The Logic of Aggregated Data

Keywords: Semantics, Aggregation Metadata Information management

Abstract

A notion of generalization-specialization is introduced that is more expressive than the usual notion from, e.g., the UML or RDF-based languages. This notion is incorporated in a typed formal language for modeling aggregated data. Soundness with respect to a sets-and-functions semantics is shown subsequently. Finally, a notion of congruence is introduced. With it terms in the language that have identical semantics, i.e., synonyms, can be discovered. The resulting formal language is well-suited for capturing faithfully aggregated data in such a way that it can serve as the foundation for corporate metadata management in a statistical office.

Downloads

Download data is not yet available.

References

Abramsky, S., Gabbay, Dov M., and Maibaum, T. S. E., editors. Handbook of Logic in Computer Science (Vol. 4): Semantic Modelling. Oxford University Press, Inc., New York, NY, USA, 1995.

Baader, Franz and Nipkow, Tobias. Term Rewriting and All That. Cambridge University Press, New York, NY, USA, 1998.

Barr, Michael and Wells, Charles. Category Theory for Computing Science. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

Brickley, D. and Guha, R.V. RDF schema 1.1 (W3C recommendation), 2014.

Davey, Brian A. and Priestley, Hilary A. Introduction to lattices and order. Cambridge University Press, Cambridge, 1990.

Fraenkel, A.A., Bar-Hillel, Y., and Levy, A. Foundations of Set Theory. Elsevier Science, 1973.

Gelsema, Tjalling. General requirements for the soundness of metadata models. In Joint UNECE/Eurostat/OECD work session on statistical metadata (METIS), 2008.

Gelsema, Tjalling. The organization of information in a statistical office. Journal of Official Statistics, 28(3):413–440, 2012.

Goguen, J. A., Thatcher, J. W., Wagner, E. G., and Wright, J. B. Initial algebra semantics and continuous algebras. Journal of the ACM, 24(1):68–95, 1977. DOI: 10.1145/321992.321997.

Grätzer, G. Universal Algebra. D. Van Nostrand Company, Princeton New Jersey, 1968.

Hayes, P.J. and Patel-Schneider, P.F. RDF 1.1 semantics (W3C recommendation), 2014.

Klop, J.W. and de Vrijer, R.C. Term Rewriting Systems. Cambridge University Press, 2003.

Lane, S. M. Categories for the Working Mathematician. Springer-Verlag, New York, 1998.

Manca, V., Salibra, A., and Scollo, G. Equational type logic. Theoretical Compututer Science, 77(1–2):131–159, 1990. DOI: 10.1016/0304-3975(90)90118-2.

Martin, J. and Odell, J.J. Object-Oriented Methods: A Foundation; UML Edition. Prentice-Hall, Upper Saddle River, New Jersey, 1998.

Meinke, K. and Tucker, J.V. Universal algebra. In Abramsky, S., Gabbay, M., and Maibaum, T., editors, Handbook of Logic in Computer Science, Vol. I: Background; Mathematical Structures. Oxford Science Publications, 1992.

Motik, B., Patel-Schneider, P.F., and Grau, B. Cuenca. OWL 2 web ontology language direct semantics (second edition, W3C recommendation), 2012.

Pierce, B.C. Basic Category Theory for Computer Scientist. The MIT Press, Cambridge Massachusetts, 1991.

Pierce, B.C. Types and Programming Languages. The MIT Press, Cambridge Massachusetts, 2002.

Signore, M., Scanu, M., and Brancato, G. Statistical metadata: a unified approach to management and dissimination. Journal of Official Statistics, 31(2):325–347, 2015. DOI: 10.1515/jos-2015-0020.

Thomson, S. Type Theory and Functional Programming. Addison-Wesley, 1994.

United Nations Economic Commission for Europe (UNECE). Generic statistical information model (GSIM): Specification, 2013.

van Leeuwen, J. Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics. The MIT Press, Cambridge Massachusetts, 1994.

Published
2019-11-03
How to Cite
Gelsema, T. (2019). The Logic of Aggregated Data. Acta Cybernetica, 24(2), 211-248. https://doi.org/10.14232/actacyb.24.2.2019.4
Section
Regular articles