libraries to implement the contractors required to evaluate solution sets. The
available libraries implement the IEEE-1788 standard on interval analysis [18] to
various extents and define the most common interval primitives (operators, contrac-
tors, ...) for reuse. This paper advocates in favor of a novel approach which adds
support for interval primitives directly in RISC-V hardware. We believe that this
method can be beneficial to solve some of the portability issues occurring in soft-
ware approaches, especially for embedded targets. Another advantage is the ability
to compute with intervals using a tailored speed/precision compromise which is
impossible on general-purpose hardware.

This paper is organized as follows. Section 2 presents a typical mobile robotics
localization problem which is used as a reference throughout the article. Then
Section 3 discusses the benefits of a hardware approach for intervals. Section 4
compares common hardware acceleration techniques while Section 5 presents the
methodology used to create the proof of concept for hardware support of intervals.
Section 6 sums up the obtained results and presents future works.

In the rest of the paper, sets X of Rn will be represented in mathbb font and
intervals [x] or boxes [x] within brackets.

2 State of the art and previous work

Let us consider the following localization problem which will be used for the discus-
sions in this paper. The goal is to solve the CSP which is related to the localization
of a robot (green triangle) using 3 landmarks (red circles) with known positions
(Figure 1). The robot uses its internal sensors to compute the distances di toward
landmark i with i ∈ {1, 2, 3}. The coordinate of each landmark is defined by ai
with i ∈ {1, 2, 3}. Those values are represented by intervals due to measurement
uncertainties. The goal is to estimate the position (xr, yr).

The state vector of the robot is defined as:

x = (xr, yr)
> (6)
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Figure 1: Localization of a robot using 3 landmarks

and its respective domain as:

[x] = [0,∞]× [0,∞]. (7)

A couple of coordinates (xr, yr) is a potential solution if it satisfies the following
constraints (ring equations):

a) (xr − xa1)2 + (yr − ya1)2 ∈ d12, (8)

b) (xr − xa2)2 + (yr − ya2)2 ∈ d22, (9)

c) (xr − xa3)2 + (yr − ya3)2 ∈ d32. (10)

Each constraint gives a corresponding solution sets:

S1 : {x ∈ [0,∞]
2 | (xr − xa1)2 + (yr − ya1)2 ∈ d12}, (11)

S2 : {x ∈ [0,∞]
2 | (xr − xa2)2 + (yr − ya2)2 ∈ d22}, (12)

S3 : {x ∈ [0,∞]
2 | (xr − xa3)2 + (yr − ya3)2 ∈ d32}. (13)

And the solution set for the localization problem becomes:

S = S1 ∩ S2 ∩ S3. (14)

The goal is now to find 3 contractors C1, C2, C3 which respectively characterize
sets S1,S2,S3 and to perform the intersection of contractors to find S.



892 Pierre Filiol, et al.

C1 can be computed with a forward-backward procedure [25] such as HC4-
revised by using the set S1 AST (Figure 2). Note that throughout the article
forward and backward contractors on operator/function ∗ are respectively defined

as
−→
C∗ and

←−
C∗. The resulting contractors can be found in Algorithm 1 and 2.

Figure 2: Abstract syntax tree corresponding to S1

Algorithm 1 Algorithm for
−→
C1

Funct
−→
C1([xr], [yr], [xa1 ], [ya1 ], [d1])

1: [DistX] =
−→
C−([xr], [xa1 ])

2: [DistY ] =
−→
C−([yr], [ya1 ])

3: [DistXSqr] =
−−→
Csqr([DistX])

4: [DistY Sqr] =
−−→
Csqr([DistY ])

5: [DistSqr] =
−−→
Csqr([d1])

6: return [DistXSqr], [DistY Sqr], [DistSqr]

The following libraries are among the most commonly used in robotics:

• Goualard et al’s Gaol [14]. A C++ low-level interval library which is focused
on providing most of the common reverse operators for backward propagation.

• Chabert et al’s Ibex [4] (IMT Atlantique). A library written in C++ targeting
system solving and global optimization problems using interval arithmetic.

• Nehmeier et al’s libieep1788 [24]. A C++ template library focused on rigorous
implementation of the IEEE-1788 standard.
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Algorithm 2 Algorithm for
←−
C1

Funct
←−
C1([DistXSqr], [DistY Sqr], [DistSqr])

1: [DistXSqr], [DistY Sqr] =
←−
C+([DistSqr], [DistXSqr], [DistY Sqr])

2: [a] =
←−−
Csqr([DistXSqr], [DistX])

3: [b] =
←−−
Csqr([DistY Sqr], [DistY ])

4: [xr] =
←−
C−([DistX], [xr], [xa1 ])

5: [yr] =
←−
C−([DistY ], [yr], [ya1 ])

6: return [xr], [yr]

• INRIA’s MPFI [29]. A C library implementing interval arithmetic in arbitrary
precision by using MPFR reliable floating-points.

The contractor C1 can be created by implementing Algorithms 1 and 2 using the
simple contractor primitives available for example in the aforementioned software
libraries.

3 Motivations for a hardware approach

The minimal requirement to perform interval computations in an embedded robotic
system is the availability of an hardware floating-point unit (FPU) . The industrial
standard for that purpose is the IEEE-754 [19] which enables a theoretical porta-
bility of the user code to any compliant hardware. However, no guarantee is made
about consistency and the final result will not be bit-consistent across multiple
{hardware, compiler} pairs. This subject has been extensively researched in con-
tributions such as [9, 13].

This lack of consistency is especially problematic for interval computations
which require frequent switches between IEEE-754 rounding modes to perform
accurate interval bounds evaluation (respectively round to −∞ and round to +∞
for lower and upper bounds).

Another obstacle lies in the implementation of the interval libraries themselves.
Most of them are built using third-party maths libraries which perform fast and
accurate floating-point evaluation at the expense of portability. It is frequent for
them to inline assembly instructions directly in the C code for optimization but as
a consequence the whole library becomes architecture-locked.

For all the reasons detailed above, we believe that relying on a standard floating-
point architecture is not a valid approach. This paper presents a dedicated hard-
ware architecture to accelerate the most common interval primitives along with
a dedicated compiler. The {hardware, compiler} pair thus tackles the problem
of embedded intervals and presents a proof of concept for a hardware accelerator
targeted at the most commonly used interval primitives.
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3.1 Tailored performances for interval computation

A lot of robotics applications require to repetitively call a contractor to make use
of a short-lived sensor input. This is typically the case of the localization example
introduced in Section 2 where the distances di are used to estimate the robot
location. Ideally the contraction fixed-point must be reached before obtaining new
inputs which implies to find a compromise between execution speed and result
precision. These factors are known to be inversely proportional in the context of
floating-point operators [11].

Popular architectures like X86 or ARM use hardware FPUs which are opti-
mized for the IEEE-754 [19] single- and double- precision floating-points. While
these formats are good “one size fits all” trade-offs for most of general-purpose
computations, they can become a limiting factor in some niche applications such
as interval arithmetic. The main reason is that they impose predefined ranges and
precisions for floating-point numbers while real-world problems can have varied
requirements.

Another drawback is the overall hardware complexity induced by general-pur-
pose FPUs which are required to support all the rounding modes defined in the
IEEE-754 standard. An FPU tailored for interval arithmetic, on the other hand,
would only require two rounding modes for bound computations (round to −∞ and
+∞), thus leading to a lower hardware complexity and power consumption.

3.2 Guaranteed computation at hardware level

Interval arithmetic is especially suited to solve hard non-linear problems in a reliable
and efficient way. The IEEE-1788 standard [18] specifies the behavior of interval
operators using various flavors which are all organized as depicted in Table 1. From
now on, we consider only the set-based flavor which is the most commonly used in
robotics.

The mathematical layer describes how interval operations work. It also intro-
duces the notion of decorated intervals comprising a bare interval and a decoration.
The latter are meant to implement the standard way of dealing with non-nominal
cases during computation. The available decorators for the set-based flavor are
presented on Figure 1 and their inclusion relationships are as follows:

com ⊂ dac ⊂ def ⊂ trv ⊃ ill. (15)

In a previous article [10] we had shed light on a recurring contractor arithmetic
bug which occurs when a function evaluates an interval that is not or partially in its
domain of definition. The solution proposed was to mark the incriminated interval
with a ι flag, perform the forward propagation normally and execute a modified
backward propagation which takes the flag into account. A solution in the spirit
of IEEE-1788 would be to create a decorator “out-of-domain” (ood) to handle this
non-nominal case but doing this without breaking the existing logic depicted in
Formula 15 is hard.
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Table 1: The set-based flavor decorators (extracted from [18])

The ι flag information could be added to the standard and could be directly
used by the hardware implementation.An example of an interval encoding using the
ι flag is depicted in Figure 7. This approach comes with a lot of freedom since few
things are currently defined in the standard regarding the bit-level representation
of intervals (decorated intervals, empty set, NaN handling,...).

4 Evaluation of hardware acceleration strategies
for interval arithmetic

4.1 Affordable hardware prototyping with FPGA

The application specific integrated circuit (ASIC) technology is nowadays the indus-
trial standard to produce high-end chips. This design process allows to reach the
highest performances at the price of tremendous costs in development and man-
ufacturing facilities. The resulting chips are made affordable for customers only
through mass-replication which lowers the per-unit cost. As a consequence, this
technique is not suitable for hobbyists or small research teams who operate with
tight budgets and produce only a few prototypes to evaluate the performances of
a specific design.

A solution for this audience lies in the field programmable gate array (FPGA)
technology which comes at much affordable prices. While ASICs operate directly at
transistor level, FPGAs expose an array of interconnected logic cells which contain
the digital building blocks for more advanced logic (Figure 3). The desired behavior
of the user logic is described through hardware description languages (HDL) such
as VHDL or VERILOG which are also widely used in ASIC field. With the help
of dedicated software, called synthesizers, the user can modify the connections
between cells to match the HDL code. This process can be repeated any number
of times and allows incremental development whereas ASICs chips are etched once
and forever. Table 2 briefly compares both technologies.

From now on, any hardware design mentioned in this paper refers to the pro-
duction of HDL code for synthesis on an FPGA chip.
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Figure 3: FPGA reconfigurable network and content of a logic cell [6]

Table 2: Comparison of FPGA and ASIC

FPGA ASIC

Design flow
Reconfigurable circuit

(suitable for prototyping)
Permanent circuitery
(no room for error)

Design input HDL HDL

Entry cost
Low

(from 100 $ to 10k dollars)
High

(typically millions of dollars)
Typical use Prototyping of a few units Mass-production

Energy
consumption

Higher than ASIC Lower than FPGA

Frequencies Lower than ASIC Higher than FPGA

Analog designs Not supported.
Supported

( eg transceivers ...).

4.2 Full hardware equation mapping strategy

FPGA are very efficient at implementing highly specialized circuits for niche appli-
cations that no manufacturer would mass produce for cost reasons. There are no
theoretical issues in translating a set of equations into a dedicated circuit, this ap-
proach is very FPGA compliant and has been done very often in literature [8, 12, 16].
While the equations from a contractor such as C1 are no different and could be
implemented in hardware with great performances, this solution will not be the
preferred one as the main focus is made on re-usability, ease of prototyping and
costs.

Mapping equations from contractors into efficient hardware confronts the de-
signer with difficult FPGA problems such as optimizing the timing and pipelining of
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a big combinatorial circuit. The slightest modification of the input contractor (like
adding an angular measurement for the landmarks) would require to re-engineer
the circuit from scratch and face those difficulties again. In these conditions, it is
difficult to imagine that an interval user would be skilled enough both in HDL and
in hardware development to be really autonomous with this solution. Moreover,
it is frequent to see evolutions in input contractors during the development of a
robotic application.

Another drawback of this method is related to high hardware resource con-
sumption. A circuit with no logic folding would require one instantiation for each
contractor primitive in the target contractor. For example, Algorithm 1 (forward
contraction from C1) performs 3 square contractions which require duplicated logic.
The amount of available hardware resources on a typical FPGA is limited, especially
on the low-end and affordable ones. The use of this technique should be reserved
to either simple contractors (for which the need of an hardware implementation is
dubious) or for production-oriented synthesis on high-end boards.

4.3 Coprocessor strategy

This solution is an alternative to exposing the hardware directly as it was done
in previous technique. The user communicates with a hardware device using a
software abstraction. In general-purpose computing, this paradigm is often imple-
mented using a coprocessor which performs the computation jobs requested by the
main Central Processing Unit (CPU). For example, this is the computation model
adopted in modern Graphic Processor Units (GPUs) where graphic pipeline op-
erations are transferred to a PCI device with the help of APIs such as CUDA or
OPENCL.

This technique suits interval computation and a FPGA could be used as a co-
processor to expose data parallelism (SIVIA boxes for example) in a GPU fashion.
While this system is theoretically the best compromise between re-usability and
performances (logic folding and hardware parallelism), it will not be studied fur-
ther in this paper as it implies too much complexity for a first approach to hardware
intervals. Several problems must be solved to achieve this goal which are beyond
building an efficient interval core. The designer must indeed organize the commu-
nication between several core instances (for parallelism), optimize host to device
communications and produce an efficient compiler.

4.4 Instruction set extension of a general purpose cpu

The two previous subsections have raised the importance of logic folding to lower
the hardware complexity and resources utilization. This new strategy aims at
adding interval operators directly in the main CPU. An Instruction Set Archi-
tecture (ISA) defines the supported assembly instructions and their behaviour in
an implementation-agnostic way to guarantee binary compatibility between sev-
eral chip manufacturers. Popular ISAs come with compiler support for high-level
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languages such as C thus allowing the development of general-purpose software
libraries (libc,...).

This paper aims at extending an existing ISA to support a cleverly chosen set of
hardware interval primitives. The main benefit is to produce more efficient libraries
that make use of hardware interval instructions instead of the general-purpose ones
(Figure 4). This operation requires both the modification of the CPU (circuit) and
the compiler (to use the new instructions).

In practice, there is no official mechanisms to alter mainstream CPUs from
brand such as INTEL, AMD or ARM to inject new hardware instructions. First
and foremost, their architecture design is extremely complex (gate-level design)
and the manufacturing process requires industrial tools which are far beyond the
budget of hobbyists. Additionally, the corresponding ISAs are distributed under
proprietary licenses which prevent any legal modifications. Finally, as older ISAs
such as X86 have very limited available opcode space remaining, manufacturers are
reluctant to add new instructions to the standard unless there is a major consensus.

Figure 4: ISA and software stack modification

5 Design of a RISC-V interval custom extension

5.1 The RISC-V standard

The RISC-V standard brings some solutions to the aforementioned problems. Con-
trary to X86/ARM, it is an open and free ISA [31] whose specification started in
2014 as a purely academic project carried out by the university of Berkeley. As a
consequence, anyone is free to implement a core which follows RISC-V standards
without paying royalties to any third-party. The main philosophy behind RISC-V
is to promote a simple processor model featuring a load-store micro-architecture
typical of Reduced Instruction Set Computer (RISC) in opposition to the Complex
Instruction Set Computer (CISC) adopted by X86 processors. The performances
and overall simplicity of RISC-V design has gained traction in the last years for
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low-power/embedded applications in various fields such as neural-networks [22],
cryptography [5] or in our case robotics [32].

Figure 5: The standard extensions [28]

The standard provides no hints about processor implementation but enforces
several design characteristics about the ISA:

• The ISA is designed with modularity in mind. Any RISC-V implementation is
composed of a mandatory base ISA (named I) and a number of ISA extensions
(identified by a letter). The aim is to allow the user to build a custom
processor perfectly tailored for a specific need. All the extensions currently
specified in the standard are displayed in Figure 5. A RISC-V core can be
described using a naming convention which consists in RV + the register
width (in bits) and the supported extensions. For example, a RV32IMFD is
a 32 bits core implementing extensions I (base), M (integer multiplication),
F (single-precision floating point support) and D (double-precision floating
point support).

• The ISA specifies the required registers for each extension as well as their
width. For example, base extension (I) comes with 32 registers of width 32
or 64 (depending on the chosen implementation).

• The ISA can be extended with custom extensions to add application-specific
operators.

Another strength of the standard lies in its very rich software ecosystem. The
user can access a fully-fledged GCC compiler with a dedicated RISC-V toolchain



900 Pierre Filiol, et al.

which takes into account which extensions are actually available in the core to
produce optimized binaries.

5.2 Objectives and virtual prototyping

The paper will use the RISC-V standard as a way to demonstrate the feasibility of
adding hardware support for intervals and tackle real-world robotic problems. A
complete strategy would be as follows:

• Due to the overall simplicity of the standard, it is possible to synthesize an
HDL description of a RISC-V core on a middle range FPGA. A lot of core
designs can be found in various configurations either in the literature such as
[26, 23] or bought from Intellectual property (IP) vendors such as Sifive.com.
This allows to build a baseline effortlessly and evaluate the performances on
the localization problem given in section 2 with only the standard instructions.
The target core configuration is set to RV32IMAFD for the reasons exposed
in Section 5.3.

• After the initial performance measurement, we take advantage of RISC-V
extensibility to add support for a new extension geared toward interval com-
putation named xinterval. Two major tasks must be done to achieve this
goal. The first one is to implement the xinterval instructions in hardware
(using an HDL) and to integrate them in the base design synthesized on
FPGA (Section 5.3). The second one consists in adding support for instruc-
tions in the compiler. To this end, we rely on the available RISC-V GCC
which has also been designed with extensibility in mind and allows to define
new instructions easily (Section 5.4).

• Evaluate the performances on the localization problem given in Section 2 with
the new instructions/compiler and compare with previous results.

The hardware design of a RISC-V extension is a complex topic which demands
an extensive knowledge of the underlying micro-architecture and raises various op-
timization trade-offs. This has been done in literature in works such as [3, 28] and
[2]. As a first step we wanted to prove that intervals could be added to RISC-V
ISA in an efficient way without worrying too much about hardware implementa-
tion. This goal can be achieved through Virtual Prototyping (VP) which allows
functional evaluation. This approach is often used in system design [1, 17, 27]
to decrease development times and help in the upcoming Register Transfer Level
(RTL) verification step. The development of hardware primitives in an HDL and
its integration is a RISC-V core is left as future work and will be the main topic of
a next article.

The VP used in this study is organized as depicted in Figure 6. The host
computer runs a simulation program where a robot tries to estimate its location
using 3 landmarks with fixed coordinates (box 3○ on Figure 6). At each simulation
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step, the distance measurements between the robot and each landmark are sent
in the memory of a simulated RISC-V core (box 1○ on Figure 6). The processor
simulator is another program written in C++ which aims at achieving functional
emulation of a binary code execution up to the assembly level. It implements the
required RISC-V standard extensions and xinterval instructions and is able to
execute a binary code compiled with the custom GCC presented in Section 5.4.
Practically, the simulated core runs an implementation of Algorithms 1 and 2 from
section 2 implemented with xinterval instructions instead of traditional floating-
point.

5.3 Design principle of the xinterval custom extension

The simulated core 1○ from Figure 6 is defined by RISC-V standard as a
RV32IMFD. It implements the following standard extensions and registers:

Table 3: Extensions used in the simulated core

Letter Name Number of instructions
I Base Integer 40

M Integer Multiplication 8
F Single-precision floating-point 26
D Double-precision floating-point 26

Table 4: Registers used in the simulated core

Names Characteristics Number
x0-x31 32-bit integer register 32
f0-f31 32-bit floating-point register 32

The simulated core relies on standard extensions F and D which bring dedicated
registers and instructions (Tables 2 and 3) to enable floating-point support respec-
tively in single (32-bit) and double (64-bit) precisions. An interesting feature of the
RISC-V standard is the ability to handle 64-bit floating-point numbers on a 32-bit
processor (identified by RV32xxx) by working on pairs of 32-bit floating-point regis-
ters. The main idea behind xinterval integration is to fit the interval representation
into one of the aforementioned register, to take advantage of the standard F/D in-
structions to handle load/store operations and to develop the missing HDL logic
to perform interval computations. Section 3.1 recalled that a hardware approach
allowed to tailor the performances according to the needs of a specific application.
For intervals, this translates into the ability to configure the floating-point format
used to encode the bounds of an interval instead of forcing a sub-optimal IEEE-754
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{ {

Figure 6: The RISC-V evaluation testbench
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format. A direct consequence is the impact on performances in matter of latency,
resource utilization and frequency of the resulting hardware design which allows to
address a wide range of applications and targets.

In the particular context of RISC-V integration, the interval representation
needs to fit a 64-bit double register. We made the choice to use the interval rep-
resentation depicted in Figure 7. Here, a bound is encoded using 31 bits with a
7 bits exponent field (while 8 are used in IEEE-754 single precision). Practically,
this reduces the range of representable numbers (which still remain acceptable for
typical robotics applications) but leaves room for two additional 1-bit flags in the
64-bit data. The empty flag marks an empty set and the ι flag is applied to intervals
which are subject to the phenomenon illustrated in Section 3.2. If an application
requires greater speed at the expense of precision, it would be possible to further
reduce the number of bits used for the bounds, even if this means leaving unused
offsets in the register.

Figure 7: The 64-bit interval representation used in xinterval

The custom xinterval extension contains instructions to perform the forward
and backward contractions of recurring interval primitives. The RISC-V standard
introduces limitations that force instructions to adopt one of the encoding shown
in Figure 8. Most of the time, we use the R-Type which stands for ”register
instruction” and encodes a destination register (rd) and two source registers (r1
and r2). Fields opcode, funct3, and funct7 are used to discriminate between two
R-Type instructions and send them to the right portion of the logic circuit in the
processor. For interval primitives with two inputs (addition, ...) the associated
backward contractor must have 3 inputs (see Table 5) which forces to use the R4-
Type which is a sub-case of R-Type where the funct7 is partly replaced by a third
source register r3. To ease the explanations, instruction formats used in this section
will be named using RISC-V GCC terminology (Section 5.4/Table 5).

The general design philosophy used in xinterval will now be reviewed through
2 examples:

The addition is a case of a two inputs arithmetic operator for which xinterval
instructions are summed up in Table 6. The forward contractor performs a simple
addition using the input interval operands saved in registers rs1,rs2 and stores the
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Table 5: An extract of GCC terminology for instruction fields

Mnemonic Meaning
D Fp destination register
S Fp source register 1
T Fp source register 2
R Fp source register 3

Figure 8: Legal instruction formats in the RISC-V standard

result in destination register rd. Two corresponding backward-contractors can be
defined to contract each input separately. In robotics, the output of the backward
contraction is often intersected with the corresponding input pre-propagation to
update state variables (xc and yc in Table 3). As a consequence, we made the
choice to optimize this precise case at the expense of an additional register rs3.

Table 6: Instructions linked to operator +.

Instruction Prototype Type Operation Register
movements

addfwctc ”D,S,T” + forward z = x + y rd = rs1 + rs2
contractor

addbwctc1 ”D,S,T,R” + backward xc = x ∩ (z - y) rd = rs1 ∩ (rs3 - rs2)
contractor 1

addbwctc2 ”D,S,T,R” + backward yc = y ∩ (z - x) rd = rs2 ∩ (rs3 - rs1)
contractor 2

The principle differs a bit for algebraic and elementary functions, and especially
for those which are not defined everywhere and suffer from the bug recalled in
Section 3.2. The example of the square root illustrates all these issues. The forward
contractor performs a modified version of the square root (sqrtι) which sets the ι
flag of the output interval when the input is not entirely in the domain of definition.
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The backward contractor evaluates the ι flag of the input and performs a mod-
ified version of the backward square root function (sqrtιbw). It works the same
way as the traditional operator but decorates the interval with a iota if the input
is partially in the square root domain of definition. This time, square root required
only one interval input (in rs1) so the matching prototype in RISC-V assembly for
forward and backward are respectively ”D,S” and ”D,S,T”. These operations are
described in Table 7.

Table 7: Instructions linked to function
√

.

instruction Prototype Type Operation Register
movements

sqrtfwctc ”D,S” Square root y = sqrtι(x) rd = sqrtι(rs1)
forward contractor

sqrbwctc ”D,S,T” Square root xd = rd =
backward contractor sqrtιbw(x, y) sqrtιbw(rs1, rs2)

The custom extension xinterval proceeds in an analog way for all the operators
and algebraic, elementary functions which are often used in robotics applications
(Table 8).

Table 8: Supported contractor primitives in xinterval.

Addition Subtraction Multiplication Division
Square root Square Exponential Logarithm

Cosine Sine

5.4 Modification of the software stack

The GCC RISC-V toolchain is an open-source project bundled as part of the RISC-
V software stack. Support for new instructions can be added by modifying the
binutils module whose purpose is to convert assembly code into an executable
binary. This module is then called by GCC as part of the compilation process as
depicted in 2○ in Figure 6. This method is simple because it only requires the
modification of binutils assembler which is a far less complex code base than the
compiler itself.

The encoding of new assembly instructions must be added to the source code
of binutils and satisfy two rules:

• Uniqueness: two instructions cannot have the same encoding to prevent col-
lisions.

• Format: instruction must have one of the legal types presented in Figure 8.



906 Pierre Filiol, et al.

Let us take the example of two-input forward-contractors of xinterval presented
in Section 5.3. Since they belong to the R-Type, each new instruction must have
a unique {opcode, funct3, funct7} combination which does not collide with other
standard instructions. Field opcode acts as a preliminary filter and is encoded
using 7 bits. The standard has officially left some opcode values unused (0xB,
0x2B, 0x5B and 0x7B) by built-in extensions to accommodate custom increments
(Table 9). An opcode can only regroup instructions of same formats due to micro-
architecture limitations but this is not a problem for us since most of our added
operators are R-Type with the opcode value fixed (0xB), all our 2-inputs forward
contractors must have unique {funct3, funct7} pairs as depicted in Table 10.

Table 9: The opcode space of the RISC-V standard

Table 10: Examples of forward-contractor encoding in xinterval

instr name funct7 rs2 rs1 funct3 rd opcode
addfwctc 0000000 - - 100 - 0001011
subfwctc 0000001 - - 100 - 0001011
mulfwctc 0000010 - - 100 - 0001011
divfwctc 0000011 - - 100 - 0001011

In the source code of binutils, the user can add a relationship between an as-
sembly mnemonic (ie the name of the instruction as written in code) and a machine
code encoding [30]. This information is used by GCC during the compilation pro-
cess GCC to produce efficient machine code from the assembly code.

After the patch, RISC-V GCC is now able to compile the following C code
using our new instructions (Listing 1). The same process can be repeated for all
instructions of xinterval to lay the foundations of a hardware-accelerated interval
library as presented in Figure 4.
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/* interval is defined as a double (64 bits) */

typedef interval double;

/* inline function which uses of xinterval instruction addfwctc */

/* inputs loaded from double registers */

/* output stored in double register */

inline interval __attribute__ (( always_inline))

_addFwCtc(interval itv1 , interval itv2) {

interval result ;;

asm("addfwctc %0, %1, %2" : "=f"(result) : "f"(itv1), "f"(itv2));

return result;

}

Listing 1: Calling addfwctc from C

5.5 Solving the localization problem

In order to solve the localization problem, the robot must compute the intersec-
tion of contractors C1, C2 and C3 using the landmark distance measurements. We
implemented Algorithms 1 and 2 in C with explicit use of xinterval operators to
mimic an embedded program running inside a robot. It was then compiled with
the modified GCC and executed by the simulated core presented in Section 5.2.
( 1○ on Figure 6 ).

The event simulator shown in 3○ on Figure 6 is an external tool which generates
coherent sensor measurements to simulate a trajectory between landmarks. These
data are periodically written to the robot sensor virtual device to be used by the
program running on the ISS. After each localization step, the pose estimate and the
SIVIA box are written to dedicated robot devices for a posteriori analysis. Figure
9 shows examples of localization paving obtained with our virtual prototype.

6 Results and future works

This paper discussed the advantages of using dedicated hardware to perform inter-
val computations in the context of embedded robotics. This approach differs from
the usual one which consists in using software libraries in conjunction to general-
purpose hardware. We took advantage of the RISC-V standard to design a custom
ISA extension regrouping interval primitives such as forward and backward contrac-
tors (Section 5.3). Naturally, the existing software stack and especially the GCC
compiler has been modified to expose the new assembly instructions in a high-level
language such as C (Section 5.4). Finally, we tested the core in a real-world lo-
calization problem using a virtual prototype and performed a successful run of the
Algorithm 1 and 2 as shown in Figure 9 (Section 5.5).

As stated in Section 5.1, the goal of this paper was not to implement a full hard-
ware accelerator but to demonstrate the possibility of handling interval primitives
directly in hardware. The presented virtual prototype demonstrated the model
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Figure 9: Contractors union and intersection (simulated hardware)
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correctness up to the machine code level and is a step toward another refinement
of the model to add the RTL layer (under the form of HDL code).

In future works, the focus will be made on the transition between virtual proto-
type and hardware synthesized on FPGA. The design strategy explained in Section
5.1 will be performed. The main topics are recalled below:

• Synthesis of an existing RISC-V design on a middle-range FPGA. As ex-
plained in Section 5, this has been done several times in literature and a lot
of designs on shelf are available.

• Execution metrics such as execution time. number of clock cycles and overall
frequency will be measured on Algorithm 1 and 2 with only the standard
extensions. This process gives a baseline to compare with interval-dedicated
instructions.

• Implementation of interval primitives in hardware and integration in RISC-V.
The most challenging part is to implement IEEE-754 arithmetic and algebraic
operators in an HDL such as VHDL. Once again, such a topic has been widely
studied in the literature and the job will be to perform the concatenation of
all this work in a dedicated chip. As we target multi-precision, several design
trade-offs must be explored for these operators which are mainly hardware
resources utilization on FPGA, output frequency and latency.

• Characterization of the performances achieved by the hardware acceleration.
We will re-run the Algorithms 1 and 2 (now compiled with xinterval support)
and compare the results through the prism of the metrics defined in Step 2.
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instruction set manual, Volume I: User-level ISA, version 2.0. Technical Report
UCB/EECS-2014-54, EECS Department, University of California, Berkeley,
2014. URL: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-
2014-54.html.

[32] Zelensky, A., Alepko, A., Dubovskov, V., and Kuptsov, V. Heterogeneous
neuromorphic processor based on RISC-V architecture for real-time robotics
tasks. In Dijk, J., editor, Artificial Intelligence and Machine Learning in De-
fense Applications II, Volume 11543, page 115430L. International Society for
Optics and Photonics, SPIE, 2020. DOI: 10.1117/12.2574470.

https://doi.org/10.3390/jlpea12040052
https://doi.org/10.3390/jlpea12040052
https://www.eetimes.eu/creating-a-custom-processor-with-risc-v/
https://www.eetimes.eu/creating-a-custom-processor-with-risc-v/
https://doi.org/10.1007/978-3-030-43222-5_31
https://inria.hal.science/hal-02162346
https://inria.hal.science/hal-02162346
https://hsandid.github.io/posts/risc-v-custom-instruction/
https://hsandid.github.io/posts/risc-v-custom-instruction/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
https://doi.org/10.1117/12.2574470


Acta Cybernetica 26 (2024) 913–932.

GPU-Accelerated, Interval-Based Parameter

Identification Methods Illustrated Using the

Two-Compartment Problem

Lorenz Gillnerab and Ekaterina Auerac

Abstract

Interval methods are helpful in the context of scientific computing for
reliable treatment of problems with bounded uncertainty. Most traditional
interval algorithms, however, were designed for sequential execution while in-
ternally depending on processor-specific instructions for directed rounding.
Nowadays, many-core processors and dedicated hardware for massively par-
allel data processing have become the de facto standard for high-performance
computers. Interval libraries have yet to adapt to this heterogeneous com-
puting paradigm.

In this article, we investigate the parallelization of interval methods with
an emphasis on modern graphics processors. Using a parameter identifica-
tion scenario in combination with newly developed or enhanced GPU-based
interval software, we evaluate different methods for reducing the size of large
interval search domains. For the first time, algorithmic differentiation can
be used with intervals on the GPU. Different versions of interval optimiza-
tion algorithms are compared wrt. their functionality, run times, and energy
consumption.

Keywords: parameter identification, interval software, parallelization, GPGPU

1 Introduction

Since many decades, interval analysis [27] has been used in the context of scientific
computing for obtaining verified solutions to many problems, for example, in com-
puter graphics or in engineering. One of its advantages is the possibility to quantify
or propagate bounded uncertainty through systems in simulations in a determinis-
tic way. Many of the major programming languages have built-in interval capabil-
ities; over 20 libraries for interval arithmetic alone are available today. With the
emergence of multi-core processors, parallelization of interval methods using well
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established libraries such as C–XSC, Boost, or Profil/Bias has been tested in
multi-threaded and distributed systems [11, 23, 28, 35]. However, high-performance
computing industry is moving towards developing specialized hardware to acceler-
ate repetitive tasks, for example, graphics processing units (GPUs), data processing
units (DPUs), or field-programmable gate arrays (FPGAs). Interval software still
has to be adapted to such specific co-processors.

Especially general-purpose graphics processing units (GPGPUs) have inspired
much interest among the scientific community. One part of the reason is their
low cost and high availability compared to conventional supercomputers or large-
scale CPU clusters. The application of GPUs for computations with the focus
on uncertainty has been investigated in [2, 3, 9, 10, 29, 34], just to name a few.
Nonetheless, popular interval libraries cannot typically be used on the GPU directly,
because the co-processors’ architecture differs significantly from that of conventional
CPUs. For example, the switching of rounding modes commonly applied in CPU-
based interval libraries, which has a negative influence on computing performance,
is not necessary on the GPU, since most mathematical operations are available
as specifically rounded versions. Notable examples of custom interval libraries for
the GPU are given in [5, 7, 21]. In this paper, we are interested in the usefulness
of GPUs in the area of interval computations. We extend traditional (sequential)
ideas to the massively parallel computing paradigm of GPUs and apply them in a
classic parameter estimation scenario.

The paper is structured as follows. In Section 2, the basics of the employed
interval techniques are described and software implementing them on the GPU is
highlighted where applicable. In Section 3, parameter identification methods we
implement using the GPU are detailed. In Section 4, we employ the described
methods within our testing procedure relying on the well-known example of a two-
compartment problem and highlight the comparison results. A perspective on the
paper’s findings and an outlook on our further research are in Section 5.

2 Background on Interval Analysis

In this section, we provide a short overview of the concepts from the area of interval
analysis that are applied in the rest of this article. Where necessary, we also
highlight the GPU-based software implementing them.

2.1 Interval Analysis and Algorithmic Differentiation

Interval analysis (IA), formally introduced by R. Moore in 1966 [26], is a powerful
mathematical tool for verified computations, that is, computations with an auto-
matically provided guarantee of correctness. In the context of scientific computing,
IA offers a way to compensate for numerical uncertainty caused by finite floating
point (FP) number representation as specified by the IEEE 754 standard. Instead
of working with a crisp FP number approximating a given real number, IA meth-
ods rely on an interval with FP bounds containing it, propagating this uncertainty
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through a computation. Almost as a by-product, this approach allows us to propa-
gate uncertainty representable by intervals through systems in a deterministic and
verified way. A real interval x is a closed interval defined as

x = [x, x] = {x ∈ R | x ≤ x ≤ x} ,

whereas a machine interval has to be additionally rounded towards ±∞ to the next
possible representation [⌊x⌋, ⌈x⌉]. For two intervals x and y, arithmetic operations
◦ ∈ {+,−, ·, /} can be defined as

x ◦ y = {x ◦ y | ∀x ∈ x, y ∈ y} ,

while elementary functions ζ(.) (e.g. sinx) can be extended for the use with intervals
as

ζ[](x) = [min{ζ(a) | ∀a ∈ x},max{ζ(b) | ∀b ∈ x}] .
These simple rules can be used to define (naive) interval arithmetic, that is, a way
to evaluate composite functions over intervals directly, without having to solve any
optimization problems as in the equation above. There are more involved interval
algorithms, for example, those for computing verified enclosures of solutions to
(non-linear) systems of (differential) equations.

Although replacing FP values by intervals guarantees an enclosure of the true
result, the results can exhibit overestimation, that is, intervals being wider than
necessary. This behaviour originates from the so-called dependency problem, when
multiple occurrences of the same interval variable are interpreted as separate new
variables, and the wrapping effect, meaning that an interval enclosure of any (multi-
dimensional) shape not identical to an axis-aligned box will always contain some
amount of superfluous data [27].

The ability to perform automatic differentiation (AD) is essential for any form
of (non-naive) interval analysis [14]. For example, the centered form of an interval
extension to the real-valued function g, in the univariate case defined as

g[τ ](x) = g(τ) + g′(x) · (x− τ), τ ∈ x , (1)

requires the evaluation of the first derivative of g. The same is true for interval
root-finding algorithms, such as the interval Newton method [5]. The widely used
divided differences method

g′(x) ≈ g(x+ h)− g(h)

h
(2)

yields only an approximation of the true derivative, with the error increasing as the
step size decreases, which makes computations using it less reliable [4]. Although
symbolic differentiation (SD) produces expressions for exact derivatives, it might
exhibit a considerable computational overhead (since it is a top-down approach) or
even increase overestimation when used with intervals [16]. By contrast, automatic
differentiation allows us to compute the value of a function’s exact derivative at a
specific point or its enclosure in a bottom-up approach without errors introduced
by floating point approximation and with less of the overhead. In general, AD falls
into three steps:
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1. Decomposition of g into elementary expressions (e.g., lnx)

2. Differentiation of elementary expressions
(
e.g., ∂

∂x lnx = 1
x

)
3. Application of the chain rule, i.e.

(y(x(t)))′ = ∂y
∂t = ∂y

∂x ·
∂x
∂t = y′(x(t)) · x′(t) , e.g., ∂

∂t lnx(t) =
1

x(t)x
′(t) .

This allows us to differentiate not only mathematical functions, but also entire code
segments containing them. While there is a wide selection of AD libraries available,
some of them even compatible with the GPU [13], interval arithmetic is typically
not supported by these libraries. Although many popular interval libraries can
perform AD of interval-valued functions on the CPU, to the authors’ knowledge,
the Julia language is the only open-source tool offering a straightforward way of
using AD with interval-valued functions on the GPU [31], see Section 2.3 for details.

2.2 Cooperativity

For the so-called cooperative dynamical systems, it is possible to perform set-based
computations taking into account bounded uncertainty in parameters without nec-
essarily applying methods with result verification. Consider an ODE system in the
explicit, autonomous form

y′ = f(y, p), y : R 7→ Rny , p ∈ Rnp , f : Rny+np 7→ Rny (3)

depending on a time-invariant parameter p (that is, p′ = 0) and parameter-invariant

initial conditions y (t0) of the solution function y (that is,
∂yi(t0, p)

∂pj
= 0), possibly

influenced by bounded uncertainty with y(t0) ∈ y0 for a t0 ∈ R and p ∈ p, where
the bold face denotes characteristics described by intervals as introduced in the
previous subsection. The property of cooperativity holds for the system in Eq. (3)
if

∂fi
∂yj
≥ 0 for all i ̸= j, i, j = 1 . . . ny . (4)

Müller’s theorem [25] combined with the property of cooperativity results in the
Smith’s theorem [32] that shows the possibility to quantify the uncertainty in the
system (3) by working with two systems with crisp parameters that are independent
of each other (the bracketing systems)

y′lb = f(ylb, pb) and y′ub = f(yub, pb) (5)

instead of one system with uncertain parameters. Here, pb means that the crisp
values of the lower or upper bounds of the interval p = [plb , pub] are used (not the
values in between them). The true result y(t) lies in the convex hull [y

lb
(t), yub(t)]

of the enclosures ylb(t), yub(t) of the true solutions ylb(t), yub(t) to (5). Considering
such enclosures in each point of time tk of the chosen time grid gives us the verified

flow of the uncertain system (3) over this grid. Good approximations y
(k)
lb , y

(k)
ub
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to the verified solutions ylb(tk), yub(tk) are obtained by solving the systems in (5)
using traditional floating point arithmetic (e.g., solvers odeint available in the C++
library Boost). This procedure captures the bulk of output uncertainty and can
be useful on the GPU (cf. Section 3.2.1) since appropriate GPU implementations
of verified ODE solvers are not available at the time of writing.

2.3 Software for IA and IA-Based AD on the GPU

Implementation of interval methods in any programming language requires interval
arithmetic as the core component; performing full interval analysis for a practical
problem often needs further functionalities and methods. The C–XSC toolbox [20]
or INTLAB [30], for example, offer additional modules for AD, root-finding and
optimization, but due to their CPU-specific instructions for rounding control, they
are not suited for use on the GPU. One very promising tool for GPU computations
involving interval-based AD is the Julia language, because its meta-programming
approach allows for generating hardware-specific instructions from generically for-
mulated source code. In [31], it was demonstrated that it was indeed possible to
compute derivatives of interval functions for both the CPU and GPU, albeit with-
out tight-as-possible rounding and full support for elementary functions. However,
the focus of this paper is on native C++ implementations, because the comfort of
Julia’s generic programming comes at the price of lengthy compile times.

The Compute Unified Device Architecture (CUDA) is the programming frame-
work for NVIDIA-manufactured GPUs. A basic library for interval arithmetic on
CUDA-compatible GPUs was presented in [7]. This library has been extended by a
selection of elementary set-based functions in [8]. While arithmetic operations such
as addition are available in different directed rounding modes in CUDA C++, the
same is not true for trigonometric and other elementary functions. Their results,
therefore, need to be rounded to the next and previous FP number if the simplest
kind of enclosure is to be obtained. Hence, enclosures produced by the GPU are
in some cases wider than they would have been on the CPU. We use our own,
enhanced version of this interval library for all interval computations in this paper.

To use interval methods requiring derivatives, programmers are required to pro-
vide all necessary derivatives directly in the source code at the moment. To enable
AD for these libraries, we ported the forward mode of the well-established C++
library Fadbad [6] to the CUDA C++ dialect. It is entirely template-based, which
allows it to work both with different FP data types and interval ones, as long as a
corresponding arithmetic is defined completely. Compatibility with CUDA-capable
devices can be implemented in a fairly straightforward way, at least in the case of
forward mode AD. The data structures and functions used by Fadbad are entirely
compatible with CUDA-intrinsic functions, so they merely have to be labeled as
suitable for CPU ( host ) and GPU ( device ) use. This modification makes
Fadbad the first AD library to fully support IA on both the CPU and the GPU.
A topic for our future work is to test the limitations of this implementation on the
GPU and to improve it accordingly, if possible.
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3 Parameter Identification

In this section, we describe set-based optimization methods — some of them based
on IA and fully verified — for the general goal of parameter identification on the
GPU. Our approach is not to parallelize a given optimization method; rather, we
rely on the massive data parallelism of the GPU to employ brute-force techniques
that would be too time-consuming on the CPU.

3.1 General Possibilities for Parameter Identification

The task of identifying n unknown but bounded system parameters can be viewed
as a global optimization problem of the form

min
x∈Rn

c(x), c : Rn 7→ R , (6)

where c is the objective (cost) function wrt. the system parameters x. According
to the widely used least-squares principle, the cost function Φ can be employed to
identify unknown parameters p ∈ Rnp of a dynamic model of the form in Eq. (3)
with initial conditions at t0 := Tb − 1, given a search space p ∈ IRnp and measured
data over a discrete time grid tk ∈ {Tb, Tb + 1, . . . , Te}:

Φ(p) =

Te∑
k=Tb

nm∑
j=1

(
yj(tk, p)− y

(k)
m,j)

)2 p∈p−→ min , (7)

where yj(tk, p) is the jth component of the solution to the model in Eq. (3); y
(k)
m,j

is the jth component of the measurement made for the solution at the time point
tk ∈ [Tb, Te]; nm is the number of the measured solution components; Te, Tb are the
end and start times of data recording. There are different possibilities to tackle this
problem, with varying degrees of verification associated with them. The available
options are:

F0 Do we use the formula in Eq. (7)?

F0.a (no) Experimental/neural networks/other F0.b (yes) Least squares

F1 How exactly is y(tk, p) obtained?

F1.a A closed-form solution

F1.b Approximation by an expression (e.g., Euler’s method)

F1.c Numerical solution from a “black-box” solver

F2 What is the underlying technique for the implementation?

F2.a Fixed or floating point F2.b Interval F2.c Other verified

F3 How do we represent the measured data y
(k)
m,j?
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F3.a As provided by sensors: Hundreds of MB of floating point numbers

F3.b With the help of any reliable means for data reduction

As an example, consider the set of options F0.a-F1.b-F2.b-F3.a. The true solu-
tion y(t, p) of the IVP in Eq. (3) can be approximated by an explicit method (e.g.,
Euler’s) in its interval version taking into account numerical errors but not the dis-
cretization error. For Euler’s method, the formula is y(k) := y(k−1)+h·f(y(k−1),p)
for a constant step size h := tk − tk−1. The interval approximation y(k) at tk is
then substituted for the exact solution y(tk, p) in the cost function (7) and the
discretization error ignored. For the example we consider in this paper as an illus-
tration (cf. Section 4.3), the step size is chosen to be equal to the sampling time for
the data, h = 1. In general, for this approach to give good results, that is, for y(k)

to be an acceptable approximation of the true solution y(tk, p), this sampling time
(or the step size) should be significantly smaller than the dominant time constant
of the process described by the IVP. The approximated cost function can then be
rewritten as

Φapp(p) =

Te∑
k=Tb

nm∑
j=1

(
y
(k−1)
j − y

(k)
m,j + h · fj(y(k−1), p)

)2

, (8)

where y(Tb−1) is the initial condition. Although the whole process is not verified,
even if interval optimization procedures are applied, the overall verification degree
is high if the first (and second) derivatives of Φapp are computed exactly with the
help of AD.

Option F3 deserves a separate discussion. On modern multi-processor systems,
high-bandwidth interconnect technologies and large amounts of expandable main
memory allow for quick access to terabytes of data, either stored locally or in a
distributed manner. By contrast, GPUs typically have a fixed amount of on-board
memory that is often limited to a fraction of the capacity available on the CPU. So
in case of option F3.a, the question arises how large data sets should be handled
on the GPU. Data partitioning and sequential processing of small data blocks at
a time involves many expensive memory transfers. One idea is to interpolate the
data, for example, by a (piecewise) scalar Bézier curve b(t) depending on time
with a predefined degree and enclose them in a verified way by a corresponding
interval extension b[](t). That is, the kernel functions depending on data can be
implemented much easier and more efficiently on the GPU using Option F3.b.

Using the CPU as the basis, we explored, for example, the option F0.b-F1.b-
F2.b-F3.a for different kinds of solid oxide fuel cell models in [1, 19]. The option
F0.a-F1.c-F2.a-F3.a is studied for a distributed heating system on the GPU in [2].

3.2 Optimization Algorithms

In this subsection, we describe in detail different GPU-based optimization ap-
proaches depending on the choices made according to the general options from
Section 3.1. All of them are brute-force approaches; the availability of the cheap
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GPU computing power makes it possible to carry them out in acceptable time.
Note that the algorithms proposed here do not try to parallelize a sequential opti-
mization algorithm, but rather execute the sequential approach for each considered
data item in parallel.

3.2.1 Experimental Identification

Let us suppose that measurements y
(k)
m,j for specified solution components yj(t) are

available at all times tk ∈ {Tb, . . . , Te}. For these, plausibility bounds ym,j can
be derived on the basis, for example, of physical constraints or of tolerances of
measurement devices. This information can be used to reduce the initial search
box p for optimal parameters. A general scheme for a brute-force algorithm is

Step 1 Bisect p =
l⋃

j=1

pj until a predefined bound on the width of pj is reached

Step 2 Compute an enclosure y
(k)
i of yi(tk,pj) in parallel

Step 3 Exclude pj if ∃k, i: y(k)
i ∩ y

(k)
m,i = ∅ (in parallel)

Result List L ⊆ {1, . . . , l} containing indices of suitable boxes

Steps 2 and 3 can be performed on the GPU, for example, in floating-point arith-
metic using the Smith theorem [32]. Moreover, the plausibility test in Step 3 can
be replaced by any other test mentioned in the next subsection. One possible use
for the results is to build the hull of pj for j ∈ L to obtain a reduced search space.
The algorithm can then be reiterated if necessary using the tighter search interval
with a lower bisection bound. A possibly better use is to compute the convex hull
of enclosures for y(tk,pj) for j ∈ L (again on the GPU). This new enclosure can
be good enough even without subsequent least squares.

3.2.2 Preconditioning

When the parameter domain has a large plausibility range, different preliminary
tests can be applied to exclude boxes from the search [18, 33]. In the brute-force
algorithm in the previous subsection, the test in Step 3 can be replaced by various
other preconditioning approaches.

The midpoint test is one possibility for such preconditioning. A box pj is
excluded from the search space if c[](pj) > z∗, where z∗ is an enclosure of the global

minimum and c[] an interval extension of the cost function c [18]. For example, we
know that the least squares cost function Φ(p) from Eq. (7) has zero as its global,
ideal minimum. This global minimum, however, might not be known beforehand in
general, or cannot be reached. On the GPU, where all tests are virtually executed
at the same time, this value must be chosen carefully.

A more elaborate option is the monotonicity test. A box pi is excluded from
the search if it fails to satisfy the condition 0 ∈ ∇c[](pi) (∇ meaning the exact
gradient). In this paper, we apply the monotonicity test in parallel on the GPU,
see the example in Section 4. We plan to consider the convexity test in our future
work.
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3.2.3 Set Inversion Approach

Nonlinear parameter identification can be characterized as a set inversion problem.
Sivia — set inversion via interval methods — is an algorithm frequently employed
in optimization and parameter estimation tasks involving quantities with bounded
uncertainty [15]. There are different variations of the algorithm; Algorithm 1 de-
scribes its simplest form. Given an interval function c[], an image z and an initial
search domain p0, the algorithm tests whether c[](pi) is a real subset of z, pi being
sub-boxes of p0 obtained by bisection, until the width of a box is at most ϵ in its
width. Boxes that certainly are preimages of z are part of the solution set S (also
called paving), boxes containing no solution are members of N and boxes with the
width smaller than ϵ belong to the boundary set E .

Algorithm 1 Generic Sivia algorithm.

Require: c[], z, p0, ϵ
1: S ← ∅, N ← ∅, E ← ∅, L ← {p0}
2: while L ≠ ∅ do
3: p← pop(L)
4: if c[](p) ⊂ z then
5: push(S, p)
6: else if c[](p) ∩ z = ∅ then
7: push(N , p)
8: else if diam(p) < ϵ then
9: push(E , p)

10: else
11: pL,pR ← bisect(p)
12: push(L, pL)
13: push(L, pR)
14: end if
15: end while
16: return S,N , E

The approach from Algorithm 1 can be parallelized in two basic ways:

PSivia: a priori subdivision of p0 into small boxes with subsequent inclusion test
in parallel, or

NSivia: coarse subdivision of p0, then parallel execution of Sivia on sub-boxes.

In the first version, PSivia, the bisection step is eliminated by the pre-computation
of a grid, making the remaining part of the algorithm perfectly parallelizable. Since
all boxes are similar in size, the inclusion of a box into the set E is no longer de-
termined by the box width. Instead, the remaining boxes, being neither a subset
of z nor having an empty intersection with z, satisfy the condition pi ∩ z ̸= ∅,
qualifying as boundary boxes. This type of lightweight algorithm benefits the most
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Algorithm 2 Parallelized Sivia.

Require: c[], z, p0

1: S ← ∅, N ← ∅, E ← ∅
2: L ← {subdivide(p0)}
3: for all pi ∈ L do
4: if c[](pi) ⊂ z then
5: push(S, pi)
6: else if c[](pi) ∩ z = ∅ then
7: push(N , pi)
8: else
9: push(E , pi)

10: end if
11: end for
12: return S,N , E

from parallel processing, especially on the GPU. Algorithm 2 shows the reformu-
lated, parallelizable Sivia procedure. In parameter identification scenarios, we
are interested in enclosures containing the system parameters. Depending on the
subdivision strategy, the optimal enclosure box might be situated directly on the
boundary of two boxes in the subdivision. Hence, forming a convex hull of all boxes
contained in S might seem sensible. However, the solution set S might consist of
non-adjacent boxes, or be a set of adjacent boxes enveloping a set that does not
contain any solutions. In the worst case, the hull of such a paving will be marginally
smaller than, or equal to, the initial search domain p0. While this box might be
guaranteed to contain optimal parameters, it might also get too large to lead to
any meaningful conclusions about the problem under study. From this perspective,
building a convex hull over solutions y(tk,pi) to Eq. (3) over each pi ∈ S (or,
possibly, S ∪ E) at each tk might be a more useful option. Another possibility is
to treat boxes from S as entities in an n-dimensional feature space so that we can
apply density-based clustering to group suitable boxes into smaller sets as described
in Algorithm 3. The result of that algorithm is a set of boxes C, where each box
contains at least one box belonging to S, ultimately containing the entire S.

4 Test Application: Two-Compartment Model

In this section, we test the performance of the methods introduced in Section 3 by
applying them to the example of the two compartment model similarly to [17].

4.1 Problem Description

The two-compartment model described in [14] has been a standard example in
parameter identification since many years. It describes the evolution of two inter-
connected compartments after an impulse. This dynamic system can be described
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Algorithm 3 Fast interval clustering.

Require: B, θ
1: C ← ∅
2: for all bi ∈ B do
3: processed← false
4: for all qj ∈ C do
5: if max

k
|bi,k − qj,k| ≤ θ then

6: qi ← bi ∪ qj

7: processed← true
8: end if
9: end for

10: if ¬processed then
11: push(C, bi)
12: end if
13: end for
14: return C

by a two-dimensional first-order ODE of the form

ẏ1 = −(p3 + p1) · y1 + p2 · y2
ẏ2 = p3 · y1 − p2 · y2

(9)

with the initial condition y(0) = (1, 0)T . We are interested in the values of p1, p2, p3
given (measurement) data. The problem is formulated such that only the second
component y2 is measured (i.e., the data is given only for y2). These linear ODEs
can be solved analytically:

y2(t) = α ·
(
e−λ1·t − e−λ2·t

)
(10)

with its macro-parameters defined as

D =
√
(p1 − p2 + p3)2 + 4p2 · p3 , α =

p3
D

,

λ1 =
1

2
(p1 + p2 + p3 −D) , λ2 =

1

2
(p1 + p2 + p3 +D) .

(11)

Following [17], this exact solution can be reformulated to reduce overestimation as

y2(t) =
(
p3 · e

−p3·t
2

)(
e

−p2·t
2

)(
e

−p1·t
2

)(
e

D·t
2 − e−

D·t
2

)
/D . (12)

We implemented three GPU-based approaches to reduce the search space for
the parameter estimation and applied them to the two-compartment model: the
experimental approach from Section 3.2.1 involving the black-box solver odeint,
taking advantage of the system’s cooperativity (I), the monotonicity test from Sec-
tion 3.2.2 (II) and PSivia from Section 3.2.3 with the image Φ[](p) ⊂ [0, 0.005]
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(III). All three methods have been tested with raw data points for y2 in combi-
nation with the respective plausibility bounds copied to the GPU’s memory and
a continuous enclosure of the measurements by interval Bézier curves. Methods
II and III were additionally tested with the exact solution from Eq. (12) and an
approximation of y(t) by using Euler’s method as described in the formula from
Eq. (8). The scenarios we considered in this paper are therefore defined as follows
with respect to the parameter identification options mentioned in Section 3.1: Ia
and Ib correspond to F0.a-F1.c-F2.a-F3.a/b; IIa/IIIa and IIb/IIIb to F0.b-F1.a-
F2.b-F3.a/b; IIc/IIIc and IId/IIId to F0.b-F1.b-F2.b-F3.a/b. Note that IIa/IIIa
and IIb/IIIb use only verified operations and algorithms and in this way can be
considered verified on the GPU.

4.2 Reference System and Testing Setup

With an emphasis on reproducibility of the experiments, measurement data were
synthesized by the following procedure. First, system parameters were defined
as p = (0.232718, 1.925403, 0.145076)T . Inserting p into the exact solution from
Eq. (10), we then calculated the values of y2(t) from Tb = 1 to Te = 16 with a
step size h = 1. Afterwards, small pseudo-random FP numbers were added to each
value to achieve a simulated measurement noise. For random number generation,
the well-known Classic Mersenne Twister [24] with a seed value of 1788 was used.
The resulting uniform distribution was then transformed into a normal distribution
with a mean value of µ = 0 and a standard deviation σ = 1

29 . We used the C++
standard library function std::normal distribution, which is based on the Box-
Muller transform. Finally, the results were truncated after the sixth decimal place.
Table 1 shows the data points acquired in that way.

Table 1: Artificial measurements for y2 (with added plausibility bounds of ± 0.007).

t 1 2 3 4 5 6 7 8

ym,2 0.051801 0.046753 0.040787 0.032543 0.024291 0.021511 0.020577 0.012213

t 9 10 11 12 13 14 15 16

ym,2 0.008919 0.007634 0.004929 0.008158 0.006349 0.002386 0.005543 0.004355

All computations were performed on

– a CPU system with an Intel Xeon Gold 5215 64 bit CPU with 192 GB of main
memory and

– a GPU system with an NVIDIA Quadro RTX 6000 GPU with 24 GB of memory,

running the operating system Ubuntu 22.04 with CUDA 12 and the NVIDIA driver
525.105 installed. Experiments on the GPU were written in the CUDA C++. For
interval computations on the CPU, we used the interval library from Boost. On
the GPU, we used a modified version of the extended cuda interval lib from [8],
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originally published in [7]. Device-side automatic differentiation of interval data
types was made possible by a custom port of the forward-mode differentiation from
Fadbad [6] to CUDA C++ (both described in more detail in Section 2.3). Function
execution times were measured by wrapping the relevant parts of the program be-
tween two calls to std::chrono::high resolution clock::now() and calculating
their difference at nanosecond resolution. The execution time of entire programs
was captured by the standard Unix command time. Since the testing environment
was accessed exclusively via a remote connection, measurements of power consump-
tion were limited to software-based tools. According to [22], the reported sampling
time of power usage information on NVIDIA GPUs is 20 ms. Taking into account
that a kernel might complete its operation in less time for the considered relatively
small example, these measurements are only rough approximations.

4.3 Results

We conducted a series of (standardized) tests to compare the approaches pre-
sented in the previous sections. Given the measurements in Table 1, we chose
the (hypothetical) plausibility bounds ym,2 = [ym,2 ± 0.007], the search space
p = [0.01, 1] × [1, 2] × [0.05, 2], and a maximum box width w = 0.05, which re-
sulted in a subdivision containing 216 possible boxes. The search space was chosen
in such a way as to exclude possible symmetric parameter values; theoretically,
only one optimum is contained in p if we consider the data generation procedure
described in Section 4.2. The averaged results for 100 test trials for each method
are shown in Table 2.

The enclosure p∗ is the convex hull of all suitable boxes after search space
reduction. To achieve a fair comparison between all methods, the enclosure of
the Sivia-like method includes the boundary set E as well, since the other two
methods make no distinction between uncertain boxes and definite solutions. In
Column Boxes, the number of boxes in the corresponding solution list is shown.
Kernel time tkern represents the execution time of each method on its own, while
twall is the total number of seconds elapsed (wall-clock time) for the entire program
execution, including post-processing. During each test, peaks in CPU and GPU
power usage were recorded. The highest enduring peaks during kernel execution
Ppeak are listed in the last column.

The scenarios I, II and III were described in Section 4.1. For comparison, we
also tested the example with a CPU-based C++ implementation of Sivia (IV) and
with the @infsup/fsolve function (V) provided by the interval package for GNU
Octave [12]. Decimal values in the table are rounded outwards/to nearest to four
decimal places for improved readability.

Based only on enclosure size, the best results are obtained by the experimen-
tal method. Although its execution time is also fairly low, this method has the
highest peak in power consumption. This comes as no surprise since the use of the
black-box solver odeint adds a significant amount of computations. This impact
on energy efficiency might be a factor to consider when solving more complex prob-
lems. Moreover, although the bulk of uncertainty is captured by this approach, the
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Table 2: Test results for the parameter space p = [0.01, 1]× [1, 2]× [0.05, 2].

Method p∗ Boxes tkern (s) twall (s) Ppeak (W)

G
P
U

Ia [0.0718, 0.505]× [1, 2]× [0.05, 0.2024] 597 0.0579 0.3664 39.2905

Ib [0.0718, 0.505]× [1, 2]× [0.05, 0.2024] 548 0.0568 0.3664 39.1510

IIa [0.01, 1]× [1, 2]× [0.05, 2] 47 531 22.9567 25.3034 90.5923

IIb [0.01, 1]× [1, 2]× [0.05, 2] 47 509 22.9817 25.3283 90.5746

IIc [0.01, 1]× [1, 2]× [0.05, 2] 65 536 28.547 31.8037 90.8255

IId [0.01, 1]× [1, 2]× [0.05, 2] 65 536 28.3206 31.7399 90.5315

IIIa [0.01, 1]× [1, 2]× [0.05, 0.6899] 11 215 0.0056 0.4193 37.6086

IIIb [0.01, 1]× [1, 2]× [0.05, 0.6899] 11 178 0.0288 0.4358 37.6487

IIIc [0.01, 1]× [1, 2]× [0.05, 0.8727] 12 910 0.0038 0.6337 36.2425

IIId [0.01, 1]× [1, 2]× [0.05, 0.8727] 12 899 0.0274 0.625 36.0214

C
P
U IVa [0.01, 1]× [1, 2]× [0.05, 0.5985] 8 877 0.4384 0.4548 46.7245

Va [0.01, 1]× [1, 2]× [0.05, 0.7875] 1 067 26.781 29.117 49.572

computations are not verified.
Although the monotonicity test should actually be less computationally expen-

sive, it takes considerably longer than the previous method, while reducing the
initial search space only slightly (not even noticeable from the convex hull). Be-
cause only a fraction of the search space has been discarded (18 005 out of 65 536),
this test alone is not sufficient for search space reduction, at least in this scenario.
The high execution time is a result of our GPU version of Fadbad still having
essentially the same structure as the version on the CPU, where memory access is
not as limited and expensive as on the GPU. Using the Euler-based approximation
of the solution to (3) in IIc/d does not help to exclude any boxes.

Out of the three GPU-based methods considered here, PSivia shows the best
performance in terms of computation time and power usage due its simplicity,
even surpassing the traditional CPU-based Sivia implementation in execution time,
despite being a brute-force approach. In Figure 1, visualizations of the reduced
parameter space are shown after each of the methods with the exact solution and
measurement data provided was applied.

If only the set of guaranteed boxes S is considered for PSivia, the remaining
enclosure is

[0.2265, 0.4122]× [1.2187, 2]× [0.0804, 0.2024],
outperforming the experimental approach wrt. the width of the convex hull. When
we apply Algorithm 3 with θ = 0.25 as part of the post-processing to the solution set
produced by PSivia (using the exact solution and no interpolation), the resulting
boxes are
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(a) p∗
Ia (b) p∗

IIa (c) p∗
IIIa

Figure 1: Visualizations of the reduced parameter space after GPU computations.

[0.2265, 0.4122]× [1.7187, 2]× [0.1109, 0.2024],
[0.2575, 0.4122]× [1.4375, 1.7188]× [0.1109, 0.1718],
[0.2884, 0.4122]× [1.2187, 1.4375]× [0.0804, 0.1415],

the first of which is a small enclosure of the original parameters used for synthesizing
our measurements (see Section 4.1).

At this scale, preferring interpolated measurement data over raw data points
adds some computational overhead, despite global memory access being a perfor-
mance bottleneck. Furthermore, it can be observed that Euler’s method is not
suitable for this task. In the case of PSivia, the time horizon of 16 steps is long
enough for the wrapping effect to significantly impact the resulting enclosure, lead-
ing to intervals so large in width that the criterion Φapp(pi) ⊂ z cannot be satisfied
anymore. As a result, all suitable boxes belong to the boundary set E , while S
remains empty.

Considering a wider search space p = [0.05, 3] × [0.05, 3] × [0.01, 2] with w
unchanged, the tests were repeated. Results are shown in Table 3.

Depending on the method used, we observe different increases in execution time.
While the experimental approach is more than two times slower than before, both

Table 3: Test results for a larger parameter domain p = [0.05, 3]×[0.05, 3]×[0.01, 2].

Method p∗ Boxes tkern (s) twall (s) Ppeak (W)

G
P
U

Ia [0.05, 3]× [0.0960, 3]× [0.0410, 0.2899] 1 420 0.1369 0.9377 60.5923

IIa [0.05, 3]× [0.05, 3]× [0.01, 2] 182 603 90.0465 156.2434 95.1462

IIIa [0.05, 3]× [0.05, 3]× [0.01, 2] 102 618 0.0222 1.5053 35.5917

C
P
U

IVa [0.05, 3]× [0.05, 3]× [0.01, 2] 102 618 4.5162 4.6874 60.91
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the monotonicity test and PSivia need approximately four times of the previous
kernel time. However, this larger search space highlights the advantage of using
the GPU; now the CPU implementation is significantly slower than both methods
I and III. Another factor to take into account is that p now contains a symmetric
solution [14]. In Figure 2, the effectiveness of method III compared to I is high-
lighted at this scale (under the assumption that only S and not the boundary E is
considered).
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(b) SIIIa

Figure 2: Visual comparison of methods I and III for a larger parameter domain
(top view of p1 and p2).

5 Conclusions

In this paper, we demonstrated— for the first time— a solid combination of IA with
AD capabilities in C++ employed on a graphics processor, using enhanced pub-
lic domain software. Furthermore, we applied an experimental set-based and two
actually verified methods to a well-known example of a two-compartment problem
and compared them wrt. computational cost, both in terms of execution time and
approximate power consumption, as well as wrt. the quality of the resulting convex
hull of the parameter enclosures. In regard to the rising interest in energy-efficient
software design and “green computing”, the comparison of power consumption is of
particular interest. The PSivia method seems to be a good compromise between
the power consumption and solution quality, even outperforming other considered
methods if only the definite solution set S is taken into account. Using a data re-
duction method, although easier to implement, could not be shown to lead to better
run times in case of the simple test scenario we considered. However, we expect
it to be so for more complex examples. Likewise, using the Euler approximation
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did not bring any significant reduction of the initial search space in the considered
scenario, the cause of which was that the data sampling time of h = 1s was too
large compared to the dominant time constants of the process. Nonetheless, we
expect it to be helpful in more complex scenarios with appropriate sampling times.
Finally, we succeeded in obtaining a tight enclosure of the optimum on the GPU.

It remains to be seen how the methods presented in this paper scale up when
applied to more complex and close-to-life problems. On the one hand, good perfor-
mance of our GPU-based set-inversion approach indicates that this type of hard-
ware might allow algorithms like Sivia to solve problems of higher dimensionality
than currently possible. On the other hand, we aim to improve the currently low
performance of interval-based AD on the GPU, because our ultimate goal is to
implement a GPU-enabled verified solver for differential equations, for which the
ability to perform set-based AD is essential.

Our results indicate that AD at run time might not be an ideal concept for
the GPU, because it requires every kernel to produce essentially the same deriva-
tive, which is expensive computationally. A more elegant approach would be to
compute a function’s derivatives once and then make them available to all GPU
kernels, which we plan to test in our future work. Even better results might be
achieved by evaluating derivatives beforehand during compilation. Finally, after an
extensive phase of testing the introduced (and extended) GPU-based approaches,
we plan to apply the most promising ones in the context of battery systems and
fuel cells. To improve our currently purely software-based testing process, we plan
to include hardware-based measurement tools for higher accuracy as well as further
comparison criteria to assess the performance of our algorithms.
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Asymptotically Minimal Interval Contractors Based

on the Centered Form — Application to the

Stability Analysis of Linear Time-Delayed

Differential Equations

Luc Jaulina

Abstract

This paper proposes a new interval-based contractor for nonlinear equa-
tions which is minimal when dealing with narrow boxes. The method is based
on the centered form classically used by interval algorithms combined with
a Gauss Jordan band diagonalization preconditioning. As an illustration in
stability analysis, we propose to compute the set of all parameters of a char-
acteristic function of linear time-delayed equations which have at least one
zero in the imaginary axis. Our approach is able compute a guaranteed and
accurate enclosure of the solution set faster than existing approaches.

Keywords: interval analysis, contractor, centered form, stability

1 Introduction

Interval analysis is an efficient tool used for solving rigorously complex nonlinear
problems involving bounded uncertainties [7, 20, 34]. Many interval algorithms are
based on the notion of interval contractor [8] (or contractor for short) which is an
operator which shrinks an axis-aligned box [x] of Rn without removing any point
of the solution set X. The set X is assumed to be defined by equations involving
the components x1, . . . , xn of a vector x ∈ Rn.

Combined with a paver [38] which bisects boxes, the contractor builds an outer
approximation of the set X. The resulting methodology can be applied in several
domains of engineering such as identification [32], localization [21, 14], SLAM [29,
37], vision [11], reachability [13], control [3, 41], calibration [26], etc.

Centered form is one of the most fundamental brick in interval analysis. It is
traditionally used to enclose the range of a function over narrow intervals [28, 30,
16]. The quadratic approximation property, guarantees an asymptotically small
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overestimation for sufficiently narrow boxes. Now, the centered form is only for
the forward interval evaluation of a function. The backward propagation is not
treated by the classical centered form. Now, this backward step is mandatory is
we want to implement a propagation process. This is why we need to build an
interval contractor which contains not only a forward interval evaluation, but also
the backward propagation. In this paper, we propose to use the centered form
to build efficient contractors [17] that are optimal when the intervals are narrow.
To my knowledge, no other contractor with this asymptotic property exists in the
literature.

To achieve this goal, we first get a guaranteed first order enclosure of each
equation composing our problem using an interval linearization technique. Then,
we combine these constraints preserving the first order approximation using interval
linear techniques. More particularly, we propose to use a preconditioning method
based on a Gauss-Jordan band diagonalization. We show that our approach is
guaranteed to enclose all solutions of the problem and may outperform state of the
art techniques on an example taken from the literature.

The main contribution of this paper is that the contractor we propose is asymp-
totically minimal, i.e., it is minimal when the boxes are small. To the best of my
knowledge, such a contractor does not exist in the literature even if some use a
linear approximation (see the X-Taylor iteration [1] tested on global minimization
problems, [6] which is similar to X-Taylor but for solving inequalities, the inter-
val Newton [28] used for solving square nonlinear systems, or the affine arithmetic
[12] which has been used for non-square systems but which is not asymptotically
minimal).

Section 2 recalls some useful mathematical notions related to the sensitivity of
the solution set of a linear system. Section 3 introduces wrappers to approximate
accurately a function over a box. Section 4 defines what is an asymptotically
minimal contractor and Section 5 gives an algorithm to generate it. The relevance
and the efficiency of our approach are shown in Section 6 on the stability analysis
of a linear differential equation with delays. Section 7 concludes the paper.

2 Preliminaries

This section recalls some basic definitions and theorems related to the sensitivity of
the solution set of a linear system with respect to small perturbations. They will be
used later in the paper to define the asymptotic minimality of our approximation
for the solution set.

2.1 Proximity

Denote by L(a,b) the distance between a and b of Rn induced by the L-norm
[5]. As illustrated by Figure 1, the proximity of A to B, where A and B are closed
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subsets of Rn, is defined by

h(A,B) = sup
a∈A

L(a,B) (1)

where
L(a,B) = inf

b∈B
L(a,b). (2)

The norm L that will be used later in the algorithm will be the L∞ norm, even if,
in the pictures, for a better visibility, we use the Euclidean L2 norm.

Figure 1: Proximity h(A,B) of A to B. If we inflate B by a coefficient of h(A,B),
then B will enclose A

A nested sequence of closed subsets B(k) ⊂ Rn, k ∈ N is converging to x if

limk→∞ h(B(k), {x}) = 0. (3)

2.2 Linear systems

Consider a system of linear equations of the form A · x = b with more variables
than unknows. Denote by X the solution set. This set can can be a point (if A
is square), a line, a plane, or any affine space. Consider x̄ ∈ X. If we change just
a little the entries for A and b, the solution set X will move also. The point x̄
will then probably be outside X, but still close to the new X. The corresponding
distance is L(x̄,X). The following proposition allows us to quantify the value for
L(x̄,X) or equivalently to provide a sensitivity for the system A · x = b.

Proposition. Consider a point x which satisfies the linear system A ·x = b, where
A has independent rows, i.e., which is full rank. Consider a small variation dA of
A. The quantity

dx = −A† · (dA · x + dA · dx), (4)

where
A† = AT(A ·AT)−1 (5)
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is the generalized inverse of A, satisfies

(A + dA) · (x + dx) = b. (6)

This proposition tells us that if we move A a little, then, the solution set for
the linear equation moves a little also, at order 1.

Proof. We have

(A + dA) · (x + dx) = b
⇔ A · x + A · dx + dA · x + dA · dx = b

(7)

Thus
A · dx + dA · x + dA · dx = 0 (8)

i.e.
A · dx = −dA · x− dA · dx (9)

Since A has independent lines, the solution which minimizes ‖dx‖ is

dx = A† · (−dA · x− dA · dx). (10)

Corollary. Consider the hyperplane

P = {x ∈ Rn|A · x = 0}, (11)

where A has independent lines. Consider a small variation dA of A with ‖dA‖ =
O(ε) where ε is small. Take a point dx ∈ P with ‖dx‖ = O(ε). The distance from
dx to P̃ = {x ∈ Rn|(A + dA) · x = 0} is o(ε), i.e., O(ε2).

Proof. Denote by p̂ the projection of a point p ∈ P on P̃. From Proposition 2.2,
we have

‖p̂− p‖ = O(ε). (12)

If we take p = dx. We get

‖dx̂− dx‖ = o(ε) = O(ε2) (13)

as illustrated by Figure 2.

3 Wrappers

The approximation of sets using boxes computed using interval analysis generates
a strong wrapping effect. It has been shown by several authors that it was possible
to get a linear approximation with a better accuracy using other types of sets such
as zonotopes [9, 10], constrained zonotopes [39, 35], ellipsoids [33], or doubleton
[19]. Before defining the notion of wrapper to quantify the order of approximation
we can get, we first recall what is a contractor.
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Figure 2: If we move the plane P of an order ε, a point p of the plane P will be
at a distance to the new plane P̃ of an order ε. If we do the same operation with
a vector dx with a norm of order ε, then the distance of dx to P̃ is an order ε2.

Definition. Denote by IRn the set of boxes of Rn. A contractor associated to the
closed set X ⊂ Rn is a function C : IRn 7→ IRn such that

C([x]) ⊂ [x] (contraction)
[x] ∩ X ⊂ C([x]) (consistency)

The contractor C for X is minimal if C([x]) = J[x] ∩ XK where JAK denotes the
smallest box enclosing the set A.

The following definition of a wrapper extends the concept of contractor and will
be needed for convergence analysis.

Definition. A wrapper associated to the closed set X ⊂ Rn is a function W :
IRn 7→ P(Rn) such that

W([x]) ⊂ [x] (contraction)
[x] ∩ X ⊂ W([x]) (consistency)

x /∈ X⇒ ∃ε, ∀[x] ⊂ B(x, ε),W([x]) = ∅ (accuracy)

where P(Rn) is the set of all subsets of Rn and B(x, ε) is the box with center x
and radius ε.

An illustration of a wrapper is given by Figure 3. The set X is a curve which
could be given by an equation. For the box [a], the set W([a]) encloses the part of
X which is inside [a]. The accuracy property is illustrated by the box [b], which
satisfies W([b]) = ∅. The box [b] is inside the box B(b, ε) with b /∈ X. This
translates the fact if a box [b] is outside X and sufficiently small then the wrapper
will be able conclude that it is indeed outside X.
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Figure 3: Illustration of a wrapper. W([b]) is empty which means that [b]∩X = ∅.

The wrapper W for X has an order i at point x if for all nested sequences of
boxes [x](k) converging to x, we have

lim
k→∞

h(W([x](k)),X)

(w([x](k)))i
= 0 (14)

where w([x]) is the width of [x]. In this paper, only the order one will be considered.
Denote by Wrap(X,x) the set of all wrappers for X which have an order 1 at point
x.

The notion of order is illustrated by Figure 4. The larger is k, the narrower is
[x](k) and more accurate is the approximation.

Figure 4: Wrapper of order 1. This wrapper generates a set which fits the shape of
the set X ∩ [x].
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Definition. We define the intersection W of two wrappers W1 and W2 as

W([x]) = (W1 ∩W2)([x]) =W1([x]) ∩W2([x]). (15)

It is trivial to check that if W1 is a wrapper for X1 and W2 is a wrapper for
X2 then W = W1 ∩ W2 is a wrapper for X1 ∩ X2. Unfortunately, the order of
the approximation is not always preserved. The following proposition gives some
conditions which allows us to preserve the order 1.

Proposition. Given m sets Xi = {x ∈ Rn|fi(x) = 0}, where fi : Rn 7→ R. Con-
sider Z =

⋂
i Xi and a point z ∈ Z. Assume that all dfi

dx (z) are independent. If
W =

⋂
iWi, we have

∀i,Wi ∈Wrap(Xi, z)⇒
⋂

iWi ∈Wrap(Z, z) (16)

Figure 5 illustrates that the intersection of two wrappers of order 1 at z is
generally a wrapper of order 1 at z. In the figure, the set Z = X1 ∩ X2 is the
singleton {z}. The box [x] should be interpreted as a narrow box containing z.

Figure 5: The intersection of two wrappers W1 and W2 of order 1 (here red) is a
wrapperW of order 1 for the intersection of the two corresponding sets X1 and X2.

Proof. Since Z =
⋂

i Xi, W =
⋂

iWi is a wrapper for Z. We also need to prove
that the order of W is 1 at z. For this, consider a sequence [x](k) converging to z.
When k is large ε = w([x](k)) is small. For short, let us omit the dependency with
respect to k. For all p ∈ [x], we have ‖p− z‖ = O(ε). If Ti is the tangent space of
Xi at point z then

L(p,Xi) = L(p,Ti) + o(ε). (17)

If all Ti are transverse, we have

L(p,Z) = L(p,
⋂

iXi) = L(p,
⋂

iTi) + o(ε). (18)
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Take now, p ∈ W([x]). Since ∀i, L(p,Ti) = o(ε) and since the Ti are transverse,
we get that L(p,

⋂
i Ti) = o(ε). Therefore, from (18), L(p,Z) = o(ε). Since this is

true for all p ∈ W([x]), we have

h(W([x]),Z) = sup
p∈W([x])

L(p,Z) = o(ε) = o(w([x])). (19)

Taking into account the dependency of [x] in k, we get:

lim
k→∞

h(W([x](k)),Z)

w([x](k))
= 0, (20)

which proves that W has an order 1 at point z.

4 Asymptotically minimal contractor

Consider the special case where wrappers, as defined by Definition 3, generate sets
W([x]) that are boxes of Rn. The order cannot be equal to 1 (it can only be equal
to 0), except if n = 1. Now, we can use the wrappers of order 1 (which return a
set which is not a box, a zonotope, for instance), as an intermediate result, to get
contractors with a good accuracy. For this, we will have to compute the smallest
possible box which encloses this non-box intermediate approximation.

This section formally defines such accurate contractors which are called asymp-
totically minimal.

Definition. A contractor for X is asymptotically minimal at point z ∈ X ⊂ Rn if
for any nested sequence [x](k) converging to z, we have

lim
k→∞

h(C([x](k)), J[x](k) ∩ XK)
w([x](k))

= 0. (21)

Note that since C is a contractor the quantity C([x](k)) is a box.

Proposition. If W ∈Wrap(X, z), then, the contractor defined by

C([x]) = JW([x])K (22)

is an asymptotically minimal contractor for X at z.

An illustration of the proposition is given by Figure 6. The gray part cor-
responds to the pessimism of the contractor which tends to disappear when [x]
becomes narrow.

Proof. The proof is by contradiction. Assume that C([x]) = JW([x])K is not asymp-
totically minimal in z. From (21), there exists a sequence of nested boxes such
converging to z such that

lim
k→∞

h(JW([x])(k)K, J[x](k) ∩ XK)
w([x](k))

> 0. (23)
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Figure 6: Asymptotic minimal contractor C([x]). It first computes the set W([x])
and then encloses in the box JW([x])K.

Since for all A ⊂ Rn, and for all box [b], we have h(JAK, [b]) = h(A, [b]), we have

lim
k→∞

h(W([x])(k), J[x](k) ∩ XK)
w([x](k))

> 0. (24)

Moreover, since h is monotonic decreasing with respect to its second argument, we
get

lim
k→∞

h(W([x])(k), [x](k) ∩ X)

w([x](k))
> 0.

Since the sequence [x](k) converges to z, if k is sufficiently large, we have
h(W([x])(k), [x](k) ∩ X) = h(W([x])(k),X). As a consequence,

lim
k→∞

h(W([x](k)),X)

w([x](k))
> 0. (25)

This is inconsistent with the fact that W has an order 1 in z (see (14)).

5 Centered contractor

In this section, we show how to build an asymptotic minimal contractor using the
centered form. We will consider functions f : Rn 7→ Rp which are all continuous and
differentiable. More precisely, the function f is described by continuous operator
of functions such as +,−, /, sin, exp, . . . As a consequence using interval analysis,
we are able to enclose the range of f and of df

dx over a box [x]. In [28], Moore has
proved that if w([x]) = O(ε) then using interval computation, we get an enclosure
[f ]([x]) for f([x]) and an enclosure [ dfdx ]([x]) for df

dx ([x]) such that w([f ]([x])) = O(ε)

and w( df
dx ([x])) = O(ε).
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5.1 Scalar case

Proposition. Consider the equation f(x) = 0, where f : Rn 7→ R is differentiable.
The solution set is

X = {x ∈ Rn | f(x) = 0}. (26)

Consider a point z such that f(z) = 0. Consider a nested sequence [x](k) converging
to z. The function L : IRn 7→ P(Rn) defined as

L([x]) = { x ∈ [x] | ∃a ∈ [ dfdx ]([x]),
f(m) + a · (x−m) = 0} (27)

where m = center([x]), is a wrapper of order 1, i.e., it belongs to Wrap(X, z). It
will be called the centered wrapper associated with f .

Figure 7: The set L([x]) (magenta) with a bowtie shape is close to the set X
(here the curve in green). Moreover, L([x]) encloses [x]∩X. The approximation is
asymptotically perfect.

Proof. Consider the sequence [x](k) ⊂ Rn converging to z. We assume that [x](k),
or [x] for short, is narrow, i.e., w([x]) = O(ε). If p ∈ L([x]) (see Figure 7) then, for
some a ∈ [a] = [ dfdx ]([x]), we have

f(m) + a · (p−m) = 0 (28)

where m = center([x]). From Corollary 2.2, taking dx = p −m = O(ε) and since
w([a]) = O(ε), we get that the distance between a point in L([x]) and the set X is
an o(ε). We get that

h(L([x](k)),X) = o(w([x](k))) (29)



Asymptotically Minimal Contractors Based on the Centered Form 943

i.e.,

lim
k→∞

h(L([x](k)),X)

w([x](k))
= 0. (30)

Thus the wrapper L is of order 1 at z.

Corollary. The contractor for f(x) = 0 defined by

[xi] = [xi] ∩
(
mi − 1

[ai]

(
f(m) +

∑
j 6=i[aj ] · ([xj ]−mj)

))
[aj ] = [ ∂f

∂xj
]([x])

(31)

is asymptotically minimal.

Remark. Before starting the proof, it is important to recall an important notion on
interval propagation. Consider an equation of the form

1 + a1(x1 − 2) + a2(x2 − 3) = 0,

with a1 ∈ [a1], a2 ∈ [a2], x1 ∈ [x1], x2 ∈ [x2]. The smallest box [y] = [y1] × [y2]
which encloses the set

{(x1, x2) ∈ [x] | ∃a1 ∈ [a1],∃a2 ∈ [a2], 1 + a1(x1 − 2) + a2(x2 − 3) = 0}

where [x] = [x1]× [x2], is defined by

[y1] = [x1]∩
(

2− 1
[a1]

(1 + [a2]([x2]− 3))
)

[y2] = [x2]∩
(

3− 1
[a2]

(1 + [a1]([x1]− 2))
)

This corresponds to a forward-backward contraction in our special case. As shown
in [27], [y] is indeed the smallest because both x1 and x2 occur only once in the
equation 1 + a1(x1 − 2) + a2(x2 − 3) = 0. It is related to what Moore calls the
dependency problem [28]. When we have more than one equation, such as for
instance,

1 + a11(x1 − 2) + a12(x2 − 3) = 0
1 + a21(x1 − 2) + a22(x2 − 3) = 0

the forward-backward contraction will not yield the minimal contraction. This is
due to the fact that in the system of two equations, x1 and x2 occur twice and not
once.

Proof. Define L([x]) as in (27). From Proposition 4, L ∈Wrap(X, z). The contrac-
tor C([x]) = JL([x])K is an asymptotically minimal contractor. Now the set L([x])
can be defined as the set of all x which satisfy the following constraint

f(m) + a · (x−m) = 0

with a ∈ [ dfdx ]([x])
and m = center([x])

(32)

Since x occurs only once in the constraint f(m) + a · (x − m) = 0, an interval
forward-backward propagation provides us the minimal contraction [27], i.e., it
returns the box JL([x])K.
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5.2 Vector case

Proposition. Consider the equation f(x) = 0, where f : Rn 7→ Rp is differentiable.
The solution set is

X = {x ∈ Rn | f(x) = 0}. (33)

Consider a point z such that f(z) = 0 and a nested sequence [x](k) converging to z.
Assume that all dfi

dx (z) are independent. Consider the wrappers Li : IRn 7→ P(Rn)
of order 1 for fi(x) = 0 defined by

Li([x]) = { x ∈ [x] | ∃a ∈ [dfidx ]([x]), fi(m) + a · (x−m) = 0} (34)

where m = center([x]). The operator
⋂

i Li, belongs to Wrap(X, z).

Proof. We have

X = {x ∈ Rn | f1(x) = 0}︸ ︷︷ ︸
X1

∩ · · · ∩ {x ∈ Rn | fp(x) = 0}︸ ︷︷ ︸
Xp

.

Now, from Proposition 5.1, the Li([x]), as defined by 34, belong to Wrap(Xi, z).
From Proposition 3, we get that

⋂
i Li belongs to Wrap(X, z).

To compute
⋂

i Li, the method proposed for the scalar case is not valid anymore.
An interval linear method could be used [31, 1] that are based on an interval version
of the simplex algorithms. Now, these methods are not proved to be minimal or
asymptotically minimal, which may ruin our objective to get an asymptotically
minimal contractor. An other possibility is to use a preconditioning method based
on the Gauss-Jordan decomposition, which will be minimal in many cases, such as
the test-case that will be treated in Section 6.

5.3 Preconditioning

Consider the equation f(x) = 0, where f : Rn 7→ Rp is differentiable. Intersecting
sets Li([x]) as suggested by Proposition 5.2 requires the resolution of interval linear
equations. This operation is costly and should be avoided if it has to be repeated
a large number of times. Instead of this, we prefer to use a specific preconditioning
method.

To understand the principle of the preconditioning, consider the following in-
terval linear system

(
d11 d12 0
0 d22 d23

) x1
x2
x3

 =

(
b1
b2

)
(35)

where

dij ∈ [dij ], xj ∈ [xj ], bi ∈ [bi] (36)
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Figure 8: The constraint network has no cycle (it is a tree). Thus the interval
propagation is minimal.

The optimal contraction can be obtained by a simple interval propagation. This
is due to the fact that the corresponding constraint network has no cycle [27], as
illustrated by Figure 8.

Note that no cycle would have been obtained with the following linear system:

 d11 d12 0 0
0 d22 d23 0
0 0 d33 d34




x1
x2
x3
x4

 =

 b1
b2
b3

 (37)

A matrix D such that the system D · x = b has no cycle can be called a tree
matrix.

Both systems (35) and (37), for which the matrix D is a band matrix [2], could
be obtained from a Gauss Jordan transformation of a linear systems [22]. For
instance, if we have a system of the form Ax = c where A is of dimension 3 × 4
with full rank, there exists a matrix Q of dimension 3× 3 such that

Ax = c⇔ Q ·A·x = Q · c (38)

where D = Q ·A has the form given by (37).

Proposition. Consider a set X = {x ∈ Rn|f(x) = 0}. Take a narrow box [x] with
center m. Assume that df

dx (m) is a tree matrix. An interval propagation on the
system

f(m) + A · (x−m) = 0
with A ∈ [ dfdx ]([x])

and x ∈ [x]
(39)

corresponds to an asymptotically minimal contractor for X.
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Proof. The interval matrix [A] = [ dfdx ]([x]) is such that w([A]) = O(ε), where
ε = w([x]). Now, Proposition 2.2 tells us that if we move A a little (at order
0), then, the solution set for the linear equation moves a little also, at order 1.
Due to the fact that the contractor C resulting from the interval propagation is
minimal for A = df

dx (m), we get that the contractor obtained by an elementary
interval propagation is asymptotically minimal.

Corollary. Consider a set X = {x ∈ Rn|f(x) = 0}. Take a narrow box [x] with
center m. Define Q such that Q · dfdx (m) is a tree matrix. An interval propagation
on the system

Q · f(m) + Q ·A · (x−m) = 0
with A ∈ [ dfdx ]([x])

and x ∈ [x]
(40)

corresponds to an asymptotically minimal contractor for X.

Proof. It suffices to apply Proposition 5.3 where f(x) should be replaced by Q ·
f(x).

5.4 Algorithm

Consider the system f(x) = 0 and take a box [x]. We assume that we have an
analytical expression for f , so that we have an inclusion function for f and its
Jacobian matrix df

dx . The following algorithm corresponds to a centered contractor.

Input: f,[x]

1 m = center([x])
2 Compute the Gauss-Jordan matrix Q for df

dx (m)
3 Define g(x) = Q · f(x)
4 For i ∈ {1, . . . , p}
5 For j ∈ {1, . . . , n}
6 [a] =[∂gi∂x ]([x])

7 [s] =
∑
k 6=j

[ak] · ([xk]−mk)

8 [xj ] = [xj ] ∩ 1
[aj ]

(−gi(m)− [s])

9 Return [x]

• Step 1 takes the center m of [x] in order to form a linear approximation for
f in [x]:

f(x) = f(m) +
df

dx
(m) · (x−m). (41)

• Step 2 returns an invertible m × m matrix Q such that A = Q · df
dx (m) is

a band matrix. The matrix Q is chosen by a Gauss-Jordan algorithm. The
new system to be solved is now

Q · f(x) = 0. (42)
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• Step 3 defines the function g(x) = Q · f(x). We need to solve g(x) = 0 in the
box [x]−m. The main difference compared to the previous system f(x) = 0
is that its linear approximation

g(x) = g(m) + A · (x−m) (43)

is such that A is a band matrix.

• Step 4-9 define the set of constraints
0 = g(m) + A · (x−m)

with A ∈ [ dgdx ]([x])
and x ∈ [x]

(44)

and performs an interval propagation. Due to the fact that the system has
no cycle (at first order), from Corollary 5.3, we get that the propagation is
asymptotically minimal.

6 Test case

Interval methods have been shown to be very powerful for the stability analysis of
linear systems [23]. We have chosen to consider the linear time-delay system [40]
given by

ẍ+ 2ẋ(t− p1) + x(t− p2) = 0 (45)

but other types of linear systems [25] with fractional orders could be considered as
well. Its characteristic function is

θ(p, s) = s2 + 2se−sp1 + e−sp2 . (46)

For a given p = (p1, p2), the location of the roots for θ(p, s) provides an information
concerning the stability of the system. For instance, if all roots are on the half
left of the complex plane, then the system is stable. The stability changes when
one root crosses the imaginary line. This is the reason why we are interested in
characterizing the set

P = {p | ∃ω > 0, θ(p, jω) = 0}. (47)

which corresponds to the set of parameters for which the roots are at the stability
boundary. Since that for all p and for all ω, we have θ(p, jω) = θ(p,−jω), we
classically impose ω > 0. Now

θ(p1, p2, jω)
= −ω2 + 2jωe−jωp1 + e−jωp2

= −ω2 + 2jω(cos(ωp1)− j sin(ωp1))
+ cos(ωp2)− j sin(ωp2)

= −ω2 + 2ω sin(ωp1) + cos(ωp2)
+j · (2ω cos(ωp1)− sin(ωp2))

(48)
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We have
θ(p1, p2, jω) = 0

⇔
(
−ω2 + 2ω sin(ωp1) + cos(ωp2)

2ω cos(ωp1)− sin(ωp2)

)
︸ ︷︷ ︸

f(p1,p2,ω)

= 0 (49)

Take [p1] = [0, 2.5], [p2] = [1, 4], [ω] = [0, 10] and let us characterize the set P
using the centered contractor. Using a branch and prune algorithm such as SIVIA
(see e.g. [18]) with an accuracy of ε = 2−8 with an HC4 algorithm [7, 4] (the state
of the art), we get the paving of Figure 9 in 4 sec. The number of boxes of the
approximation is 43173. Similar results were obtained were obtained on the same
example in [24].

With an accuracy of ε = 2−4 with the centered contractor given in Section 5.4,
we get the paving of Figure 10 in 1.2 sec. The number of boxes of the approximation
is 282 (instead of 43173), for a more accurate approximation.

With an accuracy of ε = 2−8 with the centered contractor, we get the thin curve
represented on Figure 11. This curve is made with the small boxes generated by
the paver, which shows the quality of the approximation. The big blue boxes are
those already painted in the green box [a] of Figure 10.

With an accuracy of ε = 2−12 with the centered contractor, we get the magenta
curve of Figure 12. The big gray boxes are those already painted in the red box
[b] of Figure 11. The fact that, for a small ε, the boxes of the approximation only
overlap on their corners illustrates the minimality of the contractor.

Figure 9: Approximation of the solution set P with a state of the art contractor
(here HC4). The frame box for (p1, p2) is [0, 2.5]× [2, 4].
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Figure 10: Paving obtained with the centered contractor. The frame box for (p1, p2)
is [0, 2.5]× [2, 4].

Figure 11: Pavings obtained with the centered contractor in the box [a] = [1.3, 1.8]×
[3.0, 3.5]; Blue: ε = 2−4 ; Thin: ε = 2−8.
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Figure 12: Approximation of the solution set in [b] = [1.595, 1.615] × [3.2, 3.22];
Gray: ε = 2−8 ; Magenta: ε = 2−12.

The computing time to get the three Figures 10, 11 and 12 is less than 10 sec.
Our results are much more accurate than those obtained in Section 6 of [24].

The code, based on the codac library [36], and an illustrating video are given
at www.ensta-bretagne.fr/jaulin/centered.html.

7 Conclusion

In this paper, we have proposed a contractor which is asymptotically minimal for
the approximation of a curve defined by nonlinear equations. The resulting centered
contractor is based on the centered form which suppresses the pessimism when the
boxes are narrow and when we have a single equation. When we combine several
equations, a preconditioning method has been proposed in order to linearize the
problem into a system where a tree matrix in involved. The preconditioning has
been implemented using a Gauss Jordan band diagonalization method. On an
example, we have shown that our centered contractor was able to outperform the
state of the art contractor based on a forward-backward propagation.

Other approaches, such as the generalized interval arithmetic [15], the affine
arithmetic [12] allows to get first order approximation of the constraints. As for
our paper, these arithmetics can obviously model the affine dependencies between
quantities with an error that shrinks quadratically with the size of the input inter-
vals. Now, this linear approximation is only valid when we have a single constraint
and can thus not be used to build asymptotically minimal contractors without

www.ensta-bretagne.fr/jaulin/centered.html
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some improvements. Our approach does not require the implementation of a new
arithmetic since it only uses the standard interval arithmetic. Moreover, our ap-
proach generates a contractor that can be combined with other existing contractors
enforcing the efficiency of the resolution.
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