On pure multi-pushdown automata that perform complete pushdown pops

  • Tomáš Masopust
  • Alexander Meduna

Abstract

This paper introduces and discusses pure multi-pushdown automata that remove symbols from their pushdowns only by performing complete pushdown pops. This means that during a pop operation, the entire pushdown is compared with a prefix of the input, and if they match, the whole contents of the pushdown is erased and the input is advanced by the prefix. The paper proves that these automata define an infinite hierarchy of language families identical with the infinite hierarchy of language families resulting from right linear simple matrix grammars. In addition, this paper discusses some other extensions of these automata with respect to operations they can perform with their pushdowns. More specifically, it discusses pure multi-pushdown automata that perform complete pushdown pops that are allowed to join two pushdowns and/or create a new pushdown.

Downloads

Download data is not yet available.
Published
2009-01-01
How to Cite
Masopust, T., & Meduna, A. (2009). On pure multi-pushdown automata that perform complete pushdown pops. Acta Cybernetica, 19(2), 537-552. Retrieved from https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3781
Section
Regular articles