# An Elementary Proof of the General Poincaré Formula for λ-additive Measures

### Abstract

In a previous paper of ours [4], we presented the general formula for lambda-additive measure of union of n sets and gave a proof of it. That proof is based on the fact that the lambda-additive measure is representable. In this study, a novel and elementary proof of the formula for lambda-additive measure of the union of n sets is presented. Here, it is also demonstrated that, using elementary techniques, the well-known Poincare formula of probability theory is just a limit case of our general formula.

### Downloads

### References

Chen, Xing, Huang, Yu-An, Wang, Xue-Song, You, Zhu-Hong, and Chan, Keith CC. **FMLNCSIM: fuzzy measure-based lncRNA functional similarity calculation model**. *Oncotarget*, 7(29):45948-45958, 2016. DOI: 10.18632/oncotarget.10008.

Chicescu, Ion. **Why lambda-additive (fuzzy) measures?** *Kybernetika*, 51(2):246-254, 2015. DOI: 10.14736/kyb-2015-2-0246.

Dempster, A.P. **Upper and lower probabilities induced by a multivalued mapping**. *Annals of Mathematical Statistics*, 38:325-339, 1967. DOI: 10.1214/aoms/1177698950.

Dombi, József and Jónás, Tamás. **The general Poincaré formula for lambda-additive measures**. *Information Sciences*, 490:285-291, 2019. DOI: 10.1016/j.ins.2019.03.059.

Dubois, Didier and Prade, Henri. *Fuzzy Sets and Systems: Theory and Applications*, volume 144 of *Mathematics In Science And Engineering*, chapter 5, pages 125-147. Academic Press, Inc., Orlando, FL, USA, 1980.

Dubois, Didier and Prade, Henri. **Rough fuzzy sets and fuzzy rough sets**. *International Journal of General Systems*, 17(2-3):191-209, 1990. DOI: 10.1080/03081079008935107.

Feng, Tao, Mi, Ju-Sheng, and Zhang, Shao-Pu. **Belief functions on general intuitionistic fuzzy information systems**. *Information Sciences*, 271:143-158, 2014. DOI: 10.1016/j.ins.2014.02.120.

Grabisch, Michel. *Set Functions, Games and Capacities in Decision Making*. Springer Publishing Company, Incorporated, DOI: 10.1007/978-3-319-30690-2_2, 1st edition, 2016.

Höhle, Ulrich. **A general theory of fuzzy plausibility measures**. *Journal of Mathematical Analysis and Applications*, 127(2):346-364, 1987. DOI: 10.1016/0022-247X(87)90114-4.

Jin, LeSheng, Mesiar, Radko, and Yager, Ronald R. **Melting probability measure with owa operator to generate fuzzy measure: the crescent method**. *IEEE Transactions on Fuzzy Systems*, 27(6):1309-1316, 2018. DOI: 10.1109/tfuzz.2018.2877605.

Magadum, C.G. and Bapat, M.S. **Ranking of students for admission process by using Choquet integral**. *International Journal of Fuzzy Mathematical Archive*, 15(2):105-113, 2018.

Mohamed, M.A. and Xiao, Weimin. **Q-measures: an efficient extension of the Sugeno lambda-measure**. *IEEE Transactions on Fuzzy Systems*, 11(3):419-426, 2003. DOI: 10.1109/tfuzz.2003.812701.

Pap, Endre. *Null-additive set functions*, volume 337. Kluwer Academic Pub, 1995.

Pap, Endre. **Pseudo-additive measures and their applications**. In *Handbook of measure theory*, pages 1403-1468. Elsevier, 2002, DOI: 10.1016/b978-044450263-6/50036-1.

Polkowski, Lech. *Rough sets in knowledge discovery 2: applications, case studies and software systems*, volume 19. Physica, 2013.

Shafer, Glenn. *A mathematical theory of evidence*, volume 42. Princeton University Press, 1976.

Singh, Akhilesh Kumar. **Signed lambda-measures on effect algebras**. In *Proceedings of the National Academy of Sciences, India Section A: Physical Sciences*, pages 1-7. Springer India, Jul 2018, DOI: 10.1007/s40010-018-0510-x.

Skowron, Andrzej. **The relationship between the rough set theory and evidence theory**. *Bulletin of Polish academy of science: Mathematics*, 37:87-90, 1989.

Skowron, Andrzej. **The rough sets theory and evidence theory**. *Fundam. Inf.*, 13(3):245-262, October 1990.

Spohn, Wolfgang. *The Laws of Belief: Ranking Theory and its Philosophical Applications*. Oxford University Press, DOI: 10.1093/acprof:oso/9780199697502.001.0001, 2012.

Sugeno, M. *Theory of fuzzy integrals and its applications*. PhD thesis, Tokyo Institute of Technology, Tokyo, Japan, 1974.

Wang, Zhenyuan and Klir, George J. *Generalized Measure Theory*. IFSR International Series in Systems Science and Systems Engineering. Springer US, 2010.

Wu, Wei-Zhi, Leung, Yee, and Zhang, Wen-Xiu. **Connections between rough set theory and Dempster-Shafer theory of evidence**. *International Journal of General Systems*, 31(4):405-430, 2002. DOI: 10.1080/0308107021000013626.

Yao, Y.Y. and Lingras, P.J. **Interpretations of belief functions in the theory of rough sets**. *Information Sciences*, 104(1):81-106, 1998. DOI: 10.1016/S0020-0255(97)00076-5.

*Acta Cybernetica*,

*24*(2), 173-185. https://doi.org/10.14232/actacyb.24.2.2019.1