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Preface

The 14th Conference of PhD Students in Computer Science (CSCS) was orga-
nized by the Institute of Informatics of the University of Szeged (SZTE) and held
in Szeged, Hungary, between Jul 3 – July 5, 2024.

The members of the Scientific Committee were the following representatives of
the Hungarian doctoral schools in Computer Science: János Csirik (SZTE), Lajos
Rónyai (SZTAKI, BME), András Benczúr (ELTE), András Erik Csallner (SZTE)
Erzsébet Csuhaj-Varjú (ELTE), József Dombi (SZTE), József Dániel Dombi (SZTE),
Richárd Farkas (SZTE), István Fazekas (DE) Zoltán Fülöp (SZTE), Katalin Hangos
(MTA) Ferenc Hartung (PE) Zoltán Horváth (ELTE), Márk Jelasity (SZTE), Tibor
Jordán (ELTE), Attila Kertész (SZTE), Ákos Kiss (SZTE), László Kóczy (SZE),
Andrea Kő (Corvinus), János Levendovszki (BME), Gyöngyvér Márton (Sapientia
EMTE), Valerie Novitzka (TUKE), László Nyúl (SZTE), Kálmán Palágyi (SZTE),
Attila Pethő (DE), Tamás Pflanzer (SZTE), Gábor Szederkényi (PPKE), János
Végh (ME).

The members of the Organizing Committee were: Judit Jász, Balázs Bánhelyi,
Tamás Gergely, and Zoltán Kincses.

There were more than 36 participants and 20 talks in several fields of computer
science and its applications (7 sessions). The talks were going in sections in Image
Processing, Security, Blockchain, Testing, Computation, and Development 1-2.

The talks of the students were completed by 2 plenary talks of leading scientists:
Gábor Péter Nagy (SZTE, Hungary) and Márk Jelasity (SZTE, Hungary).

The open-access scientific journal Acta Cybernetica offered PhD students to
publish the paper version of their presentations after a careful selection and review
process. Altogether 9 manuscripts were submitted for review, out of which 7 were
accepted for publication in the present special issue of Acta Cybernetica.

The full program of the conference, the collection of the abstracts and further
information can be found at https://www.inf.u-szeged.hu/~cscs/.

Judit Jász
Guest Editor

https://www.inf.u-szeged.hu/~cscs/
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Optimizing SAP Machine Learning-based Solutions

through Custom API Integration

Georgina Asuahab, Arafat Md Easinac, and Tamás Oroszad

Abstract

Rapid changes, dynamic consumer preferences, and evolving market trends
are the hallmarks of the business environment. SAP HANA has emerged as a
potent platform to meet this demand due to its resilient foundation for real-
time data analytics and processing and in-memory processing architecture.
This research aims to improve anomaly detection capabilities by integrating
machine learning (ML) models into the SAP HANA Fiori web application.
This will be achieved by developing a custom Application Programming Inter-
face (API). The proposed solution integrates ML models with the SAP system
using FastAPI, providing real-time insights and decision-making capabilities,
by employing Local Outlier Factor (LOF) for anomaly detection. Multiple
ML estimators were evaluated and the results indicate that LOF consistently
outperforms other models, offering higher detection accuracy and computa-
tional efficiency. This research provides a practical framework for integrating
machine learning-based anomaly detection into enterprise applications, ad-
dressing the limitations of SAP’s built-in Predictive Analysis Library (PAL).
To guarantee seamless performance and scalability, the API is deployed on
Azure using Docker containers. This paper presents the capability of custom
APIs to integrate ML models into enterprise systems, enhance operational
efficiency, and establish a reliable framework for real-time anomaly detection
as a practical solution. The article addresses challenges associated with API
integration, scalability, and system configuration, providing valuable insights
for enhancing the deployment of machine learning in enterprise applications.
These findings offer valuable insights for organizations seeking to enhance
their predictive analytics capabilities using modern AI-driven approaches.

Keywords: SAP HANA Fiori, machine learning, API integration, anomaly
detection, Local Outlier Factor (LOF)
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1 Introduction

Organizations nowadays strive to derive actionable insights from their massive data
sets, owing to prevalent digital technologies and big data [31]. The business world
is characterized by rapid changes, evolving tastes of customers, and unpredictable
market trends [35]. Companies in diverse sectors now consider real-time decision
assistance a need rather than a luxury. SAP HANA emerged as a strong platform
to address this need, due to its in-memory computing design and solid basis for
processing and analytics of data in real-time [10].

However, a smooth integration of machine learning and artificial intelligence
(AI) capabilities is necessary to fully explore SAP HANA’s potential [9, 15]. Tasks
like anomaly detection benefit greatly from this connection since ML models can
detect variations in data trends, which can help spot vulnerabilities like fraud, sys-
tem failures, or inventory shortages early. This link allows companies to quickly and
easily conclude their data which will help them make better decisions. Unsuper-
vised anomaly detection methods can be easily built using SAP HANA’s Predictive
Analysis Library (PAL) [22]. However, this approach has limitations, such as not
letting the user modify the algorithm’s settings or apply domain expertise for anom-
aly identification. This necessitates using custom APIs to enhance the precision
and efficiency of anomaly detection.

Nowadays, ML algorithms utilize data analysis techniques to identify patterns
and correlations in historical data, enabling the extraction of valuable information
and the creation of algorithms [33]. Application Programming Interfaces are vital
for connecting machine learning models to enterprise systems such as SAP HANA
[27]. Organizations can efficiently tackle unique business difficulties by adapting
ML models to their specific needs and requirements through these APIs [7]. Custom
APIs offer flexibility in integrating specialized machine learning models tailored to
the unique needs of a business, providing a means to optimize these models’ deploy-
ment and scaling [26]. APIs act as connectors, enabling seamless communication
between machine learning algorithms and SAP applications [16]. They allow data to
flow efficiently between these systems, ensuring that ML models can be integrated
without significantly disrupting existing workflows.

The capacity to promptly identify deviations from typical behavior is essential
for the preservation of operational efficiency, security, and system performance in
anomaly detection. The anomaly detection process can be automated and enhanced
by the integration of machine learning models into SAP HANA through custom
APIs, which can provide real-time insights that traditional rule-based systems may
overlook [13]. This research investigates the potential of custom API integration
to optimize SAP machine learning-based solutions, with a particular emphasis on
the improvement of anomaly detection capabilities in enterprise environments.

The main motivation is derived from the constraints of the current SAP HANA
PAL capabilities, which restrict customization and domain-specific tailoring. Anom-
aly detection is essential for identifying unusual patterns in data, including fraud,
system malfunctions, and inventory discrepancies. Although SAP HANA’s PAL
provides fundamental anomaly detection capabilities, it is unable to integrate so-
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phisticated ML models. In this study, we developed a custom API that incorporates
sci-kit-learn’s Local Outlier Factor (LOF) anomaly detection model to overcome
these constraints and offer a more flexible anomaly detection solution. The aim
of this research is the development of a resilient custom API using FastAPI to in-
tegrate machine learning models, specifically the LOF, with SAP Fiori Web, and
the deployment of this solution on Azure Kubernetes Service (AKS) to guaran-
tee scalability, security, and high availability. Improve the pace and precision of
decision-making in real-time enterprise settings.

The main contributions of this study are summarized as follows:

• Developing a FastAPI-based model for the integration of machine learning
anomaly detection with the SAP HANA Fiori application.

• Optimizing anomaly detection where various machine learning models were
analyzed, revealing that the LOF exhibits enhanced accuracy, recall, and
ROC AUC.

• Employing containerized cloud-based deployment through Docker and AKS
to enhance scalability, security, and high availability.

• Designing an interactive interface for seamless integration of SAP HANA
Fiori, enabling real-time anomaly detection within enterprise SAP applica-
tions.

2 Literature Review

Applying machine learning models for anomaly detection within SAP systems is
becoming more popular as organizations strive to become more operationally effi-
cient, reduce risks, and improve data-oriented decision-making [4, 12]. It has been
noted that anomaly detection is important for any enterprise system as it involves
detecting suspicious activity.

Anomaly detection methods are numerous, with some basic techniques extend-
ing to the use of artificial intelligence in application. Traditional statistical tech-
niques such as Z-score and boxplot-based outlier detection are commonly used [18].
Techniques such as these establish a cutoff point based on mean-variance or other
statistical moments such as quantiles. A Z-score, for example, tells how many stan-
dard deviations a given observation is away from the average, with higher scores
meaning that they are closely related to anomaly activity [8]. However, these
methods do not work satisfactorily with multi-dimensional or other complex data
distributions. These methods are quite simple to adopt but the gutter lies on the
prerequisite of a certain type of distribution which effectively dismisses them on
dynamic or complex spheres.

Machine learning methodologies have become increasingly popular owing to
their capacity to represent intricate patterns. For instance, Support Vector Ma-
chines (SVM) have proven effective in anomaly detection by identifying a hyper-
plane that separates typical instances from atypical ones [28]. Similarly, neural
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networks, especially autoencoders, have found widespread application, as these
models reconstruct input data, with significant reconstruction errors signaling the
presence of anomalies [25]. Although these models are adaptable, they typically
necessitate substantial datasets for training and may struggle with limited inter-
pretability. Ensemble techniques, such as Isolation Forest and Random Forest,
have also been employed to improve anomaly detection. Isolation Forest isolates
anomalies through recursive partitioning, making it particularly effective for high-
dimensional datasets [17]. While ensemble methods provide robustness and en-
hanced generalization, they also introduce increased computational complexity and
often necessitate careful hyperparameter tuning to achieve the best performance.

Custom API integration is essential for embedding machine learning-based
anomaly detection models within SAP systems. APIs are the interface between
ML models and enterprise systems, allowing for smooth data transfer and enabling
real-time predictions. According to [11], RESTful APIs are frequently used to
expose ML models, providing a standardized method for communication between
SAP systems and ML services. These APIs should accommodate various data for-
mats (e.g., JSON, XML) and feature clear endpoints for model training, inference,
and monitoring. Creating custom APIs for machine learning integration necessi-
tates adherence to some fundamental principles. Best practices for API integration
emphasize several key considerations as described by [5, 34]. Firstly, versioning is
critical to guarantee backward compatibility as APIs progress. Secondly, adhering
to RESTful principles and using JSON-based communication can make APIs more
adaptable and easier to integrate with different applications. Lastly, security is
essential, especially when integrating APIs into enterprise systems. Implementing
encryption, authentication, and role-based access control mechanisms is crucial to
protect sensitive information.

As machine learning models evolve, continuous deployment pipelines should be
implemented to automate model updates in production environments [3]. In [21],
the authors proposed a distributed and unified API service for machine learning
models that helps ensemble multiple models. This results in better predictions and
benefits such as wider availability, greater usability, and lesser resource constraints.
[24] tackled the issue of developing user-friendly ML APIs, particularly for begin-
ners. Their research centered on examining how the Kaggle community utilizes
scikit-learn, a popular ML API. The work of [23], discussed a case study showing
how they integrated an SAP ERP system with an external web service through
API access, illustrating the use of algorithms and transactions within SAP ERP.

Enhancing SAP machine learning solutions for anomaly detection involves uti-
lizing various methods, including custom API integration. Creating custom APIs is
essential for linking machine learning models with enterprise systems, simplifying
complicated processes, and improving user experience. Custom APIs will continue
to be essential for achieving smooth and scalable ML integration in enterprise sys-
tems as organizations delve into AI-powered solutions.
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3 Methodology

The proposed solution is intended to capitalize on the machine learning models
available in the esteemed scikit-learn (sklearn) library. The SAP HANA Fiori solu-
tion’s proposed implementation employs machine learning models from the sklearn
library to improve predictive modeling and data analysis. The FastAPI framework
is implemented to incorporate predictive capabilities within a scalable and accessi-
ble application programming interface. The Azure cloud service provider is selected
for its seamless integration with FastAPI and robust infrastructure, which is where
the API deployment is orchestrated. The API that has been finalized, functions
as a connection between the SAP HANA Fiori web application and the machine
learning model. It improves the web application’s functionality by integrating in-
telligent decision-making capabilities that are based on the predictions of the ML
model. A critical component of the operational strategy is integrating an anomaly
detection API into the SAP HANA Fiori web application.

3.1 System Architecture

The system architecture integrates five key components: SAP HANA, SAP Fiori,
FastAPI, Azure Kubernetes Service (AKS), and Azure Container Registry (ACR).
This design ensures flawless interaction between enterprise data management, anom-
aly detection, and cloud-based deployment. Figure 1 provides a detailed view of
the system’s flow, showcasing how user interactions in SAP HANA Fiori trigger
anomaly detection through the custom API. The entire process starts with SAP
HANA, which stores and preprocesses the dataset before sending it via OData
services to the FastAPI backend. A Local Outlier Factor (LOF) model is hosted
by FastAPI to evaluate incoming data and produce anomaly predictions in real
time that are returned in JSON format. Azure Container Registry manages con-
tainerized instances of the FastAPI application, guaranteeing version-control, and
secure image storage. AKS coordinates scalable deployment, integrating HTTPS
encryption and token-based authentication for secure operations and dynamically
adjusting resources to meet demand.

Afterwards, the processed data are sent to SAP Fiori, which offers an easy-to-
use, role-based interface for interactive anomaly analysis and prediction visualiza-
tion. Using SAP platforms (HANA, Fiori) for data handling and user interaction
and Azure Cloud Services (ACR, AKS) for robust infrastructure management, the
architecture prioritizes modularity. It is secured by Role-based Access Controls
(RBAC) and built for smooth scalability in enterprise settings.

3.1.1 SAP HANA

SAP HANA (High-performance Analytic Appliance) is an advanced in-memory
database and application development platform designed for processing large vol-
umes of real-time data [20]. In-memory processing stores data directly in the main
memory of a system rather than on traditional disk storage, and this significantly
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Figure 1: Overall architecture of the proposed system

enhances the processing speed for analytics and transactional workloads. It reduces
the time taken to fetch data and accelerates computations by avoiding the latency
related to disk I/O operations. Its Integrated Development Environment facili-
tates the creation of applications with the SAP HANA Deployment Infrastructure
(HDI) containers, enabling smooth integration and data administration. Through
its Predictive Analysis Library (PAL) [30], it facilitates predictive analytics, allow-
ing developers to apply a variety of machine learning algorithms directly. The data
source and preparation engine for this study is SAP HANA, which also prepares
datasets and stores them in HDI containers for convenient access. It makes effective
use of OData services to move data to external systems, such as the custom API.

3.1.2 SAP Fiori

SAP Fiori is a user experience (UX) platform for communicating intuitively and
easily with enterprise systems through role-based interfaces [29]. It provides a
responsive workflow for users on different devices through user-centered design,
hence making laborious jobs less straining and hard business processes much eas-
ier. This work integrates it with the anomaly detection system using FastAPI,
where the user can trigger the analysis in real time and in several directions with
dynamic dashboards. Using SAPUI5 in the development, this platform provides
much-needed customization possibilities according to organizational needs. The
presented research extends the default functionality of SAP Fiori by incorporat-
ing new components, which interface directly with the anomaly detection API and
showcase its adaptability in an advanced analytics context.
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3.1.3 FastAPI

This study uses a scikit-learn LOF model to detect anomalies in real-time, and the
real emotional core is a FastAPI-based backend. Incoming queries from SAP Fiori
are processed by the API. It then uses the trained LOF algorithm to check the
data for abnormalities and delivers predictions in standardized JSON format via
RESTful endpoints. The system uses asynchronous request processing to maximize
speed, guaranteeing low latency responsiveness and good scalability. This archi-
tecture allows anomaly scores to be dynamically shown on business dashboards
by bridging the gap between machine learning algorithms and SAP Fiori’s user
interface.

3.1.4 Azure Container Registry

The centralized location for managing and storing Docker container images related
to the FastAPI application is the Azure Container Registry. Immutable image
tags provide strong version control, while integrated vulnerability assessment and
role-based access restrictions guarantee safe deployment. ACR provides automated
continuous integration and deployment (CI/CD) pipelines. It also and enables
smooth connection with Azure Kubernetes Service by simplifying image distribu-
tion and authentication. This preserves adherence to company security rules while
guaranteeing regular, auditable upgrades to the anomaly detection system.

3.1.5 Azure Kubernetes Service

The containerized FastAPI application is deployed and managed using Azure Ku-
bernetes Service, which facilitates high availability and smooth scaling to satisfy
business needs. Through auto-scaling capabilities, it automatically adjusts work-
loads in response to traffic changes, guaranteeing optimal resource use. To protect
API endpoints and user interactions, AKS incorporates strong security mechanisms.
These include token-based authentication using Azure Active Directory (AAD) and
HTTPS encryption via ingress controllers. The platform supports zero-downtime
upgrades and maintains a secure, auditable pipeline by utilizing Azure Container
Registry for image retrieval and deployment. AKS is positioned as the foundation
for production-ready anomaly detection processes because of its fault tolerance,
scalability, and enterprise-grade security.

3.2 Data Preparation

The dataset1 was the transactional sales data from SAP HANA (shows in Figure 2),
preprocessed to remove null values and categorical anomalies. The sales transac-
tion data from SAP HANA was deployed into a NativeDevelopment HDI container.
This container functions as a repository for structured data, which is indispensable
for developing and training machine learning models. The Multi-Target Applica-
tion (MTA) paradigm was employed to import table definition files and construct

1https://webide.h08z.ucc.ovgu.de/watt/index.html

https://webide.h08z.ucc.ovgu.de/watt/index.html
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the MTA project, which initiates the configuration process. A node.js module
with XSJS support was used to establish OData services, guaranteeing connectivity
between the database and auxiliary services. The SAP HANA Fiori application en-
ables data transfer to the API to facilitate real-time decision-making. Categorical
variables, including Currency and Product, were encoded through Label Encod-
ing, whereas numerical variables underwent standardisation via StandardScaler to
maintain scale-invariance in model performance.

This study employed Stratified 10-Fold Cross-Validation to evaluate model per-
formance in a robust and generalisable way. This approach guarantees that each
fold maintains the same anomaly distribution as the complete dataset, which is
essential in tasks involving imbalanced anomaly detection. Training and testing
were conducted iteratively for each fold, with performance metrics averaged across
the folds. A rigorous cross-validation process was employed on various anomaly
detection models, such as Local Outlier Factor, One-Class SVM, Isolation Forest,
and Robust Covariance, to determine the most effective estimator.

Figure 2: Snapshot of the sales dataset

3.3 Anomaly Detection Algorithms

In this paper, we have applied four machine-learning algorithms: Robust Covari-
ance, Isolation Forest, One-Class Support Vector Machine, and Local Outlier Factor
using the scikit-learn toolkit.

3.3.1 Robust Covariance

This method detects outliers by fitting data distribution through a robust esti-
mation of covariance (e.g., Minimum Covariance Determinant) [1]. It calculates
Mahalanobis distances to identify deviations from normality, making elliptical as-
sumptions regarding data distributions. While performing well on low-dimensional
Gaussian-like data, in high-dimensional data spaces, performance degrades since
covariance estimation becomes unstable. The contamination parameter was set
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to contaminatiset=0.05 which determines the predicted fraction of outliers and is
important to its success. A mismatch in this parameter results in over- or under-
detection. This scikit-learn method is intended to find outliers in datasets with a
Gaussian distribution. It successfully detects outliers that depart from the center
distribution by modeling the data and fitting an ellipse to it. When the data follows
elliptical assumptions, this approach works well.

3.3.2 Isolation Forest

Isolation Forest is a tree-based ensemble method that effectively isolates anomalies
by recursive partitioning. A process utilizing the fact that anomalies require fewer
splits to be separated due to sparsity in the feature space [18, 32]. Though effec-
tive on high-dimensional data, it scales poorly with dataset size. The predicted
percentage of outliers is indicated by the contamination parameter, set to contam-
ination=0.05 in this implementation. The number of tren estimators controls the
number of trees which was set to 100 in this experiment to balance speed and
accuracy.

3.3.3 One-Class SVM

This technique, which assumes anomalies are few and unique, finds anomalies by
learning a decision border around normal data [19]. The choice of the kernel (ra-
dial basis function, for example) and hyperparameter tuning, specifically, nu (con-
tamination estimate), kernel, and gamma, determine how successful it is. The
implemented One-Class SVM algorithm uses the hyperparameters nu=0.05, ker-
nel=‘rbf’, and gamma=‘auto’. This is well suited for cases when the anomalies are
well separated and kernel parameters match the inherent structure of the data.

3.3.4 Local Outlier Factor

This algorithm estimates the density of every point as a function depending on
its k nearest neighbors. If the point’s local density is lower compared to its k
nearest neighbors, then it can be labeled as an anomaly. This reachability Distance
to smoothen out this density notion can be formalized as the maximum actual
distance between the two points, or the kth nearest neighbor distance. [14]. Local
Reachability Density (LRD) [2] is the inverse of the average reachability distance
of a point’s neighbors. LOF creates a score ratio between LRD for each point
and an average of that same neighborhood around it. Scores greater than 1 would
mark possible anomalies. The usefulness of LOF resides in the fact that it is
a non-parametric technique with no assumptions of particular data distributions.
This algorithm handles datasets with different densities more efficiently than global
methods like the Z-score by evaluating the local density deviation of a data point
about its neighbors. The n neighbors (denoted as k) option adds versatility by
enabling customization for various anomaly features. To find novel abnormalities
in new data points The following hyperparameters were used: n neighbors=80,
contamination=0.05, metric=‘manhattan’, and novelty=True.
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The base algorithm, the LOF, was selected because of its versatility and per-
formance. The ability of the LOF model to detect local density deviations and
identify outliers in complex datasets led to its selection for deployment. Because
it is non-parametric, it can adapt to different data distributions. When anomalies
differ in degree from the norm, LOF performs exceptionally well. The pseudocode
for the LOF algorithm is presented in Algorithm 1.

Algorithm 1: Local Outlier Factor (LOF) Algorithm

Input : Dataset D = {x1, . . . , xN}; number of neighbors k;
contamination level τ ; distance metric d; novelty detection flag

Output: Anomaly labels L = {l1, . . . , lN}, where li ∈ {normal, outlier}
foreach point p ∈ D do

Compute distance matrix M where Mij = d(pi, pj)
end
foreach point p ∈ D do

Find kth nearest neighbors: kNN(p)← sort(Mp)[1:k + 1]
end
foreach point p ∈ D do

foreach q ∈ kNN(p) do
Compute reachability distance:
reach-dist(p, q)← max(d(p, q),distance(q, qk))

end

end
foreach point p ∈ D do

Compute local reachability density:

LRD(p)← 1
avg({reach-dist(p,q) | q∈kNN(p)})

end
foreach point p ∈ D do

Compute LOF score:

LOF(p)← avg({LRD(q) | q∈kNN(p)})
LRD(p)

end
Determine threshold θ using contamination level τ
foreach point p ∈ D do

if LOF(p) > θ then
lp ← outlier

else
lp ← normal

end

end
return L
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3.4 Performance Evaluation

The performance metrics and evaluation protocols used in this study to precisely
assess the efficacy of the anomaly detection models are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

The percentage of correctly categorized cases (both normal and abnormal) is quan-
tified.

Precision =
TP

TP + FP
(2)

Evaluate the percentage of actual anomalies among all predicted anomalies to de-
termine how well the model prevents detection errors.

Recall =
TP

TP + FN
(3)

Assesses the model’s ability to prevent false detections while identifying the major-
ity of true anomalies.

F1 = 2× Precision× Recall

Precision + Recall
(4)

Represents the balance between false positives and false negatives by taking the
harmonic mean of precision and recall.

Execution Time: The Total amount of time (in seconds) needed for both model
inference and training is essential for evaluating scalability.

Area Under the ROC Curve (AUC-ROC):

AUC =

∫ 1

0

TPR(x) dx or equivalently, AUC =
∑

(TPR×∆FPR) (5)

The model’s capability to distinguish anomalies from normal instances at various
thresholds of classification.

TPR =
TP

TP + FN
; FPR =

FP

FP + TN
(6)

The assessment of anomaly detection models is predicated on several crucial
terms: False Negatives (FN) are anomalies that the model failed to identify, False
Positives (FP) are normal cases that were mistakenly identified as anomalies, True
Negatives (TN) are normal instances that were correctly classified, and True Posi-
tives (TP) are anomalies that were accurately identified. Overall, anomaly classifi-
cation based on threshold values determined by contamination levels. The evalua-
tion employed a stratified 10-fold cross-validation approach to enhance robustness
and generalizability. This method ensures that each fold preserves the distribution
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of anomalies across the dataset, thereby mitigating bias in imbalanced learning
tasks. Performance metrics, including accuracy, precision, recall, F1 score, and
ROC AUC, were calculated using Scikit-learn’s classification tools and averaged in
all folds to obtain a reliable estimate of the effectiveness of each model.

4 Results and Discussion

This work involves the creation of a REST API using Python to enhance SAP ML-
based solutions. The experimental results are shown and discussed below. This
application consumes OData API/Service and loads data from the system. The
experiment evaluated various machine learning models for anomaly detection, in-
cluding Robust Covariance (RC), Isolation Forest (IF), One-Class SVM (OCSVM),
and Local Outlier Factor (LOF) from the scikit-learn. To test the models for anom-
aly detection, the sales transaction data was used to evaluate the estimators. Table
1 compares the performance metrics of evaluated models, highlighting LOF’s su-
perior results. The hyperparameter specification for LOF includes k (number of
neighbors): 80, Contamination: 0.05, metric: ‘manhattan’, Novelty: True. The
Python pickle library saves the trained model for reuse via API.

4.1 Model Selection for Anomaly Detection

Our primary goal was to deliver robust outlier detection within SAP’s inherently
time-critical transaction environment, where prediction latency must remain min-
imal. Classical methods such as RC, IF, OCSVM, and LOF offer sub-second in-
ference times and have demonstrated very strong detection performance in our
benchmarks. We therefore prioritized these algorithms to ensure both speed and
accuracy under production constraints.

Table 1: Comparison of different anomaly detection models evaluated on the full
feature set using 10-fold cross-validation

Model Acc Precision Recall F1-Score ROC AUC Execution Time
RC 0.989 0.898 0.900 0.898 0.941 4.3s
IF 0.983 0.834 0.828 0.829 0.910 4.73s
OCSVM 0.969 0.674 0.756 0.711 0.868 1.48s
LOF 0.991 0.911 0.920 0.914 0.958 9.37s

Finding the optimum anomaly detection approach necessitates balancing sen-
sitivity to class imbalance, computational efficiency, and accuracy [6]. Table 1
compares four popular anomaly detection models (RC, IF, OCSVM, and LOF)
for all the features using 10-fold cross-validation, across accuracy, precision, recall,
F1-score, ROC AUC, and execution time. Whereas, LOF achieves the best overall
detection quality with the highest accuracy (0.991), precision (0.911), and recall
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(0.920), yielding the top F1-score (0.914) and ROC AUC (0.958). However, this
superior performance comes at the expense of speed: LOF is the slowest, requiring
9.37s to execute.

In contrast, OCSVM is the fastest (1.48s) but delivers the weakest detection
metrics (accuracy 0.969, precision 0.674, recall 0.756, F1-score 0.711, AUC 0.868),
making it less reliable for high-stakes anomaly identification. Both RC and IF
offer more balanced trade-offs: RC provides strong recall (0.900) and accuracy
(0.989) with moderate precision (0.898) and AUC (0.941) in 4.30s, while IF yields
respectable accuracy (0.983) and precision (0.834) in 4.73s but slightly lower recall
(0.828) and AUC (0.910).

Figure 3: Feature importance from the complete feature set

After experimenting with the complete feature set on our anomaly-detection
models, we utilized a RandomForestClassifier for feature-importance ranking to
choose importance features. During the feature selection, three features were
dropped including Order Number, Order Item, and Unit of Measure. As Figure 3
illustrates, Sales Quantity, Discount, and Revenue together contribute over 90% of
the overall importance, whereas Product, Customer Number, Day, Month, Year,
and Currency have only a little effect. Thus, we re-trained all our outlier detector
models based on 9 features out of 12 features.

Table 2 demonstrates the superiority of the LOF even when using only sig-
nificant features with 10-fold cross-validation. LOF achieves the highest accuracy
(0.993) and outperforms all other models in precision (0.927), recall (0.932), F1-
score (0.928), and ROC AUC (0.964). These gains translate into a more reliable
detection of anomalies with fewer false positives and false negatives, making LOF
the strongest choice for scenarios where detection quality is paramount.
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Table 2: Comparison of different anomaly detection models evaluated on the sig-
nificant features using 10-fold cross-validation

Model Acc Precision Recall F1-Score ROC AUC Execution Time
RC 0.987 0.868 0.876 0.871 0.934 10.66s
IF 0.986 0.869 0.864 0.865 0.928 4.11s
OCSVM 0.972 0.699 0.784 0.737 0.882 1.34s
LOF 0.993 0.927 0.932 0.928 0.964 7.45s

IF and RC both hover around 98.6–98.7% accuracy which is closer to LOF
but fall behind LOF in other key metrics. IF delivers a slightly faster execution
time (4.11s vs. LOF’s 7.45s) yet its precision (0.869), recall (0.864) and ROC
AUC (0.928) are notably lower, indicating less consistent anomaly coverage. RC,
while yielding solid accuracy (0.987), requires the longest runtime (10.66s) and
offers lower recall (0.876), precision (0.868) and AUC (0.934) compared to LOF.
This makes it less attractive for both speed-critical and high-performance use cases.
OCSVM exhibits the fastest inference (1.34s) but at the cost of significantly reduced
detection quality (accuracy 0.972, F1-score 0.737, AUC 0.882). Its poor balance
between precision (0.699) and recall (0.784) underlines why it is unsuitable for
applications demanding both reliability and robustness.

LOF strikes the optimal balance and achieves peak anomaly-detection perfor-
mance across all major metrics while maintaining acceptable latency. Overall, if
detection quality is paramount and latency is less critical, LOF is recommended.
However, the LOF method is particularly well-suited for mission-critical applica-
tions where minimizing undetected anomalies is a top priority, such as fraud de-
tection and system monitoring, given its improved recall and processing efficiency.
Therefore, it was chosen as the base method for this study due to its balanced
performance metrics, especially in scenarios that need both scalability and accu-
racy. For time-sensitive scenarios where some performance can be sacrificed, RC or
IF may be preferable, with OCSVM reserved only for cases demanding the fastest
inference despite lower accuracy.

Figures 4 and 5 present ROC-curve comparisons for our four anomaly detectors,
including RC, IF, OCSVM, and LOF; first on the complete full-feature set and then
on the reduced significant-feature set. In Figure 4 (all features, 10-fold CV), LOF’s
ROC curve consistently lies above the others, achieving an AUC of 0.9576. This
steep rise toward the top-left corner reflects LOF’s excellent true-positive rate at
very low false-positive rates, confirming its superior recall and precision trade-off
(highest F1-score). RC follows closely with AUC = 0.941, indicating strong overall
discrimination but slightly less sensitivity at low FPR. IF attains AUC = 0.9096,
demonstrating good but not top-tier performance, while OCSVM trails behind
(AUC = 0.8682), consistent with its lower precision and recall.

After pruning the less important features, Figure 5 shows that all models’ ROC
curves tighten and AUCs improve except for RC: LOF increases to 0.9640, IF to
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Figure 4: Comparison of ROC curves for different anomaly detection models with
complete feature set

0.9284, and OCSVM to 0.8828 while RC decreases to 0.9346. Notably, LOF’s
curve becomes even sharper, underscoring that dimensionality reduction enhances
its anomaly-separation power. IF benefits substantially as well, losing much of its
gap to LOF while retaining fast inference. OCSVM also show modest gains, though
OCSVM remains the weakest overall. However, RC shows a slight reduction in all
performance metrics. These plots demonstrate that LOF is the top performer under
both feature sets. Eliminating the three insignificant predictors further boosts all
models’ ability to distinguish anomalies from normal data except RC; especially
improving LOF and IF in practical, real-time settings.

Figure 6 illustrates how a significant, relevant feature affects the model’s func-
tionality. Plotting the data demonstrates how changes in this characteristic cor-
relate to changes in anomaly scores, hence improving the ability to distinguish
between normal and anomaly cases. Notably, the graphic highlights the model’s
crucial role in reducing false negatives by showing that as the feature value rises, the
model achieves increased detection accuracy and improved recall. Having all fac-
tors considered, the figure emphasizes how important the feature is for maximizing
the anomaly detection procedure.
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Figure 5: Comparison of ROC Curves for Different Anomaly Detection Models
with significant features

Figure 6: Visualizing sales patterns and anomalies
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Figure 7 is a heatmap that shows a sales dataset’s feature correlation matrix.
It displays how strongly and in which direction linear correlations exist between
two variables. The heatmap aids in uncovering potential correlations for feature
engineering and further study. While execution time stays efficient, higher feature
values are linked to increases in accuracy, recall, and the F1 score. This indicates
that the function is essential for improving the model’s detection power without
compromising speed.

Figure 7: Sales feature correlation heatmap

4.2 API Development and Deployment

The FastAPI application encapsulates the predictive capabilities of the trained
anomaly detection model. FastAPI facilitates effortless interaction with the anom-
aly detection model by providing automatic OpenAPI documentation and asyn-
chronous support. A real-time API endpoint is established to expose the model’s
anomaly detection capabilities, accept input data, and return predictions.

To assure consistent deployment across varying environments, the FastAPI ap-
plication is containerized using Docker. Azure Kubernetes Service is employed
to deploy the containerized API on Azure, guaranteeing efficient and scalable ad-
ministration. Security was guaranteed via HTTPS encryption and token-based
authentication, while Azure’s scalability accommodated high-throughput demand.
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The LOF model’s predictive capabilities were integrated into a custom API uti-
lizing the FastAPI framework. The API enabled external systems, including the
SAP HANA Fiori web application, to transmit real-time transaction data and ob-
tain anomaly detection results in return. The API was deployed on Azure Cloud uti-
lizing Docker containers, guaranteeing scalability and uniform performance across
environments. FastAPI’s automatic documentation and capacity to manage high-
volume API requests rendered it an optimal framework for showcasing the machine
learning model’s functionalities. Additionally, the use of Azure’s scalable cloud
infrastructure ensured that the API could handle varying workloads without sac-
rificing performance. This was critical for ensuring that the system could meet
real-time processing requirements in enterprise settings, providing a scalable and
accessible platform for real-time anomaly detection.

4.3 SAP HANA Fiori Integration

The SAP HANA Fiori web application is seamlessly integrated with the API, which
allows for the real-time detection of anomalies within the user interface. The web
application is connected to the API by configuring a service destination in the
SAP HANA Cloud Platform Cockpit. To facilitate communication between the
web application and the API, an extension to the OData service is developed that
specifies input parameters and response structures.

The web application was configured to interact with the anomaly detection
(shown in Figure 8). This application consumes the OData service and loads data
from the system. The app is configured to show the sample data and make the
external API call. The system facilitated smooth communication between the SAP
HANA database, which held the transactional data, and the deployed ML model
through the API. The configuration involved setting up OData services, defining
input parameters, and establishing routes for API calls within the Fiori interface.
This integration enabled end-users to interact with the model predictions seam-
lessly. The SAP HANA Fiori web application was successfully integrated with the
anomaly detection API, allowing real-time interaction and decision-making based
on the model’s predictions Figure 9.

A user-provided service is created on SAP HANA XS Advanced Cockpit and
the custom API endpoint credentials are assigned. Afterwards, the OAfterward-
cation is assigned to this user-provided service in mta.yaml file. The route of
service to OData has been used in outbound.controller.js. This is defined in
the xs-app.json file.

The proposed environment offers significant advantages by incorporating
FastAPI for API development and scikit-learn’s ML models to improve anomaly
detection in the SAP HANA Fiori web application. This integrated system utilizes
powerful algorithms, offering immediate insights for well-informed decision-making.
Moreover, the adaptability of customized APIs effectively overcomes the constraints
of SAP HANA’s PAL, guaranteeing the streamlined identification of irregularities.
This methodology could be applied to other enterprise systems requiring anomaly
detection, such as network security or operational monitoring. Despite its bene-
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Figure 8: Overview of SAP HANA Fiori web configuration

Figure 9: Creating a user-provided service on SAP HANA XS advanced cockpit
and assigning the custom API endpoint credentials

fits, the challenges included ensuring seamless integration of the machine learning
model, the API, and the SAP HANA Fiori web application. This incurs additional
costs and effort for maintenance and the possibility of scaling issues as the vol-
ume of data grows. Future research could concentrate on optimizing the model for
even larger datasets and automating updating the model as new transaction data
becomes available.
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5 Conclusions

In this study, an anomaly detection system inside the SAP HANA Fiori Web Tool
was successfully implemented. The experimental results indicate that LOF sur-
passes other anomaly detection methods, including Isolation Forest and One-Class
SVM, in terms of both accuracy and processing speed. The model utilized transac-
tional sales data from SAP HANA, confirming its relevance to practical enterprise
contexts. The constraints of SAP HANA’s PAL were addressed by integrating
a custom API-based solution powered by scikit-learn’s LOF model, thus creating
a more reliable anomaly detection method. Moreover, FastAPI allowed a high-
performance API interface, boosting the LOF model’s usability. Azure deployment
guaranteed scalability and dependability by employing Docker and Kubernetes.
This solution easily links scikit-learn, FastAPI, Azure, and SAP HANA Fiori to
create a robust and unified predictive analytics system that tackles technical issues
and improves functionality, adaptability, and real-time anomaly detection in busi-
ness environments. Therefore, many technical challenges are addressed using this
solution. This approach proved to be effective, but there are still many areas that
need improvement. Maintaining the performance of the anomaly detection sys-
tem as data quantities becomes a challenge. Future studies might look into using
anomaly detection algorithms based on evaluating some lightweight neural network
alternatives (e.g., shallow autoencoders or one-layer graph networks). Once we
have validated that their computational overhead remains compatible with SAP’s
real-time requirements, which could offer even more accuracy and flexibility. This
study particularly contributes to the field of enterprise AI integration by presenting
a scalable and efficient solution for real-time anomaly detection in SAP HANA envi-
ronments. The findings highlight the significance of integrating machine learning,
cloud technologies, and API-driven architectures to improve enterprise analytics
capabilities.

Data Availability Statement

The dataset utilized in this study was obtained from the SAP HANA platform.
While it is not publicly available, access may be granted upon formal request
through the appropriate official channels. The source code and supplementary
materials can be accessed at the following URL: https://github.com/Georgina-
asuah/SAPML.

References

[1] Agyemang, E. F. Anomaly detection using unsupervised machine learning
algorithms: A simulation study. Scientific African, 26:e02386, 2024. DOI:
10.1016/j.sciaf.2024.e02386.

https://github.com/Georgina-asuah/SAPML
https://github.com/Georgina-asuah/SAPML
https://doi.org/10.1016/j.sciaf.2024.e02386


Optimizing SAP Machine Learning-based Solutions 137

[2] Albtsoh, L. and Omar, M. Textguard: Identifying and neutralizing adversarial
threats in textual data. International Journal of Informatics, Information
System and Computer Engineering (INJIISCOM), 6(2):212–224, 2025. URL:
https://ojs.unikom.ac.id/index.php/injiiscom/article/view/15232.

[3] Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan,
N., Nushi, B., and Zimmermann, T. Software engineering for machine learn-
ing: A case study. In Proceedings of the 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice, pages
291–300. IEEE, 2019. DOI: 10.1109/ICSE-SEIP.2019.00042.

[4] Baur, B. Machine Learning mit SAP HANA. Espresso Tutorials GmbH,
2022. URL: https://www.vitalsource.com/products/machine-learning-
mit-sap-hana-benedict-baur-v9783960121688.

[5] Baylor, D. et al. Tfx: A TensorFlow-based production-scale machine learning
platform. In Proceedings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining, pages 1387–1395, 2017. DOI: 10.

1145/3097983.3098021.

[6] Birihanu, E. and Lendák, I. Optimal sensor data resampling for anomaly
detection in industrial control systems. In The International Conference on
Recent Innovations in Computing, pages 697–710. Springer, 2023. DOI: 10.

1007/978-981-97-3442-9_49.

[7] Buitinck, L. et al. API design for machine learning software: Experiences from
the scikit-learn project. arXiv preprint, 2013. DOI: 10.48550/arXiv.1309.

0238.

[8] Chandola, V., Banerjee, A., and Kumar, V. Anomaly detection: A sur-
vey. ACM Computing Surveys, 41(3):1–58, 2009. DOI: 10.1145/1541880.

1541882.

[9] Easin, A. M. and Orosz, T. Enhancing SAP ecosystem: Harmonizing open-
source technologies for integration and innovation. In Proceedings of the 14th
Conference of PhD Students in Computer Science, page 7, 2024. URL: https:
//www.inf.u-szeged.hu/~cscs/pdf/cscs2024.pdf.

[10] Easin Arafat, M., Asuah, G., Saha, S., and Orosz, T. Empowering real-time
insights through LLM, LangChain, and SAP HANA integration. In Proceedings
of the International Conference on Recent Innovations in Computing, pages
483–495. Springer, 2023. DOI: 10.1007/978-981-97-3442-9_33.
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Selecting Execution Path for Replaying Errors∗

Zsófia Erdeiab, István Bozóac, and Melinda Tóthad

Abstract

The identification of the sources of a runtime error is a common task for
Erlang developers. Dynamic and static tools can assist in this task. Our work
aims to help Erlang developers in debugging processes to reproduce a runtime
error. We would like to use and extend the static analyzer framework of
RefactorErl with new algorithms to support this fault localization process. In
our previous paper, we presented a symbolic execution-based analysis method
to find the source of runtime errors. This paper extends that work with
path selection heuristics to improve the efficiency of the algorithm in the
RefactorErl framework.

Keywords: static analysis, Erlang, symbolic execution, fault localization,
path selection

1 Introduction

Debugging Erlang programs, particularly in large-scale, distributed systems, pre-
sents significant challenges due to the complexity of tracing and reproducing run-
time errors. Although bugs in the software are usually discovered due to faulty
behaviour (e.g. a runtime error occurs), finding the origin of the fault is a non-
trivial task. Traditional debugging methods often require developers to manually
trace through code, which can be time-consuming and error-prone, especially when
dealing with complex control flows and multiple execution paths. Traditional static
analysis tools, while helpful, often lack the precision to pinpoint the exact source
of a runtime error. Program analysis techniques with symbolic execution can help
to solve this task.

In a concrete execution, a program is evaluated on a specific input, and a single
control-flow path is explored. Symbolic execution [1, 9] uses unknown symbolic
variables in evaluation, allowing to simultaneously explore multiple paths that a
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program could take under different inputs. The use of symbolic execution can help
us in fault localization.

We have previously implemented our prototype algorithm using backtracking
and demonstrated how it finds an execution path to a given expression containing
an error [7]. The algorithm uses a combination of the control-flow graph and
the RefactorErl1 [13] frameworks graph representation of the analyzed code to
determine an appropriate execution path that may lead to a given runtime error in
Erlang software.

Because of the path-explosion problem, it is infeasible for symbolic execution
tools to explore all execution paths of any nontrivial programs. Therefore, search
heuristics are required elements of symbolic execution. Using a good search heuris-
tic can maximize code coverage and improve the effectiveness of the analysis in
practice.

In this paper, we examine several path selection heuristics that can be used
to improve the efficiency of our algorithm and make our method feasible for error
detection on larger software bases. In Section 2 we introduce the Erlang language
and the RefactorErl tool. Section 3 discusses related work in the field of symbolic
execution and fault localization, highlighting the contributions of our approach.
Section 4 introduces various path selection heuristics that can be employed to
improve the efficiency of symbolic execution algorithms. Section 5 provides an
overview of our proposed algorithm and Sections 6 and 7 we present our solution
for managing the problem of path explosion. Section 7 contains a short evaluation
on an example found in an open source project.

2 Background

Erlang [4] is a versatile, dynamically typed, concurrent functional programming
language that allows developers to build highly scalable, soft real-time systems.
Initially developed for telecommunication software, Erlang has since found applica-
tions in banking, chat services, and database management systems. Its robustness
and fault-tolerant nature make it an excellent choice for large-scale distributed sys-
tem development. Erlang programs run on a virtual machine (Erlang VM or node),
which ensures platform independence. The standard library, known as OTP (Open
Telecom Platform), along with the Erlang runtime environment, is collectively re-
ferred to as Erlang/OTP.

Erlang’s module system enables programs to be broken down into smaller units
called modules. Each Erlang program consists of multiple modules, each stored in a
file with the extension .erl. A module starts with a declaration at the beginning,
followed by an export declaration that lists functions intended for external use.
This is then followed by the function definitions within the module.

RefactorErl [2, 13] is a static analysis and transformation tool for Erlang, de-
veloped at Eötvös Loránd University. It employs static code analysis techniques and
offers a wide range of features, including data flow analysis, detection of dynamic

1Refactorerl’s website. https://plc.inf.elte.hu/erlang/

https://plc.inf.elte.hu/erlang/
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function calls, side-effect analysis, and a user level query language for querying
semantic information or structural complexity metrics of Erlang programs. Other
functionalities include examining dependencies among functions or modules and
generating function call graphs that include information on dynamic calls. Refac-
torErl provides multiple user interfaces, such as a web-based interface, an interactive
console, and plugins for Emacs or Vim.

During the initial analysis, RefactorErl constructs an abstract syntax tree from
the source code and enhances it with additional semantic information to form a
Semantic Program Graph (SPG) [8]. After analyzing the source code, this graph
is stored in a database. The tool is capable of transforming the graph back into
source code at any time. The process of refactoring essentially consists of graph
transformation steps, using the SPG to collect the necessary information for the
transformation.

3 Related work

Symbolic execution [1, 9] is a technique used by many program analysis and trans-
formation techniques, such as partial evaluation, test-case generation or model
checking. It can be used for fault detection by exploring different execution paths
of a program with symbolic values instead of concrete values. Symbolic values rep-
resent a range of possible values that can satisfy certain constraints. Tools based
on such techniques can find errors that are hard to detect with conventional testing
methods, such as buffer overflows, division by zero errors, etc.

Symbolic execution maintains a symbolic state and a path condition for each
execution path. The symbolic state contains the symbolic values of variables. The
path condition contains the constraints on the symbolic values that are derived
from branch conditions along the path. Symbolic execution uses a constraint solver
to check the feasibility of each path and to generate concrete inputs that can trigger
faults.

KLEE [3] uses two main search strategies: Random Path Selection and State-
Based Search. Random Path Selection maintains a binary tree recording the pro-
gram path followed for all active states, where the internal nodes are the ones where
the execution has forked and the leaves represent the current states. The states are
selected by traversing this tree from the root and randomly selecting the path to
follow at the branch points. During the symbolic execution when an internal node
is reached, all child nodes of the given node have an equal probability to be selected
by the algorithm regardless of the size of the subtrees. The biggest advantage of
this strategy is that it avoids starvation occurring in loops containing symbolic
conditions and resulting in quick new state creation.

While symbolic execution is not a new topic in the Erlang ecosystem, previously
published papers mostly focus on formal [14, 15] and informal [6] definitions with the
aim of program verification. In a previous paper [7], we present a symbolic execution
technique for Erlang that can support debugging processes of Erlang developers
through the RefactorErl framework. Our goal was not to verify Erlang programs
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but to support their debugging processes through the RefactorErl framework.

In Erlang programming, fault localization is a critical yet complex task, espe-
cially in large-scale software systems. Finding the source of runtime errors can be
time-consuming and costly, necessitating the use of automatic methods to assist
developers. Traditional debugging involves reproducing faulty executions, but this
becomes challenging when dealing with multiple paths a program might take under
various inputs. This work addresses the problem of static fault localization in Er-
lang programs using a targeted approach to explore the control-flow graph of the
software.

Our previously proposed method builds on the RefactorErl static analysis frame-
work to identify execution paths that lead to specific runtime errors. The aim is
to reproduce faulty behavior by selecting an appropriate execution path in the
program’s control-flow graph that may lead to the identified error. The approach
employs symbolic execution, where unknown symbolic variables are used to explore
multiple paths within the program. The analysis targets a specific line or expression
in the program, referred to as the ”error path,” which potentially leads to runtime
errors.

The approach begins with symbolic execution to find a realizable path in the
program from the entry point to the specified error line. As the program is explored,
a set of conditions is gathered, which are then analyzed using an SMT (Satisfiability
Modulo Theories) solver, Z3 [5], to verify the feasibility of the identified path.
By collecting symbolic constraints along the paths in the control-flow graph, the
method can identify the conditions and input values that lead to the runtime error,
aiding developers in reproducing and understanding the fault.

The algorithm operates in a two-step manner: First, it traverses the program’s
control-flow graph in a breadth-first manner to find a potential path to the target
error expression. During this traversal, conditions from branch statements, such
as if expressions, are gathered to build a set of constraints. Variables are tracked
using a map data structure to ensure each unique instance is accounted for in
the constraints. If the conditions derived from the selected path are unsatisfiable,
the algorithm backtracks to find an alternative route. The second step involves
repeating this process recursively through function calls, allowing the exploration
of execution paths that span multiple functions within the program.

This targeted symbolic execution is integrated with the RefactorErl tools exten-
sive code analysis capabilities. RefactorErl constructs a Semantic Program Graph
(SPG) that contains lexical, syntactic, and semantic information about the source
code, as well as control-flow and control dependence information. The SPG aids
in tracking variables and expressions as the program is analyzed. By employing
static backward symbolic execution, the method identifies relevant input parame-
ters and conditions, supporting fault localization in a static analysis context. The
constraints gathered are then passed to the Z3 solver to check for satisfiability and
determine potential inputs that would result in the observed faulty behavior.

Unlike other tools like CutEr2 [11], which uses concolic testing [12] based on dy-

2https://github.com/cuter-testing/cuter

https://github.com/cuter-testing/cuter
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namic symbolic execution, this method is fully static, working with the control-flow
graph to analyze execution paths backward from the error point. It distinguishes
itself by focusing on debugging support rather than program verification, providing
a practical tool for developers dealing with runtime errors in Erlang programs.

4 Path selection algorithms

Path selection heuristics in symbolic execution algorithms are crucial for efficiently
exploring the numerous execution paths in a program. These heuristics aim to
guide the symbolic execution engine to explore the most promising paths, helping
to detect bugs or vulnerabilities while minimizing computational resources.

One common strategy, employed by tools like KLEE [3], is random path selec-
tion. This heuristic builds a binary tree of the program paths being explored. Each
node in this tree represents a decision point (a branch), and the leaves represent
the active execution paths. KLEE traverses this tree randomly, selecting branches
in a way that ensures each path has an equal probability of being chosen, regardless
of the number of processes under it. This approach helps KLEE in two significant
ways, it prioritizes paths that are higher in the tree, which are less constrained and
therefore more likely to lead to new parts of the code, and it prevents KLEE from
being trapped in regions where new branches are generated rapidly, which could
lead to ”fork bombing” or an excessive creation of paths. This method is effective
in providing broad coverage of the execution space, which increases the likelihood
of uncovering unexpected bugs. However, random path selection can be inefficient
when a goal is to discover a specific path in the program graph, as it often leads to
exploring irrelevant paths and may fail to prioritize paths that are more likely to
lead to the target expression.

A more targeted heuristic is concolic execution [12], where symbolic execution is
combined with concrete execution to guide path exploration. Concolic testing uses
concrete inputs to steer symbolic execution towards different branches, ensuring
that the tool avoids paths that have already been explored with similar concrete
inputs. One of the advantages of this method is that it can avoid the path explosion
problem seen in pure symbolic execution by using concrete inputs to prune the space
of possible paths. This heuristic is effective for finding bugs that are triggered by
specific input patterns.

Error-guided path selection is another approach, which focuses on paths that
are likely to lead to known or suspected errors. This heuristic can be highly efficient
when the goal is to locate a particular fault or error condition within a program.
By directing the exploration towards paths where errors are most likely to occur, it
reduces the number of irrelevant paths examined, leading to faster bug detection.

5 Overview of the algorithm

The algorithm uses a kind of symbolic backward execution called call-chain back-
ward symbolic execution [10]. This is a type of symbolic execution that mixes
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forward and backward symbolic execution. Inside each function, it explores the
execution paths forward but it follows the call-chain backwards from the target
point to the program’s entry point. Starting at the target expression, we search
for a path from the entry point of the function containing the target expression
itself. This intraprocedural part of the algorithm uses the control-flow graph of the
function to look for possible paths to the target node.

Once a valid intraprocedural path is found, the next step is to determine the
callers of the function. Using RefactorErl we can collect all expressions that con-
tain such a function call. Now the expression containing the function call will be
our target, and the new starting point will be the new function containing that
expression.

We can see that our algorithm has two points when path selection is needed, once
in the intraprocedural part and once in the interprocedural part. Using different
strategies would make sense in each of these cases.

6 Intraprocedural strategy

The intraprocedural part of our fault localization algorithm focuses on analyzing
execution paths within a single function or procedure to find paths that lead to
an error. At this stage, the algorithm works by exploring the control-flow graph
(CFG) of the function to examine all possible execution paths that may reach a
specific target expression, such as a line of code responsible for a runtime error.
The intraprocedural analysis builds upon symbolic execution, where variables are
treated as symbolic values, and conditions at branching points (such as if expres-
sions, variable assignments or pattern matching) generate constraints that must be
satisfied for a path to be feasible. These constraints are gathered as the algorithm
traverses each possible path within the function.

The algorithm starts from the function’s entry point and follows each control-
flow path, collecting symbolic constraints and tracking the flow of execution until
it either reaches the target expression (such as an error). Starting at the root of
the control-flow graph of the selected function, we explore as far as possible along
each branch before backtracking. If a path to the target node is found, we check
the conditions along the path with the help of a constraint solver for feasibility.
Depending on the result we either return the path or reject it and continue the
backtracking to find another one.

Even though there are no loops at the intraprocedural level, making path ex-
plosion less significant than at the interprocedural level, exploring all paths within
a function can still be computationally expensive if the function contains multiple
branching points. This challenge is compounded by the fact that, if a contradiction
arises in the set of conditions during interprocedural exploration, a new intraproce-
dural path must be identified. This new iteration may involve revisiting previously
explored branches with updated constraints or exploring alternative paths that
were not considered in the previous iteration. The algorithm continues to iterate
until a feasible path to the target expression is identified or all possible paths have
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been exhausted. This approach ensures that the algorithm thoroughly explores the
function’s control-flow graph, increasing the likelihood of finding a valid path to
the error.

To make our algorithm more efficient, we can use estimations in the intraproce-
dural part based on the depth of the target expression within the function’s semantic
program graph to reduce the problem space. The SPG is a representation that con-
tains not only the syntactic structure of the function but also semantic information
about variables, expressions, and dependencies between them. By determining how
deeply nested the target expression is within the SPG, we can establish a depth
limit for path exploration. We can use this metric to reduce the size of the tree by
removing sections of the tree that are deeper than our target.

This depth-based heuristic improves the algorithm’s efficiency by restricting the
exploration to paths that are likely to lead to the error without examining irrelevant
branches or deeply nested conditions that cannot feasibly reach the target. For
example, if the target expression is located within a nested conditional block, the
algorithm sets a maximum depth for the search, focusing only on paths that descend
to the same level of depth as the target expression in the SPG. Paths that exceed
this depth are deprioritized or discarded from the exploration process, as they
cannot feasibly reach the target within the given structure.

Consider the simple example in Figure 1. This code snippet contains divisions,
and if the denominator C is zero, a division by zero error occurs. Suppose that the
error occurred in line 12. We can use the algorithm to find a realizable path to the
target expression from the entry point of the program, and also determine a set of
input values that may trigger the error. We need to traverse the control-flow graph
to find the target expression, but to enumerate all paths might be very expensive
in larger functions. To reduce our searchspace we can cut branches that are deeper
in the tree then our target expression. The tree next to the code snippet shows the
path the algorithm traverses on the simple example function.

7 Interprocedural strategy

We propose a new heuristic for the interprocedural phase of our algorithm, which
leverages the stack trace to optimize the search for execution paths leading to
runtime errors. By using the stack trace to trace the chain of function calls leading
to an error, we can significantly reduce the search space within the control-flow
graph (CFG), improving both the efficiency and precision of the algorithm.

The stack trace is a valuable tool for identifying the chain of functions involved
in an error. Traditionally, developers use stack traces to pinpoint the function where
the error occurred, but this information alone often lacks the accuracy necessary
to determine the specific path through the program leading to the fault. Since the
algorithm is designed to precisely locate the source of a known runtime error, the
stack trace can be provided as part of the initial problem setup. Erlang’s stack
trace is a structured and informative data format that provides a detailed account
of the sequence of function calls leading up to a runtime error. When an exception
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1 -module(example1).
2 -export([foo/2]).
3 foo(A, B) ->
4 C = A - B,
5 if
6 C == A -> 0;
7 C < A ->
8 if
9 B > C -> 1;

10 true -> 2
11 end
12 C > A -> A / C
13 end.

foo

C = A−B

IF

C = A

C < A

C > A

A/C

IF

B > C true

Figure 1: Example module and corresponding path selection

occurs, Erlang generates a stack trace that includes the module name, function
name, arity, and the line number where the error was encountered. This trace also
captures the hierarchical chain of function calls, showing how execution flowed from
one function to another until the error was triggered. For example, a typical stack
trace might look like this:

[{module_name, function_name, [arguments], [{file, line_number}]}, ...],

where each tuple represents a function call in the call stack.
While the stack trace provides a high-level view of the call-chain, it does not

provide the precise sequence of conditions and decisions that led to the error. Our
heuristic takes advantage of the stack trace by using it as a guide to narrow down
the relevant sections of the CFG that need to be explored, avoiding unnecessary
traversal of unrelated branches. This targeted approach enhances the algorithm’s
ability to find a concrete execution path from the program entry point to the error.

The integration of this heuristic into the algorithm is straightforward. Once an
error occurs and the stack trace is available, the algorithm uses it to follow the func-
tion call sequence in reverse, starting from the point where the error occurred. For
each function in the stack trace, the algorithm identifies the relevant control-flow
path by focusing only on the functions listed in the trace and using the intrapro-
cedural algorithm to generate the necessary conditions within the function. As the
stack trace provides a natural ordering of function calls, the search is restricted to a
narrower subset of the program, reducing the number of potential execution paths
to explore. This is particularly effective in large codebases where the number of
possible paths can be overwhelming.

In example in Figure 2, when the function f(A) is called with a negative number,
a runtime error occurs in the arithmetic expression within f2(A), specifically a
division by zero, as indicated by the stack trace. The interprocedural part of our
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1 -module(multi_fun_example).
2 -export([f/1,l/1,r/1,f2/1]).
3
4 f(A) ->
5 if
6 A >= 0 ->
7 l(A+1);
8 true ->
9 r(A)

10 end.

11 l(A) ->
12 {ok, f2(A)}.
13
14 r(0) ->
15 {ok, f2(0)};
16 r(A) ->
17 r(A+1).
18
19 f2(A) ->
20 1/A.

Figure 2: Interprocedural example

algorithm uses this stack trace to trace the chain of function calls leading to the
error. Starting with the function f2(A), the algorithm traces back to the caller,
r(A), which recursively calls itself until A becomes zero, triggering the call to
f2(0). The algorithm then follows the call-chain back to f(A), which, when A is
negative, directs execution to r(A). By reconstructing this path from f2/1 through
r/1 and f/1, our algorithm gathers the conditions along the way, such as the fact
that A is initially negative and r(A) will recursively increment it until it reaches
zero. These symbolic constraints are then used to generate inputs, confirming that
any negative value of A leads to the runtime error in f2/1. This targeted path
exploration, guided by the stack trace, allows our algorithm to efficiently pinpoint
the error and the specific input conditions that cause it.

8 Short evaluation

In this section, we evaluate the interprocedural part of our fault localization algo-
rithm using an example from an open-source Erlang codebase shown in Figure 33.
The selected code snippet handles arithmetic expression parsing in a simple in-
terpreter and was chosen because it exhibits a runtime error when processing an
incorrect expression that cannot be parsed shown in Figure 4. This error shows the
evaluation of how our algorithm traces function calls and identifies the root cause
of errors across multiple functions.

The code consists of functions for parsing and evaluating expressions (parse/1,
parser/1, expression/1, bin/1), with the error manifesting in the expression/1
function due to an invalid argument passed through the function chain. Specifically,
the stack trace generated by the program shows the sequence of calls illustrated in
Figure 5.

The error occurs because expression/1 expects a valid token sequence to parse,
but it receives an invalid list starting with the operator ’+’ that leads to a pattern
matching failure. This is a typical scenario, where we must trace the error through

3https://github.com/pichi/epexercises

https://github.com/pichi/epexercises
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1 parse(L) -> parser(lexer(L)).
2
3 parser(L) when is_list(L) ->
4 {T, []} = expression(L),
5 T.
6
7 expression([’let’,{id,I},’=’|T]) ->
8 {V, [’in’|R1]} = expression(T),
9 {E, R2} = expression(R1),

10 {{’let’, I, V, E}, R2};
11 expression([’if’|T]) ->
12 {C, [’then’|R1]} = expression(T),
13 {X, [’else’|R2]} = expression(R1),
14 {Y, R3} = expression(R2),
15 {{’if’, C, X, Y}, R3};
16 expression([’˜’|T]) -> {X, R} = expression(T), {{’˜’, X}, R};
17 expression([’(’|T]) -> {X, [’)’|R]} = bin(T), {X, R};
18 expression([{id, _}=X|T]) -> {X, T};
19 expression([{num, _}=X|T]) -> {X, T}.
20
21 bin(L) -> {X, [Op|T]} = expression(L),
22 true = lists:member(Op, [’+’,’-’,’*’, ’/’]),
23 {Y, R} = expression(T),
24 {{Op, X, Y}, R}.

Figure 3: Evaluation

1 ** exception error: no function clause matching
2 e38:expression([’+’,{num,1},’)’]) (e38.erl, line 11)
3 in function e38:bin/1 (e38.erl, line 27)
4 in call from e38:expression/1 (e38.erl, line 21)
5 in call from e38:parser/1 (e38.erl, line 8)

Figure 4: Runtime error evaluating an expression

multiple function calls, following the chain of execution from the initial function
call in parse/1 to the final error point in expression/1.

The interprocedural algorithm effectively traces the error through multiple func-
tion calls by following the stack trace. While the depth-limiting heuristic is not
utilized in this example due to the lack of branching in the code, the stack trace
guided approach proves highly efficient in following the exact path to the error
without unnecessary exploration. Unlike random path selection or other heuris-
tics that might explore the control-flow graph exhaustively, our method provides
a direct and efficient route to identifying the path to the error and also generates
possible input values that can lead to the fault.
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1 {’EXIT’,{function_clause,[{e38,expression,
2 [[’+’,{num,1},’)’]],
3 [{file,"e38.erl"},{line,11}]},
4 {e38,bin,1,[{file,"e38.erl"},{line,25}]},
5 {e38,expression,1,[{file,"e38.erl"},{line,21}]},
6 {e38,parser,1,[{file,"e38.erl"},{line,8}]},
7 {erl_eval,do_apply,7,[{file,"erl_eval.erl"},{line,904}]},
8 {erl_eval,expr,6,[{file,"erl_eval.erl"},{line,636}]},
9 {shell,exprs,7,[{file,"shell.erl"},{line,893}]},

10 {shell,eval_exprs,7,[{file,"shell.erl"},{line,849}]}]}}

Figure 5: Stack trace of the example code

9 Conclusion

Our proposed method builds upon the RefactorErl framework, a static code analysis
tool designed for analyzing and refactoring existing Erlang codebases. Our proto-
type algorithm utilizes call-chain backward symbolic execution, a combination of
forward and backward symbolic exploration. Within each function, it analyzes exe-
cution paths forward, while tracing the call-chain backwards from the target point
to the program’s entry point. Starting at the target expression, the algorithm
seeks a path from the entry point of the function containing that expression. The
intraprocedural phase uses the function’s control-flow graph to identify potential
paths to the target node.

Given the branching structure of the program graph, checking every possible
path would not be feasible. To make our prototype algorithm more efficient we
use various path selection strategies. We use backtracking within the functions,
supplemented with improvements that take advantage of the information that can
be extracted from the graph of RefactorErl, reducing the size of the graph to be
traversed. In the case of the interprocedural part, we use random path selection
to prevent starvation when some part of the program rapidly creates new states.
Combining these strategies we can effectively identify execution paths that might
lead to runtime errors.
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152 Zsófia Erdei, István Bozó, and Melinda Tóth
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M., and Király, R. Modeling semantic knowledge in Erlang for refactoring.
In Knowledge Engineering: Principles and Techniques, Proceedings of the In-
ternational Conference on Knowledge Engineering, Principles and Techniques,
Volume 54(2009) Special Issue of Studia Universitatis Babeş-Bolyai, Series In-
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Towards Correct Dependency Orders

in Erlang Upgrades∗

Daniel Ferencziab and Melinda Tóthac

Abstract

Erlang tooling offers rich options to control the exact tasks to perform
during an upgrade. This control aims to allow for zero-downtime upgrades.
Upgrades affecting multiple dependent modules must reflect the dependency
order in the upgrade’s configuration, as an erroneous configuration results in
unintended behavior, possibly even downtime. This paper presents two static
analysis-based checkers for verifying module-related aspects of upgrades. In
our first analysis, we compare the actual dependency order derived from the
source code with that expressed in the upgrade configuration. We also analyze
the code to find circular dependencies among its modules. These pose a
problem during upgrades and are generally good practices to avoid. Both
checkers present an argument in favor of using static analysis methods to
define upgrade specifications.

Keywords: Erlang, upgrades, static analysis, upgrade safety, dependency
order, RefactorErl

1 Introduction

Ensuring continuous operation of IT services is considered the norm in today’s
software environment. While this was typically a feature of safety-critical systems
decades ago, today we can encounter it in many customer-facing applications: re-
tail, banking, and entertainment. The need for this is reasonable considering the
global nature of these services. These applications operate around the clock and
are changed while running without a noticeable impact on the end user. The state-
of-the-art tooling based on containers, serverless services, and other features offered
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by hyperscalers standardizes some of the associated tasks. However, these solutions
require additional effort from operational specialists, for example, load balancers
and draining periods have to be configured, and the application state has to be
preserved. These update schemes also work on high granularity: even small code
changes require the replacement of a unit typically composed of the whole appli-
cation binary. As larger applications contain multiple such units, upgrades with
a broader scope will require care when determining which unit to change at each
upgrade step.

Some languages and runtimes allow runtime changes on a small granularity.
This allows for preserving the application state during software changes. Erlang is
a language that allows for state-preserving code changes. In our work, we research
the challenge of changing dependent code units in Erlang-based software stacks [2].
Erlang was developed with built-in features for concurrency, fault tolerance and
continuous operation. This thins the software stack Erlang applications require.
Consequently, developers maintaining them can create zero-downtime upgrades by
solely using the features of the language and its runtime. With regard to upgrades,
Erlang allows for live replacement of application modules and has upgrade-related
tooling built-in into the language as well. The tooling, the small upgradeable units,
and the runtime together allow the developer to reason about changes on a small
granularity and declare disruption-free upgrades for her application.

Although upgradeable units are small, the problem of identifying how they de-
pend on each other inside a given application is still applicable. Module dependency
structure is also a good candidate for analysis: circular dependencies are best to
avoid in general, and the Erlang release handling guidelines even advise against
using them, as they might make safe upgrades impossible. We also support the
detection of these with our checker, which will aid developers in structuring their
code.

As the application modules’ code meant to be upgraded and the upgrade speci-
fication are both expressed in Erlang, we based our work on existing static analysis
tools to inspect the dependencies in the code.

This paper is structured as follows: in the next Section 2 we briefly present the
Erlang language and the RefactorErl static analyzer on which we base our work.
In Section 3 we introduce how upgrades work in Erlang applications. Section 4
exposes the specific problems we investigated and our developed checkers. We have
dedicated a specific subsection for each analyzed problem: dependency discrepan-
cies 4.1 and upgrades of dependency cycles 4.2. We evaluate our work in Section 5.
Related work is presented in Section 6. Finally, concluding remarks and future
work are described in Section 7.

2 Erlang and RefactorErl

Erlang is a dynamically typed functional programming language. It was developed
at Ericsson for use in the telecommunications domain. It contains in-language fea-
tures for developing highly scalable, fault-tolerant distributed software. These fea-
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tures are provided by the runtime and the standard libraries included with Erlang
distributions. This contrasts with other languages that require the introduction of
other components into the software stack to allow for fault-tolerance or disruption-
free code changes. Bundled tooling includes software for defining and managing
upgrades on a fine-grained level to ensure disruption-free upgrades. These tools
are used to define applications, releases (entities composed of multiple Erlang ap-
plications), and respective upgrade files, appup and relup. These upgrade files are
interpreted by the Erlang runtime’s Release Handler [10]. The requirements for re-
liable, upgradeable software have become more general since Erlang’s first release.
By now, the language has been adopted across several other domains: banking,
instant messaging, cloud services [3, 4].

RefactorErl [1] is a static source code analyzer for Erlang that also supports code
comprehension and refactoring. It is available for Linux, macOS and Windows and
can be used through IDE integration, the command line, or a web interface. The
tool analyzes loaded code, generates its abstract syntax tree, and enhances it with
output from different analyzers: function, data-flow, etc. The resulting Semantic
Program Graph (SPG) [8] allows easy analysis of the loaded program through a
query language [17]. It is distributed with several built-in checkers for inspecting
OWASP vulnerabilities, dependency structure, and dynamic function calls. It offers
a rich framework for semantic analysis, including a rich query language. These
features allow the user to develop their own static analyzers. As RefactorErl is also
open-source, even more elaborate checkers can be developed and integrated into
the tool. Given its features and extensibility, we chose it as our tool to implement
our code checkers.

3 Upgrading dependent Modules in Erlang

Erlang source files (modules) may contain references to functions exported in other
modules. We say that module a depends on module b if there is a call in a to a
function in b. We call a module that has dependencies a dependent module. We
represent this relationship with an arrow pointing from a to b: a → b. In this
context a is a dependent module. Dependency relationships can consequently be
represented using directed graphs, and we can analyze the dependencies of appli-
cation by inspecting such graphs.

Figure 1 shows a simple dependency relationship between modules. Module a
depends on module b, which in turn depends on modules c and d.

The order upon which modules depend on each other is important during a
release’s upgrade cycle: as complex upgrades involve changes in multiple modules,
if these depend on each other, their dependency has to be reflected in the upgrade
steps as well. This is required as the application runs and function calls can happen
during the upgrade process. To this result, a developer has to ensure that the
version of the dependent module is aligned with that of the dependency in periods
when calls can be made from the dependent to the dependency. A call from a
different version could result in the dependent assuming a different interface for the
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c

a b

d

Figure 1: A simple dependency relationship between 4 modules represented as a
graph

function in the dependency than what is actually implemented. To solve this, a safe
upgrade procedure must ensure that running dependent modules are compatible
with their dependencies’ interfaces as these are changed.

When using the standard Erlang tooling for managing upgrades, the steps for
performing the upgrade are declared in an appup, application upgrade file by the
developer and are specific to the application that is updated. These files con-
tain high-level instructions for declaring the module-specific actions that are to
be performed during the application’s upgrade. These actions offer control over
whether modules are suspended while changed, added, or removed when upgrading
the application to a new version or downgrading to a previous one. As a release
may consist of multiple applications, appup files are combined into a relup, release
upgrade file that must contain lower-level instructions on how to perform the up-
grade. These files contain upgrade and downgrade instructions to support changes
to different versions. As instructions are executed sequentially, their order must
be aligned with the dependency relation of the modules and the interoperability
between release versions. The structure of these files is illustrated in Figure 2. In
the tuple describing the upgrade Vsn refers to the version to which we want to
upgrade or downgrade. The second element of the tuple lists the versions we can
upgrade from Vsn and the required set of instructions for the given upgrade. The
last element of the tuple lists similarly downgrades paths and instructions.

{Vsn,
[{UpFromVsn, Instructions}, ...],
[{DownToVsn, Instructions}, ...]}.

Figure 2: Structure of appup and relup files

relup files are interpreted by the Erlang Release Handler and must only con-
tain low-level instructions for the upgrade’s definition. Low-level instructions differ
from higher-level ones in that they offer control of the lifecycle of running processes,
including their suspension, transformation of their state or synchronization of Er-
lang nodes. relup files are typically generated from appup files with the help of
the release-related tooling offered by Erlang. This automatic conversion to relup
files assumes however backward compatibility of new modules when determining
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the order of module changes. As the interoperability of modules between versions
might differ from that assumed by the Release Handler, relup files may also be
written manually.

To account for both manual and automated workflows, we compare the depen-
dencies derived from the source files with those implicitly expressed in the relup
files. An example of an appup and its derived relup file can be seen in Figure 3. The
sample’s first section, from lines 2 to 11, shows high-level instructions for defining a
release. This block includes the identifier of the released version in line 2, and two
lists, from lines 3 to 6, and from lines 7 to 10. These lists allow for listing upgrade
and downgrade paths respectively, following the structure presented in Figure 2. In
our example, we declare the the rules for upgrading from version 1.0 to 1.1, and for
downgrading from version 1.1 to version 1.0. Both blocks support the declaration
of multiple paths, so, for example we could define the instructions to upgrade from
version 0.9 as well.

The second section, from lines 14 to 28, shows a corresponding relup file. Al-
though the structure is the same as that of the appup file, the commands defined
must be low-level instructions which are executed by the Erlang Release Handler.
Details of the example are described in Section 4.1.1.

Defining the steps necessary for an upgrade is a manual, error-prone process that
requires a thorough understanding of the application source code and the depen-
dency relations within. It is also unsafe, as appup or relup instructions inconsistent
with the actual dependency relationship can result in errors or even temporary fail-
ures which are hard to debug. A developer declaring the upgrade instructions would
need to review the dependency relationship of the affected modules, and in case
of an inconsistency either redefine the upgrade instructions or change the source
of the new release. As an incorrect manual analysis can consequently lead to ei-
ther a failed upgrade or unnecessary changes, the developer would benefit of static
checkers that contrast upgrade steps with the dependency structure.

In order to support the otherwise unsafe task of declaring upgrade definitions,
we extended RefactorErl to analyze relup files and contrast the specified upgrade
steps with the actual dependencies of the application. Although existing tools,
such as erlup1, relflow2 or the appup plugin for the rebar3 build tool3 support the
generation of appup or relup files, they work by assuming specific code structures
and backward compatibility and do not support validation of custom relup files
against the actual dependency relationship. Our work is novel in the approach to
verifying custom release definitions using effective module relationships. Our main
contributions are as follows:

• The development of new features for RefactorErl, to retrieve upgrade-related
information from relup files

• The development of two checkers for RefactorErl that use existing dependency-
related analysis along with the one developed for upgrade specifications

1https://github.com/soranoba/erlup
2https://github.com/RJ/relflow
3https://github.com/lrascao/rebar3 appup plugin

https://github.com/soranoba/erlup
https://github.com/RJ/relflow
https://github.com/lrascao/rebar3_appup_plugin
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1 %% appup file for application release_tst
2 {"1.1",
3 [{"1.0", [
4 {load_module, depmod},
5 {update, servermod, [depmod]}
6 ]}],
7 [{"1.0", [
8 {load_module, depmod},
9 {update, servermod, [depmod]}

10 ]}]
11 }.
12

13 %% relup file for release consisting of app release_tst
14 {"1.1",
15 [{"1.0",[],
16 [{load_object_code,{release_tst,"1.1",[servermod,depmod]}},
17 point_of_no_return,
18 {suspend,[servermod]},
19 {load,{depmod,brutal_purge,brutal_purge}},
20 {load,{servermod,brutal_purge,brutal_purge}},
21 {resume,[servermod]}]}],
22 [{"1.0",[],
23 [{load_object_code,{release_tst,"1.0",[servermod,depmod]}},
24 point_of_no_return,
25 {suspend,[servermod]},
26 {load,{servermod,brutal_purge,brutal_purge}},
27 {load,{depmod,brutal_purge,brutal_purge}},
28 {resume,[servermod]}]}]}.

Figure 3: Example of appup and relup files

4 Supporting Correct Release Definitions

In the following subsections, we present the checkers that we have developed for
detecting instruction order-related problems in relup files and recognizing updates
of circular dependencies. They present the details of their respective domains that
define the goals of our analyzer.

4.1 Discrepancy Detection in Upgrade Definitions

Our research aims to verify whether the dependency order expressed in relup files
is consistent with the actual dependency of the modules. We begin by discussing
the details of relup files relevant to our checker and how RefactorErl can support
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our analysis. We continue with the objectives, implementation, and limitations of
our checker algorithm.

4.1.1 Problem Description

To understand how dependency order can be taken into account during upgrades,
we can look at the example in Figure 3. In the example’s appup file, we declared an
upgrade from version 1.0 to 1.1 and a downgrade from version 1.1 to 1.0 respectively
at lines 3 and 7. Specifically, we tell the Release Handler to load the newer version of
depmod and update module servermod, which depends on depmod. The dependency
relation is declared in the lists in lines 5 and 9. If we look at the list of instructions,
both load module and update atoms declare code changes. The difference lies
in that update takes care of temporarily suspending processes running the target
module, and transforming the internal state of the running process if the new
version requires it. These additional operations allow for zero-downtime upgrades.
servermod being a server implementation requires update for its code upgrade.

The generated relup file is of a similar structure: it contains first the upgrade
and then the downgrade instructions. The set of instructions can only contain
however lower-level operations executed by Erlang’s Release Handler. Without
going into detail, we can observe how the dependency relation results in depmod
being changed before the dependent servermod module in lines 19 and 20 for the
upgrade, and 26 and 27 for the downgrade. In these files, we are looking for suspend,
load and resume instructions to ensure that these dependencies are updated before
dependent modules.

The actual dependencies of an application are expressed as function calls in the
Erlang source files. For analyzing and retrieving them, we rely on RefactorErl’s
features to inspect module dependencies. These features allow us to list the set of
modules each dependent module depends on. Figure 4 shows an example of how
RefactorErl generates the text representation of dependency relationships within
an application.

b

a c

c -> []
b -> [c]
a -> [c, b]

Figure 4: An example for dependent modules (Left). RefactorErl’s textual repre-
sentation of the dependencies (Right).

4.1.2 Detection Methodology

Our task is to determine if the upgrade steps declared in relup files are aligned
with the actual dependencies of the application’s modules. A fitting upgrade defini-
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tion ensures that dependent modules use dependencies of the corresponding release
version. If the versions between the dependencies are not aligned, modules might
attempt to use non-existing functions from their dependencies. Using implemen-
tations from other versions can also be dangerous if they contain side effects. An
example of relup instructions that can result in a runtime problem is shown in
Figure 5.

...
{load,{a,brutal_purge,brutal_purge}},
{load,{b,brutal_purge,brutal_purge}},

...

Figure 5: A simple sequence of loaded modules

Here, assuming that module a depends on module b, we load the new version
of the dependent before that of its dependency. As the load instruction simply
replaces the running code without suspending processes, for a brief time window,
between the two steps, code in module a can call functions in module b that do
not yet exist. If we load the dependency before the dependent, the period between
the two steps will allow a to attempt to use functions in b that were present in the
previous version. If b’s new release is backward compatible with the old one, this
will not result in a runtime error.

If the dependency’s new version is not backward compatible, we need to ensure
that calls only happen between modules of the same release version. This can be
achieved by suspending the dependent module and replacing it and its dependencies
during the suspension. Once all affected modules are replaced, the dependent
module can be resumed. This process ensures that all affected modules are of
compatible versions during active periods of the dependent module. Although
execution of code halts during suspension, this still does not cause a disturbance
in the application’s availability, as the Erlang runtime will take care of processing
any requests on the dependent once it is running again. An example of loading
changing code during the dependent’s suspension can be seen in Figure 6.

...
{suspend,[a]},
{load,{b,brutal_purge,brutal_purge}},
{load,{a,brutal_purge,brutal_purge}},
{resume,[a]}

...

Figure 6: Loading a module during suspension

In our research, we look at how dependencies are updated concerning the sus-
pension of their dependents. In terms of the instructions in a relup file, a module’s
suspension period is the set of instructions between the module’s suspend and
resume instructions. An upgrade can be either a load instruction by itself or sur-
rounded by a pair of suspend and resume instructions. Suspension periods can be



Towards Correct Dependency Orders in Erlang Upgrades 163

nested, as dependencies might also require suspension when updating them or their
own set of dependencies.

Our work does not consider the different versions of a module across releases and
hence we do not attempt to reason about interface compatibility of dependencies
and the flexibility this offers. However, if a dependent is updated while suspended
along with its dependencies, we can argue about the correctness of the order of
instructions inside the relup file describing the update. Therefore, we analyze
upgrade sequences where dependent modules are suspended and identify the update
of a dependency with its load instruction.

We can summarize our goals with the following rules:

• A dependency does not have to be loaded if the dependent is suspended

• A dependency must only be loaded during the suspension of its dependent

A release does not have to include changes for all source modules, and the lack of
change in a module does not impact the reliability of the software. With regard to
the second observation, if a dependency were to be upgraded outside the suspension
of the dependent, there could be room for discrepancies between what the depen-
dent expects and the source of the dependency. Consequently, we assume that in
releases where a dependent is suspended, changed dependencies are to be modified
during the dependent’s suspension period. To do so, we iterate through the list of
dependency relationships generated by RefactorErl (see the example in Figure 4),
identifying suspension periods of dependents and verifying whether dependencies
are updated exclusively in these segments.

4.1.3 Algorithm

Our algorithm for detecting issues in relup files is presented in Algorithm 1.
The algorithm receives as input the relup file and the dependency relationships

generated by RefactorErl and presented in Figure 4. In line 1 we retrieve the set
of release definitions from the Relup file. This includes the set of instructions for
both upgrade and downgrade releases. Recall from Figure 3 that a single file may
contain multiple instruction lists, one for each upgrade and downgrade path. To
group our results on a release definition basis, we iterate through these sets in line 2,
and through the dependents in a nested loop in line 3. Next, we iterate through the
individual instructions of the current release definition. For each instruction, we are
interested in whether it affects the suspension state of the actual dependent, or if it
relates to a dependency of the dependent. Throughout the loop, in line 6 we observe
whether the dependent is currently suspended. In line 7 we verify if the current
instruction relates to an update of a dependency. If so, the dependency is upgraded
outside the suspension period of the dependent, and we add the instruction along
with the name of the dependent module and the version identifier to a list in line
8. Storing the name and version is important so that the developer can find the
instruction in the relup file more easily. The loops will perform the same analysis
through the different sets of instructions described in the relup file. Finally, we
return the list of unsafe instructions.
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Algorithm 1 Finding discrepancies between relup instructions and actual depen-
dencies
Funct FindUpdateDiscrepancy(Relup, dependents)

1: Release Definitions ← Relup
2: for all Release Definition ∈ Release Definitions do
3: for all dependent ∈ dependents do
4: Dependencies are determined along with dependent
5: for all Instruction ∈ Release Definition do
6: IsdependentSuspended is determined based on dependent and processed

Instruction
7: if not IsdependentSuspended and Instruction updates a Dependency of

dependent then
8: Store Instruction and dependent pair in UnsafeInstructionList
9: end if

10: end for
11: end for
12: end for
13: return UnsafeInstructionList

A developer should treat this list as a warning, as in practice she knows best if
a module can be changed while the ones using it are still running.

4.1.4 Limitations

As mentioned, our checker does not take into account the interoperability of mod-
ules across releases. Backward compatibility allows flexibility in organizing upgrade
instructions. Therefore, our approach overapproximates and we could produce a
more exact analysis by taking into account actual changes in the source code.

Another limitation is present when analyzing modules that have unrelated de-
pendents. Figure 7 presents such an example.

a

c

b

Figure 7: Multiple independent modules (a and b) depending on a single depen-
dency (c)
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In such scenarios, it is difficult to argue in which dependent’s suspension period
should the dependency be upgraded. Again, the correct way to upgrade such an
application depends on the actual details in the source code.

4.2 Circular Dependency Detection

Circular dependencies amongst modules may also put upgrades at risk. We look
at the information present in relup files and RefactorErl reports and identify the
exact patterns that we wish to detect. We follow by presenting an algorithm for
this purpose and discuss opportunities for improvement.

4.2.1 Problem Description

As established in Section 3, two modules depend on each other if one module’s code
calls functions implemented in other modules. Module a and b depend on each other
if both a → b and b → a hold true. A circular dependency between two modules
might be either direct, when the modules call each other’s functions explicitly, or
indirect if there are additional modules in the dependency circle. Examples of these
are presented in Figure 8. A code sample with two circularly dependent modules
is shown in Figure 9. In the examples modules a and b directly depend on each
other.

a b

b

b c

Figure 8: Direct (left) and indirect (right) circular dependencies

The difficulties in determining the correct order for defining an upgrade are
noted in the Release Handling Section of the Erlang manual. In most cases, it is
best to avoid them altogether for code meant to be upgraded. For this checker, we
also rely on the graph analysis feature of RefactorErl. For the analysis, we use a
graph model of the dependency structure, where the modules will be the nodes, and
the dependency relations the edges. Our task will be to determine if such a graph,
excluding modules not being subject to an upgrade, has a topological ordering.
We base our work on RefactorErl’s features for analyzing dependency graphs. To
retrieve the list of modules changed in a release from a relup file, as in our work
presented in Section 4.1.
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%% code of module a
-module(a).
-export([sum/0, number/0]).

sum() ->
b:number().

number() ->
42.

%% code of module b
-module(b).
-export([number/0]).

number() ->
a:number().

Figure 9: Sample code with two modules depending on each other

4.2.2 Detection Methodology

Our checker aims to warn developers if their relup contains load instructions for
modules that are part of a dependency cycle. We do not wish to raise warnings
because of the general presence of a cycle, as in such an application it is still possible
to define upgrades of modules that are not part of any cycle.

However, we do want to raise a warning if a module is part of a cycle, as
reasoning about the safe way to release a change would depend on the code. We
present these scenarios in Figure 10. The application consists of six modules, three
of which, a, b and c depend on each other. The top instructions in the relup
file relate to upgrading modules a and b and could as a consequence be unsafe, as
there is no clear dependency order by which the upgrade should be performed. In
contrast, the load instructions for modules f and d (assuming that f is backward
compatible) are safe as a dependency order can be determined from the graph. An
application might also contain multiple cycles. As a result, the set of all cycles
should be an input of our checker. As output, we expect those load instructions
that relate to modules present in circular dependencies.

RefactorErl already provides a method for retrieving all dependency cycles
present in an application. This functionality also detects dynamic function calls
and includes them in the dependency graph. In dynamic function calls, called mod-
ules are not explicitly invoked, but rather the target module is referred to using
a variable. The variable can be defined in other parts of the source code, mak-
ing manual dependency analysis more difficult. An example of a module using a
dynamic function call is presented in Figure 11. This code snippet shows a call
retrieving the name of module b in line 5, and the invocation of b’s my function in
line 6. RefactorErl’s dependency checker can detect dynamic dependencies through
data-flow analysis [16, 7]. Detecting dependencies stemming from dynamic function
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calls increases our checkers precision, as we can find dependency relationships typ-
ically only detectable during runtime. We base our work on RefactorErls data-flow
analysis-based dependency checker.

b d

a c e f

...
%% possibly unsafe instruction sequence
{load,{a,brutal_purge,brutal_purge}},
{load,{b,brutal_purge,brutal_purge}},
...
%% safe instruction sequence
{load,{f,brutal_purge,brutal_purge}},
{load,{d,brutal_purge,brutal_purge}},
...

Figure 10: The dependency relationship of six modules contains a cycle (left).
The release instructions include changes to the modules not present in the circular
relationship (right)

1 -module(a).
2 -export([fun/0]).
3

4 fun() ->
5 Mod = get_mod(),
6 Mod:my_function().
7

8 get_mod() ->
9 b.

Figure 11: A dynamic function call

4.2.3 Algorithm

Our algorithm for detecting changes in dependency cycles is presented in Algo-
rithm 2.

The algorithm receives the relup contents and set of dependencies as input.
In line 1 we retrieve all dependency cycles from the dependencies. Next, in line 2
we gather the release definitions from the Relup file. We start iterating through
these definitions in line 3, and their individual instructions in line 4. We inspect
each instruction to see if it loads a module present in any of the cycles identified
previously. If the instruction relates to such a module, we store it in a list of unsafe
instructions in line 7, together with an identifier of the release definition so that
the developer can place the problematic instruction more easily. Finally, we return
the List of Unsafe Instructions.
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Algorithm 2 Finding changes in dependency cycles expressed in relup instructions

Funct FindChangeInCycle(Relup, Dependencies)

1: Dependency Cycles ← dependency cycles from Dependencies
2: Release Definitions ← Relup
3: for all Release Definition ∈ Release Definitions do
4: for all Instruction ∈ Release Definition do
5: Changed Module ← Instruction
6: if Changed Module ∈ Dependency Cycles then
7: Store Instruction in UnsafeInstructionList
8: end if
9: end for

10: end for
11: return UnsafeInstructionList

4.2.4 Limitations

RefactorErl provides a solid basis for retrieving all dependency cycles present in the
application. There exists the possibility of safe upgrades of dependency cycles if
the affected modules are backward compatible. Therefore, our method might mark
instructions as unsafe that are safe in practice, but to be more precise we would
have to be aware of implementation details of the application being analyzed.

5 Evaluation

appup and relup files are not typically put under version control and published.
Regardless, we aimed to assess the value of our checkers by inspecting the de-
pendency structure of publicly available sources, made available on GitHub4. We
analyzed 5 popular Erlang applications from several domains: instant messaging
(MongooseIM5), MQTT (emqx6), web servers (Cowboy7, Yaws8) and databases
(couchdb9).

For our evaluation, we used RefactorErl’s same dependency analysis features
applied in the checkers we developed. They identified dependency relations are in-
clude dynamic dependencies in separate rows. These are determined with data-flow
analysis and include dynamic function calls and invocation of the apply function
that allows calling functions set as its arguments. The details and limitations of
combining dependency and static analysis was presented by the authors formerly [7].

4https://github.com
5https://github.com/esl/MongooseIM
6https://github.com/emqx/emqx
7https://github.com/ninenines/cowboy
8https://erlyaws.github.io
9https://couchdb.apache.org

https://github.com
https://github.com/esl/MongooseIM
https://github.com/emqx/emqx
https://github.com/ninenines/cowboy
https://erlyaws.github.io
https://couchdb.apache.org
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All analyzed applications are designed for implementing highly scalable services,
and fault-tolerant services, where the operator can expect to perform disruption-
free upgrades. For this task, they would have to create the appup or relup files
necessary for their release tooling. In Table 5 we show the number of dependent
modules these projects have, the number modules taking part in a dependency
cycle, the highest number of dependencies a module has and whether this module
and its dependencies has changed in the latest minor release. For contrast, we have
also made these measurements counting dynamic dependencies as well.

Table 1: Dependency complexity in six popular projects: couchdb, MongooseIM,
Cowboy, emqx and Yaws

Metric couchdb MongooseIM Cowboy emqx Yaws

# of Dependents 378 496 18 115 35
# of Dependents
(including Dynamic
Dependencies)

383 501 20 117 37

# of Dependents in
Dependency Cycles 167 83 2 61 15
# of Dependents in
Dependency Cycles
(including Dynamic
Dependencies)

224 257 14 68 19

Highest Number of
Dependencies 31 50 12 35 32
Latest Update Affects
Most dependent
Modules Yes Yes Yes Yes Yes

As the table shows, all releases contain dependency cycles that make reasoning
about release correctness more difficult. Additionally, about half of the dependent
modules are also present in a dependency cycle if we take into account dynamic
dependencies. Thus, including dynamic dependencies leads to a significant differ-
ence in the number of modules present in cycles. This shows the value of applying
a broader set of static analysis techniques not only for planning upgrades, but for
analyzing and improving code structure as well. Changing code of such complexity
manually would be unsafe to manage, consequently we find that our tools would
help with these tasks, especially with upgrades where a large number of dependen-
cies is changed. Finally, we have found that all projects had their most dependent
module have its dependencies changed since the last minor release.
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6 Related work

Circular dependencies. Li and Thompson in their previous research [9] have
analyzed the issue of circular dependencies in Erlang as part of their work on the
refactoring tool, Wrangler. The authors’ analyzer focuses on refactoring problem-
atic patterns into clean code. However, it does not analyze upgrade specifications
and can not reason about upgrade safety. Also, Wrangler does not include dynamic
dependencies in its cycle analysis and does not feature analysis of relup files.

Upgrade safety. Naseer, Noccolini, Pain, Frindell, Dasineni and Benson have
researched upgrade safety emphasizing runtime facets typically unrelated to an
application’s implementation language, like connection migration [13] between ap-
plication versions. Being able to migrate connection is important, as reestablishing
them would not only impact the user, but perhaps even require an unavailable
amount of resources. Erlang is singular in the regard, that its runtime provides
facilities for handling state preservation during code changes, without the need for
introducing new tools or bespoke solutions.

Static analysis. Tools to support schema changes in backing databases have been
researched by Maule, Andy and Emmerich [11]. The authors developed an approach
for verifying whether a database schema change is consistent with the application’s
source code, improving on existing string-based checkers with static analysis. They
argue for improving the accuracy of impact analysis by introducing further methods
from static analysis. Meurice, Nagy and Cleve in their work [12] used static analysis
as well to locate source code affected by database schema changes. They also
assess whether a given change affects the developed application. It would be worth
to investigate whether other upgrade-related static properties can be defined for
Erlang using RefactorErl.

Microservice changes. Sampiao, Kadiyala, Hu, Steinbacher, Erwin, Rosa, Be-
schastnikh and Rubin have investigated challenges with regards to support up-
grades in running microservice systems [15]. The research proposes modelling the
software’s evolution by analyzing static and dynamic information obtained from the
system. Such models would help developers design their upgrade schemes and plan
the evolution of their software in a consistent manner. Erlang developers design
the scale, distribution and upgrades of their application in the same codebase. Our
work could be extended by researching a broader set of changes between application
releases.

RefactorErl. Tóth and Bozó have used RefactorErl for analyzing other static
properties of source code, including the presence of common vulnerabilities [18].
These checkers can be used to assess the security of new releases. RefactorErl’s
database and queries can be also used to verify further upgrade-related proper-
ties and data-flow analysis allows inspecting behavior that could typically be only
observed during execution.
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Code upgrades and downtime. Neamtiu and Dumitra analyzed the relation-
ship between upgrades and downtime [14]. The authors look at challenges across
the stack: database schema migrations, infrastructure changes, mixed-version race
conditions and protocol changes. They highlight the value of upgrade schemes that
provide more control than rolling upgrades and of expressing the details of an up-
grade explicitly. Erlang allows for expressing the details of an upgrade and the
application’s operation in it’s language. This also allows for using existing static
analysis methods for inspecting the details of an upgrade and is the motivation of
our current and future work.

Safe Upgrades for Erlang Software. In our previous work, we have also an-
alyzed other conditions for upgrading Erlang software without disruptions. For
example, code meant to be upgraded must consistently call functions that are still
present in the runtime. State transitions constitute another example: Erlang al-
lows for changing a running application’s state during its upgrade, but it is the
developer’s responsibility to change and use the state consistently. In previous re-
search, we looked into these two problems and identified several coding patterns
that would disrupt safe upgrades. We have also implemented code checkers based
on RefactorErl to aid developers write upgradable software.

We began by researching [5] if applications contain any references to functions
that would expire as the code is upgraded. The Erlang runtime only holds two
versions of a given runtime at the same time. As consequence, local function refer-
ences that remain unchanged during upgrades are unsafe as they become obsolete.
By using fully qualified references, the functions used will be of the module version
loaded last. Our checker helps the developer identify places where fully qualified
references should be used.

In our second work [6] we investigated if state uses in a new application ver-
sion are consistent with the state transformations performed during code changes.
Erlang allows the developer to modify their application’s state during an upgrade.
To this effect they must implement code change functions that specify a state
transformation logic for the different upgrade paths. Researching additional unsafe
patterns and a generic approach to support upgrade safety are further areas worth
exploring.

7 Conclusions and Future Work

Erlang offers the tools necessary to create application releases with fine-grained
instructions to ensure disruption-free upgrades of modules. To achieve this, code
has to be structured in an upgradeable manner, and the release’s descriptor file
should also reflect this structure correctly. We researched how specific upgrade-
related instructions should be ordered to be in line with the actual code structure,
identified two problem categories, and developed checkers for them using the Refac-
torErl framework. Our first checker identifies if dependencies are upgraded during
their dependent’s suspension period. This checker does not cover the flexibility
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that interfaces compatible between releases would allow. For example, assuming
that the new release of a dependency is capable of receiving new calls, its new
version can be loaded before we load the new version of the dependent, without
requiring any sort of suspension. Our research can be extended in two steps: an-
alyzing if modules are loaded in the correct order assuming that their interface
changes are backward compatible; and analyzing actual backward compatibility as
well between code releases. Of course, interface compatibility would not guarantee
a well-working application. Upgrades can introduce domain-specific discrepancies
into application code that retain interface-compatibility but will result in runtime
problems. Such issues are hard to detect with static code analysis, and thus remain
outside the scope of our work.

Our second checker investigates if changed modules are part of dependency cy-
cles. Upgrading such structures is not recommended, as it is difficult to reason
about the correct instruction order to implement an upgrade. Our analysis’ pre-
cision can again be improved by taking into account the interoperability between
code releases.

In conclusion, our research offers two checkers for developers to evaluate the
correctness of their upgrade definitions and covers the directions to improve this
analysis.
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[18] Tóth, M. and Bozó, I. Supporting secure coding for Erlang. In Proceedings of
the 39th ACM/SIGAPP Symposium on Applied Computing, page 1307–1311,
New York, NY, USA, 2024. Association for Computing Machinery. DOI:
10.1145/3605098.3636185.

https://doi.org/10.1109/ICSME.2017.63
https://doi.org/10.1007/978-3-642-32096-5_9
https://doi.org/10.2478/v10198-011-0022-y
https://doi.org/10.1145/3605098.3636185


Acta Cybernetica 27 (2025) 175–196.

Radial Harmonic Fourier Moments for CT-based

Quantitative Radiomics∗

A. H. M. Sajedul Hoqueab, Gergő Bognárac, and Sándor Fridliad

Abstract

Radiomics is an emerging field of CT image processing, that offers non-
invasive quantification of tumour phenotypes using quantitative image fea-
tures. Radiomics analysis has promising applications in cancer treatment
and personalized medicine, like treatment planning and the prediction of clin-
ical factors. However, the optimal feature selection is not established in the
literature, and the applications usually involve data mining of a large pool
of features. In this paper, we propose to extract higher-level radiomic fea-
tures using Radial Harmonic Fourier moments (RHFM). Image moments, and
specially orthogonal Fourier moments are widely used in image processing,
providing efficient and invariant shape descriptors. In particular, RHFMs
are known to perform well on small noisy images, making them a promis-
ing candidate for CT tumour analysis. Motivated by these advantages, we
developed a feature extraction scheme based on RHFM, and we performed
radiomics analysis on lung CT images of non-small cell lung cancer patients.
The proposed method is validated on multiple annotated datasets following
the literature guidelines, evaluating the accuracy, stability, reliability, and
prognostic value of the proposed features. The results show better reliabil-
ity and otherwise comparable performance compared to the state-of-the-art
wavelet descriptors. Furthermore, Fourier moments provide higher level of
flexibility and possible adaptivity compared to wavelets, and unlike wavelet
features, RHFM features are invariant of position, size and orientation in the
tumor region.
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1 Introduction

Medical imaging, especially X-ray computed tomography (CT), is a primary diag-
nostic tool of clinical oncology. CT, as an imaging modality, noninvasively quantifies
the internal tissue density, that might help the localization and characterization of
the tumour. CT imaging is routinely used in many areas of clinical oncology not
only for diagnosis, but also for therapy planning and monitoring. In therapy plan-
ning, CT provides precise visualization of the geometric shape of the tumour and
the normal tissue, which helps to determine the optimum radiation dose distribu-
tion in the tumour [13].

In this paper, we research quantitative imaging for lung CT motivated by per-
sonalized medicine. Personalized medicine is an emerging field that promises better
patient care by taking the genetic differences of the tumour into account. In this
personalized medicine, predictive and prognostic data factors coming from multi-
modal information including clinical, imaging, and molecular data are merged to
forecast treatment outcomes [10]. However, the molecular characterization of can-
cer is challenging, and usually requires invasive approaches (biopsies and surgeries),
which themselves may be limited if the tumour is heterogeneous. CT imaging is a
promising supplementary tool to quantify tumour phenotypes [11]. As a noninva-
sive tool, imaging is feasible not only to support oncological diagnosis and treatment
planning, but also for the long term monitor of the therapy outcomes over time.
Radiomics [20] is a quantitative imaging approach that aims to extract robust im-
age features to quantify the tumour phenotype. These radiomics features employ
mathematical algorithms describing the intensity, shape, statistical, and textural
properties of the tumour, usually involving a large number of features. The hetero-
geneity of tumour region due to its molecular characteristic expresses the texture,
which holds the information about the structural arrangement of its surface and
the relationship with the surrounding environment. It is already shown that ra-
diomics correlate to tumour phenotypes [2], and can also be utilized to predict
distant metastasis [4].

This research discusses radiomics features characterized by first, second and
higher order statistics, with the main focus on higher order features. Briefly, first-
order statistical features aims to describe the overall gray-level distribution of the
tumour by quantifying the voxel intensity histogram in the tumour region. Second-
order statistics are used to characterize the tumour texture using local histograms
in the voxel neighborhoods. Meanwhile, higher order statistical features aims to
quantify potential hidden patterns inside the tumour region, usually involving an
image transformation method, like wavelets or Laplacian-of-Gaussian (LoG) pyra-
mids [21]. Here, the desired transformation method provides a compact scale-space
or frequency-space decomposition, is spatially localized, and is invariant of position,
size and orientation in the tumour region. The most widely used wavelet transform
(see e.g., [2]) are favored compared to other transformations (e.g., Fourier trans-
form) because of its efficiency, its ability to provide both space and frequency (i.e.,
scale) representation, and its spatial localization property. However, wavelets are
shift-variant and lack explainability, which might be undesired in medical applica-
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tions, and which serves as a motivation of our research.

Image moments are widely used transformation-invariant feature descriptors
[12], popular for pattern recognition, object representation, and feature extraction.
In particular, orthogonal moments provide efficient and stable time-frequency de-
compositions, with the support for adaptivity and interpretability. In this paper,
we focus on radial harmonic Fourier moments (RHFMs) [16], since they provide
better numerical properties compared to several other moments, and even perform
well on small images in a noisy environment. Compared to wavelets they also offer
shift-invariance. Therefore, they seem promising for higher order analysis of CT
tumour. We propose RHFM reconstructions for higher order radiomics feature ex-
traction. The proposed model is developed and validated using multiple annotated
lung CT datasets of non-small cell lung cancer (NSCLC) patients. The feature
selection, and the optimization of the decomposition parameters are performed ac-
cording to the analysis of the reconstruction accuracy. Finally, we evaluated the
reliability, stability and prognostic power of the proposed features, that are crucial
requirements in a clinical environment. Here, we followed the literature guidelines,
and compared the proposed method to wavelet-based radiomics features [2].

The key contributions of this paper are highlighted as follows:

1. We designed higher order radiomics features based on RHFM reconstruction
of CT images.

2. We performed an accuracy analysis to select features and to optimize the
decomposition parameters (order and repetitions) of RHFM decomposition.

3. We explored and analyzed a total number of 456 RHFM-based radiomics
features of the reconstructed CT image, and compared them with the same
number of wavelet-based features.

The rest of this paper is organized into the five sections. ”Related Works”
overview the most relevant related literature results. In the ”Materials and Meth-
ods” section, a summary of the utilized radiomics features, a short description of the
lung CT datasets, and the basics radial harmonic Fourier moments are provided.
Here, we also introduce proposed method and optimize our feature selection. The
“Result and Discussion” section presents the outcomes of this work and analyzes
the results in terms of reliability, stability and prognosis value. Finally, in the
“Conclusion and Future Work” section, we give the concluding remarks with some
future works.

2 Related Works

In this section, we briefly review the related literature of quantitative radiomics
and orthogonal moments.
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2.1 Quantitative radiomics

Quantitative radiomics became popular recently, since it has been shown that quan-
titative image features are related to tumour phenotypes, offering noninvasive ap-
proach to support cancer treatment. In [2], the authors proposed 440 high-order
radiomics features based on the intensity, shape, texture and wavelet transform and
analyzed those features in terms reliability, stability and prognostic power on the
RIDER dataset. The author claimed that he found many radiomics features hav-
ing prognostic power which were not addressed before. Another claim was that the
selected features through stability and reliability analysis was more informative.
Finally, the authors proposed a radiomics signature for making association with
gene profiles and showed the signature represents the general prognostic tumour
phenotype.

In [4], the authors worked on the extraction of 635 radiomics features based
on intensity, shape, texture, LoG and wavelet-based features to predict distant
metastasis (DM) for lung adenocarcinoma patients. The authors did the prognos-
tic analysis on these feature over 182 patients. They showed that only 35 features
are strongly prognostics for DM and twelve features are prognostics for survival.
A standardized mathematical model for extracting radiomics features is felt in the
clinical oncology. In [21], the authors developed a flexible open-source framework
including a set of well-defined and tested mathematical models for easing the ex-
traction of features from 3D or 2D medical image.

Tang et al. extracted 688 radiomics features based on the first-order statistics,
shapes, texture and wavelet filters to build a classification model for hepatocellular
carcinoma (HCC) patients [18]. In their work, they showed that the combined fea-
tures extracted from original CT image and wavelet-filtered image increase the
classification performance significantly to classify HCC and non-HCC patients.
However, these high-order features are not shift-invariant which motivates us to
move orthogonal moment-based features. These orthogonal moments are explained
briefly in the next section.

2.2 Orthogonal moments

The characterization, evaluation and manipulation of visual information inside the
CT image is a general problem in clinical oncology. The preferable representations
extract features that are invariant of size, position and orientation of the CT im-
age. Image moments (see e.g., [15]) provide potentially transformation-invariant de-
scriptors that are desired properties for CT image quantization in order to achieve
reliability and stability. Here, we overview some historical developments in this
field.

In 1962, Hu introduced a non-orthogonal moment known as geometric moment
for image description, and derived moment invariants based on algebraic invariance
in rectangular coordinates for visual pattern and character recognition [7]. One
disadvantage of this classic moment is that its invariants are restricted to second-
and third- order moments only. In addition, low-order geometric moments provide
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less information about image details, while high-order moments are sensitive to
noise. These problems can be resolved by using circular and orthogonal moments.

In 1980, Teague proposed Zernike Moments (ZMs) as image descriptors which
were constructed from a set of orthogonal Zernike circular polynomials over the
unit circle [19]. The zero points of the ZMs are located in long radial distance from
the origin. Thus, although the ZMs are rotation-invariant, its application for scale-
invariant pattern recognition is challenging for small images. Then, Sheng and Shen
explored orthogonal Fourier–Mellin moments (OFFMs) including generalized ZMs
and orthogonalized complex moments [1] in 1994. The main advantage of OFFMs
is that the zero points are uniformly distributed over the radial interval. For this
reason, OFFMs have better performance than ZMs, providing better description of
small images [17].

However, OFFMs have difficulties to describe the center of the image for higher
order moments because they tend to be infinite in the origin. Ping and Sheng in
2002 solved the problem by proposing Chebyshev–Fourier moments (CHFM) which
used various orders of Chebyshev polynomials over radial interval [14]. The afore-
mentioned orthogonal moments including ZMs, OFFMs and CHFMs are based on
the radial polynomials which cause numerical instability at high order of moments
and high time complexity to compute the corresponding moments. In order to
address these problems, Ping et al. developed new orthogonal moments known as
Radial Harmonic Fourier Moments (RHFMs) where triangular function is used as
radial function [16]. RHFMs are shifting, scaling, rotation, and intensity invariant,
and performs better compared to CHFMs in multiple aspects, like representation
near the origin, the description of small images, and noise sensitivity. These aspect
are also desired for feature extraction of CT tumours that motivated our choice.

3 Materials and Methods

In this section, we provide details of the theoretical and computational background,
the validation datasets, and the proposed method.

3.1 Radiomics Features

In clinical oncology, radiomics features can used to monitor the development, pro-
gression of the cancer and the response to therapy. Those features are constructed
employing advanced hand-coded algorithms, that provide a large set of quantita-
tive imaging features. Aerts et al. [2] decomposed the CT image using wavelet
decomposition and analyzed 440 radiomics features in order to build radiogenomics
signature. These are experimental features, without detailed explanation. In [21],
the authors developed a flexible open-source PyRadiomics platform for extracting
features from medical image. This platform provides a set of very well-defined,
tested and standardized mathematical models for radiomics features. Thus, we
used these verified features to analyze in our study which are grouped under the
following categories.
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• Shape and size related features illustrates the three-dimensional size and
shape of tumour region, using elementary geometric descriptors. The com-
mon features include elongation, flatness, least axis length, major axis length,
maximum 2D diameter column, maximum 2D diameter row, maximum 2D
diameter, mesh volume, minor axis length, sphericity, surface area, surface
volume ratio, voxel volume. We note that these features are independent of
the high-order decompositions discussed in this paper, so they are excluded
from the analysis, and they are mentioned only for the sake of completeness.

• First order statistical (FOS) features describes the gray distribution in
the tumour area by means of statistical properties of the image histogram. We
considered 18 descriptors: 10th percentile, 90th percentile, energy, entropy,
inter quartile range, kurtosis, maximum, mean absolute deviation, mean, me-
dian, minimum, range, robust mean absolute deviation, root mean squared,
skewness, total energy, uniformity and variance.

• Second order statistical features illustrate the statistical correlation be-
tween a voxel and its neighboring voxels, addressing texture information.
That is, second order features describe the heterogeneity of the tumour. In
order to extract the texture features, matrices like Gray-Level Co-Occurrence
Matrix (GLCM) and Gray-Level Run-Length Matrix (GLRLM) are formed
from the CT image. GLCM provides the probability of combined occur-
rence of two intensity values. From that matrix, 24 features including au-
tocorrelation, cluster prominence, cluster shade, cluster tendency, contrast,
correlation, difference average, difference entropy, difference variance, in-
verse difference (ID), inverse difference moment (IDM), inverse difference
moment normalized (IDMN), inverse difference normalized (IDN), informa-
tional measure of correlation 1 (IMC1), informational measure of correlation
2 (IMC2),inverse variance, joint average, joint energy, joint entropy, maximal
correlation coefficient (MCC), maximum probability, sum average, sum en-
tropy and sum square can be extracted. GLRLM represents the run-length
of gray level in the CT image and the 16 associated GLRLM features are
gray level non uniformity, gray level non uniformity normalized, gray level
variance, high gray level run emphasize, long run emphasize, long run high
gray level run emphasize, long run low gray level run emphasize, low gray
level run emphasize, run entropy, run length non uniformity, run length non
uniformity normalized, run percentage, run variance, short run emphasize,
short run high gray level run emphasize and short run low gray level run
emphasize.

• High-order statistical features aim to characterize repeated or nonrepet-
itive potential patterns inside the tumour region. For this purpose, images
are decomposed using different scale-space transformations, like wavelets and
Laplacian-of-Gaussian (LoG) pyramids. After the transformation, first and
second-order statistical features are extracted from the decomposed images.

We also refer the reader to [20] for further information. In our work, as the
the GLCM matrix is symmetrical, sum average feature under the GLCM category
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is 2 times of joint average feature. So, the total number of first and second order
statistical features is 57 (18+23+16). Higher-order statistical features are extracted
from 8 decomposed images using wavelet decomposition and 8 order reconstructed
images employing RHFMs. Therefore, we analyzed a total of 456 wavelet and the
same number of RHFMs features in terms of reliability, stability and prognostic
value.

3.2 Datasets and Data Analysis

In this study, three lung CT datasets are considered, involving non-small cell lung
cancer (NSCLC) patients:

• The RIDER test/retest dataset [2] provides blind delineations to 32 pa-
tients of the RIDER Lung CT dataset where the delineations of three patients
are not perfectly provided [22]. RIDER Lung CT consists of same day re-
peat scans, where two CT scans were acquired from each patient within 15
minutes. In this study, this dataset is used to assess the reliability of the
features.

• The multiple delineation dataset [2] consists of lung CT scans of 21
patients which were manually delineated by five oncologists independently.
As one patient has no manual delineation, twenty CT images of patients are
used to assess the feature stability.

• The Lung1 dataset [2] consists of lung CT scans of 422 patients, together
with manual delineations, clinical, survival data and gene profiles. It has been
observed that three out of 422 patients have absent of proper masks. Thus,
the radiomics features are extracted from 419 patients. This dataset is used
to assess the prognostic value of the radiomic features.

3.3 Image Reconstruction using RHFM

In this study, we propose to extract higher order radiomic features based on RHFM
reconstruction. The theoretical background, and the RHFM decomposition and
reconstruction method are described below.

3.3.1 Radial Harmonic Fourier Moments

Following [16], consider the radial harmonic basis function Hpq (p ∈ N, q ∈ Z),
defined in polar coordinates as

Hpq(r, ϕ) := Rp(r)e
iqϕ (r ∈ [0, 1], ϕ ∈ [0, 2π)) , (1)

where

Rp(r) :=


1/
√
r, if p = 0,√

2/r cos(πpr), if p is even,√
2/r sin (π(p+ 1)r) , if p is odd.
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Radial harmonic basis functions form a complete orthonormal system in the space
of the square integrable functions over the unit disk (i.e., in L2(D)) with respect to
the usual scalar product

〈F,G〉 :=
1

2π

∫ 2π

0

∫ 1

0

F (r, ϕ)G∗(r, ϕ)rdrdϕ
(
F,G ∈ L2(D)

)
. (2)

A grayscale image, represented as a function f ∈ L2(D) over the unit disk, can be
decomposed into a series expansion as

f(r, ϕ) =

+∞∑
p=0

+∞∑
q=−∞

MpqHpq(r, ϕ) (r ∈ [0, 1], ϕ ∈ [0, 2π)) ,

where

Mpq := 〈f,Hpq〉 =
1

2π

∫ 2π

0

∫ 1

0

f(r, ϕ)H∗pq(r, ϕ)rdrdϕ

is the radial harmonic Fourier moment (RHFM) of order p ∈ N and repetition
q ∈ Z.

3.3.2 Image Decomposition

The real application of RHFMs involves discretization and the restriction of the
input image to the unit disk. Here, we followed the discretization and numerical
integral approximation proposed in [3]. Normally, planar images are organized as
the matrix of pixels over rectangular coordinate system, where the coordinate of the
left top corner pixel is (0, 0). Consider a grayscale image f(x, y), and assume that
it is square of size N ×N . As the RHFM is based on the polar coordinate system,
an inner unit circle is inscribed over the grayscale image. Then, the origin of the
image is moved to the center of the inscribed circle, and the central coordinate of
all pixels of the input image f(xi, yj) are computed as

xi =
2j −N + 1

N
, yj =

N − 1− 2i

N
(i, j = 0, 1, 2, ..., N − 1). (3)

After mapping, the new Cartesian coordinates (xi, yj) over the inscribed inner circle
are transformed into the polar coordinate (rij , θij) as

rij =
√
x2i + y2j , θij = atan2(yj , xi) (i, j = 0, 1, 2, ..., N − 1), (4)

where atan2(y, x) = arg(x+ıy) denotes the two-argument arctangent. The RHFMs
Mpq of the image f(rij , θij) with order p ∈ N and repetition q ∈ Z over a unit inner
circle are computed employing the discrete representation of (2) as of

Mpq =
2

πN2

N−1∑
i=0

N−1∑
j=0

f(rij , θij)H
∗
pq(rij , θij). (5)
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Note that the radial factor in (1) depends on the radius of the pixel located in
(xi, yj) coordinate and the order p of that radius, and the exponential factor relies
on the angular distance from x-axis of the pixel and its repetition q. Assuming
that the maximal order and repetition of the computed moments are pmax ∈ N and
qmax ∈ Z, respectively, the total number of RHFMs is (1 + pmax)× (1 + 2qmax).

3.3.3 Image Reconstruction

In this paper, we extract radiomics features using low-level reconstructions using
RHFMs. To this order, consider the partial reconstruction of order pmax ∈ N and
repetition qmax ∈ Z as

f(r, ϕ) ≈ f̂(r, ϕ) :=

pmax∑
p=0

qmax∑
q=−qmax

MpqHpq(r, ϕ) (r ∈ [0, 1], ϕ ∈ [0, 2π)) . (6)

The reconstructions represent low-dimensional approximations of the input image
based on the transformation-invariant moment decomposition.

3.4 Proposed Method

Based on the above motivations and background information, we propose RHFM re-
constructions for high-order radiomic feature extraction. Orthogonal moments pro-
vide efficient frequency-space representations that can capture high-level patterns
on the image, and have further beneficial properties like transformation-invariance.
These make them promising replacements of the wavelet-based high-order features
suggested in [2] and [21]. In particular, RHFMs show better numerical stability
compared to other constructions, and perform well for small noisy images, desired
for CT tumour images. In the following, we summarize the proposed algorithms,
and provide further insight and justification.

3.4.1 Image Representation

The key part of the proposed method is the representation of the CT tumour image
using RHFM. The overall steps are summarized in the Algorithm 1. The algorithm
takes four inputs: the 3D CT image (I), its 3D mask (M), and the maximal order
(p) and repetition (q) for RHFM decomposition and reconstruction; and returns
the reconstructed image based on the RHFM representation.

We note that the representation is performed on the raw CT images without any
filtering or resampling. The only preprocessing step is the correction, cropping, and
squaring the CT image and tumour mask in order to handle the inconsistencies of
the target databases regarding pixel size, spacing, and origin. A sample of cropped
CT tumour image is shown in Fig. 1.

3.4.2 Feature Selection

In the next phase, we optimized feature selection, where we investigated the op-
timal parameters of RHFM decomposition and reconstruction. To this order, we
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Algorithm 1 Proposed Algorithm for Image Representation using RHFM.

Funct RECON(I,M, p, q)

1: Remove inconsistency by correcting, cropping and squaring the image I and
the mask M with N × N size of each slice

2: Combine the 3D image I and the mask M into a new 3D image C
3: Shift the intensity range of the image C to [0, range of intensity]
4: Map each Cartesian coordinate (x, y) into the central coordinate (xi, yj) over

inscribed circle as of (3) and compute the polar coordinate (rij ,θij)
5: Select the list of orders P = [0, 1, ..., p] and the list of repetitions
Q = [−q,−q + 1, ..., q − 1, q]

6: Compute the radial harmonic basis functions Hpq(rij , θij) being a matrix of
size ((p+ 1)× (2q+ 1)×N ×N), where p and q is an order and repetition from
P and Q, respectively

7: Setup the output array Ĉ as shape of image C
8: for each slice f(x, y) in C do
9: Compute matrix of moments Mpq of size ((p+ 1)× (2q + 1)) by performing

the inner product of the image f(x, y) and the radial harmonic basis function
Hpq(rij , θij) as of (5)

10: Compute the reconstructed slice f̂(x, y) by the partial sum of radial harmonic
basis functions Hpq(rij , θij) weighted by moments Mpq as of (6)

11: Store the reconstructed slice f̂(x, y) in Ĉ
12: end for
13: Clip and shift back the intensity of image Ĉ over the range of image C
14: return the reconstructed image Ĉ

evaluated the error in terms of mean squared reconstruction error of the form

MSRE =

N−1∑
x=0

N−1∑
y=0

∣∣∣f(x, y)− f̂(x, y)
∣∣∣2

N−1∑
x=0

N−1∑
y=0

|f(x, y)|2
. (7)

Fig. 2, 3, and 4 present the average MSRE of the three datasets. In this evaluation,
we set the order and repetition of RHFM to be the same, i.e., p = q, as of [16].
Furthermore, we investigated even orders only in order to include both the sine and
cosine radial functions of the same magnitude. The analysis show that the repre-
sentation is optimal around order 10, which behaviour is following the theoretical
expectations: when the order is too low, then the error is high due to the loss of
detail information on the image, and when the level is too high, then numerical
errors arise due to noise and discretization artifacts. In conclusion, we propose to
select the eight orders around 10 for CT image representation, namely we suggest
the list of [2, 4, 6, 8, 10, 12, 14, 16].
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Slice 1 Slice 2 Slice 3 Slice 4 Slice 5

Figure 1: A sample of preprocessed CT Image of Lung1 Dataset. Rows: original
CT slices (cropped, squared), tumour masks, and masked tumour images.

3.4.3 Feature Extraction

We propose radiomics feature extraction following the methodology of [2], and uti-
lizing the lower-order features of [21]. There, one step of 3D stationary wavelet
decomposition was utilized using Coiflet 1, resulting eight image representations
for high-order feature extraction. Instead, we propose eight RHFM reconstruc-
tions here in the above mannner. Then, 18 first-order statistical, 23 GLCM and
6 GLRLM-related features are extracted from those reconstructed images, as in-
troduced above. Totally, we investigated 456 RHFM-based features, which we
compared to the same amount of wavelet-based features as of [2]. The low-order
features were extracted using the pyradiomics package [21].

As a comparison, the eight wavelet decompositions of the CT image shown in
Fig. 1 are illustrated in Fig. 5 and 6, and eight RHFM reconstructions are shown
in Fig. 7 and 8.

4 Results and Discussion

In this study, the extracted 456 radiomics features of lung cancer are analyzed to
evaluate their reliability, stability, and prognostic power, following the workflow
proposed in [2]. For this reason, statistical tests are applied to determine scores
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Figure 2: Average MSRE of Lung1 Dataset

for the reliability, stability and prognostic value of those extracted features. We
explain and evaluate the score below, and compare the proposed method to the
wavelet-based approach in [2].

4.1 Reliability Analysis

In conservative medicine, the reliability of numerical measurements of patients are
always intended to evaluate for making decisions. Reliability implies the assess-
ment of the reproducibility of the numerical measurements over the same set of
patients. Thus, it emphasizes not only the correlation but also the agreement be-
tween measurements. Mathematically, reliability is the ratio of true variance over
the true variance plus the error variance of measurements. The score of the reliabil-
ity ranging from 0 to 1 can be evaluated by Pearson correlation coefficient, paired
t-test and Bland-Altman plot. Those approaches are not ideal for reliability anal-
ysis, as Pearson correlation coefficient focus only on the correlation while paired
t-test and Bland-Altman plot emphasize only on the agreement. Then, intraclass
correlation coefficient (ICC) first introduced by Fisher in 1954 is widely used for
reliability analysis. The ICC score representing both correlation and agreement
between measurements is the index to quantify the reliability. The conservative
care practitioners usually perform three types of reliability: interrater, intrarater
and test-retest reliability. In interrater reliability, ICC score is based on the mea-
surements taken by different raters over same patients, whereas same raters take
measurements on same patients through one or more trial in intrarater reliability.
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Figure 3: Average MSRE of Test-Retest Dataset

In the test-retest reliability, the measurements of the same subjects are taken by
same instruments under same conditions at different time. In this study, the retest
CT images of 31 subjects are taken after a 15 minutes tea break of taking the
test CT image of the same patients in RIDER test-retest dataset. Therefore, the
test-retest reliability is suitable for our study. There is no standard acceptable ICC
value for reliability and the only expected value of ICC is the true ICC estimate.
For this reason, the level of reliability is applied to determine for testing if the
obtained ICC exceeds in statistical inference. Koo and Li suggested four levels of
reliability in his guidelines for ICC reporting: Poor Reliability(ICC < 0.5), Mod-
erate Reliability(ICC ≥ 0.5 and ICC < 0.75), Good Reliability (ICC ≥ 0.75 and
ICC < 0.9) and Excellent Reliability(ICC ≥ 0.9 and ICC ≤ 1) [9]. This guideline
for level of reliability has been used in this research where the ICC score of each
feature is determined by employing intraclass correlation coefficient approach over
two samples of each feature coming from test and retest CT scans. Table 1 shows
the distribution of the number of RHFM and wavelet features among those groups
(poor, moderate, good and excellent) to the usual guidelines. The table implies
that the RHFM features show better reliability than wavelet features.

4.2 Stability Analysis

In clinical oncology, the tumor region of CT image of patients is delineated by mul-
tiple radiation oncologists for stability analysis. Multiple samples including desired
extracted radiomics features from delineated CT images are compared to test if
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Figure 4: Average MSRE of Multiple Delineation Dataset

Table 1: Reliability: number of features based on ICC

Type of Features Poor Moderate Good Excellent
RHFM 22 105 175 154
Wavelet 38 89 157 172

there are any significant difference among the means of those samples. As those
multiple samples are dependent, Repeated-Measures ANOVA and Friedman Test
are used for the statistical test. As Repeated-Measures ANOVA test is parametric
test, the assumptions of samples are to be normally distributed. If the assumptions
of normality are not met, the Friedman test is used [5]. In this study, RIDER
Multiple delineation data consisting of the CT scans of 21 patients delineated by
five radiation oncologists are used to test stability. The Friedman test is applied
over five samples of each feature avoiding the distribution of those sample. The
test provides the p-value which is a probability that measures the evidence against
the null hypothesis. That is, if the p-value of a feature is greater than the usual sig-
nificance level of 5%, the feature is considered to be stable. Otherwise, the feature
is not stable. It has revealed that there are 74 and 135 stable features for RHFMs
reconstruction and wavelet decomposition, respectively, at a 5% significance level.
The test shows that the RHFMs features and wavelet features are comparable in
terms of stability.
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Slice 1 Slice 2 Slice 3 Slice 4 Slice 5

(a) Original CT Image

(b) LLL Wavelet Image

(c) LLH Wavelet Image

(d) LHL Wavelet Image

(e) LHH Wavelet Image

Figure 5: Wavelet Decomposed Images (LLL, LLH,LHL,LHH)
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Slice 1 Slice 2 Slice 3 Slice 4 Slice 5

(a) Original CT Image

(b) HLL Wavelet Image

(c) HLH Wavelet Image

(d) HHL Wavelet Image

(e) HHH Wavelet Image

Figure 6: Wavelet Decomposed Images (HLL,HLH,HHL,HHH)
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Slice 1 Slice 2 Slice 3 Slice 4 Slice 5

(a) Original CT Image

(b) Order 2 (MSRE: 0.163)

(c) Order 4 (MSRE: 0.072)

(d) Order 6 (MSRE: 0.057)

(e) Order 8 (MSRE: 0.055)

Figure 7: Reconstructed Images from RHFMs (order 2 to 8)
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Slice 1 Slice 2 Slice 3 Slice 4 Slice 5

(a) Original CT Image

(b) Order 10 (MSRE: 0.058)

(c) Order 12 (MSRE: 0.061)

(d) Order 14 (MSRE: 0.071)

(e) Order 16 (MSRE: 0.086)

Figure 8: Reconstructed Images from RHFMs (order 10 to 16)



Radial Harmonic Fourier Moments for CT-based Quantitative Radiomics 193

4.3 Prognosis Analysis

Generally, prognosis refers to the expected course and outcomes of a disease over
time. In medical science, healthcare professionals make the assessment considering
the likely course of a condition and its potential results based on their scientific
knowledge, clinical experience and the circumstance of individual patient. This
assessment helps the doctor to guide treatment decisions and set expectations for
recovery or disease progression. In clinical oncology, the valid and prominent ques-
tion is which radiomics features of radio images are correlated with the prognosis.
The answer to this question is solved through the survival analysis which predicts
the time to death by establishing a connection between radiomics features and the
time to death. The difference of survival analysis from the traditional regression
model is that the survival model can work on the partially observed data called
censored data. A popular robust mathematical model of survival analysis is Cox
proportional hazard model which is expressed in terms of hazard model formula as

h(t,X) = h0(t)e

p∑
i=1

βiXi

. (8)

That is, Cox survival model is the product of two quantities: h0(t), baseline hazard
function and exponential expression of the linear sum of βiXi for p radiomics fea-
tures Xi. Here the hazard means the probability of death. The Cox proportional
hazard model does not assume about the distribution for the outcome variable
(time to death), but it assumes that the hazard proportion between different sub-
jects is constant over time [8]. The assumption helps to estimate the regression
coefficient βi without considering the full hazard function. This Cox proportional
hazard regression model can be used to assess the radiomics features by measuring
the predictive discrimination ability [6]. Due to the presence of censored data, this
assessment is performed by Concord index (C-index or CI) proposed by Harrell
et al in 1982 [6]. The C-index is the measure of how well the patients are sorted
according to the event occurrence. The index explains the ability of a radiomics
feature to order subjects by estimating the proportion of correctly ordered pairs
among all usable pairs in the dataset where the patient pairs have at least one died
patient. In our study, as only Lung1 dataset has clinical data having survival time
and death status, its four 419 patients are considered to measure the prognostic
power through C-index for each feature of 456 radiomics features. In our experi-
ment, 378 RHFM and 430 wavelet features are above 0.5 and thus show prognostic
value. The mean and median CI is approximately 0.54 and 0.55 for both the RHFM
and wavelets, which proves a similar prognostic value.

5 Conclusion and Future Work

We investigated the application of orthogonal moments known as RHFMs for ra-
diomics analysis of lung CT images of NSCLC patients, and compared the extracted
RHFMs features with state-of-the-art wavelet features. We proposed a reconstruc-
tion framework for RHFM-based tumour representation, and optimized the feature
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selection by the analysis of reconstruction error. Statistical tests were performed to
determine the stability, reliability, and prognostic value of the proposed features,
which aspects play important roles in clinical oncology. We conclude that orthog-
onal moments are promising for radiomics analysis, since they show comparable
behavior compared to wavelets, while they are more flexible, possibly adaptive, and
preferable due to their shift-invariant property. In the future, we plan to further
investigate the application of orthogonal moments in radiomics in several respects.
This includes the adoption of various orthogonal bases, adaptive transformations,
and discretization approaches. We plan to extend the RHFM model to 3D, and also
direct utilization of transformation invariant moments as radiomic features. Here
the feature selection was optimized for the whole databases, but the optimal order
is worth to be explored in a patient-wise adaptive manner as well. Furthermore, we
will extend our work to build a radiomics signature for associating reliable, stable
and prognosis radiomics features and gene expression profiles.
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Smart Contract in the Loop: Fault Impact

Assessment for Distributed Ledger Technologies∗

Bertalan Zoltán Péterab, Zsófia Ádámac,
Zoltán Micskeiad, and Imre Kocsisae

Abstract

Due to their decentralized and trustless nature, blockchain and distributed
ledger technologies are increasingly used in several domains, including critical
applications. The behavior of such blockchain-integrated systems is typically
driven by smart contracts. However, smart contracts are application-specific
software and may contain faults with severe system-level impacts. This is
especially true in the case of the extensively used Hyperledger Fabric (HLF)
platform, where smart contracts are written in general-purpose languages
(Java, among others), and applications can go far beyond handling virtual-
currency-like assets. In this work, we present a novel formal-verification-based
approach to smart contract verification and a high-level empirical model of the
HLF platform. Our Smart Contract in the Loop (SCIL) method uses a model
checker (Java Pathfinder) to check whether specific error properties hold for
a given smart contract, while a predefined combination of platform-level fault
modes is active. We facilitate the checking of HLF smart contracts without
modification and enable the propagation or non-propagation of platform faults
through the smart contracts to the system failure level.

Keywords: distributed ledger technology, blockchain, formal verification,
model checking, Java Pathfinder, Hyperledger Fabric

1 Introduction

Distributed ledger technologies (DLTs) – especially blockchains – provide high-
integrity distributed databases without requiring a trusted party. Initially devel-
oped with financial applications in mind and powering cryptocurrencies, blockchain
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and Economics; Műegyetem rkp. 3, H-1111 Budapest, Hungary

bE-mail: bpeter@edu.bme.hu, ORCID: 0000-0002-5577-1369
cE-mail: adamzsofi@edu.bme.hu, ORCID: 0000-0003-2354-1750
dE-mail: micskei.zoltan@vik.bme.hu, ORCID: 0000-0003-1846-261X
eE-mail: kocsis.imre@vik.bme.hu, ORCID: 0000-0002-2792-3572

DOI: 10.14232/actacyb.312501

mailto:bpeter@edu.bme.hu
https://orcid.org/0000-0002-5577-1369
mailto:adamzsofi@edu.bme.hu
https://orcid.org/0000-0003-2354-1750
mailto:micskei.zoltan@vik.bme.hu
https://orcid.org/0000-0003-1846-261X
mailto:kocsis.imre@vik.bme.hu
https://orcid.org/0000-0002-2792-3572
https://doi.org/10.14232/actacyb.312501
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technology now has a variety of use cases, including supply chain management,
healthcare, and telecommunication.

Blockchains & Smart Contracts Blockchains have powerful properties, such
as immutability, distribution, decentralization, and high security that make them fit
for cross-organizational (enterprise) applications. Where high integrity is paramount,
they are already widely used, even in critical applications; e.g., in the nuclear [9]
or the railway [14] industry (although, importantly, not in safety-critical func-
tions). Typically, such use cases are backed by permissioned platforms, such as
R3 Corda [12] or Hyperledger Fabric [1], but Ethereum [5] can also power permis-
sioned networks. However, where other extra-functional properties, such as timeli-
ness, age-of-information, dependability, or availability are also matters of concern,
the system-level analysis of critical applications is still largely an open challenge.

Smart contracts, introduced with Ethereum [5], are akin to stored procedures
and describe computations executed on the blockchain with effects that are per-
sisted on-chain. They extend the original accounting “ledger” functionality of per-
missionless blockchains with rich, self-executing business logic. Smart contracts
have since become ubiquitous and are widely used in most blockchain frameworks,
enabling decentralized collaboration among the participants.

However, smart contracts are pieces of software and thus susceptible to faults
with potentially devastating consequences. The beneficial properties of blockchains
may also pose some issues; e.g., even if a bug is found, the ledger’s immutability
inherently prevents fault removal. Because of these risks, verifying smart contracts
has been a central research topic in recent years, bringing about several approaches
for fault removal and prevention [22]. These are mostly design-time methods, such
as static analysis, and primarily target Ethereum and the Solidity programming
language.

Hyperledger Fabric (HLF) [1] is a widely used, mature, enterprise-grade permis-
sioned blockchain platform maintained by Linux Foundation Decentralized Trust
(LFDT). It offers pluggable consensus mechanisms, identity management, flexible
“subnetting” features, and privacy mechanisms. Fabric powers several projects in
both development and production in various domains1. In HLF, the network must
have smart contracts (called “chaincode”) for any meaningful transactions to be
able to occur.

Lack of Cross-Organizational V&V Support There is significantly less sup-
port for verifying enterprise smart contracts, even though recent developments show
that the Ethereum Virtual Machine (EVM) is no longer the only available smart
contract execution environment; known alternatives include:

• WebAssembly (WASM) [19] (used by Polkadot [23])
• the Berkeley Packet Filter (BPF) [15] VM (used by Solana [24])
• the Move [2] VM (used by the Aptos Blockchain [2])

1See the use case tracker at https://www.hyperledger.org/learn/use-case-tracker/.

https://www.hyperledger.org/learn/use-case-tracker/
https://www.hyperledger.org/learn/use-case-tracker/
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Enterprise smart contracts necessitate developing different techniques from its pub-
lic counterparts for several reasons, such as the usage of general-purpose program-
ming languages instead of domain-specific ones to write smart contracts or addi-
tional variable features that have to be taken into account in the enterprise case,
such as deployment. Further complications arise from the fact that enterprise solu-
tions are often not openly available, lowering the number of available case studies
and evaluations, thus hindering research efforts in this area.

One cannot follow the same methodologies for the verification and validation
(V&V) of cross-organizational platforms and smart contracts that are already
widely available in the literature. The main reason is that while in public platforms
such as Ethereum, a canonical set of platform events and relevant attacks can be
defined, there is much more variability in these aspects on consortial networks. We
explain this notion in detail in Section 2.

Nevertheless, some formal verification approaches can be employed to verify
smart contracts both in public and consortial applications [11, 3]. However, to our
knowledge, no tooling enables the impact assessment of platform-level faults given
an unmodified smart contract implementation, especially for enterprise platforms
such as HLF – even though the differences in deployment and the platform greatly
influence the possible fault modes. To take all of that into account, verification
methods either need to divide all of these components into small parts and verify
them separately, or they need to experiment with methods that can handle several
of these layers together. We believe that the latter cannot be disregarded, as issues
emerging from these systems as a whole must be considered.

While we have little information about cross-organizational smart contracts, as
they are typically kept private, we can hypothesize that the majority of them are
more or less direct translations of existing contracts from the public blockchain
world. Furthermore, as the general-purpose languages used by most consortial
platforms were not designed with smart contract development in mind, we also
postulate that there are more types of faults to consider for these programs than for
those written for the EVM. Unfortunately, we do not have a library of such common
faults, as no suitable corpus of consortial contracts is available. At the same time,
faults in cross-organizational smart contracts may be more consequential, as the
potential damage is not limited to losses in financial assets.

Based on all this, we recognize a lack of V&V methods specialized to enterprise
solutions, even though they are necessary based on both the use cases and the
individual characteristics of the world of enterprise blockchain platforms.

Contributions & Paper Structure In this work, we propose the application
of model checking to show whether a smart contract may develop errors in the
presence of certain platform-level faults. To this end, we present a simplified model
of the HLF blockchain platform with its primary components and configurable fault
modes. This model implementation enables the user to define several aspects of
deployment (e.g., the number of peers per organization or the channel’s endorsement
policy) and specify what faults or attacks can arise.
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We demonstrate the viability of our approach with a Java-based prototype ca-
pable of simulating network faults in the context of a (hypothetical) safety-critical
application. This prototype can be verified using the model checker Java Pathfinder
(JPF) [16]. Our method provides the means for one to plug in their Java HLF smart
contract to the framework and determine whether a predefined property holds while
select platform-level faults are active. We dub this approach Smart Contract in the
Loop (SCIL). The prototype implementation and all other artifacts related to this
paper are open-source and available online on GitHub2.

In the next section, we briefly overview the application of formal verification
to smart contracts and DLTs and what motivates this research. In Section 3, we
present our model of the HLF platform, and we describe our Smart Contract in
the Loop approach, followed by an overview of our prototype implementation in
Section 4, and a worked out case study in Section 5. Finally, we conclude and
discuss future work in Section 6.

2 V&V of Cross-Organizational Smart Contracts

Smart contracts are programs that run on blockchains, and as with any other
software, they are prone to contain faults (“bugs”). Unfortunately, while tradi-
tional software can usually be patched and thus its faults can be removed, smart
contracts are inherently immutable; i.e., platforms are typically unprepared to sup-
port patching or upgrading these programs because they follow an append-only
paradigm. The public blockchain world quickly recognized the need for verifica-
tion and validation (V&V) activities in the smart contracts development process to
prevent these faults from making it into the deployed contracts, proposing several
diverse approaches. That being said, cross-organizational (consortial) blockchain
applications and smart contracts have unique aspects that warrant different V&V
techniques. These different techniques are still largely unexplored.

Smart contract faults may result in the loss of (commonly financial) assets in
permissionless systems and the cryptocurrency world (see, for example, the infa-
mous DAO hack [7]). The potential effects are arguably far more devastating in the
context of permissioned and especially critical applications. While smart contracts
can be enhanced with various defenses (including runtime verification mechanisms
or techniques such as n-version programming (NVP) [18]), faults of the platform
itself may still induce unintended behavior.

2.1 An Overview of Smart Contract V&V Approaches

Since the initial release of Ethereum [5] and the quick recognition of the need for
V&V techniques in smart contract development, hundreds of research papers have
been published about various verification tools and approaches. [22] collected 202
papers that are concerned with blockchain V&V techniques in general, such as
model checking, theorem proving, program verification, symbolic execution, and

2https://github.com/ftsrg/scil

https://github.com/ftsrg/scil
https://github.com/ftsrg/scil
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Figure 1: Distribution of V&V techniques in the underlying corpus of [22]

runtime verification. We have summarized the distribution of these techniques
among the papers in Figure 1. The diagrams were created by filtering the papers
listed at the website3 created by the authors and counting the results.

It is clear from the results that there are significant research efforts towards
smart contract V&V, but methods targeting Ethereum far outweigh those proposed
for enterprise platforms. Indeed, Ethereum smart contracts are publicly available,
and their common problems are already well-known. On the other hand, enterprise
smart contracts are seldom made public, and therefore, we know much less about
incidents or common faults in these programs. Furthermore, there are several key
differences in cross-organizational blockchain applications that we outline in the
following subsection.

2.2 Enterprise and Public Smart Contract V&V Differences

Although not immediately apparent, applications and smart contracts on cross-
organizational distributed ledger technology (DLT) platforms may be radically dif-
ferent from their public platform counterparts. The fundamental difference is that
while the relevant failure modes and effects in public platforms are fairly canon-
ical, they are much more varied in cross-organizational DLTs. This subsection
overviews the most important differences that highlight why the V&V of consortial
DLTs forms a different, largely unsolved problem set.

Deployment The deployment model of a consortial DLT and a public blockchain
differs. First of all, the infrastructure is typically given and available for smart
contracts on permissionless blockchains. Its potential failure modes and their
associated risks are known; e.g., selfish mining [10] on Ethereum [5] before The
Merge4, but similar attacks have been identified [17] for the current PoS consen-
sus, too. Conversely, the deployment of a cross-organizational DLT is application-

3https://ntu-srslab.github.io/smart-contract-publications/
4Ethereum [5] switched from proof of work (PoW) consensus to proof of stake (PoS) on

2022-09-15.

https://ntu-srslab.github.io/smart-contract-publications/
https://ntu-srslab.github.io/smart-contract-publications/
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dependent. It depends on the number of participating organizations, their relation-
ships, the consensus protocol (especially the endorsement policy in Hyperledger
Fabric (HLF)), and the underlying physical infrastructure, among others. Applica-
tions based on smart contracts may be affected by these parameters in unforeseeable
ways.

Further, some consortial DLTs have capabilities that simply do not exist in the
case of public networks. For instance, in HLF’s model, smart contracts is installed
independently to a number of peers in such a way that it is theoretically possible
to have different implementations of the same smart contract specification installed
onto different nodes within an organization or even across organizations. This idea
is explained in further detail in [18].

Programming Model While there has been a recent, noticeable shift towards
other programming languages and execution environments even in the public block-
chain space (e.g., Rust in Solana [24], Move on Aptos [2], Python on Algorand [6],
etc.), the vast majority of smart contracts have been written for the Ethereum
Virtual Machine (EVM) [5] and in Solidity. The common Solidity vulnerabilities,
weaknesses, and code smells are known; some examples include reentrancy, arith-
metic over- and underflow, frontrunning, and access control [21]. On the other hand,
smart contracts on consortial platforms are typically written in general-purpose
programming languages. HLF [1], for example, currently supports Go, Java, and
JavaScript. Corda [12] smart contracts are written in Java (or Kotlin).

The significance of this is twofold. First, as these languages were not developed
with smart contracts in mind, we hypothesize that their usage may imply a more
extensive yet unexplored set of potential software faults (“bugs”). As there is
practically no publicly available corpus of enterprise smart contract written in these
languages, we do not know the statistically most common problems (as opposed to
contracts written in Solidity, where sizable corpora exist). Second, while Solidity is
still a relatively new and unique language, extensive research has already been done
regarding V&V techniques for pieces of software written in ubiquitous programming
languages like Java.

Besides the language, the way the world state is stored often also differs; e.g., in
HLF, the underlying database is a simple (versioned) key-value store. This greatly
affects how smart contracts must be written, especially since serialization and key
management issues also become matters of concern.

Execution Model Both consortial and public systems rely on consensus among
participants to establish a world state agreed upon by all parties. However, the way
this consensus is reached is radically different between the two types of systems.

Finality is a crucial difference; e.g., HLF offers immediate, absolute transaction
finality, meaning that a transaction accepted by the network will deterministically
end up in a block. Consensus mechanisms in public networks are different. In PoW,
finality is probabilistic: as the block height grows, an accepted transaction is more
and more likely to become final. In PoS, there is economic finality: a transaction is
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final when “reversing” it would be financially infeasible due to the collateral losses
of validators. As a corollary, temporary forks can form on these public platforms,
but usually not on permissioned ones (like Fabric).

Another difference is how the smart contract halting problem is solved. In
Ethereum [5] and its derivatives, gas is used for this purpose. In consortial DLTs,
timeout mechanisms are employed since it often does not make sense to track
money-like assets on the ledger.

Calls to external services from within smart contracts may be supported and
even desired in consortial DLTs, while it is only possible through oracles in Ethereum.

Variability of Platform Events and Failure Effects Since deployment and
configuration aspects need not be considered for individual applications, the ex-
pected platform-level events, attacks, and failure effects in public networks are
fairly canonical and thus can be anticipated. All of these are variable regarding
cross-organizational DLTs.

For example, in a HLF network, depending on the endorsement policy, the
downtime of a peer may result in unintended behavior even when the smart con-
tracts are entirely fault-free. Or, malicious behavior of a HLF channel’s ordering
service may also lead to issues regardless of smart contract quality. We detail an
example in our case study in Section 5, where the ordering service reorders trans-
actions (a kind of frontrunning attack), resulting in an incorrect final state of the
ledger state and a real-world accident occurring as an effect.

Based on the above, we propose that due to the radically different models of exe-
cution, programming, and expected failure effects, the V&V of cross-organizational
blockchain applications requires different, specialized approaches from those de-
veloped for public platforms. In fact, there are several traditional fault-tolerance
techniques (such as NVP or runtime verification) that are not practically applicable
to public networks (usually because of the added costs) but could be employed in
consortial settings.

Because there are so many other “moving parts,” one cannot rely on simple,
direct V&V of smart contracts (like testing or formal, static analysis). Instead, we
suggest a holistic approach where the smart contract is verifiable in the context
of the entire target network, including deployment, configuration, higher-level ap-
plications (dApps) using on the smart contract as a backend, and any potential
defenses. To this end, we have modeled the components of HLF to be able to run
simulations. However, instead of requiring the smart contract to be modeled, we
have developed a framework (for Java smart contracts) where the contract code
can be plugged in as is. We elaborate on this framework in the Section 3.

2.3 Related Work

As shown in Subsection 2.1 there has been significantly more research on V&V
techniques for public, permissionless platforms. Still, there are some papers aiming
at the permissioned HLF platform, too.
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In [3], the authors present an approach for the formal verification and deduc-
tive verification of HLF smart contracts using the KeY prover. They define the
formal specification of Java smart contracts using Java Modeling Language (JML)
that is translated into Java Dynamic Logic (JavaDL) [4] and then perform static
analysis to ensure the specification’s rules are fulfilled. The paper states explicitly
that “verifying the correctness of the Fabric framework itself (e.g., communication
between peers and orderer) [. . .] is not within the scope” of their work.

The BCVerifier [20] tool for HLF checks the integrity of the ledger itself to detect
local modifications and to ensure transaction executions are valid. A Hyperledger
Labs project5 was created for the tool but has been since archived.

We were unable to find any such literature about other permissioned platforms,
such as R3 Corda [12]. The only related research paper is [13], where the authors
show a model-driven engineering (MDE) methodology that includes validation.

These existing solutions focus on specific elements of DLT-based applications,
such as the smart contracts or the ledger state. The model-checking-based Smart
Contract in the Loop (SCIL) approach presented in this paper is more comprehen-
sive in the sense that it does not only verify smart contract correctness or state
changes but also considers various platform-level events (faults) and potentially
deployed defenses (e.g., smart contract NVP).

3 The Smart Contract in the Loop Approach

As explained in Subsection 2.2, we propose a holistic treatment of cross-organizational
distributed ledger technology (DLT) systems for the verification and validation
(V&V) of smart-contract-based consortial applications. Concretely, we have devel-
oped our Smart Contract in the Loop (SCIL) approach that performs model check-
ing of a configurable Hyperledger Fabric (HLF) network model instance, given a
smart contract and an error property to check for. We have visualized the core
elements of our approach in Figure 2. At the core of our framework, there is an
executable HLF model (written in Java), which we describe in the next subsection.
In Subsection 3.2, we describe the further components of the SCIL framework for
HLF.

3.1 Executable Model of Hyperledger Fabric

Hyperledger Fabric (HLF) [1] is a permissioned, highly configurable, modular en-
terprise blockchain platform maintained by Linux Foundation Decentralized Trust.
Among R3’s Corda [12] and Canton [8], it is among the few widely used consortial
(cross-organizational) DLT platforms. Fabric is known to power several enterprise
use cases6.

Even with state-of-the-art verifiers, out-of-the-box model checking of a large
project, such as the implementation of HLF, is still not feasible due to numerous

5https://github.com/hyperledger-labs/blockchain-verifier
6See footnote 1.

https://github.com/hyperledger-labs/blockchain-verifier
https://github.com/hyperledger-labs/blockchain-verifier
https://github.com/hyperledger-labs/blockchain-verifier
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Figure 2: Verification Process

factors, such as scalability issues, libraries, and the distributed nature of the project.
Therefore, we have instead created our simplified implementation-independent model
of HLF with a level of abstraction that enables meaningful formal analysis but does
not generate an overly complex state space.

The difficulty of this approach lies in the empirical nature of modeling the
network – verification outcomes are hard to trust on an abstract model based on
informal documentation and some code. We identified abstraction as a key point
regarding the quality of the model; i.e., finding the right abstraction to catch all
relevant aspects to the faults and the error property while keeping the model and
its limitations clear.

Please refer to Figure 3 for a high-level overview of our model that incorporates
both structure and dynamics (i.e., the messages between the components).

10: Block

10: Block

Peer 1
(endorsing peer)Client Chaincode Peer 2

Peer 3
(endorsing peer)Chaincode

Ordering Service

Organization 1

Organization 2

1: Transaction Proposal 2

34: R/W Set

5: Transaction Proposal

6

7

8: R/W Set

9: Transaction Envelope 10: Block

Figure 3: High-level overview of Fabric’s architecture
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3.1.1 Main Components

In the following, we elaborate on how the main components illustrated on Figure 3
have been modeled, including how they are mapped to the “real” HLF platform’s
components and their fault modes and interactions with other components.

Unlike common public blockchain platforms such as Ethereum [5], HLF is not
designed to provide a de-facto network to be used by participants. Rather, a HLF
network comprises several independent channels used by independent consortia.
Figure 4 provides a high-level overview of this “consortial architecture.”

p Organization 1

Ò Organization 2

� Organization 3

í Organization 4

¯
Consortium 1

¯
Consortium 2

À Channel 1.1

À Channel 1.2

À Channel 2.1

ó
Ledger

ó
Ledger

ó
Ledger

Figure 4: Overview of organizations, consortia, and channels in HLF

Organizations In HLF (and so-called “consortial” platforms and networks in
general), the participants are collaborating organizations. Organizations form con-
sortia, and each consortium maintains one or more channels.

Most other components, such as peers, orderers, and clients, belong to organiza-
tions. Although not explicitly modeled at this stage, it is important to mention that
consortium member organizations agree on a per-channel so-called endorsement pol-
icy that defines the number of organizations required to endorse transactions for
them to be accepted.

Ordering Service The ordering service is an abstraction formed by all orderer
nodes in a channel, responsible for establishing a total order over the transactions
and creating new blocks. Typically, an independent organization (or several inde-
pendent organizations) provide ordering services.

We did not model individual orderer nodes at this phase, mainly due to the
high complexity of the consensus mechanisms employed during ordering. We did
model, however, the critical fault modes of ordering services:
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1) Dropping Transactions An erroneously or maliciously behaving ordering
service may occasionally ignore transactions, refusing their inclusion in new
blocks.

2) Reordering Transactions Transaction reordering is usually done to per-
form a frontrunning-type attack; i.e., unfairly moving certain favored trans-
actions ahead of others for some business advantage.

Peers Peers maintain the distributed ledgers for the channels they are in. Fur-
thermore, peers receive and simulate client transaction requests and validate blocks
published and broadcast by the ordering service.

As we have focused on ordering, we have not yet modeled fault modes of peers,
but there are some ways they may misbehave – although the cause of these faulty
behaviors would likely not be malicious intent. For instance, a peer may simply
become unavailable, either due to issues with its physical host or network infras-
tructure problems. If the number of reachable peers is insufficient, clients will not
be able to gather enough transaction endorsements, and desired state changes may
be delayed.

Ledgers Each channel has its own ledger, where the world state is being stored.
In HLF, the ledger is a simple key-value store. Accordingly, smart contracts (chain-
code) are provided a stub through which they can read/write values from/to keys
(but more complex operations, such as range queries, are also usually available).

Channels Channels group some peers to form a “subnet” in the HLF network
with its own isolated and independent ledger. Newly created blocks are broadcast
to the peers in the channel.

If endorsement policies were also modeled, they would significantly affect the be-
havior of the channels. Inappropriately chosen policies can have significant system-
level effects – in fact, problems with endorsement policy configuration are funda-
mental fault modes of channels. However, in our current simplified implementation,
there is no specific endorsement step; thus, we did not model the endorsement pol-
icy.

Application Clients Clients are the most user-facing components of the net-
work, who submit transaction requests to peers. There may be additional logic
embedded within clients, but in our current model’s scope, clients can do noth-
ing more than submit basic transactions (function names and arguments) to select
peers.

Smart Contracts Smart contracts define the business logic of the cross-organiza-
tional collaboration a channel enables. In HLF ’s terminology, smart contracts are
typically referred to as chaincode – although more accurately, a piece of chaincode
is a group of smart contracts.
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Chaincode is installed on one or more peers in the channel. When clients submit
transactions to peers, they in turn invoke the chaincode installed on them. The
chaincode may read and write state (key-value pairs) from/to the ledger and return
a so-called read-write set to the peer. The process is described in more detail in
the Transaction Flow subsection.

Network The collection of all independent channels, all participating peers and
orderers, the ledgers maintained by the peers, as well as the chaincode installed on
them, form a HLF network.

3.1.2 Transaction Flow

A simplified version of HLF ’s transaction flow is part of our model. Clients first
submit transaction requests to endorsing peers, who respond with their endorse-
ments and corresponding read/write sets (based on the results of the chaincode
execution simulation). Then, the client sends the endorsed requests to the ordering
service. Figures 3 and 5 visualize the process.

: Client endorser n : Peer cc at endorser n : Chaincode : Ordering Service peer m : Peer

tx proposal
invoke

r/w set
r/w set

tx envelope

block

loop [∀ endorsing peers]

loop [∀ peers]

Figure 5: Transaction flow in our HLF model

3.2 Components of the SCIL Framework

We have already described our executable HLF model in detail in the previous
subsection. In the SCIL framework, there are three configurable elements of the
model:

1) Fault Modes
The fault modes of the individual components can be toggled before sim-
ulation. For example, in HLF, if a malicious ordering service intentionally
reorders and selectively accepts (i.e., occasionally drops) transactions, ledger
updates may not always reflect the expected world state. Platform-level faults
in HLF include:
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• malicious orderer behavior (transaction dropping, reordering)

• network faults (e.g., traffic congestion)

• host-level faults (e.g., a peer becomes unavailable)

• incorrect configuration (e.g., unsuitable endorsement policies)

• other malicious or unintentional behavior (e.g., client issues)

In a correctly configured network, Fabric protects against some of the poten-
tial faults. For example, endorsement policies can be designed to tolerate the
downtime of some peers.

2) Network Design
The network design is an instantiation of the modeled components and de-
scribes the deployment of the network. This includes aspects such as how
many organizations there are, how many peers do these organizations main-
tain, where are smart contracts installed, and what operation-time defenses
have been employed.

3) Smart Contract
Our approach’s core idea is to include the smart contract in the simulation
as is. After defining the network and selecting the fault modes, one simply
needs to plug in their existing smart contract code.

Error Property The error properties to consider during model checking can be
derived from the smart contract and the application. This would usually be an un-
desired world state after a series of transactions or some erroneous results returned
by the smart contract. We should note that while model checking can prove that
a particular error property cannot be satisfied in a given configuration (an error
state cannot be reached), it does not guarantee an utterly fault-free system.

Model Checking Given the network design, the enabled fault modes, and most
importantly, the smart contract, a model checker can determine whether the speci-
fied error property can be satisfied. If so, the model checker also provides a failure
trace – a list of events leading to the undesired state. If the property cannot be
satisfied, we have formal proof that a certain error state is unreachable (if the initial
model was correct).

The “In The Loop” Aspect We have dubbed our approach Smart Contract in
the Loop because the smart contract source code is given to the model checker “as
is.” We do not expect smart contract developers to employ model-driven engineer-
ing (MDE) methods, and thus, a formalized model of the smart contract is likely
not available. Furthermore, even if such a model exists, it is still worthwhile to
test the concrete implementation in a simulation. The advantage of this approach
is efficiency for the user: they simply need to provide the network configuration
once, then plug in their existing smart contract implementation, and run the model
checker.
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4 Prototype Implementation

Our Java prototype implementation contains the Hyperledger Fabric (HLF) model
described in Subsection 3.1, as well as a framework for model checking using the
Smart Contract in the Loop (SCIL) approach. In the following, we describe the
key elements of the prototype in more detail.

4.1 Implementation of the HLF Model

We have visually represented the most important classes of the model in Figure 6.
A class exists for all major components, and there are also some additional util-
ity classes; e.g., we package the invoked method and the arguments passed in
InvocationRequest objects and the results returned from smart contracts (more
accurately, chaincode) in InvocationResult instances. The latter includes the
arbitrary result returned by the smart contract method and the read/write set
resulting from the transaction simulation.

Peer

processBlk() : void

getWorldState( key : String ) : byte [0..*]

recvInvocationReq( req : InvocationRequest ) : void

simulateTxReq() : void

installContract( contract : ContractInterface, chan : Channel ) : void

recvBlk( block : Block ) : void

Organization

Block

txs : RWSet [0..*]

InvocationRequest

method : String

args : Object [0..*]

Ledger

LedgerEntry

key : String

val : byte[0..*]

vers : int

OrderingService

receiveTx( rws : RWSet ) : void

orderTxs() : void

Channel

broadcastBlk( b : Block ) : void

Client

sendTxReq( res : InvocationRequest ) : void

receiveTx( res : InvocationResult ) : void

forwardTxToOrderer() : void

ContractInstance

InvocationResult

result : Object

rws : RWSet

Network

endorsingPeer

create

create

requests

blocksToValidate

create

create

create

Figure 6: Simplified class diagram of the prototype

Most of Figure 6 follows from the conceptual HLF model presented in Subsec-
tion 3.1, but there are a few bespoke classes needed for network simulation and
enabling smart contract “in the loop.” For instance, the ContractInstance class
does not, in fact, refer to a concrete instance of a specific smart contract class.
Rather, it represents a smart contract installed at a peer, but it does have a refer-
ence to a ContractInterface object that is going to be an actual instance of the
plugged smart contract class.
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The ledger is stored in memory; the Ledger class contains a list of LedgerEntry
objects, which are, in turn, versioned key-value plain old Java objects (POJOs).
Peers have their local copy of the ledger and provide smart contracts with ledger
data during transaction “simulation.”

The Client class is not a concrete client implementation either, but an ab-
stract, logical application client that can be used to send parameterized transaction
requests (proposals) to the network.

There are several more classes present in the prototype that we have omitted for
brevity and simplicity. Many of these facilitate the network simulation explained
in the following subsection.

We should note that this model deliberately does not accurately reflect how
the real HLF works. In the actual HLF implementation, transaction processing is
much more complex as it uses shims, stubs, context providers, etc. We have done
some simplifications and abstractions to improve model checking performance (by
avoiding unnecessarily increasing the state space) and to keep our code concise and
maintainable.

4.2 Network Simulation

To perform model checking, we simulate predefined transaction requests’ execution
on the user-configured abstract HLF network. The sequence diagram in Figure 7
concisely models how the framework simulates the network.

: NetworkRunner : Client : Network peer n : Peer : ContractInterface : OrderingService

run()

sendTxReq(req)

execute()

step()
invoke()

readWriteSet
continue?

step()

continue?

step()

continue?

loop [∀ requests]

loop [∀ peers]

loop

[until ¬continue]

Figure 7: Network simulation

The primary logical entry point is the NetworkRunner#run(String,

OrderingService.FaultMode, List<InvocationRequest>) method, which first
instantiates all network components according to the supplied design and configu-
ration. For now, network design is hardcoded into NetworkRunner’s source code,
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but in a later iteration of the tool, we plan to offer a lightweight configuration
language in which it can be specified at runtime. The method also dynamically
instantiates the smart contract (chaincode) class based on a fully qualified class
name passed as the first argument. We did not illustrate these instantiations in
Figure 7 to make the diagram more readable.

The next step is sending what is essentially a call sequence to a client defined
in the network. This call sequence is provided to the run method as its third
argument. Each call represents an invocation with a method name and a list of
arbitrary-type arguments.

The network is then ready for simulation. NetworkRunner calls Network

#execute, which in turn begins a simulation loop. In each iteration, the
Network class sequentially calls the step method of the individual components:
peers first, then clients, then the ordering service. All components implement the
Participant interface that requires them to define such a step method. Dur-
ing Peer#step, peers simulate an invocation of their local chaincode by calling
ContractInterface#invoke – which will finally delegate the call to the actual
smart contract implementation. The network simulation loop ends when no com-
ponent indicates that there is still more to do.

At this point, all (virtual) ledger updates have occurred, and it is time to check
the error property. For now, this is also hardcoded into NetworkRunner#run as a
simple Java assertion.

4.3 Plugging in Smart Contracts

As explained in the previous subsection, our prototype framework dynamically
instantiates chaincode classes based on fully qualified names passed as input argu-
ments.

To make these pieces of chaincode work in the simulation without any addi-
tional modifications, we have developed a “shadowing,” mock HLF Java package
with stubbed versions of the classes required by smart contracts. These stubbed
classes are in the org.hyperledger.fabric package and are intended to be found
on the classpath before the classes in the real package supplied with HLF. Key
mocked classes include Context, ContractInterface, ChaincodeStub, and anno-
tations offered by HLF such as @Transaction and @Contract. This setup enables
the seamless specification of existing pieces of chaincode to the framework.

4.4 Model Checking with JPF

Our framework uses Java Pathfinder (JPF) [16] (developed by National Aeronau-
tics and Space Administration (NASA)) for model checking. JPF uses a proper-
ties file for configuration where the target main class, command line arguments,
classpath, and other JPF-specific options. can be set. Listing 1 shows a partial
example configuration where the ordering service’s CAN_DROP fault mode is enabled
(meaning it randomly ignores transactions), the “Smart Contract in the Loop” is a



Smart Contract in the Loop: Fault Impact Assessment for DLTs 213

minimal implementation of the train crossing example described in Section 5, and
invocations are read from a traincrossing.invocations file.

target = hu.bme.mit.ftsrg.scil.Cli.CommandLineInterface

target.args = -f,CAN_DROP,-i,traincrossing.invocations,hu.[...].TrainCrossing

classpath = ./[...]/app-0.1.0-all.jar:./examples/train-crossing/[...]

cg.enumerate_random = true

+vm.assert = enable

Listing 1: Example (simplified) JPF configuration

5 Case Study

In the following, we demonstrate the viability of our approach in the context of a
(hypothetical) safety-critical application where an autonomous vehicle may cross
an unguarded railway intersection if, according to a (permissioned) decentralized
application (dApp), it is safe to do so; i.e., no train is approaching. Figure 8 shows
a simple schematic of this scenario.

write ledger

read ledger

Figure 8: Visualization of the train crossing scenario

The precise operation of this illustrative system (implemented for Hyperledger
Fabric (HLF)) is the following:

1. The two network participants are the railway company and the operators
of the autonomous vehicles. For simplicity, let us assume there is only a
single train and a single self-driving car – this is inconsequential from the
application’s perspective but simplifies the explanations in this paper.

2. There is a single world state entry that is updated and checked by the partic-
ipants in any transaction: the value at the canGo key, which is either "true"
or "false".
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3. The chaincode (smart contract) has a single updateState function that takes
a boolean parameter and sets canGo to that parameter’s value.

4. The train invokes updateState before entering the intersection (to set ca ⌋

nGo to "false"). After the train has left the intersection, it again invokes
updateState (this time parameterizing it with "true").

5. Upon approaching the intersection, the car queries the ledger content and
decides to cross or wait depending on the current latest value of canGo.

One way to phrase the fundamental safety-critical requirement in this elemen-
tary system: the value of canGo MUST NOT be "true" when a train is in the
intersection.

The following describes how the individual elements first introduced in Section 3
are parameterized for the case study.

Network Design As mentioned in Section 4, the tool does not yet support dy-
namic network definitions at runtime; the network design must be specified pro-
grammatically before compiling to bytecode. For our case study, the network has
the following components:

• two organizations R1 and R2

• a single channel C1 with an ordering service O1

• one peer at each organization (P1 at R1 and P2 at R2), both in C1

• the smart contract is installed on P1

• there is a single client in O1 that connects to P1

The programmatic setup of this network can be seen in Listing 2.

Fault Modes For illustration, let us assume that the O1, the ordering service of
the channel, behaves maliciously (or at least in a faulty manner): it randomly drops
some transactions received. This behavior is enabled by passing the -f CAN_DROP

option to the program, as seen in Listing 1.

Smart Contract We have attached the implementation of the train intersection
smart contract in the Appendix, in Listing 3. It must be available on the classpath
at runtime, and its fully qualified class name is specified as the first (and only)
positional argument to the command line interface (CLI) of the framework.

Invocation Sequence We use an arbitrary sequence of a few transactions that
update the state of canGo. The final invocation in the simulation invokes the
smart contract with a "false" parameter, meaning there is a train entering the
intersection, and it is not safe to cross.
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Error Property Based on the safety-critical requirement and derived from the
smart contract being checked (as well as the client-side invocations used for testing),
we have specified the error property as an assertion of canGo being equal to ⌋

"false" at the end of the simulation. A "true" value at the end represents a
potential accident where the train has entered the intersection, but the ledger was
not updated accordingly.

Model Checking To run the model checking, one needs to run the jpf binary
on the properties file (Listing 1). Extensive logging is implemented throughout
the framework so that, in case the error property is violated, there is a readily
available execution trace. For example, due to the CAN_DROP fault mode of the
ordering service in our example, it is possible to reach the error state when the
orderer places a transaction with a "true" parameter last. See Listing 4 for the
resulting execution trace leading up to the error.

6 Conclusion

In this paper, we have presented the novel Smart Contract in the Loop (SCIL)
method and framework in detail that can be used for the comprehensive verification
of a Hyperledger-Fabric-based [1] distributed ledger technology (DLT) application.
In contrast to the few other verification and validation (V&V) tools available for
permissioned (consortial) platforms, the approach presented in this paper does not
only take the smart contracts or the ledger state into consideration but also aspects
such as deployment and potential component-level faults.

SCIL contains a high-level model of HLF’s key components and their interac-
tions and performs model checking (based on Java Pathfinder (JPF) [16]) to deter-
mine whether a predefined error property can be fulfilled in the defined network and
having the smart contract implementation (given to the tool “as is”) installed. In
other words, the tool can show how platform-level behavior can impact service-level
behavior through smart contracts.

We have described our approach in theory and our prototype implementation
created for the Hyperledger Fabric (HLF) platform and Java smart contracts. We
have also presented a case study to demonstrate the viability of our approach on a
theoretical safety-critical DLT application.

The framework can already be used, but there are still implementation efforts
for future work, such as allowing the specification of the network’s design at runtime
(through the command line interface (CLI)) and implementing the possibility to
define runtime defenses as well as faults. Furthermore, our model currently includes
a limited set of fault modes for the ordering service component, while there are
several other fault modes to consider.

We believe SCIL can also be extended to platforms other than HLF. Indeed, while
Solidity smart contracts and the Ethereum Virtual Machine (EVM) can still be con-
sidered “common denominators” in the blockchain space, more and more new plat-
forms support general-purpose programming languages and other domain-specific
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languages (DSLs) for smart contract development – see, for example, Corda [12],
which also supports Java, or Substrate7, where so-called pallets are written in Rust.
The key idea of reusing already existing, ready-to-use tools for analyzing smart con-
tract bytecode also applies to other platforms wherever a virtual machine (VM) is
used for execution. This includes Corda, as well as a few other platforms, such as
Algorand [6].
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The work of Bertalan Zoltán Péter was partially created under, and financed
through, the Cooperation Agreement between the Hungarian National Bank (MNB)
and the Budapest University of Technology and Economics (BME) in the Digitisa-
tion, artificial intelligence and data age workgroup.

The research of Zsófia Ádám was partially funded by the EKOP-24-3 New National
Excellence Program under project number EKÖP-24-3-BME-288, and the Doctoral
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Appendix

1 Network network = Network.builder()

2 .addOrganization("R1")

3 .addOrganization("R2")

4 .addPeer("P1", "R1")

5 .addPeer("P2", "R2")

6 .addOrderingService("O1", blockSize, faultMode)

7 .addChannel("C1")

8 .registerPeersToChannel(List.of("P1", "P2"), "C1")

9 .installContract(contract /* <- SCIL */ , "P1", "C1")

10 .registerOrderingServiceToChannel("O1", "C1")

11 .addClient("Client", "P1", "O1")

12 .build();

Listing 2: Programmatic network design setup for the train crossing case study

1 package hu.bme.mit.ftsrg.chaincode.traincrossing;

2

3 import org.hyperledger.fabric.contract.Context;

4 import org.hyperledger.fabric.contract.ContractInterface;

5 import org.hyperledger.fabric.contract.annotation.*;

6 import org.hyperledger.fabric.shim.ChaincodeException;

7

8 @Contract(

9 name = "TrainCrossing",

10 info = @Info(/* contract metadata */ ))

11 public class TrainCrossing implements ContractInterface {

12

13 @Transaction

14 public void updateState(Context ctx, String value) {

15 if (!(value.equals("true") || value.equals("false"))) {

16 throw new ChaincodeException("Value must be 'true' or 'false'");

17 }

18

19 ctx.getStub().putStringState("canGo", value);

20 }

21 }

Listing 3: Implementation of the train crossing scenario’s chaincode
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$ jpf model.jpf
JavaPathfinder core system v8.0 [...]

====================================================== system under test
hu.bme.mit.ftsrg.scil.cli.CommandLineInterface.main(

"-v","-v","-v","-f","CAN_DROP",
"-i","updateState false! updateState true! updateState false! updateState false! updateState

true! updateState false",↪→
"hu.bme.mit.ftsrg.chaincode.traincrossing.TrainCrossing"

)

====================================================== search started: 9/30/24, 6:25 PM
[INFO | Peer#P1 @ 2024-09-30 18:25:03.164] simulating transaction request [...]
[INFO | Client#Client[connected to P1] @ 2024-09-30 18:25:03.335] forwarding transaction to

orderer [...]↪→
[INFO | OrderingService#O1 @ 2024-09-30 18:25:03.384] building a new block [...]
[INFO | Peer#P2 @ 2024-09-30 18:25:03.663] transaction applied to ledger, world state in peer

updated↪→
[INFO | network @ 2024-09-30 18:25:03.665] Network stopped

====================================================== results
error #1: gov.nasa.jpf.vm.NoUncaughtExceptionsProperty "java.lang.AssertionError: canGo should

be false in..."↪→

====================================================== statistics
elapsed time: 00:00:03
states: new=10,visited=1,backtracked=2,end=3
search: maxDepth=9,constraints=0
choice generators: thread=3 (signal=0,lock=1,sharedRef=0,threadApi=0,reschedule=2), data=6
heap: new=5543,released=2117,maxLive=3316,gcCycles=10
instructions: 274880
max memory: 248MB
loaded code: classes=324,methods=5455
====================================================== search finished: 9/30/24, 6:25 PM

Listing 4: Execution trace leading up to the violation of the error property
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Hungarian Electricity Load Forecasting
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Abstract

Time series analysis and prediction is a difficult and complex problem.
Many Machine and Deep Learning methods exist with better and better re-
sults. This paper proposes a strategy called Multi Model Recursion. It uses
separate Deep Learning models per feature that needs predicting. Another
improvement is not predicting features which are easily calculated. Having
extra models per feature helps in ”simulating” a future environment since it
predicts external variables otherwise unknown. The Multi Model Recursion
developed is an improvement of the commonly used Recursive strategy. The
paper compares this method with models and strategies frequently used in
the field. The testing dataset is put together from publicly available Hungar-
ian electricity load and weather data. The task was to predict the country’s
net electricity load for the next 3 hours.

Keywords: time series, deep learning, Multi Model Recursion, electricity
load forecasting

1 Introduction & Related works

Short term electricity load forecasting is useful since the forecasting models can
adapt better to the given situation and give more accurate predictions. The better
predictions give the opportunity for participants to better exploit their resources
and minimize their costs. A 3-hour forecast comparison of Hungary’s net electricity
load shows the different strengths of models at single step forecasting and also
describes their longer range performance.

The difficulty is that while weather data is available at a large resolution, fore-
casts are not always available the same way. The focus of Multi Model Recursion
is to create a simulated environment with the given exogenous variables and their
respective models to further enhance the predictions of the target variable. Com-
pared to the regular Recursive strategy, this architecture can optimize better since
it doesn’t have to directly take into account the exogenous and time-series variables
when calculating the cost function.
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This paper primarily compares Multi Model Recursion with the regular Recur-
sive strategy using recurrent deep-learning algorithms. It also compares it with
the Multi Input Multi Output (MIMO) strategy using Convolutional, Temporal
Convolutional and LSTM networks. Compares it with the very powerful Sequence
to Sequence (Seq2Seq) strategy, which uses an encoder-decoder architecture. To
justify the usage of such complex algorithms it also looks at the performance of a
machine-learning algorithm known as Random Forests and looks at the advantages
compared to a Statistical method known as Seasonal Autoregressive Integrated
Moving Average (SARIMA). The comparison happens based on a dataset created
from public data from OMSZ (Országos Meterológiai Szolgálat) for weather data
and data from MAVIR (Magyar Villamosenergia-ipari Átviteli Rendszeriránýıtó
Zrt.) for electricity load data.

1.1 Electricity load forecasting

Nti et al. provides a review on electricity load forecasting [11]. The authors provide
a comprehensive study on the used forecasting methods and evaluation metrics.
This motivates the use of MAE, RMSE, MPE and MAPE metrics and the evalua-
tion of ANNs as these are the most used algorithms in the field.

Azeem et al. explains the application of electricity load forecasting techniques
including short term electricity load forecasting [1]. The forecast horizon of a
couple of hours can be critical in the operation and financial decision-making of
energy management systems. Such forecasts can be used to decide which resources
to utilize, for e.g. gas, coal, solar or wind. Another decision may be to import
electricity at a lower cost than the utilization of non-renewable resources. The
authors also explain the optimization techniques where the forecasts are used.

While the paper focuses on national load forecasting all methods can be utilized
at a lower resolution such as Virtual Power Plants. Ghavidel et al. explain that
such VPPs aggregate many physical entities such as renewable and non-renewable
power plants, batteries and pump storage [5]. Accurate forecasts help the operation
of such VPPs.

Yazici et al. provide a case study for electricity load prediction for Istanbul [14].
The authors achieve an impressive 1% MAPE metric for one-hour-ahead predictions
and 2.2% for 24-hour-ahead predictions. While not matching this paper’s 3-hour-
ahead forecast horizon they provide a baseline to verify the results of this paper.

1.2 Problem description

Gasparin et al. [4] describes the task of time series forecasting for the electricity
load case where there is a given uniform resolution s = [s[0], s[1]..., s[T ]]|s ⊂ R
time series data vector. It is ordered by time and has an hourly resolution in this
case. For machine and deep learning purposes it is helpful to work with equal
nT length time windows. The prediction window’s length is specified as nO. The
paper explores supervised learning solutions which require input-output pairs. Let’s
specify at time step t the input vector as xt = [s[t−nT + 1], ..., s[t]] and the output
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Figure 1: The sliding window approach [4]

vector as yt = [s[t + 1], ..., [t + nO]]. This concludes in a sliding window type
approach shown in Figure 1.

A model can be described as a parametric function f and its parameter vector
θ, approximated by θ̂. With the above notation at time step t the model’s output
is ŷt = f(xt, θ̂) which is an approximation of yt ∈ RnO . It is important to mention
that in the practical application of such approaches the model is split into Machine
or Deep Learning models and forecasting strategies where a strategy describes the
steps of forecasting. These are discussed separately.

In the extension of the problem description s ⊂ Rd where d−1 is the number of
exogenous or external features. xt[i][k] notates the kth feature of the ith element
in the sequence where i ∈ [0..nT ) and k ∈ [0..d). In layman’s terms this means that
the forecast is helped by including additional features such as the weather, time of
day or year.

1.3 Models

This section discusses the commonly used neural network and machine learning
architectures for time series forecasting. These models are used in conjunction
with the following forecasting strategies to provide predictions. The models are
used later for the new Multi-Model Recursion strategy.

The Random Forest model is a classical machine learning method that uses the
splitting rule for optimization. Probst et al. explains the optimization and training
of such models [12]. This model may be used in any but the Sequence-to-Sequence
strategy.

Gu et al. discusses the advancements made in convolutional neural network
development [7]. By applying the architecture to 1D data like a time series the
model can learn patterns in time that impact the prediction of the next time step.
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[4] show the usage of causal convolution which applies the padding from only 1
side. This can further be expanded with dilated causal convolution ensuring a
large receptive field for each layer.

Bai et al. shows the architecture and advantages of a temporal convolutional net-
work [2]. This architecture, shown in Figure 2, employs dilated causal convolutions
in addition to residual connections. Applying residual connections is beneficial
to combat the vanishing gradient problem where the gradient gets progressively
smaller as the optimization reaches the early layers. Through residual connections
the gradient doesn’t get affected by the weights ensuring a more stable descent.

Figure 2: Temporal Convolutional Network Architecture: dilated convolutional
layers, residual block and example for a residual block [2]

Masum et al. describes the LSTM model’s architecture and its application to
time series forecasting [10]. The advantage of RNNs (Recurrent Neural Network) is
that they can process inputs of different lengths. This architecture can be applied
to the Sequence-to-Sequence strategy that is mentioned and evaluated later in this
paper. Shen et al. describes the workings of GRU based networks [13]. It is a
newer approach compared to the LSTM aiming to resolve the same problem. It is
generally not obvious as to which will perform better for a given task out of LSTM
and GRU based networks. This is the reason both are evaluated in this paper.

1.4 Forecasting Strategies

Forecasting strategies describe how AI models are used for time series prediction.
Strategies have to describe how many models are used and what the output dimen-
sions are. It is possible to have strategies that complete predictions in a single or
multiple steps. The following sections describe the forecasting strategies used and
compared against Multi Model Recursion.

1.4.1 Multi-Input Multi-Output

Taieb et al. finds that multi-output strategies have good performance on time series
forecasting tasks [3]. MIMO (Multi-Input Multi-Output) uses the entire input in
one step at time t to produce the entire output vector yt. The strategy can simply
be described by the equation below if the forecasting model is f .
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ŷt = f(xt), simple multi-output prediction (1)

1.4.2 Sequence-to-Sequence

Seq2Seq (Sequence-to-Sequence) architectures were designed originally because it
can be difficult to provide arbitrary length outputs with RNNs. The encoder-
decoder architecture this strategy follows is the basis of modern LLMs (although
the SoTA models are decoder only at the time of writing).

It consists of 2 models of the same type of RNNs, usually LSTMs or GRUs. The
encoder produces a hidden state (and a cell state in the case of an LSTM). The
decoder then uses this hidden state and its own outputs to produce the output.
This can go until a certain stop sequence or iteration count. Zaki et al. [9] uses an
LSTM based Seq2Seq model for household electricity load prediction but in this
paper more success was found using a GRU based approach. Algorithm 1 describes
the strategy.

Algorithm 1 Seq2seq strategy

1: ht := fenc(xt, h0) only need the hidden state from the encoder
2: ŷt[−1] := SELECT (xt[nT ]) value that corresponds to the target feature
3: for i = 0, . . . , nO − 1 do
4: ŷt[i] := fdec(ŷt, ht) yt is extended step-by-step
5: if random(0 . . . 1) < teacher forcing then
6: ŷt[i] := yt[i] teacher forcing, only while training
7: end if
8: end for
9: return ŷt[0 . . .]

Teacher forcing for training Seq2Seq architectures helps with generalization
over longer sequences. Since previous predictions affect the new ones they are
substituted at a random probability with the real values. The probability gets de-
creased as training goes on. This technique helps the model train for longer forecast
horizons as the compounding effect of incorrect predictions is removed. If ŷt[i] is
swapped for yt[i] then when optimizing based on the ith prediction step ŷt[i] is used
since yt[i] would provide a gradient of zero even if the prediction is incorrect. This
approach is also applicable to the Recursive and Multi Model Recursive strategy.

1.4.3 Recursive

Taieb et al. explains that the recursive strategy uses a single model that is trained
for forecasting only 1 step [3]. Here the model forecasts all external features for the
next time step. This approach is interesting as the model isn’t necessarily trained
for multi step forecasting, but with the strategy it is applicable as such. Algorithm
2 describes the strategy.
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Algorithm 2 Recursive strategy

1: for i = 0, . . . , nO − 1 do
2: ŷt[i] := f(xt) forecast 1 step
3: xt := xt[1..nT ) removing the first element of the input window
4: xt[nT ] := ŷt[i] extend the window by 1 at the end
5: end for
6: return ŷt this includes the external feature forecasts

For each t time step the forecast goes for step t+ 1. This is then viewed as the
”truth” and the model forecasts step t+2. Iterating this approach gives the output
vector. The disadvantage of this method is that external feature forecasting requires
larger weight matrices increasing processing requirements. Usually the optimization
is also not efficient since the model is optimized for features not relevant for an
application.

2 Methodology

2.1 Multi-Model Recursion

This paper presents the MMRec (Multi-Model Recursion) strategy which is an en-
hancement of the previously mentioned Recursive strategy. It aims to keep the
advantages of the Recursive approach such as the single step prediction which gen-
erally gives more accurate predictions at that step. Being able to predict any length
regardless of the training specifications is also an advantage, although performance
may not be desirable if the training and inference output lengths are different.
It incorporates the advantage of the MIMO and Seq2Seq approaches which only
predict and optimize for the target variable.

There are 4 major changes from the Recursive method. The first one is regarding
loss calculation for the network. Instead of training for all features directly the loss
is calculated at the target variable at each step. This way the optimization focuses
on electricity load in this case. The backpropagation will make sure that external
features aren’t left out. This is especially important in the next steps where multiple
models are introduced.

Following the example of Seq2Seq teacher forcing is also applicable for the strat-
egy. The same principles apply with the only difference being that each step’s out-
put vector is larger than 1. The random probability shown in Seq2Seq is calculated
per member instead of once for the vector. It also decreases over the training period
just like the mentioned strategy.

The next difference is the calculation of external features that are simple to
predict. Features like time, or the lag of electricity load are easy to calculate via
equations. These features are either pre-calculated or implemented into the strategy
and used as is. This way no processing power is wasted on features that we know
the exact values of even for the future.
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Algorithm 3 Multi-Model Recursion

1: for i = 0 . . . nO − 1 do
2: for j = 0 . . .m− 1 do
3: ŷt[i, j] := fj(xt) forecast given feature
4: xt := xt[1..nT ) sliding the window
5: xt[nT , j] := ŷt[i, j] substitute in the forecasted features
6: if random(0 . . . 1) < teacher forcing then
7: xt[nT , j] := yt[i, j] teacher-forcing
8: end if
9: end for

10: xt[nT ] := g(xt) g calculates the obvious variables
11: end for
12: return ŷt

The last change is the Multi-Model part of MMRec. Each feature that isn’t
calculated with the previous change gets its own neural network. Each model
forecasts 1 specific feature making the individual models smaller. It is also possible
to vary the architectures of them. Algorithm 3 and Figure 3 describe the strategy
where m is the number of features forecasted by Neural Networks.

Figure 3: Multi-Model Recursion diagram, fk are the different models, g calculates
the obvious features, note that teacher forcing is not indicated here
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2.2 Data

The dataset used for evaluating Multi Model Recursion against the mentioned
methods consists of weather data downloaded from OMSZ’s data publication 1 and
electricity/system load data downloaded from MAVIR’s dataset 2. The observed
time is from 01/01/2015 until 31/08/2023 resulting in an approximately 9 year long
dataset describing Hungary. The timeframe was chosen due to OMSZ establishing
many new weather stations in the year 2014.

(a) Hourly grouping (b) Box plot diagram

Figure 4: Net electricity load graphs

The source for the electricity load part of the dataset contains many fields
from which ”net electricity load (MW)” was chosen as the target and only feature
describing electricity load. This is due to another feature existing in the original
dataset named ”MAVIR forecast” predicting net electricity load at the time step.
This gives a baseline to justify the usage of machine and deep learning methods.
Figure 4 (a) shows the hourly grouping of net electricity load for the observed
timeframe. These type of graphs vary heavily by country. The box plot diagram
in 4 (b) shows the high standard deviation of the dataset making forecasting tasks
difficult.

OMSZ’s weather stations all measure many different weather features like pre-
cipitation, temperature, relative humidity, global radiation and wind speed just
to name a few. These are measured at over 100 stations giving a resolution that
is too large for country scale predictions. So every weather feature was averaged
over all stations resulting in 1 feature for each that describes the entire country.
For example instead of 100+ temperature measurements there is only 1 describing
Hungary.

Intuitively, many of these weather features don’t make a difference for electricity
load forecasting. By applying automatic sequential feature selection using Random
Forests precipitation and global radiation proved to be the most descriptive. The
feature selection algorithm was applied to time describing features at the same

1https://odp.met.hu/
2https://www.mavir.hu/web/mavir/rendszerterheles

https://odp.met.hu/
https://www.mavir.hu/web/mavir/rendszerterheles
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time. This means the process not only gave the useful weather features but time
features as well. The best performance was observed at 11 features (the algorithm
ran until 13 but after 11 the performance decreased). The chosen features are:

• electricity load and its 24-hour lag

• precipitation and global radiation

• holiday and weekend indicators

• hour, day of the week, day of the year, month, year

The feature selection chose global radiation over temperature for the best results.
This is likely due to the fact that global radiation refers to the solar radiation that
falls on a horizontal surface. This is supported by a correlation factor of 0.55 when
observing temperature and global radiation.

The main point of reducing feature count in this way is that Multi Model Recur-
sion is best applied in cases where only a couple external features are present since
they all require separate models. Graphs for precipitation and global radiation
from the dataset can be found in Figure 5.

(a) Precipitation monthly grouping (b) Global radiation hourly grouping

Figure 5: Weather feature graphs

The chosen features were re-evaluated at a later stage while training the MIMO
LSTM approach and the 11 features chosen performed better. At this stage it’s
important to mention the choice of nT = 24 for most strategy model pairs. This
was made after choosing features and testing 12-, 24-, 36- and 48-hour lookbacks
where 24 performed the best. This was re-evaluated for certain models, changes
are mentioned where they were made.

2.3 Training and Evaluation method

When evaluating strategy model pairs it is important to find close to the best
hyperparameter configurations. In this paper this is done using the Grid Search
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algorithm where each hyperparameter gets a specified set of values. All combina-
tions are then tried and the one with the best metrics and/or loss is chosen. Here
RMSE was used since its strong reaction to outliers provides a clear picture of
performance. RMSE is always calculated on the test set.

For machine and deep learning approaches it’s usually important to use some
form of cross validation technique. This means that multiple training loops are run
using different parts of the data. Time series forecasting differs from other tasks
since it wouldn’t make sense to use future data in training while predicting the
past. Due to this when evaluating in this paper, time series k-fold cross validation
(Figure 6) is used. While finding hyperparameters the splits were limited to k = 6
(to save computational resources) and for final evaluation it was limited to k = 9.
The validation set is always separated from the training set, taking up 1/8th of a
single fold. For example if observing the 1st fold in Figure 6, the validation set is
the last 1/8th of the training set. Furthermore, it is the same length for all other
splits but always taken from the end of the training set.

Figure 6: Time series cross validation [8]

After the hyperparameters are found each strategy model pair is trained and
evaluated 6 times. These are done with the same hyperparameters but since the
weights were initialized randomly the results vary. This is taken into account and
the standard deviation of results through each fold and training cycle is displayed in
the final table. Observed metrics are the following: MAE (Mean Absolute Error),
MSE (Mean Squared Error), RMSE (Root Mean Squared Error), MAPE (Mean
Absolute Percentage Error), and MPE (Mean Percentage Error).

Some technical details for the Grid Search algorithm are listed here. For each
strategy pair the size and number of layers were searched for. For convolutional
networks different lookback lengths were also observed such as nt = 48. Learning
rates, batch sizes and dropout ratios were also searched for. For most approaches
not all combinations were observed at once but 2–3 hyperparameters were searched
for once. This was iterated until a satisfying result was reached. After reaching
a good point small changes were tested and if they didn’t yield better results the
parameters were chosen.
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2.4 Chosen strategy model pairs

This section lists the chosen approaches for evaluation to compare with Multi Model
Recursion. Other than SARIMA all of them are listed as strategy – model with
abbreviations that are present in the final evaluation.

SARIMA (Seasonal Autoregressive Integrated Moving Average) This statistical
method proved to be ineffective for this dataset since its parameters optimized at
1 time step didn’t mean it was good for other time steps. At any one point the
forecasts were comparable to MAVIR’s predictions but it required a new parameter
search to be effective. Due to this it isn’t listed in the final evaluation. Parameter
search may take over an hour which is not acceptable for this application where
the neural network based models show no degradation of performance up to a year
after training.

MIMO – RF (Random Forest) A classical machine learning approach to com-
pare neural networks with. Decent performance on certain folds but heavily de-
grades at others.

MIMO – CNN (Convolutional Neural Network) A 1D Causal Convolution ap-
proach which didn’t perform well on the dataset.

MIMO – TCN (Temporal Convolutional Neural Network) A 1D Temporal Con-
volutional approach performing well on short term forecasting.

MIMO – LSTM (Long Short-Term Memory) An approach that used to be one
of the most popular since Recurrent networks work quite well for short sequence
understanding.

Seq2Seq – GRU (Gated Recurrent Unit) A newer approach that may be viewed
as the ancestor to SoTA transformer models.

Recursive – GRU The simplest forecasting strategy used with a GRU model.
LSTM was also tested but GRUs proved to be more effective.

MMRec – 1 layer GRU Uses CNN and TCN for external features. Larger
hidden state than the following approach.

MMRec – 2 layer GRU Uses CNN and TCN for external features. Smaller
hidden state, when searching for hyperparameters its performance was very close
to the previous one.
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MMRec – FULL GRU Uses GRUs for external features too. A comparatively
large and slow model to view what kind of performance MMRec can reach on the
dataset.

The models observe a 24 horizon and forecast 3 hours ahead. The only exception
to this are the MIMO - CNN and MIMO - TCN methods as these benefit from
observing a 48-hour horizon. The other methods were also tested with shorter and
longer horizons but the 24 hour performed best.

2.5 Training details of MMRec

To make the hyperparameter search faster each model for external features were
first tuned as a Recursive strategy model for the given feature. The external fea-
ture models tried for precipitation and global radiation were CNN, TCN, GRU and
LSTM networks. For global radiation CNNs performed better than TCNs and for
precipitation the opposite was true. When GRUs were tested the addition of ex-
ternal features in relation to precipitation or global radiation slightly outperformed
the Convolutional counterparts.

During the hyperparameter search 2 configurations proved to be powerful in
forecasting. One which used a GRU with 1 layer but a larger hidden state and one
with 2 layers using a smaller hidden state. Due to this both configurations are part
of the final evaluation in addition to the FULL GRU approach.

3 Results

The final evaluation of strategy model pairs listed in Section 2.4 happened according
to Section 2.3. Each pair is trained starting with their respective found ”best”
hyperparameters 6 times for 9 splits each. An interesting observation made during
this is that most approaches using LSTMs performed noticeably worse in the first
2 splits. This was lessened by GRUs but the first splits were generally worse
than anything else. This is likely due to the amount of data required by these
models when training. Due to this the final evaluation lists the best performance of
strategy model pairs while excluding the first or first and second splits, whichever
gives better results.

Table 1 shows the final results for each of the mentioned metrics. Each metric
also has the standard deviation listed over training iterations and the 9 folds per
iteration. This gives more insight into certain models that may perform differently
over the given folds such as CNNs and the Random Forest approach. MAVIR
predictions have a standard deviation of 0 since it is impossible to observe training
iterations or folds because it is given as is by MAVIR. MAVIR’s predictions provide
a higher resolution than 1 hour and are made with a 12-hour forecast horizon.
This heavily affects accuracy at 3 hour predictions as forecasts for longer horizons
generalize more.

From the table it’s possible to observe that in terms of the MIMO strategy
LSTMs perform the best closely followed by TCNs. TCNs struggle more in the
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later steps of forecasting (steps 2 and 3 in this comparison). The Seq2Seq approach
proved to be the most performant for this dataset in terms of metrics but also
in approach size. The Recursive method performs quite poorly in comparison to
others due to the shortcomings mentioned in Section 1.4.3. The presented MMRec
strategy is clearly better than the Recursive strategy it is based on. With the
additional ideas taken from Seq2Seq such as teacher forcing its performance is
comparable with the MIMO LSTM approach and starts closing the gap on the
Seq2Seq strategy as well.

The scores in Table 1 show a MAPE score for the presented approaches of about
1.2− 2.1% which is in line with the case study mentioned in the Introduction done
by Yazici et al. [14]. Although the authors use a different dataset, time horizons and
find that 1D CNNs perform best the performance of the forecasts are comparable.
This shows that the results in this paper compare to an existing real world study.

Table 1: Table of evaluation results

Strategy
Model

MAE
(MW )

RMSE
(MW )

MAPE
(% )

MPE
(% )

MAVIR
prediction

252.58± 0 300.81± 0 4.97± 0 −4.70± 0

MIMO
RF

69.96± 15.29 104.32± 24.0 1.42± 0.32 0.017± 0.25

MIMO
CNN

103.13± 21.5 146.69± 27.55 2.12± 0.46 0.196± 0.416

MIMO
TCN

63.92± 10.46 92.96± 15.57 1.31± 0.22 −0.001± 0.198

MIMO
LSTM

62.62± 6.05 88.97± 9.19 1.28± 0.13 0.05± 0.175

Seq2seq
GRU

58.75 ± 6.22 84.21 ± 9.83 1.21 ± 0.13 0.08 ± 0.168

Recursive
GRU

94.41± 14.41 128.39± 17.39 1.94± 0.28 0.119± 0.744

MMRec
GRU 1L

65.4± 7.68 92.43± 10.88 1.34± 0.17 0.114± 0.292

MMRec
GRU 2L

64.79± 7.31 90.85± 10.27 1.32± 0.16 −0.029± 0.295

MMRec
FULL GRU

62.17± 7.95 88.42± 11.25 1.27± 0.17 0.098± 0.261

Table 2 shows how much time is required for training and predicting with the
models. Average and standard deviation can be understood the same way as for
Table 1 described above. The Recursive GRU strategy training times and the
MMRec GRU 1L/2L ones are similar. Even though multiple models are used for
MMRec, they are much smaller and thus train faster than a large GRU for the
Recursive strategy. Prediction times are the worst for MMRec as it uses multiple
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Table 2: Table of training and prediction times

Strategy
Model

Training
(minutes)

Prediction
circa 7500 entries

(seconds)
MIMO RF 2.48± 1.45 0.082± 0.026

MIMO CNN 1.99± 1.09 0.136± 0.011
MIMO TCN 2.82± 1.51 0.258± 0.045

MIMO LSTM 2.99± 1.81 0.153± 0.015
Seq2seq GRU 6.16± 3.66 0.25± 0.019

Recursive GRU 7.16± 3.75 0.731± 0.035

MMRec GRU 1L 6.16± 4.69 2.242± 0.285
MMRec GRU 2L 6.89± 4.94 1.984± 0.044

MMRec FULL GRU 10.9± 6.45 1.884± 0.072

models. The shown times are for circa 7500 entries, so a single prediction is much
faster. The time it takes is insignificant if we consider that it would only be made
once an hour in an application.

For reproducibility the implementation of all strategies, the evaluation suite and
the dataset can be found in the referred repository3.

3.1 MMRec vs Seq2Seq

It was shown that MMRec outperforms the Recursive strategy but lacks the per-
formance at its current stage to perform better than the Seq2Seq strategy on this
dataset. This section provides a detailed explanation of the differences.

MAE and RMSE show a small difference between the two approaches. MPE
varies more for MMRec, but this metric usually depends on the specific training
run for these approaches. It isn’t indicative of performance in this comparison.
In terms of speed, the Seq2Seq model trains faster than MMRec - FULL GRU.
Against the GRU 1L and 2L variants it doesn’t have a clear advantage. MMRec
however is a lot slower in prediction which can be critical for certain applications
but isn’t for this one. A comparison of the exact predictions for a specific date can
be seen on Figure 7. In this example MMRec performs better in predicting the
afternoon and Seq2Seq performs better in the morning.

Figure 8 shows the RMSE of the Seq2Seq and MMRec (FULL GRU approach
here) strategies by how many hours they predicted. The main issue with MMRec
that this graph displays is the first step being inaccurate in comparison to Seq2Seq
(a). Interestingly MMRec accumulates less error as the prediction reaches farther
distances (b). This hints at MMRec maybe performing closely to or better than
Seq2Seq at longer prediction lengths. It could be argued that the algorithm of
MMRec may cause this. For the first step the external feature models are not

3https://github.com/MeepOwned13/es_load_fs_HUN

https://github.com/MeepOwned13/es_load_fs_HUN
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(a) Seq2Seq predictions example

(b) MMRec predictions example

Figure 7: Comparing Seq2Seq and MMRec predictions for a specific date

involved since the real values are known at that stage. This being a 3-step prediction
the optimization algorithm by default will prefer to optimize for the overall best
average. Since all 3 models only get involved on step 2 and 3 it may lean heavier on
the prediction of external feature models. This can cause a performance difference
at step 1. This may be addressed by taking nT = nT + 1 for the input and using
the external feature models to predict the ones it would already know.
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(a) Error by hours predicted ahead

(b) Error accumulation bar plot

Figure 8: Comparing Seq2Seq and MMRec by RMSE per hour ahead prediction

4 Conclusion

This paper presented the MMRec (Multi Model Recursion) strategy for short term
time series forecasting. Comparisons with existing time series forecasting strategies
and models reveal that it outperforms the Recursive strategy it is based on. For
the dataset constructed from Hungarian electricity load and weather data with the
task of electricity load prediction it isn’t the best performer in the comparison.
The Seq2Seq strategy outperforms it in terms of MSE, RMSE, MPE and MAPE
metrics.
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MMRec shows promise in longer forecast horizons because it accumulates less
error over time than Seq2Seq. This is counteracted in the 3-hour horizon by MM-
Rec’s worse performance at the first forecasting step. The conclusion is thus that
MMRec may become a competitor to the mentioned strategies on some datasets
given further refinements. This is backed by the observed error metrics being fairly
close for MMRec and Seq2Seq.

4.1 Possible applications

Apart from the application to electricity load forecasting MMRec may be applied
to any time series forecasting task where the external features that need to be
forecasted by deep learning models are few. An interesting future application is
choosing a task and dataset where external features more heavily influence the tar-
get feature. An example to this would be solar or wind electricity production. These
heavily correlate with external weather features where getting a decent prediction
for them could make a difference.

MMRec can also be used if forecasts of future external variables are sparse, for
example if a better forecast for precipitation can be provided by outside models
in certain cases but not always. In this case the model can take external forecasts
by not using its own for that specific feature. Disruptions could also be caused by
unforeseen events like hardware failures. In this case MMRec can operate without
the need for its external feature models when everything is working as intended
but use the external ones in the event that some forecasts are unavailable. For this
use case MMRec doesn’t require additional changes where other strategies would.
The Recursive strategy also has these advantages but it was shown that MMRec
outperforms it.

4.2 Outlook

The MMRec strategy has shown some advantages and disadvantages against the
Seq2Seq strategy on the given dataset. A single dataset doesn’t provide the full
picture in these kinds of cases. Thus, the following future works can be specified:

• Apply the strategy model pairs to other datasets in electricity load forecast-
ing.

• Apply the strategy model pairs to different time series forecasting tasks such
as solar electricity production.

• Compare the strategies at longer forecast horizons such as 6, 12 and 24 hours.

• Compare the strategies at higher resolution on any time series forecasting
task.

• Compare the strategy with more advanced methods such as Spacetimeformers
introduced by Grigsby et al. [6].
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Multithreading Atomicity: Static Analysis Checkers

Patrik P. Sülia, Judit Knollb, and Zoltán Porkolábc

Abstract

Ensuring thread safety in applications is crucial for preventing subtle
and challenging bugs in concurrent programming. This paper presents two
algorithmic approaches to improve thread safety through static analysis and
to demonstrate their benefits in real life, the authors also implemented them
as two detectors in SpotBugs static analyzer. These checkers are designed to
identify unsafe usages of shared resources and improper atomic operations in
concurrent Java programming, aiming to mitigate common multithreading
issues such as race conditions. By emphasizing consistent locking strategies
and the correct use of atomic types, the study offers insight into how to
improve the reliability of multithreaded applications.

Keywords: Java, concurrency, atomic operations, static analysis

1 Introduction

Static analysis in software development can detect several types of issues, such as
runtime errors and security violations in the code, without running the program
itself, so developers could be informed about bugs in early stages of development [6].
There are many ways to analyze source codes, for example, Control Flow Analysis
examines the execution, revealing infinite loops, unreachable codes, and improper
usages of control structures [9]; Data Flow Analysis focuses on data tracking to
identify issues like uninitialized variables, null pointer dereferences, and potential
memory leaks [1]; Pattern-Based Analysis uses predefined rules to look for common
issues or antipatterns in the code [13, 16].

Guidelines have been created to assist developers in producing code that is
secure and reliable. The Software Engineering Institute (SEI) of the Carnegie
Mellon University has its own, called CERT Coding Standards1. It has many rules
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covering various aspects of coding practices, including memory handling, proper
use of concurrency, input validation, and more, with the aim of preventing software
vulnerabilities such as buffer overflows, race conditions, and injection attacks.

The SEI Cert Coding Standard contains several rules for atomicity, which is
essential in software that work with parallel threads. This paper focuses on two
specific rules of these, which are concerned with thread-safe usage of shared data.

There are several tools that can analyze code and make suggestions to improve
it, one of them is SpotBugs2. SpotBugs is an open source tool that looks for possible
issues in Java programs using Apache BCEL (Byte Code Engineering Library)3,
so it can handle binary .class files and understand instructions and methods at
the bytecode level. When analyzing classes, SpotBugs reads and understands the
structure of the bytecode, looking for specific patterns, coding practices, or known
issues.

In this paper, we present two algorithms we designed and implemented as new
detectors that cover possible concurrent programming problems in the Java language,
which are described in the Visibility and Atomicity SEI Cert Rule group, focusing
on the VNA03-J 4 and VNA04-J 5 rules. These rules provide practical guides with
examples of both correct and incorrect usage, making it easy to identify common
programming mistakes in connection with threads and shared resources, such as race
condition, when a computation depends on timing or interleaving of multiple threads
by the runtime. The VNA03-J rule highlights that a group of calls to independently
atomic methods may not be atomic. VNA04-J underscores the method chaining
mechanism, where the methods used in the chain can be atomic, but the chain
overall is inherently non-atomic.

The rest of the paper is organized as follows: Section 2 introduces the concept of
atomic types in different programming languages and details cases of non-thread-safe
usage of this type. Section 3 presents the technical background used as a basis for
our algorithms. The current state of the art is shown in Section 4 as a benchmark
of a few static analyzer tools. The outline of the algorithms and the detectors
developed are detailed in Section 5. The results are presented in Section 6, which
are obtained from open source projects, with a comparison of their effectiveness with
other static analysis tools. Furthermore, Section 7 highlights known limitations and
opportunities for further development to improve the accuracy of the implemented
detectors. The paper concludes in Section 8.

2 Related work

The concept of atomic types, also known as atomic operations or atomic classes,
was introduced in concurrent programming to manage and manipulate shared data

2https://spotbugs.github.io
3https://commons.apache.org/proper/commons-bcel/
4https://wiki.sei.cmu.edu/confluence/display/java/VNA03-J.+Do+not+assume+that+a+

group+of+calls+to+independently+atomic+methods+is+atomic
5https://wiki.sei.cmu.edu/confluence/display/java/VNA04-J.+Ensure+that+calls+to+

chained+methods+are+atomic

https://spotbugs.github.io
https://commons.apache.org/proper/commons-bcel/
https://wiki.sei.cmu.edu/confluence/display/java/VNA03-J.+Do+not+assume+that+a+group+of+calls+to+independently+atomic+methods+is+atomic
https://wiki.sei.cmu.edu/confluence/display/java/VNA03-J.+Do+not+assume+that+a+group+of+calls+to+independently+atomic+methods+is+atomic
https://wiki.sei.cmu.edu/confluence/display/java/VNA04-J.+Ensure+that+calls+to+chained+methods+are+atomic
https://wiki.sei.cmu.edu/confluence/display/java/VNA04-J.+Ensure+that+calls+to+chained+methods+are+atomic
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safely and efficiently without the need for complex synchronization mechanisms.
The term atomic in this context refers to operations that are completed as a single,
indivisible, and unbreakable unit.

This idea was first proposed and explored in low-level hardware and assembly
languages where atomic instructions such as ”test-and-set” [3] or ”compare-and-
swap” (CAS) [11] were implemented directly by the CPU to facilitate safe concurrent
access to shared memory.

2.1 Atomic types in programming languages

As multithreading and parallel processing have become more prevalent, the sig-
nificance of atomic operations in high-level programming languages has grown.
Although, this challenge is not unique: similar issues occur in a wide range of
programming languages. Therefore, it is crucial to extend this analysis to different
languages to gain a comprehensive understanding of how usable the atomic type
is in different environments. By comparing the atomic types in Java (and other
JVM based languages like Kotlin and Scala), C++, Python, and Rust, we can
understand how different languages approach the challenge of concurrency and
atomic operations, highlighting the strengths and trade-offs of each approach.

Java introduced atomic types with the release of Java 5 in 2004. Java’s
java.util.concurrent.atomic package6 includes several atomic classes such
as AtomicInteger, AtomicLong, AtomicBoolean, and AtomicReference. These
classes leverage low-level atomic instructions to offer thread-safe operations on single
variables without the overhead of locks7. For instance, AtomicInteger provides
methods like incrementAndGet(), decrementAndGet(), and compareAndSet(),
which are implemented to ensure that operations are completed without interrup-
tion.

Kotlin and Scala as JVM-based languages leverage the same concurrency mech-
anisms and atomic types provided by the Java platform. Developers can use the
java.util.concurrent.atomic package directly and create atomic-typed classes
in the same way as in Java.

1 AtomicInteger atomicInteger = new AtomicInteger (0);

2 atomicInteger.incrementAndGet ();

Code 1: Example usage of Java’s AtomicInteger typed variable

One of the major high-level programming languages, the C++ programming
language, was lack of proper solution for atomics until the C++11 standard defined
the C++ memory model and introduced atomic classes8 in the C++11 Standard
Library [12]. The std::atomic template encapsulates the complexity of atomic
instructions and provides a standardized interface for the developers.

6https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-

summary.html
7https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.

html
8https://cplusplus.com/reference/atomic/atomic/

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html
https://cplusplus.com/reference/atomic/atomic/
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1 std::atomic <int > counter {0};

2 counter.fetch_add (1);

Code 2: Example of C++ std::atomic variable

As C++ is a highly performance critical programming language, the instantia-
tions of the std::atomic template, where the hardware provides atomic instructions
handling the type parameter (e.g., std::atomic<int>) are compiled without any
run-time overhead, while more complex template parameters, like structs have an
external locking mechanism to provide atomicity.

Python is known for its simplicity and readability, making it a favorite for
tasks ranging from web development to data science. However, Python’s Global
Interpreter Lock (GIL) presents challenges in concurrent programming9. To address
atomic operations, Python relies on external libraries like ‘atomicx‘ 10 or built-in
threading primitives11 to simulate atomicity.

1 from atomicx import AtomicInt

2

3 atomic_int = AtomicInt (0)

4 atomic_int.inc()

Code 3: Example of an atomic operation using Python’s atomicx library

In contrast, Rust is designed with a strong emphasis on memory safety and
concurrency without sacrificing performance. Rust’s ownership system ensures
memory safety, while its standard library provides built-in atomic types12 like
AtomicBool, AtomicIsize, and AtomicUsize. These types support thread-safe
lock-free operations, making Rust an excellent choice for programming systems and
applications that require high reliability.

1 use std::sync:: atomic ::{ AtomicUsize , Ordering };

2

3 let atomic_usize = AtomicUsize ::new(0);

4 atomic_usize.fetch_add(1, Ordering :: SeqCst);

Code 4: Example of an AtomicUsize variable in Rust

Despite the differences in syntax, all these languages share a common foundation
when it comes to atomic types. They provide atomic operations to manage shared
resources in multithreaded environments. However, the same challenges persist
across these, namely avoiding race conditions and managing the complexity of
lock-free programming, so the algorithms that are detailed in this paper could be
applicable for each programming language mentioned before.

9https://wiki.python.org/moin/GlobalInterpreterLock
10https://github.com/RuneBlaze/atomicx
11https://docs.python.org/3.10/library/threading.html
12https://doc.rust-lang.org/std/sync/atomic/index.html

https://wiki.python.org/moin/GlobalInterpreterLock
https://github.com/RuneBlaze/atomicx
https://docs.python.org/3.10/library/threading.html
https://doc.rust-lang.org/std/sync/atomic/index.html
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2.2 Thread safety issues with Java concurrency types

When working with atomic types or synchronized collections in Java, it is important
to understand that while individual method calls on these variables are atomic,
combining these operations within a thread introduces potential thread safety issues.
If an operation in a thread involves multiple atomic variables, proper synchronization
is necessary to ensure that the entire operation remains atomic.

To bring attention to this issue, the SEI Cert VNA03-J rule – titled ”Do not
assume that a group of calls to independently atomic methods is atomic” – was
created to avoid wrong usages of atomic typed variables and collections, which can
lead to difficult-to-detect concurrency bugs.

1 private AtomicInteger a = new AtomicInteger (10);

2 private AtomicInteger b = new AtomicInteger (15);

3 // ...

4 a.get().add(b.get()); // Combination is not thread -safe

Code 5: Combine Java atomic typed variables unsafe

In code snippet 5, the get() method calls on both variables are atomic separately,
but the add() operation itself is not thread safe, because meanwhile another thread
may make changes on one or both variables, as it is shown on Figure 1.

thread1 : Thread thread2 : Thread a : AtomicInteger b : AtomicInteger

sd Visualization of VNA03-J problem

get()

get()

returnValue

set(42)

Thread 2 changed
 the value of b

returnValue

a.get().add(b.get())

Figure 1: Sequence diagram of unsynchronized combination of atomic typed variables
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2.3 Multiple atomic operations in threads

If a method contains more than one operation for an atomic variable without
additional synchronization, then they are not atomic overall and could cause race
condition between the threads, just like in section 2.2. So, to handle this, synchro-
nization of code blocks or functions is necessary to guarantee that multiple threads
cannot simultaneously modify or access shared resources.

1 private AtomicInteger number = new AtomicInteger (0);

2 // Thread 1, combined atomic method calls are not atomic together

3 number.get();

4 // ...

5 number.get();

6 // Thread 2

7 number.getAndIncrement (); // It is safe standalone

Code 6: Unsafe multiple operations on atomic variable

Thread 1 in Code 6 is not thread-safe, because between the two atomic method
calls Thread 2 can change the value of the variable.

2.4 Unsynchronized concurrent collection elements

The usage of thread-safe collections such as SynchronizedList or
ConcurrentHashMap is not sufficient to ensure thread safety in itself, be-
cause any access to the collection’s elements is not synchronized. The operations on
these collections, such as adding or removing elements, are basically thread-safe, but
accessing or modifying their elements themselves are not inherently synchronized.
Consequently, any operations performed on the elements retrieved from these
collections must be properly synchronized to avoid concurrent modification issues.

1 private final Map <Integer , Integer > counterMap =

2 Collections.synchronizedMap(new HashMap <Integer , Integer >());

3

4 public void incrementCounter(int id) { // Called by multiple threads

5 Integer count = counterMap.get(id);

6 counterMap.put(id, count + 1);

7 }

Code 7: Unsafe access to thread-safe collection elements

If multiple threads run the counter increment lines in Code 7 at the same time,
it results in race condition, because the operation on the collection’s element is not
synchronized.

2.5 Unsafe usages of shared resources in multiple threads

The SEI Cert’s VNA04-J rule - titled ”Ensure that calls to chained methods are
atomic” - is about the nonatomic-typed variable usages in threads. It focuses on a
special case: method chaining.
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Method chaining is a mechanism that allows multiple method calls on the
same object in a single statement. It consists of a series of methods returning the
this reference, allowing chained method invocations using the return value of the
preceding method.

This style is often used in classes that employ the Builder Pattern13 to set up
objects with multiple parameters. For a common example, the StringBuilder

class14 uses this kind of mechanism.

1 StringBuilder sb = new StringBuilder ();

2 String result = sb.append("Hello , ").append("World!").toString ();

Code 8: Example usage of StringBuilder class in Java

Although individual methods in a chain can be atomic, the chain as a whole is
not. Consequently, callers must ensure sufficient locking for the chain’s atomicity.

While the VNA04-J rule specifically deals with chained methods with builder
pattern, its underlying principle can be extended to a wider range of scenarios. By
generalizing this rule, a broader set of cases can be covered: any method can be
found that modifies the state of a shared resource across multiple threads and may
lead to race conditions. Overall, the checker is more flexible, it can recognize thread
safety issues in various contexts, beyond just method chaining.

In Code 9 multiple threads modify the User object’s state and when the execution
reaches the getName() method call, the state of the name property is unambiguous.

1 public class User {

2 private String name;

3

4 public void setName(String name) {

5 this.name = name;

6 }

7

8 public String getName () {

9 return name;

10 }

11 }

12

13 public class ExampleClient {

14 private User user = new User();

15

16 public ExampleClient () {

17 new Thread (() -> {

18 user.setName("Jane");

19 System.out.println("New name: " + user.getName ());

20 }).start ();

21

22 new Thread (() -> {

23 user.setName("Bob");

24 System.out.println("New name: " + user.getName ());

25 }).start ();

13https://refactoring.guru/design-patterns/builder
14https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuilder.html

https://refactoring.guru/design-patterns/builder
https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuilder.html
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26 }

27 }

Code 9: Unsafe operation in multiple threads to a shared resource

The visualisation of the problem in the Code 9 can be seen in Figure 2.

thread1 : Thread thread2 : Thread user : User

sd Visualization of VNA04-J problem

setName("Jane")

getName()

setName("Bob")

Thread 2 changed
 the value of the name

getName()

returnValue := Bob

returnValue := Bob

Figure 2: Sequence diagram visualization of Code 9

2.6 Similar concurrency issues in C/C++

Concurrency bugs involving atomic operations are not unique to Java. The SEI
CERT guidelines for C and C++ also address atomicity and threading issues
through rules such as CON40-C (”Do not refer to an atomic variable twice in an
expression”)15 and CON43-C (”Do not allow data races in multithreaded code”)16.

These rules highlight problems analogous to VNA03-J and VNA04-J in Java, not-
ing that while individual atomic operations (e.g., atomic load(), atomic store(),
and compound assignments) are guaranteed to be thread-safe, combining multiple
atomic reads or writes in a single expression or code block can result in race condi-
tions without a careful locking mechanism. The recommendation in both languages

15https://wiki.sei.cmu.edu/confluence/display/c/CON40-C.+Do+not+refer+to+an+atomic+

variable+twice+in+an+expression
16https://wiki.sei.cmu.edu/confluence/display/c/CON43-C.+Do+not+allow+data+races+

in+multithreaded+code

https://wiki.sei.cmu.edu/confluence/display/c/CON40-C.+Do+not+refer+to+an+atomic+variable+twice+in+an+expression
https://wiki.sei.cmu.edu/confluence/display/c/CON40-C.+Do+not+refer+to+an+atomic+variable+twice+in+an+expression
https://wiki.sei.cmu.edu/confluence/display/c/CON43-C.+Do+not+allow+data+races+in+multithreaded+code
https://wiki.sei.cmu.edu/confluence/display/c/CON43-C.+Do+not+allow+data+races+in+multithreaded+code
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to adopt explicit locking (e.g., using mutexes or synchronization) when performing
compound operations.

Static analyzers in the C/C++ ecosystem, such as CodeSonar17 or Coverity18,
provide support for detecting atomicity violations and data races according to
the SEI Cert rules. Although each language’s memory model differs in detail,
the overarching principle remains the same: atomic types ensure thread safety
only for single operations, and automated tools can help developers to detect and
handle cases where multiple atomic operations compose a non-atomic sequence. By
drawing these parallels, we emphasize that detecting improper atomic usages is a
cross-language challenge that requires consistent locking strategies and thorough
static analysis approaches.

3 Technical background

Contrary to testing and dynamic analysis methods, static analysis works at compile
time, based only on the source code of the system, and does not require any
input data [4]. Most of these methods are fast enough feasibly integrated into
the continuous integration (CI) loop providing a positive impact on speed up the
development-bug detection-bug fixing cycle. As the earlier a bug is detected, the
lower is the cost of the fix [5], therefore, static analysis is a useful and relatively
cheap supplement to testing.

All static methods apply heuristics, which means that sometimes they may
underestimate or overestimate the program behavior [14]. In practice this means
static analysis tools sometimes do not report existing issues which situation is called
as false negative, and sometimes they report correct code erroneously as a problem,
which is called as false positive. Therefore, all reports need to be reviewed by a
professional who has to decide whether the report stands.

During the last two decades various static analysis techniques evolved. The most
simple, but surprisingly strong method is pattern matching. First, the source code
is transformed into some canonical format (e.g., all loops are converted to while

and the body of the loop to a single line) and then predefined regular expressions
are applied against this code. While context-sensitive problems (as divergence
between the declaration and the use of a variable) are impossible to detect, many
programmer’s mistakes are detectable. As a huge advantage, this method does not
require the successful construction of the Abstract Syntax Tree (AST), therefore
applicable for non-compiling or partial code fragments too. Earlier versions of
CppCheck19 used pattern matching to find issues in C and C++ programs.

Most of the available static code analysis tools, however, are based on the analysis
of the Abstract Syntax Tree (AST). The AST is a usual internal representation of a
program or at least a translation unit used by the compiler [2]. Various versions of
the AST can represent only the structure of the parsed tokens or may hold semantic

17https://codesecure.com/our-products/codesonar/
18https://scan.coverity.com
19http://cppcheck.sourceforge.net/

https://codesecure.com/our-products/codesonar/
https://scan.coverity.com
http://cppcheck.sourceforge.net/
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information too. It encodes the structure of the program, the declarations, the
variable usages, selection and loop statements, function calls. Thus, AST-based
static analysis is capable to detect complex errors, like erroneous implicit conversions,
inconsistent design rules, and many others. Such checks are relatively fast, some
of them may be implemented using a single traversal of the AST. These features
make the AST-based method the most frequently used type of static analysis with
notable examples as the Clang Tidy20 for C++, SpotBugs for Java and PyLint21

for Python.
While the AST-based method is more powerful than the regular expression

based one, seeing only the structure of the program it still lacks of the reasoning
on the possible values of the variables at a certain point of the program. Symbolic
execution [10] is a path-sensitive abstract interpretation method. During symbolic
execution we interpret the source code, but instead of using the exact (unknown)
run-time values of the variables we use symbolic values and gradually build up
constraints on their possible values. Symbolic execution is the most powerful, but
also the most expensive method for static analysis, and requires a precise modeling
of the language semantics and the representation of the memory usage [7].

3.1 SpotBugs overview

SpotBugs is designed to detect bugs in Java programs by analyzing bytecode. It is
the successor to FindBugs and maintains compatibility with many of its features
and plugins. SpotBugs can identify a wide range of potential issues in Java code,
including but not limited to concurrency problems, performance bottlenecks, and
potential security vulnerabilities.

SpotBugs primarily operates by analyzing the Abstract Syntax Tree (AST)
generated from Java bytecode. It uses various detectors, which are specialized
components designed to identify specific types of bugs. These detectors can be
visitor-based, which analyze the bytecode in a straightforward manner, or CFG-
based, which utilize control flow graphs to perform more sophisticated analysis.
CFG-based detectors are particularly powerful, but come with higher computational
costs.

One of the strengths of SpotBugs is its extensibility. Developers can create custom
detectors through a plugin architecture, allowing SpotBugs to be tailored to specific
project needs. The tool is capable of integrating into continuous integration (CI)
pipelines, providing ongoing feedback on potential issues as code is developed.

3.1.1 Applying SpotBugs to Kotlin and Scala: FindSecBugs

SpotBugs, while originally designed for Java, can also be applied to other JVM-
based languages like Kotlin and Scala. This is particularly useful in projects where
multiple JVM languages are used, allowing for consistent static analysis across
different parts of the codebase.

20https://clang.llvm.org/extra/clang-tidy/
21http://pylint.pycqa.org/en/latest/

https://clang.llvm.org/extra/clang-tidy/
http://pylint.pycqa.org/en/latest/
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To facilitate security-focused static analysis in these languages, the Find Security
Bugs (FindSecBugs)22 plugin extends SpotBugs’ capabilities. FindSecBugs is a
SpotBugs plugin that specializes in detecting security vulnerabilities in Java, Kotlin,
and Scala code. Identifies potential security issues such as SQL injection, cross-site
scripting (XSS), and improper validation of input data.

When applied to Kotlin and Scala, FindSecBugs leverages the underlying byte-
code analysis capabilities of SpotBugs, adapting them to handle the syntactic and
semantic differences of these languages. While Kotlin and Scala introduce language-
specific constructs that may not map directly to Java, the bytecode they compile to
is still compatible with SpotBugs’ analysis techniques.

However, it is important to note that, due to differences in the way Kotlin and
Scala handle certain programming concepts, such as lambdas and coroutines [8, 15],
there may be limitations in the accuracy and coverage of the analysis. Despite this,
FindSecBugs and the SpotBugs itself remain valuable tools for enhancing security
in multi-language JVM projects, providing a unified approach to identifying and
mitigating security risks across Java, Kotlin, and Scala codebases.

4 State of the art

With the help of test cases focusing on the above-mentioned issues which we
developed for the SpotBugs testing framework, we performed a comparative analysis
with other existing static analyzers for Java.

On our test cases (which are detailed in Section 6) there should be 22 hits on the
VNA03-J cases and 10 hits on the VNA04-J, but it seems like the static analysis
tools we tested do not detect these multithreading atomicity rules, as can be seen
in Table 1.

Table 1: Result of static analyzer tools hits on VNA03-J and VNA04-J test cases

Name of the tool VNA03-J hits VNA04-J hits

PMD v7.0.0 23 0 0
SonarQube v9.9.5.90363 24 0 0

The Checker Framework v3.43.025 0 0
Google’s Error Prone v2.27.126 0 0

SpotBugs v4.8.627 0 0

Although all tools report atomicity-related issues, these are limited to other
aspects, such as do not use the volatile keyword28, and suggests replacing it with

22https://github.com/find-sec-bugs/find-sec-bugs
27This version of SpotBugs does not yet include the detectors detailed in this paper.
28https://docs.pmd-code.org/latest/pmd_rules_java_multithreading.html#

avoidusingvolatile

https://github.com/find-sec-bugs/find-sec-bugs
https://docs.pmd-code.org/latest/pmd_rules_java_multithreading.html#avoidusingvolatile
https://docs.pmd-code.org/latest/pmd_rules_java_multithreading.html#avoidusingvolatile
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a Java-built-in atomic type. These tools do not detect issues related to the complex
usage of atomic types or synchronized collections29.

In conclusion, our analysis indicates that the static analysis tools we tested do
not currently detect the specific multithreading atomicity issues described in the
VNA03-J and VNA04-J rules. SpotBugs is open source and free to use, it allows
the detection of these bugs to be distributed to a large community of developers.

5 Detector algorithms

The VNA03-J and VNA04-J SEI Cert rules focus on the proper use of locking with
synchronization as it is described in Section 2.2 and 2.5 in detail. We designed two
algorithms and implemented them as detectors in the SpotBugs static analyzer to
find unsafe usages of common references between threads, and make sure the proper
usage of fields with Java atomic types. The algorithm that covers rule VNA04-J
works with references of types which are not related to the Java Concurrent API,
and the algorithm using the rule VNA03-J ensures the proper usage of atomic
type-based classes.

The source code and test cases of these detectors are publicly accessible in the
official SpotBugs repository, where our contributions are submitted as two pull
requests: #2919 – VNA03-J Sequence of calls on a synchronized abstraction may
not be atomic, and #2986 – VNA04-J. Ensure that calls to chained methods are
atomic. VNA04-J is already available in SpotBugs from version 4.9.0.

5.1 Finding unsafe reference usages in multiple threads

The algorithm implementing VNA04-J rule works in class context, which means
that it scans class bytecode, but it does not see the relations between classes and
can only work with the code inside the currently analyzed class. This limitation is
inherited from the SpotBugs Framework, as detailed in Section 7.2. The detector
searches and collects methods that are in a call hierarchy that starts with a lambda
(anonymous) or referenced method passed directly to a Thread object, but takes
place in the current class. In Java, a Thread object30 requires a method in its
constructor that implements the Runnable functional interface.

We developed and tested a variation of the algorithm, in which the detector was
designed to include all methods in its scan, meaning that it also works with the
operations running on the main thread. When testing this solution on large open
source projects (these are introduced in Section 6, with the final detection results)
it had many false positive hits, so it was less useful on real world projects. Because
of this we decided to use the stricter version of the algorithm, to only cover a subset
of the original problem, but have more useful, accurate hits.

29The VNA03-J SEI Cert Rule Wiki page mentions that the Coverity and Parasoft Jtest
(https://www.parasoft.com/solutions/static-code-analysis/) tools cover the rule, however,
being proprietary tools and not freely available for research we do not cover them in our evaluation.

30https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

https://github.com/spotbugs/spotbugs/pull/2919
https://github.com/spotbugs/spotbugs/pull/2986
https://www.parasoft.com/solutions/static-code-analysis/
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
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Algorithm 1 Collect methods used in threads

1: methodsInThread← ∅
2: for all method invokation bytecode instruction in methods do
3: if method invokation implements ”java.lang.Runnable” and is passed to

”java.lang.Thread” then
4: methodsInThread← invokedMethod ▷ This is a starting point
5: else if Contains(methodsInThread, currentMethod) and

currentClass = invokedClass then
6: methodsInThread← invokedMethod
7: end if
8: end for

When detecting the issue the class context is scanned twice, this is necessary,
because the methods are visited in the order of definition, not in call order, so every
method is visited once during one scan. The issue can only happen in methods
which are used by threads, so in the first scan these relevant functions are gathered
(as it is shown in Algorithm 1).

The second time the algorithm visits the code (see Algorithm 2), it looks for the
usages of variables inside the stored methods. It collects the operations and groups
them by variables which are performed on variables with not atomic or synchronized
types.31

Every operation on the referenced fields - which meet the type constraint - is
processed and the following boolean flags are saved about each variable:

• onlySynchronized is true, if all modifier operations are under proper syn-
chronization.

• onlyPutField is true, if the threads only assign new values to the field.

• modified is true, if a thread modifies a variable or assigns a new value to it
either directly or via a method call.

The onlySynchronized flag is necessary because, in the end, only those variables
are relevant that have at least one operation not properly synchronized.

An acceptable solution could be that the threads only assign new values to
fields and don’t perform any other operations on them. E.g., construct the message
variable with the help of Builder class, the construction of the object is finalized
by calling the build() method. This pattern makes the Message class immutable
and, consequently, thread-safe. The onlyPutField flag helps to identify this special
case.

The modified flag is used to decide if there are multiple threads with only
reading operations, since then it does not lead to race condition, but if at least one
thread modifies the referenced object’s state, then the state is not ambiguous in the
threads.

31Improper usages of variables with Java’s built-in atomic types and synchronized collections
are handled by the VNA03-J algorithm.
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A bug is reported, if a field is modified in multiple threads, accessed outside of
synchronized blocks, and is neither a synchronized collection nor an atomic typed
field. The algorithm marks instructions as a bug if shared data is used in multiple
threads, with at least one modifying its state without a consistent locking policy.

The algorithm marks all instances of not thread-safe field accesses as a potential
bug, because it helps the developer to identify which statements require synchroniza-
tion, so in general it makes easy to locate and accurately determine the appropriate
scope of the synchronized block necessary to ensure thread safety in a method.

Algorithm 2 Collect operation data in threads

1: List methodsInThread ▷ Inherited from Algorithm 1
2: Map⟨Field, F ieldData⟩ fieldInThreads← ∅
3: for all bytecode instructions in methodsInThread do
4: if (field assignment or method call on field and

Contains(methodsInThread, currentMethod)) then
5: data← GetOrCreate(fieldsInThreads[field])
6: data.onlySynchronized← data.onlySynchronized ∧ isSynchronized
7: data.onlyPutF ield← data.onlyPutF ield ∧ isF ieldAssign
8: data.modified← data.modified ∨ isF ieldAssign ∨ looksLikeSetter
9: fieldsInThreads[field]← PutOrUpdate(data)

10: end if
11: end for

5.2 Finding non-atomic usages of the Java Concurrent types

The atomic typed fields and collections have atomic methods that are inherently
atomic. The algorithm based on the rule VNA03-J searches for scenarios where
these atomic methods are used in a combined or sequential manner. If a shared data
is used more than once, the operations together are not atomic, so these accesses are
marked as bug. There may be the possibility that all shared data are used just once
in a method, but if combined (for example a.get().add(b.get())) then it is a bug
too, because these two resource accesses must be atomic not only individually. It is
important to note that, if a shared data is used by multiple methods and at least
one accesses it more than once, all methods that work with it need synchronization
for consistent locking to avoid race conditions between the threads that are using
the same shared resource at the same time while parallel running.

The algorithm has the following base logic: analyzing functions in a class context
and mark each method call and field assignment of common objects which are not
synchronized. If a method contains a synchronized block, the detector logs only
once for every different object inside the block, no matter how many times they are
accessed; because of the synchronization, it is considered an atomic operation. If a
private method performs an unsafe operation without proper synchronization, but
all the methods that call it have proper synchronization, then the private function
does not need another one.
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Shared data could be a field of the class, a function argument, or a local variable
containing a reference for a shared resource, for example, an element of an atomic
collection.

The algorithm also visits the class two times: first, the atomic or synchronized
collection typed fields of the class are collected. For fields with types inherited from
the atomic package (such as AtomicInteger, AtomicLong, AtomicBoolean, and
AtomicReference) only the type needs to be checked, but finding the synchronized
collections is a bit more complex: the fields only has a general List, Set or Map type
and the algorithm must look for the field assignments to determine the concrete
type. For example, Code 10 shows a synchronized list assignment:

1 List <String > lst = Collections.synchronizedList(new ArrayList <>());

Code 10: Create a synchronized list

Overall, a method which creates a synchronized collection can be recognized by
being in the Collections class32 (of the java.util.concurrent.atomic package),
and its name starting with ”synchronized” followed by the concrete collection type’s
name (e.g. synchronizedSet, synchronizedMap). The checker stores the variables,
which are assigned the return value of these methods.

Algorithm 3 Check if a Class Member’s type is atomic or a synchronized collection

1: function IsAtomicTypedField(classMember)
2: methodNames← GetMethodNamesReturningSyncCollections()
3: className← GetClassName(classMember)
4: isCollectionsClass← ”java.util.Collections” = className
5: isAtomicClass← className.StartsWith(”java.util.concurrent.atomic”)
6: isNameInteresting ← Contains(methodNames, className)
7: return (isCollectionsClass ∧ isNameInteresting) ∨ isAtomicClass
8: end function

It is possible that a collection typed field has more than one assignment, and not
all of them are synchronized collection assignments, for example, in the constructor a
List collection is only assigned a simple ArrayList value, but after the application
starts running, it is assigned a synchronizedList value. In this case, the checker
treats this field as a synchronized collection, it assumes that the variable is used in
concurrent operations.

In the second visit using the data of the collected variables, the detector looks
for operations on these fields in every method in the class, except the constructor
and synchronized methods. Constructors (as well as the static initializer) only
run on object creation once, they do not appear in parallel operations, they may
initialize fields, but this is part of the life-cycle of the object and can run only once.
In addition to the stored fields, there may be local variables or method arguments
with atomic types, and the checker also has to mark operations on these variables.

32https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html

https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html
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Overall, the following operations are logged:

• A value assigned to a stored variable.

• A method called on a stored field.

• An operation on an atomic typed local variable or method argument.

• Multiple atomic typed variables combined.

When the algorithm has logged every instruction that meets the above list, it
cumulates the results to determine which operations need to be reported as a bug.
First of all, logged private methods are removed if they have proper synchronization
on the call site in every method. Code 11 shows an example for this:

1 private AtomicInteger count = new AtomicInteger (0);

2

3 public void modifyCountSafely () {

4 synchronized (count) { // Every other caller methods call the

private method with proper synchronization

5 incrementAndPrint ();

6 }

7 }

8

9 private void incrementAndPrint () {

10 count.incrementAndGet ();

11 System.out.println("Current count: " + count.get());

12 }

Code 11: Synchronized private method on the call side

This optimization only works with private methods because, with higher visibility,
these methods can be accessed from outside the current class, and their usages are
unknown (see Subsection 7.2).

After this, the algorithm has the information, which atomic typed fields are
accessed multiple times by multiple methods without proper locking strategy. If
operations are performed in multiple methods, these are marked as a bug, and it
informs the developer to put these lines under a synchronization or refactor the
usage strategy of the shared resource.

5.3 Generalization possibilities

Although our current algorithms are explained through the example of the Java
language and contain language specific details, such as the Atomic* classes and
standard library synchronized collections, our underlying detection logic can be
extended to other programming languages, if they follow similar usage patterns (e.g.
those mentioned in Section 2).

The core principle of identifying multiple potentially conflicting operations on
shared data applies generally to any abstraction that offers atomic operations, but
it can be composed unsafely if not synchronized consistently. However, in other
programming languages, the same algorithmic idea remains valid, it must be adapted
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to detect their particular locking primitives – for example, std::mutex in C++, or
threading.Lock in Python – instead of Java’s synchronized blocks.

In SpotBugs, many Java-specific base type names are hardcoded rather than
making them project-configurable. Since these elements are essentially part of
the standard library, it is typically more practical and efficient to hardcode some
parts of the detection logic than to parameterize it for every possible project. The
synchronized collections used by the algorithms are specific to Java, but this approach
could be extended to any language. For example, in C# the .NET Framework33

offers ConcurrentDictionary, ConcurrentQueue, and ConcurrentBag, all of which
ensure thread safety without requiring explicit external locking.

By enumerating these known synchronization and atomic constructs in other
languages, the algorithms could be extended beyond Java to automatically detect
non-atomic compositions of supposedly atomic operations.

6 Results

To validate our checkers, we implemented a considerable number of unit test cases
to eliminate potential bugs and filter out possible false positive cases. After that,
we evaluated our checkers on large, modern, open source Java projects, which were
selected based on the following criteria:

1. Concurrency intensity: The project needs to use multithreading or concur-
rent data structures extensively.

2. Codebase size and activity: The project should be large and actively
maintained, ensuring real-world relevance.

3. Popularity and community participation: The project should have a
diverse contributor base and a significant user community, allowing meaningful
feedback on potential bugs.

The unit tests are written in the SpotBugs testing framework, which makes them
suitable to be used as integration test. Every test runs without issues, as expected.

For the VNA03-J there are 46 test cases overall: 22 positive and 24 negative
to cover all possible mechanisms, such as edge cases like if there are multiple
synchronized blocks in a method, but not every operation is inside, or lambda or
anonymous method is passed to an atomic field’s method call as argument, but this
method itself performs additional operations on that same atomic field. Every test
case has its own example class (which may have inner classes depending on the
test’s complexity) with a unique usage of atomic field(s).

For VNA04-J there are 14 test cases, with 10 positive and 4 negative. It has
fewer test cases than the other checker, because in this case it is not necessary to
include several atomic based types, it just works with any type that is not in Java’s
atomic package. However, it also includes some special cases like handling that if

33https://learn.microsoft.com/en-us/dotnet/standard/collections/thread-safe/

https://learn.microsoft.com/en-us/dotnet/standard/collections/thread-safe/
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a Thread is passed to Java’s Runtime34 as a shutdown hook, or to verify that the
checker can also work and detect bugs correctly with nested classes.

6.1 Results of detection the VNA03-J rule

The test results on the projects (can be seen in Table 2) show that the VNA03-J
detector has low hit rate. We performed a manual review of each found bug by
examining the relevant code regions, verifying whether the detected pattern could
indeed lead to a race condition or data inconsistency. We confirmed that the
reported issues were legitimate concurrency pitfalls. We found no code usage that
was mistakenly classified as problematic, and we believe that all the identified hits
were true positive.

Table 2: VNA03-J Measurements on large, open source projects

Project Lines of Atomic Combined Simple
Java Code variables access bugs access bugs

Bt35 78 483 25 3 7
MATSim-Libs36 679 033 47 24 9
OpenGrok37 132 290 1 0 0

Kafka38 980 184 213 40 75
ElasticSearch39 3 149 220 339 71 99

Combined atomic accesses are reported where atomic variables are accessed
multiple times in the same function without synchronization and marked cases of
simple atomic accesses, when the access needs synchronization due of the existence
of the combined resource usages in other methods.

Code 12 is a code snippet, a simplified version of the Counter class40 originally
from the MatSim-Labs open source repository, represents a real true positive finding.
The class-level variable nextCounter is accessed multiple times – once with a get()

call and again with a compareAndSet() call in the incCounter() method. These
calls constitute an unsynchronized combined atomic accesses bug. Consequently, the
reset()method, which also modifies nextCounter, can overlap with incCounter(),
resulting in a simple atomic access bug.

34https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html
35https://github.com/atomashpolskiy/bt/commit/6041303
36https://github.com/matsim-org/matsim-libs/commit/1c6779d
37https://github.com/oracle/opengrok/commit/077089f
38https://github.com/apache/kafka/commit/b436499
39https://github.com/elastic/elasticsearch/commit/44c92715
40https://github.com/matsim-org/matsim-libs/blob/1c6779d/matsim/src/main/java/org/

matsim/core/utils/misc/Counter.java

https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html
https://github.com/atomashpolskiy/bt/commit/6041303
https://github.com/matsim-org/matsim-libs/commit/1c6779d
https://github.com/oracle/opengrok/commit/077089f
https://github.com/apache/kafka/commit/b436499
https://github.com/elastic/elasticsearch/commit/44c92715
https://github.com/matsim-org/matsim-libs/blob/1c6779d/matsim/src/main/java/org/matsim/core/utils/misc/Counter.java
https://github.com/matsim-org/matsim-libs/blob/1c6779d/matsim/src/main/java/org/matsim/core/utils/misc/Counter.java


Multithreading Atomicity: Static Analysis Checkers 259

1 private final AtomicLong counter = new AtomicLong (0);

2 private final AtomicLong nextCounter = new AtomicLong (1);

3

4 public void incCounter () {

5 long i = this.counter.incrementAndGet ();

6 long n = this.nextCounter.get();

7 if ((i >= n) && (this.nextCounter.compareAndSet(n, n*multiplier)

)) { // combined atomic access bug , multiple accesses

8 log.info(this.prefix + n + this.suffix);

9 }

10 }

11

12 public void reset() {

13 this.counter.set(0);

14 this.nextCounter.set(1); // simple atomic access bug

15 }

Code 12: Example of the relation between the bug types

While our research was more to find out the possibilities of detecting concurrency
related errors with static analysis, we intend to apply our tool for solving practical
problems. We initiated discussions with the maintainers of the projects where we
find possible problems and we are looking for their feedback whether the findings
were true positives. We hope a more intensive communication with theses developers
when the new version of SpotBugs including our checkers will be available for the
larger community.

6.2 Results of detection the VNA04-J rule

The test results for the VNA04-J rule on large, open source projects (with the same
versions that are noted in Table 2) can be seen in Table 3. We found no hits on the
evaluated projects because we opted to use the algorithm variation that excludes
main thread analysis. This decision was made to avoid the checker being so noisy
that it is unusable (see the details in Section 5.1).

Table 3: VNA04-J Measurements on large, open source projects

Project Lines of Java Code Thread starts Unsafe access bugs
Bt 78 483 1 0

MATSim-Libs 679 033 1 0
OpenGrok 132 290 4 0

Kafka 980 184 1 0
ElasticSearch 3 149 220 0 0
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It is very rare that in one class more than one Threads run parallel, which are
using common resources. The detector has a serious limitation; it only works within
the class context, and cannot see the relations, method calls outside of a class. This
limitation is inherited from the SpotBugs framework, as discussed in Section 7. Is
it possible that the public functions of a class are run in different threads in parallel
way, but the checker cannot detect that usage.

6.3 Performance and integration with SpotBugs

SpotBugs keeps the analyzed application classes in memory (via BCEL) and performs
separate passes on each classes for all enabled detectors, which are completely
independent of each other, there is no shared data or any connection between
them. This design simplifies the analysis process and avoids unintended interactions
between detectors.

Our newly introduced concurrency checkers are implemented as additional
detectors in SpotBugs. The VNA03-J algorithm, due to certain implementation
details, is a CFG-Based detector, which means it is more expensive to run, than the
visitor-based detectors, like the VNA04-J. To quantify runtime overhead, we ran
SpotBugs on the Kafka codebase (same commit as noted in Table 2) on an Apple
MacBook M2 Pro, repeating each run five times. We used the following command
for benchmarking:

./gradlew clean core:spotbugsMain core:spotbugsTest -x test \

--rerun-tasks --no-build-cache --profile

Table 4: Benchmark results on Kafka, run on an Apple MacBook M2 Pro

Configuration Avg. Runtime
No concurrency detectors 15.21s
VNA03-J enabled 18.46s
VNA04-J enabled 15.54s
VNA03-J and VNA04-J enabled 18.79s

These results align with SpotBugs’ documented tendency for CFG-based detec-
tors to incur more overhead than visitor-based ones.

Similar to other SpotBugs detectors, our checkers rely on SpotBugs’ in-memory
class repository and do not add extra complex data structures. Consequently, we
anticipate negligible memory overhead even when analyzing large-scale projects.
Compared to existing detectors, our concurrency checkers primarily store per-class
metadata for pattern matching and analysis and follow similar design principles and
performance characteristics.
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7 Known limitations and possibilities for further
development

This section highlights limitations in the current implementation of the SpotBugs
detectors and suggests some possible opportunities to improve them.

7.1 Use of atomic typed variables in public methods

Atomic types are typically used to ensure thread safety. However, if they appear in
public methods not utilized in a threaded context, hits of the algorithm based on the
rule VNA03-J are false positives. The algorithm assumes that, if the developer used
atomic-typed variables, then it is because it is used in threads. This limitation could
be solved by analyzing the relations of the classes (see Section 7.2), and exclude
those public methods from the analysis which are not run in parallel way.

7.2 SpotBugs’ class context analyzing limitation

SpotBugs operates within a single-class context, as such can only analyze operations
within a class. This restriction may lead to potential false negatives in both detectors
in systems where class interactions play a crucial role in the application’s concurrency
logic.

Without these limitations, the checker implementation of the algorithm based on
the rule VNA03-J could exclude those nonprivate methods, which are not running
in parallel threads, and the algorithm with rule VNA04-J could include those
nonprivate methods which are passed to a Thread in another class, or just called by
another method outside of the analyzed class that is running in parallel thread.

7.3 False positives in single-function modifications

Another issue is related to the scenario where multiple threads modify a common
field, such as incrementing a counter. While this might technically represent a
concurrency issue, if each thread’s modification is self-contained and thread-safe
(like atomic increments), it currently triggers a false positive.

1 private AtomicInteger count = new AtomicInteger (0);

2

3 // Thread 1:

4 public void incrementByOne () {

5 count.incrementAndGet (); // Safe atomic operation

6 }

7

8 // Thread 2:

9 public void incrementByTwo () {

10 count.addAndGet (2); // Another safe atomic operation

11 }

Code 13: Example of safe usage of parallel modifications
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It is hard to determine by method names, what are those operations that only
modify the common data, so since there were no hits like this in our evaluations
of large open source projects, we chose to leave this false positive chance in the
algorithm because it is not noisy for the developers.

7.4 Challenges with Lambda Expressions

The introduction of Lambda Expressions41 into Java 8 marked a significant milestone
in the evolution of the language. This feature was one of the most anticipated
additions to Java and fundamentally changed the way Java programmers write code,
especially when dealing with collections and concurrency.

Technically, a lambda expression in Java is an instance of a functional interface42,
an interface with a single abstract method (SAM interface). The Java compiler
infers the type of lambda expression from the context in which it is used, allowing
simpler and more concise syntax.

Lambda Expressions are implemented under the hood as bootstrap methods
using the invokedynamic bytecode instruction. With the SpotBugs framework,
there is some limitation to analyze lambda methods, because the calls and operations
on these kinds of method are different due to the specialized bytecode instruction,
and certain features are either not implemented or implemented in an alternative
manner in the current version of SpotBugs, resulting in the loss of some information
during analysis.

8 Conclusion

In concurrent programming, it is crucial to use shared resources in a thread-safe way.
To achieve this, it is recommended to use a consistent locking policy, which could
be even necessary, when a program works with Java atomic based types or with
synchronized collections. Static analysis is a very useful tool to look for mistakes
and make sure the developers identify and rectify potential errors, and implement
their concurrent logics in a proper way.

We analyzed practices in thread safety, not only in Java but also by reviewing
methodologies in other programming languages, such as Python, Rust and C++.

We delved into the SEI Cert Coding Standards, which is pivotal in guiding
developers toward safer coding practices. Our research into this guideline was not
just theoretical; we applied part of these standards practically by designing an
algorithm and implementing corresponding checkers (which cover the VNA03-J and
VNA04-J rules) in SpotBugs Static Analyzer Tool.

By integrating new detectors, our research has directly contributed to the en-
hancement of this tool, allowing it to identify unsafe resource usage across concurrent
threads more effectively. The addition of these detectors extends SpotBugs’ capa-

41https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
42https://docs.oracle.com/javase/8/docs/api/java/lang/FunctionalInterface.html

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/8/docs/api/java/lang/FunctionalInterface.html
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bilities, enabling it to catch subtle bugs that could otherwise lead to inconsistent
states or even system failures in production environments.

The enhancements in SpotBugs that we implemented offer practical benefits to
developers by reducing the time and effort required to identify concurrency issues.
This not only increases productivity, but also improves the overall reliability of
software applications. By detecting potential problems in the early stages of the
development cycle, developers can address issues before they manifest in deployed
systems, reducing downtime and maintenance costs. These advantages also enable
managers to reduce the use of project resources and financial expenditures.

Furthermore, our work underscores the value of community-driven open source
projects in the evolution of software development tools. Our contributions to the
SpotBugs project exemplify how individual efforts can lead to significant improve-
ments in tools that are widely used by the developer community. The advanced
capabilities of SpotBugs, enriched with more robust detectors for concurrency issues,
render it a valuable tool for developers aiming to write safer and more reliable Java
applications.
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