Phase measurement using DIC microscopy
Abstract
The development of fluorescent probes and proteins has helped make light microscopy more popular by allowing the visualization of specific subcellular components, location and dynamics of biomolecules. However, it is not always feasible to label the cells as it may be phototoxic or perturb their functionalities. Label-free microscopy techniques allow us to work with live cells without perturbation and to evaluate morphological differences, which in turn can provide useful information for high-throughput assays. In this study, we use one of the most popular label-free techniques called differential interference contrast (DIC) microscopy to estimate the phase of cells and other nearly transparent objects and instantly estimate their height. DIC images provide detailed information about the optical path length (OPL) differences in the sample and they are visually similar to a gradient image. Our previous DIC construction algorithm outputs an image where the values are proportional to the OPL (or implicitly the phase) of the sample. Although the reconstructed images are capable of describing cellular morphology and to a certain extent turn DIC into a quantitative technique, the actual OPL has to be computed from the input DIC image and the microscope calibration settings. Here we propose a computational method to measure the phase and approximate height of cells after microscope calibration, assuming a linear formation model. After a calibration step the phase of further samples can be determined when the refractive indices of the sample and the surrounding medium is known. The precision of the method is demonstrated on reconstructing the thickness of known objects and real cellular samples.Downloads
Download data is not yet available.
Published
2017-01-01
How to Cite
Koos, K., Peksel, B., & Kelemen, L. (2017). Phase measurement using DIC microscopy. Acta Cybernetica, 23(2), 629-643. https://doi.org/10.14232/actacyb.23.2.2017.12
Issue
Section
Regular articles